Random Forests for Time Series
DOI:
https://doi.org/10.57805/revstat.v21i2.400Keywords:
Block bootstrap, Random forests, Regression, Time seriesAbstract
Random forests are a powerful learning algorithm. However, when dealing with time series, the time-dependent structure is lost, assuming the observations are independent. We propose some variants of random forests for time series. The idea is to replace standard bootstrap with a dependent block bootstrap to subsample time series during tree construction. We present numerical experiments on electricity load forecasting. The first, at a disaggregated level and the second at a national level focusing on atypical periods. For both, we explore a heuristic for the choice of the block size. Additional experiments with generic time series data are also available.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REVSTAT-Statistical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.