Robust Estimation of Reduced Rank Models to Large Spatial Datasets
DOI:
https://doi.org/10.57805/revstat.v18i2.297Keywords:
geostatistics, contaminated data, median absolute deviation, quantile regression, cloudAbstract
For large datasets, spatial covariances are often modeled using basis functions and covariance of a reduced dimensional latent spatial process. For skewed data, likelihood based approaches with Gaussian assumption may not lead to faithful inference. Any L2 norm based estimation is susceptible to long tails and outliers due to contamination. Our method is based on an empirical binned covariance matrix using the median absolute deviation and minimizes L1 norm between empirical covariance and the model covariance. The consistency of the proposed estimate is established theoretically. The improvement is demonstrated using simulated data and cloud data obtained from NASA’s Terra satellite.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 REVSTAT-Statistical Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.