
REVSTAT
Statistical Journal 
vol. 23 - n. 1 - January 2025



REVSTAT
Statistical Journal 
vol. 23 - n. 1 - January 2025



 

*image: stain glass window by Abel Manta (1888-1982) 

REVSTAT — Statistical Journal, vol.23, n. 1 (January 2025) 

vol.1, 2003-    . - Lisbon : Statistics Portugal, 2003-    . 

Continues: Revista de Estatística = ISSN 0873-4275.    

ISSN 1645-6726 ; e-ISSN 2183-0371 

 

Editorial Board (2024-2025) 

Editor-in-Chief – Manuel SCOTTO 

Co-Editor – Cláudia NUNES 

Associate Editors  

Abdelhakim AKNOUCHE 

Andrés ALONSO 

Barry ARNOLD 

Wagner BARRETO-SOUZA  

Francisco BLASQUES  

Paula BRITO 

Rui CASTRO 

Valérie CHAVEZ-DEMOULIN 

David CONESA 

Charmaine DEAN 

Fernanda FIGUEIREDO 

Jorge Milhazes FREITAS 

Stéphane GIRARD  

Sónia GOUVEIA  

Victor LEIVA 

Artur LEMONTE 

Shuangzhe LIU 

Raquel MENEZES  

Fernando MOURA 

Cláudia NEVES 

John NOLAN 

Carlos OLIVEIRA 

Paulo Eduardo OLIVEIRA 

Pedro OLIVEIRA 

Rosário OLIVEIRA  

Gilbert SAPORTA 

Alexandra M. SCHMIDT 

Lisete SOUSA 

Jacobo de UÑA-ÁLVAREZ  

Christian WEIẞ

 

Executive Editor – Olga BESSA MENDES 

 

 

Publisher – Statistics Portugal 

Layout-Graphic Design – Carlos Perpétuo | Cover Design* – Helena Nogueira 

Edition - 130 copies | Legal Deposit Registration - 191915/03 | Price [VAT included] - € 9,00 

 

 

  Creative Commons Attribution 4.0 International (CC BY 4.0) 
© Statistics Portugal, Lisbon. Portugal, 2025 



INDEX

Control Monitoring Schemes for Percentiles of Generalized Exponential
Distribution with Hybrid Censoring

Shovan Chowdhury, Amarjit Kundu and Bidhan Modok . . . . . . . . . . . . . . . . . . . . . . . . . 1

Statistical Inferences to the Parameter and Reliability Characteristics of
Gamma-mixed Rayleigh Distribution under Progressively Censored Data
with Application

Kousik Maiti and Suchandan Kayal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

On a Characterization of Exponential and Double Exponential Distributions

Reza Rastegar and Alexander Roitershtein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Optimal Imputation Methods under Stratified Ranked Set Sampling

Shashi Bhushan and Anoop Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Data Analytics and Distribution Function Estimation via Mean Absolute
Deviation: Nonparametric Approach

Elsayed A.H. Elamir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Survival Copula Entropy and Dependence in Bivariate Distributions

N. Unnikrishnan Nair and S.M. Sunoj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bayesian and Frequentist Estimation of Stress-Strength Reliability from
a New Extended Burr XII Distribution

Varun Agiwal, Shikhar Tyagi and Christophe Chesneau . . . . . . . . . . . . . . . . . . . . . . . . . 117

Stochastic Generator of a New Family of Lifetime Distributions with Illus-
tration

Amjad D. Al-Nasser and Ahmad A. Hanandeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Abstracted/indexed in: JournalCitationReports™ – JCR(Clarivate); DOAJ–Directory ofOpenAccess Journals;
Current Index to Statistics; Google Scholar; MathematicalReviewsr (MathSciNetr); Zentralblatt fürMathematic;
SCImago Journal & Country Rank; Scopusr.



REVSTAT – Statistical Journal
Volume 23, Number 1, January 2025, 1–17

https://doi.org/10.57805/revstat.v23i1.492

Control Monitoring Schemes for Percentiles of Generalized
Exponential Distribution with Hybrid Censoring

Authors: Shovan Chowdhury
– Quantitative Methods and Operations Management Area,

Indian Institute of Management,
Kozhikode, India
shovanc@iimk.ac.in

Amarjit Kundu �

– Department of Mathematics, Raiganj University,
West Bengal, India
bapai_k@yahoo.com

Bidhan Modok
– Department of Mathematics, Raiganj University,

West Bengal, India
bidhanmodok95@gmail.com

Received: June 2021 Revised: December 2022 Accepted: December 2022

Abstract:

• In this article, a parametric bootstrap “control monitoring scheme” equivalently known as “control
chart”, is proposed for process monitoring of percentiles of the generalized exponential distribution
for type-I hybrid censored data assuming in-control parameters to be unknown. Monte Carlo
simulations are carried out to evaluate the in-control and out-of-control performance of the proposed
scheme in terms of average run lengths. Conventional Shewhart-type scheme is also proposed under
the same set-up asymptotically and compared with bootstrap scheme using a skewed data set.
Finally, an application of the proposed scheme is shown from clinical practice.

Keywords:

• average run length; control monitoring scheme; false alarm rate; generalized exponential distribu-
tion; hybrid censoring; parametric bootstrap.

AMS Subject Classification:

• 62P30 (Primary), 62F40 (Secondary), 62N01 (Secondary).

� Corresponding author

https://doi.org/10.57805/revstat.v23i1.492
https://orcid.org/0000-0002-2027-4127
mailto:shovanc@iimk.ac.in
https://orcid.org/0000-0001-9148-4036
mailto:bapai_k@yahoo.com
https://orcid.org/0000-0002-6297-4105
mailto:bidhanmodok95@gmail.com


2 Sh. Chowdhury, A. Kundu and B. Modok

1. INTRODUCTION

Researchers have often shown interest in developing control charts, also known as con-
trol monitoring scheme, for monitoring percentiles of an underlying distribution in reliability
studies. Padgett and Spurrier (1990) and Nichols and Padgett (2005) argued in favor of
monitoring lower percentile of strength distribution over average to confirm the quality of
carbon fiber strength to be in control. Chowdhury et al. (2021) emphasized on monitoring
the upper (lower) percentile of the proportion of non-conforming (conforming) units, as an
upward (downward) shift in the upper (lower) percentile indicates a deterioration in qual-
ity. All the available control schemes for monitoring distribution quantiles (see for example,
Padgett and Spurrier, 1990; Nichols and Padgett, 2005; Erto and Pallotta, 2007; Lio and
Park, 2008, 2010; Lio et al. (2014); Erto et al. (2015); Chiang et al., 2017, 2018; Leiva et al.,
2022; and Ma et al., 2022) used parametric bootstrap method with different distributional
assumptions under classical or/and Bayesian set-up. Additionally, Chiang et al. (2018) used
model selection approaches to choose between competing underlying distributions. Due to
the non-availability of closed form expressions of the sampling distribution of the percentiles,
computational methods such as parametric bootstrap is used to obtain the control limits. For
more discussion on the bootstrap technique and its advantages, one can refer to Efron and
Tibshirani (1993), Liu and Tang (1996), Jones and Woodall (1998) and Seppala et al. (1996).

The results obtained from the aforementioned papers are useful and valuable, and can be
applied to complete data setting only. In practice, reliability data are skewed and censored.
Recently Vining et al. (2016) emphasized on using censored data in reliability studies as
customers expected products and processes to perform with high quality over the entire
expected lifetime of the product/process. Most of the available schemes for censored data
monitor mean of a process. Few papers are found in the literature for monitoring percentiles
of a process using censored data. Haghighi et al. (2015) proposed control charts for the
quantiles of the Weibull distribution for type-II censored data, based on the distribution of
a pivotal quantity conditioned on ancillary statistics. Wang et al. (2018) proposed EWMA
and CUSUM charts for monitoring the lower Weibull percentiles under complete data and
type-II censoring using the same approach as used in Haghighi et al. (2015). Encouraged by
these findings, in this paper, a control monitoring scheme is proposed based on bootstrap
method using hybrid censoring which generalizes control monitoring schemes under type-I
and type-II censoring.

In type-I censoring scheme, the experiment is aborted after a pre-decided time T = x0;
whereas in type-II censoring, the termination is subject to failure of a pre-fixed number of
items r. The hybrid censoring scheme which is popularly known in the literature as type-I
hybrid censoring scheme was initially introduced by Epstein (1954) and can be considered
as a mixture of type-I and type-II censoring schemes. It can be described briefly as follows:
Suppose n identical units are put on an experiment. Now if X1:n, ..., Xn:n are the ordered
lifetimes of the units, then the experiment is aborted either when a pre-chosen number r(< n)
out of n items has failed or when a pre-determined time x0 has elapsed. Hence the life test
can be terminated at a random time X∗ = min{Xr:n, T}. One of the following two types of
observations can be witnessed under type-I hybrid censoring scheme.
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Case I: {X1:n < ... < Xr:n} if Xr:n < x0.

Case II: {X1:n < ... < Xd:n < T} if d + 1 ≤ r < n and x0 ≤ Xr:n.

Case I 

 

 

 

  

 

Case II 

 

 

 

 

 

1st failure 2nd failure  rth failure (Experiment Stops) 

𝑋1:𝑛 𝑋2:𝑛 𝑋𝑟:𝑛 𝑥0 ⋯ 

1st failure 2nd failure dth failure Experiment stops (d+1)th failure rth failure 

⋯ 𝑋1:𝑛 𝑋2:𝑛 𝑋𝑑:𝑛 𝑋(𝑑+1):𝑛 𝑋𝑟:𝑛 𝑥0 

Figure 1: Schematic illustration of type-I hybrid censoring scheme.

In reliability studies, two-parameter Weibull is the most popular distribution to the
practitioners. Gupta and Kundu (1999) proposed the two parameter generalized exponential
(GE) distribution as an alternative to the Weibull and studied its properties extensively.
The scale and shape parameters of the GE distribution bring quite a bit of flexibility in
the distribution to analyze any positive real data. Both the Weibull and GE distributions
have increasing or decreasing failure rates depending on the shape parameter. Many authors
pointed out (see for example, Bain, 1976) that since the hazard function of a GE distribution
is bounded above or bounded below as opposed to Weibull which is unbounded, the GE
may be more appropriate as a population model when the items in the population are in
a regular maintenance environment. The hazard rate may increase initially, but after some
times the system reaches a stable condition because of maintenance. Therefore, if it is known
that the data are from a regular maintenance environment, it may make more sense to fit
the GE distribution over the Weibull. As opposed to Weibull distribution, GE represents a
parallel system of independent and identically distributed exponential components. GE has
likelihood ratio ordering on the shape parameter indicating the possibility of constructing
a uniformly most powerful test for testing a one-sided hypothesis on the shape parameter
keeping the scale parameter known. The Weibull distribution doesn’t enjoy any such ordering
properties and hence no such uniformly most powerful test exists for Weibull. One of the
disadvantages of Weibull can be pointed out that the asymptotic convergence to normality for
the distribution of the maximum likelihood estimators is very slow (Bain, 1976). Therefore
most of the asymptotic inferences may not be very accurate unless the sample size is very
large. For a detailed comparison between Weibull and GE, one can refer to Gupta and Kundu
(2001). Motivated by these findings, GE is chosen as the underlying distribution to develop
a bootstrap control monitoring scheme for hybrid censored data.
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The rest of the paper is organized as follows. Section 2 provides the statistical back-
ground of the paper. The proposed bootstrap and Shewhart-type control monitoring schemes
for GE percentiles with hybrid censored data are introduced in Section 3. Section 4 is de-
voted to the practical implementation of the schemes including tabulation of the control limits
and average run length (ARL). Simulation results of both in-control (IC) and out-of-control
(OOC) performance of the bootstrap scheme are presented in Section 4. The effectiveness
of the proposed scheme is evaluated in Section 5 using a skewed data set. Bootstrap control
monitoring scheme for type-I and type-II censored data are also obtained in Section 5 as
a special case and are compared with bootstrap chart under hybrid censoring scheme. An
application of the proposed scheme is shown from clinical practice in Section 6. Section 7
concludes the paper.

2. STATISTICAL FRAMEWORK

2.1. Maximum likelihood estimators

Let X be a random variable following two parameter GE distribution with the shape
parameter θ > 0 and scale parameter λ > 0. Then probability density function (pdf) and
cumulative distribution function (cdf) of X are given by

(2.1) f(x|θ, λ) = θλe−λx(1− e−λx)θ−1

and

(2.2) F (x|θ, λ) =
(
1− e−λx

)θ
.

Let ξp be the 100pth percentile of the GE distribution and is obtained as

(2.3) ξp = − 1
λ

ln
(
1− p

1
θ

)
.

Now, let xi1 , xi2 , ..., xin be ith in-control (IC) random subgroup of size n (i = 1, 2, ..., k) drawn
from phase I process following GE distribution as in (2.1). On the basis of the observed data
and ignoring the additive constant, the log-likelihood function under hybrid censoring (for
Case I and II as introduced in Section 1) is given by

L(θ, λ|data) = d ln θ + d lnλ− λ

d∑
i=1

xi:n + (θ − 1)
d∑

i=1

ln(1− e−λxi:n)

+ (n− d) ln
(
1− (1− e−λc)θ

)
.(2.4)

Note that for Case I, d = r and c = xr:n, and for Case II, 0 ≤ d ≤ r − 1 and c = x0. Also it
can be shown that for λ → 0, and for any fixed θ, maximum likelihood estimators (MLE)
of θ and λ do not exist when d = 0. Assuming d to be positive, the MLEs θ̂ and λ̂ are
obtained by maximizing the log-likelihood function (2.4), and subsequently solving the non-
linear equations

∂L

∂θ
= 0,

∂L

∂λ
= 0.
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As closed-form solutions of these two equations are not available, EM algorithm is used
to obtain the MLEs. Let the observed data and the censored data be denoted by X =
(x1:n, ..., xd:n) and Y = (y1, ..., yn−d) respectively. Here for given d, Y is not observable and
hence can be thought of as missing data. The combination of Z = (X,Y) forms the complete
data set. Ignoring the additive constant, the log-likelihood function of the uncensored data
set, denoted by Lc(θ, λ|Z) is given by

Lc(θ, λ|data) = n ln θ + n lnλ− λ

(
d∑

i=1

xi:n +
n−d∑
i=1

yi

)

+ (θ − 1)

(
d∑

i=1

ln
(
1− e−λxi:n

)
+

n−d∑
i=1

ln
(
1− e−λyi

))
.(2.5)

Now for ‘E’-step of the EM algorithm, one needs to compute the pseudo log-likelihood function
as Ls(θ, λ|data) = E(Lc(Z; θ, λ)|X), obtained as

Ls(θ, λ|data) = n ln θ + n lnλ− λ
d∑

i=1

xi:n + (θ − 1)
d∑

i=1

ln
(
1− e−λxi:n

)
− λ

n−d∑
i=1

E[Yi|Yi > c] + (θ − 1)
n−d∑
i=1

E
[
ln(1− e−λYi)|Yi > c

]
.(2.6)

Now the ‘M’-step involves maximization of the pseudo log-likelihood function given in
(2.6). Therefore, if at the kth stage the estimate of (θ, λ) is (θk, λk), then (θ(k+1), λ(k+1)) can
be obtained by maximizing

g(θ, λ) = n ln θ + n lnλ− λ
d∑

i=1

xi:n + (θ − 1)
d∑

i=1

ln
(
1− e−λxi:n

)
− λ(n− d)A

(
c, θ(k), λ(k)

)
+ (θ − 1)(n− d)B

(
c, θ(k), λ(k)

)
,(2.7)

where

A(c, θ, λ) = − θ

λ(1− F (c, θ, λ))
u(λc, θ),

B(c, θ, λ) =
1

θ(1− F (c, θ, λ))

[(
1− e−cλ

)θ(
1− θ ln

(
1− e−cλ

))
− 1
]
.

The maximization of (2.7) can be performed by using similar technique as of Gupta and
Kundu (2001). First, λ(k+1) can be obtained by solving a fixed point type equation h(λ) = λ,

where the function h(λ) is defined as

h(λ) =

[
1
n

d∑
i=1

xi:n +
n− d

n
A− 1

n

(
θ̂(λ)− 1

) d∑
i=1

xi:ne−λxi:n

1− e−λxi:n

]−1

,

with A=A
(
c, θ(k), λ(k)

)
, B=B

(
c, θ(k), λ(k)

)
and θ̂(λ) =− nPd

i=1 ln(1−e−λxi:n)+(n−d)B
. Once λ(k+1)

is obtained, θ(k+1) is obtained by solving the equation θ(k+1) = θ̂
(
λ(k+1)

)
. For more detail on

the estimation of GE parameters under hybrid censoring (see Kundu and Pradhan, 2009).

The MLE of the 100pth percentiles, denoted by ξ̂p, is also obtained as

(2.8) ξ̂p = − 1

λ̂
ln
(
1− p

1

θ̂

)
.
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2.2. Asymptotic properties

An outline of the Fisher information matrix and asymptotic properties of the estimators
are discussed here. For more detail, one may refer to Gupta and Kundu (2001) and Kundu
and Pradhan (2009). Using the missing value principle of Louis (1982), it can be written that

(2.9) Observed information = Complete information − Missing information,

and can be expressed as

(2.10) IX(Θ) = IW (Θ)− IW |X(Θ),

with Θ = (θ, λ); X = the observed vector; W = the complete data; IW (Θ) = the complete
information; IW |X(Θ) = the missing information. The complete information IW (Θ) is given
by

IW (Θ) = −E

[
∂2Lc(W ; Θ)

∂Θ2

]
,

with the Fisher information matrix of the censored observations being written as

IW |X(Θ) = −(n− d)EZ|X

[
∂2 ln fZ(z|X, Θ)

∂Θ2

]
.

The asymptotic variance covariance matrix of Θ̂, the MLE of Θ, can be obtained by inverting
IX

(
Θ̂
)
. The elements of the matrix IX(Θ) for the complete data set can be obtained in

Kundu and Pradhan (2009).

Let ξ̂p

(
Θ̂n

)
be the value of ξp at Θ = Θ̂n, obtained from (2.3) and calculated on the

basis of n observations. Then as in Chiang et al. (2017), it can be shown that ξ̂p

(
Θ̂n

)
follows

asymptotic normal distribution with mean ξp(Θ) and variance 1
n∇ξT

p (Θ)IY−1(Θ)∇ξp(Θ),
where ∇ξp(Θ) is the gradient of ξp(Θ) with respect to Θ. In practice, IY(Θ) is replaced

by the observed Fisher Information matrix ÎY

(
Θ̂n

)
, obtained by substituting the unknown

parameters θ and λ by their respective MLEs.

3. CONSTRUCTIONOFPROPOSEDCONTROL MONITORING SCHEMES

3.1. Charting procedure for the bootstrap hybrid-censored control (BHCC)
monitoring scheme

Here, the bootstrap hybrid-censored control (BHCC) monitoring scheme for GE per-
centiles is developed using the following charting procedure.

Step-1: Collect and establish k reference samples Xm = (xi1, xi2, ..., xim) of size m

each from an IC process (Phase I process) following GE cdf F (x|θ, λ) as in
(2.2).
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Step-2: Obtain the MLEs of θ and λ from Step-1 under hybrid censoring following
the procedure described in Section 2 and estimate the cdf as F (x|θ̂, λ̂).

Step-3: Generate a bootstrap sample of size m, x∗1, x
∗
2, ..., x

∗
m, from F (x|θ̂, λ̂) as

obtained in Step-2.

Step-4: Obtain the MLEs of θ and λ under hybrid censoring using the bootstrap
sample obtained in Step-3, and denote these as θ∗ and λ∗.

Step-5: Using (2.3) and (2.8), compute the bootstrap estimate of the 100pth per-
centile as

(3.1) ξ̂∗p = − 1
λ∗

ln
(
1− p

1
θ∗
)
.

Step-6: Repeat Steps 3-5 large number of times (B) to obtain bootstrap estimates
of ξ̂∗p , denoted by ξ̂∗1p, ξ̂

∗
2p, ..., ξ̂

∗
Bp.

Step-7: Using B bootstrap estimates as obtained in Step 6, find the ν
2

th and (1− ν
2 )th

empirical percentiles as the lower control limit (LCL) and upper control
limit (UCL) respectively to construct a two-sided BHCC chart, where ν is
the false alarm rate (FAR) defined as the probability that an observation is
considered as out of control (OOC) when the process is actually IC. Here,
empirical sample percentiles are obtained following a method proposed by
Hyndman and Fan (1996).

Step-8: Sequentially observe the jth phase II (test) sample Yj:m = (Yj1, Yj2, ..., Yjm)
of size m, j = 1, 2, ....

Step-9: Sequentially obtain ξ̂jp using (3.1) after obtaining MLEs of the parameters
under hybrid censoring scheme using the jth test sample as described in
Step-5.

Step-10: Plot ξ̂jp against LCL and UCL as obtained in Step-7 of the Phase I process.

Step-11: If ξ̂jp falls in between the LCL and UCL, then the process is assumed to
be in-control, otherwise, an OOC signal is activated.

3.2. Charting procedure for the Shewhart-type hybrid-censored control (SHCC)
monitoring scheme

Shewhart-type control monitoring scheme for the percentiles of GE distribution, named
as SHCC scheme is derived in this section following the asymptotic properties of the MLEs
obtained in Section 2.2. The steps for designing the SHCC scheme for 100pth percentile of
proportion, ξp(Θ), are described as follows.

In phase I, samples are drawn from in-control process following GE distribution in k

independent random subgroups of size m each with n = m× k being the total sample size.
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Step-1: As described in Section 2.1, the MLEs Θ̂n =
(
θ̂n, λ̂n

)
are computed on the

basis of n in-control sample values of Phase I. Then the asymptotic standard
error of ξ̂p,m

(
Θ̂m

)
is computed as

(3.2) SEξp,m =

√
1
m
∇ξT

p

(
Θ̂n

)
I−1
Y

(
Θ̂n

)
∇ξp

(
Θ̂n

)
,

where ∇ξp

(
Θ̂n

)
is the gradient of ξp(Θ) at Θ = Θ̂n. I−1

Y

(
Θ̂n

)
is calculated

following the procedure as described in Section 2.2.

Step-2: The MLEs Θ̂j
m of Θ and ξj

p

(
Θ̂j

m

)
are calculated based on jth (j = 1, 2, ..., k)

IC samples of size m each. The sample mean of ξj
p

(
Θ̂j

m

)
s is calculated as

ξ̄p

(
Θ̂m

)
=

1
k

k∑
i=1

ξj
p

(
Θ̂j

m

)
.

Step-3: The Shewhart-type control monitoring scheme has the center line CLSH =
ξ̄p

(
Θ̂m

)
. If ν is the false alarm rate (FAR), then for 0 < ν < 1, the upper

and lower control limits of the SHCC scheme are found to be

UCLSH = ξ̄p

(
Θ̂m

)
+ z(1−ν/2)SEξp,m ,

and
LCLSH = ξ̄p

(
Θ̂m

)
− z(1−ν/2)SEξp,m ,

respectively, where z(1−ν/2) is the (1− ν/2)th quantile of standard normal
distribution.

4. SIMULATION STUDY

In this section, the IC and OOC performances of the proposed BHCC monitoring
scheme are evaluated through a comprehensive simulation study. Numerical computations in
R (version 4.0.2) based on Monte-Carlo simulations are used to determine the average UCL

and LCL. The MLEs of the parameters θ and λ are obtained for the pair (θ = 5.5, λ = 0.05).
The control limits are obtained based on B = 5, 000 bootstrap samples. The simulations
are carried out with different bootstrap sample sizes m with k = 20 subgroups, different
percentiles (p = 0.1, 0.5, 0.9), different levels of FAR (ν = 0.1, 0.005, 0.0027, 0.002, 0.001) and
the following censoring schemes: Scheme 1 : m = 25, r = 15, x0 = 55; Scheme 2 : m = 25,
r = 20, x0 = 55; Scheme 3 : m = 40, r = 30, x0 = 55; Scheme 4 : m = 40, r = 35, x0 = 55;
Scheme 5 : m = 25, r = 15, x0 = 70; Scheme 6 : m = 25, r = 20, x0 = 70; Scheme 7 : m = 40,
r = 30, x0 = 70; and Scheme 8 : m = 40, r = 35, x0 = 70. The performance of the scheme
is assessed by run length, defined as the number of cases required to observe the first OOC
signal. For each simulation, the run length is obtained, followed by obtaining the average run
length (ARL) and the standard deviation of run length (SDRL) by using 5, 000 simulation
runs.
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4.1. IC monitoring scheme performance

The estimated IC control limits of the BHCC scheme are displayed in Table 1 of the
supplementary article, along with the respective ARL and SDRL as the scheme performance
measures, denoted by ARL0 and SDRL0 respectively. It is easy to show that the reciprocal
of FAR is same as the nominal (theoretical) ARL, viz. for ν = 0.1, 0.005, 0.0027, 0.002 and
0.001, the nominal ARL should be equal to 10, 200, 370, 500 and 1000 respectively. In general,
the smaller ARLs indicate narrower control limits, while ARLs larger than 370 specifies wider
limits that the bootstrap control schemes give fewer false signals. The simulated values of
ARL0 in Table 1 are found to be closer to the theoretical results implying that the BHCC
monitoring scheme for percentiles perform well with skewed data. As the bootstrap sample
size (m) increases, the estimated control limits get closer together. Moreover, for fixed m,

the control limits become farther apart as the percentile (p) increases. Also, SDRL0 is found
to be closer to the ARL0, satisfying the theoretical result of the geometric distribution used
as the run length model.

4.2. OOC monitoring scheme performance

The OOC performance of the BHCC monitoring scheme is investigated by measuring
impact of changes in the IC parameter estimates on ARL. In other words, the phase II sample
is considered taken from GE(θ + ∆θ, λ + ∆λ), while the IC sample comes from GE(θ, λ).
The effects of shifts (∆θ and/or ∆λ) in the parameters of the GE distribution on ARL of
the percentile scheme is examined and exhibited in Table 2 of the supplementary article.
In general, the simulation results reveal that for fixed m, r, and x0, the OOC ARL values
(denoted by ARL1) for the percentiles decrease sharply with both downward and upward
small, medium and large shifts in the parameters indicating the effectiveness and usefulness
of the scheme. However, the speed of detection varies depending on the type of shifts, the
parameters, and the percentile being considered. Except for minor sampling fluctuations, in
general, the monitoring scheme detects OOC signal in percentiles faster for downward shifts
than the upward shifts (refer Table 2 and Figure 2). In particular, when θ is IC, the ARLs
around 50th percentile are smaller than the other percentiles for both upward and downward
shifts in λ as is evident from Table 2 and Figure 2(a). For example, for a 4% decrease (increase)
in λ when θ is IC (∆θ = 0), there is about 27.8% (21%) reduction in the ARL of the 50th

percentile. On the other hand, when λ is IC, the ARLs for the lower percentiles (around 10th

percentile) is found to be smaller than the other percentiles for downward (upward) shift in
θ (refer Table 2 and Figure 2(b)). For example, there is about 44.8% (13.8%) reduction in
the ARL of the 10th percentile for a 6% decrease (increase) in θ when λ is IC. From Table 2
and Figure 2(c) it is also clear that for 10% deviation in θ the ARLs around 50th percentile
are smaller than the other percentiles for both upward and downward shifts in λ. Again,
from Figure 2(d) it can also be observed that, for 10% deviation in λ the ARLs around 50th

percentile are smaller than the other percentiles for both upward and downward shifts in θ.
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(a) ARL1 for different choices of ∆λ, when ∆θ = 0
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(b) ARL1 for different choices of ∆θ, when ∆λ = 0
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(c) ARL1 for different choices of ∆λ, when ∆θ = 0.1

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

∆θ

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

∆θ

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

∆θ

p=0.1
p=0.5
p=0.9

(d) ARL1 for different choices of ∆θ, when ∆λ = 0.1
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Figure 2: Graphs of ARL1 for different choices of ∆λ, ∆θ and p.

5. ILLUSTRATIVE EXAMPLE WITH COMPARISONS

In this section, the BHCC and SHCC monitoring schemes are illustrated by a numerical
example which records the waiting times (in minutes) of 100 customers before getting their
services (see Ghitany et al., 2008). The BHCC scheme is then compared with bootstrap
scheme with Type I and Type II censoring. Various summary measures of the data set can
be found below:

Min 5% 10% 25% 50% 75% 90% 95% Max
0.800 1.895 2.880 4.675 8.100 13.000 19.090 21.955 38.500

First, the Weibull and GE distributions are compared for fitting the data set. For Weibull
model, the MLEs of the shape and scale parameters are found to be 1.458 and 10.954 re-
spectively with Kolmogorov-Smirnov test (K-S) statistic value D = 0.0577, and p-value, p =
0.8927. For GE model, the MLEs are obtained as θ̂ = 2.183 and λ̂ = 0.159 with D = 0.0402
and p = 0.9970. The histogram of the data and two fitted densities are provided in Figure 3.
The fit results confirm that the GE distribution provides a better fit than Weibull in this
case. Moreover, logarithm of the ratio of maximized likelihood (RML), defined as T = log L =
lGE(θ̂, λ̂)− lWE( ˆshape, ˆscale) = −317.0884− (−318.7261) = 1.6377 > 0 indicates to choose
GE distribution over Weibull.
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Figure 3: Histogram and density plot of waiting times of 100 patients.

In order to achieve service excellence, the bank may find extreme percentiles of the
waiting times worth investigating over the average waiting time. An upward shift in the
upper percentile of the waiting times indicates deterioration in the service quality and requires
monitoring. In view of this objective, the BHCC chart is constructed for monitoring 90th

percentile of the waiting times. The complete data is censored either at the waiting time
of the first 60% of the total number of customers (r = 60) or at the waiting time of 10
minutes (x0 = 10), whichever occurs earlier. The censoring time x0 = 10 is chosen near to
60th percentile. The complete set of 100 observations is considered as four (k = 4) reference
samples of size m = 25 each. The MLEs of θ and λ under the stated hybrid censoring scheme
are obtained as θ̂ = 1.760 and λ̂ = 0.127 respectively. Using these MLEs, B = 5, 000 bootstrap
samples of size m = 25 each are drawn with r = 15 (60% of the subgroup size) and x0 = 10.

Following the steps 4− 7 in subsection 3.1, and using ν = 0.0027 as FAR, the control limits
of the BHCC scheme for the 90th percentile are obtained as UCL = 78.597, CL = 26.255
and LCL = 12.702, while the same for the SHCC scheme are computed as UCLSH = 23.711,
LCLSH = 19.966 and CLSH = 21.839. It is observed that both schemes provide asymmetric
control limits from the respective CL, while the SHCC scheme has narrower interval than the
BHCC scheme. Twenty subgroups of size m = 25 each are generated from the OOC process
under similar hybrid censoring plan having shape parameters θ = 2.024 and λ = 0.108 (15%
increase in θ and 15% decrease in λ).

The OOC performance of the BHCC and SHCC schemes for the 90th percentile are
presented in Figure 4 and Figure 5 respectively. The BHCC scheme is able to produce OOC
signals quite efficiently with five 90th percentile points falling above the UCL with the first
OOC signal being obtained at test sample 2 indicating effectiveness of the scheme in terms
of quick detection as well. On the other hand, nine OOC signals are produced by the SHCC
scheme with test sample 2 producing the first OOC signal. It is to be noted here that the
SHCC scheme grossly underestimates the IC ARL (computation of IC ARL for SHCC scheme
is not shown for brevity) due to the narrow band of the control limits which may eventually
produce false OOC signals.

Next, bootstrap monitoring scheme is used for type-I (denoted as BTICC) and type-II
(denoted as BTIICC) censored data coming from the GE distribution and their performance
is compared with the BHCC monitoring scheme with the same data set and the procedure
as used before. The control monitoring schemes for type-I and type-II censored data can
be derived as a special case of hybrid censored data for r = n and T = xn:n respectively.
The MLEs of θ and λ under type-I censoring with x0 = 10 are obtained as θ̂ = 1.803 and
λ̂ = 0.131 respectively, while the same under type-II censoring with r = 60 are found to be
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Figure 4: BHCC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 78.597, CL = 26.255, LCL = 12.702.
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Figure 5: SHCC monitoring scheme for 90th percentile of the waiting time data with
∆θ = 0.15, ∆λ = −0.15, UCLSH = 23.711, CLSH = 21.839, LCLSH = 19.966;
Example 1.

θ̂ = 1.766 and λ̂ = 0.127 respectively. While the control limits of BTICC scheme for the 90th

percentile are obtained as UCL = 76.812, CL = 15.833 and LCL = 12.066, the same for the
BTIICC scheme are calculated as UCL = 44.144, CL = 24.770, and LCL = 12.599. Both the
schemes provide asymmetric control limits with the BTIICC scheme having narrower interval
than the BTICC scheme. After the first four IC subgroups, twenty subgroups of size m = 25
each are generated from the OOC process having θ = 2.073 and λ = 0.111 (15% increase in θ

and 15% decrease in λ). Figure 6 and Figure 7 provide the OOC performance of the control
monitoring schemes for the 90th percentile. Figure 6 shows that the type-I censored scheme
is able to generate three OOC points falling above the UCL with the first being produced
at test sample 12. The type-II censored scheme as is shown in Figure 7 produces two OOC
signals just above the UCL with test sample 9 providing the first signal. It is evident from
the data analysis that the hybrid censored control monitoring scheme performs better than
type-I and type-II censored control monitoring schemes in terms of both frequency and speed
of detection of OOC signals.



Control monitoring schemes for percentiles of generalized exponential distribution... 13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

20
40

60
80

10
0

12
0

Control Chart

Subgroups

P
lo

tti
ng

 S
ta

tis
tic

Figure 6: BTICC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 76.812, CL = 15.833, LCL = 12.066.
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Figure 7: BTIICC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 44.144, CL = 24.770, LCL = 12.599.

6. APPLICATION

This section provides an application of the BHCC monitoring scheme in clinical practice.
The scheme is used to monitor the top percentile of the survival times of 120 patients (see
Hamedani, 2013) with breast cancer obtained from a large hospital in a period from 1929 to
1938. The histogram of the data set as shown in Figure 8 and the summary measures below
suggest the skewed nature of the data set.

Min 5% 10% 25% 50% 75% 90% 95% Max
0.3 6.585 10.110 17.800 40.000 60.000 105.400 125.050 154.0

The MLEs of θ and λ for the complete data set coming from the GE distribution are found to
be θ̂ = 1.649 and λ̂ = 0.029 respectively. The fitted density is provided in Figure 8. The one
sample K-S statistic and corresponding p-value are found to be 0.0717 and 0.5681 respectively.
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Figure 8: Histogram and density plot of survival times of 120 patients with breast cancer.

The fit results recommend GE distribution to model the survival time data and subsequent
development of BHCC scheme. The complete sample data is split into six subgroups of
size 20 each. Under hybrid censoring with r = 72 and x0 = 60, the estimates of the GE
parameters are obtained as θ̂ = 1.415 and λ̂ = 0.024. Using 5, 000 bootstrap samples of size
m = 20 each with r = 12 and x0 = 60, the control limits of the BHCC monitoring scheme
for the 90th percentile are evaluated as UCL = 322.248, CL = 115.577, LCL = 48.912. Next,
twenty phase II samples of size m = 20 each are generated from the process under similar
hybrid censoring plan with ∆θ = 0.15 and ∆λ = −0.15 to develop the BHCC monitoring
scheme for the 90th percentile as presented in Figure 9. The scheme has been able to detect
OOC signals at 2nd, 5th and 11th samples. For the same data set, the control limits for
the BTICC monitoring scheme for 90th percentile with x0 = 60 are found to be UCL =
291.965, CL = 106.950, LCL = 51.203. Figure 10 shows that this scheme has been able to
detect only one OOC signal at the 20th sample. On the other hand, BTIICC monitoring
scheme for 90th percentile with r = 72 is presented in Figure 11 with UCL = 232.296, CL =
115.565, LCL = 48.846. Figure 11 shows that this scheme also detects only one OOC signal
at the 9th sample. The frequency and speed of detection of OOC signals further justify
the use of BHCC monitoring scheme over BTICC and BTIICC monitoring schemes for the
percentiles of survival time in a healthcare set-up.
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Figure 9: BHCC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15 ,∆λ = −0.15, UCL = 322.248, CL = 115.577, LCL = 48.912.
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Figure 10: BTICC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15, ∆λ = −0.15, UCL = 291.965, CL = 106.950, LCL = 51.203.
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Figure 11: BTIICC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15, ∆λ = −0.15, UCL = 232.296, CL = 115.565, LCL = 48.846.

7. CONCLUDING REMARKS

In this work, hybrid censoring is employed to develop control monitoring schemes for
percentiles of GE distribution using bootstrap and asymptotic methods. Bootstrap monitor-
ing schemes for type-I and type-II censored data are also developed under similar set-up as a
special case of hybrid censoring plan. An extensive simulation study is conducted to evaluate
the IC and OOC performance of the schemes. The hybrid censored schemes are found to be
effective in the detection of OOC signals in terms of both magnitude and speed as demon-
strated by a real data set. One application from healthcare is also provided to establish the
effectiveness of the schemes. In this sense, the present work is the first attempt to apply
a new censoring scheme in the process control and generalizes available control monitoring
schemes for the GE data. As a scope for future research, hybrid censored schemes may be
proposed under Bayesian set-up measuring uncertainty in the parameter(s). One can also
think of using progressive censoring scheme to construct such control mechanism. For highly
reliable products, accelerated life testing scheme may be employed under various censoring
plans for the same purpose.



16 Sh. Chowdhury, A. Kundu and B. Modok

DATA AVAILABILITY STATEMENT

The data sets used in this manuscript are available in Ghitany et al. (2008) and
Hamedani (2013).

ACKNOWLEDGMENTS

The authors are thankful to the reviewer, the associate editor and the editor-in-chief
for their constructive comments and suggestions which have improved the earlier version of
this manuscript.

REFERENCES

Bain, L. J. (1976). Statistical Analysis of Reliability and Life Testing Model. Marceland Dekker Inc.,
New York.

Chiang, J. Y., Jiang, N., Brown, T. N., Tsai, T. R., and Lio, Y. L. (2017). Control charts for
generalized exponential distribution percentiles. Communications in Statistics – Simulation and
Computation, 46(10):7827–7843.

Chiang, J. Y., Lio, Y. L., Ng, H. K. T., Tsai, T. R., and Li, T. (2018). Robust bootstrap control
charts for percentiles based on model selection approaches. Computers & Industrial Engineering,
123:119–133.

Chowdhury, S., Kundu, A., and Modok, B. (2021). Bootstrap beta control chart for monitoring
proportion data. International Journal of Quality & Reliability Management,
https://www.emerald.com/insight/content/doi/10.1108/IJQRM-09-2020-0287/full/html.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New
York.

Epstein, B. (1954). Truncated life tests in the exponential case. The Annals of Mathematical Statistics,
25(3):555–564.

Erto, P. and Pallotta, G. (2007). A new control chart for Weibull technological processes. Quality
Technology & Quantitative Management, 4(4):553–567.

Erto, P., Pallota, G., and Mastrangelo, C. M. (2015). A semi-empirical Bayesian chart to monitor
Weibull percentiles. Scandinavian Journal of Statistics, 42(3):701–712.

Ghitany, M. E., Atieh, B., and Nadarajah, S. (2008). Lindley distribution and its application. Math-
ematics and Computers in Simulation, 78(4):493–506.

Gupta, R. D. and Kundu, D. (1999). Generalized exponential distribution. Australian & New Zealand
Journal of Statistics, 41(2):173–188.

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family; an alternative to gamma and
Weibull. Biometrical Journal, 43:117–130.

Haghighi, F., Pascual, F., and Castagliola, P. (2015). Conditional control charts for Weibull quantiles
under type-II censoring. Quality and Reliability Engineering International, 31(8):1649–1664.

https://www.emerald.com/insight/content/doi/10.1108/IJQRM-09-2020-0287/full/html


Control monitoring schemes for percentiles of generalized exponential distribution... 17

Hamedani, G. (2013). The Zografos-Balakrishnan log-logistic distribution: Properties and applica-
tions. Journal of Statistical Theory and Applications, 12(3):225–244.

Hyndman, R. J. and Fan, Y. (1996). Sample quantiles in statistical packages. American Statistician,
50:361–365.

Jones, L. A. and Woodall, W. Y. (1998). The performance of bootstrap control charts. Journal of
Quality Technology, 30:362–375.

Kundu, D. and Pradhan, B. (2009). Estimating the parameters of the generalized exponential dis-
tribution in presence of hybrid censoring. Communications in Statistics – Theory and Methods,
38(12):2030–2041.

Leiva, V., Santos, R. A. D., Saulo, H., Marchant, C., and Lio, Y. (2022). Bootstrap control charts
for quantiles based on log?symmetric distributions with applications to the monitoring of reliability
data. Quality and Reliability Engineering International, https://doi.org/10.1002/qre.3072.

Lio, Y. L. and Park, C. (2008). A bootstrap control chart for Birnbaum-Saunders percentiles. Quality
and Reliability Engineering International, 24:585–600.

Lio, Y. L. and Park, C. (2010). A bootstrap control chart for inverse Gaussian percentiles. Journal of
Statistical Computation and Simulation, 80:287–299.

Lio, Y. L., Tsai, T. R., Aslam, M., and Jiang, N. (2014). Control charts for monitoring Burr type-X
percentiles. Communications in Statistics – Simulation and Computation, 43:761–776.

Liu, R. Y. and Tang, J. (1996). Control charts for dependent and independent measurements based
on the bootstrap. Journal of the American Statistical Association, 91:1694–1700.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal
of the Royal Statistical Society, B, 44(2):226–233.

Ma, Z., Park, C., and Wang, M. (2022). A robust bootstrap control chart for the log-logistic per-
centiles. Journal of Statistical Theory and Practice, 16(1):1–23.

Nichols, M. D. and Padgett, W. J. (2005). A bootstrap control chart for Weibull percentiles. Quality
and Reliability Engineering International, 22:141–151.

Padgett, W. J. and Spurrier, J. D. (1990). Shewhart-type charts for percentiles of strength distribu-
tions. Journal of Quality Technology, 22:283–288.

Seppala, T., Moskowitz, H., Plante, R., and Tang, J. (1996). Statistical process control via the
subgroup bootstrap. Journal of Quality Technology, 27:139–153.

Vining, G., Kuahci, M., and Pedersen, S. (2016). Recent advances and future directions for quality
engineering. Quality and Reliability Engineering International, 32(3):863–875.

Wang, F. K., Bizuneh, B., and Cheng, X. B. (2018). New control charts for monitoring the Weibull
percentiles under complete data and Type-II censoring. Quality and Reliability Engineering Inter-
national, 34(3):403–416.

https://doi.org/10.1002/qre.3072




REVSTAT – Statistical Journal
Volume 23, Number 1, January 2025, 19–45

https://doi.org/10.57805/revstat.v23i1.453

Statistical Inferences to the Parameter and Reliability
Characteristics of Gamma-mixed Rayleigh Distribution
under Progressively Censored Data with Application

Authors: Kousik Maiti �

– Department of Computer Science and Engineering,
Indian Institute of Technology Roorkee,
Roorkee-247667, India
kousikulu@gmail.com

Suchandan Kayal
– Department of Mathematics, National Institute of Technology Rourkela,

Rourkela-769008, India
suchandan.kayal@gmail.com , kayals@nitrkl.ac.in

Received: April 2022 Revised: December 2022 Accepted: December 2022

Abstract:

• We consider estimation of the model parameters and the reliability characteristics of a gamma-
mixed Rayleigh distribution based on progressively type-II censored sample (PT-IICS). The suf-
ficient condition for existence and uniqueness of the maximum likelihood estimates (MLE) is ob-
tained. We compute MLEs using the expectation maximization (EM) algorithm. Asymptotic
confidence intervals are constructed. Confidence intervals using the bootstrap-p and bootstrap-t
methods are constructed. Bayes estimates are derived. Highest posterior density (HPD) credible
intervals are derived using the importance sampling method. Prediction estimates and associ-
ated prediction equal-tail intervals under one-sample and two-sample frameworks are obtained.
A simulation study is conducted. Finally, a real dataset is considered and analyzed.

Keywords:

• EM algorithm; observed Fisher information matrix; Bayes estimates; Bayesian prediction esti-
mates; HPD credible interval.

AMS Subject Classification:

• 62F10, 62F15, 62F40, 62N01.

� Corresponding author

https://doi.org/10.57805/revstat.v23i1.453
https://orcid.org/0000-0002-2349-0837
mailto:kousikulu@gmail.com
https://orcid.org/0000-0002-0654-0767
mailto:suchandan.kayal@gmail.com
mailto:kayals@nitrkl.ac.in


20 K. Maiti and S. Kayal

1. INTRODUCTION

In recent years, life testing experiments are less preferred because of being time con-
suming and expensive. In many situations, use of complete sample is neither possible nor
desirable. In such cases, the sample needs to be censored. Censoring is a condition in which
the value of observation is partially known and incomplete. Among different types of censor-
ing schemes, the two basic censoring schemes are type-I and type-II. In the type-I censoring
scheme, the life testing experiment terminates at a pre-specified time T , whereas, the type-II
censoring scheme terminates when one has m number of failures. For applications and im-
portance of these schemes, we refer to Lawless (2011) and Cohen (2016). The main drawback
of these censoring schemes is that they do not allow removal of the items in between other
than the termination point. To overcome such drawback, a more general censoring scheme,
known as the progressive censoring was introduced in the literature. It can be classified into
progressive type-I and progressive type-II censoring schemes. In the progressive type-I cen-
soring scheme, let the number of items used in a life testing experiment be n. In this scheme,
R1, R2, ..., Rm items are randomly withdrawn at pre-specified time points T1, T2, ..., Tm, re-
spectively. The test will be terminated at prefixed time point Tm in this scheme. Now, we
describe the PT-IICS. Consider n number of total units at initial time on an experiment. We
remove randomly R1 number of survival units when first failure time X1:m:n is observed. This
process continues till the m-th failure occurs. We assume that the m-th failure takes place
at time Xm:m:n and the remaining number of surviving units is Rm = n− (m+

∑m−1
i=1 Ri).

Henceforth, we denote R = (R1, R2, ..., Rm) and X = (X1:m:n, X2:m:n, ..., Xm:m:n) for the cen-
soring scheme and the PT-IICS, respectively. Due to several applications, various inferential
procedures based on PT-IICS have been established for many lifetime distributions. For in-
stance, see Muhammed and Almetwally (2020), Nik et al. (2021), Albalawi et al. (2022) and
the references contained therein.

A random variable X is said to follow a gamma-mixed Rayleigh distribution if its
probability density and cumulative distribution functions are respectively given by (α, β > 0)

(1.1) fX(x;α, β) =
αβαx

(x2 + β2)(α/2)+1
and FX(x;α, β) = 1− βα

(x2 + β2)α/2
,

where x > 0. Here, α is known as the shape parameter and β is known as the scale parameter.
The reliability function and the hazard function of this distribution are respectively obtained
as

r(x;α, β) =
βα

(x2 + β2)α/2
and h(x;α, β) =

xα

x2 + β2
,(1.2)

where x > 0 and α, β > 0. Various shapes of the probability density, reliability and hazard
functions of the gamma-mixed Rayleigh distribution are depicted in Figures 1(a), 1(b) and
1(c), respectively. Differentiating h(x;α, β) with respect to x, we obtain

dh(x;α, β)
dx

=
α(β + x)(β − x)

(x2 + β2)2
=


> 0, for x < β

< 0, for x > β

= 0, for x = β.

(1.3)

Thus, the hazard function of the gamma-mixed Rayleigh distribution is increasing for x < β

and decreasing for x > β, for any value of α > 0. Figure 1(c) shows that the hazard of the
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gamma-mixed Rayleigh distribution is hump-shaped, that is, the hazard is increasing early
and eventually begins declining. One may refer to Sarhan et al. (2013) for similar study on
the exponentiated generalized linear exponential distribution. This type of hazard is often
used in modeling data related to survival after successful surgery, where there is an initial
increase in risk due to infection or other complications just after the procedure, followed by
a steady decline in risk as the patient recovers (see Klein and Moeschberger, 1997).
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Figure 1: The plots of the (a) density (b) reliability and (c) hazard functions
based on different values of the parameters.

The Bayesian prediction of the unknown observation is an important problem. Various
authors have studied prediction problems based on the PT-IICS. Kayal et al. (2017) obtained
the prediction intervals and estimates for future observations in one-sample and two-sample
problems for the Chen distribution. Similar problem was studied by Arabi et al. (2019) for the
Poisson-exponential distribution when PT-IICS is available. For flexible Weibull distribution,
Bdair et al. (2019) considered Bayesian prediction problem based on the progressive type-
II censored data. Very recently, Maiti and Kayal (2019) obtained prediction estimates and
intervals for future observations in one-sample and two-sample problems for the generalized
Fréchet distribution from Bayesian point of view. To the best of our knowledge, nobody has
considered the gamma-mixed Rayleigh distribution with distribution function given by (1.1)
for the purpose of statistical inference and Bayesian prediction based on the PT-IICS. In this
paper, we address the problem of inference and prediction when the PT-IICS is available
from gamma-mixed Rayleigh distribution.

The rest of the paper is organized as follows. In the next section, we obtain MLEs
for the unknown parameters, reliability and hazard functions. The existence and uniqueness
of the MLEs have been studied. The EM algorithm is described to compute the proposed
MLEs. Section 3 deals with the construction of various interval estimates. In Section 4, we
derive Bayes estimates with respect to three loss functions. Two approaches are adopted
to compute approximate Bayes estimates. Importance sampling method is used to compute
HPD credible intervals. Further, in Section 5, we derive Bayesian prediction and interval
estimates. In Section 6, we carry out a simulation study to compare the performance of the
proposed estimates. A real life dataset is considered for the illustration purpose. Finally,
Section 7 concludes the paper.
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2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive MLEs of α and β of the gamma-mixed Rayleigh distribution
based on the PT-IICS. Using invariance property of the MLE, the MLEs of r(x) and h(x)
can be obtained. The likelihood function of α and β is given by

(2.1) L(α, β | x) = K
m∏

i=1

(
1− FX(xi:m:n;α, β)

)RifX(xi:m:n;α, β),

where the constant K = n(n − (R1 + 1))(n − (
∑2

j=1Rj + 2)) ··· (n −
∑m−1

j=1 (Rj + 1)) and
x = (x1:m:n, x2:m:n, ..., xm:m:n). The log-likelihood function of α and β is obtained as

` = `(α, β | x) ∝ m lnα+mα lnβ +
m∑

i=1

lnxi:m:n + α lnβ
m∑

i=1

Ri(2.2)

−
m∑

i=1

(α
2

(1 +Ri) + 1
)

ln(x2
i:m:n + β2).

The likelihood equations of α and β are

m

(
1
α

+ lnβ
)

+ lnβ
m∑

i=1

Ri −
1
2

m∑
i=1

(Ri + 1) ln
(
β2 + x2

i:m:n

)
= 0(2.3)

and

α

(
m∑

i=1

Ri +m

)
− 2β2

m∑
i=1

(
α
2 (Ri + 1) + 1

)
β2 + x2

i:m:n

= 0,(2.4)

respectively. The MLEs of α and β can be obtained after solving (2.3) and (2.4) simultane-
ously. These are difficult to obtain in explicit form. The above system of nonlinear equations
can be solved by solving a two-dimensional optimization problem. In this case, one may use
the Newton-Raphson algorithm. However, the standard Newton-Raphson method does not
converge in some cases. We use EM algorithm to compute the MLEs of α and β, which is de-
scribed below. Note that the EM algorithm was introduced by Dempster et al. (1977). Prior
to the computation, we discuss the condition under which the MLEs exist and are unique.

Theorem 2.1. The MLEs of α and β for (α, β) ∈ (0,∞)× (0,∞) exist and are unique

under the PT-IICS, provided xi:m:n > β holds, for i = 1, ...,m.

Proof: We show that the maximum value of the log-likelihood function `(α, β | x)
exists and also unique for (α, β) ∈ (0,∞)× (0,∞). One may refer to the papers by Cancho
et al. (2011) and Khan and Mitra (2019) for similar study in other estimation problems. The
second order partial derivatives of the log-likelihood function ` with respect to α and β are
given by

∂2`

∂α2
= −m

α2
< 0,(2.5)

∂2`

∂β2
= −

α(
∑m

i=1Ri +m)
β2

−
m∑

i=1

(α(Ri + 1) + 2)
(x2

i:m:n − β2)
(x2

i:m:n + β2)2
< 0,(2.6)

if xi:m:n > β. Therefore, for fixed α(β), ` is a strictly concave function with respect to β(α).
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For fixed β, we get

lim
α→0

`(α, β | x) = −∞ and lim
α→∞

`(α, β | x) = −∞.

Similarly, for fixed α, we have limβ→0 `(α, β | x) = −∞ and limβ→∞ `(α, β | x) = −∞. So,
for fixed α(β), ` is a unimodal function with respect to β(α). Again,

lim
α→0, β→0

`(α, β | x) = −∞, lim
α→∞, β→0

`(α, β | x) = −∞,

lim
α→0, β→∞

`(α, β | x) = −∞, lim
α→∞, β→∞

`(α, β | x) = −∞.

Let (α0, β0) ∈ (0,∞)× (0,∞) and `(α0, β0 | x) = ρ. Further, set

D =
{

(α, β) : (α, β) ∈ (0,∞)× (0,∞), `(α, β | x) ≥ ρ
}
.

So, D is a closed and bounded set, hence D is compact set. Note that the function ` is
continuous with respect to (α, β). Thus, ` has a maximum value for some (α, β) ∈ D. Suppose
that at (α1, β1) ∈ (0,∞)× (0,∞), the function ` has maximum. Now, we have to show that
(α1, β1) is unique. We observe that

`(α1, β1 | x) > `(α1, β | x) > `(α, β | x),

for (α, β) ∈ (0,∞)× (0,∞), which ensures the desired uniqueness.

2.1. EM algorithm

The EM algorithm is mainly used to compute the MLEs of the unknown parameters
in cases where the likelihood equations cannot be solved explicitly. EM algorithm has two
steps: the expectation (E) step and the maximization (M) step. The E-step involves com-
putation of the pseudo log-likelihood function. The M-step involves maximization of the
pseudo log-likelihood function. Let the observed sample and censored data be denoted by
X = (X1:m:n, X2:m:n, ..., Xm:m:n) and Z = (Z1, Z2, ..., Zm), respectively, where Zj is a 1×Rj

vector (Zj1, Zj2, ..., ZjRj ), for j = 1, 2, ...,m. Note that the complete sample is a combination
of the observed sample and the censored data. Denote the complete sample by W = (X,Z).
The likelihood function of the complete sample (see Ng et al., 2002) is given by

LC(W ;α, β) =
m∏

j=1

[
fX(xj:m:n;α, β)

Rj∏
k=1

fZ(zjk;α, β)

]
.(2.7)

Then, the log-likelihood function for the complete sample is

`C(W ;α, β) = n ln(αβα) +
m∑

j=1

 lnxj:m:n +
Rj∑
k=1

ln zjk(2.8)

−
(α

2
+ 1
) Rj∑

k=1

ln(z2
jk + β2) + ln(x2

j:m:n + β2)


.
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In the E-step, the conditional expectation of the log-likelihood function `C(W ;α, β) is ob-
tained. This is known as the pseudo log-likelihood function. This can be obtained from
`C(W ;α, β) by replacing any function of zjk say ψ(zjk) with E[ψ(Zjk)|Zjk > xj:m:n]. Thus,
the pseudo log-likelihood function is obtained as

`s(α, β) = n(lnαβα) +
m∑

j=1

lnxj:m:n +
m∑

j=1

RjA(xj:m:n;α, β)(2.9)

−
(α

2
+ 1
) m∑

j=1

(
RjB(xj:m:n;α, β) + ln(x2

j:m:n + β2)
)
,

where

A(xj:m:n;α, β) = E[lnZjk|Zjk > xj:m:n](2.10)

= α(x2
j + β2)α/2

∫ ∞

xj:m:n

t ln t
(t2 + β2)(α/2)+1

dt

and

B(xj:m:n;α, β) = E
[
ln(Z2

jk + β2)|Zjk > xj:m:n

]
(2.11)

= ln(x2
j:m:n + β2) +

2
α
.

In the M-step, we maximize the pseudo log-likelihood function given by (2.9) obtained in
E-step after substituting the values of (2.10) and (2.11) in (2.9). Let (α(p), β(p)) be an
estimate of (α, β) at p-th stage. The corresponding updated estimate (α(p+1), β(p+1)) can be
obtained by maximizing

`∗s(α, β) = n(lnαβα) +
m∑

j=1

lnxj:m:n +
m∑

j=1

RjA(xj:m:n;α(p), β(p))(2.12)

−
(α

2
+ 1
) m∑

j=1

(
RjB(xj:m:n;α(p), β(p)) + ln(x2

j:m:n + β2)
)

with respect to α and β. Now, we compute β(p+1) using fixed point iteration method (see
Kundu and Pradhan, 2009). The corresponding estimate is obtained by solving the equation

exp

 1
2n

m∑
j=1

(BRj + ln(β2 + x2
j:m:n))− 1

α̂(β)

 = β,(2.13)

where

α̂(β) =

n− m∑
j=1

β2

β2 + x2
j:m:n

−1
m∑

j=1

2β2

β2 + x2
j:m:n

(2.14)

with B = B(xj:m:n;α(p), β(p)). We estimate β(p+1). The updated estimate α(p+1) can be
obtained from α(p+1) = α̂(β(p+1)) using (2.14). The algorithm is provided below.
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Step-1: Set p = 0. Based on the starting value (α(0), β(0)), we estimate the parameters
α and β.

Step-2: Calculate B = B(xj:m:n;α(p), β(p)) from the observed sample X = x and the
parameters α(p), β(p).

Step-3: Update (α, β) as (α(p+1), β(p+1)).

Step-4: If |(α(p+1), β(p+1))− (α(p), β(p))| ≤ ε (ε > 0 very small tolerance), then we get
the MLEs of the parameters α and β.

Step-5: If |(α(p+1), β(p+1))− (α(p), β(p))| > ε, then set p = p+ 1 and go to the step 1.

Denote the MLEs of α and β by α̂ and β̂. Replacing α and β with α̂ and β̂, the MLEs
of the reliability and hazard functions are respectively obtained as (x > 0)

r̂(x) =
βα

(x2 + β2)α/2
|(α,β)=(α̂,β̂) and ĥ(x) =

xα

x2 + β2
|(α,β)=(α̂,β̂).(2.15)

Remark 2.1. The main advantage of the EM algorithm is that computations are
straightforward and does not require second and higher order derivatives.

3. INTERVAL ESTIMATES

In this section, we obtain 100(1−ϕ)% confidence intervals for the parameters, reliabil-
ity and hazard functions based on PT-IICS. Two techniques are used. First, we discuss the
construction of asymptotic confidence intervals. It is noted that to apply this procedure, we
need the concept of observed Fisher information matrix. Louis (1982) first derived the ob-
served Fisher information matrix using missing information based on the EM algorithm. The
observed Fisher information matrix is used to construct the asymptotic confidence intervals.
According to Louis, the observed information equals to the complete information minus the
missing information. That is, IX(θ) = IW (θ)− IW |X(θ), where IX(θ), IW (θ) and IW |X(θ)
are the observed information, complete information and missing information, respectively.
Denote θ = (α, β). The complete information matrix IW (θ) is given as

IW (θ) = −E
[
∂2`C(W ; θ)

∂θ2

]
=

(
n
α2 − 2n

β(α+2)

− 2n
β(α+2)

4nα
β2(α+4)

)
.(3.1)

Again, the missing information IW |X(θ) at j-th failure time xj:m:n is obtained as

Ij:m:n
W |X (θ) =

−b20(xj:m:n;α, β) −b11(xj:m:n;α, β)
−b11(xj:m:n;α, β) −b02(xj:m:n;α, β)

,
where

b20(xj:m:n;α, β) = − 1
α2
, b11(xj:m:n;α, β) =

2β
(α+ 2)(x2

j:m:n + β2)
,

b02(xj:m:n;α, β) =
α

(x2
j:m:n + β2)

[
(x2

j:m:n − β2)
(x2

j:m:n + β2)
+

2(α+ 2)β2

(α+ 4)(x2
j:m:n + β2)

− 1

]
.
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Thus, the total missing information IW |X(θ) is given as

IW |X(θ) =
m∑

j=1

RjI
j:m:n
W |X (θ).(3.2)

From the 2× 2 order matrices given by (3.1) and (3.2), we compute the observed Fisher
information matrix of α and β as

IX(θ) =
(
d20 d11

d11 d02

)
,(3.3)

where

d20 =
1
α2

n− m∑
j=1

Rj

, d11 = − 2
β(α+ 2)

[
n−

β2
∑m

j=1Rj

(x2
j:m:n + β2)

]
and

d02 =
4nα

β2(α+ 4)
+

α
∑m

j=1Rj

(x2
j:m:n + β2)

[
(x2

j:m:n − β2)
(x2

j:m:n + β2)
+

2(α+ 2)β2

(α+ 4)(x2
j:m:n + β2)

− 1

]
.

In this part, we obtain asymptotic confidence intervals using (i) normal approximation (NA)
of the MLE and (ii) the log-transformed (NL) MLE methods. We omit the details of this
method to maintain brevity. For the formulas for the NA and NL approaches, see Lee and
Cho (2017) and Maiti and Kayal (2020, 2021).

3.1. Bootstrap confidence intervals

It is seen in the previous subsection that to obtain the approximate confidence intervals
of the unknown model parameters, it is required to derive second order derivatives which
is cumbersome. So, we consider bootstrap technique, which is simpler than NA and NL
methods. In particular, we adopt percentile bootstrap (Boot-p) and bootstrap-t (Boot-t)
techniques. Here, we describe the procedure how to obtain confidence intervals using Boot-p
method. First, we obtain the MLEs of η = (α, β, r(x), h(x)). Denote the MLEs of η by η̂ =
(α̂, β̂, r̂(x), ĥ(x)). Now, based on α̂ and β̂, the bootstrap sample x∗ = (x∗1, x

∗
2, ..., x

∗
n) has to

be generated. We compute η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x)) based on x∗. Repeat this procedure for
1000 times to get η̂∗1, η̂

∗
2, ..., η̂

∗
1000, where η̂∗i = (α̂∗i , β̂

∗
i , r̂

∗
i (x), ĥ

∗
i (x)), i = 1, 2, ..., 1000. Next, we

arrange η̂∗i ’s in ascending order and denote η̂∗(1) ≤ η̂∗(2) ≤ ··· ≤ η̂∗(1000). Thus, the 100(1− ϕ)%
approximate bootstrap-p confidence interval for η is obtained as (L,U), where L = η̂∗

( iϕ
2

)
and

U = η̂∗(i(1−ϕ
2 )). The percentile bootstrap confidence interval of η at 95% level of confidence

is (η̂∗(25), η̂
∗
(975)). For small sample size, the Boot-p method does not perform well. In this

subsection, we discuss Boot-t method, which is simple to apply compared to Boot-p method.
We obtain η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x)) similar to the procedure as mentioned in Boot-pmethod.
Then, based on the bootstrap sample x∗ = (x∗1, x

∗
2, ..., x

∗
n), we compute the variance-covariance

matrix I∗−1
X (α̂∗, β̂∗). For i = 1, 2, ..., 1000, calculate the value of the statistic T ∗ηi

= (η̂∗i −
η̂i)/

√
v̂ar(η̂∗i ). Then, we arrange in the ascending order and get T ∗η(1)

≤ T ∗η(2)
≤ ··· ≤ T ∗η(1000)

.
Now, the 100(1− ϕ)% approximate bootstrap-t confidence interval for η is given by (L,U),
where L = T ∗η

(
iϕ
2 )

and U = T ∗η(i(1−ϕ
2 ))

. The approximate Boot-t confidence interval of η at 95%

level of confidence is (T ∗η(25)
, T ∗η(975)

).
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4. BAYESIAN ESTIMATION

In this section, we obtain Bayes estimates of the unknown parameters α, β and the reli-
ability characteristics r(t), h(t) of the gamma-mixed Rayleigh distribution based on PT-IICS.
Three loss functions have been considered: (i) squared error loss (SEL) function, (ii) LINEX
loss function and (iii) entropy loss function. The SEL function is a balance type loss function.
That is, when this loss function is used, the overestimation as well as underestimation do not
have any effect on the estimation problem. However, there are situations, where the squared
error loss function is not suitable. For example, when we estimate reliability of a rocket, the
underestimation is dangerous than the overestimation. Further, the overestimation is severe
than the underestimation when estimating the water level of bank of river in a flood-prone
area. We also consider two asymmetric loss functions (LINEX and entropy) which are useful
to deal with this type of situations. Let δ be an estimator of the unknown parameter φ.
Then, Table 1 represents Bayes estimates of φ under the squared error, LINEX and entropy
loss functions. In Table 1, ω and κ are both non-zero real numbers. For κ = −1, the Bayes
estimate with respect to the entropy loss function reduces to that under the squared error
function. To obtain the Bayes estimates, one needs to consider prior distributions for the
unknown model parameters. It is well known that the joint conjugate prior is not avail-
able when both the parameters are not known. Further, there is no clear methodology to
choose an appropriate prior (see Arnold and Press, 1983) for a Bayesian estimation problem.

Table 1: Loss functions and the corresponding form of the Bayes estimates.

Name of the Form of the Form of the
loss functions loss functions Bayes estimates

SEL ls(φ, δ) = (δ − φ)2 Eφ(φ| x)

LINEX l`(φ, δ) = exp{ω(δ − φ)} − ω(δ − φ)− 1 − 1
ω

ln(Eφ(exp{−ωφ}| x))

Entropy le(φ, δ) = (δ/φ)κ − κ ln(δ/φ)− 1
�
Eφ

�
φ−κ| x

��− 1
κ

Note that the gamma distribution is versatile for adjusting different shapes of the density
function. It has a log-concave density function in the interval (0,∞). Jeffery’s prior can
be obtained as a special case of the gamma prior. Due to these facts, various authors have
considered independent gamma distributions as the priors for different Bayesian estimation
problems. See, for instance, Kundu (2008), Huang and Wu (2012) and Maiti and Kayal
(2020). Here, we assume independent gamma priors for α and β. Let α ∼ Gamma(a1, a2) and
β ∼ Gamma(a3, a4), when Gamma(a1, a2) and Gamma(a3, a4) represent gamma distributions
with scale and shape parameters 1/a2, a1 and 1/a4, a3, respectively. The probability density
functions of Gamma(a1, a2) and Gamma(a3, a4) are given by

g1(α; a1, a2) ∝ αa1−1 exp{−αa2} and g2(β; a3, a4) ∝ βa3−1 exp{−βa4},

respectively, where α, β > 0 and a1, a2, a3, a4 > 0. The hyper-parameters in the prior distri-
butions are assumed to be known. After some simplification, the posterior distribution of
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α, β given X = x is obtained as

Π(α, β|x) ∝ Π1(α, β, x)∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

,(4.1)

where the joint distribution of α, β and X is given by

Π1(α, β, x) ∝ αm+a1−1βmα+a3−1 exp{−(αa2 + βa4)}
m∏

i=1

xi:m:nβ
αRi

(x2
i:m:n + β2)

α
2
(1+Ri)+1

.(4.2)

Thus, for any arbitrary estimand g(α, β), the Bayes estimates with respect to the LINEX
and entropy loss functions are respectively obtained as

ĝbl = − 1
ω

ln
[∫∞

0

∫∞
0 exp{−ωg(α, β)}Π1(α, β, x)dαdβ∫∞

0

∫∞
0 Π1(α, β, x)dαdβ

]
and(4.3)

ĝbe =
[∫∞

0

∫∞
0 g−κ(α, β)Π1(α, β, x)dαdβ∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

]− 1
κ

.(4.4)

As mentioned before, the Bayes estimate with respect to the SEL function can be obtained
from (4.4) when κ = −1. Note that the required Bayes estimates of α, β, r(x) and h(x) with
respect to the LINEX and entropy loss functions can be computed after substituting α, β, r(x)
and h(x) in the place of g(α, β) in (4.3) and (4.4), respectively. Choosing values of the hyper-
parameters is always an important task from Bayesian point of view. Below, we propose a
method in this purpose.

Remark 4.1. We generate m samples from a gamma-mixed Rayleigh distribution
with distribution function given by (1.1). For each of this m samples, we obtain the MLEs
of the model parameters, which are denoted by α̂j and β̂j , j = 1, 2, ...,m. The mean and
variance of the gamma prior distribution with density function g1(α; a1, a2) are a1

a2
and a1

a2
2
,

respectively. Further, the mean and variance of the MLEs of α for m samples are 1
m

∑m
j=1 α̂

j

and 1
m−1

∑m
j=1(α̂

j − 1
m

∑m
j=1 α̂

j)2, respectively. Therefore, the mean and variance of the
MLEs are equal to a1

a2
and a1

a2
2
, respectively. That is,

a1

a2
=

1
m

m∑
j=1

α̂j and
a1

a2
2

=
1

m− 1

m∑
j=1

(
α̂j − 1

m

m∑
j=1

α̂j

)2

.

Solving these equations, we get

a1 =

(
1
m

∑m
j=1 α̂

j
)2

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 and a2 =

1
m

∑m
j=1 α̂

j

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 .

In a similar manner, the hyper-parameters a3 and a4 can be obtained from the above equations
by replacing α̂j with β̂j .

4.1. Computational methods

In the above section, we see that the proposed Bayes estimates are in the form of the ra-
tio of two integrals. These integrals can not be evaluated in terms of some closed-form expres-
sions. So, we use two approaches in order to get approximate values of the Bayes estimates.
One of these is proposed by Lindley (1980). Other is due to Chen and Shao (1999).
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4.1.1. Lindley’s approximation method

In this subsection, we discuss the Bayes estimates of α, β, r(x) and h(x) using Lindley’s
approximation technique. The detailed derivations are omitted to maintain brevity. We
refer to Lee and Cho (2017) and Maiti and Kayal (2021) for detailed derivation of the Bayes
estimates using this method. First, we consider LINEX loss function. With respect to this
loss function, the Bayes estimate of α is given by

α̂bl = − 1
ω

ln
[
exp{−ωα}+ (1/2)ω exp{−ωα}

[
ωτ11 −A(α, β)

]]∣∣∣∣
(α,β)=(α̂,β̂)

,(4.5)

where A(α, β) = {l30τ
2
11 + l03τ21τ22 + 3l21τ11τ12 + l12(τ11τ22 + 2τ2

21) + 2p1τ11 + 2p2τ12}, lij =
∂i+j l

∂αi∂βj ; i, j = 0, 1, 2, 3; i+ j = 3, p1 = ∂p
∂α , p2 = ∂p

∂β and p is equal to the logarithm of joint
prior distribution of α and β. The Bayes estimate of α with respect to the entropy loss
function is

α̂be =
[
α−κ + (1/2)κα−(κ+1)

[
(κ+ 1)α−1τ11 −A(α, β)

]]− 1
κ

∣∣∣∣
(α,β)=(α̂,β̂)

.(4.6)

The Bayes estimate of α with respect to the squared error loss function can be obtained from
(4.6) substituting κ = −1. Further, the Bayes estimates of β, r(x) and h(x) with respect to
the squared error, LINEX and entropy loss functions can be derived similarly.

4.1.2. Importance sampling method

In the previous subsection, we obtain the Bayes estimates using Lindley’s approximation
method. One disadvantage of this method is that it requires higher order partial derivatives of
the log-likelihood function. Further, the Lindley’s approximation can not be used to construct
highest posterior density (HPD) credible intervals. In this subsection, we describe importance
sampling method which is free from the higher order partial derivatives. It is also used to
compute HPD credible intervals. To apply importance sampling method, we need to rewrite
the joint posterior distribution of α, β given X = x in (4.1) as

Π(α, β|X = x) ∝ Gammaα(m+ a1, a2)Gammaβ|α(mα+ a3, a4)h(α, β)(4.7)

where

h(α, β) = a
−(mα+a3)
4

m∏
i=1

βαRixi:m:n(x2
i:m:n + β2)−(α

2
(1+Ri)+1).

At first, we generate α from gamma distribution Gammaα(m+ a1, a2). Next, β is generated
from the Gammaβ|α(mα+a3, a4) distribution. We repeat this procedure 1000 times to obtain
(α1, β1), (α2, β2), ..., (α1000, β1000). Thus, the Bayes estimates of a parametric function g(α, β)
under LINEX and entropy loss functions are respectively given by

ĝbl = − 1
ω

ln

[∑1000
i=1 exp{−ωg(αi, βi)}h(αi, βi)∑1000

i=1 h(αi, βi)

]
(4.8)
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and

ĝbe =

[∑1000
i=1 g(αi, βi)−κh(αi, βi)∑1000

i=1 h(αi, βi)

]− 1
κ

.(4.9)

We compute the Bayes estimates of α, β, r(x) and h(x) substituting α, β, r(x) and h(x)
in place of g(α, β), respectively in (4.8) and (4.9) under LINEX and entropy loss functions.
Using the concept of importance sampling method, one can derive HPD credible intervals for
the unknown parameters α, β and reliability characteristics r(x), h(x). The derivation of the
credible intervals have been skipped from this paper due to sake of conciseness. One may
refer to Kundu and Raqab (2015) and Rastogi and Tripathi (2014) for elaborate discussion
on the derivation of the HPD credible interval for some lifetime distributions.

5. BAYESIAN PREDICTION AND INTERVAL ESTIMATION

In the previous section, we study the Bayesian estimation for the unknown parameters,
reliability and the hazard functions. Here, we discuss Bayesian prediction for the future
observations based on the PT-IICS taken from the gamma-mixed Rayleigh distribution. We
compute the corresponding prediction intervals. There have been a lot of efforts from various
authors in prediction problems. For some recent references, please refer to Dey et al. (2018)
and Bdair et al. (2019). This section is divided into two subsections. The following subsection
deals with one-sample prediction problem.

5.1. One-sample prediction and Bayesian prediction interval (BPI)

Suppose n number of total independent life testing units are subjected to an experiment.
Let x = (x1:m:n, x2:m:n, ..., xm:m:n) be the observed progressively type-II censored sample. The
censoring scheme is taken as R = (R1, R2, ..., Rm). Let yi = (yi1, yi2, ..., yiRi) represent the
ordered lifetimes of the units which are censored at the i-th failure xi:m:n. The future observa-
tions to be predicted based on x are y = (yip; i = 1, 2, ...,m; p = 1, 2, ..., Ri). The conditional
density y under the given information can be obtained as

f1(y|x, α, β) = p

(
Ri

p

) p−1∑
k=0

(−1)p−k−1

(
p− 1
k

)
f(y)(1− F (y))Ri−k−1(5.1)

×(1− F (xi))k−Ri , y > xi:m:n.

The distribution function is

F1(y|x, α, β) = p

(
Ri

p

) p−1∑
k=0

(−1)p−k−1

Ri − k

(
p− 1
k

)[
1− (1− F (xi))k−Ri (1− F (y))Ri−k

]
.(5.2)
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Notice that the posterior predictive density and distribution functions are respectively given
by

f∗1 (y|x) =
∫ ∞

0

∫ ∞

0
f1(y|x, α, β)Π(α, β|x)dαdβ(5.3)

and

F ∗1 (y|x) =
∫ ∞

0

∫ ∞

0
F1(y|x, α, β)Π(α, β|x)dαdβ.(5.4)

The Bayesian predictive estimate of y under LINEX and entropy loss functions are respec-
tively given by

ŷl = − 1
ω

ln
[∫ ∞

xi

exp{−ωy}f∗1 (y|x)dy
]

= − 1
ω

ln[E(P1(α, β)|x)](5.5)

and

ŷe =
[∫ ∞

xi

y−κf∗1 (y|x)dz
]− 1

κ

= [E(P2(α, β)|x)]−
1
κ ,(5.6)

where

P1(α, β) =
∫ ∞

xi

exp{−ωy}f1(y|x, α, β)dy and P2(α, β) =
∫ ∞

xi

y−κf1(y|x, α, β)dy.

Note that above integrals can not be computed analytically. Thus, one needs to use
numerical technique in order to compute the predictive estimates. In this purpose, we use
importance sampling methods as mentioned in Subsection 4.1.2. Equations (5.5) and (5.6)
can be evaluated using importance sampling method as

ŷl = −
(

1
ω

)
ln

[∑1000
i=1 P1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
and(5.7)

ŷe =

[∑1000
i=1 P2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ

,

respectively. Next, Bayesian prediction interval is obtained. The prior predictive survival
function S1(t|x, α, β) is obtained as

S1(t|x, α, β) =
P (y > t|x, α, β)

P (y > xi:m:n|x, α, β)
=

∫∞
t f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The posterior survival function is given by

S∗1(t|x) =
∫ ∞

0

∫ ∞

0
S1(t|x, α, β)Π(α, β|x)dαdβ.(5.8)

Equation (5.8) can be evaluated using importance sampling method under SEL function as

S∗1(t|x) =
∑1000

i=1 S1(t|x, αi, βi)h(αi, βi)∑1000
i=1 h(αi, βi)

.(5.9)

We obtain two sided 100(1− ϕ)% equal-tail symmetric predictive interval (L,U) by solving
the following non-linear equations

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.10)
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The algorithm to obtain the lower bound L and the upper bound U from S∗1(t|x) = η, where
t is L or U and η = (1− ϕ

2 ) or ϕ
2 is described below.

Step-1: Set initial value t = t0.

Step-2: Calculate S∗1(t|x) =
P1000

i=1 S1(t|x,αi,βi)h(αi,βi)
P1000

i=1 h(αi,βi)
.

Step-3: If S∗1(t|x) < η, then increase t value otherwise decrease the value of t.

Step-4: Repeat steps 2 and 3 until S∗1(t|x) ' η.

5.2. Two-sample prediction and BPI

In this section, we derive Bayesian two-sample prediction estimate for future observation
based on the PT-IICS. It is noted that the two-sample plan is applied in which the observed
sample is the PT-IICS and Z1 < Z2 < ··· < ZT be the unobserved future observations from
the same sample, yet to be observed. The predictive density function of Zj can be written as

f(zj |α, β) = j

(
T

j

) j−1∑
p=0

(−1)j−1−p

(
j − 1
p

)
[1− F (zj)]

T−1−pf(zj).(5.11)

Again, the posterior prediction density function is obtained as

f∗(zj |x) =
∫ ∞

0

∫ ∞

0
f(zj |α, β)Π(α, β|x)dαdβ.

Further, the Bayesian predictive estimate of Zj under LINEX and entropy loss functions are
respectively obtained as

ẑjl
= −

(
1
ω

)
ln

[∑1000
i=1 T1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
and

ẑje =

[∑1000
i=1 T2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ

,

where

T1(α, β) =
∫ ∞

0
exp{−ωzj}f(zj |α, β)dzj and T2(α, β) =

∫ ∞

0
z−κ
j f(zj |α, β)dzj .

Next, Bayesian prediction interval is obtained. The predictive posterior survival function is
given by

S∗1(zj |x) =
∫ ∞

0

∫ ∞

0
S1(zj |x, α, β)Π(α, β|x)dαdβ,

where

S1(zj |x, α, β) =

∫∞
zj
f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The above integration can be approximated using importance sampling method. Further, to
obtain the two-sided 100(1− ϕ)% equal-tail symmetric prediction interval (L,U) for Zj , we
have to solve the non-linear equations given by

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.12)
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6. SIMULATION RESULTS AND REAL DATA ANALYSIS

In this section, we first carry out simulation study to observe the performance of the
proposed estimates. Next, we consider a real dataset for illustrative purpose.

6.1. Simulation results

This subsection is devoted to the comparative study of the proposed estimates. For this
purpose, we generate 1000 progressive type-II censored samples from gamma-mixed Rayleigh
distribution. We consider various combinations of (n,m) as (35, 20), (35, 35), (50, 45) and
(50, 50). The actual values of α and β are taken as 0.5 and 0.25, respectively. The actual
values of r(x) and h(x) are 0.405461 and 0.324324, respectively for x = 1.5. There is no
reason of taking the value of x as 1.5. One may consider other values of x too. The simulation
study has been carried out for other values of x, but not presented here for brevity. For other
values of x, similar behaviour of the proposed methods have been observed. The simulation is
carried out using the statistical software R (Vienna, Austria; https://www.r-project.org/),
version 4.1.0. In Table 2, the estimated values of the hyper-parameters are presented for
different values of m. For the purpose of the Bayesian estimates, we take ω = −0.25, 0.001
and κ = −0.5, 0.5 for LINEX and entropy loss functions, respectively. Further, for each n,
three different censoring schemes such as progressive type-II, type-II and complete sample
have been used for simulation study. These schemes are presented in Table 3. It is known
that the type-II censoring scheme is a special case of the progressive type-II censoring scheme.

Table 2: Values of the hyper-parameters for different m.

(α, β) m a1 a2 a3 a4

(0.5, 0.25)

20 0.29516 0.10370 0.29308 0.19850
35 0.79587 0.50618 0.78481 0.98676
45 1.41808 1.18262 1.38071 2.30699
50 1.88165 1.75665 1.84799 3.42774

Table 3: Different censoring schemes (CS).

Scheme Category m (R1, R2, ..., Rm)

Progressive type-II censoring Pr-IIc
Odd

�
R m+1

2
= n− m, Ri = 0; i 6= m+1

2

�

Even
�
Rm/2 = n−m, Ri = 0; i 6= m

2

�

Type-II censoring Ty-IIc (Rm = n−m, Ri = 0; i 6= m)

Complete case Cc (Ri = 0; i = 1 ∼ m)

https://www.r-project.org/


34 K. Maiti and S. Kayal

Tables 4 and 5 present the average and mean squared error (MSE) values of the MLEs and
the Bayes estimates for (α, β) and (r(x), h(x)), respectively. The 1st column is for (n,m),
the 2nd column is for various censoring schemes (CS), 3rd column is for the estimands. Here,
estimands are the unknown parameters α, β and the reliability characteristics r(x), h(x).

Table 4: Average and MSE values of estimates for the parameters α and β.

LINEX EL

(n, m) CS Parameter

EM

Method

SEL
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

Avg Avg Avg Avg Avg Avg

(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc α 0.577322 Lin 0.604350 0.609516 0.604329 0.586034 0.550292
(0.045870) (0.010889) (0.011994) (0.010884) (0.007402) (0.002529)

Imp 0.615036 0.617727 0.615021 0.608165 0.601033
(0.012560) (0.012989) (0.012558) (0.010962) (0.008704)

β 0.294180 Lin 0.305454 0.306914 0.305448 0.295391 0.276136
(0.018021) (0.003075) (0.003239) (0.003074) (0.002060) (0.000683)

Imp 0.320065 0.323106 0.320040 0.305264 0.303128
(0.003605) (0.004121) (0.003603) (0.003116) (0.001605)

Ty-IIc α 0.650948 Lin 0.739859 0.748100 0.739825 0.712266 0.652946
(0.166828) (0.057532) (0.061553) (0.057516) (0.045057) (0.023393)

Imp 0.742216 0.748506 0.742177 0.0.73152 0.730816
(0.064523) (0.067051) (0.064507) (0.060087) (0.053506)

β 0.322548 Lin 0.356579 0.358578 0.356571 0.343506 0.316460
(0.041284) (0.011359) (0.011789) (0.011357) (0.008743) (0.004417)

Imp 0.358136 0.360861 0.358132 0.351134 0.342618
(0.018642) (0.021394) (0.018637) (0.016752) (0.011306)

( ,35) Cc α 0.517253 Lin 0.537146 0.538660 0.537140 0.531160 0.518915
(0.015562) (0.001380) (0.001495) (0.001379) (0.000971) (0.000358)

Imp 0.541207 0.546251 0.541206 0.537645 0.524005
(0.002163) (0.002237) (0.002162) (0.002088) (0.001463)

β 0.259399 Lin 0.277225 0.278008 0.277222 0.270984 0.258125
(0.006465) (0.000741) (0.000784) (0.000741) (0.000440) (0.000066)

Imp 0.284130 0.287056 0.284087 0.282670 0.278009
(0.001053) (0.001134) (0.001051) (0.001041) (0.000915)

(50,45) Pr-IIc α 0.527374 Lin 0.561924 0.563149 0.561918 0.557074 0.546668
(0.014947) (0.003834) (0.003988) (0.003834) (0.003257) (0.002178)

Imp 0.564010 0.567732 0.564008 0.558507 0.556072
(0.003952) (0.004139) (0.003948) (0.003760) (0.003427)

β 0.276102 Lin 0.309227 0.309901 0.309224 0.303973 0.292121
(0.008370) (0.003508) (0.003588) (0.003507) (0.002913) (0.001774)

Imp 0.312564 0.318007 0.312561 0.307715 0.296405
(0.003567) (0.003644) (0.003565) (0.003340) (0.003197)

Ty-IIc α 0.528481 Lin 0.564288 0.565528 0.564284 0.559387 0.548837
(0.015516) (0.004133) (0.004294) (0.004132) (0.003527) (0.002385)

Imp 0.570806 0.577130 0.570806 0.561010 0.560377
(0.004215) (0.004362) (0.004210) (0.004100) (0.003761)

β 0.276786 Lin 0.310822 0.311502 0.310819 0.305526 0.293530
(0.008606) (0.003699) (0.003782) (0.003699) (0.003083) (0.001895)

Imp 0.315542 0.320566 0.315537 0.312147 0.307081
(0.003720) (0.003935) (0.003720) (0.003565) (0.003416)

( ,50) Cc α 0.527521 Lin 0.573868 0.574784 0.573864 0.570163 0.561857
(0.011298) (0.005456) (0.005592) (0.005456) (0.004923) (0.003826)

Imp 0.579013 0.581451 0.579011 0.560891 0.560071
(0.005521) (0.005640) (0.005520) (0.005314) (0.005281)

β 0.279152 Lin 0.339271 0.339828 0.339268 0.334464 0.3216673
(0.008391) (0.007969) (0.008069) (0.007969) (0.007134) (0.005136)

Imp 0.341553 0.346086 0.341550 0.338880 0.320799
(0.007974) (0.008213) (0.007971) (0.007718) (0.007428)
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The average values and the MSEs of the MLEs are presented in 4th column. Note that the
MLEs are computed based on EM algorithm. We present two methods Lindley’s approxima-
tion (Lin) and importance sampling (Imp) in fifth column. In 6–10th columns, the average and
MSE values of the Bayes estimates with respect to the squared error, LINEX and entropy loss
functions are presented. The MSE values of each estimate are placed inside the parenthesis.

Table 5: Average and MSE values of the estimates for r(x) and h(x).

LINEX EL

(n, m) CS Parameter

EM

Method

SEL
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

Avg Avg Avg Avg Avg Avg

(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc r(x) 0.398127 Lin 0.392919 0.393820 0.392916 0.388221 0.378922
(0.006980) (0.001572) (0.001364) (0.001571) (0.002977) (0.007040)

Imp 0.421631 0.425102 0.421630 0.405181 0.402219
(0.002423) (0.002608) (0.002416) (0.002335) (0.002286)

h(x) 0.365147 Lin 0.382504 0.384415 0.382496 0.372067 0.351927
(0.014572) (0.003385) (0.003611) (0.003384) (0.002279) (0.000762)

Imp 0.386712 0.405312 0.386710 0.381207 0.364315
(0.003461) (0.003516) (0.003460) (0.003070) (0.001004)

Ty-IIc r(x) 0.390138 Lin 0.359881 0.360923 0.359876 0.354171 0.343389
(0.008294) (0.002078) (0.001984) (0.002078) (0.002631) (0.001853)

Imp 0.361864 0.367701 0.361861 0.346105 0.331611
(0.003105) (0.002281) (0.003104) (0.002845) (0.002506)

h(x) 0.396838 Lin 0.459716 0.462730 0.459704 0.444301 0.411965
(0.034886) (0.018331) (0.019156) (0.018328) (0.014394) (0.007681)

Imp 0.466071 0.463102 0.466070 0.446265 0.413509
(0.02160) (0.02377) (0.02159) (0.016492) (0.015423)

( ,35) Cc r(x) 0.405129 Lin 0.403232 0.403732 0.40323 0.400726 0.395755
(0.003941) (0.000497) (0.000299) (0.000495) (0.000224) (0.000142)

Imp 0.414506 0.418187 0.414501 0.409461 0.407196
(0.000534) (0.000436) (0.000530) (0.000303) (0.000287)

h(x) 0.332928 Lin 0.344692 0.345272 0.344689 0.341173 0.334047
(0.005467) (0.000415) (0.000439) (0.000415) (0.000284) (0.000145)

Imp 0.347236 0.356043 0.347230 0.347991 0.340564
(0.000521) (0.000540) (0.000518) (0.000477) (0.000420)

(50,45) Pr-IIc r(x) 0.409594 Lin 0.409331 0.409721 0.409331 0.407411 0.403577
(0.003151) (0.000150) (0.000181) (0.000150) (0.000138) (0.000113)

Imp 0.416460 0.418805 0.416456 0.415643 0.408037
(0.000213) (0.000227) (0.000212) (0.000186) (0.000172)

h(x) 0.337868 Lin 0.357965 0.358433 0.357965 0.355143 0.349185
(0.005060) (0.001132) (0.001163) (0.001132) (0.000950) (0.000618)

Imp 0.371653 0.366203 0.371652 0.364966 0.361500
(0.001276) (0.001315) (0.001276) (0.001219) (0.001207)

Ty-IIc r(x) 0.409480 Lin 0.408961 0.409349 0.408960 0.407044 0.403218
(0.003157) (0.000224) (0.000251) (0.000222) (0.000202) (0.000150)

Imp 0.415008 0.417648 0.415000 0.410651 0.409472
(0.000415) (0.000430) (0.000415) (0.000407) (0.000389)

h(x) 0.338443 Lin 0.359309 0.359779 0.359307 0.356457 0.350424
(0.005220) (0.001224) (0.001257) (0.001224) (0.001033) (0.000681)

Imp 0.376511 0.385205 0.376510 0.364006 0.362380
(0.001672) (0.001842) (0.001670) (0.001258) (0.001029)

( ,50) Cc r(x) 0.409277 Lin 0.421297 0.421678 0.421296 0.419397 0.415464
(0.003093) (0.000251) (0.000263) (0.000251) (0.000194) (0.000100)

Imp 0.425031 0.428014 0.425030 0.423330 0.421643
(0.000271) (0.000284) (0.000269) (0.000253) (0.000234)

h(x) 0.337988 Lin 0.362957 0.363316 0.362956 0.360747 0.355944
(0.003660) (0.001492) (0.001520) (0.001492) (0.001327) (0.000910)

Imp 0.366172 0.368008 0.366171 0.364031 0.358813
(0.001781) (0.001845) (0.001780) (0.001542) (0.001325)
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Table 6 represents average lengths of 95% confidence intervals and the HPD credible intervals
for α, β, r(x) and h(x). We have tabulated one-sample and two-sample Bayesian prediction
estimates and 95% prediction intervals for future observation in Tables 7 and 8, respectively.

Table 6: Average lengths of 95% interval estimates of α, β, r(x) and h(x).

Asymptotic Bootstrap
(n, m) CS

NA NL Boot-p Boot-t
HPD

(35,20) Pr-IIc α 0.648062 0.682627 0.576212 0.543509 0.267133
β 0.329015 0.346433 0.311642 0.300701 0.186809

r(x) 0.322288 0.331721 0.277547 0.246013 0.167990
h(x) 0.418470 0.441055 0.378052 0.320005 0.210808

Ty-IIc α 0.858970 0.922660 0.761805 0.721656 0.531964
β 0.400653 0.426912 0.346010 0.300891 0.222437

r(x) 0.338097 0.350497 0.294644 0.260079 0.190059
h(x) 0.580588 0.629159 0.510660 0.493112 0.301243

( ,35) Cc α 0.420716 0.432409 0.375604 0.310064 0.176117
β 0.301196 0.318404 0.265203 0.228561 0.133991

r(x) 0.252868 0.257088 0.210705 0.189620 0.117867
h(x) 0.276372 0.284284 0.236081 0.194051 0.140660

(50,45) Pr-IIc α 0.427858 0.439689 0.346033 0.310446 0.188656
β 0.360034 0.386089 0.306770 0.264126 0.160533

r(x) 0.220637 0.223362 0.176136 0.143088 0.100362
h(x) 0.246997 0.252462 0.184461 0.136504 0.086420

Ty-IIc α 0.433796 0.446078 0.379100 0.341444 0.213064
β 0.364740 0.391709 0.310788 0.306171 0.175757

r(x) 0.220169 0.222880 0.150991 0.123404 0.068944
h(x) 0.250175 0.255833 0.197005 0.158817 0.100888

( ,50) Cc α 0.374461 0.382373 0.334671 0.280062 0.133785
β 0.292170 0.305690 0.245508 0.224999 0.145871

r(x) 0.211673 0.214052 0.131106 0.108841 0.043649
h(x) 0.230374 0.234809 0.169507 0.120889 0.056643

In the both sample prediction problems, the values of the parameters, hyper-parameters, ω
and κ are taken same. Here, we consider p = 1, 2, 3 for 1st and 7th failure stages in one-sample
prediction, and j = 1, 2, 3 for T = m in two-sample prediction. From the numerical values,
the following discussions can be drawn.

1. From Table 2, it is observed that with increasing values of m, values of the hyper-
parameters a1, a2, a3 and a4 increase.

2. From the tabulated values in Table 4, we notice that the Bayes estimates perform
better than the MLE in terms of the MSE. Further, the Bayes estimates for positive
values of ω and κ are better than that for negative values of ω and κ in terms
of the average values and MSEs. The simulated average values of the estimates
approach towards the true value when (n,m) increases. Further, MSE decreases
when (n,m) increases. Similar observation is noticed for the case of complete
sample. As expected, the behavior of the Bayes estimates under SEL function
and the LINEX loss function is approximately same for small values of ω (here
ω = 0.001). It is seen that in general, the progressive type-II censoring schemes
produces better result than type-II censoring scheme in terms of the average (Avg)
and MSE values. Similar behavior of the estimates of r(x) and h(x) (presented in
Table 5) can be pointed out. The abbreviation EL is used for entropy loss function.
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3. In Table 6, it is observed that for asymptotic confidence intervals, the NA method
provides better estimates than NL method. For the case of bootstrap confidence
intervals, Boot-tmethod performs better than Boot-pmethod. However, among the
computed five intervals, HPD credible intervals give the best performance. Also,
it is noticed that the average length decreases when effective sample size increases.
When comparing progressive type-II censoring and type-II censoring plans, the
progressive type-II plan provides better result.

4. From Table 7, we observe that the values of the predictive estimates based on pro-
gressive type-II censoring scheme are larger than that for type-II censoring scheme.
The values of the predictive estimates and prediction lengths increase as i, p in-
crease. When the effective sample size (m) increases, the predictive estimate values
and predictive interval lengths decrease. Similar observation can be noticed from
Table 8 for two-sample prediction problem.

Table 7: One-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS i p SEL
LINEX EL

L U Width
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

(35,20) Pr-IIc 1 1 0.108452 0.117826 0.108417 0.104236 0.102013 0.033642 0.30036 0.266718
2 0.124011 0.152041 0.124010 0.110628 0.109972 0.080750 0.421644 0.340894
3 0.177314 0.182622 0.177306 0.154082 0.147880 0.019462 0.430405 0.410943

7 1 0.240586 0.285261 0.240585 0.231178 0.200864 0.108235 0.671046 0.562811
2 0.293324 0.374406 0.293319 0.274152 0.261997 0.152083 0.782603 0.630520
3 0.315852 0.418077 0.315847 0.300919 0.281485 0.072634 0.766852 0.694218

Ty-IIc 1 1 0.075164 0.106172 0.075158 0.052800 0.046281 0.008285 0.394668 0.386383
2 0.108273 0.134867 0.108266 0.095076 0.052997 0.052347 0.460809 0.408462
3 0.152972 0.160723 0.152897 0.123699 0.120758 0.089046 0.501897 0.412851

7 1 0.192640 0.248671 0.192578 0.164284 0.128670 0.097825 0.840869 0.743044
2 0.228068 0.278526 0.227972 0.196099 0.180907 0.130884 0.956252 0.825368
3 0.276291 0.286070 0.276188 0.241046 0.211220 0.172691 1.068736 0.896045

( ,35) Cc 1 1 0.059483 0.080963 0.059476 0.024317 0.018605 0.016180 0.156838 0.140658
2 0.089255 0.118047 0.089250 0.070965 0.059672 0.019941 0.192223 0.172282
3 0.136974 0.145052 0.136970 0.114441 0.118064 0.056427 0.279560 0.223133

7 1 0.149753 0.215093 0.149748 0.137570 0.119329 0.082594 0.275598 0.193004
2 0.191426 0.255305 0.191422 0.158973 0.152834 0.113426 0.339898 0.226472
3 0.248593 0.276009 0.248497 0.216852 0.208440 0.064285 0.324402 0.260117

(50,45) Pr-IIc 1 1 0.087745 0.102351 0.087742 0.061882 0.026954 0.007920 0.183156 0.175236
2 0.116562 0.139095 0.116558 0.098726 0.072609 0.025834 0.235675 0.209841
3 0.150768 0.164964 0.150760 0.130999 0.109556 0.072440 0.366447 0.294007

7 1 0.174109 0.245108 0.173981 0.167168 0.150699 0.100826 0.583458 0.482632
2 0.228347 0.264052 0.228337 0.184623 0.159082 0.119950 0.650769 0.530819
3 0.298067 0.345223 0.298060 0.265214 0.221704 0.075301 0.685883 0.610582

Ty-IIc 1 1 0.067653 0.899425 0.067647 0.050715 0.041532 0.006715 0.249486 0.242771
2 0.075989 0.125008 0.075988 0.071324 0.068227 0.028600 0.423756 0.395156
3 0.126706 0.140764 0.123803 0.093587 0.074553 0.053428 0.464197 0.410769

7 1 0.176572 0.207206 0.176568 0.120975 0.096408 0.031407 0.584353 0.552946
2 0.205034 0.235607 0.205027 0.185209 0.172136 0.125855 0.758676 0.632821
3 0.246174 0.264084 0.246172 0.208461 0.174507 0.131252 0.797154 0.665902

( ,50) Cc 1 1 0.038965 0.064027 0.038957 0.034208 0.028497 0.006783 0.116741 0.109958
2 0.061794 0.097659 0.061788 0.058993 0.037806 0.009397 0.192057 0.182660
3 0.106455 0.128709 0.106449 0.097808 0.070845 0.053129 0.296908 0.243779

7 1 0.130846 0.198432 0.130840 0.100975 0.074588 0.034628 0.16496 0.130332
2 0.174050 0.226741 0.174043 0.164317 0.130894 0.093459 0.234368 0.140909
3 0.215686 0.231606 0.215679 0.196309 0.164320 0.116237 0.32676 0.210523
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Table 8: Two-sample prediction values and 95% prediction intervals for future observations.

(n, m) CS j SEL
LINEX EL

L U Width
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

(35,20) Pr-IIc 1 0.035652 0.084621 0.035649 0.029411 0.016425 0.004351 0.562487 0.558136
2 0.118036 0.140993 0.118030 0.084403 0.042692 0.009422 0.700663 0.691241
3 0.156008 0.162308 0.155792 0.110699 0.097183 0.013140 0.733492 0.720352

Ty-IIc 1 0.010546 0.043119 0.010537 0.007234 0.004977 0.000782 0.712836 0.712054
2 0.061582 0.075408 0.061561 0.038947 0.029425 0.005279 0.84835 0.843071
3 0.109776 0.158223 0.109770 0.102432 0.092564 0.006233 0.889221 0.882988

( ,35) Cc 1 0.007642 0.009751 0.007636 0.004318 0.003707 0.000824 0.388925 0.388101
2 0.021274 0.048030 0.021259 0.016799 0.012973 0.005348 0.441291 0.435943
3 0.057293 0.132947 0.057288 0.033741 0.030912 0.009425 0.497781 0.488356

(50,45) Pr-IIc 1 0.026423 0.053190 0.026418 0.024083 0.014654 0.000693 0.36197 0.361277
2 0.080145 0.117522 0.080140 0.055920 0.046728 0.008432 0.448753 0.440321
3 0.129506 0.127001 0.129489 0.107418 0.086947 0.026488 0.540278 0.513790

Ty-IIc 1 0.008824 0.015283 0.008819 0.005271 0.004725 0.000707 0.484861 0.484154
2 0.041672 0.049382 0.041672 0.028526 0.021310 0.008262 0.559655 0.551393
3 0.010243 0.129743 0.010240 0.091253 0.058291 0.003714 0.616722 0.613008

( ,50) Cc 1 0.005281 0.006994 0.005274 0.002867 0.002173 0.000848 0.302409 0.301561
2 0.017126 0.024907 0.017121 0.004892 0.003282 0.000437 0.361289 0.360852
3 0.022809 0.037615 0.022800 0.019264 0.014066 0.002640 0.424486 0.421846

6.2. Real data analysis

In this subsection, we consider real life dataset representing the times to breakdown of
an insulating fluid between electrodes recorded at the voltage of 34 kV (minutes) in a life
test. The dataset is introduced by Nelson (2016) and used by Soliman (2005). The dataset
is presented below.

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67
4.85 6.50 7.3 8.01 8.27 12.06 31.75 32.52
33.91 36.71 72.89

For the purpose of goodness of fit test, we consider various methods such as log-likelihood
criterion, Kolmogorov-Smirnov (KS) statistic, Akaike’s-information criterion (AIC), the asso-
ciated second-order information criterion (AICc) and Bayesian information criterion (BIC).
The values of the MLEs and the five goodness of fit test statistics are presented in Table 9.

Table 9: The MLEs, KS, log-likelihood, AIC, AICc and BIC values for the real dataset.

Distribution
MLEs

KS ln L BIC AICc AIC
Shape Scale

G-MR(α, β) α̂ = 0.795210 β̂ = 2.392015 0.135509 −70.34277 146.5744 145.4355 144.6855

HL(λ) λ̂ = 0.088745 0.332880 −71.97299 146.8904 146.1813 145.946

IExpHL(α, θ) α̂ = 0.426676 θ̂ = 0.801178 0.264552 −74.03980 153.9685 152.8296 152.0796
IW(α, λ) α̂ = 2.038295 λ = 1.119888 0.329144 −75.25765 156.4042 155.2653 154.5153

GF (α, λ, σ) α̂ = 7.465586 σ̂ = 7.260802 0.667178 −95.1172 199.0677 197.8344 196.2344

λ̂ = 0.354321
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The numerical values in Table 9 suggest that the gamma-mixed Rayleigh (G-MR)
distribution fits the data well compared to the half-logistic (HL), inverted exponentiated half-
logistic (IExpHL), inverse Weibull (IW) and generalized Fréchet (GF) distributions. Now, we
compute the proposed estimates for the unknown parameters, reliability and hazard functions.
In Table 10, we consider progressive type-II censored sample with total sample size n = 19, the
failure sample size m = 14. We adopt various schemes for the purpose of computation. Here,
we consider three schemes say Pr-IIc, Ty-IIc and Cc, that is (R1, R2, ..., Rm) =(0*6,5,0*7),
(0*13,5) and (0*19), respectively. Note that (0*3,2) denotes the censoring scheme (0, 0, 0, 2).

Table 10: Progressive type-II censored data for the real dataset.

i 1 2 3 4 5 6 7

xi:m:n 0.19 0.78 1.31 2.78 4.15 4.67 4.85

i 8 9 10 11 12 13 14

xi:m:n 8.01 8.27 12.06 31.75 33.91 36.71 72.89

We take all the hyperparameter values as zero. We present the average values of the proposed
estimates of α, β in Table 11 and r(x) and h(x) in Table 12. Table 13 represents 95% interval
estimates of α, β, r(x) and h(x). Further, we have tabulated one-sample and two-sample
predicted values and 95% prediction intervals in Tables 14 and 15, respectively. Here, we
obtain one-sample prediction estimates of the lifetime of first three units at i-th failure and
two-sample prediction estimates of the lifetime of first three units and size of sample T = 10.
The plots of the probability density functions of five different models and histogram for real
dataset are presented in Figure 2. In Figures 3 and 4, the plots of the density, distribution,
reliability and hazard functions of gamma-mixed Rayleigh distribution under Pr-IIc, Ty-IIc
and Cc schemes are depicted.

Table 11: Estimates of α and β for the real dataset.

LINEX EL

(n, m) CS EM Method SEL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg

(19,14) Pr-IIc α 0.776441 Lin 0.399239 0.399847 0.399239 0.411029 0.437988
Imp 0.367051 0.376001 0.367050 0.381976 0.387007

β 3.356965 Lin 1.362572 1.455717 1.362637 1.463404 1.652837
Imp 1.335429 1.389600 1.335427 1.412632 1.486753

Ty-IIc α 0.294786 Lin 0.206869 0.207328 0.206867 0.205371 0.205485
Imp 0.176532 0.193725 0.176530 0.162305 0.167035

β 1.12691 Lin 0.502474 0.537084 0.502364 0.495457 0.531081
Imp 0.464582 0.499007 0.464578 0.446396 0.468757

( ,19) Cc α 0.795210 Lin 0.570614 0.575673 0.570595 0.563006 0.558460
Imp 0.523781 0.568766 0.523780 0.512525 0.504817

β 2.392015 Lin 1.465001 1.477988 1.464669 1.429069 1.429344
Imp 1.400864 1.459764 1.400860 1.387562 1.385258
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Table 12: Estimates of r(x) and h(x) for the real dataset.

LINEX EL

(n, m) CS EM Method SEL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg

(19,14) Pr-IIc r(x) 0.931769 Lin 0.867124 0.868877 0.867125 0.867672 0.868731
Imp 0.846209 0.847669 0.846207 0.847008 0.847460

h(x) 0.086149 Lin 0.152817 0.152628 0.152818 0.151136 0.148734
Imp 0.186422 0.187994 0.186421 0.177537 0.153480

Ty-IIc r(x) 0.860480 Lin 0.773932 0.773973 0.773932 0.773969 0.774245
Imp 0.748209 0.748867 0.748208 0.748452 0.748666

h(x) 0.125622 Lin 0.132865 0.133130 0.132864 0.128547 0.120052
Imp 0.164263 0.168117 0.164261 0.123786 0.119007

( ,19) Cc r(x) 0.876466 Lin 0.801888 0.801855 0.801888 0.802035 0.802425
Imp 0.774826 0.780074 0.774824 0.775314 0.776174

h(x) 0.149630 Lin 0.211578 0.211800 0.211577 0.206734 0.189875
Imp 0.230761 0.236482 0.230760 0.214776 0.206782

Table 13: 95% interval estimates of α, β, r(x) and h(x) based on the real dataset.

Asymptotic Bootstrap
(n, m) CS

NA NL Boot-p Boot-t
HPD

(19,14) Pr-IIc α (0.03697, 1.5159) (0.29957, 2.01244) (0.11275, 1.32586) (0.08563, 1.16478) (0.00794, 0.86115)
β (0.00000, 7.20239) (1.06772, 10.5544) (2.86452, 9.98328) (3.05617, 9.06852) (0.09908, 4.43365)

r(x) (0.83953, 1.02401) (0.84394, 1.02873) (0.80581, 0.95486) (0.82068, 0.96246) (0.84105, 0.94857)
h(x) (0.00000, 0.19222) (0.02515, 0.29512) (0.05946, 0.24653) (0.07563, 0.23213) (0.07884, 0.18947)

Ty-IIc α (0.08674, 0.50284) (0.14554, 0.59706) (0.10466, 0.47148) (0.09462, 0.41656) (0.12035, 0.2984)
β (0.00000, 2.65557) (0.29025, 4.37535) (0.12630, 2.24429) (0.21364, 2.06421) (0.41286, 1.51018)

r(x) (0.68785, 1.03311) (0.70406, 1.05165) (0.62482, 0.90287) (0.66946, 0.88035) (0.72451, 0.87172)
h(x) (0.03414, 0.21710) (0.06065, 0.26020) (0.07567, 0.22233) (0.08745, 0.19816) (0.10526, 0.1824)

( ,19) Cc α (0.21443, 1.37599) (0.38309, 1.65070) (0.33456, 1.43563) (0.27664, 1.35645) (0.42784, 1.31559)
β (0.00000, 4.81147) (0.86994, 6.57719) (1.01503, 4.92624) (1.21536, 4.02611) (1.36485, 2.53242)

r(x) (0.73417, 1.01876) (0.74512, 1.03096) (0.68356, 0.90118) (0.70599, 0.88412) (0.75086, 0.88837)
h(x) (0.00223, 0.29703) (0.05587, 0.40071) (0.04312, 0.25221) (0.10537, 0.26529) (0.13458, 0.25346)
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Table 14: One-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS i p SEL
LINEX EL

BPI
ω =−0.25 ω = 0.001 κ =−0.5 κ = 0.5

(19,14) Pr-IIc 1 1 4.864253 5.283172 4.864247 4.064281 3.642513 (3.410321, 5.572681)
2 5.123467 6.017240 5.123460 4.618267 4.042580 (3.843775, 6.333201)
3 5.507412 6.724315 5.507403 4.970824 4.386421 (4.210341, 7.262675)

5 1 7.129901 9.058243 7.129882 6.527802 6.201358 (5.462305, 10.305467)
2 8.105347 11.25680 8.105339 7.201634 7.053412 (6.76250, 11.738928)
3 8.753105 12.88402 8.753087 7.836405 7.643187 (7.335213, 12.599454)

Ty-IIc 1 1 2.560428 3.526411 2.557964 2.134526 2.074091 (1.761855, 3.837296)
2 4.068825 4.672553 4.068822 2.760048 2.496253 (2.142392, 5.058906)
3 4.748263 4.958240 4.748257 3.209992 2.897385 (2.437218, 5.321908)

5 1 3.580742 5.272538 3.580739 3.336142 2.582773 (2.161007, 5.509298)
2 5.23189 6.856842 5.231817 4.219138 4.000876 (3.496125, 7.196189)
3 7.100923 7.594625 7.100916 6.735364 5.436582 (4.430564, 8.493101)

( ,19) Cc 1 1 2.182731 2.382467 2.182726 1.766528 1.623407 (0.942521, 2.676136)
2 3.067269 3.631854 3.067261 2.578532 2.247716 (1.432610, 4.259329)
3 3.854727 5.582428 3.854718 2.891759 2.374685 (1.796821, 6.011103)

5 1 2.978550 4.297582 2.978544 2.432080 2.178441 (1.800672, 4.810808)
2 3.352725 5.317162 3.352716 2.70553 2.484336 (2.134255, 5.565777)
3 5.034900 5.924856 5.033875 3.885664 3.100858 (2.704073, 7.589788)

Table 15: Two-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS j SEL
LINEX EL

BPI
ω =−0.25 ω = 0.001 κ =−0.5 κ = 0.5

(19,14) Pr-IIc 1 1.724826 2.074824 1.724813 1.376145 1.265064 (1.077346, 2.385841)
2 2.064354 2.467026 2.064348 1.750517 1.305119 (1.213075, 2.826527)
3 4.846177 3.794121 4.846169 3.526443 3.344056 (2.19428, 4.92259)

Ty-IIc 1 1.255674 1.699764 1.255670 1.096628 0.946491 (0.631672, 1.886354)
2 1.462812 2.152316 1.462805 1.224056 1.064583 (0.816055, 2.28461)
3 2.803286 3.45821 2.803179 2.437182 2.175564 (1.430592, 3.802253)

( ,19) Cc 1 0.860765 1.180676 0.860761 0.681231 0.620711 (0.462854, 1.257712)
2 1.113446 1.445251 1.113437 0.846616 0.726489 (0.371066, 1.623857)
3 2.045084 2.152647 2.045076 1.615233 1.086961 (0.794823, 2.343845)
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Figure 2: The histogram of the real dataset and the plots of the probability density functions
of the fitted G-MR, HL, IExpHL, IW, GF models.
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Figure 3: The plots of the (a) density and (b) distribution functions of the gamma-mixed
Rayleigh distribution based on different censoring schemes.
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Figure 4: The plots of the (a) reliability and (b) hazard functions based on different censoring schemes.
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7. CONCLUDING REMARKS

In industrial life tests, reliability analysis and clinical trials, the type-II progressive
censoring methodology has become quite popular for analyzing lifetime data. It allows for
random removals of the remaining survival units at each failure time. In this article, we
considered inference and prediction problems for the gamma-mixed Rayleigh distribution
when progressive type-II censored sample is available. We obtained conditions under which
the MLEs exist and are unique, then derived the MLEs using EM algorithm. The Bayes
estimates have been computed with respect to three loss functions, such as squared error,
LINEX and entropy loss functions. Two approximations say Lindley approximation and
importance sampling method have been used for the computation of the Bayes estimates.
We also derived confidence and credible intervals using various methods. Specifically, we have
obtained asymptotic, bootstrap-p and bootstrap-t confidence intervals and highest posterior
density credible interval. Further, we discussed Bayesian prediction problems. One-sample
and two-sample prediction problems have been considered. An elaborate simulation study
was conducted for the comparison of the proposed estimates. From the simulation study,
it has been observed that the Bayes estimates perform better than the MLEs in terms of
the MSE values. Further, the Bayes estimates for positive values of ω and κ are better
than that for negative values of ω and κ in terms of the average values and MSEs. For the
present problem, we recommend the Bayes estimates to use for the case of point estimation.
It has been observed that for asymptotic confidence intervals, the NA method provides better
estimates than NL method in the sense of the average lengths. For the case of bootstrap
confidence intervals, Boot-t method performs better than Boot-p method. However, among
the computed five intervals, HPD credible intervals give the best performance. Among all the
interval estimates, we recommend HPD credible interval estimate. In addition to these, we
have also computed predictive estimates. It has been noticed that when the effective sample
size increases, the predictive estimates and predictive interval lengths decrease. Finally, we
considered a real life dataset representing the times to breakdown of an insulating fluid
between electrodes recorded at the voltage of 34 kV (minutes) in a life test for illustrative
purposes.
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1. INTRODUCTION

Our aim is to prove certain characterizations of the exponential and double exponential
families of distributions. We will use the notation X ∼ E(λ) to indicate that X is an expo-
nential random variable with parameter λ > 0, that is P (X > x) = e−λx for all x > 0. We
will write X ∈ E if X ∼ E(λ) for some λ > 0. Similarly, will write X ∈ L if X has a Laplace
(double exponential) distribution (Kotz et al., 2001), that is, for some λ > 0 and Y ∼ E(λ),

P (X > x) =
1
2

(
P (Y > x) + P (−Y > x)

)
=
λ

2

∫ ∞

x
e−λ|y| dy, ∀x ∈ R.

For the exponential random variable we have:

Theorem 1.1. Let X be a random variable and µ1, ..., µn be distinct non-zero real

numbers. Let ϕ(t) = E
(
eitX

)
, t ∈ R, be the characteristic function of X, and suppose that

ϕ is infinitely differentiable at zero and, furthermore,

n∏
k=1

ϕ(µkt) =
n∑

k=1

θkϕ(µkt), t ∈ R,(1.1)

where

θk =
n∏

j=1,j 6=k

µk

µk − µj
, k = 1, ..., n.(1.2)

If, in addition,

∑
(k1,...,kn)∈Wn,m

n∏
j=1

µ
kj

j 6=
n∑

k=1

µm
k for any integer m ≥ 2,(1.3)

where

Wn,m :=

{
(k1, ..., kn) ∈ Zn : kj ≥ 0 and

n∑
j=1

kj = m

}
,(1.4)

then, either P (X = 0) = 1 or E(X) 6= 0 and X · sign
(
E(X)

)
∼ E(λ) with λ = 1/E(X).

The proof of the theorem is given in Section 2. Theorem 1.1 is an extension of a similar
result of G. Yanev (2020) obtained under the additional assumption that the coefficients µk

are positive. In that case, the key technical condition (1.3) is trivial as the left-hand sides
contains the µm

k terms and hence is always larger than the right-hand side.

To ensure the existence of the derivatives of ϕ at zero one can impose Cramér’s condi-
tion, namely assume that there is t0 > 0 such that E

(
etX

)
<∞ for all t ∈ (−t0, t0). Note also

that the equality in (1.3) for any fixed m ∈ N describes a low-dimensional manifold in Rn,

and hence Theorem 1.1 is true for almost every vector (µ1, ..., µn) chosen at random from a
continuous distribution on Rn.

The identity in (1.1) with θk introduced in (1.2) holds for any X ∈ E , and Theorem 1.1
can be seen as a converse to this result. Let X1, ..., Xn, n ≥ 2, be independent copies of a
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random variable X. Equations (1.1) and (1.2) give an expression of the characteristic function
of the sum

S = µ1X1 + ···+ µnXn(1.5)

as a linear combination of ϕ(µkt)’s. If X ∼ E(λ), then ϕ(t) = λ
λ−it , and thus (1.1) is the

partial fraction decomposition of the complex-valued rational function ψ(t) := E
(
eitS

)
. In the

particular case when X ∈ E and µk = 1
L−k+1 for some integer L > n, the random variable S/λ

is distributed as the n-th order statistic of a sample of L independent copies of X (this is the
Rényi representation of order statistics; see, for instance, David and Nagaraja, 2004, p. 18).
For further background and earlier versions (particular cases) of Yanev’s characterization
theorem see Arnold and Villasenor (2013), Milos̃ević and Obradović (2016) and Yanev (2020).

It was pointed out in Yanev (2020) that an extension of their result to a more general
class of coefficients µk would be of interest from the viewpoint of both theory and applica-
tions1. When all the coefficients µk are positive and X is an exponential random variable,
the random variable S =

∑n
k=1 µkXk has a hypoexponential distribution. When some of the

coefficients are negative, S is a difference of two hypoexponential random variables. Some
applications of such differences are discussed, for instance, in Li and Li (2019). An insight-
ful theoretical exploration of the densities of hypoexponential distributions can be found in
Belton et al. (2022).

We remark that the theorem is not true if the particular form of the coefficients θk in
(1.2) is not enforced. For instance, for the Laplace distribution we have:

Theorem 1.2. Let X be a random variable and µ1, ..., µn be distinct positive num-

bers. Let ϕ(t) = E
(
eitX

)
, t ∈ R, be the characteristic function of X, and suppose that ϕ is

infinitely differentiable at zero and, furthermore, (1.1) holds with

θk =
n∏

j=1,j 6=k

µ2
k

µ2
k − µ2

j

, k = 1, ..., n.(1.6)

Then, either P (X = 0) = 1 or X has a Laplace distribution.

The result is closely related to the one stated in Theorem 1.1 because X ∈ L implies
that for a suitable Y ∈ E ,

E
(
eitX

)
=

1
2

(
E

(
eitY

)
+ E

(
e−itY

))
.

The proof of the theorem is similar to that of Theorem 1.1, and therefore is omitted. The
key technical ingredient of the proof, namely an analogue of Lemma 2.1 for Laplace distribu-
tions, follows immediately from Lemma 2-(iii) in Yanev (2020), and the rest of the proof of
Theorem 1.1 can be carried over verbatim to the double exponential setup of Theorem 1.2.

We conclude the introduction with a brief discussion of condition (1.3). The equal-
ity with n = 2 and some m ≥ 2 reads

∑m
j=0 µ

j
1µ

m−j
2 = µm

1 + µm
2 , which is equivalent to

1See also a recent preprint (Yanev, 2022), where a special case of exponential convolutions with repeated
coefficients is considered.
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µm+1
1 −µm+1

2
µ1−µ2

= µm
1 + µm

2 . The latter implies that µm−1
2 = µm−1

1 , and hence m is odd and
µ2 = −µ1. In that case, (1.1) becomes

ϕ(t)ϕ(−t) =
1
2
(
ϕ(t) + ϕ(−t)

)
, t ∈ R.(1.7)

The equation is satisfied when X is a Bernoulli random variable with P (X= 0) = P (X= a)
= 1

2 for some constant a > 0, in which case ϕ(t) = 1
2

(
1 + eiat

)
. More generally, (1.7) holds if

and only if ϕ(t) = 1
2

(
1 + eiρ(t)

)
, where ρ : R → R is an odd function. Unfortunately, we are

not aware of any example where ϕ in this form would be a characteristic function of a random
variable beyond the linear case ρ(t) = at and linear fractional ρ(t) = λ−ti

λ+ti , ρ(t) = λ+ti
λ−ti which

correspond to, respectively, X ∈ E(λ) and −X ∈ E(λ).

Our proof technique differs significantly from the one used in Yanev (2020). However,
interestingly enough, both rely on the validity of (1.3). Nevertheless, we believe that the
following might be true:

Conjecture. For n ≥ 3, (1.3) is an artifact of the proof and is not necessary.

2. PROOF OF THEOREM 1.1

The following is a suitable version of Lemma 2-(iii) in Yanev (2020).

Lemma 2.1. Assume (1.3). Then, for any integer m ≥ 2,

n∑
k=1

θkµ
m
k 6=

n∑
k=1

µm
k .

Proof of Lemma 2.1: Let Y1, ..., Yn be i. i. d. random variables such that Yk ∈ E(1)
for each k = 1, ..., n. Similarly to (1.5), define

S̃ = µ1Y1 + ···+ µnYn.

Let ϕ̃(t) = E
(
eitY1

)
= 1

1−it . Thus, for E
(
ei
eSt

)
=

∏n
k=1

1
1−itµk

we have a partial fraction de-
composition similar to (1.1), namely

E
(
ei
eSt

)
=

n∑
k=1

θk

1− itµk
=

n∑
k=1

θkϕ̃(µkt), t ∈ R,

where the coefficients θk are introduced in (1.2). Differentiatingm times and taking in account
that E(Y m

1 ) = m!, we obtain

(−i)m dm

dtm
E

(
ei
eSt

)∣∣∣
t=0

= E
(
S̃m

)
=

n∑
k=1

θkµ
m
k E

(
Y m

1

)
= m!

n∑
k=1

θkµ
m
k .

Recall Wn,m from (1.4). Using the multinomial expansion

S̃m =
(
µ1Y1 + ···+ µnYn)m =

∑
(k1,...,kn)∈Wn,m

m!
k1! ··· kn!

n∏
j=1

(µjYj)kj ,
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and the fact that E(Y k
1 ) = k! for any k ∈ N, we obtain:

n∑
k=1

θkµ
m
k =

1
m!
E

(
S̃m

)
=

∑
(k1,...,kn)∈Wn,m

1
k1! ··· kn!

n∏
j=1

µ
kj

j E
(
Y

kj

j

)
=

∑
(k1,...,kn)∈Wn,m

n∏
j=1

µ
kj

j ,(2.1)

which yields the result in view of (1.3).

Differentiating both sides of (1.1) m times we obtain the identity

dm

dtm

n∏
k=1

ϕ(µkt)
∣∣∣∣
t=0

=
n∑

k=1

θkµ
m
k ϕ

(m)(0), m ≥ 2.(2.2)

In view of Lemma 2.1 and the fact that ϕ(0) = 1, these identities can be used to determine
all the derivatives of ϕ at zero in terms of ϕ′(0), first ϕ′′(0) in terms of the parameter ϕ′(0),
then ϕ′′′(0) in terms of ϕ′(0) and ϕ′′(0), and hence in terms of ϕ′(0) only, and so on. For
instance, (2.2) with m = 2 yields

ϕ′′(0)
n∑

k=1

µ2
k(θk − 1) =

(
ϕ′(0)

)2
n−1∑
k=1

n∑
j=k+1

µkµj .

Note that
∑n

k=1 µ
2
k(θk − 1) 6= 0 by Lemma 2.1 with m = 2.

In general, for an arbitrary m ∈ N, (2.2) can be written as

ϕ(m)(0)
n∑

k=1

µm
k (θk − 1) = Fm

(
µ1, ..., µn, ϕ

′(0), ..., ϕ(m−1)(0)
)
,

where the multivariate functional Fm(·) in the right-hand side is independent of ϕ(m)(0).
An explicit form of Fm is given by the general Leibnitz rule (an extension of the product
differentiation rule to higher derivatives):

Fm =
∑

(k1,...,kn)∈Vn,m

m!
k1! ··· kn!

n∏
j=1

µ
kj

j ϕ
(kj)(0),

where (cf. (1.4))

Vn,m :=

{
(k1, ..., kn) ∈ Zn : 0 ≤ kj < m and

n∑
j=1

kj = m

}
.

In view of Lemma 2.1,
∑n

k=1 µ
m
k (θk − 1) 6= 0, and thus we can define the derivative of ϕ

at zero inductively, using the formula

ϕ(m)(0) =
Fm

(
µ1, ..., µn, ϕ

′(0), ..., ϕ(m−1)(0)
)∑n

k=1 µ
m
k (θk − 1)

.

Let now Z ∈ E and ψ(t) = E
(
eitZ

)
. The derivatives ψ′′(0), ψ′′′(0), ... as functions of the

parameter ψ′(0) can be in principle derived using the same inductive algorithm. There-
fore, ϕ′(0) = 0 implies P (X = 0) = 1 while ϕ′(0) = ψ′(0) = λ−1 for some λ > 0 implies that
ϕ(m)(0) = ψ(m)(0) for all m ∈ N, and hence (since ϕ is analytic under the conditions of the
theorem) ϕ(t) = ψ(t) = λ

λ−it as desired. Finally, the case ϕ(0) = −λ−1 < 0 can be reduced
to the previous one by switching from X to −X in the above argument.



52 R. Rastegar and A. Roitershtein

REFERENCES

Arnold, B. C. and Villasenor, J. A. (2013). Exponential characterizations motivated by the structure
of order statistics in samples of size two. Statist. Probab. Lett., 83:596–601.

Belton, A., Guillot, D., Khare, A., and Putinar, M. (2022). Hirschman-Widder densities. Appl. Com-
put. Harmon. Anal., 60:396–425.

David, H. A. and Nagaraja, H. N. (2004). Order Statistics. Wiley.
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1. INTRODUCTION

The dilemma of missing value is very usual in a sample survey and its presence can spoil
the traditional results. Therefore, it becomes essential to resolve the problem of missing values
in a data set. The well-known imputation technique is used to replace the missing values.
Three basic concepts on missing values were suggested by Rubin (1976), such as missing
at random (MAR), observed at random (OAR), and parameter distribution (PD). Several
renowned authors like Lee et al. (1994), Singh and Horn (2000), Singh and Deo (2003), Singh
(2009), and Singh and Valdes (2009) introduced various imputation methods in the presence
of missing values. Heitjan and Basu (1996) exhibited a difference between missing at random
and missing completely at random (MCAR) approach. Thereafter, Ahmed et al. (2006),
Kadilar and Cingi (2008), Diana and Perri (2010) and Bhushan and Pandey (2016, 2018),
Mohamed et al. (2016), Prasad (2017), Bouza et al. (2020), Bouza-Herrera and Viada (2021),
and Bhushan et al. (2018, 2022) utilized MCAR strategy in their study for the imputation
of missing values.

In real life, situations may emerge where it is either difficult to measure the study
variable or indeed expensive but can be ranked either visually or by any cost free method.
In such circumstances, McIntyre (1952) proposed the idea of ranked set sampling (RSS),
which is superior to simple random sampling but did not furnish any mathematical support.
Takahasi and Wakimoto (1968) extended the idea of McIntyre (1952) and provided the oblig-
atory mathematical foundation to the theory of RSS. Samawi (1996) envisaged the idea of
SRSS superior to StRS. Samawi and Siam (2003) introduced combined and separate ratio
estimators under SRSS. Mandowara and Mehta (2014) considered modified ratio estimators
under SRSS. Linder et al. (2015) investigated the regression estimator under SRSS. Khan
and Shabbir (2016) suggested Hartley-Ross type unbiased estimators under RSS and SRSS.
Recently, Saini and Kumar (2018) suggested the ratio estimator using quartile as an auxiliary
information under SRSS.

In sample surveys, when each group contains very small observations, then each obser-
vation becomes essential to draw conclusions. Further use of such kind of data set consisting
of missing values may vitiate the final conclusion and decrease the efficiency of the estima-
tor as well. In order to tackle with such kind of problems, Bouza-Herrera and Al-Omari
(2011) suggested mean imputation and ratio methods for the median estimator under RSS.
Al-Omari and Bouza (2014) introduced ratio estimators of the population mean with missing
values under RSS. Sohail et al. (2018) suggested ratio type imputation methods under RSS.

In this paper, we suggest some imputation methods in the presence of missing data
under SRSS. The rest paper is arranged in subsequent sections. In the next section, we
discuss the sampling methodology along with the notations used throughout the manuscript.
In Section 3, the combined and separate imputation methods are reviewed. In Section 4,
we have suggested combined and separate classes of imputation methods. The theoretical
comparisons of combined and separate imputation methods are given in Section 5, whereas
Section 6 deals with the simulation study conducted in favour of theoretical findings. Lastly,
the conclusion is given in Section 7.
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2. METHODOLOGY AND NOTATIONS

The procedure of ranked set sampling consists of drawing m simple random samples of
size m from the population. These m units are now ranked within each set with respect to the
variable of interest, say x. The first smallest unit is quantified from the first set for the mea-
surement of the auxiliary variable along with the associated study variables. The unit with
the second smallest rank is quantified from the second ranked set for the measurement of the
auxiliary variables along with the associated study variable and the process is carried on as far
as the m-th smallest unit is quantified from the last set. The above process is known as a cy-
cle. The repetition of this whole procedure up to k times furnishes n = mk ranked set samples.

The stratified ranked set sampling is a sampling procedure analogous to stratified ran-
dom sampling, which is based on splitting a population into L mutually exclusive and ex-
haustive strata and a ranked set sample of nh = mhk units are measured within each stratum
such that h = 1, 2, ..., L. The sampling is accomplished independently across the strata. Thus,
SRSS scheme can be supposed to a collection of L separate ranked set samples.

Consider a finite population U comprised of N measurable units with values yi, i ∈ U .
Let a stratified ranked set sample of size n = mhk be chosen from U to estimate the population
mean of the study variable y. Let r be the number of responding elements out of n sampled
elements. Let P be the probability that i-th respondent associated with a responding class
A and (1− P ) be the probability that i-th respondent associated with the non-responding
class Ā. Moreover, note that s = A ∪ Ā and let the values yi, i ∈ A be observable for each
characteristic, but for the characteristic i ∈ Ā the values are missing and require imputation
in order to establish the complete frame of data to draw a reasonable inference. The auxiliary
variable x will be used to execute the imputation of missing values and let the ranking be
performed over the auxiliary variables as well.

The succeeding notations would be used from the beginning to end in the case of
combined estimators.

Let ȳr,srss = Ȳ (1 + ε0), x̄r,srss = X̄(1 + ε1), x̄n,srss = X̄(1 + ε2) such that E(ε0) =
E(ε1) = E(ε2) = 0 and

E(ε20) =
L∑

h=1

W 2
h

(
C2

yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2

)
=

L∑
h=1

W 2
h

(
γ∗C2

yh
−D2∗

yh

)
= I∗0 ,

E(ε21) =
L∑

h=1

W 2
h

(
C2

xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γ∗C2

xh
−D2∗

xh

)
= I∗1 ,

E(ε22) =
L∑

h=1

W 2
h

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1,

E(ε0, ε1) =
L∑

h=1

W 2
h

(
ρxhyh

Cxh
Cyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh

X̄Ȳ

)

=
L∑

h=1

W 2
h

(
γ∗ρxhyh

Cxh
Cyh

−D∗
xhyh

)
= I∗01,
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E(ε0, ε2) =
L∑

h=1

W 2
h

(
ρxhyh

Cxh
Cyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh

X̄Ȳ

)

=
L∑

h=1

W 2
h (γρxhyh

Cxh
Cyh

−Dxhyh
) = I01,

E(ε1, ε2) =
L∑

h=1

W 2
h

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1,

where γ∗= 1/mhkP , γ = 1/mhk, τyh
= (µyh

− Ȳh), τxh
= (µxh

−X̄h) and τxhyh
= (µxh

−X̄h) ·
· (µyh

− Ȳh). Also, Cxh
= Sxh

/X̄ and Cyh
= Syh

/Ȳ are the coefficients of variation of auxiliary
variable x and study variable y, respectively.

In the case of separate estimators, the following notations will be used throughout the
paper.

Let ȳr,h[rss] = Ȳh(1 + e0h
), x̄r,h(rss) = X̄h(1 + e1h

), x̄n,h(rss) = X̄h(1 + e2h
) such that

E(e0h
) = E(e1h

) = E(e2h
) = 0 and

E(e2
0h

) =

(
C2

yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2
h

)
=
(
γ∗C2

yh
−M2∗

yh

)
= J∗0 ,

E(e2
1h

) =

(
C2

xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γ∗C2

xh
−M2∗

xh

)
= J∗1 ,

E(e2
2h

) =

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1,

E(e0h
, e1h

) =

(
ρxhyh

Cxh
Cyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh

X̄hȲh

)
=
(
γ∗ρxhyh

Cxh
Cyh

−M∗
xhyh

)
= J∗01,

E(e0h
, e2h

) =

(
ρxhyh

Cxh
Cyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh

X̄hȲh

)
= (γρxhyh

Cxh
Cyh

−Mxhyh
) = J01,

E(ε1h
, ε2h

) =

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1,

where τyh
= (µyh

− Ȳh), τxh
= (µxh

− X̄h) and τxhyh
= (µxh

− X̄h)(µyh
− Ȳh), Cxh

= Sxh
/X̄h

and Cyh
= Syh

/Ȳh.

3. RECAP OF IMPUTATION METHODS

In this section, we consider a concise recap of existing prominent combined and separate
imputation methods under SRSS.
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3.1. Combined imputation methods

The mean method of imputation under SRSS is given by

yc
.im =

{
yi for i ∈ A,

ȳr,srss for i ∈ Ā.

The sequent estimator is given by
T c

m = ȳr,srss

where ȳr,srss =
L∑

h=1

Whȳh[rss] is the stratified ranked set sample mean of study variable y.

Also, Wh = Nh/N is the weight of stratum h and Nh and N are the size of stratum h and
total population size, respectively.

The imputation methods are categorized into three situations under the availability of
auxiliary informations:

Situation I: When X̄ is known and x̄n,srss is utilized.

Situation II: When X̄ is known and x̄r,srss is utilized.

Situation III: When X̄ is unknown and x̄n,srss, x̄r,srss are utilized.

The classical combined ratio type imputation methods are defined under SRSS as:

Situation I

yc
.iR1

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
X̄

x̄n,srss

)
− rȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iR2

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
X̄

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iR3

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
x̄n,srss

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā.

The sequent estimators are

T c
R1

= ȳr,srss

(
X̄

x̄n,srss

)
,

T c
R2

= ȳr,srss

(
X̄

x̄r,srss

)
,

T c
R3

= ȳr,srss

(
x̄n,srss

x̄r,srss

)
,

where x̄n,srss =
L∑

h=1

Whx̄h(rss) is the stratified ranked set sample mean of auxiliary variable x.



58 Sh. Bhushan and A. Kumar

Following Diana and Perri (2010), we define the regression imputation methods to
impute the missing value under SRSS as:

Situation I

yc
.iDP1

=

{
yi for i ∈ A,

ȳr+
n

n−r b1(X̄ − x̄n,srss)yr,srss for i ∈ Ā.

Situation II

yc
.iDP2

=

{
yi for i ∈ A,

ȳr+
n

n−r b2(X̄ − x̄r,srss)yr,srss for i ∈ Ā.

Situation III

yc
.iDP3

=

{
yi for i ∈ A,

ȳr + n
n−r b3(x̄n,srss − x̄r,srss)yr,srss for i ∈ Ā.

The sequent combined estimators under the above situations are given by

T c
DP1

= ȳr,srss + b1(X̄ − x̄n,srss),

T c
DP2

= ȳr,srss + b2(X̄ − x̄r,srss),

T c
DP3

= ȳr,srss + b3(x̄n,srss − x̄r,srss).

Following Sohail et al. (2018), one may envisage a combined class of ratio type impu-
tation methods under SRSS for the imputation of missing values as:

Situation I

yc
.iS1

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

x̄n,srss

)β1

− ȳr,srss

]
for i ∈ Ā,

yc
.iS4

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β4x̄n,srss+(1−β4)X̄

)
− ȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iS2

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

x̄r,srss

)β2

− ȳr,srss

]
for i ∈ Ā,

yc
.iS5

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β5x̄r,srss+(1−β5)X̄

)
− ȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iS3

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
x̄n,srss

x̄r,srss

)β3

− ȳr,srss

]
for i ∈ Ā,

yc
.iS6

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β6x̄r,srss+(1−β6)x̄n,srss

)
− ȳr,srss

]
for i ∈ Ā.
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The sequent estimators are given by

T c
S1

= ȳr,srss

(
X̄

x̄n,srss

)β1

,

T c
S2

= ȳr,srss

(
X̄

x̄r,srss

)β2

,

T c
S3

= ȳr,srss

(
x̄n,srss

x̄r,srss

)β3

,

T c
S4

= ȳr,srss

(
X̄

β4x̄n,srss + (1− β4)X̄

)
,

T c
S5

= ȳr,srss

(
X̄

β5x̄r,srss + (1− β5)X̄

)
,

T c
S6

= ȳr,srss

(
X̄

β6x̄r,srss + (1− β6)x̄n,srss

)
,

where βi; i = 1, 2, ..., 6 are suitably chosen optimizing scalars.

Appendix A of supplementary file contains the minimum mean square error (MSE) of
the sequent estimators consisting of different imputation methods.

3.2. Separate imputation methods

The separate mean method of imputation under SRSS is given by

ys
.im =

{
yi for i ∈ Ah,

ȳr,h[rss] for i ∈ Āh.

The sequent estimator is given by

T s
m =

L∑
h=1

Whȳr,h[rss],

where ȳr,h[rss] = 1
mhk

mh∑
i=1

k∑
j=1

yh[i]j is the ranked set sample mean of study variable in stratum h.

The separate imputation methods are categorized into three situations under the avail-
ability of auxiliary informations:

Situation I: When X̄ is known and x̄n,h(rss) is utilized.

Situation II: When X̄ is known and x̄r,h(rss) is utilized.

Situation III: When X̄ is unknown and x̄n,h(rss), x̄r,h(rss) are utilized.

The classical separate ratio type imputation method is described under SRSS as:

Situation I

ys
.iR1

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.
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Situation II

ys
.iR2

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.iR3

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators are given by

T s
R1

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)]
,

T s
R2

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)]
,

T s
R3

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)]
.

On the lines of Diana and Perri (2010), we define a separate regression imputation
method under SRSS as:

Situation I

ys
.iDP1

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b1(X̄ − x̄n,h(rss)) for i ∈ Āh.

Situation II

ys
.iDP2

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b2(X̄ − x̄r,h(rss)) for i ∈ Āh.

Situation III

ys
.iDP3

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b3(x̄n,h(rss) − x̄r,h(rss)) for i ∈ Āh.

The sequent separate estimators under the above situations are given by

T s
DP1

=
L∑

h=1

Wh[ȳr,h[rss] + b1h
(X̄h − x̄n,h(rss))],

T s
DP2

=
L∑

h=1

Wh[ȳr,h[rss] + b2h
(X̄h − x̄r,h(rss))],

T s
DP3

=
L∑

h=1

Wh[ȳr,h[rss] + b3h
(x̄n,h(rss) − x̄r,h(rss))].
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Motivated by Sohail et al. (2018), we define a separate class of ratio type imputation
methods under SRSS as:

Situation I

ys
.is1

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h − rȳr,h[rss]

]
for i ∈ Āh.

ys
.is4

=

yi for i ∈ Ah,
1

n−r

[
nȳr,h[rss]

(
X̄h

β4h
x̄n,h(rss)+(1−β4h

)X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation II

ys
.is2

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.is5

=

yi for i ∈ Ah,
1

n−r

[
nȳr,h[rss]

(
X̄h

β5h
x̄r,h(rss)+(1−β5h

)X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.is3

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.is6

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

β6h
x̄r,h(rss)+(1−β6h

)x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators are given by

T s
S1

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h

,

T s
S2

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h

,

T s
S3

=
L∑

h=1

Whȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h

,

T s
S4

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β4h
x̄n,h(rss) + (1− β4h

)X̄h

)
,

T s
S5

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β5h
x̄r,h(rss) + (1− β5h

)X̄h

)
,

T s
S6

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β6h
x̄r,h(rss) + (1− β6h

)x̄n,h(rss)

)
,

where βih ; i = 1, 2, ..., 6 are suitably opted scalars.

Appendix B of supplementary file contains the minimum mean square error (MSE) of
the sequent estimators consisting of different imputation methods.
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4. PROPOSED IMPUTATION METHODS

The crux of this paper is binary:

1. To propose some efficient combined and separate imputation methods for the esti-
mation of population mean Ȳ .

2. To determine the effect of the correlation coefficient, coefficient of skewness, and
coefficient of kurtosis over the efficiency of the imputation procedures.

4.1. Combined imputation methods

Following Bhushan and Pandey (2016, 2018), we envisage nine new imputation methods
under the three situations specified in the former section as:

Situation I

yc
.iSA1

=

{
α1yi for i ∈ A,

α1ȳr,srss + nθ1
n−r (x̄n,srss − X̄) for i ∈ Ā,

yc
.iSA4

=

yi for i ∈ A,

1
n−r

[
nα4ȳr,srss

(
X̄

x̄n,srss

)θ4

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA7

=

{
yi for i ∈ A,

1
n−r

[
nα7ȳr,srss

(
X̄

X̄+θ7(x̄n,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iSA2

=

{
α2yi for i ∈ A,

α2ȳr,srss + nθ2
n−r (x̄r,srss − X̄) for i ∈ Ā,

yc
.iSA5

=

yi for i ∈ A,

1
n−r

[
nα5ȳr,srss

(
X̄

x̄r,srss

)θ5

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA8

=

{
yi for i ∈ A,

1
n−r

[
nα8ȳr,srss

(
X̄

X̄+θ8(x̄r,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iSA3

=

{
α3yi for i ∈ A,

α3ȳr,srss + nθ3
n−r (x̄r,srss − x̄n,srss) for i ∈ Ā,

yc
.iSA6

=

yi for i ∈ A,

1
n−r

[
nα6ȳr,srss

(
x̄n,srss

x̄r,srss

)θ6

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA9

=

{
yi for i ∈ A,

1
n−r

[
nα9ȳr,srss

(
x̄n,srss

x̄n,srss+θ9(x̄n,srss−x̄r,srss)

)
− rȳr,srss

]
for i ∈ Ā.
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Under the above situations, the sequent estimators are given by

T c
SA1

= α1ȳr,srss + θ1(x̄n,srss − X̄),

T c
SA2

= α2ȳr,srss + θ2(x̄r,srss − X̄),

T c
SA3

= α3ȳr,srss + θ3(x̄r,srss − x̄n,srss),

T c
SA4

= α4ȳr,srss

(
X̄

x̄n,srss

)θ4

,

T c
SA5

= α5ȳr,srss

(
X̄

x̄r,srss

)θ5

,

T c
SA6

= α6ȳr,srss

(
x̄n,srss

x̄r,srss

)θ6

,

T c
SA7

= α7ȳr,srss

[
X̄

X̄ + θ7(x̄n,srss − X̄)

]
,

T c
SA8

= α8ȳr,srss

[
X̄

X̄ + θ8(x̄r,srss − X̄)

]
,

T c
SA9

= α9ȳr,srss

[
x̄n,srss

x̄n,srss + θ9(x̄r,srss − x̄n,srss)

]
,

where α1, α2, ..., α9 and θ1, θ2, ..., θ9 are the suitably chosen scalars.

Theorem 4.1. The MSE of the sequent estimators consisting of the proposed im-

putation methods is given by

MSE(T c
SA1

) = (α1 − 1)2Ȳ 2 + α2
1Ȳ

2I∗0 + θ2
1X̄

2I1 + 2α1θ1X̄Ȳ I01,

MSE(T c
SA2

) = (α2 − 1)2Ȳ 2 + α2
2Ȳ

2I∗0 + θ2
2X̄

2I∗1 + 2α2θ2X̄Ȳ I∗01,

MSE(T c
SA3

) =
[

(α3 − 1)2Ȳ 2 + α2
3Ȳ

2I∗0 + θ2
3X̄

2{I∗1 − I1}
+2α3θ3X̄Ȳ {I∗01 − I01}

]
,

MSE(T c
SA4

) = Ȳ 2

[
1 + α2

4

{
1 + I∗0 + θ4(2θ4 + 1)I1 − 4θ4I01

}
−2α4

{
1− θ4I01 + θ4(θ4+1)

2 I1

} ]
,

MSE(T c
SA5

) = Ȳ 2

[
1 + α2

5

{
1 + I∗0 + θ5(2θ5 + 1)I∗1 − 4θ5I

∗
01

}
−2α5

{
1− θ5I

∗
01 + θ5(θ5+1)

2 I∗1

} ]
,

MSE(T c
SA6

) = Ȳ 2

[
1 + α2

6

{
1 + I∗0 + θ6(2θ6 + 1)(I∗1 − I1)− 4θ6(I∗01 − I01)

}
−2α6

{
1− θ6(I∗01 − I01) + θ6(θ6+1)

2 (I∗1 − I1)
} ]

,

MSE(T c
SA7

) = Ȳ 2

[
1 + α2

7

{
1 + I∗0 + 3θ2

7I1 − 4θ7I01

}
−2α7

{
1 + θ2

7I1 − θ7I01

} ]
,

MSE(T c
SA8

) = Ȳ 2

[
1 + α2

8

{
1 + I∗0 + 3θ2

8I
∗
1 − 4θ8I

∗
01

}
−2α8

{
1 + θ2

8I
∗
1 − θ8I

∗
01

} ]
,

MSE(T c
SA9

) = Ȳ 2

[
1 + α2

9

{
1 + I∗0 + 3θ2

9( I∗1 − I1 )− 4θ9(I∗01 − I01)
}

−2α9

{
1 + θ2

9(I
∗
1 − I1)− θ9(I∗01 − I01)

} ]
.

Proof: Appendix C of supplementary file contains a summary of the derivations. The
derivations can easily be done using Taylor series expansion.



64 Sh. Bhushan and A. Kumar

Theorem 4.2. The minimum MSE of the sequent estimators consisting of the pro-

posed imputation methods are

minMSE(T c
SAi

) = Ȳ 2(1− αi(opt)) = Ȳ 2

(
1− A2

i

Bi

)
; i = 1, 2, 3,(4.1)

minMSE(T c
SAj

) = Ȳ 2

(
1−

A2
j

Bj

)
; j = 4, 5, 6,(4.2)

minMSE(T c
SAk

) = Ȳ 2

(
1−

A2
k

Bk

)
; k = 7, 8, 9.(4.3)

Proof: Appendix C of supplementary file contains a summary of the derivations.

Corollary 4.1. The proposed sequent estimators T c
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T c
SAj

, j = 4, 5, 6, iff

αi(opt) >
A2

j

Bj
(4.4)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.4).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.1) and
(4.2), we get (4.4).

Corollary 4.2. The proposed sequent estimators T c
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T c
SAk

, k = 7, 8, 9, iff

αi(opt) >
A2

k

Bk
(4.5)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.5).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.1) and
(4.3), we get (4.5).

Corollary 4.3. The proposed sequent estimators T c
SAj

, i = 4, 5, 6 dominate the pro-

posed sequent estimators T c
SAk

, k = 7, 8, 9, iff

A2
j

Bj
>

A2
k

Bk
(4.6)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.6).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.2) and
(4.3), we get (4.6).

The only way to determine if (4.4), (4.5), and (4.6) are true in practise is through the
computational analysis done in Section 6.
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4.2. Separate imputation methods

On the lines of Bhushan and Pandey (2016, 2018), we suggest nine new separate im-
putation methods under the three situations discussed in the earlier section as:

Situation I

ys
.iSA1

=

{
α1h

yi for i ∈ Ah,

α1h
ȳr,h[rss] + nθ1h

n−r (x̄n,h(rss) − X̄h) for i ∈ Āh,

ys
.iSA4

=

yi for i ∈ Ah,

1
n−r

[
nα4h

ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA7

=

yi for i ∈ Ah,
1

n−r

[
nα7h

ȳr,h[rss]

(
X̄h

X̄h+θ7h
(x̄n,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation II

ys
.iSA2

=

{
α2h

yi for i ∈ Ah,

α2h
ȳr,h[rss] + nθ2h

n−r (x̄r,h(rss) − X̄h) for i ∈ Āh,

ys
.iSA5

=

yi for i ∈ Ah,

1
n−r

[
nα5h

ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA8

=

yi for i ∈ Ah,
1

n−r

[
nα8h

ȳr,h[rss]

(
X̄h

X̄+θ8h
(x̄r,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.iSA3

=

{
α3h

yi for i ∈ Ah,

α3h
ȳr,h[rss] + nθ3h

n−r (x̄r,h(rss) − x̄n,h(rss)) for i ∈ Āh,

ys
.iSA6

=

yi for i ∈ Ah,

1
n−r

[
nα6h

ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA9

=

{
yi for i ∈ Ah,

1
n−r

[
nα9h

ȳr,h[rss]

(
x̄n,h(rss)

x̄n,h(rss)+θ9h
(x̄n,h(rss)−x̄r,h(rss))

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators consisting of the above imputation methods are

T s
SA1

=
L∑

h=1

Wh[α1h
ȳr,h[rss] + θ1h

(x̄n,h(rss) − X̄h)],

T s
SA2

=
L∑

h=1

Wh[α2h
ȳr,h[rss] + θ2h

(x̄r,h(rss) − X̄h)],

T s
SA3

=
L∑

h=1

Wh[α3h
ȳr,h[rss] + θ3h

(x̄r,h(rss) − x̄n,h(rss))],
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T s
SA4

=
L∑

h=1

Whα4h
ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h

,

T s
SA5

=
L∑

h=1

Whα5h
ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h

,

T s
SA6

=
L∑

h=1

Whα6h
ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h

,

T s
SA7

=
L∑

h=1

Whα7h
ȳr,h[rss]

[
X̄h

X̄h + θ7h
(x̄n,h(rss) − X̄h)

]
,

T s
SA8

=
L∑

h=1

Whα8h
ȳr,h[rss]

[
X̄h

X̄h + θ8h
(x̄r,h(rss) − X̄h)

]
,

T s
SA9

=
L∑

h=1

Whα9h
ȳr,h[rss]

[
x̄n,h(rss)

x̄n,h(rss) + θ9h
(x̄r,h(rss) − x̄n,h(rss))

]
,

where α1h
, α2h

, ..., α9h
and θ1h

, θ2h
, ..., θ9h

are suitably chosen scalars.

Theorem 4.3. The MSE of the sequent estimators consisting of the proposed im-

putation methods is given by

MSE(T s
SA1

) =
L∑

h=1

W 2
h

[
(α1h

− 1)2Ȳ 2
h + α2

1h
Ȳ 2

h J∗0 + θ2
1h

X̄2
hJ1 + 2α1h

θ1h
X̄hȲhJ01

]
,

MSE(T s
SA2

) =
L∑

h=1

W 2
h

[
(α2h

− 1)2Ȳ 2
h + α2

2h
Ȳ 2

h J∗0 + θ2
2h

X̄2
hJ∗1 + 2α2h

θ2h
X̄hȲhJ∗01

]
,

MSE(T s
SA3

) =
L∑

h=1

W 2
h

[
(α3h

− 1)2Ȳ 2
h + α2

3h
Ȳ 2

h J∗0 + θ2
3h

X̄2
h{J∗1 − J1}

+2α3h
θ3h

X̄hȲh{J∗01 − J01}

]
,

MSE(T s
SA4

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

4h

{
1 + J∗0 + θ4h

(2θ4h
+ 1)J1 − 4θ4h

J01

}
−2α4h

{
1− θ4h

J01 + θ4h
(θ4h

+1)

2 J1

} ]
,

MSE(T s
SA5

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

5h

{
1 + J∗0 + θ5h

(2θ5h
+ 1)J∗1 − 4θ5h

J∗01
}

−2α5h

{
1− θ5h

J∗01 + θ5h
(θ5h

+1)

2 J∗1

} ]
,

MSE(T s
SA6

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

6h

{
1 + J∗0 + θ6h

(2θ6h
+ 1)(J∗1 − J1)− 4θ6h

(J∗01 − J01)
}

−2α6h

{
1− θ6h

(J∗01 − J01) + θ6h
(θ6h

+1)

2 (J∗1 − J1)
} ]

,

MSE(T s
SA7

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

7h

{
1 + J∗0 + 3θ2

7h
J1 − 4θ7h

J01

}
−2α7h

{
1 + θ2

7h
J1 − θ7h

J01

} ]
,

MSE(T s
SA8

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

8h

{
1 + J∗0 + 3θ2

8h
J∗1 − 4θ8h

J∗01
}

−2α8h

{
1 + θ2

8h
J∗1 − θ8h

J∗01
} ]

,

MSE(T s
SA9

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

9h

{
1 + J∗0 + 3θ2

9h
( J∗1 − J1 )− 4θ9h

(J∗01 − J01)
}

−2α9h

{
1 + θ2

9h
(J∗1 − J1)− θ9h

(J∗01 − J01)
} ]

.

Proof: Appendix C of supplementary file contains a summary of the derivations. The
derivations can easily be done using Taylor series expansion.
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Theorem 4.4. The minimum MSE of the sequent estimators consisting of the pro-

posed imputation methods is given by

minMSE(T s
SAi

) =
L∑

h=1

W 2
h Ȳ 2

h (1− αih(opt)) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
; i = 1, 2, 3,(4.7)

minMSE(T s
SAj

) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
jh

Bjh

)
; j = 4, 5, 6,(4.8)

minMSE(T s
SAk

) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
kh

Bkh

)
; k = 7, 8, 9.(4.9)

Proof: Appendix C of supplementary file contains a summary of the derivations.

Corollary 4.4. The proposed sequent estimators T s
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T s
SAj

, j = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ 2

h αih(opt) >

L∑
h=1

W 2
h Ȳ 2

h

(
A2

ih

Bih

)
(4.10)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.10).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.7) and
(4.8), we get (4.10).

Corollary 4.5. The proposed sequent estimators T s
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T s
SAk

, k = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ 2

h αih(opt) >
L∑

h=1

W 2
h Ȳ 2

h

(
A2

kh

Bkh

)
(4.11)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.11).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.7) and
(4.9), we get (4.11).

Corollary 4.6. The proposed sequent estimators T s
SAj

, j = 4, 5, 6 dominate the pro-

posed sequent estimators T s
SAk

, k = 7, 8, 9, iff

L∑
h=1

W 2
h Ȳ 2

h

(
A2

jh

Bjh

)
>

L∑
h=1

W 2
h Ȳ 2

h

(
A2

kh

Bkh

)
(4.12)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.12).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.8) and
(4.9), we get (4.12).

The only way to determine if (4.10), (4.11), and (4.12) are true in practise is through
the computational analysis done in Section 6.
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5. OPTIMALITY CONDITIONS

In this section, we obtain the optimality conditions under two heads, namely, optimal-
ity conditions for combined imputation methods and the optimality conditions for separate
imputation methods.

5.1. Optimality conditions for the combined imputation methods

By comparing the minimum MSE of the suggested combined imputation methods
yc

.iSAi
, i = 1, 2, ..., 9 from (4.1) and (4.2) with the minimum MSE of the other existing com-

bined imputation methods from (A.1), (A.2), (A.3), (A.4), (A.8), (A.9), (A.10), (A.14),
(A.15), and (A.16), respectively, given in Appendix A of supplementary file, we get the fol-
lowing optimality conditions:

MSE(T c
m) > MSE(T c

SAi
) =⇒ A2

i

Bi
> 1− I∗0 ,

MSE(T c
R1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 + 2I01,

MSE(T c
R2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I∗1 + 2I∗01,

MSE(T c
R3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 − I∗1 + 2I∗01,

MSE(T c
DP1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1
,

MSE(T c
DP2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1
,

MSE(T c
DP3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)
,

MSE(T c
S1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1
,

MSE(T c
S2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1
,

MSE(T c
S3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)
.

The optimality of the suggested combined imputation methods can be justified under
the above conditions.
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5.2. Optimality conditions for the separate imputation methods

By comparing the minimum MSE of the proposed imputation methods ys
.iSAi

, i =
1, 2, ..., 9 given in (4.7) and (4.8) with the minimum MSE of the other existing imputation
methods given in (B.17), (B.18), (B.19), (B.20), (B.24), (B.25), (B.26), (B.30), (B.31),
and (B.32), respectively, given in Appendix B of supplementary file, we get the following
optimality conditions:

MSE(T s
m) > MSE(T s

SAi
) =⇒

L∑
h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h J∗1 ,

MSE(T s
R1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J1 − 2J01],

MSE(T s
R2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J∗1 − 2J∗01],

MSE(T s
R3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J∗1 + J1 − 2J∗01],

MSE(T s
DP1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J2
01

J1

]
,

MSE(T s
DP2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J∗
2

01

J∗1

]
,

MSE(T s
DP3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

(J∗01−J01)2

�
J∗1 − J1

�
]
,

MSE(T s
S1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J2
01

J1

]
,

MSE(T s
S2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J∗
2

01

J∗1

]
,

MSE(T s
S3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

(J∗01−J01)2

�
J∗1 − J1

�
]
.

Under the above conditions, the optimality of the proposed separate imputation meth-
ods can be ascertained.

5.3. Comparison of proposed combined and separate imputation methods

By comparing the minimum MSE of the proposed combined and separate classes of
imputation methods from (4.1), (4.2) and (4.7), (4.8), we get

minMSE(T c
SAi

)−minMSE(T s
SAi

) =
L∑

h=1

[
(Ȳ 2 −W 2

h Ȳ 2
h )−

(
Ȳ 2 A2

i

Bi
−W 2

h Ȳ 2
h

A2
ih

Bih

)]
.(5.1)
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If the sequent estimators are conclusive and the relationship between auxiliary and
study variables within each stratum is a straight line passing through the origine, then the
last term of (5.1) is miniscule and it vanished.

In addition, except Rh becomes invariant from stratum to stratum, the separate estima-
tors perform better in each stratum provided the sample in each stratum is to be sufficiently
large so that the approximate formula for MSE(T s

SAi
), i = 1, 2, ..., 9 is valid and the cumula-

tive bias that can affect the proposed estimators is negligible, whereas the proposed combined
estimators are to be highly advocated with only a small sample in each stratum (see, Cochran,
1977).

6. SIMULATION STUDY

To highlight the properties and to access the performance of the proposed imputation
methods, motivated by Singh and Horn (1998), simulations were carried out over two arti-
ficially generated asymmetric populations such as gamma and exponential of size N = 2100
units each with variables X and Y whose values are given by

yi = 8.2 +
√

(1− ρ2
xy) y∗i + ρxy

(
Sy

Sx

)
x∗i ,

xi = 4.2 + x∗i .

where x∗i and y∗i are independent variates of proportional distribution. Each population is
divided into three equal strata and a stratified ranked set sample of size 9 with set size 3 and
number of cycles 3 is drawn from each stratum with the help of the methodology described
in Section 2. With 10000 iterations, the percent relative efficiency (PRE) of the sequent
estimators with respect to the conventional mean estimator was obtained as

PRE =
1

10000

∑10000
i=1 (Tm − Ȳ )2

1
10000

∑10000
i=1 (T ∗ − Ȳ )2

× 100,

where T ∗ is the existing and proposed combined and separate class of estimators.

The findings of the simulation are disclosed from Table 1 to Table 4 through PRE

for reasonably chosen values of correlation coefficient ρxy = 0.6, 0.7, 0.8, 0.9 and fair choice of
response probability P = 0.4, 0.6.

From Table 1 to Table 4, consisting of the simulation results of two asymmetric popula-
tions, namely, gamma and exponential, we have seen that the proposed combined and separate
imputation methods yc

.iSAj
and ys

.iSAj
, j = 1, 2, ..., 9 dominate the other existing imputation

methods for reasonably chosen values of the correlation coefficient. We have also seen that
the proposed combined and separate imputation methods yc

.iSAj
and ys

.iSAj
, j = 4, 5, 6 per-

form better among the proposed class of imputation methods under situations I, II and III.
Moreover, it is also seen that the PRE of the proposed imputation methods under situations
I, II and III in both populations decreases with the increase in asymmetry.
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Table 1: PRE of proposed combined estimators at P = 0.4.

ρxy 0.6 0.7 0.8 0.9

T c
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T c

SAi
, i = 1, 7 106.0998 105.5777 105.4108 104.7131

Tc
SA4

106.1067 105.5846 105.4176 104.7198
T c

R1 100.2267 99.3709 98.3220 95.5744
T c

DP1/T c
Si

, i = 1, 4 105.983 105.46 105.3005 104.6141

Situation II
T c

SAi
, i = 2, 8 115.0805 113.7576 113.4881 111.7679

Tc
SA5

115.1003 113.7771 113.5075 111.7865
T c

R1 97.5580 95.7573 93.4999 87.5916
T c

DP2/T c
Si

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T c

SAi
, i = 3, 9 108.1050 107.4685 107.3868 106.5397

Tc
SA6

108.1161 107.4795 107.3977 106.5502
T c

R1 97.3431 96.3414 95.0160 91.2945
T c

DP3/T c
Si

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T c

SAi
, i = 1, 7 106.2035 106.5419 106.7350 105.8748

Tc
SA4

106.2096 106.5481 106.7411 105.8808
T c

R1 99.7239 100.2227 100.2960 98.5947
T c

DP1/T c
Si

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T c

SAi
, i = 2, 8 112.9619 112.5542 112.8376 111.6621

Tc
SA5

112.9805 112.5726 112.856 111.6799
T c

R2 89.3047 88.4097 88.1260 85.9139
T c

DP2/T c
Si

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T c

SAi
, i = 3, 9 105.3578 105.7988 105.8817 105.2694

Tc
SA6

105.3684 105.8092 105.8920 105.2796
T c

R3 87.5260 88.2363 87.8974 86.9790
T c

DP3/T c
Si

, i = 3, 6 105.2617 105.7036 105.7886 105.1775
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Table 2: PRE of proposed combined estimators at P = 0.6.

ρxy 0.6 0.7 0.8 0.9

T c
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T c

SAi
, i = 1, 7 109.3365 108.5032 108.2434 107.1516

Tc
SA4

109.3437 108.5104 108.2505 107.1584
T c

R1 100.3407 99.0588 97.5032 93.5045
T c

DP1/T c
Si

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T c

SAi
, i = 2, 8 115.3909 114.0088 113.6905 111.9040

Tc
SA5

115.4041 114.0218 113.7034 111.9163
T c

R2 98.2571 96.3813 94.0605 88.0659
T c

DP2/T c
Si

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T c

SAi
, i = 3, 9 105.1641 104.7748 104.7360 104.2151

Tc
SA6

105.1690 104.7796 104.7407 104.2197
T c

R3 97.9303 97.2720 96.3820 93.8046
T c

DP3/T c
Si

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T c

SAi
, i = 1, 7 109.5194 110.0755 110.3901 109.0041

Tc
SA4

109.5258 110.0819 110.3965 109.0104
T c

R1 99.5862 100.3351 100.4455 97.9046
T c

DP1/T c
Si

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T c

SAi
, i = 2, 8 113.7547 113.6404 113.9884 112.5204

Tc
SA5

113.7669 113.6525 114.0006 112.5322
T c

R2 91.4958 91.0133 90.8178 88.2189
T c

DP2/T c
Si

, i = 2, 5 113.6907 113.577 113.9264 112.4592

Situation III
T c

SA3 103.4189 103.5222 103.5633 103.3902
Tc

SA6
103.4436 103.5267 103.5677 103.4246

T c
R3 90.6449 90.7375 90.4534 89.9166

T c
DP3/T c

Si
, i = 3, 6 103.3749 103.4588 103.5013 103.3590
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Table 3: PRE of proposed separate estimators at P = 0.4.

ρxy 0.6 0.7 0.8 0.9

T s
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T s

SAi
, i = 1, 7 106.0962 105.5742 105.4076 104.7104

Ts
SA4

106.1027 105.5807 105.4141 104.7167
T s

R1 100.6188 99.7795 98.7804 96.1227
T s

DP1/T s
Si

, i = 1, 4 105.983 105.4600 105.3005 104.6141

Situation II
T s

SAi
, i = 2, 8 115.0769 113.7541 113.4850 111.7652

Ts
SA5

115.0954 113.7724 113.5031 111.7826
T s

R2 98.5741 96.7889 94.6180 88.8216
T s

DP2/T s
Si

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T s

SAi
, i = 3, 9 108.1014 107.4650 107.3836 106.5370

Ts
SA6

108.1119 107.4753 107.3939 106.5469
T s

R3 81.4466 80.3429 77.9883 72.6504
T s

DP3/T s
Si

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T s

SAi
, i = 1, 7 106.2010 106.5393 106.7324 105.8724

Ts
SA4

106.2067 106.5451 106.7382 105.8781
T s

R1 100.0305 100.5150 100.5927 98.9217
T s

DP1/T s
Si

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T s

SAi
, i = 2, 8 112.4594 112.5516 112.8350 111.6596

Ts
SA5

112.4770 112.5691 112.8525 111.6766
T s

R2 90.1295 89.1992 88.9243 86.7481
T s

DP2/T s
Si

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T s

SAi
, i = 3, 9 105.3552 105.7962 105.8791 105.2670

Ts
SA6

105.3654 105.8061 105.889 105.2767
T s

R3 74.6746 73.9110 73.4349 71.8010
T s

DP3/T s
Si

, i = 3, 6 105.2617 105.7036 105.7886 105.1775
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Table 4: PRE of proposed separate estimators at P = 0.6.

ρxy 0.6 0.7 0.8 0.9

T s
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T s

SAi
, i = 1, 7 109.3341 108.5009 108.2413 107.1498

Ts
SA4

109.3409 108.5076 108.2479 107.1562
T s

R1 100.9318 99.6695 98.1811 94.2940
T s

DP1/T s
Si

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T s

SAi
, i = 2, 8 115.3885 114.0065 113.6884 111.9022

Ts
SA5

115.4008 114.0187 113.7005 111.9138
T s

R2 99.2688 97.4083 95.1744 89.2927
T s

DP2/T s
Si

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T s

SAi
, i = 3, 9 105.1618 104.7725 104.7339 104.2133

Ts
SA6

105.1663 104.7770 104.7383 104.2176
T s

R3 75.3238 74.4041 72.0020 66.8509
T s

DP3/T s
Si

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T s

SAi
, i = 1, 7 109.5177 110.0737 110.3884 109.0025

Ts
SA4

109.5238 110.0798 110.3944 109.0084
T s

R1 100.0457 100.7759 100.8935 98.3895
T s

DP1/T s
Si

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T s

SAi
, i = 2, 8 113.7531 113.8386 113.9867 112.5188

Ts
SA5

113.7646 113.8502 113.9983 112.5300
T s

R2 92.3101 91.7963 91.6107 89.0465
T s

DP2/T s
Si

, i = 2, 5 113.6907 113.7770 113.9264 112.4592

Situation III
T s

SAi
, i = 3, 9 103.4372 103.5205 103.5615 103.4185

Ts
SA6

103.4417 103.5247 103.5658 103.4228
T s

R3 70.0312 69.5489 69.0562 67.4148
T s

DP3/T s
Si

, i = 3, 6 103.3749 103.4588 103.5013 103.3590
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7. CONCLUSION

This paper is the outset to suggest some combined and separate classes of imputation
methods along with their properties for the estimation of population mean in the presence of
missing data using SRSS. The theoretical conditions are derived under which the proposed
combined and separate classes of imputation methods are justified. In order to enhance
the theoretical findings and to determine the effect of skewness and kurtosis over PRE, a
simulation study is accomplished on two asymmetric populations viz. gamma and exponential
with reasonable choice of correlation coefficient ρxy and probability of non responding units P .
It is noticed from the perusal of theoretical and simulation results that:

1. The proposed combined and separate of imputation methods yc
.iSAj

and ys
.iSAj

, j =
1, 2, ..., 9 always perform better than the combined and separate mean imputation
method yc

.im
and ys

.im
, ratio imputation methods yc

.iRj
and ys

.iRj
, j = 1, 2, 3 and

their own conventional counterparts for different values of correlation coefficient
ρxy, coefficient of skewness β1 and coefficient of kurtosis β2.

2. The proposed combined and separate imputation methods yc
.iSAj

and ys
.iSAj

, j =
4, 5, 6 are best among the proposed classes of imputation methods under situations
I, II and III.

3. The PRE of the proposed combined and separate classes of imputation methods
yc

.iSAj
, ys

.iSAj
, j = 1, 2, ..., 9 and their conventional counterparts under situations I,

II and III are contrary to the asymmetry which is similar to the results of McIntyre
(1952), Dell and Clutter (1972) and Bhushan and Kumar (2022) where they chose
a wide range of skewed distributions and concluded that the asymmetry shows
adverse effect over the efficiency of the estimators.

4. The suggested combined classes of imputation methods yc
.iSAj

, j = 1, 2, ..., 9 are
superior than the suggested separate classes of imputation methods ys

.iSAj
, j =

1, 2, ..., 9 in situations I, II and III.

Therefore, due to the dominance of the proposed imputation methods over the existing
imputation methods, we recommend them to survey persons for their real life problems.

APPENDIXES A-B-C. Supplementary file

Supplementary data to this article can be found online.
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1. INTRODUCTION

Data analytic techniques are very important to explore the structure and the distribu-
tion of the data to enable analysts gaining greater understanding of the raw data. Data is
often collected in large, unstructured volumes from various sources and analysts must first
understand and develop a comprehensive view of the data before using it in further anal-
ysis; see, Healy (2019). Nowadays, data exploration has established as a mandatory phase
in every data science project. Typical plots include scatter plot, box plot, quantile quantile
plot and many more have been used as a graphical approach to learn about distributions,
correlations, outliers, trends, and other data characteristics; see, Tukey (1987), Gandomi and
Haider (2015) and Cumming and Finch (2005). One main advantage of data exploration
graphically is to learn about characteristics and potential problems of a data set without
the need to formulate assumptions about the data beforehand and to foster a quick and a
deep understanding of the data as an important basis for successful and efficient data science
projects; see, Matt and Joshua (2019), Runkler (2020), James et al. (2013), Healy (2019),
and Larson-Hall (2017). The estimation of a distribution function is not only a fascinating
problem by itself, but it also emerges naturally in real-world problems in a variety of scientific
domains including commerce, hydrology, and environmental sciences. As a result, a variety
of nonparametric approaches for tackling this problem have risen in different disciplines; see,
Efromovich (2001), Cheng and Peng (2002), and Charles et al. (2010). The risk term, or nat-
ural hazard, appears to be closely tied to the distribution function in many circumstances.
Scientists want to know the likelihood of a large earthquake, the likelihood of high wind speed
or hurrican, and the hazard of low levels; see, Baszczynska (2016), Xue and Wang (2010),
Babu et al. (2002), Erdogan et al. (2019) and Mombeni et al. (2021).

The population mean absolute deviation (MAD) about any value v can be written as

(1.1) ∆X(v) = E|X − v|, v ∈ R.

This function is usually used as a direct measure of the scale for any distribution about chosen
v such as mean absolute deviation about population mean (µ)

∆X(µ) = E|X − µ|

and mean absolute deviation about population median (M)

∆X(M) = E|X −M |.

These measures offer a direct indication of the dispersion of a random variable about its mean
and median, respectively, and have many applications in different fields; see, Dodge (2002),
Pham-Gia and Hung (2001), Gorard (2005), Elamir (2012) and Habib (2012).

There are two main aims for this article. Since the mean absolute deviation function
characterizes the distribution function and gives a dispersive ordering of probability distribu-
tions, the first aim is to use the mean absolute deviation function to explore the pattern in the
data graphically. The second aim is to use the first derivative of the mean absolute function
to estimate the population distribution function where a new method based on Richardson
extrapolation approach is proposed.
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This article is organized as follows. MAD function representation is explained in Sec-
tion 2. MAD plot is proposed in Section 3. Some uses of MAD function are introduced in
Section 4. Distribution function in terms of MAD is presented in Section 5. Several nonpara-
metric estimation approaches for distribution functions are derived in Section 6. Simulation
study is conducted to study the properties of proposed estimators in terms of average mean
square in Section 7. Ricardson extrapolation approximation is applied to acute toxicity values
in Section 8. Section 9 is devoted to conclusion.

2. MAD FUNCTION AND ITS REPRESENTATION

Let X1, ..., Xn be an independent and identically a random sample from a continuous
distribution function FX(.)(0 < F < 1), density fX(.)(f ≥ 0), mean µ = E(X), median M =
Med(X), standard deviation σ =

√
E(x− µ)2 , indicator function Ii≤k be 1 if i ≤ k, 0 else,

and X(1), ..., X(n) be the corresponding order statistics. Another representation of MAD in
terms of distribution function is given by Munoz-Perez and Sanchez-Gomez (1990) as

(2.1) ∆X(v) = v[2FX(v)− 1] + E(X)− 2E[XIX≤v]

and its first derivative

(2.2) ∆́X(v) = 2FX(v)− 1.

For more details, see, Habib (2012).

Theorem 2.1. The mean absolute deviation about v(v ∈ R) is minimized when v is

the median and it is a convex function.

Proof: Since FX(M) = 0.5, the first derivative of MAD function at median (M) is

zero ∆́X(M) = 0 with positive second derivative ´́∆X(M) = 2fX(M) > 0. Therefore, ∆X(v) =

E|X−v| has a minimum value at v = M . Where ∆́X(v) = 2FX(v)−1 and ´́∆X(v) = 2fX(v) ≥ 0
for all v ∈ R, then ∆X(v) is a convex function.

Munoz-Perez and Sanchez-Gomez (1990) prove that ∆X(v) characterizes the distri-
bution function and give a dispersive ordering of probability distributions as it satisfies the
following conditions: (1) there is only a finite number of discontinuity points in the derivative,
(2) it is a convex function on real line (R), (3) limx→∞ ∆́X(x) = 1 and limx→−∞ ∆́X(x) = −1
and (4) limx→∞[∆X(x)− x] = −E(X), and limx→−∞[∆X(x) + x] = E(X). Since ∆X(v) sat-
isfies the above conditions, there subsists a unique distribution function which has ∆X(v) as
its dispersion function.

3. MEAN ABSOLUTE DEVIATION PLOT (MAD PLOT)

The MAD plot can be introduced as

(3.1) Xaxis = vi, versus Yaxis = ∆X(vi), for each vi = xi and i = 1, ..., n

with two straight lines at
µ− vi and vi − µ.
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This plot represents data on x-axis and the mean absolute deviation at each v = x on the
y-axis that includes mean absolute deviation about mean and median as special cases. In
other words, it is a simple curve plot between the actual data and its mean absolute deviation
at each point. Figure 1 displays the MAD plot for the standard normal distribution using the
quantile function for standard normal from R-software (2021) vi = qnorm(p = (i− 0.5)/n,
µ = 0, σ = 1), and i = 1, ..., 100 with two straight lines µ− vi and vi−µ that show the degree
of approximation with ∆X(vi).
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MAD plot for normal distribution
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WL WR
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Figure 1: MAD function plot for standard normal distribution using
qnorm((i− 0.5)/n), and i = 1, ..., 100.

For the standard normal distribution, the MAD function formulates a parabola curve,
or a quadratic function that has a minimum at median ∆X(M) = ∆Med (mean absolute
deviation about median) and reflects a lot of information that includes:

• the location measure median (M) on x-axis is at min ∆X(v) and the mean (µ) is at
the intersection of straight lines,

• the scale measure ∆X(M) (mean absolute deviation about median) is at the mini-
mum of the MAD function,
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• the right MAD branch ∆X(v)Iv>M and its maximum ∆R
Max give an indication of

spread out of the data and tail length in the right side of median,

• the left MAD branch ∆X(v)Iv<M and its maximum ∆L
Max give an indication of

spread out of the data and tail length in the left side of median,

• two straight lines µ− vi and vi − µ give the degree of approximation with ∆X(vi),

• the wideness between MAD function, median, straight lines µ− vi and vi − µ (right
wideness WR, and left widenes WL) give an indication of the direction, degree of
skewness and peakedness,

• the cluster of data may give an indication about modality.

Furthermore, the MAD function could be divided to the right MAD function (∆+
X(v))

and the left MAD function (∆−X(v)) as

∆X(v) = E|X − v| = E(X − v)+ + E(X − v)− = ∆+
X(v) + ∆−X(v)

and

∆+
X(v) = E[(X − v)IX>v] and ∆−X(v) = E[(v −X)IX≤v].

The relationship between the straight lines and the MAD functions can be written as

E(X − v) = ∆+
X(v)−∆−X(v).

Therefore, when v = µ, we have ∆+
X(v) = ∆−X(v), also if v = M , we have µ−M = ∆+

X(M)−
∆−X(M) that could be considered as a measure of skewness; see, Munoz-Perez and Sanchez-
Gomez (1990) and Habib (2012).

4. USES OF MAD FUNCTIONS

4.1. Wideness and skewness

The area between the right straight line, median and right MAD branch can be defined
in standard form as

WR = ∆+
X(M)/σ

and

∆+
X(M) = E[(X −M)IX>M ].

We may consider WR as the right wideness measure which reflect how much the right MAD
branch is away from the right straight line (vi − µ) and median. Since ∆ ≤ σ by Jensen’s
inequality, it is straightforward to prove that 0 ≤ WR ≤ 1. In terms of data, when the value
of WR is near 1 it indicates big wideness or stretch out from the median, in other words, the
data will be spread out far away from median in the right side. If the value of WR is near
0 it indicates small wideness from the median, in other words, the data will be concentrated
near the median in the right side.
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Also, the area between the left straight line, median and the left MAD branch (left
wideness) can be defined in standard form as

WL = ∆−X(M)/σ

and
∆−X(M) = E[(M −X)IX≤M ].

We may consider WL as the left wideness measure which reflect how much the left MAD
branch is away from left straight line (µ− vi) and median. It is straightforward to prove that
0 ≤ WL ≤ 1. In terms of data, when the value of WL is near 1 it indicates big wideness or
stretches out from the median. In other words, the data will be spread out far away from
median in the left side. If the value of WL is near 0 it indicates small wideness from the
median, in other words, the data will be closed to the median in the left side.

The general measure of wideness for a distribution in terms of right and left wideness
may be defined as

W = WL + WR = (∆−X(M) + ∆+
X(M))/σ = ∆X(M)/σ.

We may consider W as a measure of total wideness between MAD function and the two
straight lines. This measure will be very useful for symmetric distributions where it may
be related to what is called platykurtic or flatness that had been used as a test for normal
distribution; see, Geary (1935) and Elamir (2012). The interpretation of this measure es-
pecially for symmetric distributions in terms of data can be as follows. If W is near 1, the
distribution of the data is “strong curved inwards”, near zero strong “curved outwards”, and
0.798 for normal distribution. The tightness between MAD function and the two straight
lines may be defined as a complement of wideness as

L = 1−W = (σ −∆X(M))/σ.

The standardized distance between the standard deviation of the population and the mean
absolute deviation about median. This measure is very useful for symmetric distributions
where it may be related to what is called leptokurtic (peakedness). As σ getting far away from
∆X(M), the more leptokurtic (more data concentration about median). Since ∆X(M) ≤ σ,
then 0 ≤ L ≤ 1. The values of WR, WL, W and L are presented in Table 1 for some selected
symmetric distributions. The distributions that have big flatness as Beta (1, 1) and Beta
(0.1, 0.1) have W near 1 while the distributions with strong peakedness such as t(df = 3)
have W with a low value.

Table 1: Wideness and leptokurtic for some symmetric distributions.

Distribution WR WL W L

Beta(0.1,0.1) 0.483 0.483 0.966 0.034
Beta(1,1) 0.433 0.433 0.866 0.134
Normal 0.399 0.399 0.798 0.202
Logistic 0.382 0.382 0.765 0.235
Laplace 0.355 0.355 0.71 0.29
t(df = 3) 0.326 0.326 0.652 0.348
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With respect to the tails of the distribution, different measures may be proposed from
Figure 1 as

TR = ∆R
Max/σ and TL = ∆L

Max/σ.

Alternatively,

TR1 = σ/∆R
Max and TL1 = σ/∆L

Max.

where

∆R
Max = Max.[(v −X)IX≤v] and ∆L

Max = Max.[(X − v)IX>v].

All values of these measures are more than or equal 0 with no upper value. These measures
give an indication about tail length. For the first two measures, the small values around 1
indicate short tails, around 3 medium tails while larger values indicate long tail. For the other
two measures TR1 and TL1, the values around zero indicate very long tails, values around 0.30
indicate medium tails while values around one indicate short tails. Note that the values of
the above measures will depend on the sample size. The first measure of skewness in terms
of wideness can be defined as

SK1 = WR −WL = (µ−M)/σ.

This measure is equivalent to Groeneveld and Meeden (1984) measure of skewness. The
second measure of skewness in terms of tailedness can be proposed as

SK2 = TR − TL = (∆R
Max −∆L

Max)/σ.

Alternatively,

SK21 = TL1 − TR1 = σ/∆L
Max − σ/∆R

Max.

Figure 2 displays a MAD plot for Beta (0.1,0.1), normal, Laplace and exponential
distributions using their quantile function for each distribution in R-software with n = 300.
It may conclude that:

• the location measures median and mean values are located at minimum of MAD
curve and intersection between two straight lines on x axis, respectively, while the
dispersion measure ∆X(M) is located on y axis at minimum of MAD curve,

• tails measures (TR and TL) near 1 may give an indication of short tail such as beta
distribution while around 3 may give an indication of medium tail such as normal
distribution,

• equal wideness (WR, WL) may give an indication of symmetric distributions such
as beta, normal and Laplace, while not equal measures are indication of skewed
distributions such as exponential,

• for symmetric distributions, a value of wideness as 0.966 may give an indication
of strong “curved inwards” such as beta (0.1,0.1) and value as 0.71 may give an
indication of data close to the median.
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Figure 2: MAD plot for Beta (0.1,0.1), normal, Laplace and exponential
distributions using quantile function for each distribution in
R-software with p = (i− 0.5)/n, and i = 1, ..., 300.

5. DISTRIBUTION FUNCTION IN TERMS OF MAD

According to Munoz-Perez and Sanchez-Gomez (1990), the MAD function can be
rewritten in terms of indicator function as

∆X(v) = E[(X − v)IX>v] + E[(v −X)IX≤v].

The first derivative of ∆X(v) with respect to v can be obtained as

∆́X(v) = −[1− FX(v)] + FX(v).

Therefore, the distribution function can be re-expressed in three MAD functions as follows.
In terms of the derivative of MAD function (∆́X(v)) as

(5.1) FX(v) = 0.5 + 0.5∆́X(v).
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In terms of the derivative of right MAD function (∆́+
X(v)) as

(5.2) FX(v) = 1 + ∆́+
X(v).

Finally, in terms of the derivative of left MAD function as

(5.3) FX(v) = ∆́−X(v).

The right and left MAD can characterize the distribution function because they are primeval
function of Fx; see, Munoz-Perez and Sanchez-Gomez (1990). Figure 3 displays the MAD
functions (∆X(v), ∆́+

X(v) and ∆́−X(v) plot of standardized data from beta, exponential, Laplace
and normal distributions. It may conclude that:

• ∆́−X(v) is monotone increasing function with minimum 0 and intersection with ∆́+
X(v)

at mean,

• ∆́+
X(v) is monotone decreasing function with minimum 0 and intersection with

∆́−X(v) at mean,

• ∆́−X(v) and ∆́+
X(v) have joint points with ∆X(v) at extreme ends.
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88 Elsayed A. H. Elamir

The most common non-parametric estimator for the underlying distribution function
F is specified by the empirical cumulative distribution function (ecdf). The ecdf is defined
by

F̂n(x) =
1
n

n∑
i=1

IXi≤x.

F̂n(x) has good statistical properties such as: (1) it is a nondecreasing function with jumps
of size 1/n at each order statistic, (2) it is bounded between zero and one, (3) it is first order
efficient based on minimax criteria, for every x, h = nF̂n(x) has a binomial distribution (n, p =
FX(x)), (4) and for large n,

√
n(F̂n(x)− F (x)) ∼ N(0, FX(x)(1− FX(x)); see Dvoretzky

et al. (1956), Lehmann and Casella (1998), and Csaki (1984). Furthermore, the empirical
distribution function is the nonparametric maximum likelihood estimator of F and has an
important role in nonparametric bootstrap and simulation; see, Haddou and Perron (2006)
and Efron and Tibshirani (1993).

6. ESTIMATION OF DISTRIBUTION FUNCTION USING MAD

When it is difficult to analytically obtain the derivative of the function ∆−X(v)

(6.1) FX(v) = lim
h→0

∆−X(v + h)−∆−X(v)
h

.

The numerical derivative can be used to obtain a good approximation to the true function
FX(v). In the following we assume that this limit exists, i.e., ∆−X(v) is differentiable at x = v.
By using the numerical differentiation, it could consider nonparametric estimators of the
population distribution function FX(v) using a random sample X1, ..., Xn of size n. Consider
the pairs of data

(xi = x(i), yi, i = 1, ..., n),

where x(i) is the observed order data and yi is the estimated left MAD function that can be
obtained from data as

yi = g(x(i)) = ∆̂−X(v) = Ê[(v − x)Ix≤v] =
1
n

n∑
j=1

(vi − xj)Ixj≤vi for vi = x(i), i = 1, ..., n.

The nonparametric estimates of FX(v) can be derived numerically using several approaches
as follows.

6.1. Forward difference approach

By using Taylor series,

g(x + h) = g(x) + ǵ(x)h +
´́g(x)
2

h2 + ···+ gk−1(x)
(k − 1)!

hk−1.

See, Burden and Faires (2011) and Levy (2012).
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The first derivative in terms of first two terms,

ǵ(x) ≈ g(x + h)− g(x)
h

− h2

2
´́g(ζ), ζ ∈ (x, x + h).

This is the first order approximation O(h). Therefore, a forward difference approach is

ǵ(x) ≈ gi+1 − gi

h
+ O(h).

By considering h = xi+1 − xi and with one-sided 1 at the endpoints of the data set, an
estimation of FX(v) can be approximated by two terms Taylor series expansion as

(6.2) F̂O(v) =


yi+1 − yi

xi+1 − xi
, i = 1, ..., n− 1,

1, i = n.

Theorem 6.1. With one-sided 1 at the endpoint of the data set, the forward difference

approach is

(6.3) F̂O(v) =


i

n
, i = 1, ..., n− 1,

1, i = n.

Proof: By considering yi = 1
n

∑n
j=1(vi − xj)Ixj≤vi for each vi = xi, i = 1, ..., n. For

v1 = x1 then y1 = 0, for v2 = x2 then y2 = 1
n(x2 − x1), for v3 = x3 then y3 = 1

n [(x3 − x1) +
(x3 − x2)] = 1

n [2x3 + ny2 − x2 − x2] = 1
n [2(x3 − x2) + ny2], ... for vi = xi then yi = 1

n [(xi −
x1) + ···+ (xi − xi−1)] = 1

n [(i− 1)(xi − xi−1) + nyi−1], therefore,

yi − yi−1 =
(i− 1)

n
(xi − xi−1), i = 2, ..., n

and
yi+1 − yi =

i

n
(xi+1 − xi), i = 1, ..., n− 1.

This shows that the forward difference approach for the left MAD function is just the empirical
distribution function i/n, i = 1, ..., n and has equal jumping value 1/n.

6.2. Backward difference approach

Similarly, a backward differencing estimation of FX(v) can be approximated by two
terms Taylor series expansion as

(6.4) F̂B(v) =


yi − yi−1

xi − xi−1
, i = 2, ..., n,

0, i = 1.

For more details, see, Burden and Faires (2011) and Levy (2012).
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Theorem 6.2. With one-sided 0 at the endpoint of the data set, the backward dif-

ference approach is

(6.5) F̂B(v) =


i− 1

n
, i = 2, ..., n,

0, i = 1.

Proof: By noting that yi − yi−1 = (i−1)
n (xi − xi−1), i = 2, ..., n.

This shows that the backward difference approach for the left MAD function is just the
empirical distribution function i−1

n , i = 1, ..., n and has equal jumping value 1/n.

6.3. Centre difference approach

A more accurate scheme can be derived using Taylor series

g(x + h) = g(x) + ǵ(x)h +
´́g(x)
2

h2 +
g(3)(ζ1)

6
h3

and

g(x− h) = g(x)− ǵ(x)h +
´́g(x)
2

h2 − g(3)(ζ2)
6

h3.

By subtracting, the second order approximation (O(h2)) of the first derivative is

ǵ(x) =
g(x + h)− g(x− h)

2h
− h2

6
g(3)(ζ) =

g(x + h)− g(x− h)
2h

+ O(h2), ζ ∈ (x− h, x + h).

With two-sided 1/n and (n− 1)/n at the endpoints of the data set, an estimate of FX(v) can
be approximated by Taylor series expansion as

(6.6) F̂C(v) =



y2 − y1

x2 − x1
, i = 1,

yi+1 − yi−1

xi+1 − xi−1
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

Theorem 6.3. With two-sided 1/n and (n− 1)/n at the endpoints of the data set,

the centre difference approach is

(6.7) F̂C(v) =



1
n

, i = 1,

i

n
− xi − xi−1

n(xi+1−xi−1)
, i = 2, ..., n− 1,

n− 1
n

, i = n.

Proof: By noting that yi − yi−1 = (i−1)
n (xi − xi−1), i = 2, ..., n.
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This shows that the centre difference approach does not have an equal jumping function,
but it is jumping by unequal quantity that depends on the ratio (xi − xi−1)/n(xi+1 − xi−1).
Note that (xi − xi−1)/n(xi+1 − xi−1) is less than 1 and tends to 0 for n →∞. Also, noting
that for n = 2, ..., n− 1, we have∣∣∣F̂C(v)− F̂n(v)

∣∣∣ =
∣∣∣∣ i

n
− (xi − xi−1)

n(xi+1 − xi−1)
− i

n

∣∣∣∣ =
(xi − xi−1)

n(xi+1 − xi−1)
<

1
n

.

F̂C(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.4. FC-Hermite approach

With one-sided difference at the endpoints of the data set, an accurate estimate of FX(v)
can be proposed by what is known as FC-Hermite approach or Hermite spline interpolation
from Fritsch and Carlson (1980) and “splinefun” given in stats-package R-software (2021) as

(6.8) F̂FCH(v) =



y2 − y1

x2 − x1
, i = 1,

0.5
(

yi+1 − yi−1

xi+1 − xi−1
+

yi − yi−1

xi − xi−1

)
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

It can be noted that this approach combines the forward and backward approaches by using
three data points at i + 1, i and i− 1. The FC-Hermite approach can be rewritten in a very
simple form as

F̂FCH(v) =



1
n

, i = 1,

2i− 1
2n

, i = 2, ..., n− 1,

n− 1
n

, i = n.

This approach has equal jumping value 1/n except for first and last values and is related to
Hazen (1914) plotting position. Also, note that for n = 2, ..., n− 1, we have

∣∣∣F̂FCH(v)− F̂n(v)
∣∣∣ =

∣∣∣∣ i

n
− 0.5

n
− i

n

∣∣∣∣ =
1
2n

<
1
n

.

F̂FCH(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.5. Forward-backward-center approach

It might be very useful to use the combination of different approaches to increase
accuracy of distribution function estimation. Another proposed estimate for FX(v) can be
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obtained by combining forward, backward and centre approaches as

(6.9) F̂OBC(v) =



y2 − y1

x2 − x1
, i = 1,

1
3

(
yi − yi−1

xi − xi−1
+

yi+1 − yi−1

xi+1 − xi−1
+

yi+1 − yi

xi+1 − xi

)
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

This can be rewritten as

F̂OBC(v) =



1
n

, i = 1,

3i− 1
3n

− (xi − xi−1)
3n(xi+1 − xi−1)

, i = 2, ..., n− 1,

n− 1
n

, i = n.

This approach uses three data points at i− 1, i, and i+1 and has an advantage of having non
equal jumping values. Also, note that for n = 2, ..., n− 1, we have∣∣∣F̂OBC(v)− F̂n(v)

∣∣∣ =
∣∣∣∣ i

n
− (xi − xi−1)

3n(xi+1 − xi−1)
− i

n

∣∣∣∣ =
1
3n

∣∣∣∣1− (xi − xi−1)
(xi+1 − xi−1)

∣∣∣∣ <
1
n

.

F̂OBC(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.6. Richardson extrapolation approach

When applying low order formulas, Richardson’s extrapolation is employed to achieve
high accuracy results. As pointed out by Burden and Faires (2011), Richardson extrapolation
is significantly more effective with even power than when all powers of h are used because
the averaging process creates results with errors O(h2), O(h4) and O(h6), ..., with essentially
no increase in computation, over the results with errors, O(h), O(h2), O(h3), ...; see, Burden
and Faires (2011).

Theorem 6.4. An improved approximation for distribution function estimation based

on Richardson extrapolation is

(6.10) F̂R(v) = ǵ(x) =
22p1G(h)−G(2h)

22p1 − 1
+ O(h2p2).

Proof: Assume that G(h) be a difference formula with step-size h, approximating ǵ(x)
as

G(h) = ǵ(x) + a1h
2p1 + a2h

2p2 + a3h
2p3 + ···

Note p1 < p2 < p3, ... and ai are constants. Therefore,

ǵ(x) = G(h)− a1h
2p1 − a2h

2p2 − a3h
2p3 − ··· = G(h) + O(h2p1).



Data analytics and distribution function estimation via MAD function 93

Hence, if we consider G(h) as an approximation to ǵ(x), the error is O(hp1). Sure, if h tends
to zero, G(h) → ǵ(x). If G(h) is computed for step-size 2h, then

G(2h) = ǵ(x) + a122p1h2p1 + a222p2h2p2 + a322p3h2p3 + ···

Multiplying G(h) by 22p1 and subtract from G(2h) we obtain

ǵ(x) =
22p1G(h)−G(2h)

22p1 − 1
+

[
a222p1 − a222p2

]
h2p1 + ··· = 22p1G(h)−G(2h)

22p1 − 1
+ O(h2p2).

Hence,

ǵ(x) ≈ 22p1G(h)−G(2h)
22p1−1

.(6.11)

This new approximation is of order O(h2p2).

The estimate F̂R(v) can be simply obtained from R software (package “pracma”; see,
Borchers, 2021) using function “numdiff (f=function, x)”. Because F̂R(v) is bounded by 0
and 1 and estimated numerically, it may not become in some cases nondecreasing. In these
cases, F̂R(v) needs to be adjusted to become monotonic nondecreasing. One of the good
methods that can be used is bounded isotonic regression introduced by Barlow et al. (1972)
and Balabdaoui et al. (2009). The PAVA algorithm has been used to find this solution and has
been implemented in the R package OrdMonReg (Balabdaoui et al., 2009) under the function
BoundedIsoMean; see, Balabdaoui et al. (1980). This function can produce an estimate that is
bounded by 0, 1 and monotone nondecreasing. The adjusted F̂Ra(v) is estimated via function

F̂Ra = BoundedIsoMean(y = F̂R(v), w = 1/n, a = 0, b = 1)

based on OrdMonReg package in R software.

Theorem 6.5. The Richardson extrapolation estimator F̂Ra(v) is strongly uniformly

consistent

sup
v

∣∣∣F̂Ra(v)− FX(x)
∣∣∣ → 0 w.p.1.

Proof: Let Fn(v) be the empirical distribution function. It may write∣∣∣F̂Ra(v)− FX(x)
∣∣∣ ≤ ∣∣∣F̂Ra(v)− Fn(v)

∣∣∣ + |Fn(v)− FX(v)|.

It is well known from Serfling (1980) that

sup
v

∣∣∣F̂n(v)− FX(x)
∣∣∣ → 0 w.p.1,

and
sup

v

∣∣∣F̂Ra(v)− Fn(v)
∣∣∣ ≤ 1

n

tends to 0 when n →∞. Therefore,

sup
v

∣∣∣F̂Ra(v)− FX(x)
∣∣∣ → 0 w.p.1.
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Theorem 6.6. The Richardson extrapolation estimator F̂Ra(v) has an asymptotic

normal distribution as

√
n
(
F̂Ra(v)− FX(v)

)
d−→ N(0, FX(v)(1− FX(v))).

Proof: Let Fn(v) be the empirical distribution function and FX(v) be the true func-
tion. It is well known that; see, Serfling (1980),

√
n
(
F̂n(v)− FX(v)

)
d−→ N(0, FX(v)(1− FX(v))).

Then √
n
(
F̂Ra(v)− Fn(v)

)
≤ 1√

n
.

As n →∞
√

n
(
F̂Ra(v)− FX(v)

)
d−→ N(0, Fx(v)(1− FX(v))).

7. SIMULATION

Simulation study is conducted to evaluate the performance of the proposed approaches.
Five mixture normal distributions that used in Xue and Wang (2010) are implemented to
compare the proposed approaches results with their results. These distributions are Gaus-
sian distribution (G), distribution no. 3 (strongly skewed distribution (SS)), distribution
no. 5 (outlier (OU)), distribution no. 7 (separated bimodal distribution (SB)), distribution
no. 14 (smooth comb (SC)). These distributions cover a wide range of shapes and they are
given in Table 2, for more details; see, Marron and Wand (1992). From every distribu-
tion, 1000 simulated samples of sizes 20, 50 and 200 are generated, respectively. The es-
timators F̂ ∗n (empirical), F̂O (forward), F̂B (backward), F̂C (centre), F̂FCH (FC-Hermite),
F̂OBC (forward-backward-centre) and F̂Ra (adjusted Richardson extrapolation) are computed.

Table 2: Distribution functions used in the simulation study.

Name Distribution

Standard normal distribution (G) N(0, 1)

Strongly skewed distribution #3 (SS)
P7

l=0
1
8
N
�
3
��

2
3

�l − 1
�
,
�

2
3

�2l
�

Outlier distribution #5 (OU) 1
10

N(0, 1) + 1
10

N
�
0,
�

1
10

�2�
Separated bimodal distribution #7 (SB) 1

2
N
�
− 3

2
,
�

1
2

�2�
+ 1

2
N
�

3
2
,
�

1
2

�2�

Smooth comb #14 (SC)
P5

l=0

�
25−l

63

�
N

�
65−96/2l

21
,
�

32/63

2l

�2
�

It should be noted that these estimators are not smoothed, and they will be compared with
empirical F̂ ∗n and smoothed estimators (linear spline (PS1), cubic spline (PS3), constrained
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linear spline (CPS1), and constrained cubic spline (CPS3)) given in Xue and Wang (2010) in
terms of averaged squared errors (ASE) that is defined as

ASEF̂ =
1
n

n∑
i=1

[
F̂X(vi)− FX(vi)

]2
.

Table 3: Averaged squares errors (ASE) of all estimators (×103).

n PS1∗ PS3∗ CPS1∗ CPS3∗ F̂ ∗
n F̂O F̂B F̂C F̂OBC F̂FCH F̂Ra

G 20 6.97 6.86 8.08 7.17 8.53 8.48 8.56 8.70 8.09 7.84 7.42
50 2.87 2.76 3.13 2.97 3.29 3.31 3.30 3.35 3.24 3.19 2.99
200 0.82 0.75 0.83 0.78 0.84 0.84 0.83 0.83 0.82 0.81 0.77

SS 20 8.07 7.36 8.70 7.89 9.02 8.58 8.66 8.89 8.21 7.90 7.24
50 3.38 2.98 3.33 3.25 3.51 3.42 3.32 3.42 3.30 3.26 3.17
200 0.84 0.79 0.83 0.82 0.84 0.84 0.84 0.83 0.83 0.83 0.83

OU 20 8.25 8.10 8.47 9.20 8.71 8.52 8.47 8.80 8.16 7.92 7.92
50 3.38 3.33 3.41 3.38 3.46 3.32 3.32 3.38 3.27 3.22 3.22
200 0.78 0.77 0.79 0.82 0.81 0.78 0.78 0.79 0.78 0.77 0.77

SB 20 8.07 7.86 8.39 8.04 8.56 8.93 7.82 8.60 8.00 7.73 7.01
50 3.19 3.12 3.20 3.14 3.32 3.37 3.15 3.31 3.20 3.16 2.92
200 0.79 0.77 0.79 0.78 0.81 0.84 0.83 0.84 0.83 0.82 0.79

SC 20 8.20 7.80 8.28 7.98 8.56 8.62 8.48 8.82 8.14 7.85 7.18
50 3.23 3.19 3.27 3.25 3.36 3.34 3.39 3.43 3.31 3.26 3.25
200 0.81 0.79 0.81 0.83 0.82 0.82 0.84 0.84 0.83 0.80 0.82

∗ indicate that the results in these columns are from Xue and Wang (2010), G: standard normal, SS: strongly
skewed, OU: outliers, SB: separated bimodal, SC, smooth com (PS1), cubic spline (PS3), constrained linear
spline (CPS1), and constrained cubic spline (CPS3).

The results of the simulation study are given in Table 3 that illustrates that:

• The ASE decreases for all estimators with increasing n,

• The estimators F̂O, F̂B, and F̂C have almost the same ASE as F̂ ∗n and this is
expected where all of them are some types of general class of empirical functions;
see Cunnane (1978) and Hosking and Wallis (1995),

• The estimator F̂OBC has improved ASE over classical empirical estimators, for ex-
ample, if the distribution is normal and sample size is 20, there is improvement
about 5% in ASE over F̂ ∗n, F̂O, F̂B,

• The estimator F̂FCH is surprised as it is very simple and has a very good improve-
ment in terms of ASE. In all cases, there is an improvement about 10% in ASE over
F̂ ∗n, F̂O, F̂B, about 4% over F̂C , and less improvement about 2% than F̂Ra,

• The estimator F̂Ra has a major improvement about 12% over F̂ ∗n, F̂O, F̂B, medium
improvement about 6% over F̂C , and small improvement about 2% over F̂FCH . The
F̂Ra is very comparable to two spline smooth unconstrained estimators PS1 and PS3
in terms of ASE,

• With respect to two monotone nondecreasing constrained splines (CPS1 and CPS3),
F̂Ra has a very competitive ASE with all studied distributions and F̂FCH has ASE
almost as same as CPS1 and CPS3,

• For a large n such as 200, the performance of all estimators is comparable in terms
of ASE.
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8. APPLICATION

In ecotoxicology, lognormal and loglogistic distributions are applied to fit a data. A low
percentile 5% is of great interest where the hazardous concentration 5% (HC5) is explained as
the value of pollutant concentration protecting 95% of the species; see Posthuma et al. (2010).
There is a data set ‘endosulfant’ in R software package “fitdistplus”; see, Delignette-Muller
and Dutang (2021). This data includes acute toxicity values (ATV) for the organochlorine
pesticide ‘endosulfan’ (geometric mean of LC50 and EC50 values in ug.L(−1), tested on Aus-
tralian and non-Australian laboratory-species; see, Hose and Van den Brink (2004). Figure 4
displays the MAD plot and Cullen and Frey graph; see, Cullen and Frey (1999). MAD plot
shows a very weak right wideness and a very weak wideness in the left side. The distribution
is very strong right skewed (k = 0.26) and has a very long right tail T̂R = 6.707, while very
short left tail T̂L = 0.266. The skewness based on tails is 6.441 (very strong). Cullen and
Frey graph is an indicative graph where it shows the relationship between Pearson skewness
squared and kurtosis. For given data, the skewness is 5.076 and kurtosis is 30.728 that may
suggest a lognormal distribution as a good candidate to fit the data. Moreover, Muller and
Dutang (2014, 2021) used lognormal, loglogistic, Pareto and Burr III distributions to fit a
suitable distribution for ATV data.
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Figure 4: MAD plot and Cullen and Frey graph for acute toxicity values data (ATV).
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The proposed adjusted Richardson approximation (F̂Ra) is used to estimate nonpara-
metric distribution function of ATV data. Also, 99% pointwise confidence intervals based
on normal approximation for (F̂Ra) are obtained. In Figure 5 the estimated distribution
function and 99% confidence interval are plotted along with the estimated parametric distri-
bution functions; for more details about this estimation; see, Delignette-Muller and Dutang
(2021). For the lognormal distribution it has a good fit in the right tail while a bad fit in
the left tail due to a high probability at left tail. The loglogistic does not fit from both tails.
The two-parameter Pareto and three-parameter distributions have a good fitting in left tail
while a worse fitting in the right tail. As concluded by Delignette-Muller and Dutang (2021),
none of the four distributions correctly described the right tail observed in ATV data, but
the left tail seems to be better described by Burr III distribution; see also, Hose and Van
den Brink (2004). They estimated the HC5 value using Burr III distribution as 0.294 while
the HC5 from the data is 0.20. The Richardson approximation for HC5 is computed using
interpolation as 0.242 while the estimation of HC5 using empirical distribution function is
0.161 (forward approach).
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Figure 5: Plots of the estimated distribution function using Richardson extrapolation approximation
with its 99% pointwise confidence intervals, and the estimated distribution functions from
lognormal, loglogistic, Pareto and Burr III models for ATV data.



98 Elsayed A. H. Elamir

9. CONCLUSION

The usefulness of the mean absolute deviation function is introduced in two directions.
Firstly, it was used to explore the pattern and the structure in the data graphically through
the wideness and tailedness concepts. The wideness reflected information about how much
the mean absolute function is away from the straight lines (vi−µ) and (µ− vi). This created
right, left and overall wideness measures. These measures reflected skewness in the data
and used to reflect the flatness and peakedness in symmetric distributions. The tailedness
reflected information about how long the right and left tails in the distribution of data via
the maximum of right and left mean absolute deviation functions. Secondly, a new method
based on Richardson extrapolation approach was proposed to estimate the population dis-
tribution function. In general, six approaches developed that included forward, backward,
central, mix and FC-Hermite interpolation and Richardson extrapolation approaches. Simu-
lation study was implemented using different distributions that represented different shapes
such as bell-shaped, separated-bimodal, strong-skewed, smooth-comb and outliers. Three
estimators showed improvement in terms of averaged squared errors over the classical empiri-
cal distribution function. The Richardson extrapolation approach had major improvement in
terms of average squared errors over classical empirical estimators and had comparable results
with smooth approaches such as cubic spline and constrained linear spline. Furthermore, the
Richardson approach applied for real data application and used to estimate the hazardous con-
centration five percent. Future studies may seek to examine smoothing approaches based on
Richardson extrapolation approach and investigate the superiority of non-smooth approaches
in estimating the distribution function compared with smooth approaches as suggested by
one of the reviewers.
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1. INTRODUCTION

Knowledge on the nature and extent of the joint behaviour of random quantities is a
topic of considerable interest in all fields of scientific activity, In this context the joint distribu-
tion of random variables is an indispensable tool in analysing various aspects of interrelation-
ship among the constituent variables, Among various measures developed for understanding
the amount of uncertainty prevailing in the outcomes generated by the distribution, entropy
has established itself as an efficient mechanism in a variety of fields. The basic measure of
uncertainty employed in the bivariate case is the Shannon entropy defined as

(1.1) h(X, Y ) = hX,Y = −
∫

S

∫
f(x, y) log f(x, y)dxdy,

where f(x, y) is the probability density function of the random vector (X, Y ) with support S.
Since the introduction of (1.1), several modifications were introduced by way of additional pa-
rameters to impart more flexibility, measures with structural changes, replacing joint density
by conditional ones etc., to provide a wide range of new measures. The structural modifi-
cation to obtain a new measure by replacing the density by the survival function is due to
Rao et al. (2004) in the univariate case, motivated researchers to apply the same logic in the
bivariate case resulting in the bivariate version of cumulative residual entropy

(1.2) H(X, Y ) = HX,Y = −
∫

S

∫
F̄ (x, y) log F̄ (x, y)dxdy,

where F̄ (x, y) = P (X > x, Y > y) is the survival function of (X, Y ). The expression (1.2) is
implied as a particular case in the definition of bivariate cumulative residual entropy in Rajesh
et al. (2014). A critical aspect to be considered in using bivariate distribution for modelling
is the dependence relation existing between X and Y . In this respect copulas are found to be
more general and flexible as they provide means of obtaining the joint distribution through the
marginals connected by known dependence relationships. There are three approaches to study
the nature and extent of dependence in copulas. The first is through global measures that
specify the association like the Pearson’s correlation coefficient, Spearman’s rho, Kendall’s
tau, Blomquist’s beta, etc. A second alternative is to use dependence concepts like total
positivity, quadratic dependence and stochastic increase. Finally, we have time dependent
measures of association which are used when analysing data on duration variables where the
time elapsed since the commencement of observation is vital. See Nair and Sankaran (2010)
for a review of materials in this connection. Any one of these methods, depending on the
appropriateness of the techniques chosen in the problem at hand, will enable us to know
whether dependence is positive or negative and also to compare the degree of association. In
view of the flexibility of the copula over distribution functions, Ma and Sun (2008) proposed
the copula entropy

(1.3) i(X, Y ) = iX,Y = −
∫ 1

0

∫ 1

0
c(u, v) log c(u, v)dudv,

as a measure of uncertainty in the copula density c(u, v) associated with (X, Y ). It provides
a tool to connect copulas and information theory. Since its inception the measure (1.3) was
used to ascertain structural learning, dependence aspects, variable selection, casual discovery,
etc in various disciplines such as hydrology (Chen et al., 2013), biology (Charzyńska and
Gambin, 2015), neuroscience (Kayser et al., 2015) and medicine (Ma, 2019a,b; Mesiar and
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Sheikhi, 2021) etc. The generality and range of application the copula entropy motivate the
investigation of more refined measures of uncertainty for copulas. Further as an index of
information, the negative values of (1.3) are difficult to interpret and it is more preferable to
have a measure that assumes positive values only, and that too in a finite interval. The form of
copula density in many standard cases is analytically and computationally more complicated
to work with, when compared to the usual copula or the survival copula. To study various
aspects of dependence, most concepts in that area are expressed in terms of the copula than
its density. Moreover inference procedures available in literature for copulas can be made
use of in estimating and testing copula-based entropies. These facts suggest proposing an
uncertainty measure based on copulas and investigating its properties. The objective of the
present work is thus to make a preliminary study of a new measure of uncertainty in terms
of the survival copulas, in the same manner as the development of (1.2) from (1.1).

A summary of the present work is as follows. In Section 2, we define the survival
copula entropy and obtain some relationships between cumulative residual entropy, copula
entropy and survival copula entropy. Following this, in Section 3 the properties of the new
entropy especially its role as a measure of dependence is discussed. In Section 4, application
of survival copula entropy to some real situations is demonstrated. The paper ends with a
brief conclusion in Section 5.

2. SURVIVAL COPULA ENTROPY

As mentioned in the introduction, let (X, Y ) be a random vector with distribution
function F (x, y) and survival function F̄ (x, y). Recall that a copula is a function C : I2 → I,
where I is the unit interval [0, 1], such that

C(0, v) = C(u, 0) = 0; C(u, 1) = C(1, u) = u,

for all u, v in I and C is 2-increasing so that the C-volume of the rectangle [a, b]× [k, d],
VC([a, b]× [k, d]) ≥ 0 for all rectangles in I2. The function C induces a probability measure
on I2 via VC([a, b]× [k, d]) = C(u, v). When C is absolutely continuous we have the copula
density c(u, v) = ∂2C

∂u∂v . A survival copula C̄ : I2 → I satisfies

C̄(u, 1) = 0 = C̄(1, u) and C̄(u, 0) = u = C̄(0, u),

for all u in I and volume VC̄([a, b]× [k, d]) ≥ 0. Further,

C̄(u, v) = u + v − 1 + C(1− u, 1− v).

With these basic notions we define the measures of uncertainty with reference to C and C̄.

Definition 2.1. The survival copula entropy (SCE) associated with the survival cop-
ula C̄ of (X, Y ) is defined as

(2.1) IC̄(X, Y ) = −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dudv.
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Example 2.1. Consider the Gumbel-Barnett family

C̄(u, v) = u v exp[−θ log u log v], 0 ≤ θ ≤ 1.

IC̄(X, Y ) = −
∫ 1

0

∫ 1

0
uve−θ log u log v[log u + log v − θ log u log v]dudv

= −e
4
θ EI

(
−4

θ

)
,

where EI(z) = −
∫∞
−z

e−t

t dt. The value of IC̄ for selected values of θ are given in Table 1.

Table 1: Survival copula entropy of the Gumbel-Barnett copula.

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IC̄ 0.24404 0.23859 0.23357 0.22570 0.22455 0.22048 0.21664 0.21302 0.20960

The quantity in (2.1) is obviously a measure of uncertainty since C̄(u, v) is a bivariate
survival function with uniform marginals and (2.1) is thus a cumulative entropy, by definition
(1.2). As a measure of uncertainty in bivariate distributions, it is of interest to examine
its structure in relation to the existing similar measures like cumulative entropy (1.2) and
the copula entropy (1.3). For this purpose we assume that the marginal survival functions
F̄X and F̄Y of X and Y are continuous, strictly decreasing over the half-line [0,∞) with
F̄X(0) = 1 = F̄Y (0). Then the bivariate cumulative entropy of (X, Y ) can be written as

H(X, Y ) = −
∫ ∞

0

∫ ∞
0

F̄ (x, y) log F̄ (x, y)dxdy

= −
∫ 1

0

∫ 1

0
F̄
(
F̄−1

X (u), F̄−1
Y (v)

)
log F̄

(
F̄−1

X (u), F̄−1
Y (v)

)
dF̄−1

X (u)dF̄−1
Y (v)

= −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dF̄−1

X (u)dF̄−1
Y (v),(2.2)

by Sklar’s theorem. It is evident that the copula version of (1.2) is not in general the same
as SCE. However for bivariate uniform distributions like

F̄ (x, y) = (1− x)(1− y)[1 + θxy], 0 ≤ x, y ≤ 1,

the quantities HXY (x, y) and IC̄(X, Y ) remain the same. Some similar calculations reveal
that

(2.3) IC̄(X, Y ) = −
∫ ∞

0

∫ ∞
0

[
F̄ (x, y) log F̄ (x, y)

]
dF̄XdF̄Y ,

showing that the distribution function counterpart of SCE is not identical with (1.2). Thus
survival copula entropy is a different measure than the other comparable measures of uncer-
tainty of bivariate distributions as can be seen from this and the following discussions.

We now examine the relationships between the two copula-based entropies i(X, Y ) and
I(X, Y ). Although there exists nice relationship c(u, v) = ∂2C(u,v)

∂u∂v between c and C, a simple
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equation connecting their entropies appears to be elusive and the same is true even for specific
copulas. However, if we consider the random vector (XE , YE) associated with (X, Y ) through

(2.4) fXE ,YE
(x, y) =

F̄ (x, y)
E(XY )

,

where fXE ,YE
stands for the density function of (XE , YE), some relationships useful in different

contexts can be derived. Note that (2.4) is often called the equilibrium distribution of (X, Y ).
For a detailed discussion of the properties and applications of such distributions, we refer to
Nair and Preeth (2009) and Navarro and Sarabia (2010). Using (2.4) and (1.1) we can write
the Shannon entropy of (XE , YE) as

hXE ,YE
= −

∫ ∞
0

∫ ∞
0

F̄ (x, y)
E(XY )

[
log F̄ (x, y)− E(XY )

]
dxdy

=
HX,Y

E(XY )
+ log E(XY ),(2.5)

showing HX,Y as a change of origin and scale in hXE ,YE
.

From Ma and Sun (2011), the mutual information among (X, Y )

M(X, Y ) = −
∫ ∞

0

∫ ∞
0

f(x, y) log
f(x, y)

fX(x)fY (y)
dxdy

= hX + hY − hX,Y ,

is the negative of the copula entropy iX,Y where hX and hY respectively denote the Shannon
entropy of X and Y and so,

−iX,Y = hX + hY − hX,Y

giving

(2.6) iXE ,YE
= hXE ,YE

− hXE
− hYE

.

From the definition of the univariate equilibrium distribution fXE
= F̄X(x)

E(X) , we get

(2.7) hXE
=

HX

E(X)
+ log E(X),

and similarly,

(2.8) hYE
=

HY

E(Y )
+ log E(Y ),

where HX = −
∫∞
0 F̄X(x) log F̄X(x)dx is the cumulative residual entropy of X and HY is

similarly defined (see Rao et al., 2004). From equations (2.5) through (2.8) the expression
for copula entropy is obtained in terms of cumulative entropies as

(2.9) iXE ,YE
=

HX,Y

E(XY )
− HX

E(X)
− HY

E(Y )
+ log

E(XY )
E(X)E(Y )

.

Finally from (2.3),

IC̄(X, Y ) = −
∫ ∞

0

∫ ∞
0

E(XY )fE(x, y)[log E(XY )fE(x, y)]fX(x)fY (y)dxdy

= −
∫ 1

0

∫ 1

0
E(XY )fE

(
F̄−1

X , F̄−1
Y

)[
log E(XY )fE

(
F̄−1

X , F̄−1
Y

)]
dudv.(2.10)
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From

f(x, y) =
∂2F̄ (x, y)

∂x∂y
,

we have

f
(
F̄−1

X , F̄−1
Y

)
=

∂2F̄
(
F̄−1

X , F̄−1
Y

)
∂F̄−1

X ∂F̄−1
Y

=
∂2C(u, v)

∂u∂v

∂u∂v

∂F̄−1
X ∂F̄−1

Y

= c(u, v)
∂u∂v

∂F̄−1
X ∂F̄−1

Y

.

Thus from (2.10), the survival copula entropy is related to the copula entropy as

IC̄(X, Y ) = −
∫ 1

0

∫ 1

0
E(XY )fX

(
F̄−1

X

)
fY

(
F̄−1

Y

)
c(u, v)

log
[
E(XY )fX

(
F̄−1

X

)
fY

(
F̄−1

Y

)
c(u, v)

]
dudv.

(2.11)

In the next example we demonstrate how the above results work out in a specific distribution.

Example 2.2. Let (X, Y ) follows bivariate Pareto distribution

F̄ (x, y) = (1 + x + y)−θ, θ > 0; x, y > 0.

Then we have
F̄X(x) = (1 + x)−θ; F̄Y (y) = (1 + y)−θ,

(2.12) E(XY ) =
∫ ∞

0

∫ ∞
0

(1 + x + y)−θdxdy = [(θ − 1)(θ − 2)]−1, θ > 2

and
fXE ,YE

(x, y) = (θ − 1)(θ − 2)(1 + x + y)−θ,

HXY = −
∫ ∞

0

∫ ∞
0

(1 + x + y)−θ(−θ log(1 + x + y))dxdy

=
(2θ − 3)θ

(θ − 1)(θ − 2)
(2.13)

and

hXE ,YE
= −

∫ ∞
0

∫ ∞
0

(θ − 1)(θ − 2)(1 + x + y)−θ
[
log(θ − 1)(θ − 2) + log(1 + x + y)−θ

]
dxdy

= (2θ − 3)θ + log(θ − 1)(θ − 2).(2.14)

The formula (2.5) is verified from (2.12), (2.13) and (2.14). Also

HX = −
∫ ∞

0
(1 + x)−θ(−θ log(1 + x))dx =

θ

(θ − 1)2
.

Similarly hY = θ
(θ−1)2

and E(X) = E(Y ) = 1
(θ−1) . Hence from (2.9)

iXE ,YE
= (2θ − 3)θ − θ

θ − 1
− θ

θ − 1
+ log

(θ − 1)2

(θ − 1)(θ − 2)

=
2θ2 − 7θ + 1

θ − 1
+ log

θ − 1
θ − 2

, θ > 2.
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The survival copula is

(2.15) C̄X,Y (u, v) =
(
u−

1
θ + v−

1
θ − 1

)−θ
,

which is the Clayton family. Also

(2.16) c(u, v) =
θ + 1

θ

u−
1
θ
−1v−

1
θ
−1(

u−
1
θ + v−

1
θ
−1
)θ+2

(θ + 2).

One can directly calculate both IC̄ and i(X, Y ) from (2.15) and (2.16). We may also use the
fact that

C̄(u, v) =
θ + 1

θ

u−
1
θ
−1v−

1
θ
−1(

u−
1
θ + v−

1
θ
−1
)θ+2

c(u, v)

or formula (2.11). Note that when applying (2.11), fX(x) = θ(1 + x)−θ−1 so that fX

(
F̄−1

X

)
=

θu−
θ+1

θ and fY

(
F̄−1

Y

)
= θv−

θ+1
θ

We have so far discussed the entropy function derived from the survival copula. One
can also define the entropy based on the usual copula C.

Definition 2.2. The cumulative copula entropy (CCE) of (X, Y ) is defined as

IC(X, Y ) = −
∫ 1

0

∫ 1

0
C(u, v) log C(u, v)dudv.

Example 2.3. The Farlie-Gumbel-Morgestern copula

C(u, v) = uv[1 + θ(1− u)(1− v)], −1 ≤ u ≤ 1

has CCE given by

IC = −
∫ 1

0

∫ 1

0
uv(1 + θ(1− u)(1− v))[log u + log v + log(1 + θ(1− u)(1− v))]dudv.

The integral does not converge for θ > 0. For θ < 0,

IC =
(
168θ2

)−1
[
−690 + 84θ2 + 10θ3 − 3π2 + 9π2θ + 3(17 + 9θ + 9θ2 + θ3)

− 6(−1 + 3θ) log(−θ) log(1 + θ) + 18(1− 3θ)
]
PolyLog[2, 1 + θ],

where PolyLog(n, z) =
∑∞

k=1 zk/kn.

Values of the entropy function for some values of θ are given in Table 2.

Table 2: CCE for FGM copula.

θ −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

IC̄ 0.24811 0.24615 0.24412 0.24200 0.23981 0.23753 0.23516 0.23268 0.23013
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Remark 2.1. In general IC and IC̄ are different for the random vector (X, Y ). When
(X, Y ) is radially symmetric, that is for any (u, v) in I2, the rectangles [0, u]× [0, v] and
[1− u, 1]× [1− v, 1] have equal C-volume, then C = C̄ and the entropy satisfies IC = IC̄ .
Since the algebra involved in deriving various results in IC is similar to those in IC̄ , we
restrict our subsequent discussions to the latter case.

3. PROPERTIES OF SURVIVAL COPULA ENTROPY

An important aspect in favour of SCE among other measures is that its values lies in
a finite interval which makes it easier for comparison and interpretation.

Proposition 3.1. The SCE satisfies

(3.1)
1
18
≤ IC̄(X, Y ) ≤ 1

3
.

Proof: It is well known that for every copula C and for all (u, v) in I2,

W (u, v) ≤ C(u, v) ≤ M(u, v),

where M(u, v) = min(u, v) and W = max(u + v − 1, 0) are copula versions of the Fréchet-
Hoeffding bounds of a bivariate distribution in R2. Let M̄ and W̄ be the survival copulas
corresponding to M and W respectively. Then

M̄(u, v) = u + v − 1 + min(1− u, 1− v)

= u + v −max(u, v)

= min(u, v) = M.

Similarly W̄ = W . Thus W (u, v) ≤ C̄(u, v) ≤ M(u, v) so that

IC̄(X, Y ) = −
∫ 1

0

∫ 1

0
C̄(u, v) log C̄(u, v)dudv

≥ −
∫ 1

0

∫ 1

0
M̄(u, v) log M̄(u, v)dudv

or

IC̄(X, Y ) ≥ −
∫ 1

0

∫ 1

0
min(u, v) log min(u, v)dudv

= −
∫ 1

0

∫ 1

u
v log u dudv −

∫ 1

0

∫ u

0
v log v dudv

=
1
18

, using 0 log 0 = 0.
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Also

IC̄(X, Y ) ≤ −
∫ 1

0

∫ 1

0
W̄ (u, v) log W̄ (u, v)dudv

=
∫ 1

0

∫ 1

0
max(u + v − 1, 0) log max(u + v − 1, 0)dudv

=
∫ 1

0

(
u− 1

2

)
log udu−

∫ 1

0

∫ 1

1−u

(
v
(
u + v

2 − 1
)

u + v − 1
dv

)
du

=
∫ 1

0

(
u− 1

2

)
log udu−

∫ 1

0

∫ 1

1−u

[
v

2
+

3
2
(1− u) +

3
2

(
(1− u)2

u + v − 1

)]
dudv

=
1
3
.

Remark 3.1. It is not necessary that the SCE for all copulas attain the above bounds.
For example, the Clayton copula contains M and W and hence their entropies lie in

[
1
18 , 1

3

]
.

At the same time the Gumbel-Barnett family does not include M and W and the bounds
prescribed by M and W are not attained for this family. On the other hand C2 = max(θuv +
(1− θ)(u + v − 1), 0) contains W but not M , while C3 = θ/ log

(
eθ/u + eθ/v − e−v

)
has M as

a member, but not W . Further C and C̄ have the same entropy if and only if C is radially
symmetric.

3.1. Ordering copulas via entropy

There are many situations where the data on the same random variable comes from
different sources and the problem is to choose the more informative one for analysis. In
such circumstances the entropies in each case has to be compared. The ordering of copulas
comes handy in comparing the entropies. If C1 and C2 are two copulas, we say that C1 is
smaller (larger) than C2 in concordance order, if C1(u, v) ≤ (≥)C2(u, v) for all u, v in I, and is
denoted by C1 ≺ (�)C2. Note that C1 ≺ (�)C2 ⇔ C̄1 ≺ (�)C̄2. The following proposition
is immediate.

Proposition 3.2.

(3.2) C̄1 ≺ (�)C̄2 =⇒ IC̄1
≤ (≥)IC̄2

.

With some additional assumptions the converse of (3.2) is also true.

Proposition 3.3. Let A denote the class of copulas that are concordance ordered,

that is, for elements C̄1 and C̄2 ∈ A, we have either C̄1(u, v) ≤ C̄2(u, v) or C̄1(u, v) ≥ C̄2(u, v).
Then

(3.3) IC̄1
≤ (≥)IC̄2

=⇒ C̄1(u, v) ≤ (≥)C̄2(u, v) for all u, v in I.
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Proof: To prove the above implication assume that IC̄1
≥ IC̄2

which is equivalent to

(3.4)
∫ 1

0

∫ 1

0
C̄1(u, v) log C̄1(u, v)dudv ≥

∫ 1

0

∫ 1

0
C̄2(u, v) log C̄2(u, v)dudv.

Since C1 and C2 are ordered, if C1 ≤ C2 then ref3.3 is violated and hence C1 ≥ C2.

As an example, from the values of IC̄ given in Tables 1 and 2, it is seen that entropies
are decreasing. It is well known that the corresponding copulas are also decreasing functions
of θ in their assumed ranges.

3.2. Survival copula entropy and dependence

An important use of SCE is assessing the nature of dependence between X and Y , thus
making a connection between entropy and dependence. The above discussion on concordances
ordering and entropy have significant implications in ascertaining the mode of dependence and
the SCE. An important and perhaps mostly used dependence concept is positive (negative)
quadrant dependence PQD (NQD). Recall that a copula C is PQD (NQD) if C̄(u, v) ≥ (≤)uv,
for u, v in I.

Proposition 3.4. The vector (X, Y ) is PQD (NQD), then

(3.5) IC̄ ≥ (≤)
1
4
.

Proof:

(X, Y ) is PQD (NQD) =⇒ C(u, v) ≥ (≤)
∏

(u, v) = uv.

From ∫ 1

0

∫ 1

0
C(u, v) log C(u, v)dudv ≥ (≤)

∫ 1

0

∫ 1

0
uv(log u + log v)dudv =

1
4
,

the result follows.

Remark 3.2. In view of (3.1), PQD (NQD) random vectors are sought the interval
[14 , 1

3 ] and [ 1
18 , 1

4 ] respectively. Further, if the random variables X and Y are independent
then IC̄ = 1

4 . The next proposition gives a criterion to check whether which of two random
variables are more positively dependent.

Proposition 3.5. For copulas C̄1, C̄2 ∈ A, C̄1 is more PQD than C̄2 if and only if

IC̄1
≥ IC̄2

.

Proof: We say that C̄1 is more PQD than C̄2 if C̄1 � C̄2. Thus

C̄1 is more PQD than C̄2 ⇔ C1(u, v) ≥ C2(u, v) for all u, v

⇔ IC̄1
≥ IC̄2

,

by (3.2) and Remark 3.2.
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We can also compare members of a specified family of copulas C̄θ(u, v) indexed by a
parameter θ ∈ Θ. The family {C̄θ}, θ ∈ Θ is positively (negatively) ordered whenever C̄θ1 ≺
(�) C̄θ2 for θ1, θ2 ∈ Θ, θ1 ≤ (≥)θ2. In this case we have the next proposition that gives a
criterion to distinguish between more positive dependent among families of copulas.

Proposition 3.6. Let {C̄θ} be positively (negatively) ordered. Then IC̄θ1
≤ (≥)IC̄θ2

,

for all θ1, θ2 ∈ Θ, θ1 ≤ (≥)θ2.

Example 3.1. The Gumbel-Barnett family in Example 2.1 is negatively ordered as
can be verified from Table 1 and FGM copula in Table 2 is positively ordered.

Remark 3.3. For many standard copula families, it is algebraically difficult to estab-
lish whether it is positively or negatively ordered. Proposition 3.4 gives a relative simple
alternative tool to resolve this problem.

Remark 3.4. The relationship CCE has with well known measures of dependence is
also worth examination. The measures in common use are the

Kendall’s tau, τ = 4
∫ ∫

I2

C(u, v)
∂2C

∂u∂v
dudv − 1,

Spearman’s rho, ρ = 12
∫ ∫

I2

C(u, v)dudv − 3,

Blomqvist’s beta, β = 4C

(
1
2
,
1
2

)
− 1,

Gini coefficient, ξ = 4
[∫ ∫

I2

C(u, 1− u)du−
∫ ∫

I2

(u− C(u, u))du

]
, and

the product moment correlation coefficient

r = [D(X)D(Y )]−1
∫ ∫

I2

[C(u, v)− uv]dF−1(u)dG−1(u)

where D(X), D(Y ) are standard deviations of X and Y , and F and G are their marginal
distribution functions. It is known that (Nelson, 2006) when X and Y are PQD:

(i) 3τ ≥ ρ ≥ 0, β ≥ 0 and ξ ≥ 0.

(ii) For non-decreasing function p(x) and q(y) whose expectations are finite and

E(p(X)q(Y )) < ∞, Cov(p(X), q(Y )) ≥ 0

and conversely, implying that Cov(X, Y ) and hence r ≥ 0. Combining these with
our earlier propositions we find that when the cumulative copula IC̄ lies in the
interval [14 , 1

3 ], we have positive dependence in the sense of PQD as well as τ, ρ, β, ξ

and r. In general it is difficult to find expressions that connects C̄ with the
various coefficients τ, ρ, etc, but one can obtain formulas in respect of specific
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copulas. For example, in the Gumbel-Barnett copula, the Spearman’s coefficient

is ρ = 12
[
− e−

4
θ

θ EI
(
−4

θ

)]
− 3 so that from Example 2.1,

ρ = 12
(

IC̄

θ

)
− 3.

In this copula, IC̄ is a decreasing function of θ and the maximum of IC̄ occurs at
θ = 0, the case of independence in which case IC̄ = 0.25. Hence for this copula ρ≤ 0
so that there is negative dependence for all 0 ≤ θ ≤ 1. By virtue of Propositions
3.2 and 3.4, we also conclude that as the IC̄ value decreases from 0.25, so does
the extent of negative dependence between X and Y .

3.3. Effect of transformations

There are occasions where transformations have to be applied to the baseline random
variables to facilitate easier analysis. It is of interest to know how the SCE is affected by
such transformations.

Proposition 3.7. Let T (X) and W (Y ) be strictly monotone transformations of X

and Y . Let the corresponding SCE’s be I(T (X),W (Y )) and I(X, Y ) respectively. Then

(i) I(T (X),W (Y )) = I(X, Y ) when T (X) and W (Y ) are both strictly increasing,

(ii) I(T (X),W (Y )) = I(X, Y ) when T (X) and W (Y ) are both strictly decreasing

and I is the cumulative copula entropy of (X, Y ) and

(iii) I(T (X),W (Y )) =


∫ 1

0

∫ 1

0

[
v − C̄(u, v)

]
log
[
v − C̄(u, v)

]
dudv,∫ 1

0

∫ 1

0

[
u− C̄(u, v)

]
log
[
u− C̄(u, v)

]
dudv,

where T (X) is strictly increasing (decreasing) and W (Y ) is strictly decreasing (increasing).

Proof: Proceeding as in Theorems 2.4.3 and 2.4.4 in (Nelson, 2006, p. 25, 26) we find
that

C̄T (X),W (Y )(u, v) = C̄X,Y (u, v)

when both T (X) and T (Y ) are increasing,

C̄T (X),W (Y )(u, v) = v − C̄X,Y (1− u, v)

when T (X) is increasing and W (Y ) is decreasing,

C̄T (X),W (Y )(u, v) = u− C̄X,Y (u, 1− v)

when T (X) is decreasing and W (Y ) is increasing, and

C̄T (X),W (Y )(u, v) = CX,Y (u, v)



Survival copula entropy and dependence in bivariate distributions 113

when T (X) and W (Y ) are strictly decreasing. Then first and last results directly establish
(i) and (ii) of the Proposition and (iii) is obtained from the 2nd and 3rd results with a
transformation of (1− u) (1− v) to u (v). It may be noted that entropy of (T (X),W (Y )) is
independent of the form of the two functions.

Example 3.2. The linear transformations T (x) = αx+β and W (y) = γy+φ are com-
mon in data analysis. When α > 0, γ > 0, in this case

C̄(u, v) = u v exp[−θ log u log v], 0 ≤ θ ≤ 1,

and

IC̄(αX + β, γY + φ) = −e
4
θ EI

(
−4

θ

)
= IC̄(X, Y ), for α, β, γ, φ > 0.

4. APPLICATIONS

In this section we demonstrate how the results obtained in the previous sections can be
implemented in a practical problem. The example considered relates to an investigation on
20 individuals for isolated aortic regurgitations before and after surgery and 20 persons for
isolated mitral regurgitation analysed in Kumar and Shoukri (2007). Data on pre-operative
ejection fraction (X) and post-operative ejection fraction (Y ) arranged in order of magnitude
are

X : 0.29, 0.36, 0.39, 0.41, 0.50, 0.53, 0.54, 0.55, 0.56, 0.56, 0.56, 0.58, 0.60, 0.60, 0.62,

0.64, 0.64, 0.67, 0.80, 0.87,

Y : 0.17, 0.24, 0.26, 0.26, 0.27, 0.29, 0.30, 0.32, 0.33, 0.33, 0.34, 0.38, 0.47, 0.47, 0.50,

0.56, 0.58, 0.59, 0.62, 0.63.

The first step in the analysis is the estimation of the SCE. We consider the empirical
survival copula for a random sample (x1, y1), (x2, y2), ..., (xn, yn) from a continuous bivariate
distribution given by

C̄

(
i

n
,
j

n

)
=

(
number of pairs in the sample with x > x(i), y > y(j)

)
n

,

where x(i)

(
y(j)

)
is the i-th (j-th) order statistic of the observations on X(Y ). Using C̄

(
i
n , j

n

)
as the estimator of C̄(u, v), the resubstitution estimator of IC̄ is

ÎC̄ =
2
n2

n∑
i=1

n∑
j=1

C̄

(
i

n
,
j

n

)
log C̄

(
i

n
,
j

n

)
,

at those points for which i
n + j

n − 1 > 0. The estimated value for the given sample is ÎC̄ =
0.3049. Kumar and Shoukri (2007) in their analysis, found that the Pearson correlation
coefficient r = 0.6870, Kendall’s rank correlation τ = 0.5050 and Spearman’s rank correlation
ρ = 0.6970. Thus all the measures indicate positive dependence between the two sets of
observations. Using Proposition 3.4, our nonparametric estimate also support this conclusion
irrespective of the copula model, since ÎC̄ > 1

4 . Further, the data gives satisfactory evidence
for the PQD property of the underlying copula.
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5. CONCLUSION

In this work we have proposed a measure of uncertainty based on survival copula and
examined some of its properties. Apart from being useful to evaluate uncertainty it can be of
application in assessing copula properties like independence and their ordering. The proposed
concept is more general than distribution-based counterparts and has some advantages over
them and the existing copula entropy.
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1. INTRODUCTION

In the analysis of survival data, the researcher attempts to make predictions about the
lifetime of all elements / systems by fitting a statistical distribution / model. The underlying
distribution of a dataset can then be used to estimate component life characteristics, such
as reliability or probability of failure at any given time, average life, failure rate, etc. Reli-
ability is used to assess the characteristics of strength and failure, compare several different
models, predict product reliability, etc. In recent years, the Burr type XII (BXII) distribu-
tion created in Burr (1942) has gained great applicability in the field of reliability / survival
analysis and has been discussed by many authors. It is widely recognized as one of the most
straightforward and applicable heavy-tailed distributions. The fundamental properties and
estimation methods based on the BXII distribution have been derived in Wang et al. (1996),
Zimmer et al. (1998), Moore and Papadopoulos (2000), Mousa and Jaheen (2002) and Wu
et al. (2007). Due to its flexibility for data modeling, some extensions of the BXII distribu-
tion have been introduced in the literature. Among them are the beta BXII distribution (see
Paranaiba et al., 2011), Kumaraswamy BXII distribution (see Paranaiba et al., 2013), beta
exponentiated BXII distribution (see Mead, 2014), Marshall-Olkin BXII distribution (see
Al-Saiari et al., 2014), McDonald BXII distribution (see Gomes et al., 2015), Weibull BXII
distribution (see Afify et al., 2018), Kumaraswamy exponentiated distribution (see Mead
and Afify, 2017), generalized Burr-G distribution (see Nasir et al., 2017), Topp-Leone BXII
distribution (see Reyad and Othman, 2017), transmuted BXII distribution (see Afify et al.,
2018), generalized BXII power series distribution (see Elbatal et al., 2019) and modified BXII
distribution (see Jamal et al., 2020).

Along with these extended BXII distributions, other successful distributions for model-
ing survival phenomena have been established in recent years. This is the case for the ‘power
inverted Topp-Leone (PITL) distribution’ invented in Abushal et al. (2021), which also be-
longs to the heavy-tailed family of distributions. The first thing to know about the PITL
distribution is mathematical; the PITL distribution is the distribution of (1−X)1/cX−1/c,
where c > 0 and X is a random variable with the classical one-parameter Topp-Leone distri-
bution. It is also the power version of the inverted Topp-Leone (ITL) distribution proposed
in Hassan et al. (2020). The PITL distribution is motivated in Abushal et al. (2021) by the
following advantages: (i) it benefits from more flexibility compared with the ITL distribu-
tion on several aspects, including the shape possibilities of the associated probability density
function (pdf) and hazard rate function (hrf), (ii) the inferences of the PITL model are quite
manageable with the standard estimation methods, (iii) precise acceptance sampling plans
can be developed without difficulty, and (iv) the PITL model is better than other competitive
models, a claim illustrated with the analysis of the vinyl chloride data from Bhaumik et al.

(2009) and the precipitation data from Hinkley (1977).

The purpose of this article is to create an original three-parameter heavy-tailed distri-
bution that unifies the BXII and PITL distributions and to present its main statistical prop-
erties. A new tuning parameter that permits a shift between these two famous distributions
largely controls this unification. It thus makes it possible to reach a wide range of intermediate
distributions with equivalent interests and potentials. The proposed distribution is called the
new extended BXII (NEB) distribution. In the first part of the article, we discuss the main
characteristics of the NEB distribution, with an emphasis on the role of the shift parameter.
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Also, some of its functionalities and distributional measures are derived. Among others, we
show that the pdf and hrf may be both decreasing and unimodal, which remains a rare feature
for a three-parameter heavy-tailed distributions. Then, we examine the quantile function (qf),
stochastic dominance, ordinary moments, weighted moments, incomplete moments, and an
important measure of system performance: the stress-strength reliability coefficient, defined
on the basis of two independent random variables with the NEB distribution. The historical
motivations behind this coefficient in a general setting can be found in Church and Harris
(1970). The second part of the article is devoted to the inferences of the NEB model. This
includes properties, estimation of the model parameters, and estimation of the stress-strength
reliability coefficient through classical and Bayesian methods. We now emphasize that the
problem of estimating the stress-strength reliability is widely discussed in many articles and
remains a common demand in mechanical reliability systems. For the consideration of vari-
ous lifetime models, we may refer to Mokhlis (2005), Lio and Tsai (2012), Rao et al. (2015),
Laslan and Nadar (2017) and, more recently, Byrnes et al. (2019) and Maurya and Tripathi
(2020), and the references cited therein. Following the spirit of these works, the estimation
of the stress-strength reliability coefficient in the context of the NEB distribution opens some
perspectives in reliability studies. In this regard, we analyze two sets of engineering data.
Additionally, statistical comparisons with existing lifetime models that incorporate three or
four parameters derived from the BXII model are carried out, and the results are satisfactory
for the NEB model.

From the above consideration, we organize the paper as follows: Section 2 defines the
NEB distribution along with a selection of its properties. Section 3 concerns the parameters
and stress-strength reliability estimates via the maximum likelihood approach, with discus-
sions on their asymptotic distributions. Then, in Section 4, the Bayes estimates are obtained
under two different loss functions assuming uniform and gamma prior distributions for the
parameters. Sections 5 and 6 provide the applicability of the new distribution and obtain the
performance of the estimates. Last, Section 7 provides the concluding remarks.

2. PROPOSED DISTRIBUTION AND ITS PROPERTIES

2.1. Definition and motivation

At the basis of the NEB distribution, there is the following analytical result.

Proposition 2.1. Let a ∈ [0, 2] and c, k > 0. Then, the following function:

F (x) =

1− (1 + axc)k

(1 + xc)2k
, x > 0,

0, x ≤ 0,
(2.1)

has the properties of a valid cumulative distribution function (cdf).

Proof: First, it is clear that F (x) ≤ 1 and, by the Bernoulli inequality, we have (1 +
xc)2 ≥ 1 + 2xc ≥ 1 + axc, implying that F (x) ≥ 0. Furthermore, limx→0 F (x) = 0 = F (0)
implying that F (x) is continuous in 0 and, a fortiori, in R. It is clear that limx→+∞ F (x) = 1.
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Now, for x > 0, since a ∈ [0, 2], we have

F ′(x) = ckxc−1(axc + 2− a)
(1 + axc)k−1

(1 + xc)2k+1
≥ 0,

implying that F (x) is non-decreasing. The required properties are fulfilled; the function F (x)
is a valid cdf.

Based on Proposition 2.1, we are now in the position to explicit the NEB distribution.
The NEB distribution with parameters a, c and k, also denoted as NEB(a, c, k), is defined
either with the cdf F (x) given in (2.1) or the pdf specified as

f(x) =

ckxc−1(axc + 2− a)
(1 + axc)k−1

(1 + xc)2k+1
, x > 0,

0, x ≤ 0.

(2.2)

It is worth mentioning that c and k are shape parameters, whereas a is a scale parameter.

Basically, a random variable X with the NEB distribution satisfies: P (X ∈ D) =∫
D f(x)dx for any univariate real domain D and, for any function φ(x), the expectation

of the transformed variable φ(X), denoted by E(φ(X)), can be expressed in the following
integral form: E(φ(X)) =

∫ +∞
−∞ φ(x)f(x)dx, provided that it converges (in the integral sense).

These two formulas are the basis of measures and known distributional functions based on
the moments.

Thus defined, thanks to the parameter a, the NEB distribution constitutes a new life-
time distribution with three parameters extending both the BXII and PITL distributions.
More precisely, a can be viewed as a ‘shift parameter’ that allows a slip between the BXII
and PITL distributions in the following sense: when a = 0, the NEB distribution becomes
the BXII distribution, when a = 2, the NEB distribution becomes the PITL distribution,
naturally, when a = 2 and c = 1, the power transformation of the PITL distribution disap-
pears and the NEB distribution becomes the ITL distribution, and, to our knowledge, all the
intermediary cases a ∈ (0, 2) bring new distributions.

To realize the possibilities of the NEB distribution modeling, let us now investigate
some analytical properties of its pdf. First, when x → 0, the following equivalence holds:
f(x) ∼ (2− a)ckxc−1 and, when x → +∞, we get f(x) ∼ ckakx−ck−1. From these results, we
derive the following nuanced limits:

lim
x→0

f(x) =


0, c > 1,

(2− a)k, c = 1,

+∞, c ∈ (0, 1),

and limx→+∞ f(x) = 0 for all the values of the parameters, the rate of convergence having
a polynomial decay governed by the parameter c. Further investigations show that f(x) is
a decreasing function for c ≤ 1 and is unimodal for c > 1. The mode can be determined
numerically.

Furthermore, using the Riemann integral criteria, we get
∫ +∞
0 etxf(x)dx = +∞ for all

t > 0, meaning that the NEB distribution is heavy right-tailed. It thus keeps the heavy-tailed
nature of its parental distributions: the BXII and PITL distributions.
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For more remarks, Figure 1 shows some possible shapes of the pdf with diverse values
for a, c and k.
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Figure 1: Panel of shapes of the pdf of the NEB distribution.

Figure 1 illustrates the decreasing and unimodal nature of f(x). It is also shown that
f(x) has a versatile mode which is greatly affected by the parameter a. Almost symmetrical
shapes can be seen, as in the yellow curve, also corresponding to the case a = 2 referring to the
PTIL distribution. Moreover, Figure 1 illustrates the compromise that the NEB distribution
made between the BXII and PITL distributions.

2.2. Complementary functions

We now focus on important reliability functions that may appear in various aspects of
the NEB distribution analysis. The survival function (sf) and hrf of the NEB distribution
are inscribed as

F̄ (x) = 1− F (x) =


(1 + axc)k

(1 + xc)2k
, x > 0,

1, x ≤ 0,

and

h(x) =
f(x)
F̄ (x)

=

ckxc−1 axc + 2− a

(1 + axc)(1 + xc)
, x > 0,

0, x ≤ 0,

respectively. An asymptotic study of h(x) is now provided. First, when x → 0, the following
equivalence holds: h(x) ∼ (2− a)ckxc−1, and when x → +∞, we obtain h(x) ∼ ckx−1. From
these results, we derive the following limits:

lim
x→0

h(x) =


0, c > 1,

(2− a)k, c = 1,

+∞, c ∈ (0, 1),
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and limx→+∞ h(x) = 0 for the values of the parameters. Since the variety of shapes is an
important indicator on the modeling flexibility of a distribution (see Aarset, 1987), we provide
a graphical analysis of h(x) in Figure 2 with diverse values for a, c and k.
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Figure 2: Panel of shapes of the hrf of the NEB distribution.

From Figure 2, we see that h(x) has the same global shapes properties than f(x), only
varying on the weights of the tails: it is decreasing for c ≤ 1 and has only one maximal point
for c > 1. The parameter a mainly affects the value of the maximal point. Hence, the so-
called decreasing and bathtub upside-down hazard rates of survival data can be reached by
the NEB model.

We complete the presentation of the NEB distribution by expressing its qf. The notion
of qf is very useful on various aspects in probability and statistics; it is at the same level of
importance as the cdf to define a distribution (see Gilchrist, 2000). The expression of the
qf of the NEB distribution follows through the solution of the following nonlinear equation:
F (x) = u with respect to x. After a step-by-step development, we come to

Q(u) =
1

21/c

{
−[2− a(1− u)−1/k] +

√
[2− a(1− u)−1/k]2 − 4[1− (1− u)−1/k]

}1/c

,

where u ∈ (0, 1). As a basic application, the three quartiles of the NEB distribution are given
by Q1 = Q(1/4), Q2 = Q(1/2) and Q3 = Q(3/4), respectively. Also, among the possible
uses of this qf, one can use it to generate values from any random variable with the NEB
distribution, define diverse distributional functions analogous to the pdf and hrf, and various
measures on skewness and kurtosis.

2.3. Stochastic dominance

The NEB distribution has several stochastic dominance properties involving F (x) which
are of interest in understanding the roles of the parameters a, c and k for distributional com-
parison. Here, we focus on the notion of first-order stochastic (fos) dominance as presented
in Shaked and Shanthikumar (2007).
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Proposition 2.2. The following stochastic order properties hold: if a2 ≥ a1, the NEB

distribution defined with a = a2 fos dominates the NEB distribution defined with a = a1; if

k2 ≥ k1, the NEB distribution defined with k = k1 fos dominates the NEB distribution defined

with k = k2.

Proof: The proof is based on the monotonicity of F (x) = F (x; a, c, k) with respect to
the parameters. We have

∂

∂a
F (x; a, c, k) = −kxc (1 + axc)k−1

(1 + xc)2k
≤ 0,

which means that F (x) is a decreasing function with respect to a, implying that, if a2 ≥ a1,
the NEB distribution defined with a = a2 fos the NEB distribution defined with a = a1. Now,
we have

∂

∂k
F (x; a, c, k) =

(1 + axc)k

(1 + xc)2k
[2 log(1 + xc)− log(1 + axc)] ≥ 0,

which means that F (x) is an increasing function with respect to k, implying that, if k2 ≥ k1,
the NEB distribution defined with k = k1 fos dominates the NEB distribution defined with
k = k2. This ends the proof of the three items of the proposition.

Thus, based on Proposition 2.2, we see that the parameter c has the most complex role
for the comparison of NEB distributions differing with their parameters. Moreover, the first
result and the expression of F (x) justify the naming of ‘shift parameter’ for a.

2.4. Moment properties

The following result concerns the ordinary moments of the NEB distribution.

Proposition 2.3. Let X be a random variable with the NEB distribution and r be

an integer. Then, X admits an r-th ordinary moment, i.e., µ′r = E(Xr), if and only if r < ck.

In this case, µ′r can be expressed as the following infinite sum expansion:

µ′r = k

+∞∑
`=0

(
k − 1

`

)
(a− 1)`

[
aB

(r

c
+ ` + 2, k − r

c

)
+ (2− a)B

(r

c
+ ` + 1, k + 1− r

c

)]
,

where B(u, v) is the beta function: B(u, v) =
∫ 1
0 tu−1(1− t)v−1dt with u, v > 0.

Proof: Provided that it exists, we have µ′r =
∫ +∞
−∞ xrf(x)dx. In view of the definition

of f(x) in (2.2), only the neighborhoods of x = 0 and +∞ of the function xrf(x) need pro-
cessing, and we can invoke the integral Riemann criteria in this regard. In the neighborhood
of x = 0, we have xrf(x) ∼ ck(2− a)xr+c−1, which is the main term of a convergent integral
over x ∈ (0, d) with d > 0 if and only if r + c > 0, which is always fulfilled. Also, in the neigh-
borhood of x = +∞, we have xrf(x) ∼ ckakxr−ck−1 which is the main term of a convergent
integral over x ∈ (d,+∞) if and only if r − ck < 0, which is satisfied if r < kc. In the end,
µ′r exists if and only r < ck.
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In this case, in order to express µ′r =
∫ +∞
−∞ xrf(x)dx as desired, for x > 0, we set f(x) =

f1(x) + f2(x), where

f1(x) = ckax2c−1 (1 + axc)k−1

(1 + xc)2k+1
, f2(x) = ck(2− a)xc−1 (1 + axc)k−1

(1 + xc)2k+1
,

which can be also written as

f1(x) = ckax2c−1 [1 + (a− 1)xc/(1 + xc)]k−1

(1 + xc)k+2

and

f2(x) = ck(2− a)xc−1 [1 + (a− 1)xc/(1 + xc)]k−1

(1 + xc)k+2
.

Since a ∈ [0, 2] and x > 0, it is clear that |(a− 1)xc/(1 + xc)| < 1. Therefore, the generalized
version of the binomial formula gives[

1 + (a− 1)
xc

1 + xc

]k−1

=
+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc`

(1 + xc)`
.

Note that the limit +∞ can be replaced by k− 1 if k is an integer greater to 1. So f1(x) and
f2(x) can be expressed as

f1(x) = cka

+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc(`+2)−1

(1 + xc)`+k+2

and

f2(x) = ck(2− a)
+∞∑
`=0

(
k − 1

`

)
(a− 1)` xc(`+1)−1

(1 + xc)`+k+2
,

respectively. By invoking the dominated convergence theorem to justify the exchange of the
signs

∑
and

∫
, we obtain

µ′r =
∫ +∞

0
xrf1(x)dx +

∫ +∞

0
xrf2(x)dx

= cka

+∞∑
`=0

(
k − 1

`

)
(a− 1)`

∫ +∞

0

xr+c(`+2)−1

(1 + xc)`+k+2
dx

+ ck(2− a)
+∞∑
`=0

(
k − 1

`

)
(a− 1)`

∫ +∞

0

xr+c(`+1)−1

(1 + xc)`+k+2
dx.(2.3)

With the change of variable y = xc, the two integral terms can be expressed as∫ +∞

0

xr+c(`+2)−1

(1 + xc)`+k+2
dx =

1
c

∫ +∞

0

yr/c+`+1

(1 + y)`+k+2
dy =

1
c
B

(r

c
+ ` + 2, k − r

c

)
and ∫ +∞

0

xr+c(`+1)−1

(1 + xc)`+k+2
dx =

1
c

∫ +∞

0

yr/c+`

(1 + y)`+k+2
dy =

1
c
B

(r

c
+ ` + 1, k + 1− r

c

)
.

By putting these equations into (2.3), we obtain the stated result.
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In any case, if r < ck, µ′r can be evaluated in a numerical way by using any standard
mathematical software.

With one of these approaches, we are able to evaluate standard moment measures such
as the mean of X specified by µ = µ′1 and the variance of X given as V = µ′2 − µ2, as well as
moment measures of skewness and kurtosis.

The incomplete moments of X taken at a specific value t ≥ 0 is also of interest. It can
be expanded as described in the new result.

Proposition 2.4. Let X be a random variable with the NEB distribution, r be an

integer and t ≥ 0. Then, X admits incomplete moments of all orders and the r-th incomplete

moment of X at the level t, i.e., µ′r(t) = E(X1{X≤t}), can be expressed as the following

infinite sum expansion:

µ′r(t) = k
+∞∑
`=0

(
k − 1

`

)
(a− 1)`

×
[
aBtc/(1+tc)

(r

c
+ ` + 2, k − r

c

)
+ (2− a)Btc/(1+tc)

(r

c
+ ` + 1, k + 1− r

c

)]
,

where Bx(u,v) denotes the incomplete beta function taken at x: Bx(u,v) =
∫ x
0 tu−1(1− t)v−1dt

with x ∈ [0, 1] and u, v > 0.

Proof: The proof is almost identical to the one of Proposition 2.3, we thus omit it.

Following the spirit of Abushal et al. (2021), we can use the incomplete moments of X

to define several inequality measures, and various residual life functions, as well as the related
moments. We end this part with a generalization of the ordinary moments by investigating
the weighted probability moments.

Proposition 2.5. Let X be a random variable with the NEB distribution, and r

and s be integers. Then, X admits an (r, s)-th probability weighted moment, i.e., µ′r,s =
E(XrF̄ (X)s), if and only if r < ck. In this case, µ′r,s can be expressed as the following

infinite sum expansion:

µ′r,s =
k

1 + s

+∞∑
`=0

(
k(1 + s)− 1

`

)
(a− 1)`

×
[
aB

(r

c
+ ` + 2, k(1 + s)− r

c

)
+ (2− a)B

(r

c
+ ` + 1, k(1 + s) + 1− r

c

)]
.

Proof: First, let us notice that, for x > 0,

f(x)F̄ (x)s =
1

1 + s
ck(1 + s)xc−1(axc + 2− a)

(1 + axc)k(1+s)−1

(1 + xc)2k(1+s)+1
=

1
1 + s

f◦(x),

where f◦(x) denotes the pdf of the NEB distribution with parameters a, c and k(1 + s).
Therefore, we have

µ′r,s =
∫ +∞

−∞
xrf(x)F̄ (x)sdx =

1
1 + s

∫ +∞

0
xrf◦(x)dx =

1
1 + s

µ′◦r ,
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where µ′◦r denotes the r-th ordinary moment of a random variable with the NEB distribution
with parameters a, c and k(1 + s). Hence, the desired result follows from Proposition 2.3
with adjustment on the definition of the parameters.

Probability-weighted moments can be considered as extended versions of the ordinary
moments. Also, they appear in the theory of order statistics, and remain standard in several
branches of statistics. On this topic, we may refer to Hosking (1989).

2.5. Stress-strength reliability coefficient

Let X and Y be two independent random variables following the NEB distributions with
parameters a, c and k1, and a, c and k2, respectively. We are interested in the determination
of the common stress-strength reliability coefficient defined by

R = P (Y < X).(2.4)

This coefficient is a measure of reliability of a component with strength modeled by X, subject
to a stress modeled by Y . Further details on this special coefficient can be found in Church
and Harris (1970).

Proposition 2.6. The coefficient R precised in (2.4) is

R =
k2

k1 + k2
.

Proof: Let F2(x) be the cdf of Y and f1(x) be the pdf of X. Then, based on (2.1)
and (2.2), after a linear integral development, we get

R =
∫ +∞

−∞
F2(x)f1(x)dx =

∫ +∞

0

[
1− (1 + axc)k2

(1 + xc)2k2

]
× ck1x

c−1(axc + 2− a)
(1 + axc)k1−1

(1 + xc)2k1+1
dx

= 1−
∫ +∞

0
ck1x

c−1(axc + 2− a)
(1 + axc)k1+k2−1

(1 + xc)2(k1+k2)+1
dx

= 1− k1

k1 + k2

∫ +∞

0
c(k1 + k2)xc−1(axc + 2− a)

(1 + axc)k1+k2−1

(1 + xc)2(k1+k2)+1
dx.

Note that the last integral term is equal to one since it corresponds to the integral of a pdf
over its whole support; it is the pdf of the NEB distribution with parameters a, c and k1 + k2.
Hence R = 1− k1/(k1 + k2) = k2/(k1 + k2). This ends the proof.

Thus, in the configuration of Proposition 2.6, R has a quite simple expression. It is
decreasing with respect to k1, whereas it is increasing with respect to k2. If k1 = k2, we get
R = 1/2 meaning that there is a equal chance of Y to be greater than X, and vice-versa.

The rest of the article is devoted to the inferences of the NEB model, beginning with
the estimation of the model parameters through the maximum likelihood approach.
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3. MAXIMUM LIKELIHOOD ESTIMATION

3.1. Estimation of the parameters

Let n be a positive parameter. Let us denote by x1, ..., xn n independent observations
from the NEB distribution. Then, the maximum likelihood method proposes to used the
maximum likelihood estimates (MLEs) â, ĉ and k̂ of a, c and k, respectively, defined by
(â, ĉ, k̂) = argmax(a,c,k)∈[0,2]×(0,+∞)2 `(a, c, k), where `(a, c, k) denotes the log-likelihood func-
tion defined by

`(a, c, k) = n log c + n log k + (c− 1)
n∑

i=1

log(xi) +
n∑

i=1

log(axc
i + 2− a)

+ (k − 1)
n∑

i=1

log(1 + axc
i )− (2k + 1)

n∑
i=1

log(1 + xc
i ).

The MLEs â, ĉ and k̂ can be determined through the score equations. Now let V̂a, V̂c and V̂k

defined by (V̂a, V̂c, V̂k) = diag
[
I(a, c, k)−1

]
| a=â,c=ĉ,k=k̂, where

I(a, c, k) =
(
− ∂2

∂u∂v
`(a, c, k)

)
(u,v)=(a,c,k)2

.

By applying a the well-known asymptotic property of the MLEs, as m and n tends to +∞,
the underlying distribution of{

(1/

√
V̂a)(â− a), (1/

√
V̂c)(ĉ− c), (1/

√
V̂k)(k̂ − k)

}
can be approximated by the standard trivariate normal distribution. As an immediate conse-
quence, a two-sided asymptotic 100(1− α)% confidence interval of a with α ∈ (0, 1) is given
as Ia =

[
â− uα

√
V̂a, â + uα

√
V̂a

]
, where uα = QU (1− α/2), QU (x) denoting the qf of the

standard univariate normal distribution. Analogous two-sided asymptotic 100(1−α)% confi-
dence intervals for c and k can be presented in a similar way. The general theory and formulas
of the maximum likelihood approach can be found in Casella and Berger (1990).

3.2. Estimation of R

We now focus on the estimation of the stress-strength reliability coefficient R as de-
scribed in Subsection 2.5, recalling that R = k2/(k1 + k2). Such estimation problem is of
interest in various applied studied, as motivated in Mokhlis (2005), Lio and Tsai (2012), Rao
et al. (2015), Laslan and Nadar (2017), Byrnes et al. (2019), Maurya and Tripathi (2020) and
Agiwal (2021). We follow the same methodology as the one employed in Agiwal (2021).

Let n and m be two positive integers. Let us denote by x1, ..., xn n independent obser-
vations from the NEB distribution with parameters a, c and k1, and y1, ..., ym m independent
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observations from the NEB distribution with parameters a, c and k2, assuming that a and c

are known. Then, the log-likelihood function based on these two samples is given by

`(k1, k2) = (n + m) log c + n log k1 + (c− 1)
n∑

i=1

log(xi) +
n∑

i=1

log(axc
i + 2− a)

+ (k1−1)
n∑

i=1

log(1+ axc
i )− (2k1+1)

n∑
i=1

log(1+xc
i ) + m log k2 + (c−1)

m∑
i=1

log(yi)

+
m∑

i=1

log(ayc
i + 2− a) + (k2 − 1)

m∑
i=1

log(1 + ayc
i )− (2k2 + 1)

m∑
i=1

log(1 + yc
i ).

The MLEs k̂1 and k2 of k1 and k2, respectively, are obtained as

(k̂1, k̂2) = argmax(k1,k2)∈(0,+∞)2 `(k1, k2).

Classically, they satisfy the score equations defined by ∂`(k1, k2)/∂k1 | k1=k̂1,k2=k̂2
= 0 and

∂`(k1, k2)/∂k2 | k1=k̂1,k2=k̂2
= 0, which give

k̂1 =

{
− 1

n

n∑
i=1

log
(

1 + axc
i

(1 + xc
i )2

)}−1

, k̂2 =

{
− 1

m

m∑
i=1

log
(

1 + ayc
i

(1 + yc
i )2

)}−1

.

Now, we have

∂2

∂k2
1

`(k1, k2) = − n

k2
1

,
∂2

∂k2
2

`(k1, k2) = −m

k2
2

,
∂2

∂k1k2
`(k1, k2) = 0.

By applying a the well-known asymptotic property of the MLEs, as m and n tends to +∞,
the underlying distribution of

{
(k̂1/

√
n)(k̂1 − k1), (k̂2/

√
m)(k̂2 − k2)

}
can be approximated

by the standard bivariate normal distribution. On the other side, by substitution, a point
estimate for R is obtained as

R̂ =
k̂2

k̂1 + k̂2

.(3.1)

By applying the multivariate delta method (see Klein, 1953), since the underlying random
estimates of k1 and k2 are independent, an estimate for the variance of the underlying random
estimate of R is inscribed as

V̂R =
(
− ∂2

∂k2
1

`(k1, k2)
)−1(

∂

∂k1
R

)2

+
(
− ∂2

∂k2
2

`(k1, k2)
)−1(

∂

∂k2
R

)2
∣∣∣∣∣
k1=k̂1,k2=k̂2

=
k̂2

1k̂
2
2

(k̂1 + k̂2)4

(
1
n

+
1
m

)
.

Therefore, as m and n tends to +∞, the underlying distribution of (1/
√

V̂R)(R̂−R) can be
approximated by the standard univariate normal distribution. As an immediate consequence,
a two-sided asymptotic 100(1− α)% confidence interval of R is given as

IR =

[
R̂− uα

k̂1k̂2

(k̂1 + k̂2)2

√
1
n

+
1
m

, R̂ + uα
k̂1k̂2

(k̂1 + k̂2)2

√
1
n

+
1
m

]
.

The rest of the study focuses on the Bayesian inferences of the NEB model, with applications.
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4. BAYESIAN INFERENCE

In the Bayesian framework, not only data but also prior information about the un-
known parameter is used to analyze the data and draw conclusions. In this way, Bayesian
inference incorporates the prior distribution of the model parameters with the likelihood func-
tion to produce the posterior distribution that gathers more quality inferences and controls
the uncertainty. However, the choice of a suitable prior has a significant role in changing the
result. If sufficient information is available about the parameter, then an informative prior is
considered; otherwise, one can use a non-informative prior.

Here, we consider both informative and non-informative priors for the Bayesian anal-
ysis of the unknown model parameters and stress-strength reliability coefficient of the NEB
distribution. Since the shape of the proposed distribution is skewed to the right, we use a
gamma prior as a skewed distribution for the independent parameters k1, k2 and c, whereas
a follows a uniformly distributed prior. Indeed, we know that the gamma distribution is
very flexible and is used frequently everywhere. A slight change in the parameters is also
observed, as are changes in the shape of the distributions. So, we consider this prior for
the Bayesian computation in our manuscript. Because a is the scale parameter, it has little
effect on the distribution’s shape. As a result, we can easily consider the improper prior
in place for uniform distribution. The description of the said priors can be summarized
as follows: π(k1) = Gamma(r1, s1), r1 > 0, s1 > 0, π(k2) = Gamma(r2, s2), r2 > 0, s2 > 0,
π(c) = Gamma(r3, s3), r3 > 0, s3 > 0 and π(a) ∝ 1, a ∈ [0, 2], where Gamma(r, s) denotes
the standard gamma distribution with ‘shape parameter’ r and ‘scale parameter’ s, and
(r1, s1, r2, s2, r3, s3) are called the hyper-parameters. One can notice that, if r1 = s1 = r2 =
s2 = r3 = s3 = 0, the prior is reduced to a non-informative form of gamma prior. Conse-
quently, the joint prior π(Θ = (c, a, k1, k2)) is defined as follows:

π(Θ) =
sr1
1 sr2

2 sr3
3

Γ(r1)Γ(r2)Γ(r3)
kr1−1

1 kr2−1
2 cr3−1e−k1s1−k2s2−cs3 ,

where Γ(u) is the gamma function, i.e., Γ(u) =
∫ +∞
0 tu−1e−tdt, u > 0.

The posterior distribution π(Θ|data) of the parametric space (Θ) is obtained by in-
corporation of likelihood function (L(Θ|data)) with the joint prior distribution π(Θ), that is

π(Θ|data) = KL(Θ|data)π(Θ)

= Kcn+m+r3−1kn+r1−1
1 km+r2−1

2

sr1
1 sr2

2 sr3
3 e−k1s1−k2s2−cs3

Γ(r1)Γ(r2)Γ(r3)

×
n∏

i=1

xc−1
i (axc

i + 2− a)(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

m∏
j=1

yc−1
j (ayc

j + 2− a)(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

,

where K is a constant such that K−1 =
∫

L(Θ|data)π(Θ)dΘ.

Based on decision theory, it is a well known discussion that the best estimate decision
depends on the pattern of the loss function adopted for a particular situation and the result-
ing outcome may be under or / and over estimation. If the amount of loss is equal in under
and over estimation then the symmetric loss function is considered. On the other situations,
the asymmetric loss function is useful when positive loss may be more serious than a given
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negative loss of the same magnitude or vice-versa. Here, we employ both asymmetric and
symmetric loss functions to investigate the suitability of the loss functions for the model. More
precisely, we use the squared error (symmetric) loss function (SELF) and entropy (asymmet-

ric) loss function (ELF). The SELF and ELF are inscribed as LSELF (θ, θ̂) =
(
θ̂ − θ

)2
and

LELF (θ, θ̂) = θ̂/θ− log
(
θ̂/θ

)
− 1, respectively. Under the SELF and ELF, for any parametric

function, say φ(Θ), the Bayes estimate is obtained as follows:

φ?
self (Θ|data) = K

∫
φ(Θ)π(Θ|data)dΘ(4.1)

and

φ?
elf (Θ|data) =

(
K

∫
φ−1(Θ)π(Θ|data )dΘ

)−1

,(4.2)

respectively. To obtain (4.1) and (4.2), we get the Bayesian estimates of the model parameters
as well as the stress-strength reliability coefficient, where the Bayes estimate under the SELF
is the posterior mean and under the ELF is the inverse of the harmonic mean. Due to the
presence of multiple integrations in equations (4.1) and (4.2), they are very difficult to solve
in an exact manner. Therefore, an iterative numerical procedure is required to solve these
equations. For this situation, the Markov Chain Monte Carlo (MCMC) technique is suggested
to generate a sequence of random draws from posteriors of interest. Using the MCMC method,
a stochastic chain is produced that contains a sequence of random samples. The Gibbs
sampling and the Metropolis-Hastings (MH) algorithm are two approaches in MCMC to
computing the posterior distribution. To implement these approaches, the full conditional
posterior distribution is derived for the study parameters. By putting x = (x1, ..., xn) and
y = (y1, ..., yn), they are given as follows:

π1(c|a, k1, k2,x,y) ∝ cn+m+r3−1e−cs3

n∏
i=1

xc−1
i (axc

i + 2− a)(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

×
m∏

j=1

yc−1
j (ayc

j + 2− a)(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

,

π2(a|c, k1, k2,x,y) ∝
n∏

i=1

(axc
i + 2− a)(1 + axc

i )
k1−1

m∏
j=1

(ayc
j + 2− a)(1 + ayc

j)
k2−1,

π3(k1|a, c,x,y) ∝ kn+r1−1
1 e−k1s1

n∏
i=1

(1 + axc
i )

k1−1

(1 + xc
i )2k1+1

and

π4(k2|a, c,x,y) ∝ km+r2−1
2 e−k2s2

m∏
j=1

(1 + ayc
j)

k2−1

(1 + yc
j)2k2+1

.

Based on estimated values of the parameters (k̂1, k̂2), the estimated value of stress-strength
reliability coefficient is obtained. To evaluate the above conditional posterior distribution,
the following steps are considered:
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Step 1: Starting with an initial value vector Θ0 = (c0, a0, k0
1, k

0
2) and set l = 1.

Step 2: Generate the point vector Θp = (cp, ap, kp
1, k

p
2) from the candidate proposal

density q
(
Θp|Θ0

)
where q

(
Θp|Θ0

)
proposes a probability with a move Θp,

having conditional probability density given Θ0.

Step 3: Determine the Hastings-ratio using Θp and Θ0 as specified by

ρ
(
Θp|Θ0

)
=

π1

(
cp|a0, k0

1, k
0
2,data

)
q
(
Θp|Θ0

)
π1

(
c0|a0, k0

1, k
0
2,data

)
q(Θ0|Θp)

.

Similarly for the remaining parameters, the Hastings-ratio is obtained.

Step 4: Take into account Θp with probability γ ≤ min
[
1, ρ

(
Θp|Θ0

)]
, otherwise Θ =

Θ0 with rejection probability 1− γ, where γ is generated from the uniform
U(0, 1) distribution.

Step 5: Repeat Steps 2-4, K = 5000 times and record the sequence of parameter
observations. Next, we get the Bayes estimate under different loss functions.

5. SIMULATION STUDY

This section performs a simulation experiment to determine the effectiveness of the pro-
posed method in the model parameters as well as the stress-strength reliability coefficient for
the NEB distribution. For this, various sample sizes, along with different sets of parameter val-
ues, are considered for making better inferences. We take the following sample size combina-
tions, namely, (n, m) = {(20, 20), (30, 50), (50, 30), (50, 50), (40, 60), (60, 40), (40, 40)} and dif-
ferent sets of stress-strength reliability coefficient values, namely (k1, k2) = {(2,1), (2,2), (1,2)}
so that the true reliability parameter values are small (0.33), moderate (0.50) and high (0.67),
respectively. The remaining parameter values are a = 2.5 and c = 1.5. We evaluate the per-
formance of the stress-strength reliability coefficient on the basis of simulated samples with
diverse sample sizes and combinations using the R software. To this end, we simulate a ran-
dom sample of different sizes from the NEB distribution. In this regard, we use the Newton
steps to generate a sample of size n from the NEB(a, c, k) distribution by following the steps
below:

Step 1: Set n, a, c and k.

Step 2: Set initial value x0.

Step 3: Set j = 1.

Step 4: Generate a value u from the uniform U(0, 1) distribution.

Step 5: Update x0 through the Newton formula for solving F (x) = u such as xnew =

x0 −
F (x0)− u

f(x0)
, with the defined with the used parameters a, c and k.

Step 6: If |x0 − xnew| ≤ ε with ε > 0 chosen as small, then xnew will be the desired
value from F (x).

Step 7: If |x0 − xnew| > ε, then, set x0 = xnew and go to Step 5.

Step 8: Repeat Steps 4-7, for j = 1, 2, ..., n and obtained x1, x2, ..., xn.
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Using the generated samples, the maximum likelihood and Bayes estimates are obtained
based on derived estimates of the parameters and reliability function. For the Bayes estimates,
we use different loss functions under different priors and the hyper-parameters of the gamma
prior are taken as follows:

1. When r1 = s1 = r2 = s2 = r3 = s3 = 0 (the non-informative prior case), the Bayes
estimates are denoted as SELF0 and ELF0.

2. When the prior means are equal to the true value of parameters and the prior
variances are equal to 1, the Bayes estimates are denoted as SELF1 and ELF1.

The results are based on 5000 replications. We vary the sample sizes with fixed values of
the stress-strength reliability coefficient and for various combinations of the model parameters
with fixed samples sizes. For different parameter values, different sample sizes and different
priors under both SELF and ELF, we report the average estimates (AVs) and the correspond-
ing mean squared errors (MSEs) of the MLEs and Bayes estimates of the model parameters
and stress-strength reliability coefficient. The simulation results are postponed in Tables 1–5.

We deduce the following findings from the results:

1. The MSE of all estimates, obtained with different parameter values, decreases as
the sample sizes increase.

2. For the distribution parameters and reliability function, the MSE based on the
MLEs is higher as compared to the one of the Bayes estimates.

3. For gamma priors in comparison with informative and non-informative forms, the
MSE of informative priors is smaller.

4. For reliability function and stress-strength reliability coefficients, the ELF performs
better than the SELF in terms of the lesser value of the MSE.

5. For varying n and m, the MSE of k1 is mostly greater than k2 when k1<k2 and k2 <k1.

Table 1: AVs and MSEs of the estimates of R with varying n and m.

(k1, k2) R (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 0.3919 0.0031 0.3656 0.0027 0.3772 0.0026 0.3559 0.0026 0.3711 0.0025
(30,50) 0.3674 0.0024 0.3381 0.0016 0.3597 0.0019 0.3351 0.0014 0.3332 0.0014
(50,30) 0.3670 0.0025 0.3568 0.0023 0.3592 0.0021 0.3427 0.0013 0.3378 0.0011

(2,1) 0.33 (50,50) 0.3710 0.0022 0.3441 0.0016 0.3417 0.0015 0.3560 0.0015 0.3651 0.0018
(40,60) 0.3677 0.0023 0.3458 0.0015 0.3616 0.0019 0.3436 0.0014 0.3407 0.0014
(60,40) 0.3683 0.0019 0.3585 0.0016 0.3543 0.0014 0.3584 0.0014 0.3621 0.0015
(40,40) 0.3727 0.0029 0.3439 0.0015 0.3399 0.0014 0.3550 0.0021 0.3654 0.0024

(20,20) 0.4715 0.0036 0.4789 0.0033 0.4795 0.0033 0.4843 0.0029 0.4859 0.003
(30,50) 0.4783 0.0021 0.4827 0.0020 0.4851 0.0018 0.4954 0.0011 0.4893 0.0012
(50,30) 0.4892 0.0031 0.4977 0.0030 0.4960 0.0029 0.5128 0.0020 0.5070 0.0019

(2,2) 0.5 (50,50) 0.4827 0.0020 0.5042 0.0011 0.5041 0.0010 0.4848 0.0016 0.4800 0.0018
(40,60) 0.5064 0.0021 0.4916 0.0019 0.4926 0.0018 0.5082 0.0017 0.5035 0.0017
(60,40) 0.4886 0.0015 0.4951 0.0014 0.4940 0.0014 0.5014 0.0009 0.4965 0.0009
(40,40) 0.4889 0.0036 0.5045 0.0016 0.4983 0.0016 0.4913 0.0026 0.4855 0.0028

(20,20) 0.6238 0.0029 0.6324 0.0027 0.6373 0.0026 0.6405 0.0029 0.6467 0.0027
(30,50) 0.6428 0.0018 0.6434 0.0016 0.6412 0.0015 0.6568 0.0015 0.6637 0.0014
(50,30) 0.6316 0.0028 0.6587 0.0026 0.6526 0.0022 0.6459 0.0025 0.6550 0.0021

(1,2) 0.67 (50,50) 0.6416 0.0019 0.6536 0.0018 0.6507 0.0016 0.6548 0.0013 0.6602 0.0011
(40,60) 0.6443 0.0016 0.6516 0.0015 0.6594 0.0015 0.6575 0.0015 0.6625 0.0013
(60,40) 0.6419 0.0017 0.6547 0.0015 0.6502 0.0013 0.6552 0.0015 0.6624 0.0013
(40,40) 0.6277 0.0028 0.6561 0.0022 0.6526 0.0020 0.6318 0.0025 0.6488 0.0020
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Table 2: AVs and MSEs of the estimates of k1 with varying n and m.

k1 (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.3978 0.3245 1.3142 0.2019 1.2756 0.1689 1.2314 0.1632 1.2249 0.1552
(30,50) 1.3297 0.2966 1.2527 0.1728 1.2239 0.1588 1.1914 0.1527 1.1977 0.1290
(50,30) 1.3540 0.2815 1.2803 0.1997 1.2533 0.1354 1.1591 0.1617 1.1445 0.1403

1 (50,50) 1.3446 0.2448 1.2695 0.1590 1.2397 0.1370 1.1554 0.1400 1.1465 0.1498
(40,60) 1.3789 0.2644 1.2936 0.1723 1.2681 0.1488 1.1498 0.1577 1.1430 0.1211
(60,40) 1.3394 0.2394 1.2499 0.1634 1.2831 0.1584 1.1549 0.1329 1.1459 0.1238
(40,40) 1.3080 0.2467 1.2877 0.1541 1.2020 0.1276 1.1594 0.1386 1.1485 0.1265

(20,20) 2.4732 0.312 2.2916 0.2235 2.2478 0.1481 2.2655 0.1567 2.2213 0.1235
(30,50) 2.3296 0.3117 2.2513 0.2102 2.1981 0.1522 2.1634 0.1250 2.0348 0.0483
(50,30) 2.4364 0.2752 2.1203 0.1041 1.9262 0.1312 2.1488 0.0906 2.1041 0.0378

2 (50,50) 2.4488 0.2502 2.2601 0.2098 2.2046 0.1383 2.2330 0.1419 2.0907 0.1185
(40,60) 2.2553 0.2214 2.2078 0.1740 2.1927 0.1556 2.1828 0.1167 2.1766 0.0825
(60,40) 2.4525 0.2404 2.1537 0.0815 2.1444 0.1025 2.1106 0.0694 2.0210 0.0758
(40,40) 2.4793 0.2340 2.2378 0.1422 2.2142 0.1149 2.1208 0.1073 1.9659 0.1097

Table 3: AVs and MSEs of the estimates of k2 with varying n and m.

k2 (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.4710 0.2121 1.3760 0.1867 1.3076 0.1203 1.3129 0.1325 1.2739 0.1091
(30,50) 1.4542 0.1936 1.3164 0.1181 1.2064 0.0564 1.2502 0.0761 1.1671 0.0459
(50,30) 1.4152 0.1874 1.3290 0.1259 1.1942 0.0524 1.2036 0.0604 1.0937 0.0340

1 (50,50) 1.4042 0.1855 1.3683 0.1581 1.2797 0.0952 1.3013 0.1046 1.2181 0.0665
(40,60) 1.4653 0.2018 1.2885 0.1717 1.2183 0.1044 1.3210 0.1129 1.2558 0.0763
(60,40) 1.4996 0.2322 1.3121 0.2061 1.2150 0.1168 1.2499 0.0843 1.1669 0.0532
(40,40) 1.4183 0.1778 1.2856 0.1583 1.1743 0.0628 1.2454 0.0865 1.1539 0.0533

(20,20) 2.5262 0.3023 2.3506 0.2678 2.3008 0.2022 2.3265 0.2231 2.2753 0.1347
(30,50) 2.3960 0.2065 2.3144 0.1845 2.2561 0.1528 2.2813 0.1113 2.1318 0.0483
(50,30) 2.4262 0.2112 2.3415 0.2393 2.2966 0.1500 2.3161 0.1927 2.2163 0.1116

2 (50,50) 2.4151 0.2259 2.3351 0.1966 2.2297 0.1231 2.3016 0.1286 2.1652 0.0655
(40,60) 2.4631 0.3068 2.3378 0.2370 2.3048 0.1917 2.3079 0.2030 2.2521 0.1085
(60,40) 2.4371 0.2929 2.2694 0.1812 2.2513 0.1236 2.2637 0.1621 2.2191 0.0777
(40,40) 2.4664 0.3095 2.2665 0.1609 2.2678 0.1553 2.2918 0.1370 2.1326 0.0678

Table 4: AVs and MSEs of the estimates of c with varying n and m.

c (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 2.5632 0.1342 2.4183 0.1268 2.4678 0.1176 2.5105 0.1192 2.4747 0.1081
(30,50) 2.5316 0.1100 2.4638 0.0992 2.4925 0.0821 2.4755 0.0955 2.4908 0.0848
(50,30) 2.5489 0.1006 2.4300 0.1235 2.4681 0.0980 2.4732 0.0944 2.4830 0.0843

2.5 (50,50) 2.5660 0.1182 2.4469 0.1140 2.4548 0.1110 2.4781 0.1060 2.4843 0.0961
(40,60) 2.5683 0.1052 2.4835 0.0905 2.4977 0.0881 2.4930 0.0895 2.4971 0.0894
(60,40) 2.5479 0.0984 2.4797 0.0997 2.5170 0.9567 2.4908 0.0894 2.4809 0.0803
(40,40) 2.5647 0.1067 2.5247 0.0990 2.5625 0.1135 2.4862 0.0973 2.4858 0.0865

Table 5: AVs and MSEs of the estimates of a with varying n and m.

a (n, m)
MLE SELF0 ELF0 SELF1 ELF1

AV MSE AV MSE AV MSE AV MSE AV MSE

(20,20) 1.5378 0.0231 1.5442 0.0156 1.5256 0.0162 1.5114 0.0148 1.5249 0.0151
(30,50) 1.4814 0.0189 1.5063 0.0102 1.5108 0.0115 1.4938 0.0103 1.4970 0.0100
(50,30) 1.4918 0.0171 1.4958 0.0104 1.5009 0.0108 1.4952 0.0101 1.4947 0.0126

1.5 (50,50) 1.4894 0.0184 1.4937 0.0116 1.5205 0.0127 1.5221 0.0113 1.4845 0.0120
(40,60) 1.5205 0.0173 1.4836 0.0116 1.5386 0.0124 1.5028 0.0102 1.5155 0.0102
(60,40) 1.5075 0.0178 1.5340 0.0128 1.4709 0.0147 1.4918 0.0106 1.4979 0.0106
(40,40) 1.4955 0.0188 1.5366 0.0120 1.4865 0.0123 1.4996 0.0108 1.4987 0.0108
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6. APPLICATION

In this section, we work with two engineering data sets, initially reported in Cara-
manis et al. (1983) and Mazumdar and Gaver (1984), to demonstrate that the proposed
methodologies can be used in practice quite effectively. These data sets represent two dif-
ferent algorithms, called SC16 and P3, used by the electric utility industry to compare and
estimate unit capacity factors. More precisely, SC16 represents the Southern Company’s pro-
gram using a piecewise linear representation of equivalent charging duration (ELDC) curves
in 16 megawatt increments to represent the original charging duration curve. On his side,
P3 represents the ELDC using the Gram-Charlier series involving all cumulative power in
megawatts. The data sets considered are detailed as follows:

SC16(X), n = 23: 0.853, 0.759, 0.866, 0.809, 0.717, 0.544, 0.492, 0.403, 0.344, 0.213,
0.116, 0.116, 0.092, 0.070, 0.059, 0.048, 0.036, 0.029, 0.021, 0.014, 0.011, 0.008, 0.006.

P3(Y ), m = 22: 0.853, 0.759, 0.874, 0.800, 0.716, 0.557, 0.503, 0.399, 0.334, 0.207,
0.118, 0.118, 0.097, 0.078, 0.067, 0.056, 0.044, 0.036, 0.026, 0.019, 0.014, 0.010.

We remove the value 0.000 from the P3 algorithm so that it does not make the pa-
rameter likelihood estimates meaningless. First, we check the validity of the proposed dis-
tribution using the negative log-likelihood (-logL), Kolmogorov-Smirnov (K-S) statistic, the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC). We compare
the fits of the NEB distribution with those of the Topp-Leone BXII (TLBXII) distribution,
Marshall-Olkin Extended BXII (MOEBXII) distribution, Weibull BXII (WBXII) distribu-
tion, and transmuted BXII (TBXII) distribution, as referenced in the introductory part. The
expressions of the pdfs of the competitor distributions are briefly presented below:

TLBXII : f(x; l, c, k) = 2lckxc−1(1 + xc)−(2k+1)
[
1− (1 + xc)−2k

]l−1
,

MOEBXII : f(x; a, c, k) = ack
xc−1(1 + xc)−(k+1)

[1− (1− a)(1 + xc)−k]2
,

WBXII : f(x; a, l, c, k) =
alckxc−1

1 + xc
{k log(1 + xc)}l−1 exp

[
−a{k log(1 + xc)}l

]
,

TBXII : f(x; c, k, θ, λ) =
ck

θc
xc−1

[
1 +

(x

θ

)c]−(k+1)
[
1− λ + 2λ

{
1 +

(x

θ

)c}−k
]
,

All the involved parameters are supposed to be strictly positive, except λ ∈ [−1, 1] for the
last distribution. It is supposed that x > 0, the standard completion applied on these pdfs
for x ≤ 0. We use the maximum likelihood estimation and the K-S test to fit the two data
sets separately for the proposed and the above competitor distributions. We discover that
the NEB distribution provides a better fit. We also use both information criteria to find
the best model in two data sets that have a good fit based on the minimum values of AIC
and BIC, and conclude that the NEB distribution fits both data sets better than the others
distributions. The values of MLE, K-S test, AIC, and BIC are collected in Tables 6 and 7.
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Table 6: MLEs, AIC, BIC and KS statistic for the SC16 data.

Model MLEs -logL K-S AIC BIC

NEB(a, c, k) (1.3907, 0.7741, 5.3351) −7.0094 0.9400 −8.0187 −4.6123
TLBXII(l, c, k) (234.8565, 0.1510, 5.4960) −6.1992 0.9739 −6.3985 −2.9920
MOEBXII(a, c, k) (0.8894, 0.8332, 3.7239) −6.9174 0.9433 −7.8348 −4.4283
WBXII(a, l, c, k) (1.1192, 13.1646, 0.0756, 1.582) −7.4218 0.9500 −6.8437 −2.3017
TBXII(c, k, θ, λ) (0.7533, 337.0553, 573.6415, 0.0924) −7.4215 1.0206 −6.8308 −2.2888

Table 7: MLEs, AIC, BIC and KS statistic for the P3 data.

Model MLEs -logL K-S AIC BIC

NEB(a, c, k) (1.3630, 0.8704, 5.2907) −4.4913 0.9407 −2.9825 0.2906
TLBXII(l, c, k) (255.2371, 0.1688, 5.5850) −3.9032 0.9767 −1.8063 1.4668
MOEBXII(a, c, k) (0.7887, 0.9515, 3.6233) −4.4305 0.9448 −2.8611 0.4120
WBXII(a, l, c, k) (4.4466, 9.8049, 0.1123, 1.3798) −4.8735 0.9413 −1.7470 2.6171
TBXII(c, k, θ, λ) (0.8467, 474.7816, 428.0671, 0.1096) −4.8649 1.0368 −1.7298 2.6344

From Tables 6 and 7, we can note that the parameter a is estimated in an intermediate
way between 0 and 2, justifying the alternative identity of the distribution NEB compared
to the BXII and PITL distributions.

For both data sets, the MLEs and Bayes estimates of the model parameters are given
along with their standard errors (SEs), and the stress-strength reliability coefficient values
are obtained in Table 8. As we had no prior information apart from a few observations, we
only use non-informative values for the gamma prior.

Table 8: Maximum likelihood and Bayes estimates of R and distribution
parameters with SEs based on the considered data-sets.

Estimates R
a c k1 k2

AV SE AV SE AV SE AV SE

MLE 0.4861 1.1371 0.3581 0.8254 0.1494 4.1941 0.8725 3.9586 0.9018
SELF0 0.4878 1.0790 0.2190 0.8488 0.1502 4.5912 0.7115 4.3966 0.1093
ELF0 0.4747 0.9715 0.3127 0.8448 0.1684 3.9384 0.8198 3.7017 0.1121

Based on Table 8, an estimate of R is approximately obtained as 0.48. We conclude
that the P3 algorithm has slightly more storage capacity for the electric utility industry.
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7. CONCLUSION

This article emphasized a new three-parameter heavy right-tailed distribution that
consolidates, in a certain sense, the “popular Burr type XII distribution” and the “promis-
ing power inverted Topp-Leone distribution”. The slip between these two well-established
distributions was made by a special shift parameter. The new distribution benefits from
notable advantages, including a flexible decreasing and unimodal probability density func-
tion, a decreasing upside-down bathtub-shaped hazard rate function, as well as a manageable
quantile function, (first-order) stochastic ordering properties, moments, incomplete moments,
and probability weighted moments. The classical and Bayesian approaches were developed to
estimate the model and stress-strength reliability parameters. The effectiveness and potential
of the new model were highlighted using both simulated and actual data, demonstrating that
it can be a superior replacement for other lifetime models in the literature.
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1. INTRODUCTION

With increasing diversity of real-life problems and applications that includes compli-
cated phenomena, there is a growing interest by researchers in developing new lifetime distri-
butions to overcome complicated models. Consequently, significant progress has been made
towards constructing numerous classes of new distributions to generate more flexible distri-
butions instead of the classical ones to provide more accurate data modeling. Kumaraswamy
(1980) was the first who suggested proposing new distribution by taking baseline distribution,
and then Azzalini (1985) introduced a system for generating new distributions by adding a
skewing parameter to a symmetric distribution.

The ideas of generating a new class of distributions graduated and can be classified into
five schemes; the first one is by using differential equations, the second one is by generating a
weighted form of the baseline distribution. The third one concerns adding additional param-
eter(s) to the baseline distribution. The fourth scheme is to discretize the continuous density
function. The last scheme is a distribution transformation scheme that modifies a probability
distribution function by forming a stochastic representation of baseline distribution such that
the new relationship must satisfy the distribution theory assumptions.

In this article, we are interested in the last scheme to regenerate a new class of lifetime
distribution. In the literature, there are several generators proposed based on different math-
ematical functional relationships. For instance, Mudholkar and Srivastava (1993) defined
the exponentiated class of distributions by exponentiating a given baseline distribution with
a positive parameter. Marshall and Olkin (1997), applied the transformation scheme to the
survival function by adding an additional shape parameter to the transformation scheme. Eu-
gene et al. (2002), used beta as a generator to develop Beta-G class of distributions. Zografos
and Balakrishnan (2009) suggested the gamma-G class of distributions. Transmuted family
of distributions was developed by Shaw and Buckley (2007); then later Shaw and Buckley
(2009) proposed the quadratic rank transmutation map, while Cordeiro and de Castro (2011)
proposed the Kumaraswamy-generated family.

Recently, Alzaatreh et al. (2013) defined and studied a new T-X family. Logarithmic
transformation was proposed by Maurya et al. (2016) and an extension of this generator was
proposed by Aslam et al. (2020). Moreover, many used trigonometry functions to provide
distribution generators, for instance, Kumar et al. (2015) used Sine function to develop a
new class of distributions while modification of this scheme by using Cosine-Sine (CS) trans-
formation proposed by Chesneau et al. (2019). Vast modification has been made by many
authors to identify a new generator of family of distributions (Kumar et al., 2021; Goldoust
et al., 2019; Zaidi et al., 2021; Altun et al., 2021; Zichuan et al., 2020).

In similar fashion, this article will propose a new distribution generator based on the
exponential function to provide new class of parameter lifetime distribution. Let Y be a non-
negative continuous random variable with baseline cumulative distribution function (CDF)
F (y, θ) and probability distribution function (PDF) f(y, θ); where θ ∈ (0,∞) is real valued
represents the distribution parameter, then the stochastic presentation of the proposed CDF
for generating a new class of distributions can be defined as:

(1.1) G(y, θ, α) = F (y, θ)e−α F (y,θ) y > 0; α ≥ 0
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where F (y, θ) = 1− F (y, θ). Noting that when α = 0, then the proposed distribution is
exactly the same as the baseline distribution.

This family will be called as exponential transformation (ET), i.e., ET (y, θ, α).
Now, the PDF of ET family can be obtaining by finding the first derivative of equation (1.1):

(1.2) g(y, θ, α) = f(y, θ)e−α F (y,θ) (1 + α F (y, θ)) ; y > 0;α ≥ 0.

This family can be joined to T-X family by (Alzaatreh et al., 2013) as follows: For a general
baseline CDF of a continuous probability distribution denoted by F (y, θ), a new CDF having
the form

G(y, θ, α) =
∫ F (y,θ)

0
r(t)dt

where r(t) is a PDF defined over (0, 1), and R(t) is the associated CDF. Accordingly, the
PDF g(y, θ, α) can be obtained as

g(y, θ, α) = f(y, θ) r(F (y, θ)).

If we used r(t) in the following functional form:

r(t) = (1 + αt) e−α(1−t).

Then, the proposed family could be considered as member of the T-X family. As an illus-
tration of the proposed family, the exponential distribution will be considered as baseline
distribution. In this article, the third scheme will be used to generate new class of lifetime
distribution.

The remainder of this article proceeds as follows. Section 2 provides some characteriza-
tions of the ET family, including shapes of CDF, PDF, reliability measures such as survival
and hazard rate. Section 3 is dedicated to the mathematical properties of the ET family
such as moments, quantiles, order statistics and entropies. In Section 4, the estimation of
parameters is studied. Section 5 offers detailed simulation experiments on model performance
and assessment. Section 6 is devoted to studying illustrative examples based on real data.
Finally, Section 7 concludes the manuscript with a summary and an eye toward future work
to close the paper.

2. CHARACTERIZATIONS

2.1. Asymptotic properties of the CDF and PDF

Suppose that X is a continuous random variable of ET family as given in (1.1),
it can be easily seen that this family of distribution satisfies the Kolmogorov axioms of
the distribution functions. For instance, it is easily seen that the limit property of G(x, θ, α)
satisfy the property of CDF:

lim
x→∞

G(x, θ, α) = lim
x→∞

F (x, θ)e−α F (x,θ) = 1

and
lim
x→0

G(x, θ, α) = lim
x→0

F (x, θ)e−α F (x,θ) = 0.
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Hence, the total probability is equal to one. Also, it is monotone right increasing function of x,
and 0 ≤ G(x, θ, α) ≤ 1; ∀ x. Therefore, G(x, θ, α) is an absolute continuous distribution
function.

Similarly, it is easily can be noted that g(x, θ, α) is non-negative real valued PDF for
all x. For instance in the exponential case:

lim
x→∞

g(x, θ, α) = 0

and
lim
x→0

g(x, θ, α) = θ e−α.

Since both parameters are positive this indicates that g(x, θ, α) is a unimodal distribution.
Now, the functional form given in (1.2) satisfied the PDF property:∫ ∞

0
g(x, θ, α)dx =

∫ ∞

0
f(x, θ)e−α F (x,θ) (1 + α F (x, θ)) dx.

To illustrate the usefulness of the new stochastic representation given in (1.1) and
the associated PDF given in (1.2), suppose that the baseline distribution is the exponential
distribution with mean 1

θ , then we have ET-Exp distribution.

Corollary 2.1. Suppose that X is a random variable of ET-Exp, then the CDF and

PDF of X are given in equations (2.1) and (2.2), respectively:

(2.1) G(x, θ, α) = e−αe−θx
(
1− e−θx

)
; x > 0; θ > 0, α ≥ 0,

(2.2) g(x, θ, α) = θe−(θx+αe−θx)
(
1 + α(1− e−θx)

)
; x > 0; θ > 0, α ≥ 0.

Figure 1 give a good representation of the new distribution PDF with selected set of
parameters, in different cases by assuming both parameters are larger than 1, less than 1 or
one of them is less than one and the other parameter is more than one.

2.2. The CDF and PDF expansion

The following result proposes Taylor series expansions of the exponential function that
given in ET family. Accordingly, using the exponential series, we get:

e−x =
∞∑

j=0

(−1)j xj

j!
.

Then the CDF can be written as, respectively:

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!
F (x, θ)j

,

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!
{1− F (x, θ)}j .
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Figure 1: PDF of ET-Exp with selected parameter values.

Now, using the power series (1− z)m =
∑∞

k=1 (−1)k

(
m
k

)
zk, the expansion yields to:

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!

∞∑
k=1

(−1)k

(
j
k

)
F (x, θ)k

which can be simplified to

(2.3) G(x, θ, α) =
∞∑

j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k+1.

In similar fashion, the PDF can be expanded as follows:

(2.4) g(x, θ, α) = f(x, θ)(1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k

.

Based on (2.3) and (2.4), several mathematical properties of the ET family can be derived
for any lifetime distribution.

2.3. Reliability measures of ET family of distributions

Reliability measures are widely used to analyze lifetime models. The most well-known
measures are the survival, hazard or faultier rate and cumulative hazard functions; the fol-
lowing theorem presents these measures of the proposed family of distributions.
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Theorem 2.1. Let X be a random variable that follows the ET family of distribu-

tions, with PDF and CDF as defined in (1.1) and (1.2), then:

1. The survival function is given by

S(x, θ, α) = 1− G(x, θ, α); x > 0

= 1− F (x, θ)e−α SF (x, θ)

where SF (x, θ, α) is the survival function of the baseline distribution. It is obvious

that limx→∞ S(x, θ, α) = 0 and limx→0 S(x, θ, α) = 1.

2. The hazard function is given by

(2.5) h(x, θ, α) =
g(x, θ, α)
S(x, θ, α)

=
f(x, θ)e−αSF (x, θ,α) (1 + α F (x, θ))

1− F (x, θ)e−αSF (x,θ,α)
.

3. The reversed hazard function is given by

(2.6) hr(x, θ, α) =
g(x, θ, α)
G(x, θ, α)

=
f(x, θ)e−αSF (x,θ,α) (1 + αF (x, θ))

F (x, θ)e−αSF (x,θ,α)
.

Assuming the baseline distribution is the exponential distribution, then Corollary 2.2
is hold.

Corollary 2.2. Suppose that X is a random variable of ET-Exp, then

1. The survival function is given by:

S(x, θ, α) = 1− e−αe−θx
(
1− e−θx

)
.

2. The hazard rate function is given by:

h(x, θ, α) =
e−(θx+αe−θx)(1 + α(1− e−θx)

)
1− e−αe−θx(1− e−θx)

θ.

3. The reversed hazard function is given by:

hr(x, θ, α) =
e−θx

(
1 + α(1− e−θx)

)
(1− e−θx)

θ.

Figure 2 shows comparisons between the hazard rate functions of the baseline distribu-
tion and the proposed distribution.
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Figure 2: Hazard rate of ET-Exp with selected parameter values.

3. MATHEMATICAL PROPERTIES

Some basic mathematical properties such as ordinary moments, quantile function and
moment generating function are derived in this section.

3.1. Moments

Some of the most important characteristics (tendency, dispersion, skewness and kurto-
sis) of a statistical distribution can be studied through moments. Suppose that the moments
of ET (x, θ, α) can be obtained by finding the expected value of k(x); where

k(x) =


xr, for moment of order r,

etx, for moment of generating function,

eitx, for characteristic function.

Hence,

E(k(x)) =
∫ ∞

0
k(x) f(x, θ)e−αF (x,θ) (1 + α F (x, θ))dx

=
∫ ∞

0
k(x) f(x, θ)(1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k

 dx,
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which is equivalent to the expected value based on the baseline distribution

EF

(
k(x) e−αF (x,θ) (1 + αF (x, θ))

)
.

Then the expected value can be obtained using expansion technique or by using integral
estimation.

Corollary 3.1. Suppose that X is a random variable of ET-Exp, then the r-th mo-

ment is given by:

E(xr) =
∫ ∞

0
xr θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
xr e−θx

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

Using the first fourth moments one can compute numerically the population mean, variance,

standard deviation, skewness and kurtosis coefficients for some give parameter’s values.

Corollary 3.2. Suppose that X is a random variable of ET-Exp, then the moment

generating function and characteristic function are, respectively, given by:

E
(
etx

)
=

∫ ∞

0
etx θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
e(t−θ)x

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

Similarly,

E
(
eitx

)
=

∫ ∞

0
eitx θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
e(it−θ)x

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

3.2. Quantile function

The quantile function of X, say F−1(y), is given by the inverse function of F (x). Let
X follow ET (x, θ, α) family, the quantile function of X is given by:

X = Q(u) = QF (u e− α(1−u) ; θ)

where QF is the quantile function of the baseline distribution. Therefore, if U follow the
standard uniform distribution, then X = Q(u) follows the ET (x, θ, α) family.

Now assuming that our baseline function is exponential, then, after some algebra,
it follows that the Quantile function for ET-Exp distribution can be written as:

X = −
log(−W (uα eα)−α

α )
θ

where W (.) is the Lambert W function.
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3.3. Order statistics

Let X(1), X(2), ..., X(n), be the order statistics of a random sample X1, X2, ..., Xn from
the distribution with PDF g(x) and CDF G(x). Then, the PDF of the i-th order statistics
X(i) is given by:

(3.1) gX(i)
(x) =

n!
(i− 1)!(n− i)!

g(x)[ G(x)](i−1) × [1−G(x)](n−i).

By substituting equations (1.1) and (1.2) into equation (3.1), it follows that the PDF of the
i-th order statistics X(i) of the ET-family is given by:

gX(i)
(x) =

n!
(i− 1)!(n− i)!

f(x, θ)e−αSF (x, θ) (1 + αF (x, θ))
[
F (x, θ)e−αSF (x, θ)

](i−1)

×
[
1− F (x, θ)e−αSF (x, θ)

](n−i)
.

(3.2)

Assuming the baseline distribution is the exponential distribution, then the equation (3.2)
will be:

gX(i)
(x) =

n!
(i− 1)!(n− i)!

θe−(θx+αe−θx)
(
1 + α(1− e−θx)

) [
e−αe−θx

(
1− e−θx

)](i−1)

×
[
1− e−αe−θx

(
1− e−θx

)](n−i)
.

(3.3)

3.4. Entropy measure

Entropy of a variable is a measure of variation of the uncertainty and it is widely used
in science, e.g., physics and engineering. Here, we focus our attention on two types of entropy,
namely Rényi and Tsallis.

3.4.1. Rényi entropy

The Rényi entropy of a random variable X with distribution g(x) of order δ, where
δ > 0 and δ 6= 1, can be obtained as follows:

(3.4) R(δ) =
1

1− δ
log

(∫
gδ(x)dx

)
.

By substituting equations (1.2) into equation (3.4) leads to

R(δ) =
1

1− δ
log

(∫ (
f(x, θ)e−α F (x,θ)(1 + α F (x, θ))

)δ
dx

)
.

Moreover, The Rényi entropy for ET-Exp distribution is:

R(δ) =
1

1− δ
log

(∫ ∞

0

(
θe−(θx+αe−θx)

(
1 + α(1− e−θx)

))δ
dx

)

=
1

1−δ
log

∫ ∞

0

e−θx
(
1+ α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)kδ

dx

.
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3.4.2. Tsallis entropy

The Tsallis entropy of a random variable X with distribution g(x) of order λ, where
λ > 0 and λ 6= 1, can be obtained as follows:

(3.5) S(λ) =
1

1− λ

(
1−

∫
gλ(x)dx

)
.

By substituting equations (1.2) into equation (3.5) leads to

S(λ) =
1

1− λ

(
1−

∫ (
f(x, θ)e−α F (x,θ)(1 + α F (x, θ))

)λ
dx

)
.

Moreover, the Tsallis entropy for ET-Exp distribution is:

S(λ) =
1

1− λ

(
1−

∫ ∞

0

(
θe−(θx+αe−θx)

(
1 + α(1− e−θx)

))λ
dx

)
,

S(λ) =
1

1−λ

1−
∫ ∞

0

e−θx
(
1+ α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)(
1− e−θx

)k

λ

dx

.

4. PARAMETER ESTIMATION

In this section, estimation of the unknown parameters of the ET (x, θ, α) family of
distributions based on complete samples are determined using method of moment (MOM)
and maximum likelihood estimation (MLE) method. Let x1, x2, ..., xn be the observed values
from ET (x, θ, α) family.

4.1. Method of moment

The MOM estimator can be obtained by solving the following equations:

EF

(
x e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 xi

n
,

EF

(
x2 e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 x2

i

n
.

Using Mathematica, we may replace the first moment of ET-Exp family by:

E(X) =
1
αθ

(
1− e−α + α

(∫ α

0

sinh(t)
t

dt−
∫ α

0

cosh(t)− 1
t

dt

))
=

1
αθ

(
1− e−α + α

(
log(α)− Chi(α) + Shi(α) + γγγ

))
,
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while the second moment can be replaced by the following formula:

E
(
X2

)
=

2
(
α2

3F3(1, 1, 1; 2, 2, 2;−α) + log(α) + Γ(0, α) + γγγ
)

αθ2

where γγγ is Euler’s constant, with numerical value ≈ 0.577216, the incomplete gamma function
satisfies

Γ(0, α) =
∫ ∞

α

e−t

t
dt

and 3F3(1, 1, 1; 2, 2, 2;−α) is the generalized hypergeometric function.

4.2. Maximum likelihood estimation method

Using the MLE, the point estimator of the unknown parameter can be obtained by
solving the following likelihood function:

L =
n∏

i=1

f(xi, θ) e−αF (x,θ) (1 + α F (xi, θ)).

Taking the Log of the likelihood function will simplify the estimation problem:

Log L =

{
n∑

i=1

Log(f(xi, θ))−
n∑

i=1

αF (xi, θ) +
n∑

i=1

Log(1 + α F (xi, θ))

}
.

Now, we have to find the first order condition:

d Log L

dθ
=

n∑
i=1

df(xi, θ)/dθ

f(xi, θ)
+

n∑
i=1

α f(xi, θ) +
n∑

i=1

α f(xi, θ)
1 + α F (xi, θ)

,

d Log L

dα
= −

n∑
i=1

F (xi, θ) +
n∑

i=1

F (xi, θ)
1 + α F (xi, θ)

.

Then setting each of the first order conditions to zero and using a numerical method
we can find the optimal estimator of the unknown parameters.

Similarly, taking the exponential case, the MLE the point estimator of the unknown
parameter can be obtained by solving the following likelihood function:

L =
n∏

i=1

θe−(θxi+αe−θxi)
(
1 + α(1− e−θxi)

)
.

Taking the Log of the likelihood function will simplify the estimation problem:

Log L =

{
n∑

i=1

Log
(
θe−θxi

)
−

n∑
i=1

αe−θxi +
n∑

i=1

Log(1 + α(1− e−θxi))

}
.

Now, we have to find the first order condition:

d Log L

dθ
=

n∑
i=1

(
1
θ
− xi

)
+

n∑
i=1

α θe−θxi +
n∑

i=1

α θe−θxi

1 + α(1− e−θxi)
,

d Log L

dα
= −

n∑
i=1

e−θx +
n∑

i=1

(1− e−θxi)
1 + α(1− e−θxi)

.

The non-linear equations above can not be solved analytically, and thus we have used
an R-code to solve it analytically on R-software (R Core Team, 2021).
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5. SIMULATION

In this section, we study the performance of ML estimators for different sample sizes,
i.e, n= 50, 75, 100, 250, and 400. We have employed the inverse CDF technique for data
simulation for ET-Exp distribution using R software. Bias, Variance and MSE for the
ET-Exp distribution are observed. As it was expected, Table 1 shows that as the sample
size increase, the values of MSE are getting smaller for the parameter estimate.

Table 1: Estimate, Bias and Mean Square Error of MLEs of parameters α and θ.

Sample Size θ = 0.1 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 0.10264 −0.00264 0.00020 3.28413 −0.28412 1.26297
75 0.10165 −0.00165 0.00013 3.17688 −0.17688 0.73347
100 0.10132 −0.00132 0.00009 3.13598 −0.13598 0.53885
250 0.10042 −0.00042 0.00004 3.05039 −0.05039 0.18580
400 0.10031 −0.00031 0.00002 3.03191 −0.03191 0.11652

Sample Size θ = 3.1 α = 0.2

n Estimate Bias MSE Estimate Bias MSE

50 3.35913 −0.25913 0.51010 0.38221 −0.18221 0.20171
75 3.27712 −0.17712 0.32454 0.32181 −0.12181 0.12360
100 3.23269 −0.13269 0.23782 0.29313 −0.09313 0.09281
250 3.15159 −0.05159 0.09936 0.23775 −0.03775 0.03938
400 3.12687 −0.02686 0.06317 0.22022 −0.02022 0.02522

Sample Size θ = 6 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 6.15306 −0.15306 0.73829 3.27790 −0.27789 1.26813
75 6.09756 −0.09756 0.45751 3.17543 −0.17543 0.73278
100 6.09033 −0.09033 0.34335 3.14626 −0.14626 0.53472
250 6.03441 −0.03441 0.13502 3.05740 −0.05740 0.19413
400 6.01596 −0.01596 0.08147 3.03188 −0.03188 0.11481

Sample Size θ = 0.6 α = 0.3

n Estimate Bias MSE Estimate Bias MSE

50 0.63933 −0.03933 0.01777 0.45488 −0.15488 0.22516
75 0.62767 −0.02767 0.01160 0.40929 −0.10929 0.14199
100 0.62057 −0.02057 0.00878 0.38447 −0.08447 0.11042
250 0.60632 −0.00632 0.00367 0.32713 −0.02713 0.04553
400 0.60414 −0.00414 0.00242 0.31588 −0.01588 0.03049
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6. APPLICATION

In this Section, we demonstrate the capability of the ET-Exp distribution by fitting
the model to four datasets, namely over the Gompertz, Exponential, Lindley, Weibull, and
Generalized Exponential (GE) distributions. For theses four datasets, the maximum likeli-
hood procedure is used to estimate the parameters of each distribution. Using the obtained
estimates, we get the values of Akaike information criterion (AIC), Bayesian information
criterion (BIC) and − log L.

Moreover, we find the Kolmogorov-Smirnov (K-S) statistic with its corresponding
P-value (P-Val), and Anderson-Darling (AD) statistics. Basic descriptive statistics are cal-
culated for all datasets, including the five number summary, mean, variance, skewness and
kurtosis. The distribution with the lowest AIC, BIC, and −Log L is considered as the most
flexible distribution for a given dataset.

Growth hormone data: The first set of data consists of 40 observations represents
the estimated time since given growth hormone medication until the children reached the
target age in the Programa Hormonal de Secretaria de Saude de Minas Gerais (Lemos de
Morais, 2009). The dataset was analyzed by Alizadeh et al. (2018). The datasets are: 2.15,
2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42,
4.51,4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82,8.00, 8.16, 8.21, 8.72, 10.40, 13.20,
13.70.

Table 2 provides the descriptive statistics for this data set and Table 3 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 2: The descriptive statistics for the growth hormone medication data set.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set I 35 2.15 3.23 4.51 6.365 5.306 13.7 1.3706 4.4008 8.4754

Table 3: MLEs and goodness of fit statistics for the growth hormone medication data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.18 0.50 87.10 0.21 0.10 1.81 0.12 178.20 181.30
Lindley 0.33 87.47 0.25 0.03 2.41 0.055 176.95 178.50

Exponential 0.19 93.41 0.33 0.0008 4.49 0.005 188.81 190.37
ET-Exp 7.18 0.52 79.84 0.11 0.83 0.63 0.62 163.68 166.79
Weibull 1.99 6.03 82.49 0.15 0.45 0.98 0.37 168.98 172.09

GE 6.51 0.48 79.10 0.10 0.86 0.53 0.72 162.20 165.31
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 3: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gompertz, (b) Lindly, (c) Exponential, and (d) ET-Exponential, (e) Weibull,
and (f) Generalized-Exponential for the growth hormone medication dataset.



Stochastic generator of a new family of lifetime distributions with illustration 153

Flood data: The second set of data has been presented by Dumonceaux and Antle
(1973) and acts the maximum flood levels (in million of cubic feet/s) of the Susquehanna
River at Harrisburg, Pennsylvania from 1890 to 1969, and its values are: 0.645, 0.613, 0.315,
0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.218, 0.412, 0.494, 0.416, 0.338,
0.392, 0.484 and 0.265.

Table 4 provides the descriptive statistics for this data set and Table 5 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 4: The descriptive statistics for the maximum flood levels
of the Susquehanna River data set.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set II 20 0.218 0.3217 0.397 0.4577 5.4127 0.74 0.9116 3.368 0.0176

Table 5: MLEs and goodness of fit statistics for the maximum flood levels
of the Susquehanna River data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 6.08 0.06 −9.71 0.19 0.47 1.06 0.32 −15.42 −13.43
Lindley 3.02 1.72 0.41 0.002 4.42 0.006 5.42 6.42

Exponential 2.42 2.3 0.42 0.0015 4.66 0.004 6.6 7.59
ET-Exp 33.65 10.01 −14.36 0.11 0.97 0.19 0.99 −24.71 −22.72
Weibull 3.31 0.46 −12.43 0.17 0.63 0.58 0.67 −20.86 −18.87

GE 31.81 9.83 −14.38 0.11 0.97 0.19 0.99 −24.75 −22.76
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 4: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gompertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the flood dataset.
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Rock samples data: The third set of data is given by Cordeiro and dos Santos
Brito (2012) consists of the shape perimeter by squared (area) from measurements of 48 rock
samples from a petroleum reservoir. The data are listed as follows: 0.0903296, 0.2036540,
0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 0.1794550,
0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250,
0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950,
0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730,
0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530,
0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470

Table 6 provides the descriptive statistics for this data set and Table 7 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 6: The descriptive statistics for the rock samples
from a petroleum reservoir.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set III 48 0.0903 0.1623 0.1989 0.2627 0.2181 0.4641 1.1693 4.1098 0.00697

Table 7: MLEs and goodness of fit statistics for the rock samples
from a petroleum reservoir data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.14 8.22 −45.25 0.18 0.10 2.57 0.05 −86.50 −82.75
Lindley 5.31 −25.63 0.38 0.00 9.33 0.00 −49.26 −47.39

Exponential 4.58 −25.09 0.39 0.00 9.57 0.00 −48.18 −46.31
ET-Exp 19.41 16.60 −57.94 0.10 0.71 0.31 0.93 −111.89 −108.15
Weibull 2.75 0.25 −52.74 0.15 0.23 1.23 0.26 −101.48 −97.74

GE 17.84 16.06 −58.10 0.10 0.74 0.27 0.96 −112.14 −108.45
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 5: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the rock sample dataset.



Stochastic generator of a new family of lifetime distributions with illustration 157

Ball bearings failure time data: The fourth set of data is obtained from Gupta and
Kundu (1999) represents the number of million revolutions before failure of 23 endurance of
deep-groove ball bearings in the life test. These failure times are: 17.88, 28.92, 33.00, 41.52,
42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04 and 173.40.

Table 8 reveals certain descriptive statistics regarding this data set and Table 9 provides
the results of MLEs and goodness of fit tests for this data set using each distribution.

Table 8: The descriptive statistics for the ball bearings failure time data.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set IV 23 17.88 47.00 67.80 95.88 72.22 173.40 0.94 3.49 1405.58

Table 9: MLEs and goodness of fit statistics for the ball bearings failure time data.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.33 0.02 115.98 0.15 0.65 0.73 0.53 235.96 238.23
Lindley 0.027 115.74 0.19 0.36 0.93 0.34 233.47 234.61

Exponential 0.014 121.43 0.31 0.03 0.31 0.03 244.87 246.00
ET-Exp 5.99 0.035 113.11 0.11 0.93 0.22 0.98 230.22 232.50
Weibull 2.10 81.87 113.69 0.15 0.67 0.32 0.91 231.38 233.65

GE 5.28 0.032 112.98 0.11 0.96 0.19 0.99 229.96 232.23
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 6: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the ball bearings failure time data.
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It can be seen that for the four datasets, GE and ET-Exp distributions have the small-
est values of the Kolmogorov-Smirnov (largest P-values), Anderson-Darling, AIC and BIC
goodness-of-fit tests statistics which indicate that the best fit is provided by the GE and ET-
Exp distributions for these data sets. Based on the values of these statistics, we conclude that
the GE and ET-Exp distributions provide the best fit in all the data sets examined. In the
cases considered, the ET-Exp and GE performed far better than the Gompertz, Lindly and
Exponential distributions while the Weibull distribution performed better than Gompertz
and Lindly but not as good as ET-Exp and GE.

7. CONCLUDING REMARKS

A new family of lifetime distributions referred to as exponential transformation (ET)
with flexible and desirable properties is proposed. Properties of the ET distribution and a
sub-distribution were presented. The PDF, CDF, moments, hazard function, reliability and
quantile function were presented. Entropy measures including rényi entropy, tsallis entropy
for ET distribution were also derived. Estimate of the model parameters via the method of
maximum likelihood obtained and applications to illustrate the usefulness of the proposed
model to real data given. The applications provided show that ET distribution performs
better than other several models in the literature.
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