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1. INTRODUCTION

When examining any problem, more than one independent variable may be related to
the dependent variable. In order to explain the relationship between such variables, linear
regression analysis is the most frequently used technique in statistical models. On the basis of
the technique; while evaluating an observed event, it is essential to investigate which events
are affected. These events may be one or more, as well as indirectly or directly affected. The
technique expresses to what extent the observation values and the affected events are related
with the help of a function. Generally, what percentage of the total change in an observed
event can be explained by the affected event is evaluated according to the coefficient of
determination. However, due to the occurrence of diagnostic procedures related to events in
health services (disease, birth, death, etc.) at several levels, complex clinical uncertainties
may arise in the relationships due to the insufficiency and uncertainty of information due to
the nature of the data and various measurement methods used. In addition, as the sources
of uncertainties in clinical relationships, reasons such as the subjective nature of medical
history information, objectivity in the examination method, the fact that patient information
may contain falsehood, measurement errors in the results of laboratory and other diagnostic
tests, due to various restrictive factors, reasons such as the formation of sample sizes in
the form of small data sets is shown [21]. In these situations involving uncertainties of
medical applications, general facts are that the decisions made by experts can often cause
contradictions since valid and reliable sampling and analysis techniques are not preferred. In
this case, the calculations made have become questionable.

Various estimation techniques have been developed in order to solve these problems.
These techniques are the bootstrap resampling method developed by Efron [21] and fuzzy least
squares regression (FLSR) analysis technique by Tanaka et al. [59], [24]. The techniques can
also be used as a correction method in cases where the assumptions about the error values of
the regression model are not realized [55]. These can ensure that there is no difference between
the actual observation value and the estimated values or that the difference is minimal. Fuzzy
regression analysis is a valid and reliable technique for investigating and predicting data sets
by measuring a concept that contains some degree of ambiguity or uncertainty [56]. In
models where the data are insufficient or imperfect, caused by the imprecision or vagueness,
it has been proven to be useful to use fuzzy models [9], [64]. The importance of using the
bootstrap resampling technique and fuzzy regression technique in analysis for estimating
model parameters has been increasingly recognized in recent years. Bootstrap resampling
technique and fuzzy least squares technique are alternative techniques used in many areas
such as time series and simulation in estimating linear and non-linear regression parameters.

This study aims to give illustration and application of bootstrap resampling technique
in fuzzy least squares regression analysis in examining the clinical relationships between vari-
ables. Because classical least-squares technique is influenced by the outliers, therefore the
presents of outliers may distort the estimates. Accordingly, bootstrap fuzzy regression meth-
ods have been created to modify least-squares methods so that the outliers have much less
influence on the final estimates. We proposed the bootstrap fuzzy least squares regression
technique as the estimation approach. The proposed model fitting approach is highly ro-
bust to the presence of outliers and properly determines outlier points and neutralizes the
negative influence of outliers in the estimation procedure. In addition, we can provide more
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general approaches that can consider different estimation scenarios. Some hierarchical algo-
rithms concerning bootstrap technique in OLS and fuzzy least squares regression analysis are
demonstrated. The basics of the bootstrap resampling technique and their applications to
the clinic numerical example that can be described by fuzzy least squares regression model
were discussed and compared the results with ordinary least squares regression technique
results. It was also aimed to estimate the bias, standard error and confidence interval of
the regression coefficients calculated by the techniques and to compare the performance of
bootstrap ordinary least squares technique (BOLS) with the related estimates using some
comparison criteria. The expectation for the future research topic on fuzzy regression is that
many other new proposals and applications will appear in this context. The extension of the
proposed procedure to the case of fuzzy input-fuzzy output observations, potential subjects
for future researches. It turns out that traditional/common methods in the literature, as well
as several other robust methods of fuzzy regression, can be formulated as special instances of
bootstrap fuzzy regression.

2. BOOTSTRAP RESAMPLING TECHNIQUE

One of the most important purposes of statistical analysis is that the sample taken
from the population must represent the population. The bootstrap resampling technique
was developed by Efron [20] as a general technique for assessing the statistical accuracy of an
estimator. The main purpose of the technique is to calculate the predictive θ value by choosing
random samples with width n volumes, independent of a certain unknown distribution f(x; θ)
and accept it as the predictor of the parameter θ. The bootstrap resampling technique is
theoretically used to estimate values associated with the sampling distribution of estimators
and test statistics.

The ordinary sampling techniques use some assumptions related to the form of the esti-
mator distribution. These are the cases where standard assumptions are invalid, e.g. n volume
is small, data contains uncertainty, data shows non-standard twist. In these situations, the
use of these standard techniques may not give reliable and valid results. When these assump-
tions are doubtful or when the calculation of standard errors is necessary when parametric
inference is impossible, the bootstrap resampling technique makes calculations without the
need for these distributive assumptions because the sample population is considered [21]. The
results calculated by the estimators can be used as an experimental distribution for statistics
[11], [20]. The technique has been rarely used, although it is used to generate the estimation
of the standard error of a statistic, confidence intervals and distributions by repeated use of
the observed data [21], [23], [24], [53].

With the application of the in 4.1. bootstrap algorithm, the bias between population
parameters and estimators will be reduced without increasing the sample size, and by obtain-
ing the sampling distributions of the estimators, it will be provided to calculate the standard
error of the estimators more accurately [10], [15], [16].
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3. FUZZY LEAST SQUARES REGRESSION (FLSR) ANALYSIS

Fuzzy regression analysis is a fuzzy (or possibility) type of ordinary regression analysis.
Fuzzy regression analysis studies the relationships between a response variable and a set of
explanatory variables in complex systems involving imprecise data. The approach is one of
the most widely used statistical techniques for evaluating the functional relationship between
dependent and independent variables in uncertainty situations. In fuzzy regression analysis,
the relationship between dependent variables and independent variables is not as precise as in
ordinary regression analysis [64]. In these uncertain cases, fuzzy techniques can explain the
effects of independent variables in a more realistic way. A commonly used technique of the
parameter estimation of the fuzzy regression model is the least-squares method. The fuzzy
least squares (FLS) technique, which is an extension of the least squares technique to fuzzy
set theory, was used by to estimate fuzzy parameters [9], [17], [64]. These methods are very
important because sometimes even a single observation can change the value of the parameter
estimates, and omitting this observation from the data may lead to totally different estimates
[12], [19], [31].

The approach is based on blurring the coefficients. Blurring can be done in two ways.
It is possible by 1) blurring the model coefficients estimated by the ordinary least squares
technique at a specified “h level”, or 2) estimating the coefficients as fuzzy numbers [29],
[45], [48]. However, in 1988, Diamond [18] concluded that “Tanaka et al. [61] used linear
programming techniques to develop a model superficially resembling linear regression, but
it is unclear what the relation is to a least squares concept, or that any measure of best fit
by residuals is present”. Most of the researches on fuzzy regression analysis focuses on the
possibilistic regression [59], [61] and on the fuzzy Least-Squares (LS) regression [8], [18]. Re-
cently, robust approaches to fuzzy regression have been considered as alternative approaches
to fuzzy regression analysis [13], [15]. The bootstrap resampling technique using fuzzy data is
developed in different approaches [46], [58] have considered the problem of hypothesis testing
about the mean of a fuzzy random variable. Akbari and Rezaei [1] present a bootstrap fuzzy
test for variance. Ferraro et al. (2010) [27] “International Journal of Approximate Reasoning
51 (2010) 759–770” proposed to use of a bootstrap procedure to evaluate the accuracy of the
estimators in FLS regression. This idea is also investigated and proposed by many authors
like “Akbari et al. (2012) [2], [24]. In this regard, Peters (1994) [51] considered outliers in
Tanaka’s possibilistic approach [59] with crisp input-output data which was later extended
by Chen (2001) [10] to the model with fuzzy output-crisp input data. Hung and Yang (2006)
[31] proposed an omission approach for Tanaka’s approach [59] which had the ability to con-
sider the effect of each observation while omitted on the value of the objective function of
the model. Nasrabadi et al. (2007) [49] proposed an LP-based approach to outliers detection
in fuzzy regression analysis. Varga (2007) [63] presented robust estimation approaches to
fuzzy and non-fuzzy regression models. Nasrabadi and Hashemi (2008) [50] suggested a ro-
bust nonlinear fuzzy regression model using multilayered feedforward neural networks. Kula
and Apaydin (2008) [36] proposed a robust fuzzy regression analysis based on the ranking
of fuzzy sets. D’Urso and Massari (2013) [19] proposed weighted least-squares and least-
median squares estimation for fuzzy linear regression analysis. Yang, Yin and Chen (2013)
[66] present a robustified fuzzy varying coefficient model for fuzzy input-fuzzy output vari-
ables. Shakouri and Nadimi (2013) [57] investigated a method for outlier detection in fuzzy
linear regression problems. Ferraro and Giordani (2013) [28] dealt with robustness in the
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field of regression analysis for imprecise information managed in terms of fuzzy sets. Leski
and Kotas (2015) [41], by introducing an objective function based on Huber’s M-estimators
and Yager’s OWA operators, proposed a robust fuzzy-regression model. Chachi (2019) [12]
introduced a weighted objective function to overcome the disadvantages of the LS fuzzy re-
gression approaches in the presence of outliers. Arefi (2020) [5] investigated a quantile fuzzy
regression based on fuzzy outputs and fuzzy parameters. Akbari and Hesamian (2019) [3]
investigated a partial-robust-ridge-based regression model with fuzzy predictors-responses.
Bootstrap fuzzy resampling technique tests for the mean and variance with Dp, q-distance
[52]. They proposed bootstrap fuzzy linear regression model (BFLRM), a linear regression
model with fuzzy dependent, crisp explanatory and fuzzy coefficients [59], [60]. Most of these
developed fuzzy regression models are evaluated with fuzzy outputs and fuzzy parameters but
non-fuzzy (net) inputs. Fuzzy least squares regression (FLSR) analysis technique, which is
generally based on linear programming (LP), is proposed in order to minimize the fuzziness
of the analyzed data and the total spread of the output (see, for example [12], [17] [29]).
Hesamian and Akbari (2020) [32] proposed a robust varying coefficient approach to fuzzy
multiple regression model. Hesamian and Akbari (2021) [33] adopted a two-stage robust pro-
cedure to propose and estimate the components of a robust multiple regression model with
fuzzy intercepts and crisp coefficients. Khammar et al. (2020) [37], Khammar et al. (2021)
[38], Khammar et al. (2021) [39] presented general approaches to fit fuzzy regression models
crisp/fuzzy input and fuzzy output. Asadolahi et al. (2021) [6] proposed a robust support
vector regression with exact predictors and fuzzy responses. Taheri and Chachi (2021) [62]
investigated a robust variable-spread fuzzy regression model. Chachi and Chaji (2021) [14]
considered quantile fuzzy regression using OWA operators. In the context of multi-attribute
decision-making problems, Chachi et al. (2021) [13] developed a multi-objective two-stage
optimization and decision technique for fuzzy regression modeling problems in order to han-
dle both of the weak performances analysis of fuzzy regression models and their sensitivity
to outliers. As mentioned above, during the last years, considerable attention was given to
robust estimation problems in fuzzy environments, and several methodologies were developed
in the literature [15].

According to the FLSR approach, it is assumed that the deviations between the ob-
served values and the predicted values are caused by the uncertainty of the system structure
or the blurring of the regression coefficients, not from measurement and observation errors,
contrary to the OLSR analysis method [9]. That is, it assumes that the coefficients of the
regression analysis model are related to its blur. For this purpose, the formula below is
employed to estimate parameters of FLSR:

(3.1) f = X × β̃ → Ỹi, Ỹi = f
(
β̃, X

)
It is given by the function 1. Here, Ỹi, denotes the fuzzy dependent variable in the

symmetric triangular property structure estimated and is shown as Ỹi = (ỹc, ẽs), ỹc denotes
the mean value (center), and ẽs denotes the spread value.

In the case of fuzzy observations, consider a fuzzy linear regression for crisp explanatory
and fuzzy response observations as follows:

(3.2.a) Ỹ i = f
(
β̃, X

)
= β̃

0
+ β̃1Xi1 + ... + β̃p−1Xi(p−1) = β̃0 +

n∑
i=1

β̃iXi
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(3.2.b) Ỹi = {c0, s0}+ {c1, s1}Xi1 + {c2, s2}Xi2 + ... + {cp−1, sp−1}Xi(p−1)

in which β̃j =
[
β̃0 and β̃1, β̃2, β̃3, ...β̃j ......, β̃p−1

]t
are the coefficient values of the independent

variables in the function and it is a set of dependent and independent variables formed
in the form of

{
Yi, Xi1, Xi2, X i3, ..., X(p−1)n

}
= {Yi, Xij }, and each dependent variable

observation is expressed as xεX (i = 1, ..., n, j = 1, 2, ..., p− 1). That is, they are crisp
values of the explanatory variables. It is defined by (i = 1, 2, 3, ..., n). In the fuzzy least
squares regression model, the data of the dependent Ỹi variable can be real numbers or fuzzy
numbers. It is generally assumed that the data for the dependent Yi variable are symmetrical
fuzzy numbers of interval type [35].

β̃j =
[
β̃0 ve β̃1, β̃2, β̃3, ...β̃j ......, β̃p−1

]t
are fuzzy regression coefficients vectors with a

symmetric triangular fuzzy number structure and they are fuzzy numbers in the form of
β̃j = (cj , sj)β̃j , (j : 0, 1, 2, 3, ..., p− 1).cj , is the µ

eβi
(cj) = 1 value representing the midpoint

of the coefficients, that is, the center value, and has the form cj = [c1, c2c3, ..., cn]t. sj , shows
the spread of the coefficients belonging to the fuzzy regression analysis model and is sj =
[s1, s2, s3, ..., sn ]t shaped [64].

Each coefficient value β̃i = {cj , sj} =
{

β̃i : cj − sj ≤ β̃i ≤ cj + sj

}
has a symmetric

triangular property structure and is β̃i(j : 0, 1, 2, 3, ..., p− 1) [59].

The β̃i = {cj , sj} value of the fuzzy coefficients was estimated by the minimum blur
method proposed by Tanaka. The method is given in the following equation. In least squares
regression analysis proposed by Tanaka and Watada (1988) [60], the linear programming
(LP) formulation considers triangular membership functions (not necessarily symmetric).
The spreads of the calculated fuzzy coefficients are calculated with the help of equation. The
LP formulation is as follows (3):

(3.3) min Z(x) st|Xi| =
min
c, s

[
s0 +

n∑
j=0

sj |Xij |

]

min
c, s

J = c1, c2, .., cn , cj ≥ 0, ∀i, i = 1, 2, ..,m and

min
c, s

J = s
1

, s2, ..., sn, sj ≥ 0 ∀i, j = 0, 1, 2, ..., n

n∑
j=0

cjXij + (1− h)

[
n∑

j=0
sj |Xij |

]
≥ ỹc + (1− h)ẽs ∀i, i = 1, 2, ..., n

n∑
j=0

cjXij − (1− h)

[
n∑

j=0
sj |Xij |

]
≤ ỹc − (1− h)ẽs ∀i, i = 1, 2, ..., n

Here Z(x) : function shows the total blur in the model. m: is the number of observations
regarding the dependent variable. j : the number of independent variable xij : is the i-th
observation value of the j-th independent variable. For each predicted Ỹi observation value,
the constraint number must be 2xn [43]. In order to minimize the total spread, the level
h, Ỹi, the predictor of each observation value Yi, is assumed to have a turbidity tolerance
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µ
eYi

(Yi) ≥ h i = 1, 2, ..,m [30]. In Equation 3, the objective function is weighted with the
absolute values of the measurements of the distributions of the independent variables. The
application of bootstrap resampling technique in fuzzy least squares regression analysis is
given below.

4. BOOTSTRAP FUZZY REGRESSION ANALYSIS

In this section, we introduce bootstrap resampling technique procedure. In general,
regression technique for bootstrap is divided into two approaches: the first is based on the re-
sampling observations approach and the second is based on the resampling errors. Bootstrap
technique based on resampling errors is known as more suitable for the case of deterministic,
whereas bootstrap resampling technique based on the drawing i.i.d. sample from the obser-
vations pairs is more appropriate for the case of random. However, bootstrap resampling
technique pairs can also be used for deterministic [1]. The bootstrap is a “model-dependent”
technique in terms of its implementation and performance although the bootstrap requires
no theoretical formula for the quantity to be estimated and is less model-dependent than
the traditional approach. In this paper, we use bootstrap technique based on the resampling
errors. The bootstrap fuzzy regression analysis procedure is as follows:

Method: To describe the resampling methods we start with an n sized sample wi =
(Yi, Xji)

′ and assume that wi′s are drawn independently and identically from a distribution
of F, where Yi = (y1, y2, .., yn)′ contains the responses, Xji = (xj1, xj2, ..., xjn)′ is a matrix of
dimension nxk, where j = 1, 2, ...k, i = 1, 2, 3, ..., n.

4.1. Bootstrapping Regression Algorithm

Here, two approaches for bootstrapping regression methods were given. The choice of
either methods depends upon the regressors are fixed or random. If the regressors are fixed,
the bootstrap uses resampling of the error term. If the regressors are random, the bootstrap
uses resampling of observation sets wi [55].

4.2. Bootstrap Based On The Resampling Errors

If the regressors are fixed, as in desing experiment, then the bootstrap resampling must
preserve that structure. The bootstrap procedure based on the resampling errors as follows
[55]:

1(e). Fit the full-sampling least-squares regression equation to estimate the regression coeffi-
cients of the model (6.a).

2(e). Calculate the ei values
(
ei = Y i − Ŷi

)
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3(e). Draw an n sized bootstrap random sample with replacement e
(b)
1 , e

(b)
2 , e

(b)
3 , ..., e

(b)
n from

the ei values calculated in step 2(e) giving 1/n probability each ei values and Calculate the
centered residual of ¯̂

ie
(b) [42] [53] [65]:

4(e). Compute the bootstrap Y
(b)
i values by adding resampled residuals onto the ordinary

least squares regression fit, holding the regression desing fixed [16] [55].

(4.1) Y
(b)
i = Xβ̂ + ¯̂

ie
(b)

5(e). Obtain least squares estimates from the 1-th bootstrap sample:

(4.2) β̃(b1) = (X ′X)−1X ′Y (b) (we need Y ∗)

(4.3) β̃(b1) = β̂(X ′X)−1X ′e(b) (we do not need Y ∗)

6(e). Repeat steps 3(e), 4(e) and 5(e) for r = 1, 2, ..., B, and proceed as in resampling with
random regressors 7(e) and 8(e).

An illustrative example that presents how the regression parameters are estimated from
the bootstrap based on the resampling observations was given in Table 1.

By resampling residuals and randomly reattaching them to fitted values, the procedure
implicitly assumes that the errors are identically distributed. Bootstrapping draws an analogy
between the fitted value Ŷi in the sample and Y in the population, and between the residual
ei in the sample and the error εi in the population [21]. In bootstrap resampling technique
principle, the sample represents the population as the bootstrap samples. According to the
weak law of large numbers, the empirical distribution function converges in probability to the
true distribution function [42]. Note that define the bootstrap observation Y

(b)
i , by treating

β̂ as the “true” parameter and e
(b)
i as the “population” of errors [54].

7(e). Obtain the probability distribution
(
F

(
β̃(b)

))
of bootstrap estimates β̃(b1), β̃(b2), ..., β̃(bB)

and use the
(
F

(
β̃(b)

))
to estimate regression coefficients, variances and confidence intervals

as follows. The bootstrap estimate of regression coefficient is the mean of the distribution(
F

(
β̃(b)

))
[25] [55].

(4.4) β(b) =
B∑

b=1

β(br)/B = β(br)

8(e). Thus, the bootstrap regression equation is

min
ac, as

J1=

c0 + Xi1 ∗ c1 + Xi2 ∗ c2 + Xi3 ∗ c3 + Xi4 ∗ c4− s0−Xi1 ∗ s1−Xi2 ∗ s2−Xi3 ∗ s3−Xi4 ∗ s4 <= Y1

c0 + Xi1 ∗ c1 + Xi2 ∗ c2 + Xi3 ∗ c3 + Xi4 ∗ c4− s0 + Xi1 ∗ s1 + Xi2 ∗ s2 + Xi3 ∗ s3 + Xi4 ∗ s4 >= Y1



min
ac, as

Jn=

c0 + Xi150 ∗ c1 + Xi150 ∗ c2 + Xi150 ∗ c3 + Xi150 ∗ c4− s0−Xi150 ∗ s1−Xi150 ∗ s2−Xi150 ∗ s3−Xi150 ∗ s4 <= Y1

c0 + Xi150 ∗ c1 + Xi150 ∗ c2 + Xi150 ∗ c3 + Xi150 ∗ c4− s0 + Xi150 ∗ s1 + Xi150 ∗ s2 + Xi150 ∗ s3 + Xi150 ∗ s4 >= Y1



(4.5) Ỹi = f
(
β̃, x

)
= β̃

(b)
0 + β̃

(b)
1 x

(b)
j1 + β̃

(b)
2 x

(b)
j2 + ... + β̃

(b)
s x

(b)
jn

where β̃
(b)
0 is unbiased estimator of β [40].
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4.3. The bootstrap bias, variance, confidence and percentile interval. The bootstrap
bias equals,

(4.6) biasb = β̃(b) − β̃

Further discussion are described in Efron and Tibshirani (1998) [23]. The bootstrap
variance from the distribution

(
F

(
β̃(b)

))
are calculated by [53] [55].

(4.7) var
(
β̃(b)

)
=

B∑
i=1

[(
β̃(br) − β̃(b)

)(
β̃(br) − β̃(b)

)′
]/

(B − 1), r = 1, 2, ..., B

The bootstrap confidence interval by normal approach is obtained by

(4.8)
(
β̃(b) − tn−p, α

2
∗ Se

(
β̃(b)

)
< β < β̃(b) + tn−p, α

2
∗ Se(β̃(b))

)
= 1− α

where tn−p, α
2

is the critical value of t with probability α/2 the right for n− p degrees of

freedom, and Se

(
β̃(b)

)
is the standard error of the β̃(b). If the sample size is n ≥ 30, then Z

distribution values are used instead of t in estimation of confidence intervals [22].

A non-parametric confidence interval named percentile Interval can be constructed from
the quantiles of the bootstrap sampling distribution of β̃(b). The (α/2)% and (1− α/2)%
percentile interval is

(4.9) β̃
(br)
(lower) < β < β̃

(br)
(upper)

where β̃(br) is the ordered bootstrap estimates of regression coefficient from Equation 9 or 10,
lower=(α/2)B and upper=(1− α/2)B.

5. ILLUSTRATIVE EXAMPLE

Numerical examples are used to illustrate the fuzzy regression model that are summa-
rized in previous sections. This example focuses on illustration and application of bootstrap
technique in fuzzy regression analysis. Rapidly changing scientific and technological devel-
opments in recent years have negatively affected the health status of individuals by changing
their nutritional habits. One of the main indicators of a healthy life is to have a stabile body
composition. In recent years, along with the increasing prevalence of overweight and obesity
worldwide, it has become even more crucial how to have a stabile body composition. In ad-
dition to overweight and obese individuals, it has become important to maintain the stability
of body composition in the elderly, athletes and individuals with certain diseases. For such
cases, anthropo-plyometric measurements can be used to evaluate the development-growth
and nutritional status of individuals on body composition. In addition, the effects of dietary
patterns of different diseases can be monitored and body composition can be determined.

In this study, in order to estimate total fat (DEXATF ) calculated according to DEXA
method (Y ) values with minimum error, Triceps values of independent variables such as
Body Mass Index (BMI)(kg/m2)(X1), age (Y EAR) (X2) waist circumference fat percentage
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(WCFP ) (X3) were used as material in the model. These values were used in the classical
bootstrap regression analysis method (BOLSR) and fuzzy linear bootstrap regression analysis
methods (BFLSR), and the results were compared by calculating the estimated values of
the coefficients and statistical values. The sample size was determined as 50 participants in
order to determine whether more reliable results can be calculated in a shorter time with
small data sets in cases where the constraints of the classical bootstrap regression analysis
method cannot be met and the uncertainties in the datasets are not minimized.

The data used in the current study was obtained by the permissions of Drug Re-
searches Local Ethics Committee of Erciyes University Faculty of Medicine (Date: 02.12.2008,
Number: 2008/613) and Human Researches Ethics Committee of Kocaeli University (Date:
10.03.2009, Number: 2009/48) and the support of Scientific Research Project Coordination
Unit of Erciyes University (Project code: TSY-09-772). The study was conducted in accor-
dance with the principles of the Declaration of Helsinki. The study sample was consisted
of randomly selected 137 voluntary participants, aged between 18-65 years and admitted to
Kocaeli University, Faculty of Medicine, Department of Nuclear Medicine from May to July
2009. Of the participants, 67 (50%) were females and 67 (50%) were males, respectively.
Women with pregnancy/suspected pregnancy and in the menstruation period, participants
with metabolic and endocrine diseases and with any systemic diseases (liver, kidney, heart)
and participants prescribed with hormonal drugs and anti-oedematous drugs were excluded.

The data pairs wi = (Yi, Xji)
′ of Table 1 population, (i = 1, ..., 50) are used to demon-

strate the proposed procedure in case where the crisp input X and crisp output Y i .

Table 1: n = 50 volume original data set.

No DEXATF (Y) BMI (X1) YEAR (X2) WCFP (X3)

1 31.20 28.30 44.00 34.82

2 26.50 21.30 26.00 44861

3 34.80 28.40 54.00 39.12

. . . . .

48 53.40 40.30 54.00 58.16

49 37.00 36.60 37.00 35.07

50 24.50 44859 24.00 19.07

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index (kg/m2); YEAR;

WCFP: Waist Circumference Fat Percentage.

The bootstrap algorithm based on error terms has been applied to the data in Table 1
as follows:

1(e). First, the ordinary least squares regression (OLSR) model was fitted to data given in
and the results of the ordinary least squares regression was summarized in Table 2.

All of the regressions in Table 2 are significant (p<0.01) and the determination of
coefficients R2 = 0.933 , respectively. The regression of total fat calculated according to
DEXA method on the Body Mass Index (kg/m2 ), YEAR and waist circumference Fat
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Percentage is significant as result of variance analysis (P<0.01**). According to the t-tests for
significance of regression coefficients, all of the regression coefficients are significant (P<0.01).
Therefore, BOLSR can be substituted as an alternative modelling approach. The illustration
of the bootstrap (B = 1000 bootstrap samples, each of size n = 30) regression procedure, from
the data given in Table 1, calculation the bootstrap estimates of the regression parameters
for each sample are shown in Table 3.

Table 2: The summary statistics of regression coefficients for OLS regression.

Variables β̂ S.E.(β̂) t Sig 95%Confidence Interval

Constant −6.973 3.031 −2.300 .026 (−13.074)–(−0.871)

BMI (X1) 0.984 0.149 6.612 .000 (0.685)–(1.284)

YEAR (X2) −0.111 0.061 −1.809 .07 (−2.234)–(0.013)

WCFP (X3) 0.399 0.125 3.177 .003 (0.146)–(0.651)

R2=0.933, N = 50, SSE = 3.720, F = 103.853**

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR: WCFP: Waist Circumference Fat Percentage; SSE: sum of squares of error.

2(e). The values in Table 3 are obtained by calculating the values of ei with ei = Y i − Ŷi.

Table 3: Bootstrap residual instances created by assigning the probability 1/n
to each ei value.

No Yi Ŷi ei 1/50 r e
(b)
1 e

(b)
2 e

(b)
3 e

(b)
4 . e

(b)
48 e

(b)
49 e

(b)
50 ē

(b)
i

1 31.20 29.88 1.32 0.03 1 0.02 −0.11 −0.08 0.03 . −0.05 −0.02 −0.11 −0.07

2 26.50 21.91 4.59 0.09 2 −0.06 −0.05 −0.10 −0.05 . −0.05 −0.08 −0.05 −0.04

3 34.80 30.59 4.21 0.08 3 0.11 0.07 −0.11 0.10 . −0.12 −0.05 −0.05 −0.02

4 31.30 28.92 2.38 0.05 4 −0.04 −0.08 −0.05 −0.05 . −0.01 0.02 −0.10 −0.03

5 20.40 26.02 −5.62 −0.11 5 −0.02 0.01 0.10 −0.02 . 0.07 0.07 −0.05 −0.06

6 30.30 29.17 1.13 0.02 6 0.06 0.09 −0.10 −0.05 . 0.05 −0.02 0.02 −0.04

. . . . . . . . . . . . . . .

48 53.40 49.89 3.51 0.07 48 −0.06 −0.02 −0.04 0.09 . −0.02 −0.04 0.01 −0.02

49 37.00 38.93 −1.93 −0.04 49 0.07 −0.01 −0.01 0.05 . 0.02 0.07 0.11 0.00

50 24.50 22.67 1.83 0.04 50 −0.05 −0.05 −0.01 0.03 . −0.11 −0.01 −0.08 0.00

. . . . . . . . . .

997 −0.10 0.18 0.09 0.05 . −0.13 −0.11 0.38 −0.01

998 0.05 −0.10 −0.22 0.09 . −0.11 −0.08 −0.02 −0.04

999 0.18 0.07 −0.07 0.09 . −0.02 −0.03 −0.03 −0.05

1000 −0.10 0.18 0.09 0.05 . −0.13 −0.11 0.38 0.00

¯̂
ie
(b)

=
P1000

b=1 e
(b)
i

1000
−0.001 0.000 −0.004 0.001 −0.002 0.000 −0.001
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3(e). Draw an n sized bootstrap random sample with replacement e
(b)
1 , e

(b)
2 , e

(b)
3 , ..., e

(b)
n from

the ei values calculated in step 2(e) giving 1/n probability each ei values.

4(e). Calculated the bootstrap Yi
∗ values by adding resampled residuals onto the ordinary

least squares regression fit, holding the regression design fixed (Table 4).

Table 4: Bootstrap Y (b) values calculated with resampled residuals.

No Y (b) β̂0 BMI β̂1 YEAR β̂2 WCFP β̂3
¯̂
ie
(b)

1 29.88 −6.973 28.30 0.984 44.00 −0.111 34.82 0.399 −0.001

2 21.92 −6.973 21.30 0.984 26.00 −0.111 27.10 0.399 0.000

3 0.58 −6.973 28.40 0.984 54.00 −0.111 39.12 0.399 −0.004

. . . . . . . . . .

48 9.89 −6.973 40.30 0.984 54.00 −0.111 58.16 0.399 −0.002

49 38.93 −6.973 36.60 0.984 37.00 −0.111 35.07 0.399 0.000

50 22.67 −6.973 25.10 0.984 24.00 −0.111 19.07 0.399 −0.001

5(e). Obtain least squares estimates from the 1th bootstrap sample:

(5.1) Y (b) = −6.973 + 0.984 ∗BMI − 0.111 ∗ Y EAR + 0.399 ∗WCFP + ¯̂
ie
(b)

6(e). Repeat steps 3(e), 4(e) and 5(e) for r =1,2,...,B, and proceed as in resampling with
random regressors 7(e) and 8(e) (Table 5).

Table 5: Some bootstrap descriptive statistics based on the resampling
of the (n = 50) error term of the data in Table 2.

Confidence intervals
Variables Observed β̂∗

ort Se(β̂
∗
) SS(β̂

∗
)

95% Confidence Interval

Constant −6.973 −69.590 31.809 0.0133 −12.977 −13.997

BMI(X1) 0.984 0.9862 0.1246 −0.0020 0.802 12.145

YEAR(X2) −0.111 −0.1129 0.0641 −0.0020 −0.224 −0.0050

WCFP(X3) 0.399 0.3993 0.0974 0.0005 0.250 0.6100

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR; WCFP: Waist Circumference Fat Percentage.

7(e). By using the new observation points that have been formed, the parameters are esti-
mated with the FLS regression analysis method:
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MIN = 50*s0+1488.2*s1+1897*s2+1913*s3;

min
ac, as

J1=

c0 + 28.30 ∗ c1 + 44 ∗ c2 + 34.82 ∗ c3 ∗ 0.5 ∗ s0 + 28.30 ∗ 0.5 ∗ s1 + 44 ∗ 0.5 ∗ s2 + 34.82 ∗ 0.5 ∗ s3 ≥ = 29.88;

c0 + 28.30 ∗ c1 + 44 ∗ c2 + 34.82 ∗ c3− 0.5 ∗ s0− 28.30 ∗ 0.5 ∗ s1− 44 ∗ 0.5 ∗ s2− 34.82 ∗ 0.5 ∗ s3 >= 29.88;


(5.2)

min
ac, as

J1=

 c0 + 25.10 ∗ c1 + 24 ∗ c2 + 19.07 ∗ c3 ∗ 0.5 ∗ s0 + 25.10 ∗ 0.5 ∗ s1 + 24 ∗ 0.5 ∗ s2 + 19.07 ∗ 0.5 ∗ s3 ≥ 22.67;

c0 + 25.10 ∗ c1 + 24 ∗ c2 + 19.07 ∗ c3− 0.5 ∗ s0− 25.10 ∗ 0.5 ∗ s1− 24 ∗ 0.5 ∗ s2− 19.07 ∗ 0.5 ∗ s3 ≤ 22.67;


FREE(c0); FREE(c1); FREE(c2); FREE(c3); END

(5.3) Ỹi = (24.461; 12.40)+(0.116; 0.0)∗BMI +(−0.197; 0.0)∗Y EAR+(0.369; 0.0)∗WCFP

The data pairs wi = (Ỹi, Xji)
′

of Table 6, (i = 1,...,50) are used to demonstrate the
proposed procedure in case where the crisp input Xji, risp output Ỹi and fuzzy regression
coefficients.

Table 6: Some Bootstrap Fuzzy Descriptor Statistics Based on the Resampling
of the Error Term Belonging to the Data in Table 1 (n = 50).

Confidence intervals
Variables Observed cj sj

95%Confidence Interval

Constant −6.973 24.461 12.408 −6.988 −6.964

BMI(X1) 0.984 0.116 0.00 0.983 0.984

YEAR(X2) −0.111 −0.197 0.00 −0.111 0.111

WCFP(X3) 0.399 0.369 0.00 0.399 0.400

R2 =1.0, N=50, SSE= 0,0075, F=25142495,53**

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index BMI: Body Mass

Index (kg/m2); YEAR; WCFP: Waist Circumference Fat Percentage.

Estimates of the bootstrap regression coefficients in the form of were calculated. Also,
this model explains response variable using fewer variables although there is no procedure
available in FLR which can be used as variable selection method.

6. DISCUSSION AND CONCLUSIONS

In this study, using the samples obtained by bootstrap resampling technique in ordinary
least squares and fuzzy least squares regression analysis techniques, it has been tried to reveal
which of them is more effective to estimate parameters.

Parameter estimates as well as their standard errors and confidence intervals statis-
tics from bootstrapping ordinary least squares regression and bootstrapping fuzzy regression
coefficients are presented in Table 7 for prediction of DEXATF (Y ) (gr).
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Table 7: BOLS and BFLS regression (n = 50, B = 1000)
parameter estimations and the regression coefficients
statistics for estimation of some DEXATF (gr).

Variables Observed Average S.E. Bias
Confidence intervals

95% Confidence
Interval

B
O

L
S
R

Constant −6.973 −6.959 31.809 0.0133 −12.977 −13.997

BMI(X1) 0.984 0.9862 0.1246 −0.0020 0.802 12.145

YEAR(X2) −0.111 −0.1129 0.0641 −0.0020 −0.224 −0.005

WCFP(X3) 0.399 0.3993 0.0974 0.0005 0.250 0.610

B
F
L
S
R

Constant −6.973 24.461 12.408 −6.988 −6.964

BMI(X1) 0.984 0.116 0.00 0.00 0.983 0.984

YEAR(X2) −0.111 −0.197 0.00 0.00 −0.111 0.111

WCFP(X3) 0.399 0.369 0.00 0.00 0.399 0.400

DEXATF: total fat (DEXATF) calculated according to DEXA method; BMI: Body Mass Index (kg/m2); YEAR;

WCFP: Waist Circumference Fat Percentage

B = 10000 bootstrap samples are generated randomly to reflect the exact behavior of
the bootstrap procedure and the distributions of bootstrap regression parameter estimations
(β̃(b)) are graphed in Figure 2(a), 2(b), 2(c) (Figures 1). The histograms of the bootstrap
estimates conform quite well to the limiting normal distribution for all regression coefficients.
Hence, the confidence intervals should be based on that distribution, where B is sufficiently
large (B = 1000). And, bootstrap fuzzy regressions are generated by putting each one of
the observation sets in place in the model and the regression coefficients are estimated as
β̃(b). To reflect the exact behavior of the bootstrap sample procedure the distributions of
fuzzy regression parameter estimations β̃(b) are graphed in Figures 2(d) (Figures 1). The
histograms of the bootstrap fuzzy estimates are no similar to the normal distribution for
bootstrap OLS regression coefficients.

The fuzzy bootstrap regression standard errors of the BMI and Y EAR coefficients
are substantially small than the estimated asymptotic OLS and bootstrap OLS standard
errors, because of the inadequacy of the bootstrap in small samples. The confidence intervals
based on the bootstrap fuzzy regression standard errors are very similar to the percentile
intervals of the BMI and GS coefficients; however, the confidence intervals based on the
OLS and bootstrap OLS standard errors are quite different from the percentile and confidence
intervals based on the bootstrap standard errors. Comparing the bootstrap fuzzy coefficients

averages ¯̃
β

(br)

0 , ¯̃
β

(br)

1 and ¯̃
β

(br)

2 with the corresponding OLS and bootstrap OLS estimates
β̂

(br)
0 , β̂

(br)
1 , β̂

(br)
2 and β̃

(br)
0 , β̃

(br)
1 , β̃

(br)
2 and β shows that there is a little bias in the

bootstrap coefficients.

The shape of these graphs show that a histogram of the replicates with an overlaid
smooth density estimate and the skewness of the distribution of regression parameter estimate
from the OLS bootstrap and fuzzy bootstrap replicate. The shape of these graphs show that a
histogram of the replicates with an overlaid smooth density estimate and the skewness of the
distribution of regression parameter estimate from the OLS bootstrap and fuzzy bootstrap
replicate.
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 Figure 1: Histogram of bootstrap (B=1000, (a), (b), (c),(d)) regression 
parameter estimates.

The shape of these graphs show that a histogram of the replicates with an
overlaid smooth density estimate and the skewness of the distribution of regres-
sion parameter estimate from the OLS bootstrap and fuzzy bootstrap replicate.
The shape of these graphs show that a histogram of the replicates with an over-
laid smooth density estimate and the skewness of the distribution of regression
parameter estimate from the OLS bootstrap and fuzzy bootstrap replicate.

Figure 1: Histogram of bootstrap (B = 1000, (a), (b), (c), (d))
regression parameter estimates.

To examine the appearence of the distribution
(
F

(
β(b)

))
of the replicates (B=10 000),

the distribution plots of β̃(b) from Equation 4.2 are given in Figures 1. The vertical lines of
these plots give the mean of the B bootstrap parameter estimates (β̃(b)) and show the shape
of distribution of bootstrap parameter estimates. Although, the larger bootstrap replicates
(B) are used, the smoother distribution of β̃(b) could usually be obtained in these plots (Fox,
1997) [25]. The number of bootstrap replications B depends on the application and size of
sample. The bootstrap replications sufficient to be B = 100 for standard error estimates, for
confidence interval estimates B∼=1000, and for standard deviation estimate 50≤ B ≤ 100 were
suggested by Leger et al. (1992) [40] and Efron (1990) [22]. In fact, it is known from the
statistical theory of the bootstrap that a finite total of nn possible bootstrap samples exist.
If it was computed the parameter estimates for each of these nn samples, it would obtain the
true bootstrap estimates of parameters however, such extreme computation is wasteful and
unnecessary [53].
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To examine the appearence of the distribution
(
F

(
β(b)

))
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(B=10 000), the distribution plots of β̃(b) from Equation 4.2 are given in Figures
1. The vertical lines of these plots give the mean of the B bootstrap parame-
ter estimates (β̃(b)) and show the shape of distribution of bootstrap parameter
estimates. Although, the larger bootstrap replicates (B) are used, the smoother
distribution of β̃(b) could usually be obtained in these plots (Fox, 1997) [25]. The
number of bootstrap replications B depends on the application and size of sample.
The bootstrap replications sufficient to be B100 for standard error estimates, for
confidence interval estimates B∼=1000, and for standard deviation estimate 50≤
B ≤ 100 were suggested by Leger et al.(1992) [40] and Efron (1990) [22]. In fact,
it is known from the statistical theory of the bootstrap that a finite total of nn

possible bootstrap samples exist. If it was computed the parameter estimates
for each of these nn samples, it would obtain the true bootstrap estimates of
parameters however, such extreme computation is wasteful and unnecessary [53].

The bootstrap resampling technique is one of the most important concepts
in statistics introduced. In classical techniques, the bootstrap resampling tech-
nique has become a very powerful tool used to estimate quantities associated
with the sampling distribution of estimators and test statistics. In application of
bootstrap resampling technique, there is often some uncertainty about the certain
error structure, and a well-chosen resampling technique can give robust inferences
to the certain error structure of the data. Indeed, it is harmful to pretend that
mere calculation can replace thought about central issues such as the structure
of a problem, the type of answer required, the sampling design and data quality.

Figure 2: Normal Quantile – Quantile.

The bootstrap resampling technique is one of the most important concepts in statistics
introduced. In classical techniques, the bootstrap resampling technique has become a very
powerful tool used to estimate quantities associated with the sampling distribution of esti-
mators and test statistics. In application of bootstrap resampling technique, there is often
some uncertainty about the certain error structure, and a well-chosen resampling technique
can give robust inferences to the certain error structure of the data. Indeed, it is harmful
to pretend that mere calculation can replace thought about central issues such as the struc-
ture of a problem, the type of answer required, the sampling design and data quality. In
these cases, for linear regression with normal random errors εj having constant variance, the
least squares theory of regression estimation and inference provides clean, exact and optimal
methods for analysis.

For generalizations to non-normal errors and non-constant variance, precise methods
seldom exist, and we are faced with approximate techniques based on linear approximations
to estimators and central limit theorems. Bootstrap resampling technique have the potential
to provide more accurate and more valid analysis for modelling in complex problems. With
ordinary least squares linear regression, in ideal conditions resampling essentially not only
reproduces the exact theoretical analysis, but also offers the potential to deal with non-ideal
circumstances such as non-constant variance. Despite its extent and usefulness, resampling
technique should be carefully applied. Unless certain basic ideas are understood, it is all
too easy to produce a wrong solution to the problem. Bootstrap resampling techniques are
intended to help avoid tedious calculations based on questionable assumptions.
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In conclusion, in this study it is aimed to describe: basic ideas, the standard error of
bootstrap fuzzy regression technique, confidence intervals of the regression coefficients, ap-
plication to bootstrap ordinary least squares technique and bootstrap fuzzy linear regression
technique. The fuzzy regression technique is a new statistical technique that combines the
classical regression technique with the theory of fuzzy logic. When functional relationship is
not known in advance, fuzzy regression technique is introduced as an alternative technique
which helps model crisp/crisp or crisp/fuzzy data. Also, the correct functional relationship
between dependent variable and independent variable is not known. Bootstrap resampling
technique is preferable in fuzzy least squares regression analysis and ordinary least squares
regression techniques because of some theoretical properties like having any distributional
assumptions on the residuals and hence, allows for inference even if the errors do not follow
normal distribution.

The most important advantages of the bootstrap fuzzy least squares regression tech-
nique and bootstrap ordinary least squares technique are:

• they need smallers sample than ordinary least squares technique,

• they can be used when there are doubts about the distribution of the population,

• they can be used in cases of insufficient sample size and parametric assumptions are
not realized,

• they can also be used in cases where the sample selection is not random,

• in cases of very large sample sizes, the methods can be applied by creating subgroups.

The bootstrap fuzzy least squares regression and bootstrap ordinary least squares tech-
niques estimate the variation of a statistic from the variation of that statistic between sub-
samples, rather than from parametric assumptions and may yield similar results in many
situations. However, it is a mistake to expect that bootstrap fuzzy least squares regression
technique and bootstrap ordinary least squares regression technique always give valid and
confident results. The confidence of results depend on the structure of the data and distribu-
tion function. Application of both regression techniques depend on development of statistical
computer packages featured these analyses.

The estimations of the bootstrap standard error and confidence intervals of the regres-
sion coefficients are nearly equal to the standard error of regression coefficient estimates of the
bootstrap fuzzy least squares regression technique. However, bootstrap fuzzy least squares
regression technique gives regression coefficients, which generally have smaller standard errors
and narrow confidence intervals than bootstrap regression technique. If the OLSR model did
not satisfy the related model assumptions, the bootstrap regression technique and bootstrap
fuzzy least squares regression techniques could be used for fitting the model and provide bet-
ter estimates. Because the bootstrap resampling technique and bootstrap fuzzy least squares
regression technique do not require above assumptions [7], [27]. Due to the computation of
the standard errors and since confidence intervals are based on the distribution of bootstrap
samples, not on assumptions about normal distributions. The assumption guessed behind
bootstrap resampling technique is to treat the sample as if it were the entire population [4],
[7].
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In this research, we have presented model of fuzzy least squares regression for the liter-
ature. We have shown that the development of an adequate bootstrap resampling theory in
the fuzzy context would be very profitable because in this context the asymptotic approxi-
mations are, in most cases, difficult to handle and hence, they are useless to make inferences.
A real application to predict DEXATF (Y )(g) in clinical data obtained was shown. BOLS

and BFLS regression were obtained and also as can be seen from the statistical values calcu-
lated from a clinical numerical sample, the error of the BFLS method regarding the estimates
calculated according to the error criteria was detected to be lower than the errors calculated
from the BOLS method. Due to these results, we trust the results obtained with the BFLSR

method more than the results obtained with the BOLSR method. It can be concluded that
BOLSR and BFLSR methods have similar performance. Among these models, the BFLSR

method is proposed to be preferred. Although the bootstrap resampling technique is some-
times mentioned as a replacement for“standard statistics techniques”, it is concluded that this
thought is wrong, since the bootstrap resampling technique depends on the theoric elements
of classic logic.
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1. INTRODUCTION

The Rice distribution [17] is generally observed when the global magnitude of a vector
is related to its direction components, such as when wind speed is analyzed in two directions,
i.e., a two-dimensional component vector. If the components are independent and normally
distributed with equal variances, the general wind speed has a Rice distribution. It is also used
to model dispersion (or variability) of line-of-sight transmission between two stations which
applies to FM radio waves, microwaves, magnetic resonance images in the presence of noise
and satellite transmissions. It is also employed to model Rician fading, which describes how
the cancellation of signals affects the propagation of radio waves. In recent years, it has been
utilized by various authors for different applications. For example, [8] introduced a generalized
Rice distribution based on the linearity characteristics of a system to model situations where
the maximum amplitude is close to the signal’s mean amplitude; [12] presented a Bayesian
approach to estimate its parameters, and [26] studied a new approach to analyze images
based on the maximum likelihood method that permits obtaining simultaneous estimates of
the image and signal noise.

The Rice distribution is relatively unknown in the area of applied statistics. One of the
objectives of this paper is to generalize the Rice distribution to be applied in different research
areas. We emphasize that the papers mentioned previously do not provide regressions which
have been widely employed in many fields. A fundamental conjecture that should be examined
with caution regarding a data set is that when the covariates express nonlinear effects on the
response variable and adopting a parametric regression may not be a suitable alternative.
To overcome this circumstance, generalized semiparametric models have been proposed. For
example, [7] and [9] introduced the generalized additive model (GAM) which aggregates
the properties of generalized linear models with additive models; and [18] demonstrated
that nonparametric regression can be considered an interesting extension of the parametric
regression, and the two can be combined to produce the semiparametric regression. Another
model widely applied in recent years is the generalized additive model for location, scale,
and shape (GAMLSS) [19]. Various authors have published papers involving partially linear
regressions. [22] introduced the symmetric generalized partial linear model; [24] presented an
extension of the log-normal distribution from two perspectives, one of which was the partially
linear regression; and [11] proposed a new strategy to select Bayesian models and an efficient
estimation method for partially linear model.

Based on these contexts, the objectives of this paper are described below. We define the
odd log-logistic Rice (OLLRc) distribution that can be applied to model bimodal, trimodal
and asymmetric data. Based on this distribution, we introduce a parametric regression with
two systematic components and illustrate its flexibility using volumetric shrinkage wood data,
see for example [23]. We propose a new partially linear regression and show its utility by
analyzing milk production in the Northeast of Brazil. We prove that the empirical distribution
of the quantile residuals (qrs) for both regressions has approximately the standard normal
distribution. We provide two applications to real data (shrinkage volume of three wood
species and milk production data) to illustrate the flexibility of the OLLRc partially linear
regression model.
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The remaining sections are as follows. Section 2 defines the OLLRc distribution, and
provides some mathematical properties. Section 3 introduces a parametric regression based on
the new distribution. Section 4 proposes the OLLRc partially linear regression and performs
some simulations for the distribution of the penalized maximum likelihood estimators. Simu-
lation results for the residuals are reported in Section 5. The usefulness of the new regressions
is proved by means of two real data sets in Section 6. Section 7 ends with some concluding
remarks.

2. THE ODD LOG-LOGISTIC RICE DISTRIBUTION

If G denotes a baseline distribution, the cumulative distribution function (cdf) of the
the odd log-logistic-G (OLL-G) (OLL-G) generator [5] is defined by

F (y) =
∫ G(y)

Ḡ(y)

0

ν uν−1

(1 + uν)2
du =

G(y)ν

G(y)ν + [1−G(y)]ν
, y > 0,(2.1)

where ν > 0 is the shape parameter

This class of generalized distributions has been deeply investigated in the last years;
see, for example, the references in [16] and [24]. The probability density function (pdf)
corresponding to (2.1) can be expressed as

f(y) =
ν g(y){G(y)[1−G(y)]}ν−1

{G(y)ν + [1−G(y)]ν}2 ,(2.2)

where g(y) = d G(y)/d y is the baseline density.

The Rice cdf with two parameters µ > 0 and σ > 0 is (for y > 0)

(2.3) Gµ,σ(y) = 1−Q1

(
σ

µ
,
y

µ

)
,

where Q1(a, b) is the Marcum Q-function, namely

QM (a, b) =
∫ ∞

b
x
(x

a

)M−1
exp
(
−x2 + a2

2

)
IM−1(ax)dx,

IM−1 is the modified Bessel function of the first kind of order M − 1 (for η ∈ R, η 6= 0),

Iη(z) =
∞∑

m=0

(−1)m

m! Γ(m + η + 1)

(
z

η

)2m+η

,

and Γ(·) is the gamma function. The Marcum Q-function is defined in the VGAM package of
R software. For more details, see [27].

The pdf corresponding to (2.3) has the form

(2.4) gµ,σ(y) =
y

µ2
exp
(
−y2 + σ2

2µ2

)
I0

(
σy

µ2

)
,

where I0(z) =
∑∞

m=0 z2m/[4m (m!)2].
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The Rice distribution can be obtained following a simple extension of the Rayleigh
distribution. Let X =

√
T 2

1 + T 2
2 , where T1 ∼N(δ1, µ

2) and T2 ∼N(δ2, µ
2) are independent

random variables. Then, X has the Rice density (2.4), where σ =
√

δ2
1 + δ2

2 . If σ = 0, then
(2.4) is just the Rayleigh density. So, the parameter µ in the Rice distribution is the stan-
dard deviation of two Gaussian contributions and σ represents a distance term. The Rice
distributions tends to the N(σ, µ2) distribution if σy/µ2 goes to ∞.

The OLLRc cdf (for y > 0) is defined by taking G(x) in (2.1) as the Rice cdf (2.3)

F (y) =

[
1−Q1

(
σ
µ , y

µ

)]ν[
1−Q1

(
σ
µ , y

µ

)]ν
+ Q1

(
σ
µ , y

µ

)ν(2.5)

The OLLRc density function follows by inserting (2.3) and (2.4) in Equation (2.2)

f(y) =
ν y

µ2
exp
{
−(y2 + σ2)

2µ2

}
I0

(
y σ

µ2

)
×
{[

1−Q1

(
σ

µ
,
y

µ

)]
Q1

(
σ

µ
,
y

µ

)}ν−1

×
{[

1−Q1

(
σ

µ
,
y

µ

)]ν

+ Q1

(
σ

µ
,
y

µ

)ν}−2

,(2.6)

where all parameters are positive. The OLLRc density function can be expressed as a com-
bination of exponentiated Rice densities (see Appendix A).

Henceforth, let Y ∼ OLLRc(µ, σ, ν) be a random variable with density (2.6). Some
shapes of (2.6) reported in Figure 1 reveal that the density of Y is very flexible for bimodal
and trimodal data.
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Figure 1: Plots of the OLLRc density. (a) For σ = 1 and ν = 0.18 varying µ.
(b) For µ = 0.16 and ν = 0.17 varying σ. (c) For µ = 0.25 and σ = 2
varying ν.

By inverting Equation (2.5), the quantile function (qf) of Y , say y = H(u) = F−1(u),
is

y = H(u) = HRice

{
u1/ν

u1/ν + (1− u)1/ν

}
, u ∈ (0, 1),(2.7)

where HRice(u) = G−1
µ,σ(u) is the Rice qf.
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Figure 2 displays plots of the density of Y and histograms from two simulated data
sets with 100, 000 replications. They show that the simulated values are consistent with the
OLLRc distribution, where we note trimodal and bimodal shapes.
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Figure 2: Histograms and plots of the OLLRc density.

The influence of the shape parameter ν on the skewness and kurtosis of Y can be easily
investigated based on quantile measures. Figure 3(a) displays the Bowley skewness

B =
H(3/4) + H(1/4)− 2 H(2/4)

H(3/4)−H(1/4)
,

whereas Figure 3(b) provides the Moors kurtosis

M =
H(3/8)−H(1/8) + H(7/8)−H(5/8)

H(6/8)−H(2/8)
.

(a) (b)

Figure 3: (a) Bowley’s skewness. (b) Moors kurtosis.

By varying ν ∈ [0.1, 1], Figure 3(a) displays the Bowley skewness of Y for µ = 0.1 and
σ ∈ [0.1, 1], whereas Figure 3(b) reports the Moors kurtosis of Y for µ = 0.1 and σ ∈ [0.1, 0.3].
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3. THE OLLRC REGRESSION

The OLLRc regression is defined by two systematic components considering that the
parameters µi and σi in the density (2.6) are given by (for i = 1, ..., n)

µi = exp(x>i β1) and σi = exp(x>i β2),(3.1)

where β1 = (β11, ···, β1p)> and β2 = (β21, ···, β2p)> are vectors of unknown coefficients and
x>i = (xi1, ···, xip) is a vector of covariates associated with the ith observation.

The OLLRc regression includes two special models: the Rice (for ν = 1) and Rayleigh
(for ν = 1 and σi = 0) regressions.

The log-likelihood function for the vector θ = (β>1 ,β>2 , ν)> from a random sample
(y1,x1), ···, (yn,xn) has the form

l(θ) = n log(ν) +
n∑

i=1

log
(

yi

µi

)
−

n∑
i=1

(
y2

i + σ2
i

2µ2
i

)
+

n∑
i=1

log
[
I0

(
yiσi

µi

)]
+

(ν − 1)
n∑

i=1

log
{[

1−Q1

(
σi

µi
,
yi

µi

)]
Q1

(
σi

µi
,
yi

µi

)}
−

2
n∑

i=1

log
{[

1−Q1

(
σi

µi
,
yi

µi

)]ν

+ Q1

(
σi

µi
,
yi

µi

)ν}
.(3.2)

The maximum likelihood estimate (MLE) θ̂ of θ can be calculated by maximizing
(3.2) using the R software and standard likelihood techniques can be adopted for inference
purposes. Initial values for β1 and β2 can be taken from the fitted Rice regression model
(when ν = 1).

Under conditions that are fulfilled for the parameter vector θ in the interior of the pa-
rameter space but not on the boundary, the asymptotic distribution of (θ̂− θ) is multivariate
normal N2p+1(0,K(θ)−1), where K(θ) is the information matrix. The asymptotic covariance
matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (2p + 1)× (2p + 1) observed
information matrix −L̈(θ), whose elements can be calculated numerically. The approximate
multivariate normal distribution N2p+1(0,−L̈(θ)−1) for θ̂ can be used in the classical way to
construct approximate confidence regions for some parameters in θ.

We can use likelihood ratio (LR) statistics for comparing some special models with the
OLLRc regression model in the usual way. Further details are given by [14].

3.1. Simulation studies

Five thousands Monte Carlo simulations are carried out in the R software to exam-
ine the consistency of the MLEs under two scenarios: the OLLRc distribution and the
OLLRc regression. By setting n = 25, 80, 160 and 320, a random sample is drawn from
the OLLRc(µ, σ, ν) distribution, and the MLEs are calculated in each of these replications.
For the regression scenario, we also consider 700.
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The OLLRc distribution

We generate observations from the OLLRc distribution using (2.7) and u ∼ U(0, 1) with
µ = 0.15, σ = 1 and ν = 0.2. We calculate the MLEs in each of the 5, 000 simulations and
then the average estimates (AEs), biases, and means squared errors (MSEs). The results in
Table 1 indicate that the estimates are accurate since their biases and MSEs converge to zero
when n increases.

Table 1: Simulation findings from the OLLRc distribution.

n = 25 n = 80
Parameter

AE Bias MSE AE Bias MSE

µ 0.177 0.027 0.017 0.160 0.010 0.004
σ 0.971 −0.029 0.024 0.994 −0.006 0.003
ν 0.269 0.069 0.073 0.227 0.027 0.018

n = 160 n = 320
Parameter

AE Bias MSE AE Bias MSE

µ 0.154 0.004 0.001 0.152 0.002 0.000
σ 0.998 −0.002 0.001 0.998 −0.002 0.000
ν 0.211 0.011 0.006 0.208 0.008 0.002

The OLLRc regression

Consider the OLLRc regression with µi = exp(β10 +β11xi1 +β12xi2) and σi = exp(β20 +
β21xi1 + β22xi2) and fixed parameters β10 = −2, β11 = 0.7, β12 = 1.8, β20 = 0.6, β21 = −0.8
and β22 = 0.4.

For the generation process, we consider: Yi ∼ OLLRc(µi, σi, ν), xi1 ∼ Bernoulli(0.5)
and xi2 ∼ U(0, 1). The simulation results from the fitted OLLRc regression in Table 2 indicate
that the AEs go to the true parameters and that the biases and MSEs tend to vanish when
n increases in agreement with first-order asymptotic theory.

4. THE OLLRC PARTIALLY LINEAR REGRESSION

The dependent variables can be influenced by explanatory variables with linear and
non-linear effects in many areas. Recently, several works have been published related to
regression models, for example, [2], [28], [13], [24], [22], [4], [25], among others.

In this context, considering the penalized smoothing based on the cubic-spline, we
construct the partially linear regression based on the OLLRc distribution. The systematic
component for the parameter µi in terms of the explanatory variables x1, ...,xp (linear effects)
and t = (ti) (non-linear effect) has the form (for i = 1, ..., n)

µi = exp
{
x>i β1 + h(ti)

}
,(4.1)

where β1 = (β11, ..., β1p)> is the unknown parameter vector and h(·) is an unknown smooth
function of ti.
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Table 2: Simulation findings from the OLLRc regression with ν = 0.6 and ν = 2.

ν = 0.6 ν = 2
n Parameter

AE Bias MSE AE Bias MSE

β10 −2.438 −0.438 0.530 −2.439 −0.439 0.632
β11 0.671 −0.029 0.141 0.736 0.036 0.159
β12 2.075 0.275 0.625 2.142 0.342 0.625

25 β20 0.580 −0.020 0.008 0.596 −0.004 0.002
β21 −0.681 0.119 0.046 −0.737 0.063 0.018
β22 0.434 1.234 0.041 0.406 1.206 0.012
ν 0.546 −0.054 0.086 1.951 −0.049 0.387

β10 −2.118 −0.118 0.088 −2.081 −0.081 0.113
β11 0.673 −0.027 0.032 0.700 <0.001 0.036
β12 1.836 0.036 0.092 1.859 0.059 0.099

80 β20 0.597 −0.003 0.002 0.600 <0.001 <0.001
β21 −0.747 0.053 0.020 −0.800 <0.001 0.006
β22 0.405 1.205 0.016 0.400 1.200 0.003
ν 0.568 −0.032 0.023 2.023 0.023 0.161

β10 −2.050 −0.050 0.035 −2.016 −0.016 0.051
β11 0.691 −0.009 0.015 0.699 −0.001 0.018
β12 1.819 0.019 0.041 1.811 0.011 0.049

160 β20 0.600 0.000 0.001 0.600 <0.001 <0.001
β21 −0.781 0.019 0.012 −0.807 −0.007 0.004
β22 0.399 1.199 0.008 0.398 1.198 0.001
ν 0.590 −0.010 0.009 2.036 0.036 0.078

β10 −2.021 −0.021 0.016 −2.007 −0.007 0.025
β11 0.697 −0.003 0.007 0.703 0.003 0.008
β12 1.809 0.009 0.019 1.803 0.003 0.023

320 β20 0.600 <0.001 0.001 0.600 <0.001 <0.001
β21 −0.796 0.004 0.007 −0.804 −0.004 0.002
β22 0.400 1.200 0.004 0.400 1.200 0.001
ν 0.597 −0.003 0.004 2.020 0.020 0.038

β10 −2.007 −0.007 0.007 −2.002 −0.002 0.011
β11 0.702 0.002 0.003 0.701 0.001 0.004
β12 1.803 0.003 0.009 1.802 0.002 0.011

700 β20 0.600 <0.001 <0.001 0.600 <0.001 <0.001
β21 −0.805 −0.005 0.004 −0.803 −0.003 0.001
β22 0.400 1.200 0.002 0.400 1.200 <0.001
ν 0.601 0.001 0.002 2.011 0.011 0.017

For the partially linear regression (4.1), we consider the penalty based on the second
order derivative of the function h(·) [15].

Let θ = (β>1 , σ, ν)> be the parameter vector related to the parametric part and λ > 0
be the smoothing parameter that controls the smoothness of the curve. Consider a smooth
function h(t) (second order differentiable function in the interval [a, b]), such that it is a cubic
smoothing splines where the nodes are the ordered values of t1, ..., tn, say t01 < t02 < ... < t0q ,
and q indicates the amount of distinct values for the explanatory variable ti that is controlled
in a non-parametric way.

The penalty described above can be expressed in matrix notation [6]. Let di be the
distance between two subsequent and different control points called nodes i and i+1, i.e., di =
t0i+1 − t0i (for i = 1, ..., q − 1). We define the elements qij (for i = 1, ..., q and j = 2, ..., q − 1)
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of the q × (q − 2) tridiagonal matrix A by

qj−1,j = d−1
j−1, qjj = −d−1

j−1 − d−1
j , qj+1,j = d−1

j and qij = 0 for |i− j| ≥ 2.

The elements rij (for i = 2, ..., q − 1 and j = 2, ..., q − 1) of the (q − 2)× (q − 2) symmetric
matrix B are

rii =
1
3
(di−1 + di) for i = 2, ..., q − 1,

ri,i+1 = ri+1,i =
1
6
di for i = 2, ..., q − 2 and

rij = 0 for |i− j| ≥ 2.

Further, let K = AB−1AT be a q×q positive definite matrix. The parameters associated with
the covariates in the linear and nonlinear effects (θ and h = (h(t01), ..., h(t0q)), respectively)
are determined by maximizing the penalized log-likelihood function

lp(θ,h) = n log(ν) +
n∑

i=1

log
(

yi

µi

)
−

n∑
i=1

(
y2

i + σ2

2µ2
i

)
+

n∑
i=1

log
[
I0

(
yiσ

µi

)]
+

(ν − 1)
n∑

i=1

log
{[

1−Q1

(
σ

µi
,
yi

µi

)]
Q1

(
σ

µi
,
yi

µi

)}
−

2
n∑

i=1

log
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1−Q1

(
σ

µi
,
yi

µi

)]ν

+ Q1

(
σ

µi
,
yi

µi

)ν}
− λ

2
hT Kh,(4.2)

where λ is the unknown smoothing parameter. The maximization of (4.2) is equivalent to
the cubic smoothing spline. We use the gamlss(·) function from the gamlss [20] package to
implement the OLLRc regression, and calculate the penalized maximum likelihood estimates
(PMLEs). The cs(·) function is used to model the nonlinear effect based on cubic smoothing
splines function [21].

4.1. Simulations for the OLLRc partially linear regression

We present a Monte Carlo study with a smooth function to verify the adequacy of the
PMLEs in this regression. The covariates (linear and non-linear effects) and the response vari-
able are generated as follows: xi1 ∼ U(0, 1), xi2 ∼ Bernoulli(0.5), ti3 ∼ U(0, 0.045) (scenario
1), ti3 ∼ U(0, 0.03) (scenario 2) and yi ∼ OLLRc(µi, σ, ν).

Further, the systematic component is µi = exp{0.5xi1 − 0.4xi2 + h(ti3)}, where β11 =
0.5, β12 = −0.4, σ = 0.1 and ν = 0.7 (for n = 60, 180, 400 and 700). In addition, 1, 000
Monte Carlo samples are generated and, for each sample size, the PMLEs of the parameters
are found for each replication, and then the AEs, biases and MSEs are calculated. The
numbers in Table 3 indicate that the AEs tend to the true parameters and the biases and
MSEs converge to zero when n increases. Thus, the sample distribution of the PMLEs is
approximately normal.

Regarding the analysis of the nonlinear effect (ti3), the true smooth curves h(ti3) =
sin(−50ti3π) + cos(30πti3) and h(ti3) = cos(100ti3π) + tan(15πti3 − 1) and their respective
estimated curves (based on 1, 000 simulations) are displayed in Figure 4 for both scenario 1.
We note that the estimated curves approach to the true curve for large sample sizes (as
expected).
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Table 3: Findings for the OLLRc partially linear regression.

Scenario 1 Scenario 2
n Parameter

AE Bias MSE AE Bias MSE

β11 0.508 0.008 0.186 0.495 0.005 0.171

60
β12 −0.415 −0.015 0.064 −0.407 −0.007 0.055
σ 0.186 0.086 0.016 0.134 0.034 0.004
ν 0.636 −0.064 0.028 0.700 0.000 0.024

β11 0.518 0.018 0.047 0.498 −0.002 0.048

180
β12 −0.409 −0.009 0.015 −0.405 −0.005 0.014
σ 0.136 0.036 0.004 0.104 0.004 0.001
ν 0.687 −0.013 0.005 0.730 0.030 0.007

β11 0.510 0.010 0.018 0.504 0.004 0.019

400
β12 −0.404 −0.004 0.006 −0.403 −0.003 0.006
σ 0.112 0.012 0.002 0.095 −0.005 0.001
ν 0.703 0.003 0.002 0.737 0.037 0.004

β11 0.505 0.005 0.011 0.494 −0.006 0.011

700
β12 −0.406 −0.006 0.004 −0.405 −0.005 0.003
σ 0.100 0.000 0.001 0.090 −0.010 0.001
ν 0.710 0.010 0.001 0.740 0.040 0.003

(a) (b) (c) (d)

Figure 4: The generated and estimated curves for h(ti3) (scenario 1):
(a) n = 60, (b) n = 180. (c) n = 400. (d) n = 700.

5. RESIDUAL ANALYSIS AND SIMULATIONS

We define the quantile residuals (qrs) [3] for the OLLRc regression as

qri = Φ−1


[
1−Q1

(
σi
µi

, yi

µi

)]ν[
1−Q1

(
σi
µi

, yi

µi

)]ν
+ Q1

(
σi
µi

, yi

µi

)ν

,(5.1)

where Φ(·)−1 is the inverse of the standard normal cdf and µi and σi are given in Equation
(3.1).

Simulations for the OLLRc regression

Some simulations of sizes 25, 80, 160, 320 and 700 are performed using the algorithm
of Section 3.1 to examine the empirical distribution of these residuals. Figure 5 (for ν = 0.6)
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show that this distribution becomes closer to the standard normal distribution when n in-
creases.

(a) (b) (c) (d) (e)

Figure 5: Normal probability plots of the qrs (ν = 0.6). (a) n = 25.
(b) n = 80. (c) n = 160. (d) n = 320. (e) n = 700.

Simulations for the OLLRc partially linear regression

Consider a simulation study to investigate the empirical distribution of the qrs for
the OLLRc partially linear regression by generating 60, 180, 400 and 700 observations from
Equation (4.1). Normal probability plots in Figure 6 reveal that the empirical distribution
of the qrs is close to the standard normal for all samples, and the approximation becomes
better when n increases.

(a) (b) (c) (d)

Figure 6: Normal probability plots of the qrs (scenario 1).
(a) n = 60. (b) n = 180. (c) n = 400. (d) 700.

Thus, we use normal probability plots for the residuals (qri) with simulated envelopes
for both models, as suggested by [1], as follows:

1. Fit the model and generate a sample of n independent observations using the fitted
model as if it were the true model;

2. Fit the model to the generated sample using the data set (xi) and compute the
values of the residuals;

3. Repeat steps (1) and (2) m times;

4. Obtain ordered values of the residuals, qr∗(i)v, i = 1, ..., n and v = 1, ...,m;

5. Consider n sets of the m ordered statistics and for each set compute the mean,
minimum and maximum values;
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6. Plot these values and the ordered residuals of the original sample against the normal
scores. The minimum and maximum values of the m ordered statistics provide the
envelope.

The residuals outside the limits provided by the simulated envelope require further investiga-
tion. Additionally, if a considerable proportion of points falls outside the envelope, we have
evidence against the adequacy of the fitted model. Plots of the residuals against the fitted
values can also be useful.

6. APPLICATIONS

We present two applications of the new regressions: the first for the OLLRc regression,
and the second for the OLLRc partially linear regression.

6.1. Shrinkage volume data

We consider a data set referring to the shrinkage volume of three wood species: Cedrilho
(Erismauncinatum Warm), Morototoni (ScheffleramorotoniAubl) and Pinus (Pinus spp). The
shrinkage volume of wood is defined as the phenomenon related to the dimensional variation of
wood due to moisture exchange with the surrounding environment until a condition of balance
is attained, called the hygroscopic equilibrium moisture. The variations in the dimensions of
wood specimens occur when they lose or gain moisture in relation to the saturation point of
the fibers, which in general is in the range of 28% to 30% water. The dimensional variation
involves either shrinkage or swelling. The shrinkage volume of wood varies widely among
species, depending on the drying method and the behavior of the particular wood specimen,
occasionally leading to alterations of shape and the formation of cracks and warping. Special
precaution needs to be taken in situations that require wood stability. For structural frame-
work, flooring, doors, door/window frames and furniture, cracking and warping can cause
serious losses, requiring replacement. Thus correct drying methods to attain equilibrium
moisture are essential. There are various explanations for the increase of contraction with
higher temperature. One of them can be the reduction of the equilibrium moisture, but that
factor has been experimentally found to cause an increase in contraction of less than 1%,
when in reality the increase in contraction is much more than this. For these reasons, we
study the effects of drying temperature and wood species on the shrinkage volume of wood
specimens.

The experiment was carried out in the first half of 2020 at the School of Agronomic
Sciences of Paulista State University (UNESP), located in the city of Botucatu, São Paulo,
Brazil. The tests were carried out with wood specimens with volume of 20 cm3 dried in
a muffle furnace at final temperatures of 300 oC and 500 oC. A muffle furnace is type of
oven that operates at high temperatures used in laboratories. The final temperature was
applied for 10 minutes and the carbonization rate was 14.3 oC/min for each species. We used
a pachymeter to measure the dimensions of each specimen to calculate the volume before
and after carbonization in stable conditions. The variables involved are the following (for
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i = 1, ..., 36): yi: volumetric shrinkage (in cm3); xi1: temperature (0=300oC, 1=500oC) and
xi2: wood species (0=Cedrilho, 1=Morototoni, 2=Pinus) with two dummy variables (di1, di2).

First, we provide a marginal analysis of the response variable. Table 4 reports the
MLEs (their standard errors in parentheses) of the parameters from the fitted OLLRc, Rice
and Rayleigh distributions, and the statistics: Akaike Information Criterion (AIC) and Global
Deviance (GD). These results indicate that the OLLRc distribution is the best model to the
current data.

Table 4: Findings from the fitted distributions.

Distribution log(µ) log(σ) ν AIC GD

OLLRc −0.666 2.064 0.155 157.836 151.836
(0.109) (0.031) (0.024)

Rice 0.804 2.021 1 162.263 158.263
(0.124) (0.052) (—)

Model log(µ) σ ν

Rayleigh 1.756 0 1 181.017 179.017
(0.083) (—) (—)

The likelihood ratio (LR) statistics in Table 8 indicate that the OLLRc distribution
is the best model to these data among the three distributions. The estimated pdf of the
fitted models in Figure 7 show that the OLLRc distribution gives the best fit to the shrinkage
volume data.
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Figure 7: Estimated OLLRc, Rice and Rayleigh densities.

The OLLRc regression

The systematic components are given by

µi = exp(β10 + β11xi1 + β12di1 + β13di2)

and
σi = exp(β20 + β21xi1 + β22di1 + β23di2).
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The MLEs, SEs and p-values from the fitted OLLRc regression to the current data are
reported in Table 5. Some conclusions are addressed at the end of this application.

Table 5: Findings from the fitted OLLRc regression to the shrinkage volume data.

Parameter Estimate SE p-value

β10 −0.537 2.509 0.832
β11 −0.346 0.191 0.082
β12 −1.144 0.541 0.044
β13 −0.786 0.219 0.001

β20 1.687 0.135 <0.001
β21 0.448 0.129 0.002
β22 0.080 0.042 0.068
β23 0.286 0.037 <0.001

ν 0.236 0.908

The AIC and GD values in Table 6 confirm that the OLLRc regression is the best
model to the shrinkage volume data.

Table 6: Adequacy statistics.

Regression AIC GD

OLLRc 93.236 75.2356
Rice 95.164 79.164

Rayleigh 178.373 170.373

Table 9 compares the new regression with two special models fitted to the wood volu-
metric retraction data, whose figures indicate that the OLLRc regression is the best model
among the three.
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Figure 8: (a) Index plot of the qrs. (b) Normal probability plot for the qrs.
(c) Empirical and estimated cdf for the temperature (300oC, 500oC).
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Figures 8a and 8b display the index plot of the qrs and the normal probability plot
with generated envelope for the OLLRc regression, respectively. These plots do not provide
departure from the model assumptions. We report in Table 7 the presence of significant
effects of the levels of wood from the fitted OLLRc regression to the shrinkage volume data.

Table 7: Findings for the three wood levels from the fitted OLLRc regression.

Test for link µ

Hypotheses H0 Estimate SD p-value

Cedrilho = Morototoni −1.144 0.541 0.044
Cedrilho = Pinus −0.786 0.219 0.001

Morototoni = Pinus 0.358 0.563 0.531

Test for link σ

Hypotheses H0 Estimate SD p-value

Cedrilho = Morototoni 0.080 0.042 0.068
Cedrilho = Pinus 0.286 0.037 <0.001

Morototoni = Pinus 0.206 0.023 <0.001

Assessing covariate effects on parameter µ

For a 5% significance level, we conclude:

The temperature levels are not statistically different for µ (see Table 5). The Cedrilho
and Morototoni wood species and Cedrilho and Pinus wood species are statistically different
for µ (see Table 5). The Pinus and Morototoni wood species are statistically different for µ

(see Table 7).

Assessing covariate effects on parameter σ

The temperature levels are statistically different for σ (see Table 5 and Figure 8c). The
Cedrilho and Morototoni wood species are not statistically different for σ (see Table 5). The
Cedrilho and Pinus wood species are statistically different for σ (see Table 5). Morototoni
and Pinus wood species are statistically different for σ (see Table 7).

Finally, the empirical and estimated cdf of the OLLRc regression are displayed in
Figure 8c for different levels of temperatures, thus showing that this regression is suitable for
the shrinkage volume data.

Table 8: LR tests (Application 1 without considering covariates).

Distributions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 6.428 0.011
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 27.182 <0.001

Table 9: LR statistics for three fitted regressions (Application 1).

Regressions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 3.929 0.047
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 95.137 <0.001
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Table 10: LR tests (Application 2 without considering covariates).

Regressions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 5.062 0.024
OLLRc vs Rayleigh H0 : ν = 0 and ν = 1 vs H1 : H0 is false 48.693 <0.001

Table 11: LR statistics for three fitted regressions (Application 2).

Models Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 96.007 <0.001
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 148.996 <0.001

6.2. Milk production data

In the second application, the data referred to the quantity of cold milk, raw or homog-
enized, acquired (thousand liters) between the first quarter of 2005 until the fourth quarter
of 2015 in Northeast Brazil. The Northeast is considered a new dairy farming region due
to the expanded market for milk and dairy products in Brazil, including the Northeast it-
self, in recent years, driven by increased consumption, in turn related to rising purchasing
power in the region, as well as stronger demand from other regions of Brazil and neighboring
countries. To understand the advance of dairy farming in the Northeast, it is necessary to
know something about the division of the region in terms of climate. Basically there are four
sub-regions: the forest zone, sub-humid zone (agreste), mid-north and hinterland (sertão).
Each of them has distinct physical characteristics that facilitate or hamper dairy farming. In
this paper we study the states of Bahia and Pernambuco. The data set is obtained from the
Brazilian Institute of Geography and Statistics [10]. The dependent variable is the produc-
tion of milk produced, while the explanatory variables are: (i) state of production (Bahia and
Pernambuco, two large producers of milk in the Northeast); and (ii) the quarter of produc-
tion, between the first quarter of 2005 to the last quarter of 2015. This last covariable has a
nonlinear effect on the quantity of cold milk. An option to analyze this data set is by means
of the OLLRc partially linear regression. The variables under study are: yi: production of
cold milk (raw or homogenized) (thousand liters) (this variable was divided by 10,000); xi1:
states (Bahia and Pernambuco) and ti2: quarter (from 1 to 44), for i = 1, ..., 88.

Table 12: Findings from the OLLRc partially linear regression.

Model log(µ) log(σ) ν AIC GD

OLLRc −0.146 1.905 0.326 372.189 366.189
(0.324) (0.028) (0.158)

Rice 0.722 1.870 1 375.251 371.251
(0.081) (0.036) (—)

Model log(µ) σ ν

Rayleigh 1.616 0 1 416.881 414.881
(0.053) (—) (—)
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We examine these data by studying the distribution of the response variable, that is,
making a marginal analysis. Table 12 reports the results from three fitted distributions, which
indicate that the OLLRc distribution can be chosen as the best model.

The numbers in Table 10 support the OLLRc distribution as the best fit model for
these data. Figure 9 displays the estimated pdfs of the fitted models and shows that the
wider distribution is the best for the current data.
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Figure 9: Estimated densities of the OLLRc, Rice and Rayleigh distributions.

Hence, the OLLRc distribution is a good candidate for modeling milk production data.

The OLLRc partially linear regression

Figure 10 displays the scatter plot between the response variable yi and the covariate
ti2. So, there is a non-linear trend between these two variables, which requires the OLLRc
partially linear regression model to analyze the current data.
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Figure 10: Scatter diagrams: production of cold milk versus quarter.
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We now consider the systematic component:

µi = exp[β10 + β11xi1 + h(ti2)],

where h(·) is an arbitrary smooth function associated with the explanatory variable ti2; for
more details, see Section 4.

Table 13 reports the generalized Akaike information criterion (GAIC), based on [19],
and confirms that the OLLRc partially linear regression can be chosen as the best model.

Table 13: Model selection measures.

Model GAIC

OLLRc 256.802
Rice 350.809

Rayleigh 401.797

Table 14 provides several quantities obtained from the fitted of this partially regression
to the milk production data. There is a significant difference between the states of Bahia and
Pernambuco in relation to milk production since the covariate xi1 is significant at a level of
5%.

Table 14: Findings from the fitted OLLRc partially linear regression.

Parameter Estimate SE p-Value

β10 1.882 0.036 <0.001
β11 −0.476 0.031 <0.001

log(σ) −11.080 398.130
ν 4.334 0.387

The figures in Table 11 from two LR tests indicate that the wider regression is the best
model for these data. Figure 11(a) provides the plots of the qrs against the observations index,
whereas Figure 11(b) reports the normal probability plot with generated envelope. These
plots support the wider linear regression for these data and that there are no observations
falling outside the envelope.

Finally, Figure 11c provides the estimate of the non-linear effect. The vertical axis
refers to the values of ti2 and the horizontal axis to the contribution of the estimated smooth
curve to the values of ti. We note from this plot that the amount of milk production is
non-linear in relation to the quarter effect. In addition, a greater amount of milk production
is achieved between quarters 20 to 35 (approximately).
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Figure 11: (a) Index plot of the qrs. (b) Normal probability plot for the qrs.
(c) Smooth curve fitted from the OLLRc partially linear regression.

7. CONCLUDING REMARKS

The article presented the odd log-logistic Rice (OLLRc) distribution and proposed two
regression models based on this distribution for the analysis of data that has no unimodal
shape. We believe that this paper shows the first use of the Rice distribution in the context
of a regression with two systematic components. We defined quantile residuals and provided
some simulation studies. We proved the utility of the distribution and of the regressions by
means of two data sets on the volumetric shrinkage of the wood and milk production. Future
work can be developed using the new OLLRc model in different areas of research. Further,
it may be of interest to propose a heteroscedastic semiparametric regression model based on
the OLLRc distribution.
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A. APPENDIX

Two power series follow for the numerator and denominator of (2.1) (for ν > 0 real):

G(y)ν =
∞∑

k=0

ak G(y)k and [1−G(y)]ν =
∞∑

k=0

(−1)k

(
ν

k

)
G(y)k,(A.1)

where

ak = ak(ν) =
∞∑

j=k

(−1)k+j

(
ν

j

)(
j

k

)
.

Inserting (A.1) in Equation (2.1) leads to

F (y) =
∑∞

k=0 ak G(y)k∑∞
k=0 bk G(y)k

=
∞∑

k=0

ck G(y)k(A.2)

where bk = ak + (−1)k
(
ν
k

)
(for k ≥ 0), c0 = a0/b0 and the coefficients ck’s (for k ≥ 1) are

calculated recursively as

ck = b−1
0

(
ak −

k∑
r=1

br ck−r

)
.

By differentiating ( A.2), the pdf of Y follows as

f(y) =
∞∑

k=0

ck+1 hk+1(y),(A.3)

where hk+1(x) = (k + 1) G(y)k g(y) is the exponentiated-G (exp-G) density function with
power parameter k + 1.

Hence, the exp-Rice density can be expressed from ( 2.3) and ( 2.4) as

hk+1(y) =
[
1−Q1

(
σ

µ
,
y

µ

)]k (k + 1)y
µ2

exp
(
−y2 + σ2

2µ2

)
I0

(
yσ

µ2

)
(A.4)

The mathematical properties of the OLLRc distribution can be determined numerically
by combining ( A.3) and ( A.4) for a given number of terms (say 10) in the linear combination.
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1. INTRODUCTION

Heavy tails are common in many areas of the sciences and engineering. These are
commonly modeled by a power law distribution applied to the upper tail of the data, ignoring
the body of the data. Ignoring the body of the data implies loss of information and loss of
the power of the model.

The use of the power law distribution to model heavy tails is most common in the
physics literature. Two recent papers published in the literature applying the power law dis-
tribution to model heavy tails are Campolieti [8] and Balthrop and Quan [3]. Campolieti [8]
modeled the top 100 richest net wealth data from Canada Business Magazine. Models of this
kind can be used to describe the economy of a country, accurate models of fitting wealth data
can give a better prediction of the financial condition of a country. Balthrop and Quan [3]
modeled the U.S. cumulative coal production data. Coal productivity is a significantly im-
portant factor to the economy of a country. Energy or electricity production relies mostly on
coal production. Hence a good model of coal production data is essential for predicting the
price of coal.

The aim of this paper is to show that composite lognormal distributions (Nadarajah
and Bakar [14, 15]) can be used to model the entirety of the data sets in Campolieti [8] and
Balthrop and Quan [3]. In addition, we show that these distributions provide better fits than
the power law distribution even when the former are applied to the full data (as described in
the data section) and the latter is applied just to the upper tail of the data.

The use of composite lognormal distributions to model data is not new. Cooray and
Ananda [9] were the first to suggest the use of composite lognormal distributions. But Nadara-
jah and Bakar [14, 15] were the first to write an R package (R Core Team [16]) to implement
the use of composite lognormal distributions. More recent papers on composite distributions
include Caldeŕın-Ojeda [4, 5], Caldeŕın-Ojeda and Kwok [7], Caldeŕın-Ojeda [6], Aminzadeh
and Deng [2], Kim et al. [11] and Mutali and Vernic [13]. The distributions in these papers
have been used to model among others city sizes.

The contents of this paper are organised as follows. Some details of the composite
lognormal and power law distributions are given in Section 2. The two data sets and their
summary statistics are given in Section 3. The fits of the distributions to the data sets are
discussed in Section 4. Finally, some conclusions are noted in Section 5.

2. METHODS

2.1. Composite lognormal distributions

In this section, we discuss the composite lognormal distribution in Nadarajah and Bakar
[14, 15]. The composite lognormal distribution is made up by joining together two distinct
distributions: one for the body and the other for the tail. The body is described by the
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lognormal distribution while the distribution for the tail can be arbitrary. The cumulative
distribution function (cdf) of the composite lognormal distribution is

F (x) =


1

1 + φ

[
Φ
(

log θ − µ

σ

)]−1

Φ
(

log x− µ

σ

)
, if 0 < x ≤ θ,

1
1 + φ

+
φ

1 + φ

F0(x)− F0(θ)
1− F0(θ)

, if θ < x <∞,

(2.1)

where φ > 0, θ denotes the point at which the two distributions are joined together, Φ(·) de-
notes the cdf of the standard normal distribution, f0 denotes the probability density function
(pdf) of the tail, and F0 denotes the cdf of the tail. The following conditions ensure that
F (x) is continuous and differentiable at θ:

µ = log θ + σ2 + θσ2 f
′
0(θ)
f0(θ)

,

(2.2)

φ =
[
Φ
(

log θ − µ

σ

)]−1 1
θσ
ψ

(
log θ − µ

σ

)
1− F0(θ)
f0(θ)

,

where ψ(·) denotes the pdf of the standard normal distribution.

Different choices for f0 and F0 lead to different models for the composite lognormal
distribution. In Section 4, we consider fourteen different models: the composite lognormal-
Fréchet, composite lognormal-log logistic, composite lognormal-generalized Pareto, composite
lognormal-Weibull, composite lognormal-inverse Weibull, composite lognormal-Pareto, com-
posite lognormal-paralogistic, composite lognormal-inverse paralogistic, composite lognormal-
Burr, composite lognormal-inverse Burr, composite lognormal-inverse Pareto, composite log-
normal-inverse exponential, composite lognormal-exponential, composite lognormal-gamma,
composite lognormal-inverse gamma, composite lognormal-transformed gamma and compos-
ite lognormal-inverse transformed gamma distributions. We fitted all of the distributions
by the method of maximum likelihood. The best distribution was chosen according to the
following information criteria:

• the Akaike Information Criterion (AIC) due to Akaike [1] defined by

AIC = 2k − 2 log L̂,

where k denotes the number of parameters and L̂ denotes the maximized likelihood;

• the Bayesian Information Criterion (BIC) due to Schwarz [17] defined by

BIC = k log n− 2 log L̂,

where n denotes the number of data;

• the Hannan Quinn Criterion (HQC) due to Hannan and Quinn [10] defined by

HQC = −2 log L̂+ 2k log log n.

The smaller the values of these criteria the better the fit. The goodness of fit of the
distributions was assessed by the p-values of the Kolmogorov–Smirnov, Anderson Darling and
Cramer von Mises statistics.
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The fourteen different models considered include the following:

• the composite lognormal-inverse Burr distribution with

f0(x) =
λ1λ2

(
x
λ3

)λ1λ2

x

[
1 +

(
x
λ3

)λ2
]λ1+1

and

F0(x) =

[
1 +

(
x

λ3

)−λ1
]−λ2

,

where λ1 and λ2 are shape parameters while λ3 is a scale parameter;

• the composite lognormal-generalised Pareto distribution with

f0(x) =
1
λ3

[
1 +

λ1(x− λ2)
λ3

]− 1
λ1
−1

and

F0(x) = 1−
[
1 +

λ1(x− λ2)
λ3

]− 1
λ1

,

where λ1 is a shape parameter, λ2 is a location parameter and λ3 is a scale parameter;

• the composite lognormal-inverse paralogistic distribution with

f0(x) =
λ2

1

(
x
λ2

)λ2
1

x

[
1 +

(
x
λ2

)λ1
]λ1+1

,

where λ1 is a shape parameter and λ2 is a scale parameter.

2.2. Estimation

Suppose x1, x2, ..., xn is a random sample from (2.1). Let Λ denote the parameters
specifying f0(·) and F0(·). The maximum likelihood estimates of θ, σ and Λ, say θ̂, σ̂ and Λ̂,
respectively, were obtained as follows:

i) Compute the likelihood function

L(θ, σ,Λ) =
φn−m

(1 + φ)n[1− F0(θ)]
n−m

∏
xi≤θ

ψ
(

log xi−µ
σ

)
Φ
(

log θ−µ
σ

)
∏

xi>θ

f0(xi)

,
where

m =
n∑

i=1

I{xi ≤ θ}

and I{·} denotes the indicator function. µ and φ are given by (2.2). Hence, they
are functions of θ, σ and Λ.
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ii) Take its log as

logL(θ, σ,Λ) = (n−m) log φ− n log(1 + φ)

− m log
[
Φ
(

log θ − µ

σ

)]
+ (m− n) log[1− F0(θ)]

+
∑
xi≤θ

logψ
(

log xi − µ

σ

)
+
∑
xi>θ

log f0(xi).

iii) Set initial values for θ, σ and Λ.

iv) Maximize the log-likelihood function to obtain

θ̂, σ̂, Λ̂ = argmaxθ,σ,Λ logL(θ, σ,Λ),(2.3)

using the optim function in R.

v) Repeat steps iii) and iv) for a range of initial values to make sure that θ̂, σ̂ and
Λ̂ are unique.

In Section 4, we compare the best of the composite lognormal distributions to the power
law distribution given by the cdf:

F (x) = 1−
(
K

x

)α

(2.4)

for x > K and α > 0. For a given random sample x1, x2, ..., xn from (2.4), the maximum
likelihood estimates of K and α are

K̂ = min(x1, x2, ..., xn)

and

α̂ = n

[
n∑

i=1

log
(
xi

K̂

)]−1

,

respectively.

Campolieti [8] and Balthrop and Quan [3] fitted the power law distribution to the upper
tail of the data. They used the following procedure to estimate the parameters:

1. Order the data as x(1) ≤ x(2) ≤ ··· ≤ x(n).

2. Let K̃ = x(i) and estimate α by

α̃ =

[
n∑

i=1

I
{
xi ≥ K̃

}][ n∑
i=1

log
(
xi

K̃

)]−1

.

3. Compute the Kolmogorov–Smirnov statistic

sup
x≥ eK

∣∣∣∣∣∣F̃ (x)− 1 +

(
K̃

x

)
eα
∣∣∣∣∣∣,

where F̃ (·) denotes the empirical cdf of the data.

4. Repeat steps 2 and 3 for i = 1, 2, ..., n− 1.

5. Choose K̃ and α̃ to correspond to the smallest value of the Kolmogorov–Smirnov
statistic.
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3. DATA SETS

The two data sets are described in Sections 3.1 and 3.2. We shall refer to the data as
described in these sections as “full data” sets.

3.1. Canadian net wealth data

The data were collected from the rich 100 list “Canadian Business magazine”. The rich
list is published every year on line by the magazine. However, due to the webpages being
updated, we were able to get the data only for the years 2014–2018, 2012 and 2009. Due to
changes in policy from one year to another, 2014 had 101 data points while for 2018 had 98
data points. The remaining years had 100 data points each.

Table 1: Summary statistics of net wealth data in billions of nominal Canadian Dollars
(the deflated figures by the Consumer Price Index are given in the second row
for each year).

Year Mean Median Standard deviation Skewness Kurtosis Min Max CPI

2018 3.44 2.11 4.61 6.02 47.39 1.07 41.14
0.0258 0.0158 0.0346 5.9245 43.4279 0.008 0.308 133.4

2017 3.07 2.03 4.25 6.47 53.48 0.875 39.13
0.0235 0.0155 0.03259 6.3692 49.41976 0.0067 0.3 130.4

2016 2.88 1.89 4.00 6.47 53.31 0.835 36.76
0.0224 0.0147 0.0311 6.375 49.2505 0.0065 0.2863 128.4

2015 2.56 1.80 3.34 6.40 52.47 0.782 30.738
0.0202 0.0142 0.0264 6.3065 48.4212 0.0062 0.2428 126.6

2014 2.29 1.46 2.91 5.91 46.35 0.721 26.075
0.0183 0.0116 0.0232 5.8207 42.438 0.0058 0.2083 125.2

2012 2.02 1.39 2.33 5.29 38.88 0.654 20.129
0.0166 0.0114 0.0191 5.2145 35.1037 0.0054 0.1654 121.7

2009 1.73 1.15 2.39 6.48 53.72 0.49 21.99
0.0151 0.01005 0.0208 6.3829 49.6533 0.0043 0.1922 114.4

Table 1 gives the summary statistics of the data in terms of nominal and real figures.
The Consumer Price Index was taken from https://www150.statcan.gc.ca/t1/tbl1/en/

tv.action?pid=1810000501. Since the rich people are getting richer with time in terms of
both nominal and real figures, the values of mean, median, maximum and minimum increase
with year. The skewness is positive every year. The kurtosis is much greater than 3 every
year, meaning that the data are heavy tailed.
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3.2. Cumulative coal production data

The data were collected from the U.S. Energy Information Administration (EIA) web-
site. Balthrop and Quan [3] used the cumulative yearly production data from 1983 to 2016.
Due to the website being updated, we use the data from 2001 to 2018. The data contained a
large number of zeros (over 800 data points were zero), and these were removed before fitting
of the distributions.

Table 2: Summary statistics of coal data (unit: short tons).

Mean 4413710

SD 38518025

Skewness 27.62912

Kurtosis 954.948

Min 43

Max 1528026392

Sample size 4180

Table 2 shows that the skewness is positive. The kurtosis is once again much larger
than 3, which indicates the data has a large heavy tail.

4. RESULTS AND DISCUSSION

In this section, we illustrate the flexibility of the composite lognormal distributions
using the two real data sets. Fourteen of the composite lognormal distributions were fitted
to both data sets in full. For comparison, the power law distribution is also fitted to the full
data sets. The power law distribution is also fitted to the upper tail of the data sets.

In the discussion throughout Sections 4.1 and 4.2, “p-values” refer to p-values of the
Kolmogorov–Smirnov statistic. But Tables 10 and 12 also report p-values of Anderson Darling
and Cramer von Mises statistics. The conclusions based on these p-values are the same as
those based on p-values of the Kolmogorov–Smirnov statistic.

In Section 4.3, we investigate finite sample performance of the maximum likelihood
estimators of composite lognormal distributions to see if the conclusions reported in Sections
4.1 and 4.2 are reasonable.

4.1. Canadian net wealth data

Tables 3 to 9 give the best three distributions giving the smallest information criteria for
eachyear.Thepowerlawdistributiondoesnotmakethebestthreedistributionsforanyoftheyears.
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Table 3: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2009.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −261.42 −251.42 −240.99 −247.20

Composite lognormal-inverse paralogistic −251.60 −243.60 −235.79 −240.44

Composite lognormal-generalized Pareto −209.98 −199.98 −189.56 −195.76

Table 4: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2012.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −231.72 −221.72 −211.30 −217.50

Composite lognormal-inverse paralogistic −222.22 −214.22 −206.41 −211.06

Composite lognormal-generalized Pareto −221.91 −211.91 −201.49 −207.69

Table 5: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2014.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −244.64 −234.64 −224.18 −230.40

Composite lognormal-inverse paralogistic −237.97 −229.97 −222.13 −226.80

Composite lognormal-generalized Pareto −228.74 −218.74 −208.28 −214.51

Table 6: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2015.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −211.45 −201.45 −191.03 −197.23

Composite lognormal-inverse paralogistic −208.74 −200.74 −192.92 −197.58

Composite lognormal-generalized Pareto −236.70 −226.70 −216.28 −222.48

Table 7: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2016.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −239.28 −229.28 −218.86 −225.06

Composite lognormal-inverse paralogistic −229.61 −221.61 −213.80 −218.45

Composite lognormal-generalized Pareto −234.94 −224.94 −214.52 −220.72
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Table 8: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2017.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −240.90 −230.90 −220.48 −226.69

Composite lognormal-inverse paralogistic −240.07 −232.07 −224.25 −228.91

Composite lognormal-generalized Pareto −215.20 −205.20 −194.78 −200.98

Table 9: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2018.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −251.60 −241.60 −231.26 −237.42

Composite lognormal-inverse paralogistic −244.83 −236.83 −229.08 −233.69

Composite lognormal-generalized Pareto −233.40 −223.40 −213.06 −219.22

Table 10 lists the p-values for the power law distribution and the very best composite log-
normal distributions chosen as the ones having the smallest information criteria values.

Table 10: Fitted models and p-values for the Canadian net wealth data (the first row of
p-values for each year is for the Kolmogorov–Smirnov statistic, the second row
of p-values for each year is for the Anderson Darling statistic, the third row of
p-values for each year is for the Cramer von Mises statistic).

Year n
Composite model

Power law fitted Power law fitted
to full data to upper tail

Best model p-value p-value p-value eK no of data > eK

2018 98 Composite lognormal- 0.973 0.060 0.99 2.77 37
inverse Burr 0.970 0.055 0.98

0.974 0.058 0.99

2017 100 Composite lognormal- 0.853 0.011 0.994 2.96 27
inverse paralogistic 0.855 0.010 0.994

0.855 0.008 0.995

2016 100 Composite lognormal- 0.9996 0.098 0.99 2.35 38
inverse Burr 0.999 0.095 0.95

0.998 0.097 0.96

2015 100 Composite lognormal- 0.844 0.020 0.98 1.96 48
generalised Pareto 0.840 0.030 0.99

0.851 0.035 0.96

2014 101 Composite lognormal- 0.921 0.063 0.92 1.85 42
inverse Burr 0.935 0.065 0.93

0.922 0.068 0.90

2012 100 Composite lognormal- 0.996 0.065 0.9 1.48 46
inverse Burr 0.999 0.061 0.9

0.995 0.062 0.91

2009 100 Composite lognormal- 0.998 0.020 0.959 1.17 48
inverse Burr 0.995 0.025 0.966

0.999 0.022 0.954
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The p-values for the very best composite lognormal distributions range from 0.8 to 0.99. The
largest of these p-values is 0.9996 (2016) and the smallest is 0.844 (2015). The composite
lognormal inverse Burr distribution gives the largest p-values for five of the seven years.

The p-values for the power law distribution are always less than 0.1 when applied to
the full data. When applied to the tail (containing a fraction of the full data), the p-values
are much closer to 1. But for four of the seven years the p-values for the very best composite
lognormal distributions are still greater. For the year 2018, the p-value for the very best
composite lognormal distribution is slightly smaller (0.973 compared to 0.99), but the power
law tail models only 37 of the 98 observations. For the year 2017, the p-value for the very
best composite lognormal distribution is again slightly smaller (0.853 compared to 0.994),
but the power law tail models only 27 of the 100 observations. For the year 2015, the p-value
for the very best composite lognormal distribution is again slightly smaller (0.844 compared
to 0.98), but the power law tail models only 48 of the 100 observations.

The probability and quantile plots comparing the fits of the power law distribution and
the very best composite lognormal distributions are shown in Figures 1 to 7.

Both the quantile and probability plots confirm that the composite lognormal distribu-
tions provide better fits than the power law distribution. Nearly all of the plotted points in
the probability plots lie close to the 45 degree line for the composite lognormal distributions.
The quantile plots show that the composite lognormal distributions provide good fits to the
data except for a few extremely large observations. The power law distribution fitted to the
full data gives poor fits. The power law distribution fitted to the tail gives much better fits
but still not good as the composite lognormal distributions.
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Figure 1: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2009.

Figure 1: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2009.
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Figure 2: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2012.

Figure 2: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2012.
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Figure 3: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2014.

Figure 3: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2014.
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Figure 4: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for Canadian net wealth data in 2015.

Figure 4: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for Canadian net wealth data in 2015.
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Figure 5: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2016.

Figure 5: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2016.
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Figure 6: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse paralogistic and power law distri-
butions for Canadian net wealth data in 2017.

Figure 6: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse paralogistic and power law distri-
butions for Canadian net wealth data in 2017.



Applications of composite lognormal distributions 471

16 J. Lyu and S. Nadarajah

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

Expected

O
b

s
e

rv
e

d

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

Model

Composite
Power law tail
Power law

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Expected

O
b

s
e

rv
e

d

Model

Composite
Power law tail
Power law

Figure 7: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2018.

Both the quantile and probability plots confirm that the composite lognormal distributions pro-
vide better fits than the power law distribution. Nearly all of the plotted points in the probability plots
lie close to the 45 degree line for the composite lognormal distributions. The quantile plots show that
the composite lognormal distributions provide good fits to the data except for a few extremely large ob-
servations. The power law distribution fitted to the full data gives poor fits. The power law distribution
fitted to the tail gives much better fits but still not good as the composite lognormal distributions.

Figure 7: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2018.
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4.2. Cumulative coal production data

Table 11 gives the best five distributions giving the smallest information criteria. The
power law distribution once again does not make the best five distributions. The p-values
of the best five distributions given in Table 12 range from 0.94 to 0.97. The largest p-value
of 0.9723 is given by the composite lognormal-generalised Pareto distribution. The smallest
p-value of 0.9407 is given by the composite lognormal-Pareto distribution. The composite
lognormal-generalised Pareto distribution also gives the smallest information criteria values.

The fit of the power law distribution to the full data (n = 4180) gave a p-value <

2.210−16. The fit of the power law distribution to the tail containing 1095 observations of the
full data gave K̃ = 1027417 and p-value = 0.108. All of the p-values in Table 12 are much
greater than 0.108.

Table 11: The five best composite lognormal distributions according to
information criteria for cumulative coal production data.

Model −2 log L AIC BIC HQC

Composite lognormal-generalised Pareto −9464.96 −9454.96 −9429.60 −9445.99

Composite lognormal-log logistic −9134.55 −9126.55 −9107.54 −9119.83

Composite lognormal-inverse paralogistic −9270.34 −9262.34 −9243.33 −9255.61

Composite lognormal-paralogistic −9219.03 −9211.03 −9192.01 −9204.30

Composite lognormal-Pareto −9410.33 −9402.33 −9383.32 −9395.60

Table 12: p-values for the five best composite lognormal distributions for
cumulative coal production data.

p-values
Model

Kolmogorov–Smirnov Anderson Darling Cramer von Mises

Composite lognormal-generalised Pareto 0.972 0.971 0.974

Composite lognormal-log logistic 0.965 0.964 0.966

Composite lognormal-inverse paralogistic 0.963 0.960 0.959

Composite lognormal-paralogistic 0.944 0.950 0.948

Composite lognormal-Pareto 0.941 0.940 0.938

The probability and quantile plots comparing the fits of the power law and composite
lognormal-generalised Pareto distributions are shown in Figure 8.

The probability plot shows that the composite lognormal-generalised Pareto distribu-
tion provides a near perfect fit. The quantile plot shows that the composite lognormal-
generalised Pareto distribution provides a good fit except for some extremely large observa-
tions. Neither of the two power law models provide as good a fit as the composite lognormal-
generalised Pareto distribution.
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Figure 8: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for cumulative coal production data.

The probability plot shows that the composite lognormal-generalised Pareto distribution provides
a near perfect fit. The quantile plot shows that the composite lognormal-generalised Pareto distribution
provides a good fit except for some extremely large observations. Neither of the two power law models
provide as good a fit as the composite lognormal-generalised Pareto distribution.

4.3. A simulation study

In this section, we assess the performance of the maximum likelihood estimates given by (2.3)
with respect to sample size n. The assessment of the performance of the maximum likelihood estimates
of (θ, σ,Λ) is based on a simulation study:

Figure 8: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for cumulative coal production data.
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4.3. A simulation study

In this section, we assess the performance of the maximum likelihood estimates given
by (2.3) with respect to sample size n. The assessment of the performance of the maximum
likelihood estimates of (θ, σ,Λ) is based on a simulation study:

1. Generate ten thousand samples of size n from the composite lognormal distribution
by inverting

F (x) = uk

for k = 1, 2, ..., n, where u1, u2, ..., un is a random sample from uniform(0, 1) and
F is given by (2.1);

2. Compute the maximum likelihood estimates for the ten thousand samples in step 1,
say

(
θ̂i, σ̂i, Λ̂i

)
for i = 1, 2, ..., 10000.

3. Compute the biases and mean squared errors given by

b̂iase(n) =
1

10000

10000∑
i=1

(êi − e)

and

M̂SEe(n) =
1

10000

10000∑
i=1

(êi − e)2

for e = θ, σ,Λ.

We repeated these steps for n = 10, 11, ..., 500 with θ = 1, σ = 1 and Λ corresponding to
the composite lognormal-inverse paralogistic distribution; so, computing b̂iasθ(n), b̂iasσ(n),
b̂iasλ1(n), b̂iasλ2(n), M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) for n = 10, 11, ..., 500.

Figures 9 and 10 show how the biases and the mean squared errors vary with respect
to n. The red line corresponds to the biases being zero. The following observations can be
made:

1. The magnitude of the biases of the estimators generally decrease to zero;

2. The mean squared errors of the estimators generally decrease to zero;

3. The biases are generally negative for λ1 and λ2;

4. The biases appear largest in magnitude for λ1 and λ2;

5. The mean squared errors appear largest for θ and σ.

The results of the simulation study show that: the accuracy of the estimators of θ, σ,
λ1 and λ2 as measured by bias is reasonable for all n ≥ 300; the accuracy of the estimators
of θ, σ, λ1 and λ2 as measured by mean squared error is reasonable for all n ≥ 300. The
sample size used in Section 4.2 is much greater than 300 but the sample sizes in Section 4.1
are not greater than 300. Hence, the conclusions in Section 4.2 should be reasonable but the
conclusions in Section 4.1 should be treated conservatively.
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1. Generate ten thousand samples of size n from the composite lognormal distribution by inverting

F (x) = uk

for k = 1, 2, . . . , n, where u1, u2, . . . , un is a random sample from uniform(0, 1) and F is given by
(2.1);

2. Compute the maximum likelihood estimates for the ten thousand samples in step 1, say
(
θ̂i, σ̂i, Λ̂i

)
for i = 1, 2, . . . , 10000.

3. Compute the biases and mean squared errors given by

b̂iase(n) =
1

10000

10000∑
i=1

(êi − e)

and

M̂SEe(n) =
1

10000

10000∑
i=1

(êi − e)2

for e = θ, σ,Λ.

We repeated these steps for n = 10, 11, . . . , 500 with θ = 1, σ = 1 and Λ corresponding to the compos-

ite lognormal-inverse paralogistic distribution; so, computing b̂iasθ(n), b̂iasσ(n), b̂iasλ1
(n), b̂iasλ2

(n),

M̂SEθ(n), M̂SEσ(n), M̂SEλ1
(n) and M̂SEλ2

(n) for n = 10, 11, . . . , 500.
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Figure 10: M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) versus n.

Figures 9 and 10 show how the biases and the mean squared errors vary with respect to n. The
red line corresponds to the biases being zero. The following observations can be made:

1. The magnitude of the biases of the estimators generally decrease to zero;

2. The mean squared errors of the estimators generally decrease to zero;

3. The biases are generally negative for λ1 and λ2;

4. The biases appear largest in magnitude for λ1 and λ2;

5. The mean squared errors appear largest for θ and σ.

The results of the simulation study show that: the accuracy of the estimators of θ, σ, λ1 and λ2 as
measured by bias is reasonable for all n ≥ 300; the accuracy of the estimators of θ, σ, λ1 and λ2 as
measured by mean squared error is reasonable for all n ≥ 300. The sample size used in Section 4.2
is much greater than 300 but the sample sizes in Section 4.1 are not greater than 300. Hence, the
conclusions in Section 4.2 should be reasonable but the conclusions in Section 4.1 should be treated
conservatively.

We have presented results only for θ = 1, σ = 1 and a particular composite lognormal dis-
tribution. But the results were similar for other choices for θ and σ and other composite lognormal
distributions.

5. Conclusions

In this paper, we have illustrated the power of composite lognormal distributions for two real
data sets recently published in the physics literature. These data sets (in full or in part) have been

Figure 10: M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) versus n.
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We have presented results only for θ = 1, σ = 1 and a particular composite lognormal
distribution. But the results were similar for other choices for θ and σ and other composite
lognormal distributions.

5. CONCLUSIONS

In this paper, we have illustrated the power of composite lognormal distributions for two
real data sets recently published in the physics literature. These data sets (in full or in part)
have been previously modeled by the power law distribution. All of the composite lognormal
distributions provide much better fits than the power law distribution when both were fitted
to the full data sets. For the first data set, several of the composite lognormal distributions
(composite lognormal-inverse Burr, composite lognormal-inverse paralogistic and composite
lognormal-generalised Pareto distributions) provide better fits than the power law distribution
even when the former were fitted to the full data and the latter was fitted only to the upper
tail. For the second data set, all of the composite lognormal distributions provide much better
fits than the power law distribution even when the former were fitted to the full data and
the latter was fitted only to the upper tail. The goodness of fit was assessed by probability
plots, quantile plots and p-values of the Kolmogorov–Smirnov, Anderson Darling and Cramer
von Mises statistics. Software for fitting composite lognormal distributions is freely available
from Nadarajah and Bakar [14].

Finally, we like to point out that the use of the power law distribution to model the
two real data sets was motivated by a theoretical framework. Lee et al. [12] describe the
rationale for the composite lognormal distributions in (2.1) as “the lognormal distribution
models a large portion of the data well, but quickly fades away to zero. Thus it fits poorly a
portion of the tail. On the other hand, F0 fits the tail portion well, but fits the other portion
poorly. By combining two distributions with one fitting the portion below a given threshold
and the other fitting the portion larger than the threshold, the composite distribution (2.1)
was proposed”. But to the best of our knowledge there is no theoretical motivation yet for
the composite lognormal distributions. Finding a theoretical motivation for the composite
lognormal distributions is a possible future work.
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1. INTRODUCTION

Due to practical limitations such as time and(or) budget constraint, it is not easy to
obtain complete sample in practice; expecially, when the test units feature character of high
reliable and expensive. Therefore, censored data frequently appear during the data collec-
tion, where only a portion of exact failure times are observed under such limitated situations,
and various censoring schemes are implemented in experimental procedures simulataneously.
Common censoring schemes used in experiments include Type-I censoring, Type-II censor-
ing, progressive censoring, as well as hybrid censoring. Interested readers may refer to, for
example, the monographes of Balakrishnan and Cramer [6] and Lawless [21] for a compre-
hensive review. However, besides conventional censored data appeared from aforementioned
data collection schemes, there are many other incomplete data types occurred in field and
experiment situations such as reliability engineering, survival analysis, hydrology, economics,
mining and meteorology among others, and records data is one of popular observation among
them. For example, Guo et al.et al. [14] gave an example regarding a kind of the rock crushing
machine, where the size of the rock being crushed is also obtained when the crush strength
is larger than the previously one appearing as record data. Soliman et al. [24] investigated
a reliability experiment, where the exact measurements of failure under operating stress are
observed sequentially and the record-breaking values are only collected in this case due to the
practical operating mechanism. The initial conception of records is introduced by Chandler
[7] that could be described as follows. Let Tn, n = 1, 2, ... be a series of independent and
identically distributed (i.i.d.) random variables. Then an observation Tj is called an upper
record, if Tj > Ti for every j > i. Due to its wide application in practical fields, records
have received wide attention and are discussed by many authors. See, for example, some
recent contributions of Asgharzadeh et al. [3], Dey et al. [9], Singh et al. [25], Wang and Ye
[30] among others. For more details, one could refer to monographes of Ahsanullah [1] and
Nevzorov [23] for a comprehensive review.

In practical lifetime studies, various distributions like exponential, Weibull, gamma,
normal, etc., have been proposed for data analysis from various perspectives. One of char-
acteristics of these aforementioned traditional models is that these distributions all feature
infinity support (−∞,∞) or (0,∞). However, there are many situations, where observa-
tions collected from practical situation are bounded within a specified range, and in turn
distributions with finite support may provide better modelling performance than those with
infinity support from goodness-of-fitting perspectives. For example, Zhang and Xie [32] used
an upper-truncated Weibull distribution to fit the pit depth data of a water pipe where the
upper bound of pit depths is the thickness of the water pipe. The same model is further imple-
mented to describe the wind speed data by Kantar and Usta [17]. Vicari et al. [27] proposed a
generalized Topp–Leone distribution for fitting the V-I indices data of globular clusters with
bounded support. Under such aforementioned studies, all of the authors mentioned that the
implemented bounded models have better data fitting accuracy than traditional distributions
with infinity support in their practical discussions. Therefore, distributions with bounded
domain have potential theoretical and practical applications where such models may provide
higher weight to the bounded data and give better fitting effect in data analysis, and has
been extensively studied by many authors from various perspectives (e.g., [5], [8], [20], [26]).

Among different bounded models, distributions with unit support have attracted con-
siderable attention in practice, where the associated observation within (0, 1) is an important
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and common occurred data type in reality such as birth rate, mortality data, as well as in-
dices data from fields of energy, reliability and economic among others. There are various
distributions with unit bound like beta, Kumaraswamy, Topp–Lenoe models among others.
Some discussions and applications for such unit models could be found in the works of Genc
[11], Ghitany et al. [13], Makouei et al. [22] and Wang [31]. Recently, Jha et al. [16] pro-
posed another unit generalized Rayleigh distribution (UGRD) as follows. Let T be an UGRD
random variable, the associated cumulative distribution function (CDF), probability density
function (PDF) and hazard rate function (HRF) of T are respectively given by

F (t) = 1 −
(
1 − e−(λ ln t)2

)θ
, 0 < t < 1,(1.1)

f(t) = −2θλ2 ln t
t

e−(λ ln t)2
(
1 − e−(λ ln t)2

)θ−1
,(1.2)

and

H(t) =
−2θλ2 ln t

t e−(λ ln t)2

1 − e−(λ ln t)2
,(1.3)

where θ > 0 and λ > 0 are shape and scale parameters, respectively. It is noted that the
shape parameter θ affects the geometric shape of density curve and the scale parameter λ
not only determines the steepness of density curve but also specifically exhibits the value of
random variable. Hereafter, the UGRD with parameters θ and λ is denoted by UGRD(θ, λ)
for concision. Further, plots of CDF, PDF and HRF of the UGRD are presented in Figure 1
for illustration, and it is noted visually that the UGRD has very flexible fitting ability and may
be used as an alternative bound model to traditional Beta, Kumaraswamy and Topp–Leone
distributions.
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Figure 1: CDF, PDF and HRF of UGRD with different parameters.

In both theoretical and practical studies, point estimation is one of the most used ap-
proach in statistical inference. However, point estimation sometimes could not produce robust
results, especially when estimates heavily depend on sample size. Since sample size appears
frequently as moderate or small due to practical limitations, estimations of confidence sets are
proposed alternatively in consequence, and have been discussed by many authors from differ-
ent perspectives. For instance, Asgharzadeh et al. [2] provided the exact confidence intervals
and regions when a bathtub-shaped distribution is used, and similar results are also obtained
by Kinaci et al. [18] for the parameters of the generalized inverted exponential distribution.
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Wu [28] constructed the confidence sets for the Weibull parameters under progressively cen-
sored data. Based on a modified progressively hybrid censored data, Zhu [33] proposed an
adaptive Newton–Raphson algorithm based exact confidence region for a bathtub-shaped dis-
tribution. Motivated by such reasons as mentioned above and due to the flexibility and wide
applications of the UGRD, the current investigation explores estimations of confidence sets
for the UGRD parameters when records data is available, and various approaches are pre-
sented for constructing confidence intervals and confidence regions for the UGRD parameters
in consequence.

The rest parts of this paper are arranged as follows. In Section 2, various estimates of
confidence sets with equal-tailed and minimum-size are established for the UGRD parameters.
Extensive numerical simulations are carried out in Section 3 to investigate the performance
of different results, and two real life examples are also presented for illustrations. In Section
4, some extended results are further provided for exploring some more potential confidence
sets for UGRD parameters with better performance. Finally, some concluding remarks are
given in Section 5.

2. ESTIMATIONS OF CONFIDENCE SETS

Based on records data, different confidence sets of the UGRD parameters are established
in this section. The equal-tailed confidence intervals and confidence regions are constructed
respectively based on the proposed pivotal quantities, and the associated minimum-size confi-
dence sets are also established in consequence. Moreover, conventional asymptotic confidence
sets are provided for comparison.

2.1. Equal-tailed confidence sets

The equal-tailed confidence sets (ECSs) are discussed here for UGRD parameters λ
and θ including the equal-tailed confidence intervals (ECI) and equal-tailed confidence region
(ECR), respectively.

To construct the ECSs, two useful results are provided as follows.

Lemma 2.1. Let T = {T1, T2, ..., Tn} be upper records from UGRD(λ, θ). Denote

pivotal quantities

Ψ(λ) = (n− 1)
[
ln(1 − exp(−(λ lnTn)2))
ln(1 − exp(−(λ lnT1)2))

− 1
]−1

(2.1)

and

Υ (λ, θ) = −2θ ln(1 − exp(−(λ lnTn)2)).(2.2)

Then Ψ(λ) follows the F distribution with 2 and 2(n− 1) degrees of freedom, Υ (λ, θ) has

a chi-square distribution with 2n degree of freedom, and Ψ(λ) and Υ (λ, θ) are statistically

independent.

Proof: The proof is provided in part A of the Supplementary file.
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Lemma 2.2. For arbitrary numbers a and b with 0 < b < a < 1, let

h(λ) =
ln(1 − exp(−(λ ln a)2))
ln(1 − exp(−(λ ln b)2))

, λ > 0,(2.3)

then function h(λ) increases in λ with lim
λ→0

h(λ) = 1 and lim
λ→∞

h(λ) = ∞.

Proof: The proof is provided in part B of the Supplementary file.

Corollary 2.1. According to Lemma 2.2, function Ψ(λ) decreases in λ with range

(0,∞).

In the following, the ECIs of parameters λ and θ as well as the ECR of parameter
vector (λ, θ) are established, respectively.

Theorem 2.1. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% ECI of λ is given by[
ψ
(
F

2,2(n−1)
γ/2

)
, ψ
(
F

2,2(n−1)
1−γ/2

)]
,(2.4)

where ψ(x) is the solution of equation Ψ(λ) = x w.r.t. λ, and Fm1,m2
p is the upper 100p%

percentile of F distribution with m1 and m2 degrees of freedom.

Proof: The proof is provided in part C of the Supplementary file.

Theorem 2.2. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For given

λ and arbitrary 0 < γ < 1, a 100(1 − γ)% ECI of θ can be constructed as[
χ2n

1−γ/2

B(λ)
,
χ2n
γ/2

B(λ)

]
with B(λ) = −2 ln(1 − exp(−(λ lnTn)2)),(2.5)

where χmp denotes the upper 100p% percentile of chi-square distirbution with m degrees of

freedom.

Proof: Using the distribution property of the pivotal quantity Υ (λ, θ) given in Lemma
2.1, the result could be be established directly by following similar line as Theorem 2.1, and
the details are omitted here for concision.

Remark 2.1. It is noted from Theorem 2.2 that the ECI of θ is available with known
λ. However, parameter λ is unknown in practical applications. To overcome this drawback,
following alternative way is proposed to establish the ECI of parameter θ when parameter λ
is unknown.

Let ψ(Y ) be the unique solution of λ from equation Ψ(λ) = Y , where Y is a random
sample generating from F distribution with 2 and 2(n− 1) degrees of freedom. Using the
substitution method of Weerahandi [29], a generalized pivotal quantity of θ can be constructed
as

S =
Υ (ψ(Y ), θ)
B(ψ(Y ))

.(2.6)

Correspondingly, an approach termed as Algorithm 1 is provided to obtain the ECI of θ under
unknown λ situation.
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Algorithm 1: ECI of θ with unknown λ |
Step 1. Generate a random sample Y from the F distribution with 2 and

2(n− 1) degrees of freedom, then ψ(Y ) can be solved through equation
Ψ(λ) = Y .

Step 2. Generate a random value of Υ (ψ(Y ), θ) from chi-square distirbution with
2n degrees of freedom and calculate S in (2.6).

Step 3. Repeat Steps 1 and 2 M times and obtain a group values of S arranged
in the ascending order, S1, S2, ..., SM .

Step 4. For 0 < γ < 1, an ECI of θ with unknown λ can be constructed by[
SdM γ

2
e, SdM(1− γ

2 )e
]
,(2.7)

where ‘d·e’ refers to the ceiling function.

Further, an ECR of parameter vector (λ, θ) is established as follows.

Theorem 2.3. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% ECR of (λ,θ) can be written as(λ, θ)

∣∣∣∣∣∣ψ
(
F

2,2(n−1)
1−

√
1−γ

2

)
< λ < ψ

(
F

2,2(n−1)
1+

√
1−γ

2

)
,

χ2n
1+

√
1−γ

2

B(λ)
< θ <

χ2n
1−

√
1−γ

2

B(λ)

,(2.8)

where associated notations are defined in Theorems 2.1 and 2.2, respectively.

Proof: The proof is provided in part D of the Supplementary file.

2.2. Minimum-size confidence sets

It is noted from Subsection 2.1 that the proposed ECSs are obtained under equal-tailed
approach, and such results someitmes may not have minimum sizes. Alternatively, optimal
confidence sets for parameters λ, θ and (λ, θ) are proposed here. Specifically, the minimum-size
confidence sets (MCSs) including the minimum-length confidence intervals (MCIs) of λ and θ
as well as the minimum-area confidence region (MCR) of (λ, θ) are constructed respectively,
and the associated numercial algorithms are also proposed for optimization computation.

Theorem 2.4. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% MCI of λ is given by

[ψ(x∗2), ψ(x∗1)],(2.9)

where x∗1 and x∗2 are the solutions of the following non-linear system
ψ′(x1)
ψ′(x2) =

PF
2,2(n−1)

(x1)

PF
2,2(n−1)

(x2)
,

F2,2(n−1)(x2) − F2,2(n−1)(x1) = 1 − γ,
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where ψ′(x) is the derivative of ψ(x) with respect to x, Fm1,m2(x) is the CDF of F distribution

with m1 and m2 degrees of freedom and PFm1,m2
(x) is the corresponding density function of

Fm1,m2(x).

Proof: The proof is provided in part E of the Supplementary file.

Clearly, there is no closed form solution (x∗1, x
∗
2) for the MCI of λ in Theorem 2.4,

and a numerical approach entitled Algorithm 2 is provided with pre-fixed accuracy level
σ > 0.

Algorithm 2: MCI of λ in Theorem 2.4 |

Step 1. Let ẋ1 = F
2,2(n−1)
γ be the upper bound of x1 and N = bẋ1/σc,

where ‘b·c’ is the floor function.

Step 2. Obtain a value of ẋ2 by computing the equation
F2,2(n−1)(ẋ2) − F2,2(n−1)(ẋ1) = 1 − γ.

Step 3. Let ẋ1 = ẋ1 − σ.

Step 4. Repeat Step 2 and Step 3 until ẋ1 < 0 and obtain N groups (ẋ[i]
1 , ẋ

[i]
2 ),

i = 1, ..., N .

Step 5. The numerical MCI of λ can be constructed as
[
ψ
(
ẋ

[k]
2

)
, ψ
(
ẋ

[k]
1

)]
,

where k satisfies the equation ψ(ẋ[k]
1 ) − ψ(ẋ[k]

2 ) =
N

min
i=1

[ψ(ẋ[i]
1 ) − ψ(ẋ[i]

2 )].

Theorem 2.5. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For given λ

and arbitrary 0 < γ < 1, a 100(1 − γ)% MCI of θ can be constructed as[
y∗1
B(λ)

,
y∗2
B(λ)

]
,(2.10)

where y∗1 and y∗2 are the solutions of the following non-linear system{
Pχ2n(y2) = Pχ2n(y1),
χ2n(y2) − χ2n(y1) = 1 − γ

and both χm(y) and Pχm(y) are the CDF and PDF of chi-square distribution with m degree

of freedom, respectively.

Proof: For given λ, using pivotal quantity Υ (λ, θ) in Lemma 2.1, the 100(1−γ)% MCI
of θ can be obtained similarly as in Theorem 2.4 and the details are omitted for concision.

In addition, a numerical approach called Algorithm 3 are presented for obtaining the
MCI of θ.
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Remark 2.2. It is noted that the MCI of θ with unknown λ can be still constructed
under the alternative approach as[

Sdj∗e, Sdj∗+M−(Mγ+1)e
]
,(2.11)

where notation Sd·e is defined in Algorithm 1 and j∗ is an integer satisfying

Sdj∗+M−(Mγ+1)e − Sdj∗e =
dMγe
min
j=1

[
Sdj+M−(Mγ+1)e − Sdje

]
.

Algorithm 3: MCI of θ in Theorem 2.5 |
Step 1. Let p = σ be the initial value.

Step 2. Obtain the solutions ẏ1 and ẏ2 from euqation Pχ2n(y) = p,
where 0 < ẏ1 < ẏ2.

Step 3. Calculate C = χ2n(ẏ2) − χ2n(ẏ1), then let σ∗ = C − (1 − γ).

Step 4. If σ∗ > σ, then let p = p+ σ, otherwise if σ∗ < −σ, let p = p− σ.

Step 5. Repeat Steps 2–4 until |σ∗| 6 σ, for known λ, the numerical MCI of θ
can be given by [ẏ1/B(λ), ẏ2/B(λ)].

Similarly, the MCR of (λ, θ) is also established as follows.

Theorem 2.6. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For an

arbitrary 0 < γ < 1, the 100(1 − γ)% MCR of (λ, θ) is given by{
(λ, θ)

∣∣∣∣ψ(x∗2) < λ < ψ(x∗1),
y∗1
B(λ)

< θ <
y∗2
B(λ)

}
,(2.12)

where (x∗1, x
∗
2, y

∗
1, y

∗
2) are the solutions of the following non-linear system

Pχ2n(y1) = Pχ2n(y2),[
F2,2(n−1)(x2) − F2,2(n−1)(x1)

]
[χ2n(y2) − χ2n(y1)] = 1 − γ,

ψ′(x2)B(ψ(x1))
ψ′(x1)B(ψ(x2))

= −
PF2,2(n−1)(x2)

PF2,2(n−1)(x1)
,

ψ′(x1)
[
F2,2(n−1)(x2) − F2,2(n−1)(x1)

]
Pχ2n(y1)

[χ2n(y2) − χ2n(y1)]PF2,2(n−1)(x1)
∫ ψ(x1)
ψ(x2)

1
B(λ)dλ

= −B(ψ(x1))
y2 − y1

.

Proof: The proof is provided in part F of the Supplementary file.

For finding solution of MCR, the associated numerical approach termed as Algorithm 4
is provided in consequence.
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Algorithm 4: MCR of (λ, θ) in Theorem 2.6 |

Step 1. Set ẏ1 = σ and obtain ỹ1 and ỹ2 from the following equations{
Pχ2n(ỹ1) = Pχ2n(ỹ2)
χ2n(ỹ2) − χ2n(ỹ1) = (1 − γ)

, 0 < ỹ1 < ỹ2.

Then make M = bỹ1/σc.

Step 2. Obtain a value of ẏ2(> ẏ1) by equation Pχ2n(ẏ1) = Pχ2n(ẏ2),
and calculate γ∗ = 1 − (1 − γ)[χ2n(ẏ2) − χ2n(ẏ1)]−1.

Step 3. For i = 1, 2, ...,M , obtain Ni groups (ẋ[ij ]
1 , ẋ

[ij ]
2 ), j = 1, 2, ..., Ni

by substituting γ∗ for γ in Algorithm 1.

Step 4. Let ẏ1 = ẏ1 + σ.

Step 5. Repeat Step 2 – Step 4 until ẏ1 > ỹ1 and obtain
∑M

i=1Ni groups solutions
(ẋ[ij ]

1 , ẋ
[ij ]
2 , ẏ

[i]
1 , ẏ

[i]
2 ), i = 1, 2, ...,M , j = 1, 2, ..., Ni.

Step 6. The numercial MCR of (λ, θ) can be constructed as{
(λ, θ)

∣∣∣∣∣ψ
(
ẋ

[i∗
j∗ ]

2

)
< λ < ψ

(
ẋ

[i∗
j∗ ]

1

)
,
ẏ

[i∗]
1

B(λ)
< θ <

ẏ
[i∗]
2

B(λ)

}
,

where (ẋ
[i∗

j∗ ]

1 , ẋ
[i∗

j∗ ]

2 , ẏ
[i∗]
1 , ẏ

[i∗]
2 ) conform to the following equation

∫ ψ

�
ẋ
[i∗

j∗ ]

1

�

ψ

�
ẋ
[i∗

j∗ ]

2

� ẏ
[i∗]
2 − ẏ

[i∗]
1

B(λ)
dλ =

(M,Ni)

min
(i,j)=(1,1)

∫ ψ

�
ẋ
[ij ]

1

�

ψ

�
ẋ
[ij ]

2

� ẏ
[i]
2 − ẏ

[i]
1

B(λ)
dλ

.

2.3. Asymptotic confidence sets

For comparison, traditional asymptotic confidence sets (ACSs) of UGRD parameters are
also constructed based on asymptotic theory, where asymptotic confidence intervals (ACIs) of
of λ and θ as well as asymptotic confidence region (ACR) of of (λ, θ) are obtained, respectively.

Let T1, T2, ..., Tn be upper records from UGRD(λ, θ), and t1, t2, ..., tn be the associated
observations. Therefore, log-likelihood function `(λ, θ) of λ and θ can be expressed from
Ahsanullah [1] as

`(λ, θ) = n ln
(
2θλ2

)
+ θ ln

(
1 − e−(λ ln tn)2

)
(2.13)

−
n∑
i=1

ln
[
−
(
1 − e−(λ ln ti)

2
)
t−1
i ln ti

]
+ (λ ln ti)

2.
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By taking derivatives, MLE λ̂ of λ can be obtained from equation

n

λ2
− n(ln tn)

2e−(λ ln tn)2(
1 − e−(λ ln tn)2

)
ln
(
1 − e−(λ ln tn)2

) −
n∑
i=1

(ln ti)
2

1 − e−(λ ln ti)
2 = 0,(2.14)

whereas the MLE θ̂ of θ is given by

θ̂ = − n

ln
(

1 − e−(λ̂ ln tn)2
) .

Remark 2.3. It is worth mentioning that the UGRD MLEs λ̂ and θ̂ uniquely exist
under records situation, and the associated existence and uniqueness are provided in part G
of the Supplementary file. Therefore, altough there is no closed form for MLE λ̂ in equa-
tion (2.14), the associated estimate could be obtained in a simple way by using numerical
approaches like biasection or fixed-point iteration methods.

Further, let β = (λ, θ)′ = (β1, β2)′ with β1 = λ, β2 = θ, the observed information matrix
of β̂ = (β̂1, β̂2)′ is given by

I(β̂) =

(
−∂2`(λ,θ)

∂λ2 −∂2`(λ,θ)
∂λ∂θ

−∂2`(λ,θ)
∂λ∂θ −∂2`(λ,θ)

∂θ2

)∣∣∣∣∣
λ=λ̂,θ=θ̂

,(2.15)

where

∂2`(λ, θ)
∂2λ

= −2n
λ2

− ω(tn) + θ
n∑
i=1

ω(ti),
∂2`(λ, θ)
∂2θ

= − n

θ2
,

∂2`(λ, θ)
∂λ∂θ

=
2λ(ln tn)

2e−(λ ln tn)2

1 − e−(λ ln tn)2

and

ω(t) =
2(ln t)2e−(λ ln t)2

[
1 − 2λ2(ln t)2 − e−(λ ln t)2

]
[
1 − e−(λ ln t)2

]2 .

Therefore, the variance-covariance matrix of (λ̂, θ̂) can be constructed as

I−1(β̂) =
(

Var(λ̂) Cov(λ̂, θ̂)
Cov(λ̂, θ̂) Var(θ̂)

)
.

Consequently, the asymptotic distribution of β̂ can be obtained under some mild regularity
conditions as β̂ − β → N(0, I−1(β̂)).

For arbitrary 0 < γ < 1, the 100(1 − γ)% ACI of βi can be constructed by[
β̂i + u1−γ/2

√
Var(β̂i), β̂i + uγ/2

√
Var(β̂i)

]
, i = 1, 2,(2.16)

where uγ is the upper 100γ% percentile of standard normal distribution. Moreover, the
100(1 − γ)% ACR of (λ, θ) can be obtained as follows{

(λ, θ)
∣∣∣(β̂ − β)′I(β̂)(β̂ − β) < χ2

γ

}
.(2.17)
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Remark 2.4. In some cases, the lower confidence bounds of the ACIs (2.16) some-
times may be negative. To overcome this drawback, one could use logarithmic transforma-
tion and delta method to obtain the asymptotic normality distribution of ln β̂i, i = 1, 2 as
ln β̂i − lnβi → N

(
0,Var

(
ln β̂i

))
, with Var(ln β̂i) = Var(β̂i)/β̂2

i . Therefore, the 100(1 − γ)%
modified ACI of βi can be constructed in this manner as β̂i

exp
(
uγ/2

√
Var
(
ln β̂i

)) , β̂i exp

(
uγ/2

√
Var
(
ln β̂i

)), i = 1, 2.(2.18)

3. NUMERICAL ILLUSTRATION

Extensive simulation studies are carried out to investigate the performance of the pro-
posed results. In addition, two real-life examples are also presented to show the applicability
of our methods.

3.1. Simulation studies

In simulation studies, performance of ECSs, MCSs and ACSs are compared in terms of
criteria quantities including average width (AW) for confidence intervals, average area (AA)
for confidence regions and coverage probability (CP) for all confidence sets.

For generating records data, another sampling approach termed as Algorithm 5 is
provided as follows.

Algorithm 5: Upper record values from UGRD(λ, θ) |
Step 1. Generate n i.i.d. samples u1, u2, ..., un from uniform distribution with

range (0, 1).

Step 2. Calculate vi = − ln(1 − ui), i = 1, 2, ..., n.

Step 3. Take wi = 1 − exp(−
∑i

j=1 vj), then w1, w2, ..., wn are upper records
standard uniform distribution.

Step 4. Implementing inverse transformation

ti = exp[−(− ln(1 − (1 − wi)1/θ))1/2/λ], i = 1, 2, ..., n

then t1, t2, ..., tn are the upper record values from UGRD(λ, θ).

In this simulation, parameter values (λ, θ) are randomly chosen as (0.5, 1), (0.5, 0.5) and
(3, 1), sample sizes n = 3, 4, 5, 6, 7 and 8 are considered and the significance level is γ = 0.05.



490 X. Zuo, L. Wang, Y. Lio and Y.M. Tripathi

For all numerical computation in minimum-size confidence sets, the accuracy level is taken
to be σ = 0.001, and the simulations are conducted based 10,000 times of repetitions, where
the ECI and MCI of θ are obtained under unknown λ cases by using the strategies provided
in Remarks 2.1 and 2.2. The simulated associated criteria quantities AW, AA and CP are
tabulated in Tables 1–3. In addition, for complementary and comparison, performance of
ECI and MCI for θ given in Theorems 2.2 and 2.5 are also investigated with known λ, the
associated criteria quantities are obtained by using the true values of λ in simulation and the
associted results are tabulated in Table 4.

Table 1: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 0.5, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 1.9864 1.7601 1.6818 1.6299 1.6118 1.5961
(0.8226) (0.8835) (0.9043) (0.9244) (0.9370) (0.9434)

λ
ECI 1.8250 1.6381 1.5820 1.5363 1.5169 1.5036

(0.9523) (0.9479) (0.9486) (0.9483) (0.9518) (0.9484)

MCI 1.6773 1.5208 1.4777 1.4434 1.4294 1.4208
(0.9279) (0.9286) (0.9342) (0.9322) (0.9395) (0.9346)

ACI 8.3863 5.0168 3.3495 2.5414 2.0836 1.8349
(0.9791) (0.9748) (0.9765) (0.9773) (0.9728) (0.9753)

θ
ECI 9.0399 5.2259 3.1536 2.3884 1.9646 1.7430

(0.9334) (0.9361) (0.9410) (0.9454) (0.9436) (0.9446)

MCI 5.7770 4.0595 2.7762 2.1864 1.8336 1.6346
(0.9496) (0.9443) (0.9508) (0.9557) (0.9509) (0.9489)

ACR 12.5066 8.0762 5.5025 4.1949 3.4725 3.0587
(0.7982) (0.9010) (0.9369) (0.9559) (0.9629) (0.9626)

(λ,θ)
ECR 14.0787 8.5107 5.2939 4.1231 3.3691 2.9745

(0.9417) (0.9523) (0.9536) (0.9478) (0.9537) (0.9461)

MCR 9.0862 6.3987 4.5192 3.5098 2.9310 2.6252
(0.9451) (0.9469) (0.9527) (0.9523) (0.9531) (0.9475)

Table 2: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 0.5, θ = 0.5.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 5.4513 5.1275 5.2425 4.688 4.5967 4.383
(0.8705) (0.9194) (0.9465) (0.9608) (0.9703) (0.9744)

λ
ECI 4.4116 4.1500 4.3133 3.8481 3.7679 3.6012

(0.9489) (0.9490) (0.9492) (0.9476) (0.9491) (0.9500)

MCI 3.9530 3.7088 3.8517 3.4429 3.3775 3.2236
(0.9404) (0.9426) (0.9388) (0.9412) (0.9456) (0.9465)

ACI 4.9927 2.1162 1.3507 1.1324 0.9712 0.8753
(0.9815) (0.9783) (0.9752) (0.9807) (0.9835) (0.9908)

θ
ECI 4.7218 1.9903 1.2216 1.0477 0.9117 0.8309

(0.9391) (0.9416) (0.9451) (0.9486) (0.9539) (0.9569)

MCI 3.4154 1.6898 1.1217 0.9786 0.8604 0.7893
(0.9449) (0.9535) (0.9584) (0.9624) (0.9615) (0.9568)

ACR 20.0447 7.6137 5.7514 4.4766 3.8706 3.3478
(0.8857) (0.9481) (0.9661) (0.9747) (0.9838) (0.9881)

(λ,θ)
ECR 22.3566 6.6294 4.9081 3.7994 3.2875 2.8493

(0.9517) (0.9519) (0.9524) (0.9514) (0.9622) (0.9587)

MCR 14.3081 5.3074 4.0968 3.2366 2.8335 2.4759
(0.9530) (0.9532) (0.9516) (0.9537) (0.9616) (0.9641)
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Table 3: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 3, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 11.7857 10.6667 10.0701 9.7815 9.5784 9.4684
(0.8416) (0.8856) (0.9086) (0.9252) (0.9352) (0.9422)

λ
ECI 10.9231 9.9324 9.4579 9.179 9.0211 8.9084

(0.9431) (0.9497) (0.9498) (0.9511) (0.9501) (0.953)

MCI 10.0412 9.2208 8.8449 8.6182 8.5062 8.4214
(0.9382) (0.9331) (0.9341) (0.9359) (0.9365) (0.9412)

ACI 11.8480 5.0491 3.3021 2.5118 2.103 1.8341
(0.9799) (0.9799) (0.9748) (0.9734) (0.975) (0.9742)

θ
ECI 12.7022 4.9763 3.0889 2.3403 1.9792 1.7371

(0.9425) (0.947) (0.9391) (0.9411) (0.9434) (0.9447)

MCI 8.2348 4.0257 2.7213 2.1438 1.8473 1.639
(0.9479) (0.9529) (0.9526) (0.9504) (0.9512) (0.9499)

ACR 96.2407 49.7994 32.6615 24.8758 20.9596 18.2307
(0.8087) (0.9003) (0.9376) (0.9530) (0.9606) (0.9645)

(λ,θ)
ECR 98.9104 50.5229 32.5485 24.2006 20.4082 17.6974

(0.9537) (0.9502) (0.9517) (0.9499) (0.95) (0.9505)

MCR 73.1492 38.7621 26.6496 20.6069 17.7536 15.6203
(0.9467) (0.9504) (0.9522) (0.9508) (0.9523) (0.9513)

Table 4: AWs and CPs (within brackets) of ECIs and MCIs of θ with known λ.

λ = 0.5, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 3.3429 2.5739 2.1547 1.8892 1.7095 1.5629
(0.9499) (0.9487) (0.9516) (0.9492) (0.9518) (0.9525)

MCI 3.0857 2.4258 2.0559 1.8173 1.6540 1.5186
(0.9496) (0.9486) (0.9514) (0.9491) (0.9519) (0.9534)

λ = 0.5, θ = 0.5 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 1.6397 1.2780 1.0774 0.9416 0.8589 0.7948
(0.9530) (0.9521) (0.9515) (0.9570) (0.9607) (0.9741)

MCI 1.5136 1.2045 1.0281 0.9058 0.8309 0.7722
(0.9526) (0.9518) (0.9524) (0.9534) (0.9615) (0.9728)

λ = 3, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 3.3284 2.5828 2.1577 1.8856 1.7096 1.5634
(0.9440) (0.9463) (0.9533) (0.9507) (0.9498) (0.9515)

MCI 3.0723 2.4342 2.0589 1.8139 1.6540 1.5190
(0.9461) (0.9476) (0.9522) (0.9484) (0.9480) (0.9521)

From Tables 1–4, it is noted that

• AWs and AAs of all confidence sets decrease with increase of sample size n. Such
phenomenon indicate the consistence property of the proposed results when sample
size increases.

• Under fixed sample size n, MCIs of λ have the best performance than ECIs and
ACIs in terms of AWs, whereas the ACI estimates of λ feature the largest AWs. In
addition, the ACIs for λ have lowest CPs than those of ECIs and MCIs.
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• For parameter θ, MCIs of θ are superior to ECIs and ACIs in terms of AWs, whereas
although the CPs of ACI are highest, AWs of ACIs are larger than the other two
interval estimates in general.

• For confidence region of (λ, θ), MCRs have the smallest AAs, whereas the CPs of all
three confidence regions of (λ, θ) are close to the nominal significance level in most
cases.

• From Table 4, for given parameter λ, AWs of both ECIs and MCIs of θ are smaller
than those of θ with unknown λ shown in Tables 1–3, and the CPs under this case
are still close to the nominal significance level.

To sum up, the simulation results indicate that the ECSs and MCSs of different pa-
rameters λ, θ and (λ, θ) perform better than traditional likelihood based ACRs in general,
and the proposed MCSs are recommended as superior choices in practice.

3.2. Real data illustration

In this subsection, two real life examples are presented to demonstrate the practicality
of the proposed methods. For comparison, another three unit bounded distributions namely
Beta distribution (BeD), Kumaraswamy distribution (KuD) and Topp–Leone distribution
(TLD) are considered as competitors of UGRD in this illustration. The corresponding PDFs
of BeD, KuD and TLD are given respectively by:

BeD : f1(t) = tα−1(1 − x)β−1[B(α, β)]−1, α > 0, β > 0, 0 < t < 1,

KuD : f2(t) = αβtα−1(1 − tα)β−1, α > 0, β > 0, 0 < t < 1,

TLD : f3(t) = 2α(1 − t)tα−1(2 − t)α−1, 0 < α < 1, 0 < t < 1.

It is noted that above three distributions are also common used unit models that are widely
implemented in practical data analysis. (e.g., Arora et al. [4], Gupta and Nadarajah [10] and
Kohansal [19]).

Example 1. (Reservoir capacity ratio data) In this real life example, a data set from
http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA is considered for illustration. The data
set is about the water capacities of Shasta reservoir in California, USA for the month of
October from 2008 to 2019. Since the maximum capacity of Shasta reservoir is 4552000 acre-
foot, the original data were converted to the (0, 1) interval by dividing 4552000 acre-foot.
The transformed data are shown as follows:

0.28180, 0.37520, 0.71891, 0.70887, 0.54177, 0.38317

0.24360, 0.31113, 0.60748, 0.69789, 0.48134, 0.71859.

To check whether the UGRD could be used to fit the real life data, Kolmogorov–Smirnov (K-S)
test is carried out for UGRD, BeD, KuD and TLD respectively under origin complete data,
the associated results are tabulated in Table 5. It is noted from Table 5 that comparing with
BeD, KuD and TLD, the UGRD seems more proper to fit the reservoir capacity ratio data.

http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA
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Table 5: MLEs and K-S test of fitted distributions for reservoir capacity ratio data.

MLE of model parameters K-S distance p-value

UGRD (λ̂, θ̂) = (1.2369, 1.1284) 0.1893 0.7166

BeD (α̂, β̂) = (3.9505, 3.8693) 0.1949 0.6834

KuD (α̂, β̂) = (2.9870, 4.7499) 0.1959 0.6777
TLD α̂ = 2.8190 0.2071 0.6111

In addition, the corresponding quantile-quantile (Q-Q) plot, probability-probability (P-P)
plot and empirical cumulative distribution (ECD) plot of UGRD are also provided in Figure 2,
which also indicates that the UGRD is a reasonable model used here.
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Figure 2: Q-Q, P-P and ECD plots of UGRD under the reservoir capacity ratio data.

Based on the reservoir capacity ratio data, a group of records data of size 3 is obtained
as follows:

0.28180, 0.37520, 0.71891.

Then different confidence sets are estimated with γ = 0.05 and σ = 10−4, and the associ-
ated results are listed in Tables 6 and 7 respectively, where the widths of confidence inter-
vals and the areas of confidence regions are provided in parentheses. It is observed that
the MCSs outperform the other competitors according to their criteria widths and areas.
In Table 6, it is also noted that the lower confidence bounds of ACIs are negative. Using the
alternative results in Remark 2.4, the modified ACIs and associated interval widths (within
parentheses) of λ and θ are [0.3264, 2.2162](1.8898) and [0.2652, 5.0985](4.8333) respectively.

Table 6: Confidence intervals for λ and θ under reservoir capacity ratio records data.

Parameter ACI ECI MCI

λ [-0.0326,1.7337] [0.0007,1.5843] [0.0001,1.4140]
(1.7663) (1.5836) ( 1.4139 )

θ [-0.4311,2.7566] [0.1042,3.0771] [0.0279,2.4935]
(3.1877) (2.9729) (2.4656)
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Table 7: Confidence regions for (λ, θ) under reservoir capacity ratio records data.

Confidence regions Areas

ACR

��
0.8506− λ
1.1628− θ

�′�
0.2030 0.2068
0.2068 0.6613

��
0.8506− λ
1.1628− θ

�
< 5.9915

�
(5.6939)

ECR
n

0.0001 < λ < 1.7333, 0.9528
B(λ)

< θ < 16.2120
B(λ)

o
(5.4465)

MCR
n

0.0002 < λ < 1.5389, 0.3790
B(λ)

< θ < 15.1281
B(λ)

o
(4.2208)

Moreover, for further illustration, the confidence regions and contour of log-likelihood function
(2.13) are plotted in Figure 3 to show the superority of MCR and the uniqueness of MLEs in
this real data example.
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Figure 3: Contour of log-likelihood function (left) and confidence regions
(right) under reservoir capacity ratio records data.

Example 2. (Electricity supply rate data) Another real life data set drawn out from
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009 is used
for illustration. The data set is about the electricity supply rate in Kenya from 2009 to 2018.
The original data are shown as follows:

0.23000, 0.19200, 0.38581, 0.40793, 0.43049,

0.36000, 0.41600, 0.65400, 0.63589, 0.75000.

By computation, MLEs and corresponding K-S test results for UGRD, BeD, KuD and TLD
are listed in Table 8 under these data. It is also noted that UGRD have best performance
among these models to fit the electricity supply rate data. Meanwhile, the associated Q-Q,
P-P and ECD plots of UGRD are also shown in Figure 4 for illustration.

Similarly, records from the original observations are given as follows:

0.23000, 0.38581, 0.40793, 0.43049, 0.65400, 0.75000.

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009
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Table 8: MLEs and K-S test results of fitted distributions for electricity supply rate data.

MLE of model parameters K-S distance p-value

UGRD (λ̂, θ̂) = (1.1002, 1.2703) 0.1971 0.7636

BeD (α̂, β̂) = (3.4950, 4.3081) 0.2277 0.6008

KuD (α̂, β̂) = (2.5636, 5.0465) 0.2391 0.5404
TLD α̂ = 2.2064 0.2790 0.3505
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Figure 4: Q-Q plot, P-P plot and ECD plot for the electricity supply rate data of UGRD.

Different ACSs, ECSs and MCSs are shown in Tables 9 and 10 under same setting as Example 1.
From the results in Tables 9 and 10, the MCSs still perform best among all estimates.

Table 9: Confidence intervals for λ and θ under electricity supply rate records data.

Parameter ACI ECI MCI

λ [0.2086, 1.4980] [0.1165, 1.4757] [0.0700, 1.3917]
(1.2894) (1.3592) (1.3217)

θ [0.1008, 4.1260] [0.5652, 4.5006] [0.3726, 3.9809]
(4.0253) (3.9351) (3.6083)

Table 10: Confidence regions for (λ, θ) under electricity supply rate records data.

Confidence Regions Areas

ACR

��
0.8533− λ
2.1134− θ

�′�
13.0909 −2.2738
−2.2738 1.3433

��
0.8533− λ
2.1134− θ

�
< 5.9915

�
(5.3421)

ECR
n

0.0703 < λ < 1.5907, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(5.8436)

MCR
n

0.0001 < λ < 1.4603, 2.8890
B(λ)

< θ < 24.1103
B(λ)

o
(4.9916)
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In addition, the plots of confidence regions and contour curve of log-likelihood function are
also presented in Figure 5 for illustration and comparison.
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Figure 5: Contour of log-likelihood function (left) and confidence regions (right)
under electricity supply rate records data.

4. EXTENSION WORK

In statistical inference, accuracy of confidence sets is one of main concerns in analysis
which in turn affects the practical performance of applications. Following similar approach of
previous inferential procedure, some extended results are proposed in this section for comple-
mentary, where a series of pivotal quantities is constructed, and then alternative generalized
confidence sets are provided in consequence.

Using notationsW1,W2, ...,Wn and associated distribution properties given in Lemma 2.1,
let ξk =

∑k
i=1Wi and ηk =

∑n
i=k+1Wi, k = 1, 2, ..., n− 1, one has

Ψk(λ) =
2ξk/2k

2ηk/2(n− k)
=

(n− k)
k

[
ln (1 − exp ( − (λ lnTn)2))
ln (1 − exp ( − (λ lnTk)2))

− 1
]−1

(4.1)

and

Υk(λ, θ) = 2(ξk + ηk) = −2θ ln(1 − exp(−(λ lnTn)2)), k = 1, ..., n− 1(4.2)

follow F and chi-square distributions with (2k, 2(n− k)) and 2n degrees of freedom, respec-
tively. Meanwhile, quantities Ψk(λ) and Υk(λ, θ) are statistically independent. Moreover, it
is also noted from Lemma 2.2 that Ψk(λ) decreases in λ with range (0,∞).

Using quantities Ψk(λ), Υk(λ, θ) and following similar way as Theorems 2.1 and 2.3, for
arbitrary 0 < γ < 1, a series of 100(1 − γ)% ECIs of λ can be constructed as[

ψk

(
F

2k,2(n−k)
γ/2

)
, ψk

(
F

2,2(n−k)
1−γ/2k

)]
, k = 1, 2, ..., n− 1,(4.3)
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where ψk(x) refers to the solution of Ψk(λ) = x, and correspondingly a group of 100(1− γ)%
ECRs of (λ, θ) can be written as(λ, θ)

∣∣∣∣∣∣ψk
(
F

2k,2(n−k)
1−

√
1−γ

2

)
< λ < ψk

(
F

2k,2(n−k)
1+

√
1−γ

2

)
,

χ2n
1+

√
1−γ

2

B(λ)
< θ <

χ2n
1−

√
1−γ

2

B(λ)

(4.4)

with k = 1, 2, ..., n− 1.

It is observed that there are n− 1 confidence intervals and regions obtained under this
manner, and their sizes may be different with different k. To find the optimal confidence sets
among the proposed results, the following criterions are provided.

Criterion 1. The best ECI of λ is obtained as k∗-th one among proposed ECIs,
where k∗ satisfies

ψk∗
(
F

2k∗,2(n−k∗)
1−γ/2

)
− ψk∗

(
F

2k∗,2(n−k∗)
γ/2

)
=

n−1
min
k=1

[
ψk

(
F

2k,2(n−k)
1−γ/2

)
− ψk

(
F

2k,2(n−k)
γ/2

)]
.

Criterion 2. The best ECR of (λ,θ) is obtained as k∗-th one among all ECRs,
where k∗ satisfies

∫ ψk∗

 
F

2k∗,2(n−k∗)
1+
√

1−γ
2

!

ψk∗

 
F

2k∗,2(n−k∗)
1−
√

1−γ
2

! χ2n
1−
√

1−γ
2

− χ2n
1+
√

1−γ
2

B(λ)
dλ =

n−1
min
k=1

∫ ψk

 
F

2k,2(n−k)
1+
√

1−γ
2

!

ψk

 
F

2k,2(n−k)
1−
√

1−γ
2

! χ2n
1−
√

1−γ
2

− χ2n
1+
√

1−γ
2

B(λ)
dλ

.

Note from (4.2) that, since Υk(λ, θ) = Υ (λ, θ) does not change with k and the associated
ECI of θ coincides with the results obtained in Theorem 2.2. Further, following the similar
approach of Subsection 2.2, a series of MCSs for parameters λ and (λ, θ) could be also obtained
based on pivotal quantities Ψk(λ) and Υk(λ, θ), k = 1, 2, ..., n− 1, the detailed results are
omitted for concision and saving space. In addition, the optimal confidence sets for such
MCSs could be also selected by using similar method as shown in Criterions 1 and 2.

For illustration, the confidence sets for parameters λ and (λ, θ) are reconstructed by
using the records data in Example 2 with k = 1, 2, 3, 4, 5, where the significance level is
γ = 0.05 as same as previous. The associated results are tabulated in Tables 11 and 12.
From the results, it is seen that for ECSs estimation, the optimal ECI of λ and ECR of
(λ, θ) are obtained at k = 4, whereas the associated optimal MCI of λ and MCR of (λ, θ) are
also obtained at k = 4. In addition, one also note that the MCSs perform better than the
associated ECSs at given k and that all the confidence sets obtained by using the proposed
pivotal quantities Ψk(λ), Υk(λ, θ), k = 4 have smaller sizes than the ACSs in Tables 9 and 10.
Further, plots of extended ECR, MCR of (λ, θ) with k = 4 and traditional ACR are also
presented in Figure 6, which indicate that the proposed extended confidence regions have
better performance in this manner.
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Table 11: ECIs for λ and ECRs for (λ, θ) with different k under electricity
supply rate records data.

k ECIs ECRs

1 [0.1165, 1.4757] (1.3592)
n

0.0703 < λ < 1.5907, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(5.8436)

2 [0.0512, 1.6687] (1.6175)
n

0.0220 < λ < 1.8063, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(7.4175)

3 [0.0015, 1.2970] (1.2955)
n

0.0002 < λ < 1.4326, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(4.9472)

4 [0.0001, 0.9519] (0.9518)
n

0.0001 < λ < 1.0930, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(3.1794)

5 [0.0001, 2.2521] (2.2520)
n

0.0001 < λ < 2.5783, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(15.0503)

Note: the interval widths and region areas are listed in the parentheses.

Table 12: MCIs for λ and MCRs for (λ, θ) with different k under electricity
supply rate records data.

k MCIs MCRs

1 [0.0700, 1.3917] (1.3217)
n

0.0001 < λ < 1.4603, 2.8890
B(λ)

< θ < 24.1103
B(λ)

o
(4.9916)

2 [0.0101, 1.5144] (1.5043)
n

0.0001 < λ < 1.6370, 2.8346
B(λ)

< θ < 24.3403
B(λ)

o
(6.1677)

3 [0.0001, 1.1420] (1.1419)
n

0.0002 < λ < 1.2459, 2.7388
B(λ)

< θ < 24.7603
B(λ)

o
(3.9759)

4 [0.0001, 0.7925] (0.7924)
n

0.0001 < λ < 0.8702, 2.5663
B(λ)

< θ < 25.5503
B(λ)

o
(2.3655)

5 [0.0001, 1.8748] (1.8747)
n

0.0001 < λ < 2.0143, 2.4165
B(λ)

< θ < 26.2903
B(λ)

o
(10.0198)

Note: the interval widths and region areas are listed in the parentheses.
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Figure 6: Plots of ECR and MCR with k = 4 and traditional ACR.
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5. CONCLUSION

In this paper, different confidence sets of parameters from the unit generalized Rayleigh
distribution are explored under records data. By constructing pivotal quantities, equal-tailed
confidence sets are established for model parameters. Further, the associated minimum-size
confidence sets are constructed based on optimization techniques, and the algorithms along
with Lagrange multiplier method are also provided for computation. In addition, conventional
likelihood based asymptotic confidence sets are also constructed for comparison. Extensive
simulation studies and two real life examples are carried out to investigate the performance of
different methods, and the results indicate that the proposed pivotal quantities based ECSs
and MCSs perform better than common likelihood based confidence sets. Furthermore, a
series of confidence sets are also proposed as extension based on constructed alternative
pivotal quantities which sometimes may further provide potential better estimates.
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1. INTRODUCTION

The Maxwell distribution, also known in the statistic and physic literatures as Maxwell–
Boltzmann distribution, has probability density function (PDF) in the form

f(y;α) =

√
2
π

y2e−y2/(2α2)

α3
, y > 0,

where α > 0 is the scale parameter. The mean and variance of the Maxwell distribution
reduce to

E(Y ) = 2α

√
2
π

, and VAR(Y ) =
α2(3π − 8)

π
.

There are, of course, some works related specifically to the one-parameter Maxwell distri-
bution in the statistic literature. The reader is referred to Tyagi and Bhattacharya [31],
Bekker and Roux [3], Dey and Maiti [13], Dey et al. [12], Al-Baldawi [1], Li [24], Fan [15],
Dar et al. [11] and Hossain et al. [20], among others. It is evident that the one-parameter
Maxwell distribution has noticeable scientific importance and, of course, it leaves open quite
a number of new directions of research. In this paper, we provide a complete study regarding
this one-parameter family of distributions in a parametric regression setup on the basis of a
mean-parameterized Maxwell distribution.

In a parametric regression framework, it is typically more useful to model directly the
mean (mode or median) of the response variable. In the last few years, several works have
been published and so contributed to the regression literature on parameterizations based on
the mean, mode, or median. To mention a few, but not limited to, we refer the reader to Yao
and Li [33], Lemonte and Bazan [23], Chen et al. [6], Castellares et al. [5], Bourguignon et

al. [4], Gallardo et al. [17], Gómez et al. [19], Leão et al. [22] and Menezes et al. [26]. In this
paper, in order to obtain a regression structure for the mean of the Maxwell distribution, we
shall work with a different parameterization of the Maxwell PDF. Let µ = 2α(2/π)1/2 and,
hence, α = (1/2)µ(2/π)−1/2. In this case, substituting this expression in the Maxwell PDF, a
reparameterization for the PDF is obtained; that is, the mean-parameterized Maxwell PDF
is given by

(1.1) f(y;µ) =
(

2
π

)2 8y2

µ3
exp
(
− 4y2

πµ2

)
, y > 0,

so that E(Y ) = µ > 0 is the mean of the Maxwell distribution. Additionally, we have that
VAR(Y ) = 0.178µ2∝ µ2. The cumulative distribution function (CDF) of the mean-parameter-
ized Maxwell takes the form

F (y, µ) =
2γ(3/2, 4y2/(πµ2))√

π
, y > 0,

where γ(a, x) =
∫ x
0 ta−1e−tdt is the lower incomplete gamma function. We shall use the

notation Mw(µ) to refer to this distribution. We have that limy→0 f(y) = limy→∞ f(y) = 0
and, in addition, the mode is simply given by µ

√
π/2. The Maxwell failure rate function is

given by

r(y) =
(

2
π

)2 8y2

µ3

[
1− 2γ(3/2, 4y2/(πµ2))√

π

]−1

exp
(
− 4y2

πµ2

)
, y > 0.
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Figure 1 displays some plots of the PDF and failure rate function for some values of µ.
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Figure 1: Density and failure rate functions.

We have the following propositions.

Proposition 1. The Maxwell PDF is log-concave for all values of µ > 0.

Proof: The result follows by noting that the second derivative of log(f(y;µ)) is given
by

d2 log(f(y;µ))
dy2

= −
(

2
y2

+
8

πµ2

)
< 0.

Proposition 2. For any µ > 0, the Maxwell failure rate function is monotone in-
creasing.

Proof: The result holds by using the log-concavity of the Maxwell PDF.

Remark 1. It is rather easy to generate random variates from the mean-parameteri-
zed Maxwell distribution. If U follows a gamma distribution with shape parameter 3/2 and
scale parameter 1, then Y = µ

√
πU/4 ∼ Mw(µ).

In this paper, we shall provide a parametric regression structure for the Maxwell distri-
bution parameter, which involves covariates (explanatory variables) and unknown regression
parameters. Furthermore, some quantities (e.g., score function, Fisher information matrix,
etc.) related to the mean-parameterized Maxwell regression model are simple and compact,
which makes the frequentist approach very easy to implement. Obviously the Bayesian ap-
proach has its merits and could also be considered and, in addition, these methodologies
could be compared and contrasted. However, the comparison of these two methodologies
is beyond the scope of this paper and hence can be considered in a future work. Also, it
is quite common in practice, after modeling the real data at hand, to check the regression
model assumptions and conduct diagnostic studies in order to detect possible atypical ob-
servations that may distort the results of the analysis. A first way to perform sensitivity
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analysis is by means of global influence starting from the case deletion proposed by Cook [7].
In addition, Cook [8] introduced a general framework to detect atypical observations under
small perturbations on the data or in the model. In this paper, global and local influence
are also considered to detect atypical observations in the class of Maxwell regression models.
Throughout this paper, an atypical observation means that it can be an outlier1, or obser-
vation with a large residual in absolute value, or an influential observation in the sense of
global or local influences. Finally, it is well-known the residuals carry important information
concerning the appropriateness of assumptions that underlie statistical models, and thereby
play an important role in checking model adequacy identifying discrepancies between mod-
els and data. Hence, we propose the normalized quantile residual introduced by Dunn and
Smyth [14] for the Maxwell regression model to study discrepancies between the model and
data. In summary, the main contributions of this paper are as follows:

– We propose a Maxwell distribution parameterized in terms of its mean, allowing
easy interpretation of the distribution parameter.

– Based on the mean-parameterized Maxwell distribution, we propose a novel para-
metric regression model for positive response variables, which is quite simple and
may be very useful in practice, allowing for parameter interpretation in terms of the
response in the original scale; that is, the regression parameters are interpretable in
terms of the mean of the variable of interest.

– The direct modeling of the mean parameter in the mean-parameterized Maxwell
regression model will promote its wider use in practice, putting it on the same level
of interpretability and parsimony of some well-known regression models for positive
response variables.

– The simulation and data analysis examples in this article reinforce that the proposed
framework is a quite simple yet flexible way to model positive response variables.

The rest of this paper is organized as follows. The mean-parameterized Maxwell regres-
sion model is introduced in Section 2, and likelihood-based inference, as well as Monte Carlo
simulation experiments are also performed. In Section 3, we propose diagnostic measures
(i.e., global and local influence) for the mean-parameterized Maxwell regression model and,
in particular, the normal curvature of local influence is derived under a specific perturbation
scheme, namely: case weighting perturbation. Additionally, we also consider the normalized
quantile residual to assess departures from the underlying distribution. Section 4 contains
real data applications of the mean-parameterized Maxwell regression model for illustrative
purposes. The paper ends up with some concluding remarks in Section 5.

2. THE MAXWELL REGRESSION MODEL

The model. Let Y1, ..., Yn be n independent random variables, where each Yi (i = 1, ..., n)
is Maxwell distributed and has PDF (1.1) with mean parameter µi; that is, Yi ∼ Mw(µi) for
i = 1, ..., n. In this work, we assume the following functional relation:

(2.1) log(µi) = x>i β,

1An outlying observation, or “outlier,” is one that appears to deviate markedly from other members of the
sample in which it occurs.
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where β = (β1, ..., βp)> is a vector of unknown regression coefficients, β ∈ IRp with p < n,
and x>i = (xi1, ..., xip) are observations on p known covariates (or independent variables, or
regressors). Generally, we have xi1 = 1 (for i = 1, ..., n) in practice and, hence, β1 corresponds
to the intercept parameter. It is worth emphasizing that other other links for the mean
parameter in (2.1) could be considered, namely: identity (µi = x>i β), and square root (

√
µi =

x>i β). However, the logarithm function is the most common and useful in such a case; that is,
the main advantage of the exponential form µi = exp(x>i β) is that the requirement µi > 0 is
automatically satisfied for all i = 1, ..., n, whereas the identity and square root do not ensure
such a requirement for all i = 1, ..., n. Note that the variance VAR(Yi) = 0.178µ2

i ∝ µ2
i is a

function of µi and, as a consequence, of the covariate values. Hence, non-constant response
variances are naturally accommodated into the regression model. Moreover, we assume that
the model matrix X = [x1, ...,xn]> has column rank p.

Remark 2. Let ξ be the mode of the mean-parameterized Maxwell distribution, and
so we have that ξ = µ

√
π/2. The mean-parameterized Maxwell regression model is de-

fined by the link function log(µi) = x>i β, for i = 1, ..., n, where β = (β1, ..., βp)>, and x>i =
(xi1, ..., xip). Let xi1 = 1 (for i = 1, ..., n) and, hence, β1 corresponds to the intercept param-
eter. In this case, log(µi) = β1 + β2 xi2 + ···+ βp xip. Note that

log(ξi) = β∗1 + β2 xi2 + ···+ βp xip, i = 1, ..., n,

where β∗1 = β1 + log(
√

π/2) corresponds to the ‘adjusted’ intercept. Therefore, we can easily
obtain the Maxwell modal regression model from the mean-parameterized Maxwell regression
model.

Parameter estimation. Let y = (y1, ..., yn)> be the n-vector of the observed responses.
We have that the parameter vector β = (β1, ..., βp)> represents the effects of the covariates
on the mean parameter of the Maxwell regression model and, hence, we are interested in
estimating this regression parameter vector. To do so, we shall consider the traditional
maximum likelihood (ML) method. The log-likelihood function for this class of regression
models, except for an unimportant constant term, has the form

`(β) = −3
n∑

i=1

log(µi)−
4
π

n∑
i=1

y2
i

µ2
i

,

where µi = exp(x>i β) for i = 1, ..., n. The ML estimate β̂ = (β̂1, ..., β̂p)> of β = (β1, ..., βp)> is
obtained by maximizing the log-likelihood function `(β) with respect to β. The maximization
can be performed, for example, in the R software [28] by using the optim(...) function.
The score function, obtained by differentiating the log-likelihood function `(β) with respect
to the unknown parameters, is given by the p-vector U(β) = X>s, where s = (s1, ..., sn)>

with si = 8y2
i /(πµ2

i )− 3. After some algebra, the expected (Fisher) information matrix for β

takes the form K = 6X>X.

The ML estimate β̂ = (β̂1, ..., β̂p)> can also be obtained by solving the nonlinear system
of equations U(β̂) = 0p, where 0p denotes a p-dimensional vector of zeros. There is no
closed-form expression for the ML estimate β̂ and its computation has to be performed
numerically using a nonlinear optimization algorithm. For example, the Newton–Raphson
iterative technique (or the Gauss–Newton and Quasi-Newton methods) could be applied to
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solve these equations and obtain β̂ numerically. On the other hand, one can use the Fisher
scoring method to estimate β by iteratively solving the equation

(2.2) β(m+1) = (X>X)−1X>z(m),

where z = (z1, ..., zn)> = Xβ + (1/6)s acts as an adjusted dependent variable, and m =
0, 1, ... is the iteration counter. The cycles through the scheme (2.2) consists of an iterative
ordinary least squares algorithm to optimize the log-likelihood function, and the iterations
go on until convergence is achieved (a stopping criterion must be defined). Equation (2.2)
reveals that the calculation of the ML estimate β̂ can be carried out using any software with
a matrix algebra library as, for example, the R software. The optimization algorithms require
the specification of initial values to be used in the iterative scheme.

In the following, we make some assumptions on the behavior of `(β) as the sample size
n approaches infinity, such as the regularity of the first three derivatives of `(β) with respect
to β, and the existence and uniqueness of the ML estimate of β; see, for example, Cox and
Hinkley [9]. When n is large and under standard regularity conditions, the ML estimators
of the Maxwell regression parameters are asymptotically normal, asymptotically unbiased
and have asymptotic variance-covariance matrix given by the inverse of the expected Fisher
information matrix: β̂

a∼ Np(β,K−1). This asymptotic normal distribution can be used to
construct approximate confidence intervals for the Maxwell regression parameters. Let βr

(r = 1, ..., p) be r-th component of β = (β1, ..., βp)>. The asymptotic confidence interval for
βr is simply given by β̂r ± Φ−1(1− ϑ/2) se(β̂r), for r = 1, ..., p, with asymptotic coverage of
100(1− ϑ)%. Here, se(·) is the square root of the diagonal element of K(β̂)−1 corresponding
to each parameter (i.e., the asymptotic standard error), and Φ−1(·) is the standard normal
quantile function.

Finite sample bias of the ML estimator. It is well-known that ML estimators are
asymptotically unbiased and efficient, but for small samples, the ML estimators may not
be unbiased. Here, we shall provide a general closed-form expression for the second-order
biases of the ML estimators of the Maxwell regression parameters. To that end, we shall
use the general expression given by Cox and Snell [10, Eq. (20)]. The closed-form expression
will, in turn, allow us to obtain bias-corrected estimates of the unknown parameters. We
shall use the following notation: κrs = E(∂2`(β)/∂βr∂βs), κrst = E(∂3`(β)/∂βr∂βs∂βt) and
κ

(t)
rs = ∂κrs/∂βt, for r, s, t = 1, ..., p. After some algebra, we obtain

κrs = −6
n∑

i=1

xirxis, κrst = 12
n∑

i=1

xirxisxit, and κ(t)
rs = 0.

Let Ba denote the second-order bias of β̂a (a = 1, ..., p). From Cox and Snell [10], we can
express Ba in the form

Ba =
∑′

s,t,u

κa,sκt,u

(
κ

(u)
st − 1

2
κstu

)
,

where κr,s is the (r, s)-th element of K−1, and
∑′

denotes the summation over all combina-
tions of parameters β1, ..., βp. Plugging the cumulants given before into this expression, we
can obtain the bias of β̂, say B, in matrix form. We can show after some algebra that the
p× 1 bias vector B reduces to

(2.3) B = (X>X)−1X>δ,
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where δ is the n-vector containing the elements of the main diagonal of the matrix
−(6π)−1X(X>X)−1X>. Note that the second-order bias vector B is simply the set co-
efficients from a simple ordinary least squares regression of δ on the columns of the model
matrix X. As expression (2.3) makes clear, it is possible to express the bias vector of β̂ as
the solution of an ordinary least squares regression. Additionally, the bias vector B involves
simple operations on matrices and vectors, and we can calculate it numerically via software
with numerical linear algebra facilities such as R with minimal effort. It is worth emphasizing
that the bias vector B will be small when δ is orthogonal to the columns of X. However,
the second-order bias vector B may be large in small and moderate sized samples. From
(2.3), we define the bias-corrected ML estimate β̃ = β̂ −B. We say that β̃ = (β̃1, ..., β̃p)> is
bias-adjusted ML estimate to order n−1, since its bias is of order n−2. It is expected that β̃

has superior finite-sample behavior relative to β̂, whose bias is of order n−1. It is not difficult
to show that β̃

a∼ Np(β,K−1).

Simulation study. In what follows, we report Monte Carlo simulation experiments for
the mean-parameterized Maxwell regression model. To explore the performance of the ML
method in estimating the regression parameter vector β, we report the results of simula-
tions designed to evaluate the accuracy of the ML estimators of β. The bias-adjusted
ML estimate is also considered in the Monte Carlo simulations. The Monte Carlo experi-
ments were carried out using log(µi) = β1 xi1 + β2 xi2 + β3 xi3, where xi1 = 1 (i = 1, ..., n),
and n = 10, 20, 30, 50, 80 and 150. The true values of the regression parameters were taken
as β1 = 1.0, β2 = 0.5 and β3 = 1.5. The values of xi2 were obtained as random draws of
the standard normal distribution, and the values of xi3 were obtained as random draws of
the exponential distribution with mean equals 1. The covariate values were held constant
throughout the simulations. We evaluate the point estimates by considering the following
quantities: the mean, the relative bias2 (RB), and the mean square error (MSE). These
quantities are computed from 15,000 Monte Carlo replications. The numerical results are
presented in Table 1. Note that the performance of the ML estimator of β is good, exhibiting
small bias in all cases considered. It is noteworthy that the bias-adjusted estimator is better
than the usual ML estimator for estimating the Maxwell regression parameters, mainly in
very small sample sizes. However, for large sample sizes, the bias-corrected ML estimator
becomes less justifiable. As expected, the MSE decreases as the sample size increases. In
short, the numerical results reveal that the ML method can be used quite effectively to es-
timate the Maxwell regression parameters, and the bias-corrected ML estimator becomes a
good alternative when the sample size is very small.

We now consider a Monte Carlo simulation study in the following way. First, we simu-
late data from the mean-parameterized Maxwell regression model and analyse the simulated
data using the following models: mean-parameterized Maxwell, gamma, and inverse-Gaussian
regression models. Next, we simulate data from a gamma model and analyse the simulated data
using all three models (mean-parameterized Maxwell, gamma, and inverse-Gaussian regression
models). Finally, we simulate data from an inverse Gaussian model and analyse the simulated
data using all three models (mean-parameterized Maxwell, gamma, and inverse-Gaussian re-
gression models). The gamma and inverse Gaussian regression models are very useful models
for continuous positive response variables [see, for example, 25]. The Monte Carlo exper-
iments were carried out using log(µi) = β1 + β2 xi, for i = 1, ..., n, and n = 50, 90 and 150.

2The relative bias of an estimate bθ, defined as [E(bθ)− θ]/θ, is obtained by estimating E(bθ) by Monte Carlo.
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Table 1: Simulation results regarding the point estimates of the Maxwell
model parameters.

ML estimator Bias-corrected ML estimator

bβ1
bβ2

bβ3
eβ1

eβ2
eβ3

Mean 0.913 0.550 1.516 0.939 0.536 1.512
n = 10 RB −0.087 0.101 0.010 −0.061 0.072 0.008

MSE 0.297 0.533 0.665 0.293 0.546 0.661

Mean 0.971 0.510 1.499 0.981 0.506 1.498
n = 20 RB −0.029 0.019 0.000 −0.019 0.012 −0.002

MSE 0.245 0.500 0.517 0.244 0.503 0.515

Mean 0.988 0.495 1.496 0.991 0.497 1.498
n = 30 RB −0.012 −0.010 −0.003 −0.009 −0.006 −0.002

MSE 0.199 0.489 0.524 0.199 0.487 0.526

Mean 0.991 0.494 1.502 0.994 0.495 1.503
n = 50 RB −0.009 −0.013 0.002 −0.006 −0.009 0.002

MSE 0.187 0.470 0.455 0.187 0.468 0.455

Mean 0.994 0.500 1.500 0.996 0.500 1.500
n = 80 RB −0.006 0.001 0.000 −0.004 0.000 0.000

MSE 0.182 0.439 0.444 0.182 0.439 0.444

Mean 0.996 0.501 1.500 0.997 0.501 1.500
n = 150 RB −0.004 0.002 0.000 −0.003 0.002 0.000

MSE 0.175 0.430 0.432 0.175 0.430 0.432

The values of covariate xi were obtained as random draws of the uniform distribution on the
unit interval (0, 1), and the covariate values were held constant throughout the simulations.
We set β1 = 1.0 and β2 = 0.8. For the gamma and inverse Gaussian models, we consider
the precision parameter, say φ, equals to φ = 4 and φ = 5, respectively. Tables 2 and 3 list
the simulation results based on 10,000 Monte Carlo replications for the true data generating
process (DGP) under three different scenarios: the Maxwell model as the true DGP, the
gamma model as the true DGP, and the inverse Gaussian model as the true DGP. In Table 2
we present the point estimates, standard deviation (SD) between parentheses, and the values
of Akaike information criterion (AIC) and Bayesian information criterion (BIC), whereas in
Table 3 we present the coverage probability (CP) of the confidence intervals for β1 and β2 at
the nominal levels 90% and 95%.

From Table 2, as expected, note that the Maxwell model yields the best fit under the
Maxwell DGP, as well as the gamma and inverse models when these models correspond to
the true DGPs; see the AIC and BIC values for the fitted models. It is also interesting
to note that under the gamma DGP, the Maxwell model outperforms the inverse Gaussian
model based on the AIC and BIC values. It is worth mentioning that under the inverse
Gaussian DGP, the SDs of the ML estimates of the model parameters become larger than in
the other two DGPs (Maxwell and gamma models). On the other hand, the ML estimates
are close to the true values of the regression parameters, which indicates the ‘robustness’ of
each model when estimating the regression parameters under model misspecification. From
the numerical results in Table 3, we have that under the Maxwell DGP, the coverage rates of
the confidence intervals are close to the nominal significance levels for all regression models,
being the Maxwell regression model with the best performance, as expected. However, it
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is noteworthy that the coverage rates of the confidence intervals of the Maxwell regression
parameters under the gamma and inverse Gaussian DGPs are not near the nominal levels,
mainly under the gamma DGP. Finally, it should be mentioned that much more numerical
work is needed to come to any general conclusion about the ‘robustness’ of the Maxwell
regression model under model misspecification and, hence, future research regarding this
issue can be conducted in a separate paper elsewhere.

Table 2: Simulation results considering three different data generating
process.

Maxwell DGP
n Model

β1 β2 AIC BIC

Maxwell 1.005(0.098) 0.780(0.179) 233.618 237.807
50 Gamma 1.007(0.101) 0.780(0.191) 236.195 244.478

Inverse Gaussian 1.005(0.104) 0.783(0.198) 245.476 253.759

Maxwell 1.002(0.083) 0.785(0.151) 349.574 354.574
90 Gamma 1.004(0.086) 0.783(0.160) 352.967 362.466

Inverse Gaussian 1.003(0.090) 0.785(0.169) 367.312 376.812

Maxwell 1.000(0.057) 0.790(0.108) 582.682 588.703
150 Gamma 1.002(0.059) 0.788(0.113) 587.642 598.674

Inverse Gaussian 1.001(0.062) 0.790(0.120) 611.891 622.923

Gamma DGP
n Model

β1 β2 AIC BIC

Maxwell 1.033(0.145) 0.770(0.238) 249.305 253.494
50 Gamma 1.008(0.137) 0.767(0.227) 247.040 255.324

Inverse Gaussian 1.003(0.141) 0.778(0.239) 252.414 260.697

Maxwell 1.038(0.112) 0.777(0.183) 375.505 380.505
90 Gamma 1.012(0.104) 0.773(0.169) 371.079 380.578

Inverse Gaussian 1.010(0.105) 0.778(0.172) 379.219 388.719

Maxwell 1.029(0.092) 0.799(0.148) 625.968 631.989
150 Gamma 1.001(0.086) 0.796(0.138) 617.266 628.297

Inverse Gaussian 1.001(0.085) 0.796(0.139) 631.973 643.005

Inverse Gaussian DGP
n Model

β1 β2 AIC BIC

Maxwell 1.121(0.225) 0.938(0.483) 351.457 355.646
50 Gamma 1.006(0.172) 0.778(0.358) 281.375 289.658

Inverse Gaussian 1.002(0.176) 0.788(0.368) 272.734 281.017

Maxwell 1.128(0.203) 0.905(0.445) 525.594 530.594
90 Gamma 1.009(0.168) 0.748(0.350) 417.941 427.441

Inverse Gaussian 1.010(0.161) 0.744(0.332) 405.532 415.032

Maxwell 1.133(0.164) 0.950(0.362) 891.968 897.989
150 Gamma 1.012(0.129) 0.784(0.269) 702.632 713.664

Inverse Gaussian 1.009(0.127) 0.789(0.265) 681.196 692.228
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Table 3: Coverage rates of confidence intervals considering three differ-
ent data generating process.

Maxwell DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.892 0.899 0.955 0.941
50 Gamma 0.890 0.900 0.941 0.945

Inverse Gaussian 0.855 0.903 0.917 0.941

Maxwell 0.917 0.897 0.952 0.948
90 Gamma 0.900 0.862 0.941 0.945

Inverse Gaussian 0.848 0.879 0.921 0.945

Maxwell 0.893 0.896 0.952 0.941
150 Gamma 0.897 0.876 0.962 0.945

Inverse Gaussian 0.855 0.866 0.928 0.928

Gamma DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.776 0.800 0.841 0.883
50 Gamma 0.883 0.893 0.934 0.948

Inverse Gaussian 0.824 0.869 0.893 0.931

Maxwell 0.759 0.814 0.841 0.879
90 Gamma 0.890 0.890 0.938 0.948

Inverse Gaussian 0.828 0.900 0.917 0.945

Maxwell 0.759 0.790 0.828 0.855
150 Gamma 0.879 0.883 0.934 0.945

Inverse Gaussian 0.852 0.883 0.900 0.934

Inverse Gaussian DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.886 0.828 0.955 0.897
50 Gamma 0.941 0.921 0.969 0.948

Inverse Gaussian 0.907 0.903 0.948 0.955

Maxwell 0.872 0.790 0.938 0.886
90 Gamma 0.948 0.900 0.983 0.972

Inverse Gaussian 0.910 0.897 0.966 0.962

Maxwell 0.834 0.731 0.872 0.831
150 Gamma 0.914 0.872 0.962 0.934

Inverse Gaussian 0.879 0.872 0.928 0.941

3. DIAGNOSTIC MEASURES

It is well-known that regression models are sensitive to the underlying model assump-
tions and hence a sensitivity analysis is strongly advisable after fitting regression models to
a dataset. In order to assess the sensitivity of the ML estimates of the mean-parameterized
Maxwell model parameters in the presence of atypical observations, we shall consider the
global and local influence methods [7, 8]. Additionally, the normalized quantile residual will
be considered to assess departures from the underlying distribution.
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Global influence. A first way to perform sensitivity analysis is by means of global influence
starting from the case deletion proposed by Cook [7], which is a common approach to study
the effect of dropping the i-th case from the dataset. Let β̂(−i) be the ML estimate of β

without the i-th observation in the sample. To assess the influence of the i-th case on the ML
estimate β̂ = (β̂1, ..., β̂p)>, the basic idea is to compare the difference between β̂(−i) and β̂.
If the deletion of an observation seriously influences an estimate, more attention should be
paid to that particular observation. Hence, if β̂(−i) is far from β̂, then this case is regarded as
an influential observation. To measure the global influence, the generalized Cook distance is
defined as the standardized norm of β̂(−i)− β̂ in the form GDi = (β̂(−i)− β̂)>Jn(β̂)(β̂(−i)− β̂)
for i = 1, ..., n, where Jn(β) = X>WX is the observed (Fisher) information matrix, and
W = diag{w1, ..., wn} with wi = 16y2

i /(πµ2
i ). Note that we have to compute β̂(−i) for all

i = 1, ..., n. To avoid employing the direct model estimation for all observations, we can use
the following one-step approximation to reduce the number of models to be fitted: β̂(−i) l

β̂−Jn(β̂)−1L̇i(β̂), where L̇i(β) = ∂`i(β)/∂β, and `i(β) = −3 log(µi)− 4y2
i /(πµ2

i ). It follows
that β̂(−i) − β̂ l −Jn(β̂)−1xi ŝi, where ŝi := si(β̂). Hence, the generalized Cook distance
reduces to GDi = ŝ2

i x>i (X>ŴX)−1xi, for i = 1, ..., n, where Ŵ := W (β̂). The index plot of
GDi may reveal those influential observations on the ML estimates of the Maxwell regression
parameters.

Local influence. In the following, the local influence method under a specific perturbation
scheme (case weighting perturbation) is carried out in order to assess the sensitivity of the
ML estimates of the Maxwell regression parameters. Let ω ∈ Ω be a k-dimensional vector
of perturbations, where Ω ⊂ IRk is an open set. The perturbed log-likelihood function is
denoted by `(β|ω). The vector of no perturbation is ω0 ∈ Ω such that `(β|ω0) = `(β).
The Cook’s idea for assessing local influence is essentially analyzing the local behavior of
the log-likelihood displacement LDω = 2[`(β̂)− `(β̂ω)], where β̂ω denotes the ML estimate
under `(β|ω), around ω0 by evaluating the curvature of the plot of LDω0+ad against a,
where a ∈ IR and d is a unit norm direction. One of the measures of particular interest is
the direction dmax corresponding to the largest curvature Cdmax . Cook [8] proved that the
normal curvature at the direction d is given by Cd(β) = 2|d>∆>Jn(β)−1∆d|, where ∆ =
∂2`(β|ω)/∂β∂ω> and Jn(β) are evaluated at β̂ and ω0. We have that Jn(β) = X>WX and,
after some algebra, we can show that ∆ = X>S, where S = diag{s1, ..., sn}. Let (1/2)Cdmax

be the largest eigenvalue of L = −∆>Jn(β)−1∆, and dmax be the corresponding unit norm
eigenvector (||dmax|| = 1). The index plot of the largest eigenvector (dmax) of L may reveal
those influential observations on the ML estimate β̂.

Residuals. Usually, the residuals are defined in order to study departures from the response
distribution assumptions. More precisely, the residuals carry important information concern-
ing the appropriateness of assumptions that underlie statistical models, and thereby play an
important role in checking model adequacy. The use of residuals for assessing the adequacy
of fitted regression models is nowadays commonplace due to the widespread availability of
statistical software, many of which are capable of displaying residuals and diagnostic plots,
at least for the more commonly used models. We shall consider the normalized quantile
residuals proposed in Dunn and Smyth [14] to check the adequacy of the Maxwell regression
model fitted to a dataset, which is simply defined as

(3.1) Ri = Φ−1

(
2γ(3/2, 4y2

i /(πµ̂2
i ))√

π

)
, i = 1, ..., n,
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where µ̂i = exp(x>i β̂). The normalized quantile residuals in (3.1) have a standard normal
distribution asymptotically [14, 16]. Since the exact distribution of the above residual is not
known, it is usual to add envelopes as suggested by Atkinson [2, § 4.2] into the normal quantile-
quantile plot (QQ-plot) for Ri to decide whether the observed residuals are consistent with the
fitted regression model. Thus, observations corresponding to absolute residuals outside the
limits provided by the simulated envelope are worthy of further investigation. Additionally, if
a considerable proportion of points falls outside the envelope, then one has evidence against
the adequacy of the fitted model.

Remark 3. The simple closed-form expression for the bias vector of the ML estimators
of the Maxwell regression parameters in (2.3) can be used to define improved Pearson residuals
[see, for example, 10] for the mean-parameterized Maxwell regression model. Hence, future
research can be done to compare through Monte Carlo simulations the improved Pearson
residuals and the normalized quantile residuals.

4. ILLUSTRATIVE EXAMPLES

In what follows, we shall consider real data examples to illustrate the Maxwell regression
model in practice. All computations regarding the mean-parameterized Maxwell regression
model were carried out using the R program. The R code to compute the ML estimates of
the mean-parameterized Maxwell regression model parameters is provided in the Appendix.

Life of metal pieces data. Here, we consider the biaxial fatigue data on the life (in cy-
cles to failure) of metal pieces reported by Rieck and Nedelman [29]. The response variable
(Y ) is the life (in number of cycles to failure) of n = 46 metal pieces, and the explanatory
variable (x) is the work per cycle (mJ/m3). We assume that Yi ∼ Mw(µi), for i = 1, ..., 46,
where log(µi) = β1 + β2 log(xi). The ML estimates, asymptotic standard errors (SE) and
the 95% asymptotic confidence intervals (CI) of the Maxwell regression parameters are listed
in Table 4. Figure 2 displays the normalized quantile residuals for the Maxwell regression
model. We have in this figure the quantile residuals against the index, and the normal QQ-
plot (with generated envelopes), respectively. Note that the residuals appear satisfactory
(random) and, more important, there is no observation falling outside the envelope. There-
fore, the mean-parameterized Maxwell regression model provides a good fit to the biaxial
fatigue data. Figure 2 shows the index plot of the generalized Cook distance, as well as
the index plot of |dmax|. The generalized Cook distance identifies the cases #4 and #46 as
possible influential observations on the ML estimates of the Maxwell regression parameters.
We remove each of these observations individually from the dataset and, after that, we fit
the mean-parameterized Maxwell regression model. We observe that there is no inferential
change regarding the regression parameters when removing the cases #4 and #46 from the
dataset and, hence, these observations have no influence on the ML estimates of the Maxwell
regression parameters. The estimated Maxwell regression model is

log(µ̂i) = 12.4733− 1.706 log(xi), i = 1, ..., 46.

The coefficients of the mean-parameterized Maxwell regression model can be interpreted as
follows. The expected life (in cycles to failure) of a metal piece should decrease approxi-
mately 81.84% [(1− e−1.7060)× 100%] as the logarithm of work per cycle increases one unity;



A simple mean-parameterized Maxwell regression model for positive response variables 515

that is, there is a decrease in the expected rate of life (in cycles to failure) by a factor of
(approximately) 0.1816 [exp(−1.7060) = 0.1816].

Advertising media data. Next, we shall consider data corresponding to the impact of
newspapers on sales. These data are the advertising budget (in thousands of dollars) along
with sales. The advertising experiment has n = 200 observations, and they are available in the
R package datarium [21]. The response variable (Y ) corresponds to the sales (in thousands of
dollars), while the covariate (x) corresponds to the advertising budget on newspapers (in thou-
sands of dollars). We assume that Yi ∼ Mw(µi), for i = 1, ..., 200, where log(µi) = β1 + β2 xi.
The mean-parameterized Maxwell regression estimates are provided in Table 4. In addition,
Figure 3 confirms that the Maxwell regression model is suitable to model the data, since there
are no observations falling outside the envelope. The index plots of GDi (generalized Cook
distance) and |dmax| (local influence) are presented in Figure 3. It is identified the cases #37
and #129 as possible influential observations on the ML estimates of the mean-parameterized
Maxwell regression parameters. We remove each of these observations individually from the
dataset and, after that, we fit the Maxwell regression model. There is no inferential change
regarding the regression parameters when removing these cases from the dataset, so these
observations have no influence on the ML estimates of the Maxwell regression parameters.
The estimated Maxwell regression model is

log(µ̂i) = 2.6879 + 0.003 xi, i = 1, ..., 200,

and the ML estimates of the mean-parameterized Maxwell regression parameters deliver the
following interpretation. The expected sale (in thousands of dollars) should increase (approx-
imately) 0.301% [(e0.003 − 1)× 100%] as the advertising budget on newspapers increases one
thousand dollars; that is, there is an increase in the expected sale by a factor of (approxi-
mately) 1.003 [exp(0.003) = 1.003].

Radioimmunoassay data. Now, we consider the radioimmunoassay data, reported in
Tiede and Pagano [30]. These data were obtained from the Nuclear Medicine Department
of the Veteran’s Administration Hospital, Buffalo, New York. The variable of interest (Y )
is the radioactivity count rate, and the covariate (x) corresponds to the dose concentration
(measured in micro-international units per milliliter). We assume that Yi ∼ Mw(µi), for
i = 1, ..., 14, where log(µi) = β1 + β2 xi. Table 4 lists the ML estimates, asymptotic SEs and
the 95% asymptotic CIs of the Maxwell regression parameters. Residuals plots are displayed in
Figure 4, which confirms that the mean-parameterized Maxwell regression model is suitable to
model the data, since there are no observations falling outside the envelope. Figure 4 displays
the index plot of the generalized Cook distance, as well as the index plot of |dmax|. It is
identified the cases #1, #2 and #14 as possible influential observations on the ML estimates
of the Maxwell regression parameters. We remove each of these observations individually
from the dataset and, after that, we fit the mean-parameterized Maxwell regression model.
It is noteworthy that there is no inferential change regarding the regression parameters when
removing the cases #1, #2 and #14 from the dataset, revealing that these observations
have no influence on the ML estimates of the Maxwell regression parameters. The estimated
Maxwell regression model is

log(µ̂i) = 8.6091− 0.0190 xi, i = 1, ..., 14.
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The mean-parameterized Maxwell parameter estimates deliver interesting interpretation. The
expected radioactivity count rate should decrease approximately 1.88% [(1− e−0.0190)×100%]
as the dose concentration increases one unity; that is, there is a decrease in the expected
radioactivity count rate by a factor of (approximately) 0.98 [exp(−0.0190) = 0.98].

Table 4: Parameter estimates.

Life of metal pieces data
Parameter

Estimate SE 95% CI

β1 12.4733 0.4007 (11.688; 13.259)
β2 −1.7060 0.1114 (−1.924;−1.488)

Advertising media data
Parameter

Estimate SE 95% CI

β1 2.6879 0.0498 (2.590; 2.785)
β2 0.0030 0.0011 (0.001; 0.005)

Radioimmunoassay data
Parameter

Estimate SE 95% CI

β1 8.6091 0.1390 (8.337; 8.881)
β2 −0.0190 0.0032 (−0.025;−0.013)
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Figure 2: Residuals plots (top), and influence plots (bottom); life of metal pieces data.
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Figure 3: Residuals plots (top), and influence plots (bottom); advertising media data.
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Figure 4: Residuals plots (top), and influence plots (bottom); radioimmunoassay data.
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4.1. Competing models

Obviously, there are plenty of regression models in the statistic literature that can be
used to model continuous positive response variables. Perhaps the most useful (and simple
as well) regression models to deal with positive response variables are the gamma and inverse
Gaussian generalized linear models [25]. Beyond the very simple form of these models, the
gamma and inverse Gaussian regression models have been quite used in practice mainly
because of the well-developed R function glm(). The gamma PDF is

f(y) =
φφyφ−1

Γ(φ)µφ
exp
(
−φy

µ

)
, y > 0,

where µ > 0 is the mean, and φ > 0 is the precision parameter. In the generalized linear
model terminology, φ−1 > 0 corresponds to the dispersion parameter. We shall use the nota-
tion Ga(µ, φ) to refer to this distribution. The gamma distribution reduces to the exponential
distribution when φ = 1. If Y ∼ Ga(µ, φ), the variance is VAR(Y ) = φ−1µ2 ∝ µ2. Remem-
bering that the variance of the mean-parameterized Maxwell distribution is 0.178µ2 ∝ µ2 and,
hence, the heteroscedastic form based on the gamma and Maxwell distributions are similar,
thus modeling the variance of the response variable in a quadratic form. The inverse Gaussian
PDF is

f(y) =
(

φ

2πy3

)1/2

exp
(
−φ(y − µ)2

2µ2y

)
, y > 0,

where µ > 0 is the mean, and φ > 0 is the precision parameter. We shall use the notation
IG(µ, φ) to refer to this distribution. If Y ∼ IG(µ, φ), the variance is VAR(Y ) = φ−1µ3 ∝ µ3.

In the following, we fit the gamma and inverse Gaussian regression models to the data
previously analyzed using the mean-parameterized Maxwell regression model. For each of the
three datasets previously analyzed, we consider the same regression structures for the mean
parameter of the gamma and inverse Gaussian models that were considered for the mean of
the Maxwell model. The parameter estimates of the gamma and inverse Gaussian parameters
are listed in Tables 5 and 6, respectively. Residuals plots are displayed in Figures 5 and 6 for
the gamma and inverse Gaussian regression models, respectively. We consider the deviance
residual for these regression models, which appear to be a very good choice in the generalized
linear model framework [27]. Similar to the mean-parameterized Maxwell regression model,
Figure 5 also reveals that the gamma regression model seems to be appropriate to fit these
real datasets, once none observation is outside the envelope. On the other hand, the inverse
Gaussian regression model appears not suitable to model the advertising media data (some
observations are outside the envelope), but it appears suitable to model the other datasets
(see Figure 6). At this moment, the natural question is which one is the best in modeling
these datasets. The next section addresses this question.
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Table 5: Parameter estimates; gamma regression.

Life of metal pieces data: bφ−1 = 0.1554
Parameter

Estimate SE 95% CI

β1 12.4449 0.3869 (11.686; 13.203)
β2 −1.6945 0.1076 (−1.905;−1.484)

Advertising media data: bφ−1 = 0.1318
Parameter

Estimate SE 95% CI

β1 2.7047 0.0443 (2.618; 2.791)
β2 0.0031 0.0010 (0.001; 0.005)

Radioimmunoassay data: bφ−1 = 0.0990
Parameter

Estimate SE 95% CI

β1 8.6514 0.1071 (8.441; 8.861)
β2 −0.0191 0.0025 (−0.024;−0.014)

Table 6: Parameter estimates; inverse Gaussian regression.

Life of metal pieces data: bφ−1 = 0.00034
Parameter

Estimate SE 95% CI

β1 11.7484 0.5068 (10.755; 12.742)
β2 −1.5103 0.1280 (−1.761;−1.260)

Advertising media data: bφ−1 = 0.0079
Parameter

Estimate SE 95% CI

β1 2.7057 0.0438 (2.620; 2.792)
β2 0.0031 0.0010 (0.001; 0.005)

Radioimmunoassay data: bφ−1 = 3.15e-05
Parameter

Estimate SE 95% CI

β1 8.5721 0.1259 (8.325; 8.819)
β2 −0.0170 0.0019 (−0.021;−0.013)
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Figure 5: Residuals plots for the gamma regression: life of metal pieces
data (top), advertising media data (middle), and radioim-
munoassay data (bottom).
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Figure 6: Residuals plots for the inverse Gaussian regression: life of
metal pieces (top), advertising media data (middle), and ra-
dioimmunoassay data (bottom).
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4.2. Choosing the best model

Here, we try to put some light on the following natural question: what is the best
regression model to fit the data in the previous sections among the mean-parameterized
Maxwell, gamma and inverse Gaussian regression models. It is worth stressing that this
question is not easy to be answered in generality. The values of AIC and BIC of all fitted
regression models are listed in Table 7. The Maxwell and gamma regressions outperform the
inverse Gaussian regression to model the life of metal pieces data as well as the advertising
media data, while these three regression models can be considered equivalent to model the
radioimmunoassay data. On the basis of AIC and BIC values, it seems that the Maxwell and
gamma regression models should be chosen as the best regression models to fit these three
datasets. In terms of parsimony, the mean-parameterized Maxwell regression model should
be preferable, once it has the advantage of having fewer parameters to be estimated than the
gamma regression model. Remembering that in the gamma regression model is necessary to
estimate a precision parameter, while in the Maxwell regression model is not.

Table 7: AIC and BIC values.

Life of metal pieces Advertising media Radioimmunoassay
Model

AIC BIC AIC BIC AIC BIC

Maxwell 635.14 638.80 1295.17 1301.77 240.21 241.50
Gamma 635.73 641.22 1292.80 1302.70 239.49 241.41
Inverse Gaussian 647.68 653.17 1322.40 1332.30 241.38 243.30

From now on, we only consider the mean-parameterized Maxwell and gamma regression
models. By following with the analysis in order to select the best regression model, we shall
consider the generalized likelihood ratio test statistic (VLR) proposed by Vuong [32]. The
statistic VLR measures the distance between two models in terms of the Kullback–Leibler
information criterion. The test statistic can be expressed as VLR = ΛΨ−1/2, and

Λ =
1√
n

n∑
i=1

log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)
,

Ψ =
1
n

n∑
i=1

[
log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)]2

−

[
1
n

n∑
i=1

log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)]2

.

The statistic VLR converges in distribution to a standard normal distribution under the null
hypothesis of equivalence of the models. The null hypothesis is not rejected if |VLR| ≤ Φ−1(1−
α/2), where Φ−1(·) is the standard normal quantile function, and α is the significance level.
On the other hand, we reject at significance level α the null hypothesis in favor of the Maxwell
model being better (worse) than the gamma model if VLR > Φ−1(1−α) (VLR < −Φ−1(1−α)).
Table 8 lists the observed values of VLR (and the corresponding p-values), indicating that
the mean-parameterized Maxwell and gamma regression models are equivalent to fit these
datasets. However, in terms of parsimony, the mean-parameterized Maxwell regression model
should be preferable as mentioned early. In summary, the results in this section reveal that the
mean-parameterized Maxwell regression model can be a good (and simple as well) alternative
to the well-developed gamma regression model in practice.
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Table 8: Generalized likelihood ratio statistic.

Data VLR p-value

Life of metal pieces −0.9320 0.3513
Advertising media −0.5243 0.6001
Radioimmunoassay −1.2102 0.2262

5. CONCLUDING REMARKS

In this paper, based on the mean-parameterized Maxwell distribution, a parametric
class of regression models to deal with positive response variables was studied. By employing
the frequentist approach, the estimation of the Maxwell regression parameters is conducted by
the maximum likelihood method. We also provide a closed-form expression for the expected
Fisher information matrix. Monte Carlo simulation experiments reveal that the maximum
likelihood method is quite effective to estimate the Maxwell model parameters, and that the
initial guesses we recommend for the Maxwell regression parameters worked perfectly well
in the Monte Carlo simulations as well as real data applications. We also give a simple for-
mula for calculating bias-corrected maximum likelihood estimates of the mean-parameterized
Maxwell regression parameters. We discuss diagnostic techniques (global and local influence,
and residuals analysis) for the mean-parameterized Maxwell regression model. Diagnostic
methods have been an important tool in regression analysis to detect anomalies with the fit-
ted model, such as departures from the model assumptions, presence of outliers and presence
of influential observations. In particular, an appropriate matrix for assessing local influence
on the Maxwell parameter estimates under a specific perturbation scheme is obtained. Ad-
ditionally, we illustrate the methodology developed in this paper by means of applications to
real data. We verify through the real data applications that the mean-parameterized Maxwell
regression model was superior to the well-known inverse Gaussian regression model, and was
very similar to the gamma regression model, which is, probably, the most used regression
model to deal with positive response variables in practice. Finally, it is worth stressing that
the formulas related with the mean-parameterized Maxwell regression model are manageable
(such as log-likelihood function, score function, expected Fisher information matrix, etc.)
and with the use of modern computer resources and its numerical capabilities, this regression
model may prove to be an useful addition to the arsenal of applied statisticians.

The previous developments regarding the mean-parameterized Maxwell regression model
indicate that this model can be indeed very useful in practice. Therefore, we would like to
point out that the current work opens new possibilities for future works. In particular, an
interesting extension of the mean-parameterized Maxwell regression model which allows for
explanatory variables to be measured with error may be developed. Also, one may study
the mean-parameterized Maxwell regression model under random effects. Additionally, due
to recent advances in computational technology, one may explore other estimation methods
for the mean-parameterized Maxwell regression model such as the Bayesian approach. In
addition, Bayesian influence diagnostics can also be treated via the Kullback–Leibler diver-
gence and, hence, atypical observations can also be identified in a Bayesian context. A very
interesting extension of the developments considered in this paper would be to study the
mean-parameterized Maxwell regression model in a semiparametric context. Obviously an
in-depth investigation of such studies is beyond the scope of the current paper, but certainly
are very interesting topics for future works.
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APPENDIX. The R code

## R function to estimate the mean-parameterized
## Maxwell parameters (link function = "log")
Maxwell.reg <- function(formula, data){

cl <- match.call()
if (missing(data))
data <- environment(formula)

mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
oformula <- as.formula(formula)
mf$formula <- formula
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- terms(formula, data = data)
Y <- model.response(mf, "numeric")
X <- model.matrix(mf)
if (length(Y) < 1)
stop("empty model")

if (!(min(Y) >= 0))
stop("invalid dependent variable")

floglikMax <- function(vPar){
veta <- X%*%vPar
vmu <- exp(veta)
loglik <- sum( -3*log(vmu) - (4/pi)*(Y^2/vmu^2) )
loglik

}
fscoreMax <- function(vPar){
veta <- X%*%vPar
vmu <- exp(veta)
vt <- (8/pi)*(Y^2/vmu^2) - 3
vt <- as.vector(vt)
score <- t(X)%*%vt
score

}
fFisherMax <- function(){
6*(t(X)%*%X)

}
start <- c( solve(t(X)%*%X)%*%t(X)%*%log(Y+0.1) )
opt <- optim(start, fn = floglikMax, gr = fscoreMax, method = "BFGS",

control=list(fnscale=-1), hessian=FALSE)
if (opt$conv != 0)
stop("algorithm did not converge")

beta <- opt$par
se <- sqrt(diag(solve(fFisherMax())))
z.value <- beta/se
p.value <- 2*(1 - pnorm(abs(z.value)))
names(beta) <- colnames(X)
rval <- cbind( round(beta, 6), round(se, 6),

round(z.value, 6), round(p.value, 6) )
colnames(rval) <- c("Estimate", "Std. Error",

"z value", "Pr(>|z|)")
return(rval)

}

## Example: Life of metal pieces data
## y = "number of cycles to failure" and x = "work per cycle"
data(Biaxial, package="ssym")
attach(Biaxial)
y <- Life
x <- log(Work)
Maxwell.fit <- Maxwell.reg(y ~ x)
Maxwell.fit

Estimate Std. Error z value Pr(>|z|)
(Intercept) 12.473253 0.400698 31.12885 0
x -1.706004 0.111374 -15.31775 0
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1. INTRODUCTION

Let f(x) and g(x) be the probability density functions (pdfs) of the failure times of
two systems X and Y , with distribution functions F (x) = P (X ≤ x) and G(x) = P (Y ≤ x)
respectively. Kerridge’s [12] measure of inaccuracy between X and Y is given by

(1.1) I(X, Y ) = −
∫ ∞

0
f(x) log g(x)dx.

It has been known for a long time as a helpful tool for determining the degree of error in
experimental results. It can also be interpreted as an error that occurred when an experi-
ment’s true density function, f(x), was assigned to g(x) by the experimenter. Kerridge [12]
discussed the application of inaccuracy measures in statistical inference. This measure is also
applied in the field of economics. International demand or cross-country demand analysis
estimates the demand for goods or services for a group of countries. James and Anita [10]
address the outlier problem in the international demand analysis, which can be remedied
using inaccuracy measures. Kayal and Sunoj [11] introduced a generalized dynamic condi-
tional Kerridge’s inaccuracy measure, which can be represented as the sum of conditional
Renyi’s divergence and Renyi’s entropy. Rajesh et al. [17] and Sathar et al. [20] suggested
nonparametric estimator for inaccuracy measure in the reliability context, such as residual
life distributions and past life distributions, respectively, and found their properties under
some regularity conditions.

Hooda and Tuteja [9] defined some nonadditive measures of relative information and
inaccuracy. Using reversible symmetry, Bhatia and Taneja [2] defined the quantitative-
qualitative measure of inaccuracy. Straightforwardly, Gur Dial [8] established the noiseless
coding theorems for subjective probability codes for nonadditive measures of inaccuracy.
Goel et al. [7] introduce and discuss a measure of inaccuracy between the distributions of nth

record value. Although this measure is inapplicable when the random variables’ pdfs are void,
Kundu et al. [16] proposed an alternative measure of inaccuracy called dynamic cumulative
past inaccuracy between random variables X and Y , which is represented as

(1.2) C̄I(X, Y ) = −
∫ ∞

0
F (x) log G(x)dx.

Kundu et al. [16] investigated general results for this measure. Relying on various applications
of stochastic classes in reliability and information theory fields, Khorashadizadeh [13] studied
new classes of the lifetime in terms of cumulative inaccuracy along with their relations with
other famous aging classes. Also, some characterization results are obtained under the pro-
portional reversed hazard rate model. Di Crescenzo and Longobardi [4] defined the empirical
expression of cumulative inaccuracy in connection with empirical cumulative entropy.

In many realistic situations, if a system is found to be down at time t, the random
variable [t−X|X ≤ x] describes the time elapsed between the failure of a system and the
time. Based on this idea, the cumulative inaccuracy measure between two past lifetimes,
analogous to the measure, (1.2), is defined by Kumar and Taneja [15] and Kundu et al. [16]
independently as

(1.3) C̄I(X, Y, t) = −
∫ t

0

F (x)
F (t)

log
[
G(x)
G(t)

]
dx,
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and so called dynamic cumulative past inaccuracy measure. Clearly when t = 0, (1.3) becomes
(1.2). (1.3) equivalently can be written as

C̄I(X, Y, t) = − 1
F (t)

∫ t

0
F (x) log G(x)dx +

log G(t)
F (t)

∫ t

0
F (x)dx

= Āt + B̄t,(1.4)

where

Āt = − 1
F (t)

∫ t

0
F (x) log G(x)dx and B̄t =

log G(t)
F (t)

∫ t

0
F (x)dx.

Ghosh and Kundu [6] introduced the notion of cumulative past inaccuracy of order α

and study the proposed measure for conditionally specified models of two components failed
at different time instants, called generalized conditional cumulative past inaccuracy, and their
properties are discussed.

Example 1.1. Let the random variables X and Y have the following distribution
functions F (x) = 2x− x2, and G(x) = xλ respectively, x ∈ [0, 1]. Then for t ∈ [0, 1], the
dynamic cumulative past inaccuracy measure, C̄In(t) is obtained as

C̄In(t) =
λt(2t− 9)
18(t− 2)

.

Figure 1 depicts the dynamic cumulative past inaccuracy measure for for t ∈ [0, 1] and
for λ ∈ {4, 6, ..., 12}. According to the graph, the dynamic cumulative past inaccuracy
measure is an increasing function in λ and t.

4= λ

6= λ

8= λ

10 = λ

12 = λ

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

Dynamic cumulative past inaccuracy Measure

Figure 1: Plot of C̄I(X, Y, t) against t ∈ [0, 1] for different parameter λ.

From a practical standpoint, it appears more reasonable to forego independence in
favour of some dependency. For example, if a family’s income is exclusively dependent on the
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salary of one of its members, an accident or the death of that individual will have a negative
influence on the family’s performance. However, this will not be the case when examined from
the perspective of society as a whole. Random variables are derived from specific types of
mixing conditions that have already been defined in the literature. Alpha-mixing is a strong
mixing condition with many practical applications among the various mixing conditions used
in the literature.

Censorship is either desirable or unavoidable in life testing and can take several forms.
Withdrawals from a clinical trial, death unrelated to the condition under study, and a person
still alive at the end of the follow-up period are all examples of random censoring. Right
censorship is one of the most common types of censorship. Right censoring is appropriate in
studies of electrical equipment failure, the occurrence of a specific disease, and so on.

Motivated by the emerging work and the importance of (1.3), we intend to develop
a kernel function-based estimation technique for this measure in practical situations. This
paper considers the nonparametric estimation of (1.3) under right censoring and discusses
some of its properties. Throughout this paper, we assume that the random variables are
alpha-mixing (Rosenblatt [19]).

This paper’s outline is as follows: In Section 2, we present a nonparametric estimator
for (1.4) in censored samples. Section 3 looks into the asymptotic properties of the estima-
tor. Section 4 contains a simulation study to demonstrate the estimator’s behaviour and
a comparison to an empirical estimator. Furthermore, they are compared to two different
real-world data sets.

2. KERNEL ESTIMATION

In this section, we propose a nonparametric estimator for the cumulative past inac-
curacy measure for right censored data sets. Consider {Xi}, {Yi}, i = 1, 2, ..., n be iden-
tically distributed random samples have distribution functions be F (x) = Pr(Xi ≤ x) and
G(x) = Pr(Yi ≤ x) respectively. We use independent and identically distributed random
variable R1i and R2i with corresponding distribution functions P1(x) and P2(x) for creating
right-censored data from Xi and Yi respectively. Note that R1i and R2i are independent
of Xi and Yi respectively. Let Ci = min(Xi, R1i), C∗i = min(Yi, R2i), δi = I(Xi ≤ R1i) and
δ∗i = I(Yi ≤ R2i). Then the kernel density estimator of (1.4) under right censoring is as
follows:

C̄In(t) = Ānt + B̄nt,

= − 1
Fn(t)

∫ t

0
Fn(x) log Gn(x)dx +

log Gn(t)
Fn(t)

∫ t

0
Fn(x)dx,(2.1)

where

Fn(t) =
∫ t

0

1
nh

n∑
i=1

K
(

x−Ci
h

)
δidx

1− P1(Ci)
and Gn(t) =

∫ t

0

1
nh

n∑
i=1

K
(

x−C∗i
h

)
δ∗i dx

1− P2(C∗i )
,

respectively are the nonparametric density estimator for F (t) and G(t) under censoring and
K(·) be the kernel function. For the positive integers, i and j h → 0, nh →∞ and the
following assumptions hold:
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(i) f (k)(x), 1 ≤ k ≤ 2j, exists and f (2j)(x) is bounded

and if K(·) satisfies,

(ii) K(s) ≥ 0, −∞ < s < ∞ ,
∫

R+ K(s)ds = 1,
∫

R+ saKi(s)ds = 0 for positive odd
integer a,

∫
R+ sbKi(s)ds < ∞ for positive even integer b.

Denote Q∗(t) = P (C1 ≤ t, δ1 = 1) the sub distribution function for the uncensored observa-
tions, and q∗(t) = [1− P1(t)]f(t) the corresponding density, then a reasonable estimate of
f(t) can be obtained from Cai [3] as q∗(t)/[1−P1(t)]. Consider the transformation α = x−Ci

h ,
then we get

E

[
1
h

K
(

x−Ci
h

)
δi

1− P1(Ci)

]
=

1
h

∫
R+

K
(

x−Ci
h

)
1− P1(Ci)

q∗(Ci)dCi,

=
∫

R+

K(α)f(x− αh)dα,

=
∫

R+

K(α)

[
f(x)− f (1)(x)αh +

f (2)(x)
2!

α2h2 − ...

]
,

= f(x) +
h2

2

∫
R+

α2K(α)dαf (2)(x) + O(h2
n),(2.2)

and using Lemma 2 in Elias Masry [5], we get

E

[
1
h

K
(

x−Ci
h

)
δi

1− P1(Ci)

]2

=
Ck

h

f(x)
1− P1(x)

,(2.3)

where Ck =
∫

R+ K2(α)dα. Let K1 =
K
�

x−Ci
h

�
δi

1−P1(Ci)
, then using (2.2) and (2.3), we get

Bias[Fn(t)] =
∫ t

0
E

(
K1

h

)
dx− F (x),

=
h2

2

∫
R+

α2K(α)dα

∫ t

0
f (2)(x)dx + O(h4),

Var[Fn(t)] ≈ 1
n

{ ∫ t

0
E

(
K1

h

)2

dx−
∫ t

0

[
E

(
K1

h

)]2

dx

}
+

{ ∫ t

0
E

(
K1

h

)
dx− F (x)

}2

,

=
Ck

nh

∫ t

0

f(x)
1− P1(x)

dx.

2.1. Estimation of Āt and B̄t

Using Taylor’s series expansion, we have

log Gn(x) = log G(x) +
Gn(x)−G(x)

G(x)
+ Rn,
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where

Rn =

1∫
0

2(1− τ)
{G(x) + τ [Gn(x)−G(x)]}2 [Gn(x)−G(x)]2dτ.

Hence,

Fn(x) log Gn(x)− F (x) log G(x) =

= log G(x)[Fn(x)− F (x)] +
1

G(x)
[Fn(x)− F (x)][Gn(x)−G(x)]

+
F (x)
G(x)

[Gn(x)−G(x)] + Rn[Fn(x)− F (x)] + F (x)Rn.(2.4)

Next, we need to find E|Rn|j , for any positive integer j. For this, consider V1 ={
x : |Gn(x)−G(x)| ≤ G(x)

2

}
and V c

1 is the compliment of V1. Clearly, for θ ∈ V1 and for
every 0 ≤ ε ≤ 1, we have

0 < G(x)
(
1− ε

2

)
≤ G(x) + ε[Gn(x)−G(x)] < G(x)

(
1 +

ε

2

)
.

Equivalently, we get

0 <
(1− ε)[Gn(x)−G(x)]2

{G(x) + ε[Gn(x)−G(x)]}2 ≤
(1− ε)[Gn(x)−G(x)]2[(

1− ε
2

)
G(x)

]2 .

Let I(·) denotes the indicator function, since
1∫
0

(1− ε)(
1− ε

2

)2 dε < 1, then for every positive integer

j we get

E|Rn|jI(V1) ≤
1

[G(x)]2j
E[G∗n(x)−G(x)]2j .

Also, we have

E|Rn|jI(V c
1 ) ≤ E

[∣∣∣∣ 1
Gn(x)

− 1
G(x)

− Gn(x)−G(x)
G(x)

∣∣∣∣jI(V c
1 )

]
.

For 1 ≤ i ≤ n, we have K(x− Yi) 6= 0 and m < K(α) < N so that Gn(x) ≥ m

nh
, or equiva-

lently,
1

Gn(x)
≤ nh

m
. Also, Gn(x) ≤ N

h and nh2 →∞ implies for sufficiently large n,

E|Rn|jI(V c
1 ) ≤

∣∣∣∣nh2

m
+ h− h

G(x)
− N

G(x)

∣∣∣∣j 1
hj

E[I(V c
1 )],

= O(njhj)P
[
|G∗n(x)−G(x)| ≥ G(x)

2

]
,

≤ O(njhj)
{

P

[
|G∗n(x)− E[G∗n(x)]| ≥ G(x)

4

]
+ P

[
|E[G∗n(x)]−G(x)| ≥ G(x)

4

]}
.
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For sufficiently large n,

P

[
|E[G∗n(x)]−G(x)| ≥ G(x)

4

]
= 0,

and

P

[
|Gn(x)− E[Gn(x)]| ≥ G(x)

4

]
≤ 2 exp{−Cnh},

for some constant C, (see Rao [18]), we obtain for sufficiently large n

E|Rn|jI(V c
1 ) ≤ 2 exp{−Cnh}.

Also, we have

E|Rn|j = E|Rn|jI(V1) + E|Rn|jI(V c
1 ),

≤ 1
[G(x)]2j

E[Gn(x)−G(x)]2j + O(njhj) exp{−Cnh}.

In particular for j = 1, 2 in the above inequality, we get

E|Rn| ≤
1

[G(x)]2
E[Gn(x)−G(x)]2 + O(nh) exp{−Cnh},

= O

(
1

nh

)
+ O(h4) + O(nh),(2.5)

and

E|Rn|2 ≤
1

[G(x)]4
E[Gn(x)−G(x)]4 + O(n2h2) exp{−Cnh},

= O

(
h3

n

)
+ O

(
1

n2h2

)
+ O(h8) + O(n2h2),(2.6)

since nh goes to infinity, O(nh) exp{−Cnh} and O(n2h2) exp{−Cnh} have smaller orders
than that of E[Gn(x)−G(x)] and E[Gn(x)−G(x)]2 respectively.

In order to simplify the notation define hn(t) =
∫ t
0 Fn(x) log Gn(x)dx, gn(t) =

∫ t
0 Fn(x)dx,

h(t) =
∫ t
0 F (x) log G(x)dx and g(t) =

∫ t
0 F (x)dx so that we can easily prove that

hn(t)
Fn(t)

− h(t)
F (t)

≈
hn(t)−

h(t)
F (t)

Fn(t)

F (t)
,(2.7)

and

log Gn(t)gn(t)
Fn(t)

− log G(t)g(t)
F (t)

≈
log Gn(t)gn(t)−

log G(t)g(t)
F (t)

Fn(t)

F (t)
.(2.8)

Hence using (2.4)–(2.8), we get the following:

Bias[Ānt] = −Bias
[

hn(t)
Fn(t)

− h(t)
F (t)

]
,

=
−h2

2

∫
R+

α2K(α)dα

{
1

F (t)

∫ t

0

[
log G(x)

∫ x

0
f (2)(y)dy

+
F (x)
G(x)

∫ x

0
g(2)(y)dy

]
dx− h(t)

F 2(t)

∫ t

0
f (2)(x)dx

}
+ O(h4),(2.9)
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and

Bias[B̄nt] =
1

F (t)
Bias[gn(t) log Gn(t)]− log G(t)g(t)

F 2(t)
Bias[Fn(t)],

=
h2

2

∫
R+

α2K(α)dα

{
log G(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx +

g(t)
F (t)G(t)

∫ t

0
g(2)(x)dx

− log G(t)g(t)
F 2(t)

∫ t

0
f (2)(x)dx

}
+ O(h4).(2.10)

Moreover,

Var[Ānt] = Var
[

hn(t)
Fn(t)

− h(t)
F (t)

]
,

≈ Ck

nh

1
F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx

+
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx +
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
,(2.11)

and

Var[B̄nt] =
1

F 2(t)
Var[gn(t) log Gn(t)] +

[
log G(t)g(t)

F 2(t)

]2

Var[Fn(t)],

≈ Ck

nh

log2 G(t)
F 2(t)

{∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx +
g2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
+

Ck

nh

g2(t)
G2(t)F 2(t)

∫ t

0

g(x)
1− P2(x)

dx.(2.12)

The following theorem gives bias and variance of the proposed estimator.

Theorem 2.1. Under the assumptions given in Section 2, bias and variance of C̄In(t)
is given as

Bias
[
C̄In(t)

]
=

h2

2

∫
R+

α2K(α)dα

{
log G(t)

F (t)

∫ t

0

∫ x

0
f (2)(y)dydx +

g(t)
F (t)G(t)

∫ t

0
g(2)(x)dx

− log G(t)g(t)
F 2(t)

∫ t

0
f (2)(x)dx− 1

F (t)

∫ t

0
log G(x)

∫ x

0
f (2)(y)dydx

− 1
F (t)

∫ t

0

F (x)
G(x)

∫ x

0
g(2)(y)dydx +

h(t)
F 2(t)

∫ t

0
f (2)(x)dx

}
,

and

Var
[
C̄In(t)

]
≈ Ck

nh

1
F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx + log2 G(t)
∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx

+
log2 G(t)g2(t)

F 2(t)

∫ t

0

f(x)
1− P1(x)

dx +
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Proof: Using the equations (2.9), (2.10), (2.11) and (2.12), the result follows.
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The following example shows the application of Theorem 2.1.

Example 2.1. Consider the two non-negative random variables X and Y have the
pdfs f(x) and g(x) respectively, so that for x ∈ (0, 1)

f(x) = 2x and F (x) = P (X ≤ x) = x2,

g(x) = 3x2 and G(x) = P (Y ≤ x) = x3.

Let the random variables X and Y be right censored by uniform random variables with
parameters (0, 0.5) and (0.5, 1), respectively. Then we get

Bias
[
C̄In(t)

]
=
−2h2

t

∫
R+

α2K(α)dα,

and

Var
[
C̄In(t)

]
≈ Ck

nh

1
t4

{∫ t

0

9 log2 x

2
[log(1− 2x)− 2x]dx− 3(t− 2)t + 6(t− 1) log(1− t)

4t

− t2

18
[(3 log t− 1)2 + 9 log2 t][2t + log(1− 2t)]− 1

12
[t(2 + t) + 2 log(1− t)]

+
9 log2 t

2
[t− t2 − (t− 1

2
) log(1− 2t)]

}
.

3. ASYMPTOTIC PROPERTIES

In this section, we discuss some asymptotic properties of (1.4). The following theorem
reveals the consistency property of the estimator.

Theorem 3.1. Under the assumptions given in Section 2, C̄In(t) is a consistent esti-

mator of C̄I(X, Y, t).

Proof: We have
C̄In(t) =

log Gn(t)gn(t)
Fn(t)

− hn(t)
Fn(t)

.

MSE[hn(t)] → 0, MSE[gn(t)] → 0, MSE[Fn(t)] → 0, MSE[log Gn(t)] → 0, when n →∞, and
using Slutsky’s theorem we obtain desired result.

In the following theorem, we check the asymptotic nature of the estimator’s mean
integrated squared error (MISE).

Theorem 3.2. Under the assumptions given in Section 2, the MISE of C̄In(t) tends

to zero as n →∞.

Proof:

MISE[C̄In(t)] = E

∫ [
C̄In(t)− C̄I(X, Y, t)

]2
dt,

= MISE[Ānt] + MISE[B̄nt] + 2E

∫ [
Ānt − Āt

][
B̄nt − B̄t

]
dt.
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Also

MISE[Ānt] ≤
∫

1
F 2(t)

{
MSE[hn(t)] +

[
h(t)
F (t)

]2

MSE[Fn(t)]

−2
h(t)
F (t)

MSE
1
2 [hn(t)]MSE

1
2 [Fn(t)]

}
dt → 0,

as n →∞. Using similar steps and applying Holder’s inequality, we get the proof.

The following theorem states the asymptotic normal distribution of the proposed esti-
mator.

Theorem 3.3. Let C̄In(t) be nonparametric estimator of C̄I(X, Y, t), K(x) be a ker-

nel and h satisfying the conditions for bandwidth. Then for fixed t

(nh)
1
2

[
C̄In(t)− C̄I(X, Y, t)

σC̄In

]

follows normal distribution with mean zero and variance 2, as n →∞ with

σ2
C̄In

=
Ck

F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx + log2 G(t)
∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx

+
log2 G(t)g2(t)

F 2(t)

∫ t

0

f(x)
1− P1(x)

dx +
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Proof: We have

Ānt − Āt = − hn(t)
Fn(t)

+
h(t)
F (t)

,

= − [hn(t)− h(t)]
Fn(t)

+
h(t)[Fn(t)− F (t)]

F (t)Fn(t)
,

= − 1
Fn(t)

∫ t

0

{
log G(x)

[
Fn(x)− F (x)

]
+

F (x)
G(x)

[
Gn(x)−G(x)

]}
dx

+
h(t)

F (t)Fn(t)

[
Fn(x)− F (x)

]
.

Using asymptotic normality and almost sure convergence properties of of Fn(t) given in
Cai [3], we get

(nh)
1
2

[
Ānt − Āt

σĀ

]
asymptotically follows standard normal distribution with

σ2
Ā =

Ck

F 2(t)

{∫ t

0
log2 G(x)

∫ x

0

f(y)
1− P1(y)

dydx +
∫ t

0

[
F (x)
G(x)

]2 ∫ x

0

g(y)
1− P2(y)

dydx

+
h2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

}
.
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Similarly, we get

(nh)
1
2

[
B̄nt − B̄t

σB̄

]
asymptotically follows standard normal distribution with

σ2
B̄ =

Ck

F 2(t)

{
log2 G(t)

[ ∫ t

0

∫ x

0

f(y)
1− P1(y)

dydx +
g2(t)
F 2(t)

∫ t

0

f(x)
1− P1(x)

dx

]

+
g2(t)
G2(t)

∫ t

0

g(x)
1− P2(x)

dx

}
.

Hence the proof.

In the following theorem, we check the almost sure convergence property of the sug-
gested estimator.

Theorem 3.4. Let C̄In(t) be a nonparametric estimator of C̄I(X, Y, t), suppose that

F (·), G(·), f(·) and g(·) satisfy the Lipschitz conditions and the kernel K(·) satisfies the re-

quirements and for 0 < τ < ∞, the marginal distribution function of R satisfies L(τ) < 1 (see

Cai [3]) then

sup
0≤t≤τ

∣∣∣C̄In(t)− C̄I(X, Y, t)
∣∣∣ → 0 almost surely.

Proof: We have∣∣∣C̄In(t)− C̄I(X, Y, t)
∣∣∣ ≤ ∣∣∣Ānt − Āt

∣∣∣ +
∣∣∣B̄nt − B̄t

∣∣∣.
Also, ∣∣∣Ānt − Āt

∣∣∣ =
∣∣∣∣ hn(t)
Fn(t)

− h(t)
F (t)

∣∣∣∣
≤

∣∣∣∣hn(t)− h(t)
Fn(t)

∣∣∣∣ +

∣∣∣∣∣ h(t)
Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣

≤ 1
Fn(t)

∫ t

0

{
|log G(x)||Fn(x)− F (x)|+

∣∣∣∣F (x)
G(x)

∣∣∣∣|Gn(x)−G(x)|
}

dx

+

∣∣∣∣∣ h(t)
Fn(t)F (t)

∣∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣.

Similarly, we get

|B̄nt − B̄t| ≤
log G(t)
Fn(t)

{∫ t

0
|Fn(x)− F (x)|dx +

∣∣∣∣ g(t)
F (t)

∣∣∣∣∣∣∣Fn(t)− F (t)
∣∣∣}

+
g(t)

G(t)Fn(t)
|Gn(t)−G(t)|.

By using the almost sure convergence of Gn(t), Fn(t) given in Cai [3], the proof immediately
follows.
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4. NUMERICAL ANALYSIS

In this section, we simulate to evaluate the performance of the proposed estimators.
We are interested in random variables of the form U =

√
(1− ρ)|V |, where V are generated

from the AR(1) model to obtain dependent samples.

We generate two sets of 2000 simulated samples with white noise distributed as normal
density and parameters of (0, 1) and (0, 2), respectively, to test the proposed estimator’s
asymptotic normality. Exponential distributions with parameters 1 and 2 are used for right
censoring observations. The kernel function, in this case, is Epanechnikov, and it has the form
0.75(1−u2)I(|u| < 1). The process is repeated 250 times, and the estimator’s histogram with
a normal curve is shown in Figure 2 for t = 1.5, 1.6, 1.7, and 1.8. We passed the AIC and
BIC tests, indicating that the estimator has asymptotic normality.

-1 0 1 2
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0.6

0.8

-1 0 1 2
0.0
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0.6

(a) C̄In(1.5) (b) C̄In(1.6)
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(c) C̄In(1.7) (d) C̄In(1.8)

Figure 2: Histogram of C̄In(t) with normal density curve from sample of size 250.

Table 1 shows the MISE of the estimator for varying parameter ρ, and the table values
show that as sample size increases, the MISE approaches zero. In Table 1, we also compute
the estimator’s 95% confidence interval when t = 0.6 and ρ varies. We can conclude from the
table values that the confidence interval width for these data sets decreases as the sample
size increases.
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Table 1: Comparison of MISE of C̄In(x) and 95% confidence interval of C̄In(0.6).

n 50 100

ρ MISE 95% CI MISE 95% CI

−0.9 0.27742 (0.26248, 0.89153) 0.18867 (0.45588, 0.54162)
−0.6 0.17139 (0.41373, 0.60759) 0.12089 (0.48320, 0.57749)
−0.3 0.25134 (0.41558, 0.71311) 0.17854 (0.43049, 0.64481)

0 0.24360 (0.37707, 0.73257) 0.19241 (0.47052, 0.59493)
0.3 0.24152 (0.44217, 0.66990) 0.19816 (0.46348, 0.55320)
0.6 0.19935 (0.47671, 0.54945) 0.17724 (0.48481, 0.53651)
0.9 0.24180 (0.48576, 0.62959) 0.20584 (0.49064, 0.56981)

n 200 300

ρ MISE 95% CI MISE 95% CI

−0.9 0.09656 (0.48291, 0.53108) 0.00513 (0.48801, 0.51252)
−0.6 0.08262 (0.49566, 0.55799) 0.00476 (0.49782, 0.53547)
−0.3 0.08787 (0.45501, 0.55358) 0.00449 (0.48234, 0.54069)

0 0.09106 (0.48313, 0.54717) 0.00346 (0.48922, 0.53103)
0.3 0.10085 (0.49187, 0.53199) 0.00132 (0.49807, 0.52636)
0.6 0.07573 (0.48991, 0.52993) 0.00648 (0.49629, 0.51122)
0.9 0.10222 (0.49436, 0.55430) 0.00670 (0.49809, 0.54510)

Figure 3 shows the proposed estimator’s value and its upper and lower confidence
bounds when t = 1.5 and ρ = 0.5. It is observed that C̄In(1.5) is not monotone for n for
fixed values t = 1.5 and ρ = 0.5. Also, as sample size n increases, the width of the confidence
intervals narrows, and both bounds approach the kernel estimator, which means the kernel
estimator is more precise when the sample size becomes large.

Confidence bounds

50 100 150 200 250 300
n

0.36

0.38

0.40

0.42

0.44

0.46

Figure 3: C̄In(1.5) and confidence bounds when ρ = 0.5.
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4.1. Comparison with an empirical estimator

Consider {Xi}, {Yi}, i = 1, 2, ..., n be identically distributed random samples have sur-
vival functions be F (x) = Pr(Xi ≥ x) and G(x) = Pr(Yi ≥ x) respectively. We use indepen-
dent and identically distributed random variable R1i and R2i with corresponding distribution
functions P1(x) and P2(x) for creating right censored data from Xi and Yi respectively. Note
that R1i and R2i are independent of Xi and Yi respectively. Let Ci = min(Xi, R1i) and
C∗i = min(Yi, R2i). In this censoring scheme one can observe (Ci, δi) and (C∗i , δ∗i ), where
δi = I(Xi ≤ R1i) and δ∗i = I(Yi ≤ R2i). Denote {Ci:n}1≤i≤n and {C∗i:n}1≤i≤n, be the sample
order statistics, where ties within lifetimes or within censoring times are ordered arbitrarily
and ties among lifetimes and censoring times are treated as if the former precedes the latter.
{δi:n}1≤i≤n and {δ∗i:n}1≤i≤n are the concomitant of ith order statistic of each sample. Let

(4.1) Zj =
n∑

r=1

I(Ci ≤ C∗j:n), i = 1, 2, ..., n,

the number of random variables of the first censored sample that are less than or equal to
jth order statistics of the second censored sample. Also we rename by C(j,1) < C(j,2) < ... the
random sample of the first censored sample belonging to (C∗j:n, C∗(j+1):n], if any. Then in the
context of right censoring, we get the estimator of cumulative inaccuracy measure owing to
Di Crescenzo and Longobardi (2013), as follows:

C̄I
cen
n (t) = − 1

n

n−1∑
j=1


Zj+1C

∗
(j+1):n − ZjC

∗
j:n −

Zj+1−Zj∑
k=1

C(j,k)

F∗(t)
n∑

r=1
I(R1r > C∗j:n)



× ln

 j

G∗(t)
n∑

r=1
I(R2r > Y2j:n)

 I(Y1j:n ≤ t),(4.2)

where F∗(t) and G∗(t) are the Kaplan–Meier estimators of distribution functions F (t) and
G(t) respectively defined as

(4.3) F∗(x) = 1−
∏

1≤i≤n

(
1− δi:n

n− i + 1

)I(Ci:n≤t)

and G∗(x) = 1−
∏

1≤i≤n

(
1− δ∗i:n

n− i + 1

)I(C∗i:n≤t)

.

Table 2 shows the results of comparing the proposed estimator with the empirical
estimator using bias and MSE for varying t. We can conclude from these data sets that bias
and MSE decrease with increasing sample size n and are inversely proportional to t.
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Table 2: Comparison of |Bias| and MSE of the estimators C̄In(t) and C̄I
cen
n (t).

|Bias|

n 100 200 300

t C̄In(t) C̄I
cen
n (t) C̄In(t) C̄I

cen
n (t) C̄In(t) C̄I

cen
n (t)

1.1 0.17026 0.33860 0.09752 0.28616 0.02315 0.10148
1.3 0.19966 0.56255 0.11951 0.34930 0.03831 0.13926
1.5 0.22769 0.79647 0.14579 0.41002 0.05833 0.16947
1.7 0.28286 1.03660 0.16794 0.46752 0.08318 0.19762
1.9 0.29928 1.27998 0.18381 0.52152 0.11240 0.21901

MSE

n 100 200 300

t C̄In(t) C̄I
cen
n (t) C̄In(t) C̄I

cen
n (t) C̄In(t) C̄I

cen
n (t)

1.1 0.02933 0.11467 0.01043 0.09070 0.00157 0.01826
1.3 0.04012 0.31647 0.01442 0.13500 0.00350 0.05177
1.5 0.05189 0.63436 0.02134 0.18629 0.00552 0.08249
1.7 0.08305 1.07454 0.02827 0.24301 0.00761 0.11512
1.9 0.09261 1.63838 0.03387 0.30381 0.00973 0.13043

4.1.1. Real data Analysis

Example 4.1. We use 101 data points from Andrews and Herzberg [1], representing
the stress-rupture life of kevlar 49/epoxy strands subjected to constant sustained pressure
at 90% stress until all fail, giving us complete data with exact failure times. The fitting
details for this data set are given in Table 3. We generated 100 bootstrap samples from the
data sets, which were right censored by exponential models with parameters 0.09 and 0.03,
respectively. Under the assumption that F (x) is distributed as an Extreme value and G(x)
is distributed as a Weibull model, we plotted the mean values of the kernel and empirical
estimators in Figure 4 using the Epanechnikov kernel. We also find the kernel estimator’s
relative efficiencies compared to the empirical estimator, which is plotted in Figure 6(a).

Example 4.2. We consider the 20 failure times of equal-load share samples from
Table 1’s sample 1, as investigated by Kim and Kvam [14]. We discovered better models for
the data sets using AIC and BIC, shown in Table 3. We assumed that F (x) is an exponential
distribution and G(x) is a Weibull distribution. We generated 100 bootstrap samples from the
data sets, right censored by exponential models with parameters of 0.2 and 0.1, respectively.
The Epanechnikov kernel is used as the kernel form. The mean values of empirical and kernel
estimators are calculated and plotted in Figure 5. The relative efficiencies of the kernel
estimator to the empirical estimator are also determined and plotted in Figure 6(b).

In Figures 4 and 5, we plot C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) with respect to Exam-

ples 4.1 and 4.2 respectively. We can observe from Figure 4, C̄I(X, Y, t) and C̄In(t) are non
decreasing and monotonic, while C̄I

cen
n (t) is non increasing in t. In Figure 5, C̄I(X, Y, t)

and C̄In(t) are monotonic. Furthermore, in both cases, the kernel estimator outperforms the
empirical estimator. We can conclude from Figures 6 that the relative efficiencies of kernel
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estimators in comparison to empirical estimators are decreasing functions in t. Furthermore,
the graph shows that relative efficiencies are greater than one, indicating that the kernel
estimator outperforms the empirical estimator in the Examples 4.1 and 4.2.

Table 3: Fitting details of real data.

Distribution Parameters AIC BIC

Example 4.1:
Extreme value (0.60869, 0.70011) −2.48095 −2.49513
Weibull (0.94876, 1.12481, −0.07909) −2.23536 −2.25600

Pareto (7, 5.61164,1.19461,−0.07909) −2.13630 −2.16296
Frechet (2.50547, 1.36598, −0.89583) −2.05503 −2.07566

Example 4.2:
Exponential 0.19053 −5.25114 −5.19792
Weibull (0.74337, 4.36222, 0.13999) −4.86134 −4.66002

Pareto (7, 1.86990, 2.96583, 0.14000) −4.402009 −4.11923
Gamma (0.83604, 6.27797) −4.39639 −4.27688

2 4 6 8
t

0.2
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0.6

0.8

Dynamic cumulative past inaccuracy Measure

Figure 4: Comparison of C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) for the stress-rupture lives

of kevlar 49/epoxy strands.

2 4 6 8 10 12
t

1

2

3
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Dynamic cumulative past inaccuracy Measure

Figure 5: Comparison of C̄I(X, Y, t), C̄In(t) and C̄I
cen
n (t) for the 20 failure times of

equal-load share samples.
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(a) Example 4.1 (b) Example 4.2

Figure 6: Comparison of C̄In(t)’s relative efficiency with respect to C̄I
cen
n (t).

ACKNOWLEDGMENTS

We thank the referees for their attentive reading of the paper and helpful suggestions,
which enhanced the manuscript’s presentation.

REFERENCES

[1] Andrews, D.F. and Herzberg, A.M. (1985). Data: A Collection of Problems from Many
Fields for the Student and Research Worker, Springer, New York.

[2] Bhatia, P.K. and Taneja, H.C. (1993). On quantitative-qualitative measure of inaccuracy
reversible symmetry, Information Sciences, 67, 277–282.

[3] Cai, Z. (1998). Kernel density and hazard rate estimation for censored dependent data,
Journal of Multivariate Analysis, 67, 23–34.

[4] Di Crescenzo, A. and Longobardi, M. (2013). Stochastic Comparisons of Cumulative
Entropies. In “Stochastic Orders in Reliability and Risk” (H. Li and X. Li, Eds.), Springer,
New York, 168–182.

[5] Elias Masry (1986). Recursive Probability Density Estimation for Weakly Dependent Sta-
tionary Processes, IEE Transactions on Information Theory, 32(2), 254–267.

[6] Ghosh, A. and Kundu, C. (2018). On generalized conditional cumulative past inaccuracy
measure, Applications of Mathematics, 63(2), 167–193.

[7] Goel, R.; Taneja, H.C. and Kumar, V. (2018). Kerridge measure of inaccuracy for record
statistics, Journal of Information and Optimization Sciences, 39, 1149–1161.

[8] Gur Dial (1987). On non-additive measures of inaccuracy and a coding theorem, Journal of
Information and Optimization Sciences, 8(1), 113–118.

[9] Hooda, D.S. and Tuteja, R.K. (1985). On characterization of non-additive measures of
relative information and inaccuracy, Bulletin Calcutta Mathematical Society, 77, 363–369.



544 K.V. Viswakala and E.I. Abdul Sathar

[10] James, L.S. Jr. and Anita, R. (2006). Modeling international consumption patterns, Review
of Income and Wealth, 52, 603–624.

[11] Kayal, S. and Sunoj, S.M. (2017). Generalized kerridge’s inaccuracy measure for condition-
ally specified models, Communications in Statistics - Theory and Methods, 46, 8257–8268.

[12] Kerridge, D.F. (1961). Inaccuracy and inference, Journal of the Royal Statistical Society,
Series B, 23, 184–194.

[13] Khorashadizadeh, M. (2018). More Results on Dynamic Cumulative Inaccuracy Measure,
Journal of Iranian Statistical Society, 17(1), 89–108.

[14] Kim, H. and Kvam P.H. (2004). Reliability Estimation Based on System Data with an
Unknown Load Share Rule, Lifetime Data Analysis, 10, 83–94.

[15] Kumar, V. and Taneja, H.C. (2015). Dynamic Cumulative Residual and Past Inaccuracy
Measures, Journal of Statistical Theory and Applications, 14(4), 399–412.

[16] Kundu, C.; Di Crescenzo, A. and Longobardi, M. (2016). On cumulative residual (past)
inaccuracy for truncated random variables, Metrika, 79, 335–356.

[17] Rajesh, G.; Sathar, A.E.I. and Viswakala, K.V. (2017). Estimation of inaccuracy mea-
sure for censored dependent data, Communications in Statistics – Theory and Methods, 46(20),
10058–10070.

[18] Rao, B.L.S.P. (1983). Nonparametric Functional Estimation, Academic Press, New York.

[19] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition, Proceedings
of the National Academy of Sciences of the United States of America, 42(1), 43–47.

[20] Sathar, E.I.A.; Viswakala, K.V. and Rajesh, G. (2021). Estimation of past inaccuracy
measure for the right censored dependent data, Communications in Statistics – Theory and
Methods, 50(6), 1446–1455.



REVSTAT – Statistical Journal
Volume 22, Number 4, October 2024, 545–570

https://doi.org/10.57805/revstat.v22i4.543

Bootstrapping Order Statistics with Variable Rank

Authors: M.E. Sobh
– Department of Mathematics, Faculty of Science, Mansoura University,

Egypt
mohamedebrahim2014@mans.edu.eg
m.ebraheem160@yahoo.com

H.M. Barakat �

– Department of Mathematics, Faculty of Science, Zagazig University,
Egypt
hmbarakat@hotmail.com

Received: June 2021 Revised: December 2022 Accepted: December 2022

Abstract:

• This work investigates the strong consistency of bootstrapping central and intermediate order
statistics for an appropriate choice of re-sample size for known and unknown normalizing constants.
We show that when the normalizing constants are estimated from the data, the bootstrap distribu-
tion for central and intermediate order statistics may be weakly or strongly consistent. A simulation
study is conducted to show numerically how to choose the bootstrap sample size to give the best
approximation of the bootstrapping distribution for the central and intermediate quantiles.

Keywords:

• bootstrap technique; central order statistics; intermediate order statistics; weak consistency; strong
consistency.

AMS Subject Classification:

• 62G30, 62F40.

� Corresponding author

https://doi.org/10.57805/revstat.v22i4.543
https://orcid.org/0000-0002-4285-3955
mailto:mohamedebrahim2014@mans.edu.eg
mailto:m.ebraheem160@yahoo.com
https://orcid.org/0000-0002-6212-432X
mailto:hmbarakat@hotmail.com


546 M.E. Sobh and H.M. Barakat

1. INTRODUCTION

Let X1, X2, ..., Xn be iid random variables (RVs) with a common distribution function
(DF) F (x) and let X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The DF of the
k-th order statistic Xk:n, 1 ≤ k ≤ n, is given by

(1.1) Fk:n(x) = P (Xk:n ≤ x) = BF (x)(k, n− k + 1),

where Bx(a, b) is the usual incomplete beta function with the shape parameters a, b > 0
(cf. David and Nagaraja [19]). A sequence {Xk:n} is called a sequence of order statistics
with variable rank (cf. [3]) if 1 < kn < n and min{kn, n− kn} → ∞, as n →∞ (denoted by
min{kn, n− kn} −−→

n
∞), where we have the following two cases:

1. If kn
n −−→

n
0 (or kn

n −−→
n

1), then Xkn:n is called the lower intermediate order statistic

(or the upper intermediate order statistics);

2. If kn
n −−→

n
p (0 < p < 1), then Xkn:n is called the central order statistic.

A prominent example for the central order statistics is the p-th sample quantile (includ-
ing the median, quartiles, percentiles etc.), where kn = [np] + 1 and [ · ] is the greatest integer
function (see David and Nagaraja [19]). On the other hand, the intermediate order statistics
also have many applications, e.g., they can be used to estimate the probabilities of the future
extremes and tail quantiles of the underlying distribution that are extremely relative to the
available sample size, cf. [33]. Moreover, many authors, e.g., Mason [30] and Teugels [36]
have also found estimates that are based, in part, on intermediate order statistics.

The literature abounds with many different results for intermediate and central order
statistics and their applications. Interested readers may refer to Balkema and de Haan [3, 4],
Barakat [5, 6], Barakat and El-Shandidy [7], Barakat and Omar [8, 9], Chibisov [18], Falk [21],
Falk and Wisheckel [22], Frey and Zhang [23], Ho and Lee [27], Nagaraja and Nagaraja [31],
Peng and Yang [32], Smirnov [35], and Wu [37]. The bootstrap method introduced in Efron
[20] is a general procedure for approximating the sampling distributions of statistics based on
re-sampling from the data at hand. There are several forms of the bootstrap and additionally
several other re-sampling methods that are related to it, such as jackknifing, cross-validation,
randomization tests, and permutation tests. The bootstrap method is shown to be successful
in many situations and is accepted as an alternative to the asymptotic methods (for more
details, see [14] and [31]). Let Xn = (X1, X2, ..., Xn) be a random sample from an unknown
DF F (x). For m = m(n) −−→

n
∞, assume that Yi, i = 1, 2, ...,m, are conditionally iid RVs

with distribution

P (Yi = Xj |Xn) =
1
n

, j = 1, 2, ..., n, i ∈ {1, 2, ...,m},

then (Y1, Y2, ..., Ym) is a random re-sample of size m from the empirical DF

Fn(x) =
1
n

n∑
i=1

I(−∞,x)(Xi) =
1
n

Qn(x),

where IA(x) is the indicator function and Qn(x) is an RV distributed as a binomial distri-
bution with parameters n and F (x), denoted by Qn(x) ∼ B(n, F (x)). Furthermore, let the
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extreme value theory (see [14]) be applicable to the extreme order statistic Xk:n, which
means that there exist normalizing constants an > 0 and bn such that Fk:n(anx + bn) =
BF (anx+bn)(k, n− k + 1) weakly converges, as n →∞ (denoted by w−−→

n
) to a non-degenerate

DF G(x), where G(x) is one of the extreme value distributions. Now, let Y1:m, Y2:m, ..., Ym:m

be the corresponding order statistics of Y1, Y2, ..., Ym, and define

Hn,m(amx + bm) = P (Yk:m ≤ amx + bm|Xn) = BFn(amx+bm)(k, m− k + 1).

Hn,m(amx + bm) is called the bootstrap distribution of a−1
n (Xk:n − bn), where n and m are

the sample size and re-sample size, respectively. A full-sample bootstrap is the case when
m = n. In contrast, m out of n bootstrap technique is the case when m < n. One of the
bootstrap’s desired properties is consistency; namely, the bootstrap’s limit distribution is
the same as the original statistic distribution. For a long time, it has been known that a
full-sample bootstrap does not work for order statistics. This seminal result was apparently
first revealed for extremes by Athreya and Fukuchi [1] and Fukuchi [24]. Moreover, it was
proved for intermediate order statistics by Geluk and de Haan [25] and Barakat et al. [16].
Finally, for central order statistics, this result was proved by Barakat et al. [16]. Athreya
and Fukuchi [1] and Fukuchi [24] (see also Athreya and Fukuchi [2]) studied the consistency
of bootstrapping extremes for known and unknown normalizing constants and they showed
that the bootstrap DF fails to be consistent in the full-sample bootstrap case. Moreover,
they showed that the bootstrap DF is a weakly consistent estimate if m = o(n) and it is
strongly consistent if m = o( n

log n). Barakat et al. [11] extended this result to the extreme
generalized order statistics. Later, Barakat et al. [16] have got some similar results for the
order statistics with variable ranks. Namely, they showed that the bootstrapping central and
intermediate quantiles fail to be consistent in the full-sample bootstrap case. Moreover, they
also showed that when the normalizing constants are known, the bootstrap DFs for central
and intermediate order statistics are weakly consistent when m = o(n) (see, Theorems 4.1
and 4.2 in [16]). Barakat et al. [13] extended this result to the case where we use the bootstrap
for estimating a central, or an intermediate quantile under power normalization.

The main aim of the present work is to extend the results of [16] by investigating the
strong consistency of bootstrapping central and intermediate order statistics for an appro-
priate choice of re-sample size for known and unknown normalizing constants. A simulation
study is conducted to illustrate how to choose the re-sample’s size. Sections 2 and 3 are
devoted respectively to the intermediate and central order statistics, while the simulation
study is conducted in Section 4. Finally, we conclude the paper in Section 5. The rest of this
introductory section will be devoted to review some basic results pertaining to the asymptotic
behaviour of the central and intermediate order statistics, which are the essential pillars of
our study.

1.1. Some important aspects of the asymptotic theory of order statistics with
variable rank

The following lemma (Lemma 1.1 in Barakat [6]) is a cornerstone of the asymptotic
theory of order statistics with variable rank.
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Lemma 1.1 (cf. [6], see also [28]). For any sequence of variable ranks {kn}, let {un,n≥1}
be a sequence of real numbers and let −∞ ≤ τ ≤ ∞. Then,

(1.2) Fkn:n(un) = P (Xkn:n ≤ un) −−→
n

N (τ),

if and only if

(1.3)
nF (un)− kn√

kn(1− kn
n )

−−→
n

τ,

where N ( ·) is the standard normal DF and Fkn:n is defined in (1.1).

Since the variable ranks are classified into central and intermediate ranks, we will
consider each of the two cases separately.

1.1.1. Asymptotic theory of the intermediate order statistics

If kn
n −−→

n
0 (i.e., the lower intermediate case), then by using the linear parametrization’s

transformation un = anx + bn and τ = U(x), (1.3) will be reduced to

(1.4)
nF (anx + bn)− kn√

kn
−−→

n
U(x),

(cf. [18]). A sequence of intermediate rank {kn} is said to satisfy the Chibisov’s condition
([18]), if

(1.5)
√

kn+zn(ν) −
√

kn −−→
n

ανl

2
,

for any sequence of integer values zn(ν), with zn(ν)

n1−α
2
−−→

n
ν, where 0 < α < 1, l > 0, and ν is

any real number. Chibisov [18] showed that, whenever {kn} satisfies the condition (1.5), the
only possible non-degenerate forms for N (U(x)) in (1.2) are N (Ui;β(x)), i = 1, 2, 3, where
U3;β(x) = U3(x) = x, ∀x,

U2;β(x) =

{
−β log |x | , x ≤ 0,

∞, x > 0,
U1;β(x) =

{
−∞, x ≤ 0,

β log x, x > 0,

and β is a positive constant depending only on α, l and the type of the DF F (x). Chibisov [18]
noted that, the condition (1.5) implies kn

nα −−→
n

l2. On the other hand, Barakat and Omar [8]
showed that the last condition implies the Chibisov’s condition, which means that the Chibisov
rank sequences are widely-used and the Chibisov’s limit types are vastly applicable. Recently,
Barakat et al. [12] characterized the asymptotic behaviour of the scale normalizing constant
an.

Lemma 1.2 ([12]). Let L(n) = exp(
√

n). Furthermore, let F(anx+bn) ∈D(l,α)(N(U(x)))
mean that (1.4) is satisfied for kn ∼ l2nα. Then, for any ε > 0,

1. anL
1
β

+ε(kn) −−→
n
∞ and anL

1
β
−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U1;β(x)));

2. anL
−1
β

+ε(kn) −−→
n
∞ and anL

−1
β
−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U2;β(x)));

3. anL+ε(kn) −−→
n
∞ and anL−ε(kn) −−→

n
0, if F (anx + bn) ∈ D(l,α)(N (U3(x))).
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1.1.2. Asymptotic theory of the central order statistics

Smirnov [35] revealed that it is possible to find two rank sequences {kn} and {k?
n} with

kn
n ∼ k?

n
n ∼ p, 0 < p < 1, to lead to different non-degenerate limiting DFs for Xkn:n and Xk?

n:n.
However, this is not possible if kn ∼ k?

n ∼ pn + o(
√

n). Under this condition, Smirnov [35]
showed that with un = anx + bn and τ = V (x), (1.3) will be reduced to

(1.6)
√

n
F (anx + bn)− p

Cp
−−→

n
V (x),

where Cp =
√

p(1− p). Smirnov [35] showed that, whenever {kn} satisfies the condition
kn ∼ pn+o(

√
n), the only possible non-degenerate forms for N (V (x)) in (1.2) are N (Vi;β(x)),

i = 1, 2, 3, 4, where

V1;β(x) =

{
−∞, x ≤ 0,

cxβ, x > 0,
V2;β(x) =

{
−c |x | β , x ≤ 0,

∞, x > 0,

V3;β(x) =

{
−c1 |x | β , x ≤ 0,

c2x
β , x > 0,

V4;β(x) = W4(x) =


−∞, x ≤ −1,

0, −1 < x ≤ 1,

∞, x > 1,

c = c1 = 1√
p(1−p)

, c2 = c1
A , and A > 0. In this case, we say that the DF F belongs to the

domain of normal p-attraction of the limit type Vi;β(x), i ∈ {1, 2, 3, 4}, and we write F ∈
D(p)(Vi;β(x)).

2. BOOTSTRAPPING INTERMEDIATE ORDER STATISTICS

In this section, we investigate the strong consistency of the bootstrap distribution
Hn,m(amx+ bm) = P (Xkm:m ≤ amx+ bm|Xn), where kn is the Chibisov rank sequence, which
satisfies the condition (1.5), and the condition (1.4) is satisfied with U(x) = Ui;β(x), i ∈
{1, 2, 3}, for some suitable normalizing constants an > 0 and bn.

2.1. Almost sure consistency of bootstrapping intermediate for known normal-
izing constants

Barakat et al. [16] proved the weak limit relation sup
x∈R

|Hn,m(amx+bm)−N(Ui;β(x))| p−−→
n

0,

if m = o(n), where “
p−−→
n

” stands for convergence in probability, as n →∞. The following
theorem extends this result.

Theorem 2.1. Let m be chosen such that
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1). Then,

sup
x∈R

|Hn,m(amx + bm)−N (Ui;β(x))| w.p.1−−−→
n

0,

where the symbol “
w.p.1−−−→

n
” denotes the convergence with probability one (almost surely con-

vergence) as n →∞.
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Proof: Let k̄n = kn
n . Then, we have

mFn(amx + bm)− km√
km

=
√

m
Fn(amx + bm)− k̄m√

k̄m

=
√

m

n

(
nFn(amx + bm)− nk̄m√

nk̄m

)

=
√

m

n

(
nFn(amx+bm)−nF (amx + bm)√

nk̄m

)
+

mF (amx+bm)−km√
km

.

On the other hand, from the assumptions of the theorem, we get

mF (amx + bm)− km√
km

−−→
n

Ui;β(x), i ∈ {1, 2, 3}.

Thus, to prove the theorem, we only need to show that√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
w.p.1−−−→

n
0.

By Borel–Cantelli lemma, it is enough to prove that
∞∑

n=1

P

(√
m

n

∣∣∣∣∣nFn(amx + bm)− nF (amx + bm)√
nk̄m

∣∣∣∣∣ > ε

)
< ∞,

for every ε > 0. Now for each θ > 0 we get√
m

n
log P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)
=

√
m

n
log P

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

>

√
n

m
ε

)
=
√

m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
,

where
Tn,m =

nFn(amx + bm)− nF (amx + bm)√
nk̄m

.

By using the Markov inequality, we get√
m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
≤
√

m

n
log

(
e−θ

√
n
m

εE
(
eθTn,m

))
=√

m

n

(
−
√

n

m
θε + log ϕm(θ)

)
= −θε +

√
m

n
log ϕm(θ) −−→

n
−θε,

where ϕm(θ) is the moment generating function for the standard normal DF. Therefore, for
sufficiently large n, we get the following relation:

∞∑
n=1

P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)
=

∞∑
n=1

exp

{
log P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
> ε

)}
≤

∞∑
n=1

e−θε
√

n
m < ∞,

for every ε > 0, since the condition
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), guarantees the

convergence of the infinite series
∑∞

n=1 exp
{
−θε

√
n
m

}
, for every ε > 0. By similar reasoning

we can show that
∞∑

n=1

P

(√
m

n

(
nFn(amx + bm)− nF (amx + bm)√

nk̄m

)
< −ε

)
< ∞,

for every ε > 0. The theorem is proved.
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2.2. Almost sure consistency of bootstrapping intermediate for unknown nor-
malizing constants

If the DF F is unknown, the normalizing constants am and bm need to be estimated
from the sample data for Hn,m( ·) to be of use. Let âm and b̂m be estimators of am and
bm based on Xn = (X1, X2, ..., Xn). Define the bootstrap distribution for the normalized
intermediate order statistic a−1

n (Xkn:n − bn) with the estimated normalizing constants by

Ĥn,m(âmx + b̂m) = P
(
Ykm:m ≤ âmx + b̂m|Xn

)
.

Fukuchi [24] provided some sufficient conditions for the bootstrap distribution of the maxi-
mum order statistics to be consistent. The following theorem extends the Fukuchi’s result by
providing sufficient conditions for Ĥn,m(âmx + b̂m) to be consistent.

Theorem 2.2. Let m = m(n). Then,

sup
x∈R

|Ĥn,m(âmx + b̂m)−N (Ui;β(x))| w.p.1−−−→
n

0, i = 1, 2, 3,

if (i) Hn,m(x)
w.p.1−−−→

n
N (Ui;β(x)),

(ii)
âm

am

w.p.1−−−→
n

1,

and

(iii)
b̂m − bm

am

w.p.1−−−→
n

0.

Moreover, this theorem holds if “
w.p.1−−−→

n
” is replaced by “

p−−→
n

”.

Proof: First, we note that (i) is equivalent to

√
m

Fn(amx + bm)− k̄m√
k̄m

w.p.1−−−→
n

Ui;β(x).

Moreover, for every ε > 0, the relations (ii) and (iii) imply

(2.1) (1− ε)am < âm < (1 + ε)am

and

(2.2) bm − εam < b̂m < bm + ε am,

respectively. Now, fix x > 0, the relations (2.1) and (2.2) yield

lim sup
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

≤ lim sup
n→∞

√
m

Fn((1 + ε)x + ε)am + bm)− k̄m√
k̄m

≤ Ui;β((1 + ε)x + ε).

By a similar way we can prove that

lim inf
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

≥ Ui;β((1− ε)x− ε).
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Since Ui;β(x) is continuous, we get

lim
n→∞

√
m

Fn(âmx + b̂m)− k̄m√
k̄m

= Ui;β(x).

By a similar argument, the same limit relation can easily be proved for x < 0. Thus,
Hn,m(âmx + b̂m)

w.p.1−−−→
n

N (Ui;β(x)). Now, suppose that the conditions (i), (ii), and (iii) hold

in probability. Then, for any subsequence {ni}
∞
i=1 of {n}∞n=1, there exists a further subse-

quence {n?
i }

∞
i=1 such that (i), (ii), and (iii) hold w.p.1. Then, by applying the first part of the

theorem, we get

sup
x∈R

|Ĥn?
i ,m(n?

i )(âm(n?
i )x + b̂m(n?

i ))−N (Ui;β(x))| w.p.1−−−→
n

0.

The theorem is established.

Now, for the bootstrap distribution Ĥn,m(âmx+ b̂m) to be consistent, we need to choose
âm and b̂m satisfying the conditions (ii) and (iii) in Theorem 2.2. Since am and bm are
functionals of F then, the natural choices of âm and b̂m are the empirical counter parts of am

and bm. In the next theorem, we give appropriate choices for âm and b̂m for each domain of
attraction of N (Ui;β(x)), i = 1, 2, 3.

Theorem 2.3. Let k
′
n = n

mkm, k
′′
n = n

m(km +
√

km), and x0 be the left endpoint of F

(i.e., x0 = inf{x : F (x) > 0). Then,

(i) if F (anx + bn) ∈ D(l,α)(N (U1;β(x))), âm = F−1
n

(
km
m

)
− x̂0 = Xk′n:n −Xkn:n, and

b̂m = Xkn:n, where x̂0 = Xkn:n is an estimator for x0;

(ii) if F (anx + bn) ∈ D(l,α)(N (U2;β(x))), âm = −F−1
n

(
km
m

)
= −Xk′n:n, and b̂m = 0;

(iii) if F (anx + bn) ∈ D(l,α)(N (U3(x))), âm = F−1
n

(
km+

√
km

m − km
m

)
= Xk′′n :n −Xk′n:n,

and b̂m = F−1
n

(
km
m

)
= Xk′n:n.

If m = o(n), then

(2.3) sup
x∈R

∣∣∣Ĥn,m(âmx + b̂m)−N (Ui;β(x))
∣∣∣ p−−→

n
0.

Moreover, if
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), then (2.3) holds w.p.1.

Proof: First, let F (anx + bn) ∈ D(l,α)(N (U1;β(x))). Therefore, in view of the result of
Chibisov [18], we have bn = bm = x0 > −∞. In order to apply Parts (ii) and (iii) in Theorem
2.2, it suffices to show that

(2.4)
âm

am
=

Xk′n:n −Xkn:n

am
−−→

n
1

and

(2.5)
b̂m − bm

am
=

Xkn:n − x0

am
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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Now, we have

âm

am
=

Xk′n:n − x0

am
− an

am
× Xkn:n − x0

an
,

b̂m − bm

am
=

an

am
× Xkn:n − x0

an
,

and P (Xkn:n−x0

an
≤ x) w−−→

n
N (U1;β(x)), where N (U1;β(x)) is a non-degenerate DF. Therefore,

to prove (2.4) and (2.5), it is sufficient to show that

(2.6)
Xk′n:n − x0

am

p−−→
n

1
and

(2.7)
an

am
−−→

n
0.

First we prove (2.6). Clearly,

(2.8)
nF (amx + bm)− k

′
n√

k′n
=
√

n

m

(
√

m
F (amx + bm)− k̄m√

k̄m

)
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Thus, from (2.8), we get

P

(
Xk′n:n − x0

am
< ε + 1

)
−−→

n
N (∞) = 1,

which in turn implies

(2.9) P

(
Xk′n:n − x0

am
> ε + 1

)
−−→

n
0.

Similarly we have

(2.10) P

(
Xk′n:n − x0

am
< −ε + 1

)
−−→

n
N (−∞) = 0.

From (2.9) and (2.10), we get

P

(∣∣∣∣Xk′n:n − x0

am
− 1
∣∣∣∣ > ε

)
−−→

n
0.

Hence (2.6) is proved. Turning now to prove (2.7). By using Lemma 1.2 and the condition
m = o(n), we get

an

am
∼ L

−l
β (kn)

L
−l
β (km)

=
e
−l
β

n
α
2

e
−l
β

m
α
2

= e
−l
β

n
α
2

�
1−(m

n )
α
2
�
−−→

n
0,

which proves (2.7). Finally, in order to switch from convergence in probability to convergence
w.p.1, we argue by the same way as in the end of the proof of Theorem 2.1. This completes
the proof of Part (i). Now, assume that F (anx+ bn) ∈ D(l,α)(N (U2;β(x))). Therefore, in view
of the result of Chibisov [18], we have x0 = −∞ and bn = bm = 0 (this legitimates the choice
b̂m = 0). On the other hand, by Theorem 2.3 in order to prove Part (ii) of the theorem, it
suffices to show that

(2.11)
âm

am
=
−Xk′n:n

am
−−→

n
1

and

(2.12)
b̂m − bm

am
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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It is clear that (2.12) is satisfied (actually b̂m−bm
am

= 0, for all m). Therefore, we have only to
prove (2.11). Clearly, we have

(2.13)
nF (amx + bm)− k

′
n√

k′n
=
√

n

m

(
√

m
F (amx)− k̄m√

k̄m

)
−−→

n

{
−∞, if x < −1,

∞, if x > −1.

Thus, from (2.13), we get

P

(
Xk′n:n

am
< −(ε + 1)

)
−−→

n
N (−∞) = 0,

which implies to

(2.14) P

(−Xk′n:n

am
> ε + 1

)
−−→

n
0.

Similarly we have

P

(
Xk′n:n

am
< −(1− ε)

)
−−→

n
N (∞) = 1,

which in turn is equivalent to

(2.15) P

(−Xk′n:n

am
< 1− ε

)
−−→

n
0.

From (2.14) and (2.15), we get P

(∣∣∣∣−X
k
′
n:n

am
− 1
∣∣∣∣ > ε

)
−−→

n
0, which proves (2.11), as well as

Part (ii), when the convergence in the probability. In order to switch to the convergence
w.p.1, we again argue by the same way as in the end of the proof of Theorem 2.1. Finally,
assume that F (anx + bn) ∈ D(l,α)(N (U3(x))). By Theorem 2.2, in order to prove Part (iii),
it suffices to show that

(2.16)
âm

am
=

Xk′′n :n −Xk′n:n

am
−−→

n
1

and

(2.17)
b̂m − bm

am
=

Xk′n:n − bm

am
−−→

n
0,

both in probability or w.p.1. First, let us again focus on the case of convergence in probability
and write

âm

am
=

Xk′′n :n −Xk′n:n

am
=

Xk′′n :n − bm

am
−

Xk′n
− bm

am
.

Hence, to prove (2.16) and (2.17), it is sufficient to show that

(2.18)
Xk

′′
n :n − bm

am

p−−→
n

1

and

(2.19)
Xk′n:n − bm

am

p−−→
n

0.

First, we prove (2.18). One can write

nF (amx + bm)− k
′′
n√

k′′n
=

nF (amx + bm)− n
m(km +

√
km)√

n
m(km +

√
km)
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=
√

n

m

(
mF (amx + bm)− (km +

√
km)√

(km +
√

km)

)
=
√

n

m

mF (amx + bm)− (km +
√

km)√
km(1 + 1√

km
)


=
√

n

m

(
mF (amx + bm)−(km +

√
km)√

km(1 + o(1))

)
=
√

n

m

(
mF (amx + bm)−km√

km(1 + o(1))
−

√
km√

km(1 + o(1))

)
.

On the other hand, the assumption of the theorem yields

mF (amx + bm)− km√
km(1 + o(1))

−−→
n

x.

Therefore, we get

(2.20)
nF (amx + bm)− k

′′
n√

k′′n
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Thus, for every ε > 0, we get

P

(
Xk′′n :n − bm

am
< ε + 1

)
−−→

n
N (∞) = 1,

which implies

(2.21) P

(
Xk′′n :n − bm

am
> ε + 1

)
−−→

n
0.

Moreover, by the same way we get

(2.22) P

(
Xk′′n :n − bm

am
< 1− ε

)
−−→

n
N (−∞) = 0.

Thus, (2.21) and (2.22) lead to

P

(∣∣∣∣∣Xk′′n :n − bm

am
− 1

∣∣∣∣∣ > ε

)
−−→

n
0,

which proves (2.18). Next, we prove (2.19). We have

nF (amx + bm)− k
′
n√

k′n
=

nF (amx + bm)− n
mkm√

n
mkm

(2.23) =
√

n

m

(
√

m
F (amx + bm)− k̄m√

k̄m

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0.

Thus, (2.23) yields P

(
X

k
′
n:n
−bm

am
< ε

)
−−→

n
N (∞) = 1, which implies that

(2.24) P

(
Xk′n:n − bm

am
> ε

)
−−→

n
0.

Similarly we have

(2.25) P

(
Xk′n:n − bm

am
< −ε

)
−−→

n
N (−∞) = 0.
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Therefore, the relations (2.24) and (2.25) imply

P

(∣∣∣∣∣Xk′n:n − bm

am

∣∣∣∣∣ > ε

)
−−→

n
0,

and this proves (2.19). In order to switch to the convergence w.p.1, we argue by the same
way as in the end of the proof of Theorem 2.1. This completes the proof of the theorem.

3. BOOTSTRAPPING CENTRAL ORDER STATISTICS

In this section, we discuss the strong consistency of the bootstrap distribution
H?

n,m(cmx + dm) = P (Xkm:m ≤ cmx + dm|Xn), where kn is the central rank sequence, which
satisfies the condition kn ∼ pn+o(

√
n), and (1.6) is satisfied with V (x) = Vi;β(x), i = 1, 2, 3, 4,

for some suitable normalizing constants cn > 0 and dn.

3.1. Almost sure consistency of bootstrapping central for known normalizing
constants

Barakat et al. [16] proved the weak limit relations sup
x∈R

|H?
n,m(cmx + dm)−N (Vi;β(x))|

p−−→
n

0, i = 1, 2, 3, 4, if m = o(n). The following theorem extends this result.

Theorem 3.1. If
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), then

sup
x∈R

|H?
n,m(cmx + dm)−N (Vi;β(x))| w.p.1−−−→

n
0, i = 1, 2, 3, 4.

Proof: On one hand, we have

√
m

Fn(cmx + dm)− p

Cp
=
√

m

n

(
nFn(cmx + dm)− nF (cmx + dm)√

np(1− p)

)
+
√

m
F (cmx + dm)− p

Cp
.

On the other hand, the assumption of the theorem guarantees that F (cmx + dm) ∼ p, as
n →∞, and

√
m

F (cmx + dm)− Cp

Cp
−−→

n
Vi;β(x).

Thus, to prove
√

m
Fn(cmx + dm)− Cp

Cp

w.p.1−−−→
n

Vi;β(x),

we need only to show that√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
w.p.1−−−→

n
0.
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By Borel–Cantelli lemma, it is enough to prove that

∞∑
n=1

P

(√
m

n

∣∣∣∣∣ nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

∣∣∣∣∣ > ε

)
< ∞,

for every ε > 0. Now, for each θ > 0 we have√
m

n
log P

(√
m

n

nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

> ε

)
=

√
m

n
log P

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1−F (cmx + dm))

>

√
n

m
ε

)
=
√

m

n
log P

(
eθTn,m >eθ

√
n
m

ε
)
,

where Tn,m is defined as

Tn,m =
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

.

By using Markov inequality we get√
m

n
log P

(
eθTn,m > eθ

√
n
m

ε
)
≤
√

m

n
log

(
e−θ

√
n
m

εE
(
eθTn,m

))
= −θε +

√
m

n
log ϕm(θ) −−→

n
−θε.

Therefore, for sufficiently large n, we get

∞∑
n=1

P

(√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
> ε

)
=

∞∑
i=1

exp

{
log P

(√
m

n

(
nFn(cmx + dm)−nF (cmx + dm)√
nF (cmx + dm)(1−F (cmx + dm))

)
>ε

)}
≤

∞∑
i=1

e−θε
√

n
m <∞,

for every ε > 0, since the condition
∑∞

n=1 λ
√

n
m < ∞, for each λ ∈ (0, 1), guarantees the

convergence of the infinite series
∑∞

n=1 exp
{
−θε

√
n
m

}
, for every ε > 0. By similar reasoning

we can show that
∞∑

n=1

P

(√
m

n

(
nFn(cmx + dm)− nF (cmx + dm)√
nF (cmx + dm)(1− F (cmx + dm))

)
< −ε

)
< ∞,

for every ε > 0. The theorem is proved.

3.2. Limits of bootstrap distribution for central order statistics when normalizing
constants are unknown

Let ĉm and d̂m be estimators of cm and dm based on Xn = (X1, X2, ..., Xn), respectively.
Define the bootstrap distribution for the normalized central order statistic c−1

n (Xkn:n − dn)
with the estimated normalizing constants by Ĥ?

n,m(ĉmx+ d̂m) = P (Ykm:m ≤ ĉmx+ d̂m|Xn). In
order to study the limit of bootstrap distribution for central order statistics when normalizing
constants are unknown, we start with the following essential theorem.
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Theorem 3.2. Let m = m(n). Then, for all the continuity points of Vi;β(x), i = 1, 2, 3
(see Remark 3.1), we have

sup
x∈R

∣∣∣Ĥ?
n,m(ĉmx + d̂m)−N (Vi;β(x))

∣∣∣ w.p.1−−−→
n

0,

if (i) H?
n,m(x)

w.p.1−−−→
n

N (Vi;β(x)),

(ii)
ĉm

cm

w.p.1−−−→
n

1,

and

(iii)
d̂m − dm

cm

w.p.1−−−→
n

0.

Moreover, this theorem holds if “
w.p.1−−−→

n
” is replaced by “

p−−→
n

”.

Proof: The proof of the theorem is similar to the proof of Theorem 2.2.

Remark 3.1. A quick look at the possible non-degenerate limit laws N (Vi;β(x)),
i = 1, 2, 3, reveals that each of these limit laws has at most one discontinuity point.

For the bootstrap distribution Ĥ?
n,m(ĉmx + d̂m) to be consistent, we need to choose

ĉm and d̂m satisfying the conditions (ii) and (iii) in Theorem 3.2. In the next theorem, we
suggest choices for ĉm and d̂m as a functional of the empirical distribution for the domains
of attraction F (cnx + dn) ∈ D(p)N (Vi;β(x)), i = 1, 2, 3.

Theorem 3.3. Let k
′
n = [pn] + 1, k

′′
n = [ n√

m
+ pn] + 1, and k

′′′
n = [pn− n√

m
] + 1. Then,

1. if F (cnx+dn) ∈ D(p)(N (V1;β(x))), ĉm = F−1
n

(
p + 1√

m

)
−F−1

n (p) = Xk′′n :n−Xk′n:n,

and d̂m = F−1
n (p) = Xk′n:n;

2. if F (cnx+dn) ∈ D(p)(N (V2;β(x))), ĉm = F−1
n (p)−F−1

n

(
p− 1√

m

)
= Xk′n:n−Xk′′′n :n,

and d̂m = F−1
n (p) = Xk′n:n;

3. if F (cnx+dn) ∈ D(p)(N (V3;β(x))), ĉm = F−1
n

(
p + 1√

m

)
−F−1

n (p) = Xk′′n :n−Xk′n:n,

and d̂m = F−1
n (p) = Xk′n:n.

If m = o(n), then

(3.1) sup
x∈R

∣∣∣Ĥ?
n,m(ĉmx + d̂m)−N (Vi;β(x))

∣∣∣ p−−→
n

0.

Moreover, if
∑∞

n=1 λ
√

n
m < ∞ for each λ ∈ (0, 1) then (3.1) holds w.p.1.

Proof: Let F (cnx + dn) ∈ D(p)(N (V1;β(x))). From Theorem 3.2, it suffices to show
that

(3.2)
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
−−→

n
1

and

(3.3)
d̂m − dm

cm
=

Xk
′
n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. First, let us focus on the case of convergence in probability.
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We start with
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
=

Xk′′n :n − dm

cm
−

Xk′n:n − dm

cm
.

Thus, to prove (3.2) and (3.3), it is sufficient to show that

(3.4)
Xk′′n :n − dm

cm

p−−→
n

1

and

(3.5)
Xk′n:n − dm

cm

p−−→
n

0.

We start with the proof of (3.4). By using the relations [ n√
m

+ pn] = n√
m

+ pn− δ, where

0 ≤ δ < 1, and 1√
m

+ p + 1−δ
n ∼ p, as n →∞, we get

nF (cmx + dm)− k
′′
n√

k′′n(1− k′′n
n )

=
√

n
F (cmx + dm)−

(
1√
m

+ p + 1−δ
n

)
√(

1√
m

+ p + 1−δ
n

)(
1−

(
1√
m

+ p + 1−δ
n

))

(3.6) ∼
√

n

m

(
√

m
F (cmx + dm)− p

Cp
−

1 +
√

m
n (1− δ)
Cp

)
−−→

n

{
∞, if x > 1,

−∞, if x < 1.

Relation (3.6) follows from the two obvious relations

1 +
√

m
n (1− δ)
Cp

−−→
n

1
Cp

= c and
√

m
F (cmx + dm)− p

Cp
−−→

n
cxβ.

The relation (3.6) yields P (
X

k
′′
n :n
−dm

cm
< ε + 1) −−→

n
N (∞) = 1, which is equivalent to

(3.7) P

(
Xk′′n :n − dm

cm
> ε + 1

)
−−→

n
0.

Similarly we have

(3.8) P

(
Xk′′n :n − dm

cm
< −ε + 1

)
−−→

n
N (−∞) = 0.

From (3.7) and (3.8) we get P (|
X

k
′′
n :n
−dm

cm
− 1| > ε) −−→

n
0, which proves (3.4). Now, we prove

(3.5). One can easily deduce that

(3.9)
√

n
F (cmx + dm)− p

Cp
=
√

n

m

(√
m

F (cmx + dm)− p

Cp

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0.

Thus, from (3.9), we have P (
X

k
′
n:n
−dm

cm
< ε) −−→

n
N (∞) = 1, which is equivalent to

(3.10) P

(
Xk′n:n − dm

cm
> ε

)
−−→

n
0.
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Similarly we obtain

(3.11) P

(
Xk′n:n − dm

cm
< −ε

)
−−→

n
0.

Therefore, by combining the relations (3.10) and (3.11), we get P (|
X

k
′
n:n
−dm

cm
| > ε) −−→

n
0,

which proves (3.5). In order to switch to convergence w.p.1, we proceed as in the end of the
proof of Theorem 2.1. This completes the proof of Part (i).

Now, let F (cnx + dn) ∈ D(p)(N (V2;β(x))). From Theorem 3.2, it suffices to show that

(3.12)
ĉm

cm
=

Xk′n:n −Xk′′′n :n

cm
−−→

n
1

and

(3.13)
d̂m − dm

cm
=

Xk′n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. Again, we first focus on the case of the convergence in probability
and we start with

ĉm

cm
=

Xk′n:n −Xk′′′n :n

cm
=

Xk′n:n − dm

cm
−

Xk′′′n :n − dm

cm
.

Hence, to prove (3.12) and (3.13), it is sufficient to show that

(3.14)
Xk′′′n :n − dm

cm

p−−→
n

−1

and

(3.15)
Xk′n:n − dm

cm

p−−→
n

0.

We prove (3.14). By applying the relations [pn− n√
m

] = pn− n√
m
− δ, 0 ≤ δ < 1, and

p− 1√
m

+ 1−δ
n ∼ p, as n →∞, we can deduce that

nF (cmx + dm)− k
′′′
n√

k′′′n (1− k′′′n
n )

=
√

n
F (cmx + dm)−

(
p− 1√

m
+ 1−δ

n

)
√(

p− 1√
m

+ 1−δ
n

)(
1−

(
p− 1√

m
+ 1−δ

n

))
(3.16) ∼

√
n

m

(
√

m
F (cmx + dm)− p

Cp
−
−1 +

√
m
n (1− δ)
Cp

)
−−→

n

{
−∞, if |x| > 1,

∞, if |x| < 1.

Thus, on account (3.16), we get P (
X

k
′′′
n :n

−dm

cm
< ε− 1) −−→

n
N (∞) = 1, which is equivalent to

(3.17) P

(
Xk′′′n :n − dm

cm
> ε− 1

)
−−→

n
0.

In the same manner, we have

(3.18) P

(
Xk′′′n :n − dm

cm
< −ε− 1

)
−−→

n
N (−∞) = 0.

From (3.17) and (3.18), we get P (|
X

k
′′′
n :n

−dm

cm
+ 1| > ε) −−→

n
0. Hence (3.14) is proved.
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We turn now to prove (3.15). We start with the obvious limit relation

(3.19)
√

n
F (cmx + dm)− p

Cp
=
√

n

m

(√
m

F (cmx + dm)− p

Cp

)
−−→

n

{
∞, if x > 0,

−∞, if x < 0,

which in turn implies that P (
X

k
′
n:n
−dm

cm
< ε) −−→

n
N (∞) = 1 and hence

(3.20) P

(
Xk′n:n − dm

cm
> ε

)
−−→

n
0.

Moreover, the limit relation (3.19) yields

(3.21) P

(
Xk′n:n − dm

cm
< −ε

)
−−→

n
0.

By combining (3.20) and (3.21), we get P (|
X

k
′
n:n
−dm

cm
| > ε) −−→

n
0, which proves (3.15). Finally,

the fact that the convergence in (3.14) and (3.15) is w.p.1 can be easily proved by the same
way as in the end of the proof of Theorem 2.1. This completes the proof of Part (ii).

Finally, consider the case F (cnx + dn) ∈ D(p)(N (V3;β(x))). From Theorem 3.2, it suf-
fices to show that

(3.22)
ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
−−→

n
1

and

(3.23)
d̂m − dm

cm
=

Xk′n:n − dm

cm
−−→

n
0,

both in probability or w.p.1. We first focus on the case of the convergence in probability and
we start with

ĉm

cm
=

Xk′′n :n −Xk′n:n

cm
=

Xk′′n :n − dm

cm
−

Xk′n:n − dm

cm
.

Therefore, to prove (3.22) and (3.23), it is sufficient to show that

(3.24)
Xk′n:n − dm

cm

p−−→
n

1

and

(3.25)
Xk′′n :n − dm

cm

p−−→
n

0.

By proceeding as we did in Parts (i) and (ii), we can easily show that

(3.26)
nF (cmx + dm)− k

′′
n√

k′′n(1− k′′n
n )

−−→
n

{
∞, if x > 1,

−∞, if x < 1.

Again, by proceeding as we did in Parts (i) and (ii), the relation (3.26) yields P (|
X

k
′′
n :n
−dm

cm
−

1| > ε) −−→
n

0, which in turn proves (3.24). On the other hand, the proof of the relation

(3.25) follows also by proceeding as we did in Parts (i) and (ii). Finally, we can prove that
the convergence in both the relations (3.24) and (3.25) is w.p.1, by the same way as in the
end of the proof of Theorem 2.1. The proof is complete.
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3.3. Bootstrapping sample quantiles when the DFs of these quantiles weakly
converge to N (x) and F is unknown

It has been known for a long time that the DF of the sample quantile Xkn:n = X[pn]+1:n,
0 < p < 1, based on a continuous DF F (x) with positive probability density (PDF) f(x) in a
neighborhood of the p-th population quantile xo = F−1(p), weakly converges to the standard
normal DF (e.g., see [35]). In the present subsection, we will study the limit bootstrapping
sample quantiles when the PDF f is unknown. We start with a classical result; its proof can
be found in many known references among them [35].

Lemma 3.1. Let Xkn:n = X[pn]+1:n, 0 < p < 1, be a sample quantile, which is based

on a continuous DF F (x) with a positive PDF f(x) in a neighborhood of the p-th population

quantile x0 = F−1(p). Then,

(3.27) P (Xkn:n < cnx + dn) = P

(
√

nf(F−1(p))
Xkn:n − F−1(p)√

p(1− p)
≤ x

)
w−−→
n

N (x).

where cn =
√

p(1−p)√
nf(x0)

and dn = x0 = F−1(p).

It is known (cf. [34]) that Xkn:n is a consistent estimator of F−1(p). Moreover, the
relation (3.27) can be used to construct an approximate confidence interval for F−1(p), if
either the form of f is completely specified around F−1(p) or a good estimator for f(F−1(p))
is available. Siddiqui [34] proposed an estimator for 1

f(x0) = 1
f(F−1(p))

in the form Srn =
n
2r (X[np]+r:n −X[np]−r+1:n). Moreover, Siddiqui [34] showed that this estimator is asymptoti-
cally normal DF, when r is chosen to be of order n

1
2 . Bloch and Gastwirth [17] showed that,

if r = o(n) and r −−→
n

∞ then, Srn is a consistent estimator for 1
f(F−1(p))

. Now, we study

the bootstrap distribution of Xkm:m, km = [mp] + 1, which defined for unknown normaliz-
ing constants by H∗

n,m(ĉmx + d̂m) = P (Xkm:m < ĉmx + d̂m |Xn), where ĉm and d̂m are some
estimators of cm and dm, respectively.

Theorem 3.4. Let ĉm =
√

p(1−p)√
m

Srm, d̂m = X[np]+1:n, where r = o(m). Then,

sup
x∈R

|H∗
n,m(ĉmx + d̂m)−N (x))| p−−→

n
0, if m = o(n).

Moreover, if there exist λ ∈ (0, 1) such that
∑∞

n=1 λ
√

n
m < ∞ then

sup
x∈R

|H∗
n,m(ĉmx + d̂m)−N (x))| w.p.1−−−→

n
0.

Proof: In order to the bootstrap distribution H∗
n,m(ĉmx + d̂m) to be consistent, we

have to prove that ĉm and d̂m satisfy the conditions (ii) and (iii) in Theorem 3.2, respectively.
Since Srm is a consistent estimator for 1

f(x0) (cf. [17]), we get

ĉm

cm
=

√
p(1− p)/

√
mSrm√

p(1− p)/
√

mf(xo)
= Srmf(x0)

p−−→
n

1.
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On the other hand, we have cn
cm

=
√

p(1−p)/
√

nf(x0)√
p(1−p)/

√
mf(x0)

=
√

m
n −−→

n
0. Thus, on account of

Lemma 3.1, we get
d̂m − dm

cm
=

X[np]+1:n − F−1(p)
cn

cn

cm

p−−→
n

0.

Therefore, the conditions (ii) and (iii) in Theorem 3.2 are proved when the convergence is in
probability. The proof of these conditions when the convergence is w.p.1 is achieved by the
same way as in the end of the proof of Theorem 2.1. The proof is complete.

4. SIMULATION STUDY

In this section, we address two applications of the earlier theoretical findings. Firstly, we
provide a p-value-based method for choosing m. We present a simulation study in Example 4.1
that is carried out using Mathematica 11 to explain how we choose numerically the values of m

to give the best approximation of the bootstrapping DFs for the central and intermediate
quantiles. In Example 4.1, we choose normality to highlight the key issue that pertains to the
selection of m. On the other hand, under typical circumstances, the majority of the practical
issues that any researcher faces result in the asymptotic normality of the quantiles (e.g., see
Lemma 3.1). Consequently, based on the Kolmogorov–Smirnov test of normality and the
corresponding p-values, the best value of m (that corresponds to the largest p-value) should
be chosen such that

∑∞
n=1 λ

√
n
m < ∞, for each λ ∈ (0, 1) (see Remark 4.1). Although this

method is applied when the quantiles being bootstrapped are asymptotically normal, other
possible asymptotically laws given in Theorems 2.1, 2.2, 3.1, and 3.2 can be considered by
applying a similar algorithm. Secondly, in Example 4.2, based on several large samples from a
logistic distribution, we construct confidence intervals for the median using the bootstrapping
methodology and the approach provided in Example 4.1. Additionally, predicted coverage
probabilities are included with each computed confidence interval.

4.1. Examples

Example 4.1. This example relies on the fact that the sample median S1;n = X[n
2
+1]:n,

and the sample intermediate quantiles S2;n = X[2
√

n]:n, S3;n = X[
√

n]:n, S4;n = X2[ 3√n]:n, and
S5;n = X[ 3√n]:n based on the standard normal DF weakly converge to the normal DF. Let
Ŝi;m, i = 1, 2, ..., 5, be the corresponding bootstrapping statistics of Si;n, i = 1, 2, ..., 5, respec-
tively, where each of these bootstrapping statistics is based on a sub-sample with replacement
of size m (a bootstrap sample of size m). According, to the results of Sections 2 and 3, we
expect that the bootstrapping DFs of the statistics Ŝi;m, i = 1, 2, ..., 5, converge to the normal
DF provided that m � n (i.e., m = o(n)).

This study, shown in Table 1, is achieved via the following algorithm:

(i) Generate a random sample (parent sample) of size n = 100, 000 from N ( ·);

(ii) Determine a value of m (100, 200, ..., 5000, as shown in Table 1) and generate a
sub-sample with a replacement of size m (a bootstrap sample) from the parent
sample;
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(iii) Determine each of the sample bootstrapping statistics Ŝi;m, i = 1, 2, ..., 5;

(iv) Repeat the steps (ii) and (iii) 1000 times to obtain the observed sample boot-
strapping statistics Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000;

(v) By using the Kolmogorov–Smirnov test, check the normality of the data sets
{Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000} and determine the corresponding p-values
(see Remark 4.2);

(vi) Repeat the steps (ii)–(v) 100 times for each chosen m and compute the average
p-values (denoted by p) for each chosen m and each of the five statistics. These
averages, p, are written as entries in Table 1, where the best p is distinguished
by an asterisk.

It is noted that for n = 100, 000, the best choice of m falls in the interval [200, 400], i.e.,
the values 200 to 400 are 0.2–0.4% of the value of n (see Remark 4.1). Moreover, the p

for the central case are higher than those for the intermediate case.

Table 1: p corresponding to the checking normality of different bootstrap central
and intermediate quantiles for various values of m.

kn → Central Intermediate

m ↓ kn = [n
2
] + 1 kn = [

√
n] kn = 2[

√
n] kn = [ 3

√
n] kn = 2[ 3

√
n]

100 0.424534 0.241040 0.374819 0.0471849 0.221942
200 0.445344 0.35888? 0.354039 0.0759685 0.136431
300 0.47536? 0.326927 0.422355 0.135734 0.28982?

400 0.461186 0.294167 0.43096? 0.18197? 0.213884
500 0.415695 0.254239 0.396061 0.160607 0.229961
600 0.413815 0.145734 0.231875 0.171207 0.206003
700 0.423271 0.165254 0.275231 0.141310 0.206607
800 0.447738 0.095997 0.249245 0.140825 0.154863
900 0.396874 0.104246 0.248103 0.082727 0.137661

1000 0.416074 0.136514 0.134745 0.094409 0.099289
2000 0.388266 0.104154 0.135125 0.020539 0.149453
3000 0.389145 0.002338 0.207131 0.001534 0.009307
4000 0.356465 0.003308 0.113068 0.000084 0.050480
5000 0.338578 0.024744 0.014881 0.000383 0.049058

Remark 4.1. According, to the results of Sections 2 and 3, the best performance of
the bootstrapping DFs of the central and intermediate order statistics occurs at the values
of m for which

∑∞
n=1 λ

√
n
m < ∞, for each λ ∈ (0, 1). On the other hand, according, to [1] the

condition
√

m = o( 2
√

n
log n) is a sufficient condition for

∑∞
n=1 λ

√
n
m < ∞, which implies that the

best performance of the bootstrapping DFs of the central and intermediate order statistics
occurs when m � 3000. Therefore, the simulation output endorses this anticipated result.

Remark 4.2. In the earlier version of this paper, in order to implement Part (v) of the
given algorithm, we fitted the data sets {Ŝij;m, i = 1, 2, ..., 5; j = 1, 2, ..., 1000} to the normal
DF by using the Kolmogorov–Smirnov test after calculating the sample mean and standard
deviation. However, one referee point out to an important issue that the Kolmogorov–Smirnov
test can be used to fit the normal DF only when parameters are not estimated from the data



Bootstrapping order statistics with variable rank 565

(cf. [29]). Since our focus here is only on checking the normality of the bootstrap samples, we
apply the Kolmogorov–Smirnov test to check the normality of the given sample bootstrap-
ping statistics without estimating any parameters. Namely, in Mathematica 11, there are two
ways to fit any data to the normal DF. The first is to provide the mean and variance values;
if not, estimate them based on the data. The second choice is to examine the data’s normal-
ity without figuring out what the fitted normal distribution’s parameter values should be.
The second choice was adopted.

Example 4.2. In this example, we generate three samples of sizes n = 100, 000, n =
50, 000, and n = 30, 000, from the logistic distribution with location and scale parameters
0 =mean=median and 1, respectively. We construct a confidence interval for each median,
which pertains to the three samples, using the bootstrapping technique. We first apply the
p-value-based method for choosing m, which is given in Example 4.1, where 100 bootstrap
runs are taken into consideration. In Table 2, the three best values of m and the correspond-
ing best average values of p-values are given. We currently have a sample of 100 observed
medians for each of the three initial samples. These median samples follow a normal DF
with unknown parameters. Use these median samples to estimate these unknown param-
eters. Finally, construct a 99% confidence interval of each median pertaining to the three
original samples (of sizes 100,000, 50,000, and 30,000). For each of these three samples, we
get one constructed confidence interval. Therefore, according to the algorithm given below,
we have 10000 confidence intervals to be checked whether each of them contains zero. Due
to the use of the bootstrapping technique and also estimating the unknown parameters, we
anticipate that the significant levels (SL) of these confidence intervals are smaller than 99%.
We estimate the average lower limit (L), average upper limit (U), and coverage probability
(CP) of the estimated confidence intervals. By doing this, we can estimate the quality of
these confidence intervals and subsequently the quality of the suggested approaches. These
findings are presented in Table 2, which demonstrates that the SL is not less than 96%, which
endorses the results of Theorems 3.3 and 3.4. Moreover, the results presented in Table 2 is
achieved via the following algorithm:

(i) Generate a random sample (parent sample) of size n (n = 100, 000; n = 50, 0000,
and n = 30, 000) from the standard logistic distribution;

(ii) Apply the p-value-based method which is given in Example 4.1 and choose the
best m corresponding to the largest p-value (e.g., for the n = 100, 000 case, we
have m = 300);

(iii) Generate M (M = 100) sub-samples of size m with replacement from the parent
sample and calculate the median for each sample;

(iv) Calculate the mean µB and standard deviation σB for the set of the sample
medians (100 medians) in step (iii). In addition, calculate a 99% confidence
interval for the population median according to the usual law µB ± zα/2

σB√
M

,
where α = 0.01, and zp is the p-th quantile of the standard normal DF;

(v) Repeat steps (iii) and (iv) 100 times. Determine how many times (say 0 ≤ n1 ≤
100), the population median (i.e., zero ) falls within the constructed confidence
intervals.

(vi) Repeat steps (i)–(v) 100 times. In each of those times, we get in step (v),
0 ≤ ni ≤ 100, i = 1, 2, ..., 100;

(vii) Compute L, U , and CP=
P100

i=1 ni

10000 .
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Table 2: The average p-values, L, U , and CP for median for three different samples
from logistic distribution.

n ↓ m ↓ p-value L U CP

n = 100, 000 300 0.480606 −0.03 0.03 97.21

n = 50, 000 200 0.435146 −0.04 0.03 96.69

n = 30, 000 150 0.420365 −0.04 0.04 96.39

4.2. Discussion

In the light of the preceding simulation study given in Examples 4.1 and 4.2, we consider
a virtual case study to show how the developed bootstrap technique in this paper saves time
and cost. Suppose our purpose is modeling (i.e., to detect its asymptotic distribution) the
sample median of some random phenomenon that is governed by a DF that satisfies the
conditions given in Lemma 3.1 (i.e., the sample median from this DF weakly converges to
the normal DF).

The usual way to achieve this purpose is to get a large number N of independent
random samples, and from each of them, we determine the median. By finding a suitable
DF (a normal DF with specified mean and variance) that fits this median-data set (the set
of the collected sample medians) we can achieve our aim. As an example, if N = 1000 and
each sample has a size of 200, we will need 200,000 observations. On the other hand, if we
had one large sample of size 100,000 (say) and apply the bootstrap technique, we can achieve
our aim by choosing m ∈ [200, 400] (as the simulation study shows). In this case, bearing
in mind that obtaining a large number of independent samples, even of moderated sample
sizes, is more difficult and costly than obtaining one sample of a large size, we find that the
bootstrap technique is very beneficial. Moreover, regarding the natural question that which of
the usual way and bootstrap technique allows us to make better inference on the population
median, the theoretical results concerning the bootstrap technique, and especially the result
of this paper, guarantees both ways are asymptotically the same. Therefore, one of the most
important advantages of the given bootstrap technique is that it enables us to model the
different quantiles via one large sample instead of a large number of independent samples.

Undoubtedly the cornerstone of the bootstrap technique given in this section is deter-
mining the best value of m. The theoretical result of the paper stipulates that m is small
concerning n. One reviewer of this paper provided an elegant intuition about why one wants
m to be small, namely, “it is because of discreteness. When m is big, the bootstrap distri-
bution will have big chunks of probability, which can make the distribution less normal than
when m is small”. The given algorithm to determine m depends on four determinants, which
are the parent DF of the given large sample, the sample size n, the number of replications of
the p-value, and the number of bootstrap runs. Of course, when any researcher applies the
given algorithm he should consider his determinants. However, we repeated the preceding
simulation study with different determinants to shed some light on the influence of these
determinants on the choice of m.
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1. Figures 1–4 suggest that one essentially wants to make m as small as possible, with
respect to n, as long as the sufficient condition given in Remark 4.1 is satisfied (and
of course, we preserve the necessary requirements that m −−→

n
∞ and m

n −−→
n

0).

2. When the sample size n becomes smaller than 100,000 (with fixing the other de-
terminants), the range of m (the ratio of the best value of m to n) changes by a
small amount as shown in Figures 1 and 2. Namely, at n = 50, 000, the best value
of m is about 200 with p=0.45, while at n = 30, 000, the best value of m is about
150 with p=0.43.

3. The change in the number of bootstrap runs (with fixing the other determinants)
does not influence the range of the choice of m ( 0.2− 0.4% of the value of n). On
the other hand, increasing this number makes p decrease and become more stable,
see Figure 3.

4. The change in the number of replications of the p-value (with fixing the other
determinants) has no influence on the choice of m. On the other hand, increasing
this number makes p more stable, see Figure 4.
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Figure 1: p vs. m at n = 50, 000.
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Figure 2: p vs. m at n = 30, 000.
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Figure 3: p vs. m at different values of the bootstrap runs.
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Figure 4: p vis m at different values of p-value replications.

5. CONCLUDING REMARKS

The bootstrap is an extremely flexible technique that can be applied to a wide variety
of problems. One of the desired properties of the bootstrapping method is consistency, which
guarantees that the limit of the bootstrap distribution is the same as that of the distribution
of the given statistic.

In this paper, we investigated the strong consistency of bootstrapping central and in-
termediate order statistics for an appropriate choice of re-sample size for known and unknown
normalizing constants. Consequently, inference concerning quartiles can now be performed
by applying the bootstrap technique. For central order statistics, one can use the bootstrap
to obtain a confidence interval for the p-th population quantile. On the other hand, it is well
known that the asymptotic behavior of intermediate quantiles is one of the pillar factors in
choosing a suitable value of threshold in the peak over threshold (POT) approach and the
constructing related estimators (the Hill estimators) of the tail index (cf. [10, 14, 15, 26].
Therefore, the study of bootstrapping intermediate order statistics will pave the way to use
and improve the modeling of extreme values via the POT approach. This potential applica-
tion of the bootstrapping intermediate order statistics will be the subject of future studies.

The implemented simulation study in this paper aims to show how we choose numeri-
cally the values of m to give the best approximation (performance) of the bootstrapping DF
for the central and intermediate quantiles. To our best knowledge, there is no such study was
done in the literature even for extreme order statistics.
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