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1. INTRODUCTION

Our main focus in this study is on variance estimation for sensitive variables in stratified
sampling. Many researchers have dealt with the problem of mean and variance estimation
under simple random sampling and stratified random sampling when the study variable is non-
sensitive and is directly observable. Zahid and Shabbir (2018) [17] and many other authors
have investigated the problem of mean estimation in stratified random sampling when the
study variable is non-sensitive. Important contributions in the area of variance estimation
in stratified random sampling for non-sensitive random variables have been made by Kadilar
and Cingi (2006) [8], Sidelel et al. (2014) [12], Özel et al. (2014) [10], Clement (2018) [2],
Sanaullah et al. (2017) [11], Younis and Shabbir (2019) [16], and Asghar et al. (2019) [1].
In all of these studies, the study variable is directly observed and an auxiliary variable is used
to increase the efficiency of estimation.

In research involving sensitive survey questions, standard estimation techniques are
unreliable. Warner(1965) [14] introduced the Randomized Response Technique (RRT) as a
research method to reduce response Bias in estimation of a sensitive study variable and at
the same time improve the respondent cooperation. Many authors, including Kalucha et al.

(2017) [9] and Zhang et al. (2021) [18], have estimated the mean of a sensitive study variable
under stratified sampling. However, not much work exists for variance estimation under RRT.
Gupta et al. (2020) [5] introduced several variance estimators under RRT in simple random
sampling. The primary goal of this study is to re-examine the Gupta et al. (2020) [5] study
in the context of stratified random sampling.

Let us consider Y and X to be the observed and auxiliary variables defined on a finite
population U = {U1, U2, ..., UN}. We assume that Y is sensitive in nature and we observe a
scrambled version of it given by Z = TY +S, where T , S, Y andX are mutually uncorrelated.
Let the population be divided into L homogeneous strata withNh unites (h = 1, 2, ..., L) in the
hth stratum such that

∑L
h=1Nh = N . From hth stratum, a simple random sample of size nh is

drawn without replacement such that
∑L

h=1nh = n. Let (xhi, yhi, zhi) be the observed values
on the variables X, Y , and Z in the hth stratum. Let x̄st =

∑L
h=1Whx̄h, ȳst =

∑L
h=1Whȳh,

z̄st =
∑L

h=1Whz̄h be the stratified sample means where ȳh = 1
nh

∑nh
i=1yhi, x̄h = 1

nh

∑nh
i=1xhi,

z̄h = 1
nh

∑nh
i=1zhi are the stratum sample means and Ȳh = 1

Nh

∑Nh
i=1yhi, X̄h = 1

Nh

∑Nh
i=1xhi, Z̄h =

1
Nh

∑Nh
i=1zhi are corresponding population stratum means. Let Wh = Nh

N (h = 1, 2, ..., L) be
the known stratum weights.

The population variance of the study variable in stratified sampling is given by Kadilar
and Cingi (2006) [8] as

(1.1) σ2
c0 =

L∑
h=1

Whσ
2
yh +

L∑
h=1

Wh(Ȳh − Ȳ )2.

The combined ordinary and combined ratio estimators of population variance given by
Kadilar and Cingi (2006) [8] in stratified sampling are given, respectively, by

(1.2) tc0 =
L∑

h=1

Whs
2
yh +

L∑
h=1

Wh(ȳh − ȳst)2,
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and

(1.3) tc1 = tc0

(
σ2

x

s2xst

)
, where s2xst =

L∑
h=1

Whs
2
xh +

L∑
h=1

Wh(x̄h − x̄st)2.

Some authors including Özel et al. (2014) [10] have suggested the separate ordinary
and separate ratio estimators of population variance in stratified sampling which are given
respectively by

(1.4) ts0 =
L∑

h=1

Whs
2
yh,

and

(1.5) ts1 =
L∑

h=1

Wh

(
s2yh

s2xh

)
σ2

xh.

In this paper, we have considered the problem of estimating population variance using
auxiliary information by adapting Kadilar and Cingi (2006) [8], Özel et al. (2014) [10], and
Gupta et al. (2020) [5] under RRT. We will discuss the proposed combined variance estimators
in detail in Section 2. Separate variance estimators will be discussed in detail in Section 3. We
also examine the effect of ignoring the term

∑L
h=1Wh(ȳh− ȳst)2 in (1.2) on the estimates of the

variance in stratified random sampling. Section 4 presents the results of a simulation study;
Section 5 presents a real data example; and Section 6 provides some concluding remarks.

2. SOME COMBINED VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

In this study, the respondent is asked to provide a scrambled response for the sensitive
study Y by using the generalized RRT model given by Z = TY + S, as in Diana and Perri
(2011) [3], where S and T are uncorrelated scrambling variables such that E(S) = 0 and
E(T ) = 1. Gupta et al. (2020) [5] used this RRT model for estimating the population variance
in simple random sampling. They proposed the following estimators:

(2.1) t0(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

,

(2.2) t1(R) = t0(R) ∗
(
σ2

x

s2x

)
,

and

(2.3) tp(R) =
[
t0(R) + (σ2

x − s2x)
]
∗
(

(ασ2
x + β)

ω(αs2x + β) + (1− ω)(ασ2
x + β)

)g

,

where α and β are suitably chosen constants associated with the auxiliary variable X. With
g = 1, one can obtain various ratio estimators, and with g = −1 one can obtain various
product estimators. ω is an unknown whose optimal value will be used.

Motivated by Gupta et al. (2020) [5] and Kadilar and Cingi (2006) [8], we propose the
following combined variance estimators in the stratified random sampling.
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2.1. The Combined Basic Variance Estimator

Based on the RRT model Z = TY + S, we have σ2
zh as

σ2
zh = σ2

Th(σ2
yh + µ2

yh) + σ2
yh + σ2

Sh.

Rearranging, we get

σ2
yh =

σ2
zh − σ2

Sh − (σ2
Th ∗ Z̄2

h)
σ2

Th + 1
.

The population variance of the study variable in stratified sampling is given by

(2.4) σ2
c0(R) =

L∑
h=1

Wh

(
σ2

zh − σ2
Sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
+

L∑
h=1

Wh(Z̄h − Z̄)2.

Let
σ2

c0(R) = A1 +B1,

where

A1 =
L∑

h=1

Wh

(
σ2

zh − σ2
Sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
and B1 =

L∑
h=1

Wh(Z̄h − Z̄)2.

We have our first proposed combined estimator given by

(2.5) tc0(R) =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+

L∑
h=1

Wh(z̄h − z̄st)2.

Let
tc0(R) = Â1 + B̂1,

where

Â1 =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
and B̂1 =

L∑
h=1

Wh(z̄h − z̄st)2.

To obtain the Bias and MSE expressions for the proposed estimators in the stratified random
sampling, we define the following error terms

δzh =
s2zh − σ2

zh

σ2
zh

, ezh =
z̄h − Z̄h

Z̄h
, ezst =

z̄st − Z̄

Z̄
, exst =

x̄st − X̄

X̄
,

such that
E(δzh) = E(ezh) = E(ezst) = E(exst) = 0,

E(δ2zh) = θh(λ40h − 1), E(δ2xh) = θh(λ04h − 1), E(δzhδxh) = θh(λ22h − 1),

E(δzhezh) = θhλ30hCzh, E(δxhezh) = θhλ12hCzh, E(e2zh) = θhC
2
zh,

E(ezstezh) =
L∑

h=1

Whθhσ
2
zh, E(e2zst) =

1
Z̄2

L∑
h=1

W 2
hθhσ

2
zh, E(e2xst) =

1
X̄2

L∑
h=1

W 2
hθhσ

2
xh,

E(exstezh) =
L∑

h=1

Whθhσzxh, E(exstezst) =
1
Z̄X̄

L∑
h=1

W 2
hθhσzxh,
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where
σzxh = ρzxhσzhσxh, ρzxh =

ρyxh√
1 +

σ2
Th(σ2

yh+µ2
yh)+σ2

Sh

σ2
yh

, λrsh =
µrsh

µ
r
2
20hµ

s
2
02h

,

µrsh =
1

Nh − 1

Nh∑
i=1

(Zhi − Z̄h)r(Xhi − X̄h)s and C2
zh = C2

yhσ
2
Th +

(
σ2

Sh

Ȳh
2

)
.

Consider the first term

(2.6) Â1 =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
.

Rewriting (2.6), we have

Â1 =
L∑

h=1

Wh

(
σ2

zh(1 + δzh)− σ2
Sh − σ2

Th[Z̄h(1 + ezh)]2

σ2
Th + 1

)
.

Subtracting A1 on both sides, we obtain

(2.7) (Â1 −A1) =
L∑

h=1

Wh

(
σ2

zhδzh − 2σ2
ThZ̄

2
hezh − σ2

ThZ̄
2
he

2
zh

σ2
Th + 1

)
.

Taking the expectation on both sides of (2.7), the Bias of Â1 is obtained as

(2.8) Bias(Â1) ≈ −
L∑

h=1

θhWh

(
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

)
.

By squaring both sides of (2.7) and using the first order approximation, the MSE is obtained
as
(2.9)

MSE(Â1) ≈
L∑

h=1

θhW
2
h

(
1

(σ2
Th+1)2

)(
σ4

zh(λ40h−1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)
.

Consider the second term

(2.10) B̂1 =
L∑

h=1

Wh(z̄h − z̄st)2.

Rewriting (2.10), we have

(2.11) B̂1 =
L∑

h=1

Wh[Z̄h(1 + ezh)− Z̄(1 + ezst)]2.

Expanding (2.11), and restricting to terms up to order 2, we have

(2.12) B̂1 =
L∑

h=1

Wh[(Z̄h − Z̄)2 + (Z̄hezh − Z̄ezst)2 + 2(Z̄2
hezh − Z̄hZ̄ezst − Z̄hZ̄ezh + Z̄2

hezst)].

Subtracting B1 on both sides, we obtain
(2.13)

(B̂1 −B1) = Z̄2e2zst +
L∑

h=1

Wh[Z̄2
he

2
zh − 2Z̄hZ̄ezhezst + 2(Z̄2

hezh − Z̄hZ̄ezst − Z̄hZ̄ezh + Z̄2
hezst)].
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Taking the expectation on both sides of (2.13), the Bias of B̂1 is obtained as

(2.14) Bias(B̂1) ≈ Z̄2
L∑

h=1

W 2
hθhC

2
zh +

L∑
h=1

Whθh[Z̄2
hC

2
zh − 2Z̄hZ̄σ

2
zh].

By squaring both sides of (2.13), using the first order approximation and simplifying, the
MSE is obtained as

MSE(B̂1) ≈ 4Z̄4
L∑

h=1

W 2
hθhC

2
zh

+
L∑

h=1

W 2
hθh

[
4Z̄2

hC
2
zh − 8Z̄hZ̄

L∑
h=1

Whσ
2
zh(Z̄h−Z̄)2 + 4Z̄hZ̄

2
L∑

h=1

W 2
hC

2
zh(Z̄h−2Z̄)

]
.(2.15)

The expressions for Bias and MSE of tc0(R) are given by

(2.16) Bias(tc0(R)) = Bias(Â1) + Bias(B̂1),

and

(2.17) MSE(tc0(R)) ≈ MSE(Â1) + MSE(B̂1).

In (2.17), we assume that Â1 and B̂1 are uncorrelated. This is not an unreasonable assumption
since the sample mean and the sample variance are uncorrelated for normal data. This is
also confirmed by large number of simulated values of Â1 and B̂1 that we generated.

2.2. The Combined Ratio Variance Estimator

(2.18) tc1(R) =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
+

L∑
h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

,

tc1(R) = Â2 + B̂2.

Consider the first term:

(2.19) Â2 =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
.

Rewriting (2.19), we have

Â2 =
L∑

h=1

Wh

[
σ2

zh − σ2
Sh − σ2

ThZ̄
2
h

σ2
Th + 1

+
2σ2

ThZ̄
2
hezhδxh − σ2

zhδzhδxh − σ2
ThZ̄

2
he

2
zh

σ2
Th + 1

]
.

Subtracting A1 and taking the expectation on both sides, the Bias of Â2 is obtained as

(2.20) Bias(Â2) ≈
L∑

h=1

θhWh

[(
2σ2

ThZ̄
2
hλ12hCzh − σ2

zh(λ22h − 1)− σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)]
.
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For MSE, we have

Â2 =
L∑

h=1

Wh

[
σ2

zh + σ2
zhδzh − σ2

Sh − σ2
ThZ̄

2
h − 2σ2

ThZ̄
2
hezh − σ2

ThZ̄
2
he

2
zh

σ2
Th + 1

−σ2
zhδxh − σ2

zhδzhδxh + σ2
Shδxh + σ2

ThZ̄
2
hδxh + 2σ2

ThZ̄
2
hezhδxh + σ2

ThZ̄
2
he

2
zhδxh

σ2
Th + 1

]
.

Simplifying and ignoring second and higher order terms,

Â2 =
L∑

h=1

Wh

[
σ2

zh − σ2
Sh − σ2

ThZ̄
2
h

σ2
Th + 1

+
σ2

zhδzh − 2σ2
ThZ̄

2
hezh − σ2

zhδxh + σ2
Shδxh + σ2

ThZ̄
2
hδxh

σ2
Th + 1

]
.

Squaring and taking the expectation on both sides, we have

Â2 =
L∑

h=1

W 2
hE

(
σ2

zhδzh

σ2
Th + 1

−
2σ2

ThZ̄
2
hezh

σ2
Th + 1

− σ2
yhδxh

)2

.

After some simplifications, the MSE of Â2 is obtained as

MSE(Â2) ≈
L∑

h=1

W 2
hθh

(σ2
Th+1)2

[
σ4

zh(λ40h−1)− 2σ2
zhσ

2
yh(λ22h−1)(σ2

Th+1) + σ4
yh(λ04h−1)(σ2

Th+1)2

+ 4Czh

(
σ4

ThZ̄
4
hCzh − σ2

zhσ
2
ThZ̄

2
hλ30h + σ2

Thσ
2
yhZ̄

2
hλ12h(σ2

Th+1)
)]
.(2.21)

Consider the second term:

(2.22) B̂2 =
L∑

h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

.

Repeating the procedure outlined in steps (2.10)–(2.15) for the estimator (2.22), yields defi-
nitions of Bias and MSE for B̂2 as

Bias(B̂2) ≈ Z̄2
L∑

h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

Whθh

[
Z̄2

hC
2
zh − 2Z̄hZ̄

L∑
h=1

Whσ
2
zh

+ 2

(
Z̄h

X̄

L∑
h=1

W 2
hσzxh +

Z̄h

X̄

L∑
h=1

Whσzxh − 2
(
Z̄

X̄

L∑
h=1

W 2
hσzxh

))]
,(2.23)

MSE(B̂2) ≈ 4Z̄4
L∑

h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

W 2
hθh

[
4Z̄2

hC
2
zh(Z̄h − Z̄)2

+ 4Z̄2
hZ̄

2
L∑

h=1

W 2
h (C2

zh + C2
xh) + 8Z̄3

hZ̄
L∑

h=1

Wh

(
σzxh

Z̄X̄
− σ2

zh

)

− 8Z̄2
hZ̄

2

(
2
Z̄X̄

L∑
h=1

Whσzxh −
L∑

h=1

2Whσ
2
zh +

1
Z̄X̄

L∑
h=1

W 2
hσzxh

)

+ 8Z̄hZ̄3

(
1
Z̄X̄

L∑
h=1

W 2
hσzxh −

L∑
h=1

W 2
hC

2
zh +

1
Z̄X̄

L∑
h=1

Whσzxh −
L∑

h=1

Whσ
2
zh

)

− 8Z̄2
1
Z̄X̄

L∑
h=1

W 2
hσzxh

]
.(2.24)



284 B. Aloraini, S. Khalil, M.N. Qureshi and S. Gupta

The expressions for Bias and MSE of tc1(R) are given by

(2.25) Bias(tc1(R)) = Bias(Â2) + Bias(B̂2),

and

(2.26) MSE(tc1(R)) ≈ MSE(Â2) + MSE(B̂2).

2.3. A Combined Generalized Variance Estimator

We now propose the following class of generalized population variance estimators:

tcp(R) =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+ (σ2

xh − s2xh)
]

∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

+
L∑

h=1

Wh

[(
z̄h −

[
z̄st + (X̄ − x̄st)

])
∗
(

(αX̄ + β)
λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g
]2

,(2.27)

tcp(R) = Â3 + B̂3.

Consider the first term:

Â3 =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+(σ2

xh−s2xh)
]
∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

.

Using Taylor series approximation, we obtain the Bias in Â3 as
(2.28)

Bias(Â3) =
L∑

h=1

−Whθh

[
σ2

ThZ̄
2
hC

2
zh

σ2
Th+1

−(gωψh)
(
σ2

zh(λ22h−1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th+1

−σ2
xh(λ04h−1)

)]
,

where ψh =
∑L

h=1
ασ2

xh

ασ2
xh+β

.

The mean square error is given by

MSE(Â3) =
L∑

h=1

W 2
hθh

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

(σ2
Th + 1)2

)

+
(

(σ2
xh +Qhσ

2
yh)2(λ04h − 1)

)
− 2
(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)
(σ2

xh +Qhσ
2
yh)
]
,

(2.29)

where Qh = gωψh.

Differentiate (2.29) w.r.t Qh:

2σ2
yh(σ2

xh +Qhσ
2
yh)(λ04h − 1) = 2σ2

yh

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)
,

Qhopt =
L∑

h=1

1
σ2

yh

[(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)(
1

(λ04h − 1)

)
− σ2

xh

]
.
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The MSE at this optimum value is given by

MSE(Â3)opt =
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)

− 1
(λ04h − 1)

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

)2]
.(2.30)

Consider the second term:

(2.31) B̂3 =
L∑

h=1

Wh

[(
z̄h −

[
z̄st + (X̄ − x̄st)

])
∗
(

(αX̄ + β)
λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g
]2

.

Repeating the procedure outlined in steps (2.10)–(2.15) for the estimator (2.31), yields defi-
nitions of Bias and MSE for B̂3 as

Bias(B̂3) ≈ Z̄2
L∑

h=1

W 2
hθh

(
C2

zh +D2C2
xh

)
+ X̄2

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

Whθh

[
Z̄2

hC
2
zh

+
2Z̄h

Z̄

L∑
h=1

Whσzxh + 2D

(
Z̄h

X̄

L∑
h=1

W 2
hσzxh − Z̄hX̄

L∑
h=1

W 2
hC

2
xh +

Z̄h

X̄

L∑
h=1

Whσzxh −
2Z̄
X̄

L∑
h=1

W 2
hσzxh

(2.32) + Z̄X̄

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

W 2
hσzxh

)
−2Z̄hZ̄

L∑
h=1

Whσ
2
zh−2

L∑
h=1

W 2
hσzxh

]
,

where D = (gλφ) and φ = αX̄
αX̄+β

;

MSE(B̂3)opt ≈ θ

{
Z̄2X̄2

L∑
h=1

W 2
hC

2
xh + Z̄4

L∑
h=1

W 2
hC

2
zh − Z̄2

L∑
h=1

W 2
hσzxh

+ Dopt

[
DoptZ̄

4
L∑

h=1

W 2
hC

2
xh + Z̄3X̄

L∑
h=1

W 2
hC

2
xh −

Z̄3

X̄

L∑
h=1

W 2
hσzxh

]

+
L∑

h=1

W 2
h

[
4
((
Z̄4

h − Z̄3
hZ̄
)
C2

zh + Z̄2
hZ̄

2
( L∑

h=1

W 2
hC

2
zh + C2

zh +
L∑

h=1

Whσ
2
zh

))

+
(
Z̄2

hX̄
2 − Z̄hZ̄X̄

2
) L∑

h=1

W 2
hC

2
xh −

(
Z̄3

hZ̄
2 + Z̄hZ̄

3
) L∑

h=1

Whσ
2
zh

+

(
Z̄3

hX̄ + Z̄hZ̄
2X̄
)

Z̄X̄

L∑
h=1

Whσzxh − 2Z̄2
h

L∑
h=1

Whσzxh + Z̄hZ̄

L∑
h=1

W 2
hσzxh

+ Dopt

(
DoptZ̄

2
hZ̄

2
L∑

h=1

W 2
hC

2
xh +

(
2Z̄3

h − 2Z̄2
hZ̄
)

X̄

L∑
h=1

Whσzxh

+
(
Z̄2

hX̄Z̄ − 2Z̄hX̄Z̄
2 − Z̄hZ̄

3
) L∑

h=1

W 2
hC

2
xh +

Z̄hZ̄
2

X̄

L∑
h=1

W 2
hσzxh

)]}
(2.33)
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where

Dopt =

−
PL

h=1

��
2Z̄3

h−2Z̄2
hZ̄
�

X̄

PL
h=1 Whσzxh + Z̄2

�
Z̄hX̄ − 2X̄Z̄ − Z̄2

�PL
h=1 W 2

hC2
xh + Z̄hZ̄2

X̄

PL
h=1 W 2

hσzxh

�

2

(
Z̄4

h

PL
h=1 W 2

hC2
xh +

PL
h=1 W 2

h

�
Z̄2

hZ̄2
PL

h=1 W 2
hC2

xh

�
+

�
Z̄3X̄

PL
h=1 W 2

hC2
xh −

Z̄4

X̄

PL
h=1 W 2

hσzxh

�) .

The expressions for Bias and MSE of tcp(R) are given by

(2.34) Bias(tcp(R)) = Bias(Â3) + Bias(B̂3),

and

(2.35) MSE(tcp(R))opt ≈ MSE(Â3)opt + MSE(B̂3)opt.

3. SOME SEPARATE VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

Some authors, including Özel et al. (2014) [10], Clement (2018) [2] and Younis and
Shabbir (2019) [16], have presented separate variance estimators. In doing so, they have
ignored the B1 term introduced in (1.2). We examine the following separate variance es-
timators in stratified random sampling mainly to show that ignoring the B1 term can give
misleadingly low MSE values.

3.1. The Separate Basic Variance Estimator

Following the authors listed above, the separate population variance of the study vari-
able in stratified sampling is given by

(3.1) σ2
s0(R) =

L∑
h=1

Wh

(
σ2

zh − σ2
sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
.

This leads to the following estimator:

(3.2) ts0(R) =
L∑

h=1

Wh

(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
.

The Bias and MSE of ts0(R) are given respectively as

(3.3) Bias(ts0(R)) ≈ −
L∑

h=1

θhWh

(
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

)
,

and
(3.4)

MSE(ts0(R)) ≈
L∑

h=1

θhW
2
h

(
1

(σ2
Th + 1)2

)(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)
.
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3.2. The Separate Ratio Variance Estimator

(3.5) ts1(R) =
L∑

h=1

Wh

[(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
.

The Bias and MSE of ts1(R) are given respectively as

(3.6) Bias(ts1(R)) ≈
L∑

h=1

θhWh

[(
2σ2

ThZ̄
2
hλ12hCzh − σ2

zh(λ22h − 1)− σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)]
,

and

MSE(ts1(R)) ≈
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[
σ4

zh(λ40h − 1)− 2σ2
zhσ

2
yh(λ22h − 1)(σ2

Th + 1)

+ σ4
yh(λ04h − 1)(σ2

Th + 1)2

+ 4Czh

(
σ4

ThZ̄
4
hCzh − σ2

zhσ
2
ThZ̄

2
hλ30h + σ2

Thσ
2
yhZ̄

2
hλ12h(σ2

Th + 1)
)]

(3.7)

3.3. A Separate Generalized Variance Estimator

The generalized separate population variance estimators can be written as

tsp(R) =
L∑

h=1

Wh

[(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+ (σ2

xh − s2xh)
]

∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

.(3.8)

The Bias and MSE of tsp(R) are given respectively as

Bias(tsp(R)) =
L∑

h=1

−Whθh

[
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

− (gωψh)

∗
(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

− σ2
xh(λ04h − 1)

)]
,(3.9)

and

MSE(tsp(R))opt =
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)

− 1
(λ04h − 1)

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

)2]
.(3.10)
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4. SIMULATION STUDY

We consider a sample of size N = 2000 from two bivariate normal populations for
[
X
Y

]
determined by the following means and covariance matrices with N1 = 1200 and N2 = 800:

Stratum 1: µ =
[
4
2

]
, Σ =

[
2 2.7

2.7 6

]
, ρyx = 0.80,

Stratum 2: µ =
[
6
4

]
, Σ =

[
2 2.2

2.2 5

]
, ρyx = 0.70.

These 2000 observations are treated as our finite populations. For the 2000 values generated
from these distributions, the means, variances, and correlations are given by:

Stratum 1: µx1 = 4.021, µy1 = 2.010, σ2
x1 = 1.975, σ2

y1 = 5.987, ρyx1 = 0.797,

Stratum 2: µx2 = 6.070, µy2 = 4.006, σ2
x2 = 1.982, σ2

y2 = 4.977, ρyx2 = 0.702.

Overall parameter values are given by

µx = 4.8413, µy = 2.8791, σ2
x = 2.9671, σ2

y = 6.4644, ρyx = 0.7596.

We consider a sample of size n = 600, where n1 = 360 and n2 = 240. The stratum sample
size nh (h = 1, 2) is based on the proportional allocation, that is, nh = Wh × n. The scram-
bling variable S and T are assumed to have normal distributions with E(S) = 0, E(T ) = 1,
Var(S) = 0.5 and different values for Var(T ). In the combined and separate generalized
variance estimators, we choose α = 1, β = 0 and g = 1. Other choices of α and β in our
simulations had minimal impact.

The Percent Relative Efficiency (PRE) with respect to the stratified sampling is defined
as

PRE =
MSE(tc0(R))
MSE(tci(R))

× 100, where i = 0, 1 and p.

Since we are developing the proposed estimators based on randomized data, it is im-
portant to consider the privacy level as well. Gupta et al. (2018) [6] introduced a unified
measure of estimator quality (δ) given by

δ =
TheoreticalMSE

∆DP
, where ∆DP =

L∑
h=1

Wh∆DPh

is the privacy level for the model Z=TY+S as given by Yan et al. (2009) [15].

Theoretical and empirical MSEs and PREs for both the separate variance estimators
and combined variance estimators are reported in Table 1. For either separate or combined
estimators, the generalized estimator is clearly more efficient than the basic estimator and the
ratio estimator. One can note that the MSEs increase as the variances of T increase, which is
on expected lines due to extra noise in the data. However, this loss in efficiency is off-set by the
gain in privacy as shown by the δ-column. For example, the MSEs of the combined generalized
variance estimator tcp(R) increases from 0.2842 to 0.5024 when Var(T ) increases from 0.5 to 1,
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but δ value decreases from 0.0364 to 0.0323. In general, the proposed variance estimators
under the additive model (Z = Y + S) where Var(T ) = 0 are more efficient compared to the
generalized model (Z = TY + S) where Var(T ) > 0 by providing smaller MSEs. However,
the proposed variance estimators under the generalized model (Z = TY + S) are better by
providing smaller δ values if we consider the efficiency and the privacy simultaneously.

Table 1: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators
with σ2

y = 6.4644.

Var(S) Var(T) Estimator σ̂2
yσ̂2
yσ̂2
y MSE PRE δδδ Estimator σ̂2

yσ̂2
yσ̂2
y MSE PRE δδδ

0.5

0

ts0(R) 5.4368
0.0857 100

0.1664 tc0(R) 6.4141
0.1119 100

0.2144
0.0858 100 0.1131 100

ts1(R) 5.4542
0.0752 113.9627

0.1441 tc1(R) 6.4322
0.0985 113.6040

0.1887
0.0765 112.1568 0.1014 111.5384

tsp(R) 5.4402
0.0635 134.9606

0.1368 tcp(R) 6.4182
0.0858 130.4195

0.1644
0.0647 132.6120 0.0863 131.0544

0.3

ts0(R) 5.5456
0.2142 100

0.0442 tc0(R) 6.4434
0.2588 100

0.0530
0.2151 100 0.2606 100

ts1(R) 5.5547
0.1951 109.8923

0.0400 tc1(R) 6.4534
0.2376 108.9225

0.0486
0.1964 109.5213 0.2399 108.6285

tsp(R) 5.5443
0.1757 122.0261

0.0374 tcp(R) 6.4429
0.2169 119.3176

0.0444
0.1769 121.5941 0.2174 119.8712

0.5

ts0(R) 5.5357
0.2788 100

0.0357 tc0(R) 6.4141
0.3361 100

0.0431
0.2781 100 0.3370 100

ts1(R) 5.5446
0.2579 108.1039

0.0330 tc1(R) 6.4239
0.3147 106.8001

0.0404
0.2596 107.1263 0.3158 106.7131

tsp(R) 5.5344
0.2351 118.5878

0.0306 tcp(R) 6.4137
0.2842 118.2617

0.0364
0.2491 111.6419 0.2922 114.9897

0.8

ts0(R) 5.5128
0.3801 100

0.0310 tc0(R) 6.3931
0.4560 100

0.0375
0.3766 100 0.4528 100

ts1(R) 5.5216
0.3621 104.9710

0.0294 tc1(R) 6.4041
0.4355 104.7072

0.0358
0.3589 104.9317 0.4331 104.5486

tsp(R) 5.5115
0.3406 111.5971

0.0279 tcp(R) 6.3981
0.4047 112.6760

0.0333
0.3399 110.7972 0.4141 109.3455

1

ts0(R) 5.4970
0.4550 100

0.0299 tc0(R) 6.3897
0.5431 100

0.0360
0.4512 100 0.5382 100

ts1(R) 5.5057
0.4399 103.4325

0.0287 tc1(R) 6.3929
0.5235 103.7440

0.0347
0.4372 103.2021 0.5202 103.4602

tsp(R) 5.4957
0.4207 108.1530

0.0262 tcp(R) 6.3928
0.5024 108.1011

0.0323
0.4169 108.2273 0.4950 108.7272

Comparing the proposed separate variance estimators to the proposed combined vari-
ance estimators, it may appear that the separate estimators are better since they have smaller
MSE. However, one should note that these estimators degrade accuracy in comparison to the
combined estimators. For example, as the true variance of Y is 6.4644, the estimated vari-
ance of Y is 6.4137 for the combined variance estimator when Var(T ) = 0.5. However, the
estimated variance of Y is 5.5344 for the separate variance estimator when Var(T ) = 0.5.
The same is true for the other cases. This indicates that the proposed combined variance
estimators are more accurate than the separate variance estimators.
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5. APPLICATION

In this section a real data set is used to compare the performances of the combined
variance estimators. The data is obtained from Eurostat (2008) [4], and the sampling details
are provided in Sousa et al. (2014) [13], a paper that was co-authored by one of the co-authors
of the current paper. There are 1698 records in the population. The volume of purchase orders
reported by the Information and Communication Technologies for 2010 is taken as the study
variable Y . Turnover for the individual enterprises is the auxiliary variable X. The study
variable Y is scrambled using the additive scrambling variable S assumed to be a normally
distributed random variable with mean 0 and variance 0.5, and the multiplicative scrambling
variable T assumed to be a normally distributed random variable with mean 1 and four
different choices for its variance (0, 0.3, 0.5, and 1). Data summary is provided in Table 2.

Table 2: Population Characteristics and Sampling Information.

Stratum NNN ρyxρyxρyx µyµyµy σyσyσy µyµyµy σxσxσx Population

1 979 0.7802 2.15 2.46 3.12 2.68 N = 1698, ρyx = 0.9368

2 362 0.7952 16.67 6.86 20.31 6.02 µy = 14.44, σ2
y = 501.31

3 357 0.8408 45.88 30.21 56.33 30.18 µx = 17.97, σ2
x = 640.59

Table 3: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators.

Var(S) Var(T) Estimator σ̂2
yσ̂2
ŷσ2
y MSE PRE δδδ

0.5

0

tc0(R) 502.1499
1230.678 100

2485.8154
1228.833 100

tc1(R) 502.6576
1079.764 113.9765

2180.9880
1086.812 113.0676

tcp(R) 501.8341
955.227 128.8361

1929.4389
947.223 129.7300

0.3

tc0(R) 500.7685
3615.078 100

15.8680
3656.872 100

tc1(R) 501.557
3483.887 103.7656

15.2921
3457.51 105.7660

tcp(R) 503.1153
3353.681 111.1073

14.2817
3337.229 112.9630

0.5

tc0(R) 503.8318
5389.539 100

14.2064
5353.592 100

tc1(R) 501.3672
5092.119 105.8407

13.4224
5004.276 106.9803

tcp(R) 501.8327
4878.576 110.4736

12.8596
4841.631 110.5741

1

tc0(R) 501.3862
9792.979 100

12.9152
9719.734 100

tc1(R) 503.1442
9540.721 102.6440

12.5825
9574.217 101.5198

tcp(R) 500.9520
9240.276 105.9814

12.1863
9209.5 105.5403
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Theoretical and empirical MSEs and PREs are provided in Table 3 for each of the
proposed combined estimators. We used only the combined estimators in this numerical
application because of the inherent drawback in the separate estimators as pointed out at the
beginning of Section 3. The combined generalized variance estimator is clearly more efficient
than both the combined basic variance estimator and the combined ratio variance estimator.
Furthermore, the MSE increases as the variance of T is increased, meanwhile the unified
measure (δ) value decreases. For example, for the combined generalized variance estimator,
theoretical MSE is 3353.681 for σ2

T = 0.3 but increases to 9240.276 for σ2
T = 1. In contrast,

the (δ) value decreases from 14.2817 to 12.1863 indicating that using the multiplicative noise
T lowers the efficiency but the added privacy because of this more than compensates this
loss.

6. CONCLUSION

Separate and combined variance estimators are considered under RRT in stratified
random sampling. The simulation study shows that the generalized variance estimator is
more efficient than the other estimators. Also, the proposed combined variance estimators are
more accurate than the separate variance estimators. Furthermore, if one considers efficiency
and privacy simultaneously, the linear combination model Z = TY + S, where Var(T ) > 0,
produces better variance estimators compared to the additive model Z = Y +S where Var(T )
= 0. This can be attributed to the fact that proposed variance estimators under Z = TY +S

have higher privacy level and hence smaller δ values. The real data application in Section 5
shows the same improvement with the generalized estimator as was seen in the simulation
results of Section 4. We would like to mention that this work can be extended in several
directions in new studies. For example, one can work with the case when the mean of the
auxiliary variable is unknown. Also, the generalized estimator we suggest is not the only
option. One can use other forms of generalizations.
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1. INTRODUCTION

The advances in the field of Data Science requires the search for new families of dis-
tributions that adequately model real data has been increasing steadily in the last years.
The construction of different generation methods and even generators of families has made
it difficult to compare new proposals. In the midst of a huge set of existing families in the
literature of new distributions, to find a proposal that is in fact an excellent competitor when
compared to other existing ones, in terms of adjustment to real data sets and also that does
not present estimation problems, is a major challenge.

The classes of distributions in the early 1980s were based on the simple idea of adding
parameters to a baseline distribution. The mechanism by adding shape parameters to a
baseline distribution has proved to be useful to make the generated distributions more flexible
especially for studying tail properties than existing ones and for improving their goodness-of-
fit statistics to real data. Many special distributions in these families are discussed by Tahir
and Nadarajah (2015) [1].

The addition of parameters in the construction of new distributions/families was im-
proved by the inclusion of mathematical functions known in the literature, such as beta and
gamma functions, for example, which produce new generators with more flexible properties
than their baselines. Two well-known examples are the beta-G (Eugene et al., 2002) [2] and
gamma-G (Zografos and Balakrishnan, 2009) [3] generators.

However, the inclusion of such functions for generating new families brought, in some
cases, problems for parameter estimation. So, despite the fit being more suitable for some
types of data and, therefore, having a superior performance when compared to other gener-
ators, the estimation process can often be a problem.

In this context, this work presents a new family obtained by composing a very compet-
itive class in the literature with another class that has the gamma function in its structure.

Let G(x) be the cumulative distribution function (CDF) of a baseline distribution and
g(x) = dG(x)/dx be the corresponding probability density function (PDF) depending on a
parameter vector η. A generalized family is presented with two extra shape parameters by
transforming the CDF G(x) according to two sequential important classes. These classes,
called Marshall and Olkin-G and Gamma-G, are important for modeling data in several
areas, and they are reviewed below.

The CDF of the Marshall and Olkin’s (1997) [4] (MO-G) class (for θ > 0) is

(1.1) FMO-G(x) =
G(x)

θ + (1− θ)G(x)
=

G(x)
1− (1− θ)[1−G(x)]

, x ∈ R.

The density function corresponding to (1.1) has the form

(1.2) fMO-G(x) =
θ g(x)

[θ + (1− θ)G(x)]2
.
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For θ = 1, fMO-G(x) is equal to g(x). Equation (1.2) represents the PDF of the mini-
mum of n iid random variables having density g(x), say T1, ..., TN , where N has a geometric
distribution with probability parameters θ and θ−1 if 0 < θ < 1 and θ > 1, respectively.

Tahir and Nadarajah (2015, Table 2) [1] presented thirty distributions belonging to
this family. It is easily generated from the baseline quantile function (QF) by QMO-G(u) =
QG(θu/[θu+ 1− u]) for u ∈ (0, 1).

Marshall and Olkin considered the exponential and Weibull distributions for the base-
line G and derived some structural properties of the generated distributions. If G is an
exponential distribution, the special case refers to a two-parameter competitive model to the
Weibull and gamma distributions.

The CDF of the gamma-G (Γ-G) class (Zografos and Balakrishnan, 2009) [3] is

FΓ-G(x) = γ1(a,− log[1−G(x)]), x ∈ R,(1.3)

where a > 0 is an extra shape parameter, γ1(a, z) = γ(a, z)/Γ(a) is the incomplete gamma
function ratio, and γ(a, z) =

∫ z
0 t

a−1 e−tdt.

Then, the PDF of the Γ-G class can be expressed as

fΓ-G(x) =
1

Γ(a)
{− log[1−G(x)]}a−1 g(x).(1.4)

Each new Γ-G distribution follows from a given baseline G. For a = 1, the Γ-G class
reduces to G. If Z is a gamma random variable with unit scale and shape a > 0, then W =
QG(1− e−Z) has density (1.4). So, the Γ-G distribution is easily generated from the gamma
distribution and the QF of G.

The remaining of the paper is addressed as follows. Section 2 introduces the Marshall
and Olkin-Gamma-G (MOGa-G) family, and provides some special models. The maximum
likelihood estimates (MLEs) of its parameters is addressed in Section 3. Some simulations are
performed in Section 4 to estimate the biases of the MLEs. Two empirical applications illus-
trate the potentiality of the proposed family in Section 5. A variety of theoretical properties
are obtained in Section 6. Some conclusions remarks are offered in Section 7.

2. THE NEW FAMILY

By combining Equations (1.1) and (1.3), the CDF of the random variable X ∼MOGa-G
representing the new family has the form

(2.1) FX(x) =
γ1(a,− log[1−G(x)])

θ + (1− θ)γ1(a,− log[1−G(x)])
, x ∈ R.

By differentiating (2.1), the PDF of X follows as

(2.2) fX(x) =
θ{− log[1−G(x)]}a−1 g(x)

Γ(a) {θ + (1− θ)γ1(a,− log[1−G(x)])}2 .
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The density (2.2) can be interpreted from a sequence of N iid random variables, say
Z1, ..., ZN , each one having a gamma density with unit scale and shape a > 0, assuming that
N (is not fixed) has a geometric distribution with probabilities θ and θ−1 for 0 < θ < 1 and
θ > 1, respectively. By transforming the Zi’s via the baseline QF by Wi = QG(1− e−Zi)
(for i = 1, ..., N), Equation (1.2) defines the PDF of the minimum W1, ...,Wn. The proposed
family from the double composition of the two classes absorbs the impacts of their different
flexibilities on real applications.

Table 1 provides some special cases of (2.2), where Φ(x) and φ(x) are the CDF and
PDF of the standard normal distribution. The density and hazard (h(x) = f(x)/[1− F (x)])
functions of the MOGa-Weibull (MOGa-W) model are displayed in Figure 1, which provide
more flexibility to both functions for both classes applied separately to the Weibull model.
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(a) Density function.
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(b) Hazard function.

Figure 1: The density and hazard functions of the MOGa-W model.

The CDF (2.1) can be easily inverted to calculate the QF of the MOGa-G distri-
bution, say x = QX(u) = F−1

X (u) (for u ∈ (0, 1)), in terms of the baseline QF QG(·). The
inverse of FX(x) = u, where u is a uniform number in (0, 1), follows by combining the in-
verses of Equations (1.1) and (2.1). So, FX(x) = u gives z = z(u) = θu/[1− (1− θ)u] and
γ1(a,− log[1−G(x)]) = z(u). Hence, the QF of X can be expressed as

x = QG(v(u)),

where

v(u) = 1− exp
[
−γ−1

1

(
a, z(u)

)]
,

and γ−1
1 (a,w) =Q−1(a,1−w) is the inverse function of γ1(a,w). Some formulae for Q−1(a,1−w)

are given in http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.

http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/
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Table 1: Special Distributions in the MOGa-G family.

Distribution Baseline CDF Generated PDF

Normal G(x) = Φ(x) fX(x) =
θ{− log[1−Φ(x)]}a−1 φ(x)

Γ(a) {θ+(1−θ)γ1(a,− log[1−Φ(x)])}2

Logistic G(x) = 1
1+e−x fX(x) =

θ e−x {− log[1−(1+e−x)−1]}a−1

Γ(a) (1+e−x)2 {θ+(1−θ)γ1(a,− log[1−(1+e−x)−1])}2

Gumbel G(x) = 1− exp(−ex) fX(x) =
θ exp(a x−ex)

Γ(a) {θ+(1−θ)γ1(a,ex)}2

Log-Normal G(x) = Φ(log x) fX(x) =
θ φ(log x) {− log[1−Φ(log x)]}a−1

Γ(a) x {θ+(1−θ)γ1(a,− log[1−Φ(log x)])}2

Exponential G(x) = 1− exp(−λx), λ > 0 fX(x) = θ λa x(a−1)

Γ(a) {θ+(1−θ)γ1(a,λx)}2

Weibull G(x) = 1− exp(−(λx)γ), λ, γ > 0 fX(x) =
θ γλa γxa γ−1 exp{−(λ γ)γ}
Γ(a){θ+(1−θ)γ1[a,(λ x)γ ]}2

Gamma G(x) = γ1(α, βx), α, β > 0 fX(x) =
θ βα xα−1 e−βx {− log[1−γ1(α,βx)]}a−1

Γ(a) {θ+(1−θ)γ1(a,− log[1−γ1(α,βx)])}2

Pareto G(x) = 1− 1
(1+x)ν , ν > 0 fX(x) =

θ e−x [ν log(1+x)]a−1 g(x)

Γ(a) (1+e−x)2 {θ+(1−θ)γ1(a,ν log[1+x])}2

Dagum G(x) = [1 + (x/β)−α]−p, α, β, p > 0 fX(x) =
θ{− log[1−[1+(x/β)−α]−p]}a−1

g(x)

Γ(a){θ+(1−θ)γ1[a,− log(1−((x/β)−α+1)−p)]}

3. ESTIMATION

The MOGa-G family can be fitted to real data using the AdequacyModel package
(Marinho et al., 2019) [5] in the R software. This package does not require to define the log-
likelihood function, and it computes the MLEs, their standard errors (SEs), and the formal
statistics defined in Section 5. It is only necessary to provide the PDF and CDF of the
distribution to be fitted to a data set.

For example, if xi is one observation from (2.2) and η is a q-parameter vector specifying
G(·) as the Weibull CDF, the log-likelihood function for θ> = (a, θ,η>) from n observations
can be expressed as

`(θ) = n log(θ) + n log(γ) + na γ log(λ) + (aγ − 1)
n∑

i=1

log(xi)− λγ
n∑

i=1

xγ
i

− n log[Γ(a)]− 2
n∑

i=1

log{θ + (1− θ)γ1[a, (λxi)γ ]}.(3.1)

Due to the impossibility of obtaining the MLEs in closed form, numerical methods
to calculate the estimates that maximize `(·) are necessary. Several programming languages
and statistical software provides functions and routines that make it easy to obtain numerical
estimates by various interactive methods. In practice, these estimates are commonly found
in this way, since the Newton and quasi-Newton methods produce satisfactory results under
reasonable conditions of the object function, i.e., when they do not impose restrictions that
disturb the convergence of the algorithms.
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The AdequacyModel package of the programming language R is used to obtain the
MLEs, see R Core Team (2020) [6]. This library, created and maintained by one of the
authors of this paper, is widely cited by several works in statistics, and serves as a basis for
other library implementations available on the Comprehensive R Archive Network (CRAN).
By using the goodness.fit function, it is possible to provide an implementation of (2.2), and
obtain `(·) by returning the MLEs, and some measures of adequacy of fit. Further details
regarding this package can be obtained from Marinho et al. (2019) [5].

4. SIMULATIONS

Due to the probable absence of MLEs in closed-form for distributions belonging to
the MOGa-G family, it is necessary to examine the precision of the estimates calculated
numerically.

In order to do that, the biases of the estimators of the parameters of the MOGa-
Dagum(θ, a, α, β, p) and MOGa-Weibull(θ, a, λ, γ) distributions are determined, where G ∼
Dagum(α, β, p) and Weibull(γ, λ) are the baseline models, respectively. All parameters are
taken equal to one for different sample sizes reported in Tables 2 and 3.

The numbers in Tables 2 and 3 indicate that the estimation method behaves well when
the sample size increases. This is theoretically expected. However, in practice, difficulties
can be faced to other families due to the flatness of the log-likelihood function.

All Monte Carlo simulations can be reproduced using the script in https://github.

com/prdm0/MOGG. The simulations are parallelized and able to use all threads available by
a multicore processor, thus making them more computationally efficient, and consequently
requiring less time to complete.

The simulations are performed on a computer with an Intel(R) Core(TM) i5-9500 CPU
processor with 6 threads working at a maximum frequency of 3.00GHz, requiring, on this
hardware, a time of 15.4828 hours to perform all simulations, 7.7414 hours for the MOGa-
Dagum(θ, a, α, β, p) distribution, and 4.9688 hours for the MOGa-Weibull(θ, a, λ, γ) distri-
bution. Tables 2 and 3 reveal that the average biases of the MLEs could be very small for
n > 2, 000.

To generate observations from the random variable X with density f , the well-known
Acceptance-Rejection Algorithm for continuous random variables is very useful when the QF
involves complex functions that can lead to some numerical inaccuracies. For doing this,
another random variable Y is chosen such that it can generate observations from a PDF h

with the same support as f . Then, the acceptance and rejection algorithm is defined by the
following steps:

1. Generate an outcome y from Y ;

2. Generate an observation u from a random variable U ∼ U(0, 1);

3. If u < f(y)
c g(y) , where c is a real constant, accept x = y; otherwise reject y as an

outcome from X and return to 1.

https://github.com/prdm0/MOGG
https://github.com/prdm0/MOGG
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The constant c must be chosen in such a way that f(y)
c g(y) ≤ 1. Thus, to minimize the

computational cost of generating observations from X through the generated observations
from Y , c is chosen as the lowest possible value to maximize the likelihood of acceptance.
Further details of this method can be found in Rizzo (2019) [7].

Table 2: Average biases of the MLEs of the MOGa-Dagum(θ, a, α, β, p) distribution
calculated by the BFGS method from simulations.

n B(θ̂) B(â) B(α̂) B(β̂) B(p̂) Time (mins)

10 0.2213 2.1944 2.6971 1.5803 1.3190 0.6960
20 0.4240 2.4793 1.5591 1.8083 0.7414 0.9819
60 0.7458 2.2661 0.5598 1.8495 0.2812 1.9417

100 0.6194 1.9438 0.3312 1.6142 0.2935 2.7208
200 0.3950 1.4262 0.1856 1.1556 0.3611 4.4534
400 0.2077 0.9599 0.1082 0.6157 0.4076 7.4698
600 0.1200 0.7213 0.0767 0.4024 0.3572 9.4975

1000 0.0629 0.4791 0.0503 0.2123 0.2584 12.4221
2000 0.0362 0.2958 0.0298 0.1145 0.1878 20.7251
5000 −0.0040 0.1325 0.0159 0.0144 0.0167 28.3380

10000 −0.0133 0.0815 0.0096 0.0081 0.0039 50.9298
20000 −0.0111 0.0349 0.0037 0.0006 −0.0109 68.6320
30000 −0.0036 0.0191 0.0006 −0.0041 −0.0034 97.3046
50000 −0.0057 0.0129 0.0016 0.0015 −0.0026 158.3737

Table 3: Average biases of the MLEs of the MOGa-Weibull(θ, a, λ, γ) distribution
calculated by the BFGS method from simulations.

n B(θ̂) B(â) B(λ̂) B(γ̂) Time (mins)

10 0.0818 0.1362 4.9274 1.2407 0.6716
20 0.3404 −0.0177 3.4160 1.4117 0.8077
60 0.7037 −0.0677 1.8806 1.3385 1.1773

100 0.6698 −0.0535 1.3684 1.1796 1.2643
200 0.5371 −0.0299 0.8265 0.9110 1.7886
400 0.3371 −0.0047 0.4205 0.5967 2.8386
600 0.2457 0.0076 0.2685 0.4306 3.6867

1000 0.1476 0.0093 0.1553 0.2818 5.0944
2000 0.0731 0.0035 0.0758 0.1530 8.8577
5000 0.0264 0.0007 0.0283 0.0618 15.8586

10000 0.0128 −0.0007 0.0142 0.0318 29.8629
20000 0.0053 −0.0012 0.0071 0.0160 48.7417
30000 0.0023 −0.0014 0.0053 0.0119 64.7387
50000 0.0023 −0.0004 0.0028 0.0063 112.7422

5. APPLICATIONS

Two applications compare the MOGa-Weibull (MOGa-W for short) model with seven
extended Weibull distributions: the beta-Weibull (β-W) (Famoye et al., 2005) [8], Ku-
maraswamy Weibull (Kw-W) (Cordeiro et al., 2010) [9], Marshall-Olkin Weibull (MO-W)
(Ahmed et al., 2017) [10], Marshall-Olkin Extended Weibull (MOE-W) (Cordeiro et al.,
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2019) [11], exponentiated Weibull (exp-W) (Mudholkar and Srivastava, 1993) [12], gamma
Weibull (Γ-W) (Cordeiro et al., 2016) [13], and exponentiated generalized Weibull (EG-W)
(Oguntunde et al., 2015) [14] (with a = 1). Some of these distributions are widely used in
practice.

The log-likelihood for θ from the MOGa-W distribution from one observation can be
expressed as

`(θ) = log(θ) + log(γ) + (a γ) log(λ) + (a γ − 1) log(x)− (γ x)γ − log[Γ(a)]

− 2 log{θ + (1− θ)γ1[a, (λx)γ ]},(5.1)

where θ = (a, θ, λ, γ)>. The components of the score function are

Ua(θ) = γ log(λ) + γ log(x)− ψ(0)(a)−
2
{
(1− θ)A− (1− θ)ψ(0)(a)γ1[a, (xλ)γ ]

}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

,

Uθ(θ) =
1
θ
− 2{Γ(a)− γ1[a, (λx)γ ]}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

,

Uλ(θ) =
γ

λ
[a− (λx)γ ] +

2γ λ−1(λx)a γ(1− θ) exp{−(λx)γ}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

and

Uγ(θ) =
1
γ

+ a log(λ) + a log(x)− (λx)γ log(λx) +
2(1− θ)(λx)γ a log(λx) exp{−(λx)γ}

θ Γ(a) + (1− θ) γ1[a, (λx)γ ]
,

where ψ(n)(x) is the n-th derivative of the digamma function,

A = log[(λx)γ ] γ1[a, (λx)γ ] +G3,0
2,3

(
(λx)γ

∣∣∣ 1, 1
0, 0, a

)
,

and Gm,n
p,q

(
z
∣∣∣ a1,...,ap

b1, ..., bq

)
is the Meijer G function.

The AdequacyModel package is used to fit the previous distributions to two real data
sets. The SANN method, which is a variant of simulated annealing algorithm (Belisle, 1992)
[15], is used here. The distributions are compared via the Anderson Darling (A∗) and Cramér
von Mises (W∗) statistics reported in the goodness.fit function.

For the first case, the betareg package is applied to a modification of the “FoodEx-
penditure” data, which refer to the proportions of income spent on food for 38 households in
a large US city (according to the package information). The household expenditures for food
are given by

data = FoodExpenditurefood/#(FoodExpenditurefood),

where FoodExpenditurefood is the random variable corresponding to the household expen-
ditures for food, and #(·) indicates the number of observations on this variable. The obser-
vations for the first data set are given bellow:

0.4210000, 0.4382105, 0.5721316, 0.1955526, 0.2758158, 0.3565263, 0.6120000, 0.4730526,
0.3726579, 0.2322368, 0.3732632, 0.5158947, 0.3612632, 0.5563421, 0.4591053, 0.2533947,
0.3685526, 0.2410526, 0.4955526, 0.2010789, 0.3653158, 0.2544737, 0.5685263, 0.2859474,
0.7626316, 0.2863684, 0.4884474, 0.3060263, 0.4754474, 0.3826053, 0.5050526, 0.6820526,
0.7587632, 0.4176053, 0.3923684, 0.2513158, 0.6070000, 0.3881842.
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Some descriptive statistics are reported in Table 4. The minimum value refers to a
family of 3 people and income of 39,151, which does not represent the lowest family income
for the current data, as expected, occupying only the fifth position among those with the
lowest income. The maximum value corresponds to a family of 6 people with an income of
69,929, the second-largest number among the number of people per family in the group in
question. Furthermore, we can note that the current data present positive asymmetry and
negative kurtosis.

Table 4: Descriptive statistics for the food data.

Minimum 0.1956
1st Qu. 0.2913
Median 0.3903
Mean 0.4198
3rd Qu. 0.5027
Maximum 0.7626
Standard Deviation 0.1480
Skewness 0.5250
Kurtosis −0.4440

In addition, the standard deviation is relatively low. Figure 2 displays the total time on
test (TTT) plot for the first data set, which shows that the failure function is decreasing. So,
the MOGa-W distribution is appropriate to fit these data, since its hazard function presents
this shape (see, Figure 1(b)).
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Figure 2: TTT plot for the food data.

The MLEs, their standard errors (SEs) (in parentheses), and the statistics W∗ and A∗

for the fitted models to the current data are listed in Table 5. The results indicate that the
proposed model has better performance than the other seven fitted models.
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Table 5: Estimation results for food data.

Model â θ̂ λ̂ γ̂ W ∗ A∗

MOGa-W(a, θ, λ, γ) 0.9261 1.3796 33.3230 25.3988 0.0339 0.2376
(0.0262) (0.2238) (0.2853) (0.0825)

β−W(a, θ, λ, γ) 9.9288 0.1700 9.7594 1.5305 0.0435 0.2594
(0.0290) (0.0204) (<0.0001) (<0.0001)

KW-W(a, θ, λ, γ) 0.0498 99.9998 1.0760 23.4028 1.3309 6.7426
(0.0080) (16.2259) (0.0031) (0.0146)

MOE-W(a, θ, λ, γ) 0.1366 2.0204 62.7220 4.2956 0.0354 0.2579
(0.1599) (<0.0001) (<0.0001) (0.7365)

EGW(a, b, λ, γ) 5.6189 6.1833 1.2870 1.3798 0.0371 0.2518
(0.0028) (0.0009) (0.1159) (0.1480)

MO-W(a, λ, γ) 0.1592 — 1.5860 4.2671 0.0345 0.2573
(0.0717) (—) (0.1335) (0.1665)

exp-W(a, λ, γ) 6.1102 — 4.4680 1.3858 0.0372 0.2523
(0.4222) (—) (0.3175) (0.1677)

γ-W(a, λ, γ) 5.7515 — 10.0000 1.2087 0.0879 0.6599
(0.0015) (—) (0.0001) (0.0082)

A data set collected in a pilot study about hypertension in the Dominican Republic
in 1997 refers to the second application. The observations are the systolic blood pressure
of persons who came to medical clinics in several villages for a variety of complaints. The
observations for the data set in question are:

150, 120, 120, 180, 138, 115, 130, 150, 200, 120, 190, 90, 130, 120, 200, 140, 110, 134, 160,
140, 105, 126, 129, 120, 100, 130, 118, 144, 180, 138, 110, 140, 120, 118, 110, 110, 130, 140,
130, 165, 180, 130, 140, 112, 130, 158, 112, 150, 140, 142, 110, 140, 130, 132, 140, 140, 122,
128, 90, 118, 120, 110, 122, 200, 110, 140, 150, 120, 150, 120, 164, 122, 112, 130, 140, 102,
122, 130, 102, 130, 122, 200, 140, 180, 124, 110, 124, 90, 120, 159, 142, 140, 118, 122, 108,
170, 120, 140, 100, 118, 110, 114, 150, 160, 140, 190, 118, 120, 150, 120, 200, 150, 168, 110,
142, 150, 160, 142, 160, 150, 110, 128, 122, 150, 140, 122, 120, 130, 100, 130, 150, 130, 100,
120, 105, 100, 150, 196, 130, 110, 140, 122, 110, 164, 120, 120, 150, 160, 150, 135, 124, 110,
100, 95, 130, 120, 108, 118, 170, 105, 120, 95, 95, 120, 140, 142, 160, 110, 190, 180, 130, 130,
120, 204, 150, 150, 120, 122, 120, 130, 140, 148, 118, 126, 136, 140, 130, 102, 110, 110, 130,
126, 142, 140, 128, 130, 124, 162, 130, 130, 110, 80, 166, 140, 160, 160, 140, 98, 138, 120, 112,
112, 134, 140, 115, 140, 98, 115, 120, 80, 160, 126, 110, 130, 104, 236, 118, 120, 140, 120, 98,
164, 150, 110, 120, 130, 170, 180, 110, 120, 130, 118, 130, 190, 158, 90, 99, 210, 180, 140, 184,
105, 120, 150, 140, 130, 160, 118, 210, 100, 170, 150, 130, 170, 150, 120, 134, 90, 125, 170,
140, 150, 110, 105, 140, 120, 100, 124, 112, 160, 140, 118, 190, 110, 118, 160, 150, 124, 128,
150, 120, 125, 118, 132, 110, 143, 170, 98, 124, 180, 178, 110, 98, 159, 110, 140, 130, 122, 110,
98, 180, 90, 118, 165, 138, 138, 170, 106, 170, 140, 90, 118, 110, 102, 102, 180, 100, 110, 162,
140, 110, 98, 140, 140, 110, 170, 112, 90, 102, 106, 124, 110, 180, 138, 90, 150, 126, 110, 130,
150, 145, 140, 156, 110, 150, 160, 120, 140, 120, 110, 120, 140, 160, 160, 110, 150, 118, 110,
120, 120, 146, 124, 170, 124, 170, 159, 120, 120, 118, 152, 190.
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Table 6 provides the descriptive statistics for the second data set. Considering that the
systolic blood pressure represents the highest number presented in the pressure measuring
equipment, the maximum (236) found in this table should represent an individual with serious
heart problems. This is due to the fact that the normal systolic pressure is 120.

Table 6: Descriptive statistics for the clinic data.

Minimum 80
1st Qu. 118
Median 130
Mean 133
3rd Qu. 150
Maximum 236
Standard Deviation 25.7157
Skewness 0.7893
Kurtosis 0.5908

The minimum value (80) should be for an individual who probably suffers from low
blood pressure. Also note that the data set has positive skewness. This indicates that few
people have high pressure values and, in this case, the mode is 120, which represents a good
value for systolic pressure.

Figure 3 provides the TTT plot for the second clinic data, which shows that the hazard
function is decreasing, thus supporting the MOGa-W model.
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Figure 3: TTT plot for the clinic data.

The MLEs of the parameters, their SEs and the values of the adequacy measures for the
fitted models to the clinic data are reported in Table 7. By comparing the measure values,
the proposed distribution outperforms all other fitted models.
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Table 7: Estimation results for clinic data.

Model â θ̂ λ̂ γ̂ W ∗ A∗

MOGa-W(a, θ, λ, γ) 9.6293 3.6407 6.2608 12.8234 0.5093 2.8076
(0.0062) (0.1824) (0.0244) (0.0079)

β−W(a, θ, λ, γ) 31.0847 47.1463 0.0169 2.0540 0.7540 4.2794
(0.0127) (<0.0001) (0.0001) (<0.0001)

KW-W(a, θ, λ, γ) 7363.2810 0.0392 1.4676 0.6146 0.5351 2.9617
(0.0419) (0.0004) (<0.0001) (<0.0001)

MOE-W(a, θ, λ, γ) 101.1347 0.4238 0.0309 1.7024 1.1441 6.6446
(46.7828) (0.1008) (0.0036) (0.1681)

EGW(a, b, λ, γ) 0.2351 140.0000 0.4576 0.7425 0.8925 5.3338
(0.0025) (3.2785) (<0.0001) (<0.0001)

MO-W(a, λ, γ) 173.2139 — 0.0212 1.6019 1.4760 8.5870
(0.0001) (—) (0.0002) (0.0001)

exp-W(a, λ, γ) 69.0291 — 0.0240 1.3455 0.8899 5.0941
(0.0838) (—) (0.0002) (<0.0001)

Γ-W(a, λ, γ) 9.1122 — 0.0261 1.7464 0.6227 3.4882
(0.9633) (—) (0.0029) (0.0803)

6. MATHEMATICAL PROPERTIES

Here, some mathematical properties for the MOGa-G family are presented based on a
linear representation for its density function in terms of “exponentiated-G” (exp-G) densities.

6.1. Linear Representation

For an arbitrary CDF G(x), the CDF and PDF of the exp-G distribution with power
parameter a > 0 are

Πa(x) = G(x)a and πa(x) = a g(x)G(x)a−1,

respectively. This class of distributions is quite useful in several applications. In fact, Tahir
and Nadarajah (2015) [1] cited more than seventy papers on exponentiated distributions in
their Table 1.

First, the CDF of the MO-G distribution (1.2) admits the linear representation (Barreto-
Souza et al., 2013) [16]

(6.1) FMO−Γ(x) =
∞∑
i=0

wMO-G
i Πi+1(x) =

∞∑
i=0

wMO-G
i G(x)i+1,

where the coefficients are (for i = 0, 1, ...)

wMO−Γ
i = wMO−Γ

i (θ) =


(−1)i θ

(i+ 1)

∞∑
j=i

(j + 1)
(
j

i

)
θ̄j , θ ∈ (0, 1),

θ−1(1− θ−1)i, θ > 1,

and θ̄ = 1− θ.
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Second, the linear combination for the Γ-G cumulative distribution (1.4) follows from
Castellares and Lemonte (2015) [17] as

(6.2) FΓ-G(x) =
∞∑

j=0

wΓ-G
j Πa+j(x).

Here,

wΓ-G
j = wΓ-G

j (a) =
ϕj(a)
(a+ j)

,

ϕ0(a) =
1

Γ(a)
, ϕj(a) =

(a− 1)
Γ(a)

ψj−1(j + a− 2), j ≥ 1,

and

ψn−1(x) =
(−1)n−1

(n+ 1)!

[
Hn−1

n − x+ 2
n+ 2

Hn−2
n +

(x+ 2)(x+ 3)
(n+ 2)(n+ 3)

Hn−3
n − ···

+ (−1)n−1 (x+ 2)(x+ 3)···(x+ n)
(n+ 2)(n+ 3)···(2n)

H0
n

]

is the Stirling polynomial, Hm
n+1 = (2n+ 1−m)Hm

n + (n−m+ 1)Hm−1
n is a positive integer,

H0
0 = 1, H0

n+1 = 1× 3× 5× ··· × (2n+ 1) and Hn
n+1 = 1.

By inserting (6.2) in Equation (6.1) and via a result for a power series raised to a
positive integer (Gradshteyn and Ryzhik, 2000) [18], the expansion for the cdf of the MOGa-G
distribution reduces to

FMO−Γ-G(x) =
∞∑
i=0

wMO-Γ
i G(x)(i+1)a

 ∞∑
j=0

wΓ-G
j G(x)j

i+1

=
∞∑
i=0

wMO-Γ
i G(x)(i+1)a

∞∑
j=0

ci+1,j G(x)j =
∞∑

i,j=0

di,j Π(i+1)a+j(x),

where di,j = di,j(a, θ) = wMO-G
i ci+1,j(a), ci+1,0(a) = (wΓ-G

0 )i+1 and, for m ≥ 1, ci+1,m(a) =
1

mwΓ-G
0

∑m
r=1 [r(i+ 2)−m]wΓ-G

r ci+1,m−r(a).

By differentiating the last equation, the linear representation for the MOGa-G density
holds

(6.3) fMO−Γ-G(x) =
∞∑

i,j=0

di,j π(i+1)a+j(x).

So, some structural properties of the proposed family can be determined from the double
linear combination (6.3) and those properties of the exp-G distribution. In most applications,
the indices i and j can vary up to a small number of terms.
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6.2. Some quantities

Hereafter, let Ti,j ∼ exp-G[(i+ 1)a+ j]. The n-th moment of X can be determined
from (6.3) as

µ′n = E(Xn) =
∞∑

i,j=0

di,j E(Ti,j) =
∞∑

i,j=0

[(i+ 1)a+ j − 1] di,j τ [n, (i+ 1)a+ j − 1],(6.4)

where

τ(n, a) =
∫ ∞

−∞
xnG(x)a g(x)dx =

∫ 1

0
QG(u)n uadu.

Expressions for moments of several exponentiated distributions can be found in the
papers cited in Tahir and Nadarajah (2015, Table 1). We give just one example from Equation
(6.4) by taking the exponential distribution with rate λ > 0 for the baseline G. It follows easily
as

µ′n = n!λn
∞∑

i,j,m=0

(−1)n+m [(i+ 1)a+ j] di,j

(m+ 1)n+1

(
(i+ 1)a+ j − 1

m

)
.

For empirical purposes, the shape of many distributions can be usefully described by
the incomplete moments. These moments play an important role for measuring inequality.
For example, the mean deviations and Lorenz and Bonferroni curves depend upon the first
incomplete moment of the distribution. The n-th incomplete moment of X can be expressed
as

mn(y) =
∫ y

−∞
xn fX(x)dx =

∞∑
i,j=0

[(i+ 1)a+ j] di,j

∫ G(y)

0
QG(u)n u(i+1)a+j−1 du.(6.5)

The definite integral in (6.5) can be evaluated for most baseline G distributions.

The moment generating function (MGF) M(t) = E(etX) of X can be expressed from
(6.3)

M(t) =
∞∑

i,j=0

di,j Mi,j(t) =
∞∑

i,j=0

[(i+ 1)a+ j] di,j ρ(t, (i+ 1)a+ j − 1),(6.6)

where Mi,j(t) is the MGF of Yi,j and

ρ(t, a) =
∫ ∞

−∞
etx G(x)a g(x)dx =

∫ 1

0
exp{t QG(u)}uadu.

The MGFs of several MOGa-G distributions can be determined from Equation (6.6).
For example, the generating function of the MOGa-exponential with parameter λ (if t < λ−1)
is

M(t) =
∞∑

i,j=0

[(i+ 1)a+ j] di,j B((i+ 1)a+ j, 1− λt).
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7. CONCLUSIONS

A new family of distributions called the Marshall and Olkin-Gamma-G family with
two shape parameters is introduced. The estimation of the unknown parameters is done via
the maximum likelihood method and a simulation study is conducted to verify its adequacy.
Additionally, the usefulness of the proposed family is shown empirically by means of two
applications to real data. In fact, the new family can generate very competitive distributions
with the same number of parameters than others constructed by existing classes.
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1. INTRODUCTION

Balancing is an essential and desirable statistical property of block design. The concept
of balance has been used in several senses in the literature, viz., variance balance, efficiency
balance, pairwise balance, general efficiency balance etc. The concept of general efficiency
balance was given by [9]. When an incomplete block design is compared against any other
design i.e. either a completely randomized design (CRD) or randomized complete block design
(RCBD) both having same number of treatments, but not necessarily the same number of
replications such that the ratio of variances of the estimates of any treatment contrast for
two designs is constant, then such an incomplete block design has been called GEB design.

Definition 1.1. A connected block design is called a General Efficiency Balanced
(GEB) design, if for some θ, s1, s2, ..., sv(> 0), the information matrix (C) can be expressed
as

(1.1) C = θ

[
S− 1

g
ss′

]
,

where θ = {n− trace(NK−1N′)}/(g − 1
g s′s), S = diag(s1, s2, ..., sv), s = (s1, s2, ..., sv)′ and

s′1 = g. N is the v×b incidence matrix of treatments vs blocks, K is the diagonal matrix of
block sizes and n is the total number of observations.

Several series of variance balanced and efficiency balanced designs as subclasses of GEB
designs through the technique of reinforcement were constructed by [9]. It was pointed out
that a variance balanced design or an efficiency balanced design cannot be constructed in
(v+2) or more treatments through reinforcement. A method of constructing GEB designs
through method of reinforcement of a Balanced Incomplete Block (BIB) design was given
by [24]. They found that if one new treatment is added to each block of the BIB design,
then the resultant design will be a GEB design with (v+1) treatments. Different aspects of
efficiency-balanced designs have been studied in [30] and [34].

Definition 1.2. A connected block design with v* = v + 1 treatments, b* blocks,
block sizes k, replication numbers r = (r1′v r0)′ and C of the form

C =
[
(a + b)Iv − b1v1′v −c1v

−c1′v d

]
(1.2)

is a GEB design with s = [b1′v c]′ and g = vb+c, where a, b, c and d are positive integers
satisfying a − b(v − 1) = c, cv = d, r is the replication of v treatments and r0 is the
replication of (v + 1)-th treatment.

The above C-matrix is identical to the structure of the C-matrix of a Balanced Test
Treatment Incomplete Block (BTIB) design given by [2]. This equivalence shows that
GEB designs are identical to BTIB designs and can be useful in making test treatments
control comparisons. In [32], it has been shown that all the BTIB designs are also GEB
designs and vice-versa for a single control case. However for many controls, this result does
not hold good.
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Example 1.1. The block contents of a GEB design (see in [32]) with parameters
v* = 7 (= 6+1), b* = 11, r = 7, r0 = 2 and k = 4 are (1, 2, 3, 4), (5, 6, 1, 2), (3, 4, 5, 6),
(5, 2, 1, 4), (3, 6, 5, 2), (1, 6, 3, 2), (5, 4, 1, 6), (3, 2, 5, 4), (1, 4, 3, 6), (1, 3, 5, 7) and (2, 4,
6, 7). The information matrix for this design is

C =
1
4

[
25I6 − 41616 −1′6

−1′6 6

]
.

It is seen that this is a GEB design with s =
1
4
[41′6 1]′ and g = 6.25. Some methods of

constructing GEB design with equal and unequal block sizes were given by [10] along with a
catalogue of GEB designs with efficiencies.

Example 1.2. The block contents of a GEB design (see in [10]) with parameters
v* = 7 (= 6+1), b* = 11, r = 4, r0 = 9 and k = 3 are (1, 2, 7), (3, 4, 7), (5, 6, 7), (1, 6, 7),
(3, 2, 7) (5, 4, 7), (1, 4, 7), (3, 6, 7), (5, 2, 7), (1, 3, 5) and (2, 4, 6). The information matrix
for the given design is

C =
1
3

[
8I6 − 4161′6 −16

−1′6 18

]
.

This is a GEB design with s =
1
3
[41′6 1]′ and g = 8.33.

A definition of GEB design for the case when there are treatments belonging to two
disjoint sets is given below.

Definition 1.3. Consider a design d with v = v1 + v2 treatments (where v1 is the
number of treatments belonging to 1-st set and v2 is the number of treatments belonging to
2-nd set; v1, v2 ≥ 2) having a C matrix of the form

C =
[
(f1 − f2)Iv1 + f21v11

′
v1

−f31v11
′
v2

−f31v21
′
v1

(f4 − f5)Iv2 + f51v21
′
v2

]
,(1.3)

where f1, f2, f3, f4, f5 > 0 and f1 = f2v1 + f3v2, and f4 = f3v1 + f5v2. The design d is said
to be a GEB design if and only if f2f5 = f2

3 . It can be shown that the C-matrix of a GEB
design given in (1.3) can be expressed in the form of C-matrix of (1.1) with

s = [f21′v1
f31′v2

]′, S =
[
f2Iv1 0

0 f3Iv2

]
, g = f2v1 + f3v2 and θ =

f1

f2
.

The above C-matrix in (1.3) is identical to the structure of the C-matrix of the balanced
block design obtained for comparing two disjoint sets of treatments called Balanced Bipartite
Block (BBPB) design. The interest here is to estimate the contrasts of the type (τi − τj)
with as high precision as possible, where τi and τj belong to 1-st and 2-nd set of treatments,
respectively.

Example 1.3. The block contents of a GEB design (see in [18]) with parameters
v1 = 8, v2 = 2, b = 18, r1 = 5, r2 = 16 and k = 4 are (1, 2, 9, 10), (3,4, 9, 10), (5, 6, 9, 10),
(7, 8, 9, 10), (1, 4, 9, 10), (3, 2, 9, 10), (5, 8, 9, 10), (7, 6, 9, 10), (6, 1, 9, 10), (8, 3, 9, 10),
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(2, 5, 9, 10), (4, 7, 9, 10), (8, 1, 9, 10), (6, 3, 9, 10), (4, 5, 9, 10), (2, 7, 9, 10), (1, 3, 5, 7) and
(2, 4, 6, 8). The information matrix of this design is

C =
1
4

[
16I8 − 181′8 −4181′2
−4121′8 64I2 − 16121′2

]
.

Here f2
3 = f2f5 and the design is a GEB design with s =

1
4
[1′8 41′2], g=3 and θ = 4.

An overview of block designs for comparing test treatments with control treatments
was given in [11]. A method of constructing GEB block designs with unequal block sizes
for comparing two disjoint sets of treatments, with each set consisting of two or more treat-
ments, has been developed by [22]. Optimal first order circular block designs with fewer
blocks considering the correlated observations for an even number of treatments have been
constructed in [31]. They developed GEB circular block designs with correlated observations
for an even number of treatments. A-optimal/efficient designs for making the comparison
between treatments that belongs to two disjoint sets with equal and unequal blocks were
obtained by different authors (see for details [25, 21, 19, 20, 23, 15, 12]). Some methods of
construction of BBPB designs using incidence matrices of BIB designs and two-associate-
class partially balanced incomplete block group divisible designs were discussed in [33].
In another case of block design setup, experiments may be carried out using plots occur-
ring in long, narrow rows wherein spatial fertility trends may occur. In such situations, the
response may also depend on the spatial position of the experimental unit within a block.
One way to overcome such situations is the suitable arrangement of treatments over plots
within a block such that the arranged design is capable of completely eliminating the effects
of defined components of a common trend. Such designs have been called Trend Free Block
(TFB) designs (see in [6]). These designs are constructed so that treatment effects and trend
effects are orthogonal. A necessary and sufficient condition for a block design to be linear
trend free was obtained in [35], and the concepts and properties of Nearly TFB designs with
linear and quadratic trends over plots within blocks were highlighted in [36]. A lot of litera-
ture is also available which deals with different aspects of block designs incorporating trend
effects (see, for instance, [4, 5, 3, 13, 14, 16, 17, 26]). An algorithm to construct a series of
exact optimum designs resistant to linear and quadratic time trends has been developed by
[1]. An integer programming approach for the construction of trend-free split-plot designs
was developed by [7].

This article deals with Trend Resistant General Efficiency Balanced Bipartite Block
(TR-GEBBPB) designs when there are two disjoint sets of treatments (one set may be tests
and other may be controls). Series of TR-GEBBPB designs for comparing a treatment from
set 1 to a treatment from set 2, with more precision have been developed. The interest here
is to estimate the contrasts pertaining to test treatments vs. control treatments with higher
precision in the presence of trend.

2. GEBBPB DESIGNS IN THE PRESENCE OF TREND

Consider the following model in block design set-up for v treatments (v = v1 + v2; v1

treatments in first set and v2 treatments in second set) and b blocks of size k each incorporat-
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ing trend component (within-block trend effects are represented by orthogonal polynomials
of p-th degree, p ≤ k):

(2.1) Y = µ1 + ∆′τ + D′β + Zρ + e,

where Y is a n × 1 vector of observations, µ is general mean, 1 is a n × 1 vector of unity,
∆′ is a n × (v1 + v2) matrix of observations versus treatments, τ is a (v1 + v2) × 1 vector
of treatment effects, D′ is a n× b incidence matrix of observations versus blocks, β′ is a
b×1 vector of block effects, Zρ represents the trend effects. The matrix Z, of order n×p,
is the matrix of coefficients given by Z = 1b ⊗ F where F is a k×p matrix with columns
representing the (normalized) orthogonal polynomials and e is a n×1 vector of errors with
E(e) = 0 and V(e) = σ2 In. Further, 1′ F = 0, F′ F = Ip.

Let N be a (v1 + v2) × b incidence matrix, which is partitioned as

∆D′ = N =
(
N1

N2

)
,

where N1 is a v1 × b incidence matrix pertaining to v1 treatments and N2 is a v2 × b
incidence matrix pertaining to v2 treatments. The model (2.1) can be written as

(2.2) Y = X1θ1 + X2θ2 + e,

where X1 = [∆′] = [∆′
1 ∆′

2], X2 = [1 D′ Z], θ1 = τ and θ1 = [µ β′ ρ′]′.

X1 is the matrix of effects of interest and X2 is the matrix of nuisance effects. The
joint information matrix for estimating different effects is obtained as:

C =

r1Iv1 −
1
k
N1N′

1 −
1
b
∆1ZZ′∆′

1 −1
k
N1N′

2 −
1
b
∆1ZZ′∆′

2

−1
k
N2N′

1 −
1
b
∆2ZZ′∆′

1 r2Iv2 −
1
k
N2N′

2 −
1
b
∆2ZZ′∆′

2

,

where r1 and r2 are the replications of the first and second set of treatments, respectively.

Definition 2.1. A bipartite block design is said to be balanced with respect to set
1 vs set 2 if each treatment from a set appears together with every other treatment of the
same set a constant number of times (say, λ∗ii, i = 1,2) and each treatment from a set appears
together with every other treatment of a different set a constant number of times (say, λ∗12).

Definition 2.2. A bipartite block design is said to be general efficiency balanced i.e.
GEBBPB if its information matrix (C) is of the form (1.3).

Definition 2.3. A GEBBPB design is said to be Trend Resistant (TR-GEBBPB)
design if the adjusted treatment sum of squares of block model with trend is same as adjusted
treatment sum of squares of block model without trend.
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3. METHODS OF CONSTRUCTING TR-GEBBPB DESIGNS

3.1. Method 1

Consider a Semi-regular (SR) group divisible design with parameters v1 = mn (m < n),
b1, r1, k1, λ11 and λ12. Consider the (m, n) group divisible association scheme in m blocks
each of size n each with v1 = mn, b2 = m, r2 = 1, k2 = n, λ21 = 1 and λ22 = 0. Augment
(k2 − k1) = v2 number of treatments to the SR design and juxtapose both the design and
the association scheme. Fold-over the whole plan and the resultant design is a TR-GEBBPB
design with parameters v1 = mn, v2, b = 2(b1 + b2), r′ = [2(r1 + r2)1′v1

2b11′v2
], k = k2, λ

∗
11 =

2λ12, λ
∗
12 = 2r1 and λ∗22 = 2b1. The information matrix for this design is given by

C =
2
k

[
r2
1Iv1 − 1v11

′
v1

−r11v11
′
v2

−r11v21
′
v1

r2
1k2Iv2 − r2

11v21
′
v2

]
.

Example 3.1.1. Consider a SR group divisible design (SR 9 in [8]) with parameters
v1 = 8, b1 = 16, r1 = 4, k1 = 2, m = 2, n = 4, λ11 = 0 and λ12 = 1 . The (2, 4) group divisible
association scheme with two blocks each of size four is (1, 3, 5, 7) and (2, 4, 6, 8) with v1 = 8,
b2 = 2, r2 = 1, k2 = 4, λ21 = 1 and λ22 = 0. Following above procedure a TR-GEBBPB design
with parameters v1 = 8, v2 = 2, b = 36, k = 4, r′ = [101′8 321′2], λ

∗
11 = 2, λ∗12 = 8 and λ∗22 = 32

is obtained with block contents as (1, 2, 9, 10), (3,4, 9, 10), (5, 6, 9, 10), (7, 8, 9, 10), (6, 1,
9, 10), (8, 3, 9, 10), (2, 5, 9, 10), (4, 7, 9, 10), (1, 4, 9, 10), (3, 2, 9, 10), (5, 8, 6, 8), (7, 6,
9, 10), (8,1, 9, 10), (6, 3, 9, 10), (4, 5, 9, 10), (2, 7, 9, 10), (1, 3, 5, 7), (2, 4, 6, 8), (10, 9,
2, 1), (10, 9, 2, 1), (10, 9, 4, 3), (10, 9, 6, 5), (10, 9, 8, 7), (10, 9, 1, 6), (10, 9, 3, 8), (10, 9,
5, 2), (10, 9, 7, 4), (10, 9, 4, 1), (10, 9, 2, 3), (10, 9, 8, 5), (10, 9, 6, 7), (10, 9, 1, 8), (10, 9,
3, 6), (10, 9, 5, 4), (10, 9, 7, 2), (7, 5, 3, 1) and (8, 6, 4, 2). Here, for the given design, the
normalized orthogonal polynomial of degree 1 is given as

F =
[ −3√

20
−1√
20

1√
20

3√
20

]′
=

[
−0.67 −0.22 0.22 0.67

]′
.

The information matrix for this design is given as

C =
1
2

[
16I8 − 181′8 −4181′2
−4121′8 64I2 − 16121′2

]
.

It can be seen that here f2f5 = f2
3 . Variance of any estimated elementary contrast among

the treatments belonging to the first set is V11 = 0.2500 σ2 and the variance of any estimated
elementary contrast between the treatments belonging to the first and second set is V12 =
0.1562 σ2.

Example 3.1.2. Consider a SR group divisible design (SR 11 in [8]) with parameters
v1 = 10, b1 = 25, r1 = 5, k1 = 2, m = 2, n = 5, λ11 = 0 and λ12 = 1. The (2, 5) group
divisible association scheme with v1 = 10, b2 = 2, r2 = 1, k2 = 5, λ21 = 1 and λ22 = 0 is as
follows:

1 3 5 7 9
2 4 6 8 10
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The block contents of the TR-GEBBPB design obtained with parameters v1 = 10, v2 = 3,
b = 54, k = 5, r′ =

[
121′10 501′2

]
, λ∗11 = 2, λ∗12 = 10 and λ∗22 = 50, are (1, 2, 11, , 12, 13),

(3, 10, 11, 12, 13), (5, 8, 11, 12, 13), (7, 6, 11, 12, 13), (9, 4, 11, 12, 13), (1, 8, 11, 12, 13),
(3, 6, 11, 12, 13), (5, 4, 11, 12, 13), (7, 2, 11, 12, 13), (9, 10, 11, 12, 13), (1, 4, 11, 12, 13),
(3, 2, 11, 12, 13), (5, 10, 11, 12, 13), (7, 8, 11, 12, 13), (9, 6, 11, 12, 13), (1, 10, 11, 12, 13),
(3, 8, 11, 12, 13), (5, 6, 11, 12, 13), (7, 4, 11, 12, 13), (9, 2, 11, 12, 13), (1, 6, 11, 12, 13),
(3, 4, 11, 12, 13), (5, 2, 11, 12, 13), (7, 10, 11, 12, 13), (9, 8, 11, 12, 13), (1, 3, 5, 7, 9), (2, 4,
6, 8, 10), (13, 12, 11, 2, 1), (13, 12, 11, 10, 3), (13, 12, 11, 8, 5), (13, 12, 11, 6, 7), (13, 12,
11, 4, 9), (13, 12, 11, 8, 1), (13, 12, 11, 6, 3), (13, 12, 11, 4, 5), (13, 12, 11, 2, 7), (13, 12, 11,
10, 9), (13, 12, 11, 4,1), (13, 12, 11, 2, 3), (13, 12, 11, 10, 5), (13, 12, 11, 8, 7), (13, 12, 11,
6, 9), (13, 12, 11, 10, 1), (13, 12, 11, 8, 3), (13, 12, 11, 6, 5), (13, 12, 11, 4, 7), (13, 12, 11, 2,
9), (13, 12, 11, 6, 1), (13, 12, 11, 4, 3), (13, 12, 11, 2, 5), (13, 12, 11, 10, 7), (13, 12, 11, 8, 9),
(9, 7, 5, 3, 1) and (10, 8, 6, 4, 2).

The normalized orthogonal polynomial of degree 1 for the design is

F =
[ −2√

10
−1√
10

0
1√
10

2√
10

]′
=

[
−0.63 −0.32 0 0.32 0.63

]′
.

The information matrix obtained for this design

C =
2
5

[
25I10 − 1101′10 −51101′3
−5131′10 125I3 − 25131′3

]
.

The variance of any estimated elementary contrast among the treatments belonging to
the first set is V11 = 0.200σ2 and the variance of any estimated elementary contrast between
the treatments belonging to the first and second set is V12 = 0.120σ2.

3.2. Method 2

Consider a BIB design with parameters v∗, b∗, r∗, k∗ and λ∗. From each block of this
design, develop (k∗ − 1) more blocks by rotating the treatments clockwise resulting into b∗k∗

blocks. Substitute the last u (u = 2, 3,...,v∗−2) set of treatments of the design with the last
treatment of the second set, the second last set of treatments with the second last treatment of
the second set, likewise v∗−3 number of treatments can be replaced by p number of treatment
of the second set. The resulting design is a TR-GEBBPB with parameters v1 = (v∗ − pu),
v2 = p, b = k∗b∗, r′ = [k∗r∗1′v1

2k∗r∗1′v2
], k = k∗, λ∗11 = k∗λ∗, λ∗12 = 2k∗λ∗ and λ∗22 = 5k∗λ∗.

The information matrix for this design is

C = λ∗
[
v∗Iv1 − 1v11

′
v1

−u1v11
′
v2

−u1v21
′
v1

uv∗Iv2 − u21v21
′
v2

]
,

with V11 =
2

v∗λ∗
σ2 and V12 =

(u + 1)
uv∗λ∗

σ2.

Example 3.2.1. Let v∗ = 9,b∗ = 12, r∗ = 4, k∗ = 3 and λ∗ = 1 be the parameters of
a BIB design with blocks as (1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7), (2, 5, 8), (3, 6, 9), (1, 6, 8),
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(2, 4, 9), (3, 5, 7), (1, 5, 9), (2, 6, 7) and (3, 4, 8). From each block of this design, develop
two more blocks by rotating the treatments clockwise resulting into 36 blocks. Let p = 2 and
u = 3, substitute the last two treatments of the design with the last treatment of the second
set, second last two treatments with second last treatment of the second set, i.e., substitute
treatments (8, 9) by treatment number 5 and treatments (6, 7) by treatment number 4. The
resulting design is TR-GEBBPB with parameters v1 = 3, v2 = 2, b = 36, r′ = [121′3 361′2],
k = 3, λ∗11 = 3, λ∗12 = 6 and λ∗22 = 15. The blocks of the design are: (1, 2, 3), (2, 3, 1), (3, 1,
2), (4, 5, 4), (5, 4, 4), (4, 4, 5), (4, 5, 5), (5, 5, 4), (5, 4, 5), (1, 4, 4), (4, 4, 1), (4, 1, 4), (2, 5,
5), (5, 5, 2), (5, 2, 5), (3, 4, 5), (4, 5, 3), (5, 3, 4), (1, 4, 5), (4, 5, 1), (5, 1, 4), (2, 4, 5), (4, 5,
2), (5, 2, 4), (3, 5, 4), (5, 4, 3), (4, 3, 5), (1, 5, 5), (5, 5, 1), (5, 1, 5), (2, 4, 4), (4, 4, 2), (4,
2, 4), (3, 4, 5), (4, 5, 3) and (5, 3, 4).

For the above design, the normalized orthogonal polynomial of degree 1 is given as

F =
[−1√

2
0

1√
2

]′
=

[
−0.71 0 0.71

]′
.

The information matrix for this design is given as

C =
[
9I3 − 131′3 −3131′2
−3121′3 27I2 − 9121′2

]
,

with V11 = 0.2222σ2 and V12 = 0.1481σ2.

3.3. Method 3

Consider a BIB design with parameters v∗ = sm+1 (prime or prime power), b∗ = sv∗,
r∗ = sm, k∗ = m and λ∗ = m−1 obtained by developing following initial block(s) modulo v :

xw, xw+s, xw+2s, ..., x(m−1)s, for w = 0, 1, ..., s− 1,

where x is the primitive element of GF (v∗). Substitute the last u set of treatments of the
design with the last treatment of the second set, second last u set of treatment with second
last treatment of the second set, likewise, v∗-3 number of treatments can be replaced by p
number of treatment of the second set. The resulting design is a TR-GEBBPB design with
parameters v1 = (v∗ − pu), v2 = p, b = sv∗, r1 = sm, r2 = usm, k = m, λ∗11 = λ∗, λ∗12 = 2λ∗

and λ∗22 = 4λ∗.

The joint information matrix for this design is given as

C =
(k − 1)

k

[
v∗Iv1 − 1v11

′
v1

−u1v11
′
v2

−u1v21
′
v1

u(v∗Iv2 − u1v21
′
v2

)

]
,

with V11 =
uk

v∗(k − 1)
σ2 and V12 =

k(u + 1)
uv∗(k − 1)

σ2.

Example 3.3.1. The blocks of a TR-GEBBPB design with parameters v1 = 3, v2 = 2,
b = 7, r1 = 6, r2 = 12, k = 6, λ∗11 = 5, λ∗12 = 10 and λ∗22 = 20 obtained from BIB design
of parameters v∗ = 7 (s = 1, m = 6), b∗ = 7, r∗ = 6, k∗ = 6 and λ∗ = 6 by taking p = 2
and u = 2 are given as: (1, 3, 2, 5, 4, 4), (2, 4, 3, 5, 4, 5), (3, 4, 4, 1, 5, 5), (4, 5, 4, 2, 5, 1),
(4, 5, 5, 3, 1, 2), (5, 1, 5, 4, 2, 3) and (5, 2, 1, 4, 3, 4).
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The normalized orthogonal polynomial of degree 1 for the above design is

F =
[ −5√

70
−3√
70

−1√
70

1√
70

3√
70

5√
70

]′
=

[
−0.60 −0.36 −0.12 0.12 0.36 0.60

]′
.

The information matrix for the above design is

C =
5
6

[
7I3 − 131′3 −2131′2
−2121′3 14I2 − 4121′2

]
,

with V11 = 0.3428σ2 and V12 = 0.2571σ2.

4. DISCUSSION

This article attempts to study general efficiency balanced block designs for comparing
treatments belonging to two disjoint sets in the presence of systematic trend. The advantage
of the block designs, named TR-GEBBPB, obtained here is that these are robust against
the presence of trend effects. Besides, these designs are general efficiency balanced and are
more efficient for estimating the contrasts pertaining to two treatments from two different
sets. As the designs are completely trend resistant, the analysis of the data generated from
these designs can be carried out in the usual manner as if no trend effect is present in the
model. A possible extension of the present study is to develop some methods to obtain
smaller designs under the present experimental situation, for which an algorithmic approach
can be an alternative. Attempts can also be made to obtain designs for comparing treatments
belonging to two disjoint sets in the presence of trend under unequal block structure. The
effects of repeated blocks (see for instance [28], [27], [29]) in TR-GEBBPB designs obtained
through BIB designs can also be explored in selecting optimal designs for testing block effects.

ACKNOWLEDGMENTS

We are very much thankful to the editor and reviewers for their constructive criticism
that has led to substantial improvement of the manuscript. The facilities provided by the
Indian Council of Agricultural Research for carrying out this research work are duly acknowl-
edged.



318 K.A. Sarkar, S. Jaggi, A. Bhowmik, E. Varghese, C. Varghese, A. Datta and A. Dalal

REFERENCES

[1] Atkinson, A.C. and Donev, A.N. (1996). Experimental design optimally balanced for
trend, Technometrics, 38(4), 333–341.

[2] Bechoffer, R.E. and Tamhane, A.C. (1981). Incomplete block designs for comparing
treatments with a control (I): General theory, Technometrics, 23, 45–47.

[3] Bhowmik, A.; Gupta, R.K.; Jaggi, S.; Varghese, E.; Harun, M.; Varghese, C. and
Datta, A. (2021). On the Construction of Trend Resistant PBIB Designs, Communications
in Statistics – Simulation and Computation, DOI: 10.1080/03610918.2021.1951763.

[4] Bhowmik, A.; Jaggi, S.; Varghese, C. and Varghese, E. (2014). Trend free block
designs balanced for interference effects from neighbouring experimental units, Journal of
Combinatorics, Information and System Sciences, 39(1-4), 117–133.

[5] Bhowmik, A.; Jaggi, S.; Varghese, C. and Varghese, E. (2015). Trend free second
order neighbour balanced block designs, Journal of the Indian Statistical Association, 53(1-
2), 63–78.

[6] Bradley, R.A. and Yeh, C.M. (1980). Trend free block designs: Theory, The Annals of
Statistics, 8(4), 883–893.

[7] Carrano, A.L.; Thorn, B.K. and Lopez, G. (2006). An integer programming approach
to the construction of trend-free experimental plans on split-plot designs, Journal of Manu-
facturing Systems, 25(1), 39–44.

[8] Clatworthy, W.H. (1973). Tables of two-associate partially balanced designs, National Bu-
reau of Standards, Applied Mathematics, Series No. 63, Washington D.C.

[9] Das, M.N. and Ghosh, D.K. (1985). Balancing incomplete block designs, Sankhya Series
B, 47, 67–77.

[10] Gupta, V.K. and Prasad, N.S.G. (1991). On construction of general efficiency balanced
block designs, Sankhya Series B, 53(1), 89–96.

[11] Gupta, V.K. and Parsad, R. (2001). Block designs for comparing test treatments with
control treatments – An overview, Special issue of Statistics and Applications to felicitate the
80th Birthday of Dr. M.N. Das, 3(1-2), 133–146.

[12] Iqbal, I.; Tahir, M.H. and Nasir, J.A. (2011). New optimal designs for comparing test
treatments with a control, The Aligarh Journal of Statistics, 31, 33–51.

[13] Jacroux, M. (1990). Some optimal designs for comparing a set of test treatments with a set
of controls, Annals of Institute of Statistical Mathematics, 42, 173–185.

[14] Jacroux, M. (1993). On the construction of trend-resistant designs for comparing a set of
test treatments with a set of controls, Journal of the American Statistical Association, 88,
1398–1403.

[15] Jacroux, M. (2003). Some MV-optimal group divisible type block designs for comparing a
set of test treatments with a set of standard treatments, Statistical Planning and Inference,
113(2), 597–615.

[16] Jacroux, M.; Majumdar, D. and Shah, K.R. (1995). Efficient block designs in the pres-
ence of trends, Statistica Sinica, 5, 605–615.

[17] Jacroux, M.; Majumdar, D. and Shah, K.R. (1997). On the determination and con-
struction of optimal block designs in the presence of linear trend, Journal of the American
Statistical Association, 92, 375–382.

[18] Jaggi, S. (1992). Study on optimality of one-way heterogeneity designs for comparing two
disjoint sets of treatments, Unpublished Ph.D. Thesis, IARI, New Delhi.



TR-GEBBPB designs 319

[19] Jaggi, S. (1996). A-efficient block designs with unequal block sizes for comparing two sets of
treatments, Journal of Indian Society of Agricultural Statistics, 48(2), 125–139.

[20] Jaggi, S. and Gupta, V.K. (1997). A-optimal block designs with unequal block sizes for
comparing two disjoint sets of treatments, Sankhya: Series B, 59(2), 164–180.

[21] Jaggi, S.; Gupta, V.K. and Parsad, R. (1996). A-efficient block designs for comparing
two disjoint sets of treatments, Communications in Statistics – Theory and Methods, 25(5),
967–983.

[22] Jaggi, S.; Parsad, R. and Gupta, V.K. (1997). General efficiency balanced block designs
with unequal block sizes for comparing two sets of treatments, Journal of Indian Society of
Agricultural Statistics, 50(1), 37–46.

[23] Jaggi, S.; Parsad, R. and Gupta, V.K. (1999). Construction of non-proper balanced
bipartite block designs, Calcutta Statistical Association Bulletin, 49, 55–63.

[24] Kageyama, S. and Mukerjee, R. (1986). General balanced designs through reinforcement,
Sankhya: Series B, 48, 380–387.

[25] Majumdar, D. (1986). Optimal designs for comparisons between two sets of treatments,
Journal of Statistical Planning and Inference, 14, 359–372.

[26] Majumdar, D. and Martin, R.J. (2002). Finding optimal designs in the presence of trends,
Journal of Statistical Planning and Inference, 106, 177–190.

[27] Oliveira, T.A. (2002). BIB Designs with Repeated Blocks: Review and perspectives, Pro-
ceedings of ICCS-X Conference, Tenth Islamic Countries Conference on Statistical Sciences
– Statistics for Development and Good Governance. Editors Zeinab Amin and Ali, S., Hadi,
The American University in Cairo, 1, 82–96.

[28] Oliveira, T.A.; Ceranka, B. and Graczyk, M. (2006). The variance of the difference
of block effects in the balanced incomplete block designs with repeated blocks, Colloquium
Biometryczne, 36, 115–124.

[29] Oliveira, T.A. and Oliveira, A. (2012). Ineffectiveness of the FIM in selecting Optimal
BIB Designs for testing block effects, Proceedings of COMPSTAT.

[30] Patel, B.L. (2018). Efficiency balanced designs, Journal of Harmonized Research in Applied
Sciences, 6(3), 217–221.

[31] Patil, S.G.; Majumder, A. and Manjunatha, G.R. (2016). General efficiency balanced
designs in circular blocks with correlated observations, Journal of Indian Society of Agricultural
Statistics, 70(2), 159–166.

[32] Prasad, N.S.G. (1989). Some investigations on general efficiency balanced designs, Unpub-
lished Ph.D. Thesis, IARI, New Delhi.

[33] Pravender and Patel, B.L. (2016). Construction of Balanced Bipartite Block Designs,
Research Journal of Recent Sciences, 5(5), 41–46.

[34] Srivastav, S.K. and Srivastav, A. (2021). Efficiency balanced designs for bootstrap sim-
ulations, Communications in Statistics – Theory and Methods, 50(19), 4510–4527.

[35] Yeh, C.M. and Bradley, R.A. (1983). Trend free block designs, existence and construction
results, Communications in Statistics – Theory and Methods, 12, 1–24.

[36] Yeh, C.M.; Bradley, R.A. and Netz, W.I. (1985). Nearly trend free block designs, Jour-
nal of American Statistical Association, 80, 985–992.





REVSTAT – Statistical Journal
Volume 22, Number 3, July 2024, 321–342

https://doi.org/10.57805/revstat.v22i3.507

Assessing Influence on Partially Varying-Coefficient
Generalized Linear Model

Authors: Germán Ibacache-Pulgar �

– Institute of Statistics, Universidad de Valparáıso, Chile
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1. INTRODUCTION

Partially varying-coefficient generalized linear model (PVCGLM) is an extension of
generalized linear model (GLM), and have received special attention in recent years. These
models have the same characteristics as GLM (see, for instance, McCullagh and Nelder,
1989 [27]), in the sense of encompassing different families of distributions for the response
variable, allowing for non-linear dependence between the mean of the response variable and
the explanatory variables (linear predictor) through a link function, and allowing for non-
constant variance in the data. In addition, PVCGLM have the flexibility to model explanatory
variables effects that can contribute parametrically and explanatory variables effects in which
the coefficients are allowed to vary as smooth functions of other variables (for example, time
variable). The model is a very useful tool for exploring dynamic patterns in some scientific
areas, such as environmental, epidemiology, medical science, ecology and so on; see Fan and
Zhang (2008) [9], Finley (2011) [14], Ma et al. (2011) [26], Li et al. (2018) [24], and He et al.

(2022) [18].

As was noted by some authors (see, for example, Ouwens et al., 2001 [29]), GLM param-
eter estimators can be higly impacted by outlying observations. For this reason, diagnostic
analysis is of fundamental importance in the statistical modelling of any data set. The main
idea of the local influence technique, introduced by Cook (1986) [5], is to evaluate the sensi-
tivity of parameter estimators when small perturbations are introduced in the assumptions
of the model or in the data. Some of the works related to the technique of local influence
applied to different regression models are the following. Thomas and Cook (1989) [33] ex-
tended the method of local influence proposed by Cook to generalized linear models, with
the purpose to asses the effect of small perturbations in the data. Ouwens et al. (2001) [29]
developed local influence to detect influential data structures under a generalized linear mixed
model; specifically, they proposed a two-stage diagnostic procedure, the first to measure the
influence of the subjects and the second to measure the influence of the observations. Zhu
and Lee (2001) [35] extended the method of local influence for incomplete data based on the
conditional expectation of the complete-data log-likelihood function, and applied the results
to the generalized linear mixed model; see also Zhu and Lee (2003) [36]. Espinheira et al.

(2008) [8] developed the local influence method for beta regressions model under different
perturbation schemes. Rocha and Simas (2011) [31] extended the local influence method to
a general formulation of the class of the beta regression models, whereas Ferrari et al. (2011)
[12] derived the normal curvatures of local influence for beta regression models with varying
dispersion. Ferreira and Paula (2016) [13] extended the local influence technique for different
perturbation schemes considering a skew-normal partially linear model and Emami (2016) [6]
applied local influence analysis to the Liu penalized least squares estimator.

In semiparametric context, Thomas (1991) [33] constructed local influence diagnostics
to evaluate the sensitivity of the smoothing parameter estimate obtained by cross-validation
criterion. Zhu et al. (2003) [36] and Ibacache-Pulgar and Paula (2011) [21] provide local
influence measures to evaluate the sensitivity of the maximum penalized likelihood estima-
tor in normal and Student-t partially linear models, respectively. Ibacache-Pulgar et al.

(2012, 2013) [19, 20] derived the local influence curvature for elliptical semiparametric mixed
and symmetric semiparametric additive models, respectively. Zhang et al. (2015) [34] and
Ibacache-Pulgar and Reyes (2018) [22] developed local influence measures for normal and
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elliptical partially varying-coefficient models, respectively. Recently, Ibacache-Pulgar et al.

(2021) [23] developed the local influence method to semiparametric additive beta regression
models and Sanchez et al. (2021) [32] derived the normal curvature for a new quantile regres-
sion model.

The aim of this paper is to apply local influence to the PVCGLM. The paper is organized
as follows. In Section 2, the PVCGLM is presented. A discussion on the process used to obtain
the maximum likelihood (ML) estimator based on the penalized likelihood, the derivation of a
back-fitting algorithm and some inferential result are given in Section 3. In Section 4 the main
concepts of local influence are considered and normal curvatures for different perturbations
schemes are derived. An illustration of the methodology is presented in Section 5. Finally,
in Section 6, some concluding remarks are given.

2. STATISTICAL MODEL

In this section we present the PVCGLM and the penalized log-likelihood function used
to carry out parameter estimation.

2.1. Formulation

Consider a data set that is composed of a response variable yi, for i ∈ {1, ..., n}, that
follows a distribution in the exponential family with density function

fy(yi; θi, φ) = exp

[
yiθi − ψ(θi)

ai(φ)
+ c(yi, φ)

]
,(2.1)

where θi is the canonical form of the location parameter and is a function of the mean µi, ai(φ)
is a known function of the unknown dispersion parameter φ (or a vector of unknown dispersion
parameters), c is a function of the dispersion parameter and the responses, and ψ is a known
function, such that the mean and variance of yi are equals to µi = E(yi) = ∂ψ(θi)/∂θi and
Var(yi) = ai(φ) Vi, with Vi = V(µi) = ∂2ψ(θi)/∂θ2

i , respectively. The PVCGLM is defined
by Equation (2.2) and the following systematic component:

g(µi) = ηi = w>
i α +

s∑
k=1

x(k)
i βk(tki

),(2.2)

where wi is a (p× 1) vector of predictors variables, α = (α1, ..., αp)> is a vector of regression
coefficients, βk(·) for k ∈ {1, ..., s} are unknown smooth arbitrary functions of tk, associated
with the predictor variable x(k)

i . Here, the superscript k refers to the relationship of the
predictor variable xi with the k-th nonparametric component. Note that Model (2.2) can be
written in a matrix form as

η = Wα +
s∑

k=1

Ñkβk ,(2.3)
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where W = (w>
1 , ...,w

>
n ), Ñk = X(k)Nk, X(k) = diag1≤i≤n(x(k)

i ), Nk is an (n× rk) incidence
matrix with the (i, l)-th element equal to the indicator I(tki

= t0kl
) with t0kl

denoting the
distinct and ordered values of the explanatory variable tk, and βk = (ψk1 , ..., ψkr)

> is a (rk×1)
vector of parameters with ψkl

= βk(t0kl
) for l ∈ {1, ..., rk}.

2.2. Penalized log-likelihood function

Let θ = (α>,β>
1 , ...,β

>
s , φ)> ∈ Θ ⊆ Rp∗ , with p∗ = p+ r + 1 and r =

∑s
k=1 rk, be the

vector of unknown parameters associated to Model (2.1). Then, the log-likelihood function
is given by

(2.4) L(θ) =
n∑

i=1

Li(θ),

where

Li(θ) =

[
yiθi − ψ(θi)

ai(φ)
+ c(yi, φ)

]
.(2.5)

Since the βk’s belong to a space of infinite dimension and are considered parameters with
respect to the expected value of yi, it is necessary to define a restricted subspace for these
functions so that the identifiability of the parameters holds. This choice typically depends on
the domain of the function, on a priori knowledge of form of the function, on constraints to
ensure identifiability, or simply on some specific application. In this paper, we will assume
that the function βk belongs to the Sobolev function space

W(l)
2 = {βk : βk, β

(1)
k , ..., β

(l−1)
k abs. cont., β(l)

k ∈ L2[ak, bk]} ,

where β(l)
k (tk) = dlβ(tk)/dtl

k, with t0k ∈ [ak, bk]. To ensure the identifiability of the parameters
and an adequate fit of the model, we incorporate a penalty term in the original log-likelihood
function over each function βk. In this way, we obtain a penalized version of the log-likelihood
function of the form (see details in Green and Silverman, 1994 [15])

Lp(θ,λ) = L(θ)−
s∑

k=1

λk

2
β>

k Kkβk ,(2.6)

where λ = (λ1, ..., λs)> denotes a (s× 1) vector of smoothing parameters that controls the
tradeoff between goodness of fit and the smoothness estimated functions, and Kk is a (rk×rk)
nonnegative definite smoothing matrix associated with the k-th explanatory variable that only
depends on the knots. In this case, the estimation of βk leads to a smooth cubic spline with
knots at the points t0kl

for l ∈ {1, ..., rk}.
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3. ESTIMATION AND INFERENCE

In this section we outlying the estimation of the parameters of the PVCGLM. Specif-
ically, we propose an iterative process based on the Fisher score and back-fitting algorithms
to estimate the regression coefficients and the nonparametric functions, and respective stan-
dard errors being obtained from the penalized Fisher information matrix. More details about
estimation procedure can be found, for example, in Hastie and Tibshirani (1993) [16], Cai et

al. (2000) [4], Fang and Huang (2005) [10] and Rigby and Stasinopoulos (2005) [30].

3.1. Weighted maximum penalized likelihood estimator

Assuming that the function (2.6) is regular with respect to α, βk’s and φ, the penalized
score function vector of θ is given by

Up(θ) =
∂Lp(θ,λ)

∂θ
.

After some algebraic manipulations (see, for instance, Liu et al., 2021 [25], for details of the
calculation of derivatives of matrix or vectors), we obtain the following:

∂Lp(θ,λ)
∂α

= W>T (y − µ) ,

∂Lp(θ,λ)
∂βk

= Ñ>
k T (y − µ)− λkKkβk k ∈ {1, ..., s} ,

∂Lp(θ,λ)
∂φ

=
n∑

i=1

−(ai(φ))−2{yiθi − ψ(θi)}+
n∑

i=1

c′(yi, φ),

where W is a (n× p) matrix whose i -th row is w>
i , T = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)V −1

i

)
with Vi = V (µi) = ∂2ψ(θi)/∂θ2

i the variance function, ai(φ) is a function of φ, y = (y1, ..., yn)>,
µ = (µ1, ..., µn)> and c′(yi, φ) = ∂c(yi, φ)/∂φ. To estimate θ, we have to solve Up(θ) = 0.
However, the estimating equations are nonlinear and require an iterative method. For ex-
ample, maximum penalized likelihood (MPL) estimator for θ can be performed by using
the Fisher scoring algorithm. Let β0 = α, Ñ0 = W , and λ fixed. Then, the Fisher scoring
algorithm is given by

I S
(u)
0 Ñ1 ... S

(u)
0 Ñs

S
(u)
1 Ñ0 I ... S

(u)
1 Ñs

...
...

. . .
...

S
(u)
s Ñ0 S

(u)
s Ñ1 ... I




β
(u+1)
0

β
(u+1)
1
...

β
(u+1)
s

 =


S

(u)
0 z(u)

S
(u)
1 z(u)

...
S

(u)
s z(u)

 ,(3.1)

where z(u) = (y − µ(u)) +
(∑s

k=0 Ñkβk
(u)

)
and

S
(u)
k =


(Ñ>

0 M (u)Ñ0)−1Ñ>
0 M (u) k = 0

(Ñ>
k M (u)Ñk + λk Kk)−1Ñ>

k M (u) k ∈ {1, ..., s} ,
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where M = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)2V −1

i

)
. Consequently, the weighted back-fitting

(Gauss-Seidel) iterations that are used to solve the equations system (3.1) take the form

β
(u+1)
k = S

(u)
k

(
z(u) −

s∑
l=0,l 6=k

Ñlβ
(u)
l

)
,(3.2)

for u ∈ {0, 1, ...}. On the other hand, the MPL estimator of the dispersion parameter, φ̂,
can be obtained by solving the following iterative process:

φ(u+1) = φ(u) −E

{
∂2Lp(θ,λ)

∂φ2

}−1
∂Lp(θ,λ)

∂φ

∣∣∣
θ=θ(u) ,

for u ∈ {0, 1, ...}.

Algorithm 1 – Joint iterative process for estimating the parameters of the PVCGLM. |
(i) Initialize:

(a) Provide values for β
(0)
0 ,β

(0)
1 , ...,β(0)

s .
(b) Get starting value for φ by using the fitted values from (a).

(c) From the current value θ(0) = (β(0)>

0 ,β
(0)>

1 , ...,β(0)>

s , φ(0))> obtaining the weight matrix
M (0). Then, obtain

z(0) = (y − µ(0)) +
( s∑

k=0

Ñkβ
(0)
k

)
,

S
(0)
0 = (Ñ>

0 M (0)Ñ0)−1N>
0 M (0) ,

S
(0)
k = (Ñ>

k M (0)Ñk + λkKk)−1Ñ>
k M (0) , k ∈ {1, ..., s} .

(ii) Step 1: Iterate repeatedly by cycling between the following equations:

β
(u+1)
0 = S

(u)
0

(
z(u) −

s∑
l=1

Ñlβ
(u)
l

)
,

β
(u+1)
1 = S

(u)
1

(
z(u) − Ñ0β

(u+1)
0 −

s∑
l=2

Ñlβ
(u)
l

)
,

...

β(u+1)
s = S(u)

s

(
z(u) −

s−1∑
l=0

Ñlβ
(u+1)
l

)
,

for u ∈ {0, 1, ...}. Repeat (ii) replacing β(u)
 by β(u+1)

 until convergence criterion
∆u(β(u+1)

 ,β(u)
 )=

∑s
=0 ‖ β(u+1)

 − β(u)
 ‖ /

∑s
=0 ‖ β(u)

 ‖ is below some small threshold
(Hastie and Tibshirani, 1990 [17]).

(iii) Step 2: For current values β(u+1)
 for  ∈ {0, 1..., s}, obtaining φ(u+1) by using

φ(u+1) = φ(u) −E

{
∂2Lp(φ,λ)
∂φ∂φ

}−1
∂Lp(φ,λ)

∂φ

∣∣∣
θ=θ(u) .

(iv) Iterating between steps (ii) and (iii) by replacing β(0)
 for  ∈ {0, 1..., s} and φ(0) by β(u+1)

 and
φ(u+1), respectively, until convergence.
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Note that the system of equations (3.1) is consistent and the back-fitting algorithm (3.2)
converges to a solution for any starting values if the weights matrix involved is symmetric
and positive definite. Additionally, the solution is unique when there is not concurvity in the
data, that is, nonlinear dependencies among the predictor variables. However, in the presence
of concurvity, the starting functions will determine the final solution, while in presence exact
concurvity is highly unlikely, except in the case of symmetric smoothers with eigenvalues
in [0,1]; see, for instance, Berhane and Tibshirani (1998) [1]. The summary, the solution
of the estimating equation system (3.1) to obtain the MPL estimates of θ may be attained
by iterating between a weighted back-fitting algorithm with weight matrix M and a Fisher
score algorithm to obtain ML estimation of φ, which is equivalent to the iterative process in
Algorithm 1.

3.2. Standard error of MPL estimator

Similarly to the classical theory of generalized linear models, the variance-covariance
matrix of θ̂ can be approximated through the inverse of Fisher information matrix obtained
from penalized log-likelihood function, Lp(θ,λ). Assuming that the penalized log-likelihood
function (2.6) is twice differentiable with respect to θ, we have that the penalized Fisher
information matrix is given by

Ip = −E

(
∂2Lp(θ,λ)
∂θ∂θ>

)
.

This matrix assumes the following diagonal structure in blocks:

Ip(θ) =

(
Iαβk

p (θ) 0
0 Iφφ

p (θ)

)
,

where

Iαβk
p (θ) =


W>MW W>MÑ1 ... W>MÑs

Ñ>
1 MW Ñ>

1 MÑ1 + λ1K1 ... Ñ>
1 MÑs

...
...

. . .
...

Ñ>
s MW Ñ>

s MÑ1 ... Ñ>
s MÑs + λsKs


and

Iφφ
p (θ) =

n∑
i=1

−2(ai(φ))−3(µiθi − ψ(θi))−
n∑

i=1

E(c′′(yi, φ)),

with c′′(yi, φ) = ∂2c(yi, φ)/∂φ2 for i ∈ {1, ..., n}. Therefore, the approximate variance-
-covariance matrix of θ̂ and an approximate pointwise standard error band (SEB) for βk(·),
that allows us to assess the accuracy of β̂k(·) at different locations within the range of interest,
are given by

Ĉov(θ̂) ≈ I−1
p

∣∣
θ̂
,

SEBapprox(βk(t0l )) = β̂k(t0l )± 2
√

V̂ar(β̂k(t0l )) l ∈ {1, ..., rk},

where Var(β̂k(tl)), for k ∈ {1, ..., s}, is the l-th principal diagonal element of the corresponding
block-diagonal matrix of I−1

p .
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3.3. Effective degrees of freedom and smoothing parameters

In the iterative process defined in the Equation (3.2), considering φ as known, we can
write the expression of the estimator of βk at step u as

β
(u+1)
k = (Ñ>

k MÑk + λk Kk)−1Ñ>
k Mz∗

(u)
k ∈ {1, ..., s} ,(3.3)

where z∗
(u)

= z(u) −
∑s

l=0,l 6=k Ñlβ
(u)
l . From the convergence of the iterative process given in

the Equation (3.3), we obtain

β̂k = (Ñ>
k M̂Ñk + λk Kk)−1Ñ>

k M̂ẑ∗ k ∈ {1, ..., s} ,

where ẑ∗ =
[
(y− µ̂) +

(∑s
k=0 Ñkβ̂k

)]
−
∑s

l=0,l 6=k Ñlβ̂l. In this paper we define the effective
degrees of freedom (df) associated with the smooth functions as (see, for instance, Hastie and
Tibshirani, 1990 [17])

edf(λk) = tr
{
Ñk(Ñ>

k M̂Ñk + λk Kk)−1Ñ>
k M̂

}
.

Following Ibacache-Pulgar and Reyes (2018) [22], we choose the optimal smoothing parameter
for each smooth functions by specifying an appropriate edf(λk) value.

4. LOCAL INFLUENCE

In this section we obtain the normal curvature for PVCGLM. Specifically, the Hessian
and perturbations matrices for different perturbations schemes.

4.1. The method

To assess the influence of minor perturbations on the MPL estimator of θ, θ̂, we
can consider the likelihood displacement LD(ω) = 2

[
Lp(θ̂,λ)− Lp(θ̂ω,λ)

]
≥ 0, where θ̂ω

is the MPL estimador under the perturbed penalized log-likelihood function, denoted by
Lp(θ,λ |ω), and ω = (ω1, ..., ωn)> be an n-dimensional vector of perturbations restricted
to some open subset Ω ∈ Rn. It is assumed that there exists ω0 ∈ Ω, a vector of no
perturbation, such that Lp(θ,λ |ω0) = Lp(θ,λ). Cook (1986) [5] suggests to study the local
behavior of LD(ω) around ω0 selecting a unit direction ` ∈ Ω (‖`‖ = 1), and then to consider
the plot of LD(ω0 + a`) (called lifted line) against a, where a ∈ R. Each lifted line can
be characterized by considering the normal curvature C`(θ) around a = 0. The suggestion
is to consider the direction ` = `max corresponding to the largest curvature C`max(θ). The
index plot of `max may reveal those observations that under small perturbations exercise
notable influence on LD(ω). According to Cook (1986) [5], the normal curvature at the
unit direction ` is given by C`(θ) = −2

[
`>∆>

p L−1
p ∆p`

]
, which represents the local influence

on θ̂ after perturbing the model or data, where Lp is the Hessian matrix evaluated at θ̂

and ∆p = ∂2Lp(θ,λ |ω)/∂θ∂ω> is the perturbation matrix evaluated at θ̂ and ω = ω0.
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Escobar and Meeker (1992) [7] proposed to study the normal curvature at the direction
` = εi, where εi is an n-dimensional vector with 1 at the i-th position and zeros at the
remaining positions. In this case, the normal curvature, called total local influence of the
i-th individual, takes the form Cεi(θ) = 2| cii | for i ∈ {1, ..., n}, where cii is the i-th principal
diagonal element of the matrix C = ∆>

p L−1
p ∆p. In order to have a invariant curvature under

uniform change of scale, Poon and Poon (1999) [28] proposed the conformal normal curvature
defined as

B`(θ) =
C`(θ)

2
√

tr(∆>
p L−1

p ∆p)2
= − `>∆>

p L−1
p ∆p`√

tr(∆>
p L−1

p ∆p)2
.

This curvature is characterized to allow for any unit direction ` that 0 ≤ B`(θ) ≤ 1. A sug-
gestion is to consider the direction ` = `max corresponding to the largest curvature B`max(θ)
or, alternatively, to evaluate the normal curvature at the direction ` = εi and analyse the
index plot of Bεi(θ).

4.2. Derivation of normal curvature

The perturbation schemes that are considered in the analysis of local influence depend
on the structure of the proposed model (see, for instance, Billor and Loynes, 1993 [2]), and can
be classified into two broad groups: perturbation to the model (in order to study modifications
in the assumptions) or in the data. For example, we might be interested in perturbing the
response or the explanatory variables. The reasons for considering such perturbation schemes
are, for example, the existence of outliers or measures with measurement errors, respectively.
However, the perturbation scheme to be considered should be formulated in a way that
responds to questions previously established by the researcher. We will present in what
follows expressions of the Lp and ∆p matrices for some perturbations schemes.

Hessian matrix

Let Lp (p∗×p∗) be the Hessian matrix with (j∗,`∗)-th element given by ∂2Lp(θ,λ)/∂θj∗ θ̀ ∗

for j∗, `∗ ∈ {1, ..., p∗}, where p∗ = p+ r + 1, with r =
∑s

k=1 rk. After some algebraic manip-
ulations we find

∂2Lp(θ,λ)
∂α∂α> = −W>M̃W ,

∂2Lp(θ,λ)
∂βk∂β>

k

=


−Ñ>

k M̃Ñk − λkKk k = k
′

−Ñ>
k M̃Ñk′ k 6= k

′
,

∂2Lp(θ,λ)
∂φ2

=
n∑

i=1

2(ai(φ))−3(yiθi − ψ(θi)) +
n∑

i=1

c′′(yi, φ)) ,
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∂2Lp(θ,λ)
∂α∂β>

k

= −W>M̃Ñk ,

∂2Lp(θ,λ)
∂αj∂φ

= −
n∑

i=1

(ai(φ))−2

{
(yi − µi)V −1

i

∂µi

∂ηi
wi

}
,

∂2Lp(θ,λ)
∂ψkl

∂φ
= −

n∑
i=1

(ai(φ))−2

{
(yi − µi)V −1

i

∂µi

∂ηi
nkil

}
,

where c′′(yi, φ) = ∂2c(yi, φ)/∂φ2, M̃ = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)

2V −1
i ρi

)
, ρi = κ(µi)/

{g′(µi)2Vi}, with κ(µi) = 1 + (yi − µi){V ′
i /Vi + g′′(µi)/g′(µi)} and g′(µi) = dηi/dµi, and

nkli
denotes the (i, l)-th element of the matrix Nk.

Cases-weight perturbation

Let us consider the attributed weights for the observations in the penalized log-likelihood
function as

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(θ|ω) =
∑n

i=1 ωi Li(θ), ω = (ω1, ..., ωn)> is the vector of weights, with 0 ≤ ωi ≤ 1,
and ω0 = (1, ..., 1)> the vector of no perturbation. Differentiating Lp(θ,λ|ω) with respect to
the elements of θ and ω, we obtain after some algebraic manipulation

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= W>D̂τ ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= Ñ>
k D̂τ k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= û> ,

where Dτ = diag1≤i≤n

(
τi
)

and u = (u1, ..., un)>, with τi = (ai(φ))−1(yi− ∂ψ(h(ηi))/∂h(ηi)) ·
· ∂h(ηi)/∂ηi, h(ηi) = ψ

′−1
(ηi), ψ

′−1
(·) denoting the inverse function of ψ

′
(·), ui = −(ai(φ))−2 ·

· (yih(ηi)− ψ(h(ηi)) + c′(yi, φ)e>in, and ein a vector with 1 at the i -th position and zero else-
where.

Response variable perturbation

In general, the response variable can be perturbed in two ways:

yiω =
{
yi + ωi additive perturbation i ∈ {1, ..., n}
yi × ωi multiplicative perturbation .

In this paper we consider yiω = yi +ωi, where ω = (ω1, ..., ωn)> is the vector of perturbations
and ω0 = (0, ..., 0)> the vector of no perturbation. The perturbed penalized log-likelihood
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function is constructed from expression (2.6) with yi replaced by yiω, that is,

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(·) is given by Equation (2.4) with yiω in the place of yi. Differentiating Lp(θ,λ|ω)
with respect to the elements of θ and ωi we obtain, after some algebraic manipulation, that

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= W>D̂c ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= Ñ>
k D̂c k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= d̂> ,

where Dc = diag1≤i≤n

(
ci
)

and d = (d1, ..., dn)>, with ci = ∂h(ηi)/∂ηi and di = −(ai(φ))−2 ·
· (h(ηi)e>in + c′(yiω, φ)/∂ωi), with ein denoting a vector with 1 at the i -th position and zero
elsewhere..

Explanatory variable perturbation

The explanatory variable can be perturbed in two ways:

wiω =
{

wiω + ωi additive perturbation i ∈ {1, ..., n}
wiω × ωi multiplicative perturbation .

Here the d-th explanatory variable, assumed continuous, is perturbed by considering the
additive perturbation scheme, namely widω = wid +ωi, where ω = (ω1, ..., ωn)> is the vector
of perturbations such as ωi ∈ R. The vector of no perturbation is given by ω0 = (0, ..., 0)>.
The perturbed penalized log-likelihood function is given by

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(·) is given by Equation (2.4) with µiω = g−1(ηiω) in the place of µi, for ηiω = w>
iωα+∑s

k=1 x(k)
i βk(tki

), with wid replaced by widω. Differentiating Lp(θ,λ|ω) with respect to the
elements of θ and ωi we obtain

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= epτ̂
> − αdW

>D̂b ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= epτ̂
> − αdÑ

>
k D̂b k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= −
n∑

i=1

(ai(φ))−2

{
yi
∂(ηiω)
∂ωi

− ∂ψ(h(ηiω))
∂ωi

}
e>in,

where τ = (τ1, ..., τn)>, Db = diag1≤i≤n

(
bi
)

and ep is a vector with 1 at the p-th position
and zero elsewhere, τi = (ai(φ))−1(yi− ∂ψ(h(ηiω))/∂h(ηiω))∂h(ηiω)/∂ηiω and bi = (ai(φ))−1 ·
· (yi − ∂ψ(h(ηiω))/∂h(ηiω))∂2h(ηiω)/∂η2

iω − (∂2ψ(h(ηiω))/∂2h(ηiω))(∂h(ηiω)/∂ηiω)2.
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5. APPLICATION

In this section, we illustrate the applicability of the PVCGLM and the local influence
method through an application based on a set of real data. For our analysis, we consider the
Poisson distribution.

5.1. Data set and problem statement

To motivate the use of the PVCGLM and the local influence method developed in
this work, we consider a set of real data from a study conducted in the city of Los Angeles
during 1976 (see, for instance, Breiman and Friedman, 1985 [3] and Faraway, 2006 [11]) with
the purpose of describing the relationship between the outcome variable O3 (concentration
of ozone per hour in Upland, CA, measured in parts per million (ppm) and a set of nine
explanatory variables, for a sample of 330 days. The description of such variables is as follows.
VH (pressure height 500 millibar, measured at the base of the air force of Vandenberg, in
meters), WIND (wind speed, in miles per hour), HUM (humidity in percentage), TEMP
(sandburg Air Base temperature, in Celsius), IBH (inversion base height, in foot), DPG
(dagget pressure gradient, in mmHg), IBT (inversion base temperature, in Fahrenheit), VIS
(visibility, in miles), DAY (calendar day).

5.2. Model fit

In our application we will consider only four explanatory variables, specifically, the
variables VIS, TEMP, IBT and DAY. Figure 1 contains the dispersion graphs between the
outcome variable and each one of the explanatory variables.

We see in Figure 1a that the relationship between O3 and the explanatory variable VIS
is approximately linear, whereas the relationship between O3 and DAY appear to be nonlinear
(Figure 1b). Note that there is a significant increase in the level of O3 from January to July
with a decrease until December. This suggests that the incorporation of a quadratic or
nonparametric term in the model can account for the behavior of O3 over time. On other
hand, Figures 1c and 1d suggest that the explanatory variables TEMP and IBT might be
interacting with the variable DAY in nonlinear fashion. Figures 2a and 2b shows the graph
of autocorrelation and partial autocorrelation, respectively. Following the same analysis of
Faraway (2006) [11], in this work we will no consider the possible temporal correlation for
O3.

Initially, we will fit a GLM assuming that the response variable O3 follows a Poisson
distribution with mean µi and logarithmic link function considering different structures of
the linear predictor for the explanatory variables VIS, TEMP, IBT and DAY (see Table 1).
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Figure 1: Scatter plots: log(O3) versus VIS (a), log(O3) versus DAY (b),
log(O3) versus TEMP×DAY (c) and log(O3) versus IBT×DAY (d).
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Figure 2: Autocorrelation (a) and partial autocorrelation (b) for Ozone data.

Table 1: Different structures of the linear predictor for the explanatory variables VIS, TEMP,
IBT and DAY assuming that the response variable O3 ∼ Poisson(µi).

Model Systematic component g(µi) = log(µi)

I α0 + α1VISi + α2TEMPi + α3IBTi

II α0 + α1VISi + α2TEMPi + α3IBTi + α4DAYi

III α0 + α1VISi + α2TEMPi + α3IBTi + f(DAYi)
IV α0 + α1VISi + α2TEMPi + α3IBTi + α4DAYi + α5TEMPi×DAYi + α6IBTi×DAYi

V α0 + α1VISi + TEMPiβ1(DAYi) + IBTiβ2(DAYi)
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For Model I, only the individual effect of the VIS, TEMP and IBT explanatory variables
were considered. In Model II, the individual effects of these three covariates plus the effect
of the DAY variable were incorporated in a linear manner, whereas in the Model III the
individual effect of the DAY explanatory variable is included nonlinearly by using a smooth
function. Model IV considers the individual contributions of VIS, TEMP, IBT and DAY
explanatory variables, plus the interaction effects of the TEMP and IBT explanatory variables
with the DAY variable. Finally, Model V corresponds to a PVCGLM where the explanatory
variables TEMP and IBT interact with the variable DAY in nonlinear fashion. Table 2
contains the ML and MPL estimates associated with the parametric component for the five
fitted models; the respective standard errors appear in parentheses.

Table 2: AIC, R2, ML and MPL estimates (standard error) for all five fitted models
to the Ozone data.

Model
Parameters

I II III IV V

α0 0.65 (0.11) 0.79 (0.11) 1.09 (0.16) 0.88 (0.21) 1.18 (0.17)
α1 −0.00 (0.00) −0.00 (0.00) −0.00 (0.00) −0.00 (0.00) −0.00 (0.00)
α2 0.02 (0.00) 0.03 (0.00) 0.01 (0.00) 0.02 (0.00) —
α3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) —
α4 — −0.001 (0.00) — −0.001 (0.00) —
α5 — — — −0.00 (0.00) —
α6 — — — 0.00 (0.00) —

AIC 1890.71 1861.27 1752.56 1863.66 1735.76
R2 0.682 0.691 0.752 0.690 0.754

It should be noted that the p-values (omitted here) associated with the parameters of
each fitted model are smaller than 0.05, thus indicating the contributions of the individual
and interaction effects are statistically significant. Note also that the parameter estimates
(associated with the parametric component) obtained from the different fitted models are
quite similar and accurate. The last two rows of the Table 2 shows the Akaike Information
Criterion (AIC) and R2 values, respectively. It is clear that the PVCGLM, for which the
AIC(λ1, λ2) = 1735.76, presents the best fit to the Ozone data, followed by Model III with an
AIC = 1752.56, which is confirmed by the QQ-plots presented in Figure 3; see, specifically,
Figures 3(c) and 3(e). Note also that the R2 associated with our model is higher than Models
I, II and IV, and slightly higher that Model III.

For the PVCGLM the estimates of the smoothing parameters λ1 and λ2 as well as
the corresponding df’s were obtained by the procedure proposed by Ibacache-Pulgar et

al. (2013) [20], and are presented in Table 3. Figures 4(a) and 4(b) show the estimated
smooth functions under PVCGLM and the corresponding approximate SEB (dashed curves).

Table 3: Fit summary for smoothing components under PVCGLM fitted to Ozone data.

Smooth function

β1(DAY) β2(DAY)

df(λk) 6.894 7.228
λk 89050.050 5886.339
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Figure 3: Normal probability plots to Ozone data: Model I (a), Model II (b), Model III (c),
Model IV (d) and Model V (e).

Note that the plots confirm the nonlinear trends of the interaction effects between
(TEMP,DAY) and (IBT,DAY).
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Figure 4: Plots of the estimated smooth functions β1 (a) and β2 (b) and
their approximate pointwise SEB denoted by the dashed lines,
Ozone data.
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5.3. Local influence analysis

As mentioned earlier, the measure LD(ω) is useful for assessing the distance between
θ̂ and θ̂ω. In order to identify influential potentially observations on MPL estimators under
the fitted PVCGLM model to Ozone data, we present some index plots of Bi = Bei(γ), for
γ = α,βk and k ∈ {1, 2}.

Case-weight perturbation

Figure 5 shows the index plot Bi for the case-weight perturbation scheme under the
fitted model. Note at Figure 5, that observations #125, #219, #167 and #258 are more in-
fluential for the MPL estimator α̂, whereas observations #219, #221 and #222 are influential
for the MPL estimator β̂1 and β̂2, respectively. When we introduce an additive perturbation
to the response variable, the results are analogous to those observed under the case-weight
perturbation scheme, and therefore the graphs are omitted.
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Figure 5: Index plots of Bi for assessing local influence on α̂ (a), β̂1 (b) and β̂2 (c)
considering case-weight perturbation, Ozone data.
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Explanatory variable additive perturbation

By perturbing the explanatory variable in an additive way, it becomes clear that s
observations #125, #219 and #167 are more influential for the MPL estimator α̂, whereas
observations #219, #221 and #222 are influential for the MPL estimator β̂1 and β̂2, respec-
tively; see Figure 6.
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Figure 6: Index plots of Bi for assessing local influence on α̂ (a), β̂1 (b) and β̂2 (c)
considering explanatory variable perturbation, Ozone data.

Based on the local influence analysis, we conclude that the MPL estimators of the
regression coefficient and of the smooth functions are sensitive to perturbations introduced
into the data or to the model. In addition, this analysis revealed that the observations that
were detected as influential for the parametric component are not necessarily influential for
the nonparametric component, and vice versa. For instance, under the case-weight perturba-
tion scheme, observations #125, #219, #167 and #258 were detected as influential for the
parametric component. However, of these three observations, only observation #219 is indi-
cated as influential for the nonparametric component, in addition to observations #221 and
#222. In general, similar results were obtained when the explanatory variable is additively
perturbed.
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5.4. Confirmatory analysis

In order to investigate the impact on the model inference when the observations de-
tected as potentially influential in the diagnostic analysis are removed, we present the relative
changes (RCs) in the MPL estimate of αj for j ∈ {1, 2} after removing from the data set the
influential potentially observations (%). The RC is defined as RCξ = |(ξ̂ − ξ̂(I))/ξ̂| × 100%,
where ξ̂(I) denotes the MPL estimate of ξ, with ξ = αj , after the corresponding observation(s)
are removed according to the set I. Table 4 presents the RCs in the regression coefficient esti-
mates after removing the observations indicated as potentially influential for the parametric
component of the model.

Table 4: Relative changes (in %) in the MPL estimates of αj under the PVCGLM.

Parameters Relative changes
Dropped observation

α0 α1 RCα0 RCα1

125 1.17365 −0.001616 0.977 1.635
167 1.16798 −0.001592 1.455 0.125
219 1.18324 −0.001626 0.167 2.264
258 1.21007 −0.001622 2.096 2.013

125–167 1.17727 −0.001623 0.672 2.075
125–219 1.18273 −0.001628 0.211 2.389
125–258 1.52686 −0.001638 28.823 3.019
167–219 1.17701 −0.001603 0.694 0.817
167–258 1.53185 −0.001614 29.245 1.509
219–258 1.17689 −0.001609 0.703 1.195

125–167–219 1.15265 −0.001637 2.748 2.955
167–219–258 1.17625 −0.001593 0.758 0.189

125–167–219–258 1.51397 −0.001654 27.737 4.025

On the other hand, Table 5 shows the RCs observed in the estimation of the regression
coefficient once the observations detected as potentially influential for the nonparametric
component of the model are excluded.

Table 5: Relative changes (in %) in the MPL estimates of αj under the PVCGLM
considering the observations detected as influential on the nonparametric
component.

Parameters Relative changes
Dropped observation

α0 α1 RCα0 RCα1

none 1.18 −0.001
219 1.183 −0.002 0.167 2.264
221 1.161 −0.002 2.041 1.132
222 1.552 −0.002 30.949 2.075

219–221 1.142 −0.002 3.641 1.635
219–222 1.521 −0.002 28.330 4.779
221–222 1.151 −0.002 2.865 1.258

219–221–222 1.186 −0.002 0.092 2.955
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Considering these results, we conclude that, although some RCs are large, inferential
changes are not detected. It is interesting to notice from Tables 4 and 5 the coherence with
the local influence diagnostic shown previously. For instance, removal of the observations
sets I = {167, 258} and I = {125, 258}, which contain observations detected as influential
potentially for the parametric component, leads to significant changes in the MPL estimates,
mainly in α̂0, of the order of 29.245% and 28.823%, respectively; see Table 4.

Note also that the individual removal of observation #258 produces a RC of order
of 2.096%. On the other hand, the removal of the observations set I = {219, 222}, whose
observations were detected as influential potentially for nonparametric component, leads to
significant changes in the MPL estimate of α0, 28.330%. It is also observed that the removal
of observation #222 produces a RC of 30.949%. This indicates the need of a diagnostic
examination. The changes produced in the estimates of the smooth functions are presented
in Figure 7.
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Figure 7: Plots of estimated smooth functions, β̂1 and β̂2, for the Ozone data and their approximate
pointwise SEB denoted by the dashed lines: excluding observations #219 and #221 (a)–(b),
excluding observations #219 and #222 (c)–(d), excluding observations #221 and #222
(e)–(f), excluding observations #219, #221 and #222 (g)–(h).
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5.5. Computational aspects and summary of our methodology

The fitted models, quantile-quantile plots (qqplot) with simulated envelopes, and lo-
cal influence were done in Matlab version R2015a and are available via email for people
interested in replicating our analyses. Additionally, it is important to note that there are
at least two libraries in the free R software that can be used to fit our models, for ex-
ample, the mgcv library (https://cran.r-project.org/web/packages/mgcv/index.html) and
gamlss (https://cran.r-project.org/web/packages/gamlss/index.html). However, there is
no R library that performs local influence for the models studied in our work. Next, we
summarize all the stages of our methodology through an algorithm (Algorithm 2).

Algorithm 2 – Some guidelines for applying the analysis of local influence on the PVCGLM.|
1. Make a scatterplot and analyze the trend of the variables. Depending on the trend of your data

you should use linear, quadratic, or polynomial function (parametric function). Alternatively, you
could use a non-linear parametric form or nonparametric function (cubic spline for instance).

2. Decide if your response variable is a discrete random variable (Bernoulli, Binomial, Poisson, etc)
or continuous (Normal, Gamma, etc) belonging to the exponential family. After that, decide
which is the best option for your link function (log, square root, inverse, logit, probit, etc) and
try different parametric, nonparametric, or semiparametric for the systematic component of a
generalized linear model.

3. Choose the best model based on some criterion such as R-square or AIC.

4. Apply the local influence method and if you have some outlying observation study the relative
changes deleting some observations. If you do not have outlying observations, make some conclu-
sions about your data set.

6. CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH

In this paper we study some aspects of the partially varying-coefficient generalized lin-
ear models. Specifically, we derive a weighted back-fitting iterative process to estimate the
regression coefficients, the smooth functions and the dispersion parameter associated with
our model. The variance-covariance matrix of the maximum penalized likelihood estimators
was approximated by the inverse of penalized Fisher information matrix, and the effective
degrees of the freedom of the nonparametric components were calculated from the estimates
obtained in convergence of the iterative process. Furthermore, we extended the local influ-
ence method and obtained closed expressions for the Hessian matrix and the perturbation
matrix under different perturbation schemes. We performed a statistical data analysis with
a real data set on ozone concentration and some meteorological variables. The study showed
the advantage of incorporating a semiparametric additive term when there are predictors
whose interactions contribute nonlinearly to the model, and the utility of the local influence
method to detect influential observations on the maximum penalized likelihood estimators.
One of the main limitations of our model is the absence of a structure that allows modeling
the correlation in those data sets that have a time component, this being one of the main lines
of research to be developed. In addition, we believe that the exploration of new perturbation
schemes is necessary, mainly in the interaction components and the smoothing parameter.

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/gamlss/index.html
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Finally, we recommend the use of partially varying-coefficient generalized linear models and
the local influence method when the response variable belongs to the exponential family and
the interactions between the explanatory variables can be modelled through smooth func-
tions, and our interest is to evaluate the sensitivity of the maximum penalized likelihood
estimator.
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1. INTRODUCTION

Discharge of industrial and domestic effluent wastes, leakage from water tanks, marine
dumping and atmospheric deposition are major causes of pollution. The removal of suspended
solids from any sewer plays an important part in its overall waste treatment program. There
are several methods for separating suspended particles from sewers. One of these methods is
the use of invert traps. Several researcher have obtained experiment and simulation results
on the invert trap.

For instance, Buxton et al. [7] presented the results from a laboratory investigation
comparing the trapping performance of three slot size configurations of a laboratory-scale
invert trap. Thinglas [25] studied flow field prediction and optimization of invert trap config-
uration using three-dimensional computational fluid dynamics (CFD) modeling. Mohsin and
Kaushal [21] considered the experimental and discrete phase modeling for sediment retention
ratio for invert traps. Moreover, in invert trap data analysis, the complete information is
generally difficult to acquire on account of experimental cost and time-consuming of simula-
tion. Therefore, censored data is more common whose censoring schemes are mainly divided
into Type I and Type II censoring.

Furthermore, if Type I and Type II censored schemes are mixed together, it is hybrid
censoring scheme (Epstein [13]). In Type I hybrid censored sample, the experiment stops
at time T ∗ = min{xm:m:n, T}, where Xm:m:n means the m-th failure time from n units, and
T is the predetermined experiment time. Based on this censoring, it is a possibility that very
few failures may occur before time T ∗. So, Childs et al. [10] introduced the Type II hybrid
censoring scheme that would terminate the experiment at T ∗ = max{xm:m:n, T}. Based on
these censoring schemes, many statistical inferences have been carried out by several authors,
see for example, Balakrishnan et al. [5], Banerjee and Kundu [4], Kundu and Howlader [17],
Gupta and Singh [14].

A progressive censoring scheme (PCS) was then proposed to permit more flexibility in
the conduct of the experiment, where individuals can be removed at several stages of the
experiment rather than at the end. It can be classified into progressive Type I (PICS) and
progressive Type II censoring schemes (PIICS). In PICS, let the number of items used in a
life testing experiment be n. In this scheme, R1, R2, ..., Rm items are randomly withdrawn at
pre-specified time points T1, T2, ..., Tm, respectively. The test will be terminated at prefixed
time point Tm in this scheme. Now, we describe PIICS. Consider n number of total units at
initial time on an experiment. We remove randomly R1 number of survival units when first
failure time X1:m:n is observed. This process continues till m-th failure occurs. We assume
that the m-th failure takes place at time Xm:m:n and the remaining number of surviving units
is Rm = n− (m+

∑m−1
i=1 Ri).

Today, due to the high lifespan of many products, the total experimental time can be
very long if PCS is used. Consequently, with the aim of enhancing the experimental efficiency
and accuracy, it was further proposed as a progressive hybrid censoring scheme (PHCS). For
various applications of the progressive hybrid sampling schemes in life testing experiments,
we refer to Panahi [22] and El-Sherpieny et al. [12]. The main limitation of PHCS is that the
number of observed failures is random and it can turn out to be a very small number, thus,
any inference procedure will be invalid or its accuracy will be extremely low.
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To overcome this drawback, a new hybrid censoring scheme has been proposed by Cho
et al. [16] and is referred to generalized progressive hybrid censoring scheme (GPHCS), which
maintains the experimental time in an acceptable range for researchers and guarantees a suf-
ficient number of failed individuals. This scheme provides not only time and cost savings but
also promotes more efficient statistical inference based on more observable data. The proce-
dure of generalized Type II progressive hybrid (GIIPH) censoring scheme can be described
as follows:

Suppose that n units are put on a test and the number of failures m, two time points
T1 and T2 (0 < T1 < T2 <∞) and also the progressive censoring scheme R1, R2, ..., Rm

(
∑m

j=1Rj +m = n) are fixed beforehand. At the first failure time, (say X1:m:n), R1 number
of live items are selected and randomly removed from the experiment. At the second failure
time (X2:m:n), R2 units are removed from the remaining test items and so on, until the ter-
mination time T ∗ = max{T1, min(xm:m:n, T2)} failure observed and then all the remaining
units are removed from the experiment. Let Q1 and Q2 denoted the number of observed
failures up to time T1 and T2, respectively. Therefore,

• If Xm:m:n < T1, then the experiment continue to observe failures until times T1.
In this case the failure times are denoted by x1:m:n, ..., xm:m:n, xm+1:m:n, ..., xq1:n

(say Case I).

• If T1 < Xm:m:n < T2, then the experiment terminate at the m-th failure. In this
case the failure times are represented by x1:m:n, ..., xq1:m:n, ..., xm:m:n (say Case II).

• If Xm:m:n > T2, then the experiment terminate at time T2. In this case the failure
times are denoted by x1:m:n, ..., xq2:m:n, ..., xm:m:n (say Case III).

Where, q1 and q2 are the observed values of Q1 and Q2 respectively.

There are some authors studying this scheme under different lifetime distributions, see
for example, Chan et al. [9], Gorny et al. [15], Koley and Cramer [18]. Based on the observed
GIIPH censored sample, the likelihood function can be written as:

(1.1) L(α, β) =


=i
∏Q1

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case I,
=i
∏m

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case II,
=i
∏Q2

j=1 f(xj:m:n)[1− F (xj:m:n)]Rj Case III,

=i =


[1− F (T1)]R̃Q1+1

∏Q1
j=1

∑m
k=j(1 +Rk), Case I,∏m

j=1

∑m
k=j(1 +Rk) Case II,

[1− F (T2)]R̃Q2+1
∏Q2

j=1

∑m
k=j(1 +Rk) Case III.

In our work, estimation problems of unknown parameters of the inverse Burr (Burr
III) distribution under GIIPH censoring scheme gets discussed. The Burr III distribution
is one from twelve distributions was explored by using the method of differential equation
(Burr [6]). This distribution has the following probability density function and the cumulative
distribution function as:

(1.2) f(x;α, β) = αβx−β−1(1 + x−β)−(α+1); x > 0, α > 0, β > 0,

and

(1.3) F (x;α, β) = (1 + x−β)−α; x > 0, α > 0, β > 0.
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From Figure 1, it can be noticed that the inverse Burr distribution has two impor-
tant shapes of its hazard rate function: decreasing and upside-down bathtub (or unimodal).
It is worth mentioning that in reliability engineering, biology and several statistical modelling,
different shaped hazard rate functions are used with different interpretations. We would like
to mention that because of various shapes of the hazard rate function of inverse Burr distri-
bution, it can be applied in many areas of research. Further, for fitting various lifetime data,
inverse Burr distribution can be treated as an alternative model to other distributions such
as gamma, Weibull and log-normal. Moreover, there are various real engineering data sets,
for which inverse Burr (Burr III) distribution fits better than Weibull distribution.

Figure 1: Graphs of the hazard rate function of the B-III distribution
for different sets of parameters.

For example, the inverse Burr distribution fits the nano droplet dispersion data set
(see Panahi and Asadi [23]).

The inverse Burr distribution has been studied by many researchers based on different
censoring schemes. Abd-Elfattah and Alharbey [1] discussed the parameter estimations of this
distribution based on a trimmed samples. Singh et al. [24] considered statistical inferences for
the unknown parameters based on Type II progressive censoring scheme. Altindag et al. [2]
studied the estimation and prediction problems for the inverse Burr distribution under Type II
censored data. Panahi and Asadi [23] studied the application of this distribution on the Nano
droplet censored data.

To the best of our knowledge, nobody has considered the inverse Burr distribution for
the purpose of statistical inference based on GIIPH censoring scheme. Thus, our objectives
in this study to close this gap are: First, estimating the parameters of the inverse Burr
distribution using the EM algorithm. Using the Fisher information matrix, the approximate
confidence intervals (ACIs) for unknown parameters are obtained.

Second objective is to obtain the Bayes estimates of the unknown inverse Burr parame-
ters using independent gamma priors. Since the Bayes estimates cannot be obtained in closed
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expressions, Lindley’s approximation and Markov chain Monte Carlo technique are consid-
ered to compute the complex posterior functions and in turn calculating Bayes estimates and
the associated highest posterior density (HPD) credible intervals. Using various choices of
the censoring schemes, the performance of the proposed methods is compared through an ex-
tensive simulation study in terms of their simulated mean squared-error (MSE) and average
confidence lengths.

Also, third objective is to show the practical application of this distribution in sepa-
ration of sewer solids data which are obtained by the authors using the computational fluid
dynamics (CFD) method. The rest of the paper is organized as follows.

In Section 2, it is represented how the EM algorithm is utilized to obtain the maximum
likelihood estimators (MLEs) of the unknown parameters as well as Fisher information matrix
of the inverse Burr distribution under GIIPH censored sample. The existence and uniqueness
properties of the MLEs have also been studied graphically. In Section 3, we derive the
approximate explicit expressions for the Bayesian estimates using Lindley’s approximation
and Markov chain Monte Carlo technique. The Markov chain Monte Carlo samples are also
used to construct the HPD credible intervals of the unknown parameters. Section 4 is devoted
a simulation study to compare the proposed point and interval estimators. One real data set
is analyzed for illustration in Section 5. Conclusions are given in Section 6.

2. MAXIMUM LIKELIHOOD ESTIMATORS

In this Section, the maximum likelihood method is carried out on the model based on
the GIIPH censoring scheme. By (1.2), the likelihood function without additive constant is
presented as follows:

(2.1) L(α, β) =



q1∏
j=1

m∑
k=j

(1 +Rk)(αβ)q1
q1∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j DR̃Q1+1 case I

m∏
j=1

m∑
k=j

(1 +Rk)(αβ)m
m∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j case II

q2∏
j=1

m∑
k=j

(1 +Rk)(αβ)q2
q2∏

j=1
x−β−1

j:m:nA
−(α+1)
j B

Rj

j DR̃Q2+1 case III,

where Aj = (1 + x−β
j:m:n), Bj = (1− (1 + x−β

j:m:n)
−α

), R̃Q1+1 = n− q1 −
∑m−1

j=1 Rj , R̃Q2+1 =
n− q2 −

∑q2
j=1Rj and

D =

{
1− (1 + T−β

1 )
−α

for case I
1− (1 + T−β

2 )
−α

for case III.
The corresponding log-likelihood function is given by:

l(α, β) = lnL(α, β)

= ι(lnα+ lnβ)− (β+1)
ι∑

j=1

lnxj:m:n − (α+1)
ι∑

j=1

lnAj +
ι∑

j=1

Rj lnBj + (R̃Qj+1) lnD,

where

(ι, R̃Qj+1) =


(q1, R̃Q1+1), Case I,
(m, 0) Case II,
(q2, R̃Q2+1), Case III.
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After differentiating the function l(α, β) with respect to α and β, we have

(2.2) α̂ = ι

(
ι∑

j=1

lnAj −
ι∑

j=1

Rj

A−α
j lnAj

Bj
−$1

)−1

,

(2.3)

β̂ = ι

(
ι∑

j=1

lnxj:m:n +
ι∑

j=1

Rjα
x−β

j:m:n lnxj:m:nA
−α−1
j

Bj
−

ι∑
j=1

(α+ 1)
x−β

j:m:n lnxj:m:n

Aj
+$2

)−1

,

where

(ι,$1) =


(q1, R̃Q1+1

(1 + T−β
1 )−α ln(1 + T−β

1 )
D

), Case I,

(m, 0) Case II,

(q2, R̃Q2+1
(1 + T−β

2 )−α ln(1 + T−β
2 )

D
), Case III,

$2 =


R̃Q1+1

αT−β
1 lnT1(1 + T−β

1 )−α−1

D
, Case I,

0 Case II,

R̃Q2+1
αT−β

2 lnT2(1 + T−β
2 )−α−1

D
, Case III,

respectively. Now, we show the existence and uniqueness of the maximum likelihood estimates
of the parameters of the inverse Burr distribution under GIIPH censored data using the
graphical method (Ateya [3]) as:

• A sample of size 50 from the inverse Burr distribution are generated.

• Based on certain case of censored data (T1 = .8, T2 = 2, m = 30, R15 = 20, Rj = 0,
j 6= 15), the curves of the equations ∂(l(α, β))/∂(α) and ∂(l(α, β))/∂(β) are pre-
sented in Figure 2.

• The curve of l(α̂, β) and l(α, β̂) are also drawn in Figures 2 and 3, respectively.

• It is easy to see from Figure 1 that there exist one intersection point (1.1922,1.6455)
which indicates that the solution of ∂l(α,β)

∂α = 0 and ∂l(α,β)
∂β = 0, exists and is unique.

This concludes that the maximum likelihood estimates of the parameters α and β

exist and are unique.

• The Figure 3 shows that the previous intersection point maximizes the l(α, β̂).

• Similarly from Figure 4, it is observed the intersection point is the maximization
point of the l(α̂, β).

• An important implication is that the maximum likelihood estimates of the param-
eters α and β exist and are unique for other generalized Type II progressive hybrid
censored cases.
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Figure 2: The plot of the ML estimates of α and β graphically.

Figure 3: The curve of the log-likelihood function l(α, β̂).

Figure 4: The curve of the the log-likelihood function l(α̂, β).



350 H. Panahi, S. Asadi and P. Parviz

2.1. EM algorithm

It is found that there is no explicit solution of (2.2) and (2.3), making them incredibly
difficult to get the exact form of their solutions, thus utilizing the EM algorithm to work
out these equations. Suppose that X = (X1, X2, ..., Xι) denotes the observed and (Zj ,Z′)
represent the censored data. Where, Zj = (Zj1 , Zj2 , ..., ZjRj

) and

Z′ =

{
(Z1, Z2, ..., ZR̃Q1+1

) Case I

(Z1, Z2, ..., ZR̃Q2+1
) Case III,

The log-likelihood function of (α, β) under the complete data is:

(2.4) lComplete(α, β) =


∆ + {1 Case I
∆ Case II
∆ + {2 Case III,

∆ = n ln(α) + n(lnβ)− (β + 1)
ι∑

j=1

lnxj:m:n − (α+ 1)
ι∑

j=1

ln(1 + x−β
j:m:n)

−(β + 1)
ι∑

j=1

Rj∑
k=1

E[lnZjk|Zjk > xj:m:n]− (α+ 1)
ι∑

j=1

Rj∑
k=1

E[ln(1 + Z−β
jk )|zjk > xj:m:n],

{1 = −(β + 1)
R̃Q1+1∑

p=1

E[ln(Z ′
p)|Z ′

p > T1]− (α+ 1)
R̃Q1+1∑

p=1

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T1],

and

{2 = −(β + 1)
R̃Q2+1∑

p=1

E[lnZ ′
p|Z ′

p > T2]− (α+ 1)
R̃Q2+1∑

p=1

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T2].

The E -step of the EM-iteration needs the following conditional expectations:

E[lnZjk|Zjk > c] =
αβ

1− FX(c;α, β)

∫ ∞

c
x−β−1(1 + x−β)−(α+1) lnxdx = H1(xj , α, β),

E[ln(1 + Z−β
jk )|Zjk > c] =

αβ

1− FX(c;α, β)

∫ ∞

c
x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H2(xj , α, β),

E[lnZ ′
p|Z ′

p > T1] =
αβ

1− FX(T1;α, β)

∫ ∞

T1

x−β−1(1 + x−β)−(α+1) lnxdx = H3(xj , α, β),

E[lnZ ′
p|Z ′

p > T2] =
αβ

1− FX(T2;α, β)

∫ ∞

T2

x−β−1(1 + x−β)−(α+1) lnxdx = H4(xj , α, β),

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T1] =
αβ

1− FX(T1;α, β)

∫ ∞

T1

x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H5(T1, α, β),
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and

E[ln(1 + (Z ′
p)
−β)|Z ′

p > T2] =
αβ

1− FX(T2;α, β)

∫ ∞

T2

x−β−1(1 + x−β)−(α+1) ln(1 + x−β)dx

= H6(T2, α, β),

The M-step in a EM-iteration is maximizing the likelihood under complete sample over (α, β),
with the missing values replaced by their conditional expectations.

2.2. Approximate Confidence Interval

For each unknown parameter, the approximate confidence intervals (ACIs) are pre-
sented by utilizing the observed Fisher information matrix. We have

(2.5) IX(θ) = IW(θ)− IZ|X(θ).

Where,

(2.6) IW(θ) = −Eθ

[∂2lComplete(θ)
∂θ2

]
; θ = (α, β),

and

l̂αα =
∂2l

∂α2
|α=α̂,β=β̂ = − ι

α̂2
−

ι∑
j=1

Rj

Aα
j ln2(Aj)

(Aα
j − 1)2

−$3,

Also, $3 is equal to R̃Q1+1{
Sα

1 ln2(S1)
(Sα

1 −1)2
}, 0 and R̃Q2+1{

Sα
2 ln2 S2

(Sα
2 −1)2

} for cases I, II and III respec-
tively.

l̂ββ =
∂2l

∂β2
|α=α,β=β̂ = − ι

β2
− (α+ 1)

ι∑
i=1

xβ
j ln2 xj

(1 + xβ
j )2

+
ι∑

j=1

αRj

xβ
j ln2 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

α(α+ 1)Rj
ln2 xj(Aj)α

(xβ
j (Aα+1

j − 1)− 1)2
+$4,

$4 = R̃Q1+1

{αT β
1 ln2 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
− α(α+ 1) ln2 T1S

α
1

(T β
1 (Sα+1

1 − 1)− 1)2

}
for case I

$4 = 0 for case II

$4 = R̃Q2+1

{αT β
2 ln2 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
− α(α+ 1) ln2 T2(S2)α

(T β
2 (Sα+1

2 − 1)− 1)2

}
for case III

and

l̂βα = l̂αβ =
∂2l

∂β∂α
|α=α̂,β=β̂ =

ι∑
j=1

xj

1 + xβ
j

−
ι∑

j=1

Rj
lnxj

xβ
j (Aα+1

j − 1)− 1

+
ι∑

j=1

αRj

Aα+1
j xβ

j lnxjln(Aj)

(xβ
j (Aα+1

j − 1)− 1)2
−$5
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$5 = R̃Q1+1

{ lnT1

T β
1 (Sα+1

1 − 1)− 1
− αT β

1 lnT1S
α+1
1 ln(S1)

(T β
1 (Sα+1

1 − 1)− 1)2

}
for case I

$5 = 0 for case II

$5 = R̃Q2+1

{ lnT2

T β
2 (Sα+1

2 − 1)− 1
− αT β

2 lnT1S
α+1
2 ln(S2)

(T β
2 (Sα+1

2 − 1)− 1)2

}
for case III.

Note that, we consider xj:m:n = xj , S1 = (1 + T−β
1 ), S2 = (1 + T−β

2 ), and Aj = (1 + x−β
j ).

Based on the conditional distribution, the Fisher information in the j-th observation can be
evaluated as

I
(j)
Z|X(θ) = −E

[ ∂2

∂θ2
ln(f(zjk|xj:m:n, θ))

]
.(2.7)

Therefore, we have

IZ|X (θ) =



q1∑
j=1

RiI
(j)
Z|X (θ) + R̃Q1+1I

∗
Z| X (θ), Case I

m∑
j=1

RiI
(j)
Z|X (θ), Case II

q2∑
j=1

RiI
(j)
Z|X (θ) + R̃Q2+1I

∗
Z|X (θ) Case III.

Where, I(j)
Z|X(θ) and I∗Z|X(θ) are the information matrix of a single observation for the trun-

cated inverse Burr distribution. Therefore, the 100(1− γ)% ACIs for the parameters are
given by:(

α̂− Zγ/2

√
Var(α̂) , α̂+ Zγ/2

√
Var(α̂)

)
and

(
β̂ − Zγ/2

√
Var(β̂) , β̂ + Zγ/2

√
Var(β̂)

)
.

3. BAYESIAN ETIMATION

In contrast to traditional frequentist methods, the Bayesian approaches take advan-
tage of available data information and incorporate prior information of parameters, thereby
attracting much attention in statistical inference. For obtaining the Bayesian estimates, we
consider independent gamma prior distributions for α and β with hyper-parameters (a1, b1)
and (a2, b2) respectively, that reflect prior beliefs. Hence the PDF of the joint prior distribu-
tion takes the following expression:

(3.1) π(α,β) ∝ αb1−1e−a1αβb2−1e−a2β ; α > 0, β > 0, a1 > 0, a2 > 0, b1 > 0, b2 > 0,

In prior distributions, hyper parameters ai and bi, i = 1, 2 are assumed as non-negative and
known. In the case of noninformative priors, very small non-negative values of the hyper-
parameters , i.e. a1 = a2 = b1 = b2 = 0.0001, are used as suggested by Congdon [8] which
are almost like Jeffrey’s priors, but they are proper, inversely. As more informative priors,
different cases of the hyperparameters can be evaluated. Therefore, Bayes estimation of a
general function of parameters (Υ(α, β)) with the square error loss function can be derived
as

(3.2) Υ̃(α, β) = E(Υ(α, β)|Data) = >−1

∫∫
Υ(α, β)π(α, β|Data)dαdβ,
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where > =
∫∫

π(α, β|Data)dαdβ and
(3.3)

π(α, β|Data) =



ψαq1+b1−1βq1+b2−1
q1∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2B

Rj

j DR̃Q1+1 case I,

ψαm+b1−1βm+b2−1
m∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2BRj case II,

ψαq2+b1−1βq2+b2−1
q2∏

j=1
x−β−1

j:m:nA
−(α+1)
j e−αa1−βa2B

Rj

j DR̃Q2+1 case III.

Here, Aj , Bj , D are introduced previously and ψ and Υ can be written as:

ψ =



q1∏
j=1

m∑
k=j

(1 +Rk) for case I,

m∏
j=1

m∑
k=j

(1 +Rk) for case II,

q2∏
j=1

m∑
k=j

(1 +Rk) for case III,

and

Υ(α, β) = αυ1βυ2 ;

{
υ1 = 1, υ2 = 0 for estimating α
υ1 = 0, υ2 = 1 for estimating β.

It is clear that the Bayes estimator in (3.2) cannot be obtained analytically. Therefore, some
approximation methods are required in order to compute the approximate Bayes estimates.
We adopt the Lindley’s method and Metropolis–Hastings algorithm to solve the problem.

3.1. Lindley’s Approximation

In the above Section, we see that the proposed Bayes estimates are in the form of the
ratio of two integrals. These integrals can not be evaluated in terms of some closed-form
expressions. So, we developed the Bayesian estimates using the Lindley’s approximation
(Lindley [19]). Based on the Lindley’s method, the Bayes estimations of parameters have the
following expression:

α̃ = α̂+
1
2
[
2ρ̂αv̂αα + 2ρ̂β v̂αβ + v̂2

αα l̂ααα + v̂ααv̂ββ l̂ββα + 2v̂αβ v̂βα l̂αββ + v̂αβ v̂ββ l̂βββ

]
,

and

β̃ = α̂+
1
2
[
2ρ̂αv̂ββ + 2ρ̂β v̂βα + v̂2

ββ l̂βββ + 3v̂ββ v̂αβ l̂αββ + v̂ααv̂βα l̂ααα

]
.

Here, ρ̂α = b1−1
α̂ − a1, ρ̂β = b2−1

β̂
− a2, l̂αnβm = ∂n+ml(α, β)/∂αn∂βm;n,m = 0, 1, ... and

v̂ij are the (ij)-th elements of matrix
[
− ∂2l(α, β)/∂α∂β

]−1; i, j = 1, 2. Also, we have

l̂ααα =
∂3l

∂α3
=

2ι
α3

−
ι∑

j=1

Rj

Aα
j ln3(Aj)

(Aα
j − 1)2

+ 2
ι∑

j=1

Rj

A2α
j ln3(Aj)

(Aα
j − 1)3

−$6,

$6 = R̃Q1+1

{Sα
1 ln3(S1)

(Sα
1 − 1)2

− 2
S2α

1 ln3(S1)
(Sα

1 − 1)3
}

for case I,

$6 = 0 for case II,

$6 = R̃Q2+1

{Sα
2 ln3(S2)

(Sα
2 − 1)2

− 2
S2α

2 ln3(S2)
(Sα

2 − 1)3
}

for case III,
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l̂ααβ = l̂αβα = l̂βαα =
∂3l

∂α2∂β
|α=α,β=β +

ι∑
j=1

Rj

αAα−1
j lnxjx

−β
j ln2(Aj)

(Aα
j − 1)2

+ 2
ι∑

j=1

Rj

Aα−1
j lnxjx

−β
j ln(Aj)

(Aα
j − 1)2

− 2
ι∑

j=1

Rj

αA2α−1
j lnxjx

−β
j ln2(Aj)

(Aα
j − 1)3

+$7,

$7 = R̃Q1+1

{αSα−1
1 T−β

1 lnT1 ln2(S1)
(Sα

1 − 1)2
+ 2

ln(S1)T
−β
1 lnT1S

α−1
1

(Sα
1 − 1)2

− 2
αS2α−1

1 T−β
1 lnT1 ln2(S1)

(Sα
1 − 1)3

}
for case I,

$7 = 0 for case II,

$7 = R̃Q2+1

{αSα−1
2 T−β

2 lnT2 ln2(S2)
(Sα

2 − 1)2
+ 2

ln(S2)T
−β
2 lnT2S

α−1
2

(Sα
2 − 1)2

− 2
αS2α−1

2 T−β
2 lnT2 ln2(S2)

(Sα
2 − 1)3

}
for case III,

l̂βββ =
∂3l

∂β3
|α=α̂,β=β̂ =

2ι
β3

−
ι∑

j=1

(α+ 1)
xβ

j ln3 xj

(1 + xβ
j )2

+
ι∑

j=1

2(α+ 1)
x2β

j ln3 xj

(1 + xβ
j )3

+
ι∑

j=1

αRj

xβ
j ln3 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

α(α+ 1)Rj

ln3 xjA
α
j

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

2αRj

x2β
j ln3 xj(Aα+1

j − 1)2

(xβ
j (Aα+1

j − 1)− 1)3
+

ι∑
j=1

4α(α+ 1)Rj

xβ
jA

α
j ln3 xj(Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)3

+
ι∑

j=1

α2(α+ 1)Rj

x−β
j ln3 xjA

α−1
j

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

2α(α+ 1)2Rj

ln3 xjA
2α
j

(xβ
j (Aα+1

j − 1)− 1)3

+ $8,

$8 = R̃Q1+1

{αT β
1 ln3 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
− α(α+ 1) ln3 T1S

α
1

(T β
1 (Sα+1

1 − 1)− 1)2

− 2αT 2β
1 ln3 T1(Sα+1

1 − 1)2

(T β
1 (Sα+1

1 − 1)− 1)3
+

4α(α+ 1)T β
1 ln3 T1S

α
1 (Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)3

+
α2(α+ 1)T−β

1 ln3 T1S
α−1
1

(T β
1 (Sα+1

1 − 1)− 1)2
− 2α(α+ 1)2 ln3 T1S

2α
1

(T β
1 (Sα+1

1 − 1)− 1)3

}
for case I,

$8 = 0 for case II,

$8 = R̃Q2+1

{αT β
2 ln3 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
− α(α+ 1) ln3 T2S

α
2

(T β
2 (Sα+1

2 − 1)− 1)2

− 2αT 2β
2 ln3 T2(Sα+1

2 − 1)2

(T β
2 (Sα+1

2 − 1)− 1)3
+

4α(α+ 1)T β
2 ln3 T2S

α
2 (Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)3

+
α2(α+ 1)T−β

2 ln3 T2S
α−1
2

(T β
2 (Sα+1

2 − 1)− 1)2
− 2α(α+ 1)2 ln3 T2S

2α
2

(T β
2 (Sα+1

2 − 1)− 1)3

}
for case III,
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l̂ββα = l̂βαβ = l̂αββ =
∂3l

∂β2∂α
|α=α̂,β=β̂ = −

ι∑
i=1

xβ
j ln2 xj

(1 + xβ
j )2

+
ι∑

j=1

Rj

ln2 xjx
β
j (Aα+1

j − 1)

(xβ
j (Aα+1

j − 1)− 1)2
+

ι∑
j=1

αRj

Aα+1
j xβ

j ln(Aj) ln2 xj

(xβ
j (Aα+1

j − 1)− 1)2

−
ι∑

j=1

2αRj

Aα+1
j (Aα+1

j − 1)x2β
j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)3

−
ι∑

j=1

(2α+ 1)Rj

Aα
j ln2 xj

(xβ
j (Aα+1

j − 1)− 1)2
−

ι∑
j=1

(α2 + α)Rj

Aα
j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)2

+
ι∑

j=1

2α(α+ 1)Rj

A2α+1
j xβ

j ln2 xj ln(Aj)

(xβ
j (Aα+1

j − 1)− 1)3
+$9,

$9 = R̃Q1+1

{ T β
1 ln2 T1(Sα+1

1 − 1)

(T β
1 (Sα+1

1 − 1)− 1)2
+ α

ln2 T1S
α+1
1 ln(S1)T

β
1

(T β
1 (Sα+1

1 − 1)− 1)2

− 2α
T 2β

1 ln2 T1(Sα+1
1 − 1)Sα+1

1 lnS1

(T β
1 (Sα+1

1 − 1)− 1)3
− (2α+ 1)

ln2 T1(S1)α

(T β
1 (Sα+1

1 − 1)− 1)2

− (α+ α2)
ln2 T1 ln(S1)Sα

1

(T β
1 (Sα+1

1 − 1)− 1)2
+ 2α(α+ 1)

ln2 T1 ln(S1)T
β
1 S

2α+1
1

(T β
1 (Sα+1

1 − 1)− 1)3

}
for case I,

$9 = 0 for case II,

$9 = R̃Q2+1

{ T β
2 ln2 T2(Sα+1

2 − 1)

(T β
2 (Sα+1

2 − 1)− 1)2
+ α

ln2 T2S
α+1
1 ln(S2)T

β
2

(T β
2 (Sα+1

2 − 1)− 1)2

− 2α
T 2β

2 ln2 T2(Sα+1
2 − 1)Sα+1

2 lnS2

(T β
2 (Sα+1

2 − 1)− 1)3
− (2α+ 1)

ln2 T2S
α
2

(T β
2 (Sα+1

2 − 1)− 1)2

− (α+ α2)
ln2 T2 ln(S2)Sα

2

(T β
2 (Sα+1

2 − 1)− 1)2
+ 2α(α+ 1)

ln2 T2 ln(S2)T
β
2 S

2α+1
2

(T β
2 (Sα+1

2 − 1)− 1)3

}
for case III.

3.2. Metropolis–Hastings Algorithm

In the previous Subsection, we obtain the Bayes estimates using Lindley’s approxi-
mation method. One disadvantage of this method is that it requires higher order partial
derivatives of the log-likelihood function. Further, the Lindley’s approximation can not be
used to construct HPD credible intervals. Moreover, it is observed that the conditional pos-
terior distribution of unknown parameters cannot be reduced to any well-known distribution.
To overcome this problem, we propose to apply the Metropolis–Hastings (Metropolis et al.

[20]) algorithm for generating samples from the respective posterior distributions. This algo-
rithm is the most popular example of the Markov chain Monte Carlo (MCMC) method and it
is free from the higher order partial derivatives. The basic scheme of the Metropolis–Hastings
(M-H) is given as follows:
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Step 1: Use the MLEs of (α, β) as the initial point of the iteration, denoted by
(α0, β0).

Step 2: Generate αj and βj from the normal proposal distributions N(αj−1, σ
2) and

N(βj−1, σ
2), respectively, for j = 1, ..., N .

Step 3: Compute h =
π(αj , βj |Data)

π(αj−1, βj−1|Data)
.

Step 4: Accept the new sample with probability min(1, h).

Step 5: Set j = j + 1.

Step 6: Repeat Step 2–5, up to N times.

So, the Bayes estimates of α and β are respectively obtained as below:

α̃ =
1

N −N0

N∑
i=N0+1

αi, and β̃ =
1

N −N0

N∑
i=N0+1

βi.

In order to guarantee the convergence and to remove the affection of the selection of initial
values, the first N0 simulated varieties are discarded (burn-in-period of Markov chain). Also,
for computing the confidence interval based on MCMC samples, we first order the samples
α1:N , α2:N , ..., αN :N and β1:N , β2:N , ..., βN :N , then a (1− γ)× 100% HPD credible interval for
α and β are obtained as:

[αNγ , αN(1−γ)] and [βNγ , βN(1−γ)].

Finally, choose the interval which has the smallest width as a HPD credible interval.

4. SIMULATION STUDY

To evaluate the behavior of the theoretical results obtained in the previous Sections,
including the classical and Bayesian estimators and the associated confidence/credible inter-
vals, an extensive Monte Carlo simulation study is performed. We simulate GIIPH censored
samples for different combinations of (n,m, T1, T2) from the inverse Burr (α, β) distribution.
We adopted the true values of unknown parameters as α = 1.2 and β = 1.6. Note that all
the computations have been performed using R software. Through the sample data, we eval-
uate the MLEs by employing an EM algorithm. Approximate expressions for the Bayesian
estimators have been obtained using the Lindley’s approximation and Metropolis–Hastings
algorithm. Using the M-H sampler algorithm described in Subsection 3.2, 10000 MCMC
samples and discard the first 2000 values as ‘burn-in’ are generated. In Bayesian paradigm,
the choice of the hyper-parameter values is the main issue. For this propose, both non-
informative prior (NIP) and informative prior (IP) are taken into account in the Bayesian
approach, where all hyper-parameters in the NIP are chosen to be 0.0001 instead of 0, which
is more appropriate since the hyper-parameters are greater than 0, and the hyper-parameters
in the IP are selected according to this manner: the means of prior (PR) distributions are
equal to original parameters(a1 = 1.2, a2 = 1.6, b1 = 1, b2 = 1). The %95 approximate confi-
dence (AC) and Bayesian (HPD) intervals for the parameters are also constructed. The HPD
credible intervals are computed based on 10000 MCMC samples. We take three different
censoring schemes as follows:
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Scheme 1: Rm = n−m and Rj = 0 for j 6= m;

Scheme 2: R1 = Rm = (n−m)/2 and Rj = 0 for j 6= 1,m;

Scheme 3: Rm/2 = n−m and Rj = 0 for j 6= m/2.

Based on these set up assumptions, we show the numerical results in the Table 1,
Table 2, Table 3 and Table 4.

Tables 1 and 2 (also, Figure 5 and Figure 6) present the average ML and Bayes estimates
and the corresponding MSEs based on 10000 replications. Moreover, the average lower and
upper bounds of the AC and HPD intervals are displayed in Tables 3 and 4.

The following conclusions are found from Tables 1–4 and Figures 5–6:

• For fixed n, T1 and T2 as m increases, the average estimates and the MSEs of the
parameters decreases. Also, with increasing m, the average lengths of all intervals
mostly decrease.

• For fixed m, T1 and T2 as sample size n increases the MSEs of all the estimators
decreases ( Figure 6). Similar trend is observed (Figure 6) for fixed n, T1 and T2 as
m increases.

• The MSEs have a downward trend for fixed n, m, T1 and increasing T2 ( Figure 5).

• For fixed n, m and T2 as T1 increases, the MSEs decreases ( Figure 5).

• To evaluate the effect of the proposed estimation methods with respect to the small-
est MSE, it is observed that the Bayes estimates work efficiently and provide better
performance as compared to those obtained based on MLEs. For the parameters α
and β, the MSEs of the maximum likelihood estimates are larger than the Bayes
estimates.

• The Bayesian MCMC estimation using M-H algorithm sampler for the unknown
parameters under GIIPH censoring is recommended for all values of n, m, T1 and
T2.

• As expected, the Bayesian estimation with IP tends to be preferable to that with
NIP.

• The average lengths of the ACI for α and β are relatively large compared to those
of Bayesian credible intervals.

• As for the Bayes method, similar to the findings for the point estimates, the Bayesian
intervals under non-informative prior are slightly worse than those under informative
prior.
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Table 1: The MSEs of the MLEs (α̂), Lindleys (α̃LIN ) and M-Hs (α̃MH)
for T1 = 1, T2 = 2.5.

n m Scheme α̂(MSE) PR α̃LIN (MSE) α̃MH(MSE)

30 15 R1 1.4754(0.2256) IP 1.4897(0.1945) 1.4270(0.0979)
NIP 1.5023(0.2094) 1.4328(0.1006)

R2 1.4427(0.1789) IP 1.4475(0.1581) 1.3665(0.0733)
NIP 1.4596(0.1637) 1.3709(0.0769)

R3 1.4246(0.1005) IP 1.3937(0.0897) 1.3508(0.0621)
NIP 1.4214(0.0942) 1.3700(0.0699)

50 24 R1 1.2982(0.1785) IP 1.3687(0.1586) 1.2843(0.0464)
NIP 1.3278(0.1669) 1.3199(0.0497)

R2 1.3064(0.0939) IP 1.3000(0.0900) 1.1674(0.0175)
NIP 1.3087(0.0911) 1.1721(0.0244)

R3 0.9172(0.0439) IP 0.9450(0.0382) 0.9913(0.0230)
NIP 0.9608(0.0410) 0.9725(0.0277)

30 R1 1.2982(0.1316) IP 1.2786(0.1212) 1.2028(0.0388)
NIP 1.2865(0.1283) 1.2536(0.0449)

R2 1.1464(0.0476) IP 1.1397(0.0455) 0.9741(0.0091)
NIP 1.1471(0.0462) 01.9932(.0105)

R3 1.006(0.0295) IP 0.9995(0.0261) 1.001(0.0141)
NIP 1.002(0.0269) 1.009(0.0169)

100 48 R1 1.3875(0.1632) IP 1.3768(0.1544) 1.2434(0.0336)
NIP 1.3811(0.1598) 1.2709(0.0390)

R2 1.1687(0.0283) IP 1.1666(0.0277) 1.1019(0.0100)
NIP 1.1679(0.0281) 1.1052(0.0133)

R3 0.9414(0.0221) IP 0.9551(0.0205) 1.1174(0.0188)
NIP 0.9532(0.0215) 1.1168(0.0209)

60 R1 1.3212(0.1226) IP 1.3105(0.1152) 1.2190(0.0327)
NIP 1.3176(0.1174) 1.2187(0.0328)

R2 0.9028(0.0090) IP 0.9162(0.0070) 0.9786(0.0004)
NIP 0.9200(0.0084) 0.9921(0.0013)

R3 1.0090(0.0145) IP 1.0060(0.0136) 1.0400(0.0016)
NIP 1.008(0.0140) 1.0488(0.0021)
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Table 2: The MSEs of the MLEs (β̂), Lindleys (β̃LIN ) and M-Hs (β̃MH)
for T1 = 1, T2 = 2.5.

n m Scheme β̂(MSE) PR β̃LIN (MSE) β̃MH(MSE)

30 15 R1 1.3675(0.2354) IP 1.3954(0.1738) 1.3700(0.1614)
NIP 1.4186(0.1845) 1.3961(0.1823)

R2 1.6325(.1535) IP 1.5885(0.1366) 1.5143(0.1122)
NIP 1.5899(0.1389) 1.5357(0.1308)

R3 1.7859(0.1673) IP 1.7654(0.1611) 1.4998(0.1066)
NIP 1.7865(0.1738) 1.5403(0.1231)

50 24 R1 1.2763(0.1807) IP 1.3029(0.1322) 1.3122(0.1316)
NIP 1.3043(0.1493) 1.3145(0.1387)

R2 1.5917(.1068) IP 1.5643(0.1031) 1.5457(0.0900)
NIP 1.5749(0.1054) 1.5499(0.0938)

R3 1.7431(0.1673) IP 1.7183(0.1527) 1.5125(0.0760)
NIP 1.7327(0.1602) 1.5226(0.0811)

30 R1 1.3846(0.1155) IP 1.4220(0.1136) 1.7034(0.0921)
NIP 1.4165(0.1140) 1.6993(0.0976)

R2 1.5075(0.0860) IP 1.5064(0.0850) 1.6737(0.0540)
NIP 1.5069(0.0857) 1.3199(0.0497)

R3 1.6514(0.0897) IP 1.6094(0.0741) 1.5509(0.0240)
NIP 1.6328(0.0809) 1.5499(0.0296)

100 48 R1 1.2681(0.1699) IP 1.2796(0.1242) 1.6234(0.1045)
NIP 1.2765(0.1374) 1.6309(0.1089)

R2 1.7893(0.0558) IP 1.7674(0.0480) 1.4064(0.0540)
NIP 1.7763(0.0518) 1.4078(0.0616)

R3 1.6676(0.0573) IP 1.6559(0.0540) 1.4797(0.0244)
NIP 1.6621(0.0564) 1.4859(0.0289)

60 R1 1.3435(0.1047) IP 1.3586(0.0905) 1.6112(0.0446)
NIP 1.3488(0.0977) 1.6269(0.0535)

R2 1.5587(0.0460) IP 1.54974(0.0430) 1.6850(0.0070)
NIP 1.5546(0.0451) 1.6589(0.0087)

R3 1.5973(0.0397) IP 1.5784(0.0370) 1.6405(0.0046)
NIP 1.5884(0.0383) 1.6712(0.0065)
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Figure 5: The MSEs of the estimators for different choices of T1 and T2.

Figure 6: The MSEs of the estimators for different choices of n and m.
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Table 3: The average upper and lower bounds for α when T1 = 1, T2 = 2.5.

n m Scheme LACI UACI PR LHPD UHPD

30 15 R1 1.1432 1.8865 IP 1.1675 1.8536
NIP 1.1604 1.8653

R2 0.6884 1.4893 IP 0.7476 1.4280
NIP 0.7421 1.4452

R3 0.7189 1.3966 IP 0.7728 1.3609
NIP 0.7496 1.3648

50 24 R1 1.1820 1.7020 IP 1.1224 1.5726
NIP 1.1148 1.5921

R2 0.8440 1.3540 IP 0.9980 1.3932
NIP 0.9972 1.4266

R3 0.7850 1.2893 IP 0.9782 1.3780
NIP 0.9760 1.3882

30 R1 0.9334 1.4357 IP 0.9855 1.3921
NIP 0.9599 1.3989

R2 0.9233 1.3585 IP 0.9315 1.2667
NIP 0.9035 1.2833

R3 0.9540 1.3585 IP 0.8993 1.2264
NIP 0.8556 1.2345

100 48 R1 0.9420 1.4441 IP 1.1434 1.5134
NIP 1.1139 1.5173

R2 0.8021 1.2721 IP 1.0019 1.3431
NIP 1.0011 1.3564

R3 0.8527 1.2427 IP 1.0674 1.3174
NIP 1.0221 1.3308

60 R1 0.9378 1.3876 IP 1.0319 1.3108
NIP 0.9881 1.3288

R2 0.8937 1.2437 IP 0.9735 1.2899
NIP 0.9711 1.3004

R3 0.7860 1.2334 IP 0.9989 1.2206
NIP 0.9366 1.2371
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Table 4: The average upper and lower bounds for β when T1 = 1, T2 = 2.5.

n m Scheme LACI UACI IP LHPD UHPD

30 15 R1 0.5265 1.7832 IP 0.6643 1.7548
NIP 0.6532 1.7802

R2 0.9568 2.1005 IP 1.0944 1.9136
NIP 0.9867 1.9197

R3 1.2147 2.2715 IP 0.6957 1.6257
NIP 0.6809 1.6441

50 24 R1 0.5669 1.6790 IP 0.5997 1.6212
NIP 0.5911 1.63211

R2 1.0828 2.0995 IP 0.8532 1.6834
NIP 0.8498 1.6980

R3 1.2147 2.2715 IP 0.6957 1.6257
NIP 0.6709 1.6299

30 R1 0.7412 1.8433 IP 1.5999 2.3618
NIP 1.5799 1.3654

R2 1.0339 1.9803 IP 1.4956 2.1097
NIP 1.4832 2.1217

R3 1.1319 2.1708 IP 1.0911 1.6639
NIP 1.0783 1.6823

100 48 R1 0.9202 1.6397 IP 1.1000 2.0211
NIP 1.0906 2.0466

R2 1.3920 2.1866 IP 1.2016 1.6581
NIP 1.1923 1.6734

R3 0.9736 1.6248 IP 1.2079 1.6297
NIP 1.1996 1.6500

60 R1 0.9922 1.6392 IP 1.4573 1.9612
NIP 1.4524 1.9903

R2 1.1871 1.9002 IP 1.5417 1.8247
NIP 1.5289 1.8357

R3 1.3432 1.9515 IP 1.4902 1.8750
NIP 1.4599 1.8786
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5. APPLICATIONS OF BIII DISTRIBUTION TO SEPARATION OF SEWER
SOLIDS

A real set of experimental data contains the invert trap efficiency. The invert traps
are used to separate suspended solids in the sewers and storm water drainage channels. The
solid particles are deposited in the bottom of the sewer drainage channel and decreases the
channel cross section and thus reduces the hydraulic efficiency. Therefore, increasing invert
trap efficiency directly affects the hydraulic efficiency. For computational convenience we
divided each data point by 70. Figure 7(a) shows the velocity stream lines of water in
channel. The color of the velocity stream lines shows that the velocity decreases in the trap,
so the particles entering the low-velocity zone of the invert trap settle in the bottom of the
trap. Figure 7(b) shows 3D view of an open rectangular channel fitted with an invert trap
at the bottom of the channel. Before we carry out numerical calculations and give way to
an advanced point in the analysis of this data, we compute the Kolmogorov-Smirnov (K-S)
distances between the empirical distribution and the fitted distribution functions based on
MLEs, it is 0.1189, and the associated p-value is 0.8312. We also presented the P-P and CDF
(the empirical function and the fitted function) plots for the fitted inverse Burr distribution
in Figures 8 and 9 respectively. The result indicates that considered distribution can be used
to to obtain inferential results from the considered data set. We have obtained the MLEs
by using EM algorithm by taking initial values with the help of contour and 3D profile plot
given in Figure 10.

Figure 7: (a) stream lines of water in invert trap. (b) trapping of sewer solids,
flowing into a sewer drainage system. Particle traces coloured according
to the particle size of 150–300 micron.
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Figure 8: The P-P plot. Figure 9: The CDF plot.

Figure 10: Contour plot and 3D profile plot of log likelihood for invert
trap data (x=α and y=β).

We shall use these data to consider three different GIIPH censoring schemes:

Case I: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.4 and T2 = 1.6;

Case II: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.6;

Case III: n = 25,m = 20 R = (5, 0 ∗ 19),T1 = 1.2 and T2 = 1.35.

Based on the following censoring schemes, the MLEs and Bayes estimates of both the
unknown parameters are reported in Table 5.

The length of approximate intervals (LAC) and HPD intervals (LHPD) are also cal-
culated individually and presented in Table 5. For Bayesian aspect, we use non-informative
Gamma priors (a1 = 0.0001; a2 = 0.0001; b1 = 0.0001; b2 = 0.0001) due to the lack prior in-
formation.

As seen in Table 5, two types of point estimates of parameters are observed: MLEs
and Bayes estimates are quite similar. Comparing approximate and credible intervals derived
from Bayesian method, the latter are noticeably smaller in interval lengths than the former.
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Table 5: Different point and interval estimates of α and β for (n,m) = (25, 20).

Cases T1 T2 α̂ α̃LIN α̃MH LAC LHPD

Case I 1.4 1.6 0.99817 1.03622 0.94491 1.2327 0.8574
Case II 1.2 1.6 1.20987 1.23875 1.15643 1.3734 0.8897
Case III 1.2 1.35 1.21124 1.24054 1.15991 1.3798 0.8687

Cases T1 T2 β̂ β̃LIN β̃MH LAC LHPD

Case I 1.4 1.6 7.51460 7.74952 7.46857 2.7632 1.2864
Case II 1.2 1.6 7.66071 7.79034 7.65335 2.8395 1.3323
Case III 1.2 1.35 7.62534 7.75890 7.44881 2.8567 1.3682

6. CONCLUSIONS

In this paper, we derived the different point and interval estimators of the inverse
Burr distribution based on a newly proposed censoring scheme known as generalized pro-
gressive hybrid censoring, where experimenters are allowed more flexibility in designing the
test, leading to shorter experimental periods and higher efficiency. We obtained the maxi-
mum likelihood estimates using the EM algorithm. The observed Fisher information matrix
is used to construct the asymptotic confidence intervals of the unknown parameters. More-
over, the Bayesian approach is investigated with a flexible prior distribution, since Bayesian
estimation cannot be derived in closed form, two approximations say Lindley’s approxima-
tion and Metropolis–Hastings algorithm are utilized to achieve approximate point estimates.
Using these MCMC samples, the HPD credible intervals are also constructed. The numeri-
cal experiments are carried out to evaluate the performance of proposed point and interval
estimators, and some conclusions can be drawn from the results that the Bayesian method
is comparatively favorable compared to considered classical method. The applicability of
the inverse Burr distribution in real situation has been illustrated based on the separation
of sewer solids data and it was observed that the proposed distribution can be utilized for
analyzing this data well.
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1. INTRODUCTION

Quality control is one of the most important issues of the modern industry, to de-
termine whether the quality of the products or process is satisfactory according to certain
criteria established in advance. We distinguish two types of control, the control during pro-
duction: which is the one carried out at different stages during the production process, and
the reception control: which is the one carried out by the producer or the consumer during
the inspection of a finished product, which also requires taking sampling plans. There have
been several criteria to construct sampling plans. Criteria based on decision theory are the
most efficient for quality control, in the sense that the sampling plan is determined by taking
an optimal decision. Numerous study have investigated along with this approach, we refer to
[9, 11, 19, 10].

Recently, a number of studies have investigated Bayesian sampling plans based on the
lifetime censored data. Readers are referred to the sampling plan based on type II censored
sample [12] and [5], sampling plan based on type I censored sample [13] and [18], interval
censored sample [6]. The type I hybrid censored sample was initially introduced in [8]. In [7]
the exact distribution of the maximum likelihood estimator (MLE) of the expected lifetime
is provided where the lifetime of components follows exponential distribution under type I
and type II hybrid censoring. Reference [14] have studied sampling plans under type I and
type II hybrid censoring for quadratic loss function based on the results of [7]. Furthermore,
a Bayesian sampling plan based on type I hybrid censored samples has been developed in
[15] using a conventional one-sided decision function. Modified type II hybrid censoring has
been provided by [20]. For exponential distribution under type I censoring and type I hybrid
censoring a new shrinkage estimator for the expected lifetime has been studied in [17], which
always exists even if no failure occurs at the termination time. In addition, Reference [17]
provided that the construction of the Bayes decision function (as in [20], [15]), which is based
on the posterior expectation, becomes more difficult if the loss function is not polynomial.

In some industrial process, the quality characteristics data are derived from a complex
production process or from an uncertain environment. Much acceptance sampling plans
have been proposed under this situation, [2, 3] have developed acceptance sampling plan for
variable and attribute using the neutrosophic statistics. [4] discussed a Bayesian sampling
plan under two-sided decision function based on linear random doubt zone.

In this work, we develop a Bayesian single variable sampling plan for Weibull distribu-
tion based on the modified type II hybrid censored sample under random decision function.
However, we generalize the work of [4] into two valuable issues. The first issue, the Weibull
distribution, which is frequently used in life testing due to flexibility in term of hazard func-
tion (see e.g. [1]), and with the commonly used of other distributions as special cases, such
as the exponential and Rayleigh distributions. The second issue, the type II hybrid censoring
which is a generalization of type II censoring. The type II hybrid censoring has the advan-
tage that at least m failures or more can be observed at the censoring time, which leads to
significant efficiency of the model. The rest of this paper is organized in the following way. In
Section 2, we provide the proposed random decision function and all necessary assumptions.
In Sections 3 and 4, we obtain an explicit expression for the Bayes risk using a polynomial
and non polynomial loss respectively. A simple algorithm based on the grid search method
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to obtain an optimal sampling plan is provided in Section 5. In Section 6, we give numerical
examples for the polynomial and non polynomial loss functions followed by some remarks.
We finish by a conclusion in Section 7.

2. FORMULATION OF THE PROBLEM

Suppose that we have a batch of items prepared for inspection. The lifetime of each
item is a random variable X which follows a Weibull distribution W (λ, µ):

f(x|λ, µ) =

{
λµxµ−1 exp(−λxµ), for x ≥ 0,

0, otherwise,

with the shape parameter µ is known and the scale parameter λ is unknown. It is easy to
show that Xµ follows an exponential distribution with expected lifetime 1/λ. Further, We
assume that λ has a prior distribution Γ(α, β) where α and β are known, with the pdf:

g(λ;α, β) =

{
λα−1 exp(−βλ)βα/Γ(α), for λ > 0,

0, otherwise.

Given a random sample of size n, taken from a batch for life testing. Assume that the
modified type II hybrid censoring is adopted. Let X = (X(1), X(2), ..., X(n)) be the order
statistic of sample (X1, X2, ..., Xn), the life test terminates at the random time τn,m =
min

{
max

(
X(m), t

)
, X(n)

}
with m ≤ n. The likelihood function in this case is given by:

l(X|λ) =


n!(λµ)m ∏m

i=1 Xµ
(i)

(n−m)!
e
−λ
�Pm

i=1 Xµ
(i)

+(n−m)Xµ
(m)

�
for D = 0, 1, ...,m− 1,

n!(λµ)D ∏D
i=1 Xµ

(i)

(n−D)!
e
−λ
�PD

i=1 Xµ
(i)

+(n−D)tµ
�

for D = m,m + 1, ..., n

where D represents the number of observed failures that occur before time t.
Then, the MLE of θ = 1/λ is given by:

(2.1) θ̂ =


Pm

i=1 Xµ
(i)

+(n−m)Xµ
(m)

m , for D = 0, 1, ...,m− 1,PD
i=1 Xµ

(i)
+(n−D)tµ

D , for D = m,m + 1, ..., n,

According to [7], the exact distribution of the MLE of θ:

(2.2) fθ̂(y) =
n∑

d=0

d∑
j=0

(−1)j

(
n

d

)(
d

j

)
e−λtµ(n−d+j)g(y − aj,M ;M,λM).

where aj,M = (n− d + j)tµ/M , and M = max{d,m}.

Let Cs, Ct and Cr be positive constants and represent respectively the unit inspection
cost, the cost per unit of time used for the test and the loss due to rejection of the batch. Let
a0 + a1λ + · · ·+ akλ

k denote the loss of accepting the batch and be positive and increasing
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in λ. When the life test is interrupted, the unfailures items can be reused and therefore have
the salvage value vs, where 0 < vs < Cs, then the loss function is defined as follows:

(2.3) L(λ, δ(x)) =

nCs − (n−Dn,m)vs + Ctτn,m +
k∑

i=0
aiλ

i, for δ(x) = d0,

nCs − (n−Dn,m)vs + Ctτn,m + Cr, for δ(x) = d1,

where d0 and d1 represent the decisions of accepting and rejecting the batch respectively.
The random variable Dn,m denotes the number of failures that occur before the termi-
nation time τn,m. δ(x) is the decision function which depends on the observation failures
x = (x(1), x(2), ..., x(n)). We propose the following two-sided decision function:

(2.4) δ(x) =


d0, for θ̂ ≥ T0,{

d1, with probability pθ

d0, with probability 1− pθ

for T1 ≤ θ̂ < T0,

d1, for θ̂ < T1,

where pθ = T0−θ̂
T0−T1

, and 0 < T1 < T0. Note that, the decision function in Equation (2.4) is
described similarly as in [4].

3. COMPUTATION OF THE BAYES RISK

Based on the decision function δ(x), the Bayes risk can be computed as follows:

R(n, m, t, T0, T1) = E{E[L(λ, δ(x))]}

= E

{
E

[
nCs + Ctτn,m − (n−Dn,m)vs + d1Cr + (1− d1)

k∑
i=0

aiλ
i|λ

]}
= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+

k∑
i=0

aiγi

+ E

{
E

[
d1

k∑
i=0

ωiλ
i|λ

]}
= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+

k∑
i=0

aiγi + r(n, m|d1),

here γi represents the i-th moment of λ, and

(3.1) ωi =

{
Cr − a0, for i = 0,

−ai for i = 1, ..., k.
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Such as

r(n, m|d1) = E

{
E

[
k∑

i=0
ωiλ

id1|λ
]}

= E

{
k∑

i=0
ωiλ

iE
[
Iθ̂<T1

+ pθIT1≤θ̂<T0
|λ

]}
=

k∑
i=0

ωi

∞∫
0

βα

Γ(α)e
−βλλα+i−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi

(
n
d

)(
d
j

) ∞∫
0

[
T1∫

aj,M

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β+My)λλα+M+i−1dy

+
T0∫
T1

T0−y
T0−T1

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β+My)λλα+M+i−1dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

βαMMΓ(M+α+i)
Γ(α)Γ(M)

[
T1−aj,M∫

0

yM−1

(β+Maj,M+My)α+M+i dy

+
T0−aj,M∫
T1−aj,M

T0−y−aj,M

T0−T1

yM−1

(β+Maj,M+My)α+M+i dy

]
,

Using z =
My

My + β + Maj,M
we obtain

r(n, m|d1)

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi

(
n
d

)(
d
j

) βαΓ(M+α+i)

Γ(α)Γ(M)(β+Maj,M)α+i

[q1∫
0

zM−1(1− z)α+i−1dz

+T0−aj,M

T0−T1

q0∫
q1

zM−1(1− z)α+i−1dz − β+Maj,M

T0−T1

q0∫
q1

zM−1(1− z)α+i−1dz

]

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

,

where qi =
M(Ti−aj,M)

β+M(Ti−aj,M)+Maj,M
. Bx(a, b) and Ix(a, b) denote the incomplete Beta function

and the cdf of Beta distribution respectively.

Hence, the Bayes risk R(n, m, t, T0, T1) can be expressed as:

R(n, m, t, T0, T1)(3.2)

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

+ n(Cs − vs) + vs

n∑
d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
+

k∑
i=0

aiγi + τ∗Ct,
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where, for m < n

τ∗ = E{E[τn,m|λ]}

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
+ tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
+ n

n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ1/µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
,

and, for m = n

τ∗ = E{E[τn,m|λ]} = nαβ1/µB
(
1 + 1

µ , α− 1
µ

) n−1∑
j=0

(−1)j

(
n− 1

j

)
1

(j+1)1+1/µ ,

with q∗ = (n−j)tµ

β+(n−j)tµ . The computation of E{E[Dn,m|λ]} and E{E[τn,m|λ]} is provided in the
appendix.

4. BAYES RISK FOR NON-POLYNOMIAL LOSS FUNCTION

In this section we provide an explicit expression for the Bayes risk under non-polynomial
loss function, which can be written as:

(4.1) LNP (λ, δ(x)) =

{
nCs − (n−Dn,m)vs + Ctτn,m + exp(cλ)− cλ− 1, for δ(x) = d0,

nCs − (n−Dn,m)vs + Ctτn,m + Cr, for δ(x) = d1,

where the loss of accepting the batch exp(cλ)− cλ− 1 is of the form LINEX loss (see e.g.
[1, 16]). The value of c must be positive for ensuring that, the loss of accepting the batch is
increasing in λ.

RNP (n, m, t, T0, T1) = E{E[LNP (λ, δ(x))]}
= E{E[nCs + Ctτn,m − (n−Dn,m)vs + d1Cr + (1− d1)(exp(cλ)− cλ− 1)|λ]}

= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+
(

β
β−c

)α
− cα

β − 1

+ E{E[d1(Cr + 1 + cλ− exp(cλ))|λ]}

= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+
(

β
β−c

)α
− cα

β − 1 + r′(n, m|d1),

with
r′(n, m|d1) = E{E[d1(Cr + 1 + cλ− exp(cλ))|λ]}

= E
{

(Cr + 1 + cλ− exp(cλ))E
[
Iθ̂<T1

+ pθIT1≤θ̂<T0
|λ

]}
=

1∑
i=0

ω′i

∞∫
0

βα

Γ(α)e
−βλλα+i−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

−
∞∫
0

βα

Γ(α)e
−(β−c)λλα−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ,

where ω′0 = Cr + 1, ω′1 = c.
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From the previous section, we have

∞∫
0

βα

Γ(α)e
−(β−c)λλα−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

=
n∑

d=0

d∑
j=0

(−1)j
(
n
d

)(
d
j

) ∞∫
0

[
T1∫

aj,M

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β−c+My)λλα+M−1dy

+
T0∫
T1

T0−y
T0−T1

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β−c+My)λλα+M−1dy

]
dλ

=
n∑

d=0

d∑
j=0

βαMMΓ(M+α)
Γ(α)Γ(M)

[
T1−aj,M∫

0

yM−1

(β−c+Maj,M+My)α+M dy

+
T0−aj,M∫
T1−aj,M

T0−y−aj,M

T0−T1

yM−1

(β−c+Maj,M+My)α+M+i dy

]

=
n∑

d=0

d∑
j=0

(−1)j(n
d)(

d
j)βα

(β−c+Maj,M)α

{
Iq′1

(M,α) + T0−aj,M

T0−T1

[
Iq′0

(M,α)− Iq′1
(M,α)

]
− β−c+Maj,M

(α−1)(T0−T1)

[
Iq′0

(M + 1, α− 1)− Iq1(M + 1, α− 1)
]}

,

with q′i =
M(Ti−aj,M)

β−c+M(Ti−aj,M)+Maj,M
.

Therefore, the Bayes risk expression under the loss function 4.1 is given by:

RNP (n, m, t, T0, T1)(4.2)

=
n∑

d=0

d∑
j=0

1∑
i=0

(−1)jω′i(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

−
n∑

d=0

d∑
j=0

(−1)j(n
d)(

d
j)βα

(β−c+Maj,M)α

{
Iq′1

(M,α) + T0−aj,M

T0−T1

[
Iq′0

(M,α)− Iq′1
(M,α)

]
− β−c+Maj,M

(α−1)(T0−T1)

[
Iq′0

(M + 1, α− 1)− Iq1(M + 1, α− 1)
]}

+ n(Cs − vs)

+ vs

n∑
d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
+

(
β

β−c

)α
− cα

β − 1 + τ∗Ct.

5. NUMERICAL APPROXIMATIONS

The expression of R(n, m, t, T0, T1) and RNP (n, m, t, T0, T1) are quite complicated, so
we cannot get the optimal sampling plan analytically. Using the grid search method we can
obtain an optimal sampling plan numerically. As given in [17], we assume that T0 has an
upper bound since 0 < T0 < T ∗

0 , and for t as given in [13], we obtain a confidence interval
[tL, tU ] such that P (X > tU ) = η/2 and P (X < tL) = η/2 where:

P (X < tL) =
∞∫
0

tL∫
0

βα

Γ(α)λ
α−1e−βλλxµ−1e−λxµ

dxdλ = η/2,
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and

P (X > tU ) =
∞∫
0

∞∫
tU

βα

Γ(α)λ
α−1e−βλλxµ−1e−λxµ

dxdλ = η/2,

hence

tL =
{

β
[(

1− η
2

)−1/α − 1
]} 1

µ

tU =
{

β
[(η

2

)−1/α − 1
]} 1

µ
.

5.1. An upper bound for the optimal size sample

To obtain the optimal sampling plan, we provide an upper bound for the optimal sample
size, and then the optimal sampling plan can be obtained in a finite number of search steps.

Theorem 5.1. The optimal sample is bounded by:

(5.1) N = min

{[
Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
,

where [x] is the integer part of x.

Proof: Let (0, 0, 0, 0, 0) and (0, 0, 0,∞,∞) be the sampling plans that accepts and
rejects the batch without taking sampling respectively. For (n′,m′, t′, T ′

0, T
′
1) an optimal sam-

pling plan, we have R(n′,m′, t′, T ′
0, T

′
1) ≤ R(0, 0, 0, 0, 0) =

∑k
i=0 aiγi. and R(n′,m′, t′, T ′

0, T
′
1) ≤

R(0, 0, 0,∞,∞) = Cr.

As n(Cs − vs) ≤ R(n′,m′, t′, T ′
0, T

′
1), therefore

n(Cs − vs) ≤ min

{
Cr,

k∑
i=0

aiγi

}

n ≤ min

{[
Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
.

Hence the result.

Algorithm 5.1. To derive an optimal sampling plan (n′,m′, t′, T ′
0, T

′
1) based on the

minimization of the Bayes risk, a finite algorithm is described in the following steps:

a) Start with (n, m, t) = (0, 0, 0), compute N from (5.1) and compute R(0, 0, 0, T0, T1)

= min
{

R(0, 0, 0,∞,∞) = Cr, R(0, 0, 0, 0, 0) =
k∑

i=0
aiγi

}
.

b) For fixed (n, m, t), compute the optimal T ′
0,(n,m,t) and T ′

1,(n,m,t) using grid search
method, such that
R

(
n, m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
= min

0<T1<T0≤T ∗
R(n, m, t, T1, T0), with grid size 0.0125.
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c) For fixed (n, m), compute the optimal t′(n,m) using grid search method, such that

R
(
n, m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
= min

tL≤t≤tU
R

(
n, m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
, with

grid size tU−tL
100 .

d) For 0 ≤ m ≤ n ≤ N , choose (n′,m′, t′, T ′
0, T

′
1) which corresponds to the smallest

value of the Bayes risks R
(
n, m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
.

6. AN ILLUSTRATIVE EXAMPLE

To implement the Algorithm 5.1, we assume that the loss is a quadratic function with
(k = 2). Then, we assume that the loss function is a quintic polynomial. Using the upper
bound of sample size and the grid search method various numerical examples are presented
in Tables 1–4. In each table we indicate the optimal Bayesian sampling plans by S0 ≡
(n′,m′, t′, T ′

0, T
′
1), and the corespondent Bayes risk by R0 ≡ R(n′,m′, t′, T ′

0, T
′
1). Also, we

denote the expected number of observation failures by E[D0], and the expected termination
time by E[τ0]. During computation and in some cases the optimal sampling plan is achieved
when T1 close to T0. So, to make a sense to the sampling plan (n, m, t, T0, T1) we assume that
T0 − T1 ≥ 0.05, T ∗ = T ∗

0 = 2 and η = 0.05. As the true values of parameters and coefficients
for the quadratic loss for which we made the calculations, we take µ = 2, α = 2, β = 1,
a0 = a1 = a2 = 3, Cs = 0.5, vs = 0.2, Ct = 2, Cr = 30. For the previous standard values, the
optimal sampling plan is (5, 1, 0.3104, 0.7750, 0.2000), which means, we put 5 items for life
testing, and when t = 0.3104 is less than the time of fifth failure X(5), the life test terminates
after the maximum between the first failure and t = 0.3104, otherwise the life test terminates
at X(5). We accept the batch if the estimator of the average lifetime θ̂ is greater than or
equal 0.7750, and we reject it if θ̂ is less than 0.2000. For θ̂ is between 0.7750 and 0.2000,
the batch is rejected and accepted with probability pθ̂ =

(
0.7750− θ̂

)
/(0.7750− 0.2000) and

1− pθ̂ respectively, the corresponding Bayes risk is R0 = 23.9637.

In Table 1, we observe that for α fixed and β decreases while µ = 2, a0 = a1 = a2 = 3,
Cs = 0.5, vs = 0.2, Ct = 2 and Cr = 30, the Bayes risk R0 increase. And for β fixed R0 is
increasing in α. On the other hand, we can see that the expected number of failure E[D0] is
close to m′ and the expected termination time E[τ0] is always greater than t′. Furthermore,
for each couple (α, β) = (1.5, 0.2),(2.0, 0.4),(2.5, 0.6),(3.0, 0.8),(3.5, 0.8),(3.5, 1.0), the batch is
rejected without any sample cost, and thus R0 = Cr = 30. In Table 2, we can see that, the
minimum Bayes risk R0 significantly increases with the values of a2, and the optimal sample
size n′ decreases for a2 increasing. Furthermore, the optimal number of fixed failures m′

is close to n′ when a2 increases. For a2 ≤ 2 and the other parameters and coefficients are
fixed, the sampling plan S0 = (0, 0, 0, 0, 0) with R0 = a0 + a1α/β + a2(α2 + α)/β2 where the
batch is accepted for no sampling case. And, for a2 ≥ 15 the optimal plan S0 = (0, 0, 0,∞,∞)
with R0 = Cr = 30, the batch is rejected without taking sampling. In Table 3, it is observed
that E[D0] ≥ m′ and E[τ0] ≥ t′, this indicates that the sampling plan S0 takes more time to
better observe the lifetime components, and can obtain more information about the expected
lifetime of items. Also, the number of fixed failures brings closer to the optimal sample size
when Ct closes to 0. On the other hand, for Ct increases the optimal sample size increases and
the minimum Bayes risk increases. From Table 4, it can be seen that, R0 is increasing in Cr.
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And, for Cr ≤ 17.5, the batch will be rejected with R0 = Cr. For Cr ≥ 45, the batch will be
accepted with minimum Bayes risk R0 = 27.

Table 1: Optimal sampling plans and Bayes risks for α and β vary.

α β n′ m′ t′ T ′
0 T ′

1 E[D0] E[τ0] R0

1.5 0.2 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
1.5 0.4 3 2 0.0825 0.6000 0.5500 2.0000 0.6113 28.3413
1.5 0.6 4 1 0.4172 0.1100 0.3000 1.5853 0.5178 25.4861
1.5 0.8 5 1 0.3413 0.8500 0.3250 1.3627 0.4815 22.3640
2.0 0.4 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
2.0 0.6 3 2 0.0874 0.6000 0.5500 2.0000 0.5881 28.8383
2.0 0.8 4 3 0.1009 0.4750 0.4250 3.0000 0.7894 26.5777
2.0 1.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
2.5 0.6 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
2.5 0.8 3 2 0.0902 0.6000 0.5500 2.0000 0.5764 29.2431
2.5 1.0 4 3 0.1009 0.4750 0.4250 3.0000 0.7492 27.3505
2.5 1.2 4 1 0.3577 0.8250 0.2000 1.3065 0.4528 24.9906
3.0 0.8 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.0 1.0 3 2 0.0921 0.6000 0.5500 2.0000 0.5694 29.5670
3.0 1.2 4 3 0.1008 0.4750 0.4250 3.0000 0.7252 27.9490
3.5 0.8 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.5 1.0 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.5 1.2 3 2 0.0933 0.5750 0.5250 2.0000 0.5648 29.8291

Table 2: Optimal sampling plans and Bayes risks for a2 varies.

a2 n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

2.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 21.0000
2.5 6 1 0.2884 0.7000 0.3000 1.3312 0.3873 22.8246
3.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
4.0 5 1 0.3762 1.0750 0.3500 1.5060 0.4607 25.4895
5.0 4 1 0.4421 1.2500 0.3250 1.5159 0.5278 26.0883
6.0 4 1 0.4860 1.5250 0.3750 1.6468 0.5575 27.4065
7.0 4 3 0.1129 0.7250 0.6750 3.0000 0.8827 28.0233
8.0 3 2 0.1129 0.8500 0.8000 2.0000 0.7592 28.5096
10.0 3 2 0.1129 1.0000 0.9500 2.0000 0.7592 29.1995
15.0 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000

Table 3: Optimal sampling plans and Bayes risks for Ct varies.

Ct n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

1.0 3 3 0.2226 0.4000 0.3500 3.0000 1.1436 23.2092
1.5 4 3 0.1129 0.4000 0.3500 3.0000 0.8827 23.6896
2.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
2.5 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 24.1743
3.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 24.3711
4.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 24.7584
5.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 25.1458
6.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 25.5331
8.0 7 1 0.2665 0.7500 0.2500 1.3437 0.3583 26.3014
10.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 27.0000
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Table 4: Optimal sampling plans and Bayes risks for Cr varies.

Cr n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

17.5 0 0 0.0000 ∞ ∞ 0.0000 0.0000 17.5000
20.0 4 1 0.4640 1.4000 0.3250 1.5804 0.5425 19.2507
22.5 4 1 0.4421 1.2500 0.3250 1.5159 0.5278 20.6154
25.0 4 1 0.3982 1.0250 0.2500 1.3943 0.5000 21.8282
27.5 4 1 0.3982 0.9750 0.3000 1.3943 0.5000 22.9330
30.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
32.5 6 1 0.2884 0.7250 0.2750 1.3312 0.3873 24.7412
35.0 6 1 0.2884 0.7000 0.3000 1.3312 0.3873 25.4510
40.0 6 1 0.2884 0.6750 0.3250 1.3312 0.3873 26.1433
45.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 27.0000

6.1. Numerical examples for higher degree polynomal and non polynomial loss

To simulate the Bayes risk performance and obtain the optimal sampling plan under
non polynomial loss, a similar algorithm to the one in Section 5 is considered:

a) Start with (n, m, t) = (0, 0, 0), compute N from (5.1) and compute RNP (0, 0, 0,

T ′′
0 , T ′′

1 ) = min
{

RNP (0, 0, 0,∞,∞) = Cr, RNP (0, 0, 0, 0, 0) =
(

β
β−c

)α
− cα

β − 1
}

.

b) For fixed (n, m, t), compute the optimal T ′
0,(n,m,t) and T ′

1,(n,m,t) using grid search
method, such that
R

(
n, m, t, T ′′

0,(n,m,t), T
′′
1,(n,m,t)

)
= min

0<T1<T0≤T ∗
R(n, m, t, T1, T0), with grid size 0.0125.

c) For fixed (n, m), compute the optimal t′(n,m) using grid search method, such that

R
(
n, m, t′′(n,m), T

′′
0,(n,m,t), T

′′
1,(n,m,t)

)
= min

tL≤t≤tU
R

(
n, m, t, T ′′

0,(n,m,t), T
′′
1,(n,m,t)

)
, with

grid size tU−tL
100 .

d) For 0 ≤ m ≤ n ≤ N , choose (n′′,m′′, t′′, T ′′
0 , T ′′

1 ) which corresponds to the smallest
value of the Bayes risks R

(
n, m, t′′(n,m), T

′′
0,(n,m,t), T

′′
1,(n,m,t)

)
.

Table 5 provides some optimal sampling plans for the polynomial loss with order k = 5.
Under setting: µ = 2, a1 = a2 = a4 = 0, a0 = a3 = 1, Cs = 0.5, vs = 0.2, Ct = 2 and Cr = 30,
while α, β and a5 vary. It appears from this table that the minimum Bayes risk R0 increases
quickly when a5 increases while α and β fixed are fixed. On the other hand, the values
of E[τ0] are significant comparing with Table 2, in this case we may observe more than m′

failures and this will result in an efficient life testing procedure.

In Table 6, various optimal sampling plans and their minimum Bayes risk are depicted
for different values of α, β and c while µ = 2, Cs = 0.5, vs = 0.2, Ct = 2, Cr = 30. Such that
SNP (n′′,m′′, t′′, T ′′

0 , T ′′
1 ) ≡ SNP and RNP (n′′,m′′, t′′, T ′′

0 , T ′′
1 ) ≡ RNP denote optimal sampling

plan and its minimum Bayes risk respectively. As shown in Table 6, the Bayes risk RNP

decreases when c is close to 0 for α and β fixed. When c is close to β, RNP and E[τ0] are large.
There are some optimal sampling plans under no sampling case. For instance see (α, β, c) =
(2, 1, 0.5), (2, 1.5, 0.7), (4, 2, 1), the optimal sampling plan SNP = (0, 0, 0, 0, 0) and the batch
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is accepted without any sample cost. When (α, β, c) = (5, 3, 2.5), SNP = (0, 0, 0,∞,∞) and
the batch must be rejected without any sample cost.

Table 5: Optimal sampling plans and Bayes risks under polynomial loss
with order 5, for α, β and a5 vary.

α β a5 n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

2 1.0 1 6 5 0.1129 0.7625 0.7125 5.0000 1.0373 26.6566
2 1.0 2 6 5 0.1129 0.8875 0.8375 5.0000 1.0373 28.0317
2 1.0 3 5 4 0.1129 1.1250 1.0750 4.0000 0.9701 29.1941
2 1.5 1 7 5 0.1382 0.6625 0.6125 5.0000 1.1045 21.1053
2 1.5 2 7 5 0.1382 0.7875 0.7375 5.0000 1.1045 23.0980
2 1.5 3 7 5 0.1382 0.8750 0.8250 5.0000 1.1045 24.2304
3 1.5 1 6 5 0.1127 0.7750 0.7250 5.0000 0.9528 28.3606
3 1.5 2 5 4 0.1127 0.9875 0.9375 4.0000 0.8911 29.7964
3 1.5 3 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3 2.0 1 7 6 0.1302 0.6625 0.6125 6.0000 1.1577 23.7820
3 2.0 2 7 6 0.1302 0.7875 0.7375 6.0000 1.1577 26.0688
3 2.0 2 6 5 0.1302 0.9125 0.8625 5.0000 1.1002 27.3013

Table 6: Optimal sampling plans and Bayes risks under non polynomial
loss for α, β and c vary.

α β c n′′ m′′ t′′ T ′′
0 T ′′

1 E[D0] E[τ0] RNP

2 1.0 0.5 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 02.0000
2 1.0 0.8 5 4 0.1129 0.2250 0.1750 4.0000 0.9701 12.5445
3 1.5 0.7 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 04.1918
3 1.5 1.0 6 5 0.1127 0.2875 0.2375 5.0000 0.9528 15.8429
3 1.5 1.3 7 6 0.1127 0.4500 0.4000 6.0000 1.0026 21.8487
4 2.0 1.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 13.0000
4 2.0 1.2 6 5 0.1127 0.3625 0.3125 5.0000 0.9168 19.9275
4 2.0 1.5 7 6 0.1127 0.5375 0.4875 6.0000 0.9647 25.4796
4 2.0 1.8 6 5 0.1127 0.7375 0.6875 5.0000 0.9168 28.9217
5 3.0 1.5 6 5 0.1234 0.4375 0.3875 5.0000 0.9825 20.9812
5 3.0 2.0 6 5 0.1234 0.7750 0.7250 5.0000 0.9825 28.5097
5 3.0 2.5 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
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7. CONCLUSION

In [14], Bayesian sampling plans for exponential distribution based on type II hybrid
censored samples under the quadratic loss have been discussed, since the time-consuming cost
and the salvage value are not included in the loss function. However, Several single variables
sampling plans have been improved in recent years, most improvements have been achieved by
considering the one-sided decision function. Such that, these studies do not take into account
that a doubt zone can be existed in the decision interval, e.g. this can be happened when the
experimenter estimates that the minimum acceptable and the maximum rejectable surviving
time are not equal. Nevertheless, there are still some interesting and relevant problems to be
addressed in this situation. With this purpose, we have determined Bayesian sampling plans
for Weibull distribution under type II hybrid censoring based on a two-sided decision function
with a random doubt zone. We provided an explicit expression for the Bayes risk using a
suitable polynomial loss, which includes the unit inspection cost, the time consuming-cost, the
rejection cost, the salvage value, and the after-sales cost. Furthermore, we have expressed an
explicit form for the Bayes risk under non polynomial loss with the LINEX form. It is noticed
that, the Bayes risk under the polynomial loss (resp. non polynomial loss) is always quite
complicated. So, we proposed an upper bound for the optimal size of the sample and a finite
algorithm to simulate the risk function numerically based on the grid search method. Based
on the results, it can be concluded that the Bayes risk based on the two-side decision function
have robust behavior with considering the changes of the parameters and coefficients in the
proposed sampling plan. However, in this paper we have considered Weibull distribution with
known shape parameter. Further study of the issue is still required for completely Bayesian
analysis to the two-parameter Weibull distribution. More research will be needed along with
this issue for other censoring.
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A. APPENDIX

A.1. Computation of E{E(Dn,m|λ)}

Let F (x|λ, µ) be the cdf of X. The probability function of Dn,m, such that Dn,m =
m,m + 1, ..., n can be calculated as follows:
For j = m + 1, ..., n

P (Dn,m = j) = P (X1 ≤ t, X2 ≤ t, ...,Xj ≤ t, Xj+1 > t,Xj+2 > t, ..., Xn > t)

=
(

n

j

)
F (t|λ, µ)j(1− F (t|λ, µ))n−j =

(
n

j

)(
1− e−λtµ

)j
e−λ(n−j)tµ ,

P (Dn,m = m) = 1− P (Dn,m > m) = 1−
n∑

d=m+1

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ

=
m∑

d=0

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ ,

Then for m ≤ n

E(Dn,m|λ) =
n∑

d=m

dP (Dn,m = d)

=
n∑

d=m+1

d
(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ + m

m∑
d=0

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ

=
n∑

d=m+1

d∑
j=0

(−1)d−jd
(
n
d

)(
d
j

)
e−λ(n−j)tµ + m

m∑
d=0

d∑
j=0

(−1)d−j
(
n
d

)(
d
j

)
e−λ(n−j)tµ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)
e−λ(n−j)tµ ,

it is easy to show that when m = n, E(Dn,m|λ) = nP (Dn,m = n) = n. Hence

E{E(Dn,m|λ)} =
∞∫
0

E(Dn,m|λ)g(λ;α, β)dλ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

) βα

Γ(α)

∞∫
0

e−λ(β+(n−j)tµ)λα−1dλ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
.

A.2. Computation of E{E(τn,m|λ)}

The computation of E{E(τn,m|λ)} is similar as in [20]. Let IA be the indicator function
of a set A.



Hybrid Bayesian sampling plan 383

For m < n, when X(m) ≥ t, τn,m = X(m), then

E
(
XmI{Xm≥t}|λ

)
=

∞∫
t

yfX(m)
(y)dy

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
t

e−λ(n−j)yµ
λyµdy

Therefore
E

{
E

(
XmI{Xm≥t}|λ

)}
= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
0

∞∫
t

βα

Γ(α)e
−λ(β+(n−j)yµ)λαyµdydλ

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
t

αβα µyµ

(β+(n−j)yµ)α+1 dy.

A simple transformation z = (n− j)yµ/(β + (n− j)yµ) yields

E
{
E

[
XmI{Xm≥t}|λ

]}
= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
.

For Xm < t < Xn, τn,m = t, then

E
[
tI{Xm<t<Xn}|λ

]
=

t∫
0

∞∫
t

tn!(λµ)2(xy)µ−1e−λ(xµ+yµ)

(m−1)!(n−m−1)!

(
1− e−λxµ)m−1(

e−λxµ − e−λyµ)n−m−1
dydx

= tn!
(m−1)!(n−m−1)!

t∫
0

∞∫
t

m−1∑
i=0

(−1)m−i−1
(
m−1

i

)
λµxµ−1e−λ(m−i)xµ

×
n−m−1∑

j=0
(−1)n−m−j−1

(
n−m−1

j

)
λµyµ−1e−λ(n−m−j)yµ

e−λjxµ

= tn!
(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

) t∫
0

λµxµ−1e−λ(m+j−i)xµ
dx

×
∞∫
t

λµyµ−1e−λ(n−m−j)yµ
dy

]
= tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

(−1)n−i−j
(
m−1

i

)(
n−m−1

j

)
e−λ(n−m−j)tµ−e−λ(n−i)tµ

(m+j−i)(n−m−j) .

Thus

E
{
E

[
tI{Xm<t<Xn}|λ

]}
=

∞∫
0

E
[
tI{Xm<t<Xn}|λ

]
g(λ;α, β)dλ

= tn!
(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
.

For X(n) ≤ t, τn,m = X(n), then

E
{
E

[
X(n)I{Xn≤t}|λ

]}
=

∞∫
0

t∫
0

yfX(n)
(y)g(λ;α, β)dydλ

= n
n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ1/µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
.
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Hence, for m < n

E{E[τn,m|λ]} = m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
+ tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
+ n

n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ

1
µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
For m = n, τn,m = X(n)

E{E[τn,m|λ]} =
∞∫
0

∞∫
0

yfX(n)
(y)g(λ;α, β)dydλ

= nαβ1/µB
(
1 + 1

µ , α− 1
µ

) n−1∑
j=0

(−1)j
(
n−1

j

)
1

(j+1)1+1/µ .
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1. INTRODUCTION

The series and parallel systems are the most frequent and maximum encountered sys-
tems in nature. These systems are statistically referred to as the minimum and the maximum
order statistic respectively. Let X1, X2, ..., Xn be n independent and non-identical random
variables from a particular population. Then arranging the random variables according to
their magnitude or strength we observe that X1:n ≤ X2:n ≤ ... ≤ Xn:n, where Xk:n is known
as the k-th order statistic. Xk:n represents the lifetime of a (n− k + 1)-out-of-n system. In
this paper, we focus only on the minimum and maximum order statistic. A great deal of
literature is available on the stochastic relationship among the order statistics for various
probability distributions.

In particular, our problem deals with the Proportional hazard rate (PHR) model and the
proportional reversed hazard rate (PRHR) model. We consider X1, X2, ..., Xn as independent
random variables, where the survival function of each random variable Xi follows the PHR
model for i = 1, ..., n. Then reliability or survival probability of Xi is:

P (Xi > x) = F i(x) = [F 0(x)]λi , λi > 0, i = 1, 2, ..., n,

where λi is the proportionality parameter. Here let X0 be the baseline random variable with
the baseline distribution F0(x) and the baseline survival function F 0(x) = 1− F0(x). Expo-
nential, Weibull, Pareto, Lomax, Kumaraswamy’s distributions are some examples of PHR
model distribution. [24] pioneered the study of stochastic ordering (details about stochastic
ordering are given in the next section) for k-out-of-n systems which included usual stochastic
ordering results for PHR model. [25] studied dispersive and star ordering for general distribu-
tions in detail. Later on, many researchers have continued the study and found many results
for PHR model. [5] discussed that the existing results for exponential distribution which
can be extended for PHR models, this was possible as the random variable corresponding
to the cumulative hazard rate function of a PHR family of distribution follows exponential
distribution with the proportionality constant as the parameter i.e., if X follows [F (x)]λ,
then the cumulative hazard rate function follows Exp(λ) distribution. [15] demonstrated dis-
persive ordering between the maximum order statistics of two PHR populations. [23] and
[28] observed dispersive ordering between the 2nd order statistics (also known as fail-safe sys-
tems) from two different populations and derived bounds on the corresponding parameters.
Considering the parallel systems having PHR distributed components, [16] studied the dis-
persive ordering between them. A comprehensive review of the various stochastic ordering
between the order statistics for random variables belonging from the PHR model has been
done by [5]. Recently [11] observed stochastic ordering for series and parallel systems with
Kumaraswamy’s and Frechet distributed components. Now we shall observe what is meant
by a multiple outlier model.

Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be n-independent PHR samples having the same
baseline distribution but the parameter vectors are given by (α1, ..., α1︸ ︷︷ ︸

p

, α2, ..., α2︸ ︷︷ ︸
q

) and

(β1, ..., β1︸ ︷︷ ︸
p

, β2, ..., β2︸ ︷︷ ︸
q

) respectively, where p+ q = n. Such an arrangement is described as the

multiple-outlier model. [4] and [29] discussed the hazard rate and the likelihood ratio ordering
for parallel systems with multiple-outlier PHR model. For a similar model, [2] derived con-
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ditions on the distribution function for the dispersive ordering of k-th order statistic where
the parameter vectors follow majorization relation. [9] found the necessary and sufficient
conditions for the hazard rate ordering among the second order statistics. [30] examined the
stochastic comparison between series and parallel systems where the component lifetimes are
dependent, heterogeneous and resilience scaled. [13] and [14] found several conditions for
stochastic ordering of maximum and minimum order statistics from a location-scale family of
distributions. [3] observed stochastic ordering between the sample ranges where component
lifetimes (number of components are different) are independent and follows multiple-outlier
exponential distribution and PHR models.

In contrast to the PHR model, proportional reversed hazard rate (PRHR) model was
developed. Let Xi follows PRHR model then the distribution function of Xi is given by

P (Xi < x) = Fi(x) = [F0(x)]θi , θi > 0, i = 1, 2, ..., n,

where θi is the proportionality constant. Some known examples of PRHR model are ex-
ponentiated Weibull, exponentiated exponential, exponentiated Gamma, etc. [1] observed
dispersive ordering for the series systems with components following the PRHR model.

Here we consider two sets of independent PHR and PRHR models where the baseline
distribution of both the sets are different and the sample sizes are also different i.e., the first
set of random variables Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1 and the second set Yi ∼
Gi(x) = (G0(x))βi for i = 1, 2, ..., n2. Considering the same baseline distribution F0 = G0, we
study dispersive and star ordering for series/parallel models. A similar kind of study being
conducted for series/parallel system made up of PRHR distributed components.

We have also considered a general model as, X1, ..., Xp1 that has survival function
[F (x)]αi and Xp1+1, ..., Xn1 has survival function [G(x)]αi . And Y1, ..., Yp2 has survival func-
tion as [F (x)]βi whereas the components Yp2+1, ..., Yn2 has survival function [G(x)]βi . We
have proved that the hazard rate ordering for sample minimum exists for such models, analo-
gously reversed hazard rate ordering for sample maximums exist for PRHR model. A reversed
hazard rate ordering for sample maximum (with equal sample sizes) for Pareto distributed
random variables has been observed when only the shape parameter varies.

Lastly, we study some results for series system having dependent components, where
the dependence among components has been considered as having Archimedean type of cop-
ula. These studies include the results when the location parameter is varied along with a
comparison between two generating functions (super-additive property) and usual stochastic
ordering among baseline distributions.
The paper has been constructed as follows: Section 2 includes all the definitions used in
the paper, Section 3 contains results and discussion where Subsection 3.1 contains dispersive
ordering results for PHR and PRHR model with unequal sample sizes, Subsection 3.2 con-
tains star ordering result for unequal sample sizes and Subsection 3.2 contains result for the
dependent model. The various well-known lemmas that have been used in proving the results
are discussed under Section 2.
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2. DEFINITIONS

Let X and Y be two absolutely continuous random variables with distribution func-
tions F (x) and G(x); reliability functions as F (x) and G(x); probability density functions

as f(x) and g(x); hazard rate functions as r(x) =
f(x)
F (x)

and s(x) =
g(x)
G(x)

; reversed hazard

rate functions as r̃(x) =
f(x)
F (x)

and s̃(x) =
g(x)
G(x)

, respectively. Let F−1 and G−1 be the right

continuous quantiles of X and Y respectively. A real valued function ψ is super-additive when
ψ(x1 + x2) ≥ ψ(x1) + ψ(x2) for all x1, x2 ∈ Domain(ψ). This concept is valid even when the
summation is over n-variables. For details on the above definitions we refer the reader to
[6]. One can note that a random variable has decreasing reversed hazard rate(DRHR) if and
only if the distribution function is log-concave. It is known that there exists no distribution
which is log convex or increasing reversed hazard rate(IRHR) over the entire domain [0,∞).
An IRHR distribution can be constructed if the domain is taken as (−∞, α) for some finite α
(see [8]), an example of that is Truncated Normal distribution with domain as (−∞, 0]. Next
we discuss some of the various stochastic orders available in literature. We refer the reader
to [26] for the detail of these orderings.

Definition 2.1. X is smaller than Y in:

a) Usual stochastic order (X ≤st Y ) if and only if

F (x) ≤ G(x), ∀x ∈ (−∞,∞).

b) Hazard rate order (X ≤hr Y ) if r(x) ≥ s(x), x ∈ R. Equivalently, if
G(x)
F (x)

is increas-

ing in x over the union of the supports of X and Y .

c) Reversed hazard rate order (X ≤rh Y ) if r̃(x) ≤ s̃(x), x ∈ R. Equivalently, if
G(x)
F (x)

is increasing in x over the union of the supports of X and Y .

d) Likelihood ratio order (X ≤lr Y ) if
g(x)
f(x)

is increasing in x over the union of the

supports of X and Y .

e) Dispersive order (X ≤disp Y ) if

F−1(α2)− F−1(α1) ≤ G−1(α2)−G−1(α1) whenever 0 < α1 ≤ α2 < 1.

Equivalently, (X ≤disp Y ) if and only if

G−1(α)− F−1(α) increases in α ∈ (0, 1).

f) Star order (X ≤∗ Y ) if
G−1(t)
F−1(t)

increases in t ∈ (0, 1).

Here,
X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

Similarly,
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y.
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The detailed description about the inter-relationship between each of the stochastic orders
can be seen from the book [26].

Definition 2.2. Majorization: Let a = (a1, ..., an) and b = (b1, ..., bn) be two real
valued vectors. Then:

• a is majorized by b ( a ≺ b ) if
∑n

i=1 ai:n =
∑n

i=1 bi:n and
∑k

i=1 ai:n ≥
∑k

i=1 bi:n ∀ k =
1, ..., n− 1;

• a is weakly submajorized by b ( a ≺w b ) if
∑k

i=1 an−i+1:n ≤
∑k

i=1 bn−i+1:n ∀ k =
1, ..., n;
a is weakly supermajorized by b ( a ≺w b ) if

∑k
i=1 ai:n ≥

∑k
i=1 bi:n ∀ k = 1, ..., n;

where a1:n ≤ ... ≤ an:n (b1:n ≤ ... ≤ bn:n) is the increasing arrangement of a1, ..., an

(b1, ..., bn).

For a and b, we have a ≺w b⇐ a ≺ b⇒ a ≺w b.

Definition 2.3. Schur-convexity (Schur-concavity): A real valued function ψ

defined on a subset of Rn is Schur-convex (Schur-concave) if

(2.1) a ≺ b⇒ ψ(a) ≤ (≥) ψ(b),

where a = (a1, ..., an) and b = (b1, ..., bn) are two real valued vectors.

Throughout the paper, the notation a
sgn
= b has been used to represent sign of a is same

as b. The results and lemmas that are used in obtaining the proofs are mentioned in the
following subsection.

2.1. Useful results

Lemma 2.1 (Theorem 3.A.4, see [19]). Let

∆ = (ai − aj)
(
∂ψ(a)
∂ai

− ∂ψ(a)
∂aj

)
,

for an open interval A ⊂ R, a continuously differentiable function ψ : An → R is Schur-convex

(Schur-concave) if and only if it is symmetric on An and for all i 6= j, ∆ ≥ (≤)0.

Lemma 2.2 (Proposition 3.C.1, see [19]). If A ⊂ R is an interval and h : A → R is

convex (concave), then ψ(a) =
n∑

i=1

h(ai) is Schur-convex (Schur-concave) on An, where a =

(a1, ..., an).

Lemma 2.3 (Theorem 3.A.8, see [19]). Let S ⊂ Rn, a function f : S → R satisfying

a ≺w b (a ≺w b) on S ⇒ f(a) ≤ f(b)

if and only if f is increasing (decreasing) and Schur-convex on S.
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Lemma 2.4 (see [25]). Let Fα, α ∈ R be a class of distribution functions such that the

support of Fα is given by some interval (x0, x1) ⊂ R+ and has a non-vanishing density fα(x)
on any subinterval of (x0, x1), where x0 and x1 are the left and right end points respectively.

Then

(2.2) Fα ≤disp Fα∗ , α, α∗ ∈ R, α ≤ α∗,

if and only if
F

′
α(x)
fα(x)

is decreasing in x, where F
′
α is the derivative of Fα with respect to α.

And

(2.3) Fα ≤∗ Fα∗ , α, α∗ ∈ R, α ≤ α∗,

if and only if
F

′
α(x)

xfα(x)
is decreasing in x, where F

′
α is the derivative of Fα with respect to α.

The first inequalities in (2.2) and (2.3) reverses as the quantity
F

′
α(x)
fα(x)

and
F

′
α(x)

xfα(x)
respectively

increases in x.

3. RESULTS AND DISCUSSION

3.1. Dispersive ordering results for unequal sample sizes

In this section we compare minimum and maximum order statistics arising from taking
random variables having general proportional hazard rate and proportional reversed hazard
rate distribution. As a corollary some results for multiple-outlier models has also been ob-
tained. The multiple-outlier model has been explained in [4, 29] as an independent set of ran-
dom variablesX1, X2, ..., Xn, where FXi = FX for i = 1, ..., p and FXi = FY for i = p+1, ..., n,
necessarily 1 ≤ p < n. When the value of p = n− 1, this becomes a single-outlier model. Ear-
lier many researchers have studied various results for the comparison of order statistics from
multiple-outlier models. [2] considered the following model

(X1, X2, ..., Xn) ∼ ((F (x))α1 , ..., (F (x))α1︸ ︷︷ ︸
p

, (F (x))α2 , ..., (F (x))α2︸ ︷︷ ︸
q

)

and
(Y1, Y2, ..., Yn) ∼ ((F (x))α∗

1 , ..., (F (x))α∗
1︸ ︷︷ ︸

p

, (F (x))α∗
2 , ..., (F (x))α∗

2︸ ︷︷ ︸
q

).

They observed star and dispersive ordering for the k-th order statistic by imposing ma-
jorization properties over the parameters. In the following paper they primarily discussed
hazard rate ordering for exponentially distributed components and derived similar hazard
rate ordering results for maximum order statistic with some additional conditions over the
parameters. Under the same conditions [9] observed hazard rate ordering for second order
statistic. Moreover they found hazard rate orderings when the number of components and
number of outliers were different. Whereas [21] studied maximum order statistic for PHR
model (survival function of Xi is FXi(x) = (F (x))αi for i = 1, ..., n) such that the distribution
function of maxi∈P Xi, P ⊂ {1, 2, ..., n} is

Fmax(x) = QP (F (x)),
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where QP is a distortion function (continuous and increasing in [0,1], also Q(0)=0, Q(1)=1)
and it depends on the underlying copula and the proportionality parameters. Few results
were observed for different subsets of {1, 2, ..., n}. Further they have also discussed some
results corresponding to multiple outlier model, PHR distributions using the aforementioned
distortion function and results for the independent cases. We have considered various models
in our study which includes model where the baseline distributions are same but the shape
parameter varies, the baseline distributions are different and the shape parameters are also
different. Several researchers have studied multiple-outlier models extensively as it helps in
dealing with outliers. Recently, [31] studied some results where the n-component lifetimes of
both the systems are dependent with multiple-outlier proportional hazard rates. [10] studied
stochastic ordering for two types of models: Modified proportional hazard rate scale model
and Modified proportional reversed hazard rate scale model. In our present study we first
observe results for series systems where the component lifetimes are independent and follows
different proportional hazard rates (the number of components in both the systems are not
necessarily same) and the results for multiple-outlier models can be derived subsequently.

The following theorem has been observed for series systems with components following
PHR family of distributions such that the baseline distribution for both the sets are different.

Theorem 3.1. Let X1, X2, ..., Xn1 be a set of n1-independent random variables each

belonging from a particular PHR family with parameters (α1, α2, ..., αn1). We assume that

Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1. Also, let Y1, Y2, ..., Yn2 be another set of

n2-independent random variables each following PHR family of distributions with a different

distribution function and the parameter set is (β1, β2..., βn2). Let Yi ∼ Gi(x) = (G0(x))βi for

i = 1, 2, ..., n2. Under the assumption that

n2∑
i=1

βi ≥
n1∑
i=1

αi, the baseline distribution function

F0 is DFR, and G0 ≤hr F0 then Y1:n2 ≤disp X1:n1 .

Proof: The distribution function of X1:n1 and Y1:n2 are

(3.1) F 1:n1(x) =
(
F 0(x)

) n1∑
i=1

αi

,

and,

(3.2) G1:n2(x) =
(
G0(x)

) n2∑
i=1

βi

respectively. For simplicity we replace
n1∑
i=1

αi by α and
n2∑
i=1

βi by β. Let

ψ1(y) = F−1
1:n1

(y)−G−1
1:n2

(y)

= F
−1
0

(
(1− y)1/α

)
−G

−1
0

(
(1− y)1/β

)
We are required to prove Y1:n2 ≤disp X1:n1 , i.e., ψ1(y) is increasing in y ∈ (0, 1). Hence

Y1:n2 ≤disp X1:n1 if and only if φ1(t) = F
−1
0 (t)−G

−1
0

tαβ
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is decreasing in t ∈ (0, 1), where t = (1− y)1/α. Note that

φ
′
1(t) = − 1

f0(F
−1
0 (t))

+
α

β

t

α

β
−1

g0

G−1
0

tαβ
 .(3.3)

We need to show that φ
′
1(t) ≤ 0, i.e.,

(3.4)
t

f0(F
−1
0 (t))

≥ α

β

t

α

β

g0

G−1
0

tαβ
 .

Let F−1
0 (t) = z1 and G−1

0

tαβ
 = z2,

F 0(z1)
f0(z1)

≥ α

β

G0(z2)
g0(z2)

⇒ s0(z2)
β

α
≥ r0(z1),(3.5)

where r0(z1) =
f0(z1)
F 0(z1)

and s0(z2) =
g0(z2)
G0(z2)

. Under the hypothesis of the theorem

β ≥ α

⇒ t = F 0(z1) ≤ t

 
α

β

!
= G0(z2).

and G0 ≤hr F0 implies that z2 ≤ z1 (G0 ≤st F0 follows from G0 ≤hr F0 subsequently we can
derive that G0(z2) ≥ F 0(z1) ≥ G0(z1). Finally the implication is possible as G0 is a decreasing
function) and s0(z2) ≥ r0(z2) . Also F0 is DFR then, z2 ≤ z1 ⇒ r0(z2) ≥ r0(z1). Combining
all these we find that (3.5) holds true. Hence the result.

The above result provides a general outlook over the PHR distributions. Apart from the
fact that the component lifetimes are independent, the result can be compared with Theorem
3.11 from [31]. Here the baseline distributions are different, also the number of components
are not same. The theorem holds true when we encounter a multiple-outlier model. An
example has been provided here that satisfies the condition given in the above theorem.

Example 3.1. Let (X1, X2, X3) and (Y1, Y2, Y3) be independent Transformed Pareto
distributed random variables. The survival function of Xi is F ki

(t) and corresponding to Yi

is Gk∗
i
(t) for i = 1, 2, 3. Consider k1 = 1.7, k2 = 2, k3 = 0.9 and k∗1 = 1, k∗2 = 3, k∗3 = 2.3, here

3∑
i=1

ki = 4.6 and
3∑

i=1

k∗i = 6.3.

Let us consider F ki
(t) = (F 0(t))ki , where F 0(t) =

1
(1 + t)2

, t > 0; Gk∗
i
(t) = (G0(t))k∗

i , where
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G0(t) =
1

(1 + t)3
, t > 0.

Here, F0 is DFR and the ratio
F 0(t)
G0(t)

= 1 + t is increasing in t ∀t > 0. Thus, F0 ≥hr G0.

We observe that F−1
0 (u) =

(
1
u

)1
2 −1, 0 < u < 1 and G−1

0 (u) =
(

1
u

)1
3 −1, 0 < u < 1. Hence,

as mentioned in Theorem 3.1, the expression

ψ1(y) = F
−1
0 ((1− y)1/α)−G

−1
0 ((1− y)1/β)

=
1

(1− y)1/2α
− 1

(1− y)1/3β
, α =

3∑
i=1

ki and β =
3∑

i=1

k∗i .(3.6)

Plotting (3.6) with respect to y, for 0 < y < 1, we observe that ψ1(y) is increasing in y, i.e.
the theorem holds true in this case.

Figure 1: ψ1(y) is increasing for 0 < y < 1.

The conditions “DFR” and hr order necessary in Theorem 3.1. Let us consider

F 1:n1(x) =
(
F 0(x)

) n1∑
i=1

αi

and

G1:n2(x) =
(
G0(x)

) n2∑
i=1

βi

where F 0(x) = exp(−x2), x > 0 and G0(x) = exp(−x), x > 0;
n1∑
i=1

αi = 2 and
n2∑
i=1

βi = 2.5.

Here
F 0(x)
G0(x)

is non-monotone and ψ1(y) = F
−1
0

(1− y)
1/

n1∑
i=1

αi

−G−1
0

(1− y)
1/

n2∑
i=1

βi

 is
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also non-monotone. The condition for DFR and hr order are not satisfied here (see Figure 2
and Figure 3), also the dispersive order does not hold in this situation even though the
conditions for the parameters are satisfied. The plots are shown below:
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Figure 2:
F 0(x)
G0(x)

is non-monotone.
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Figure 3: ψ1(y) is non-monotone.
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Thus the conditions mentioned in Theorem 3.1 are necessary. Here we discuss the
following result for a parallel system with the PRHR distributed components.

Theorem 3.2. Let X1, X2, ..., Xn1 be a n1-independent set of random variables each

belonging from PRHR family of distributions with parameters (α1, α2..., αn1), such that Xi ∼
Fi(x) = (F0(x))αi for i = 1, 2, ..., n1. Also Y1, Y2, ..., Yn2 be another set of n2-independent ran-

dom variables each following PRHR family of distributions with a different distribution func-

tion and the parameter set is (β1, β2, ..., βn2). Let Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2.

Then Yn2:n2 ≤disp Xn1:n1 if the baseline distribution F0 follows IRHR model,

n2∑
i=1

βi ≥
n1∑
i=1

αi

and F0 ≤rh G0.

Proof: The distribution function of Xn1:n1 and Yn2:n2 are

Fn1:n1(x) = [F0(x)]

n1∑
i=1

αi

, and,

Gn2:n2(x) = [G0(x)]

n2∑
i=1

βi

respectively. Similar to the previous theorem, we take
n1∑
i=1

αi = α and
n2∑
i=1

βi = β. Let

ψ2(y) = F−1
n1:n1

(y)−G−1
n2:n2

(y)

= F−1
0 (y1/α)−G−1

0 (y1/β).

We are required to prove that Yn2:n2 ≤disp Xn1:n1 , i.e., ψ2(y) is increasing in y ∈ (0, 1).

Hence Yn2:n2 ≤disp Xn1:n1 if and only if φ2(t) = F−1
0 (t)−G−1

0

tαβ
 is increasing in t ∈ (0, 1),

where t = y1/α. Note that

φ
′
2(t) =

1
f0(F−1

0 (t))
− α

β

t

α

β
−1

g0

G−1
0

tαβ
 .

We need to show that φ
′
2(t) ≥ 0, i.e.,

(3.7)
t

f0(F−1
0 (t))

≥ α

β

t

α

β

g0

G−1
0

tαβ
 .

Put F−1
0 (t) = z1 and G−1

0

tαβ
 = z2. From (3.7) it is sufficient to show

F0(z1)
f0(z1)

≥ α

β

G0(z2)
g0(z2)

⇔ s̃0(z2)
β

α
≥ r̃0(z1).(3.8)
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As

β

α
≥ 1

⇒ t = F0(z1) ≤ t

α

β = Go(z2).

Since F0 ≤rh G0 implies F0 ≤st G0, hence G0(z1) ≤ F0(z1) ≤ G0(z2) i.e., z1 ≤ z2. Again
F0 follows increasing reversed hazard rate (IRHR) model hence z1 ≤ z2 ⇒ r̃0(z1) ≤ r̃0(z2).
Lastly, F0 ≤rh G0 ⇒ r̃0(x) ≤ s̃0(x) for all x, thus r̃0(z2) ≤ s̃0(z2). Combining these inequali-
ties we obtain the required result.

Example 3.2. We have observed an example of IRHR distribution from Example 3.4
of [4]. Let X be a random variable following Truncated Normal(µ, σ2) distribution with
distribution function as

F (x) =
Φ
(
x− µ

σ

)
Φ
(
−µ
σ

) , x ∈ (−∞, 0]

Let us consider a set of 3 independent random variables X1, X2, X3 such that Xi ∼ Fi(x) =

[F0(x)]αi , i = 1, 2, 3 where F0 corresponds to Truncated Normal(0, 4) i.e., F0(x) =
Φ
(x

2

)
0.5

.

Let us consider another set of 2 independent random variables Y1, Y2 such that Yi ∼ Gi(x) =

[G0(x)]βi , i = 1, 2, 3 where G0 corresponds to Truncated Normal(0, 1) i.e., G0(x) =
Φ(x)
0.5

. We
can observe that the reversed hazard rate function of the baseline distributions F0 and G0

are

h̃F0(x) =
1
2
φ(x)
Φ(x)

,

h̃G0(x) =
φ(x)
Φ(x)

.

Thus, F0 ≤rh G0. The distribution function of X3:3 and Y2:2 are

F3:3(x) =

Φ
(x

2

)
0.5


3∑

i=1

αi

and G2:2(x) =
(

Φ(x)
0.5

) 2∑
i=1

βi

.

Taking
3∑

i=1

αi = α = 2 and
2∑

i=1

βi = β = 3. Here all the conditions of Theorem 3.2 are satisfied,

further we observe that

ψ2(y) = F−1
3:3 (y)−G−1

2:2(y)

= F−1
0 (y1/α)−G−1

0 (y1/β)

= 2Φ−1(0.5y1/2)− Φ−1(0.5y1/3)

is increasing in y ∈ (0, 1).
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Figure 4: ψ2(y) is increasing for 0 < y < 1.

As a corollary, we can obtain a result for multiple-outlier model from PRHR distribu-
tions. The condition IRHR is necessary here, we can understand this through an example.
Let (X1, X2, X3) and (Y1, Y2, Y3) be independent random variables such that the distribution
function of Xi is (F0(x))αi , where F0(x) = 1− e−3x, x > 0 and distribution function of Yi is

(G0(x))βi , where G0(x) =
1

(1 + x)2
, x > 0. F0(x) is DRHR.

Figure 5:
G0(x)
F0(x)

is increasing for x > 0.

Figure 5 represents that F0 ≤rh G0. Let α =
∑n

i=1 αi and β =
∑n

i=1 βi, then

ψ2(y) = F−1
0 (y1/α)−G−1

0 (y1/β)

= 1 +
1
3
ln(1− y1/4.6)− 1

(1− y1/6.3)1/2
, 0 < y < 1
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Thus from Figure 6, we observe that Y3:3 ≥disp X3:3, i.e. the inequality reverses.

Figure 6: ψ2(y) is decreasing for 0 < y < 1.

In the next theorem, we provide a result for series systems with unequal number of
components following PHR models with different baseline distributions. It can be noted that
there is some relationship between hazard rate ordering and dispersive ordering. If X and Y
are two non negative random variables then:

1. If X ≤hr Y and X or Y is DFR, then X ≤disp Y ;

2. If X ≤disp Y and X or Y is IFR, then X ≤hr Y ;

from theorem 3.B.20 of [26] and Corollary 4.3 of [7].

Theorem 3.3. Consider a system of n1 components, where the lifetime of each com-

ponent is represented by the random variable X1, X2, ..., Xn1 respectively such that each

of X1, ..., Xp1 has survival function [F (x)]αi , i = 1, 2, ..., p1 and Xp1+1, ..., Xn1 has survival

function [G(x)]αi , i = p1 + 1, p1 + 2, ..., n1. Similarly another system with n2 components is

considered where the components Y1, ..., Yp2 has survival function as [F (x)]βi , i = 1, 2, ..., p2

whereas the components Yp2+1, ..., Yn2 has survival function [G(x)]βi , i = p2 + 1, p2 + 2, ..., n2.

Then X1:n1 ≤hr Y1:n2 whenever

p1∑
i=1

αi >

p2∑
i=1

βi and

n1∑
i=p1+1

αi >

n2∑
i=p2+1

βi.

Proof: The survival function of X1:n1 is

F 1:n1(x) = [F (x)]

p1∑
i=1

αi

[G(x)]

n1∑
i=p1+1

αi

,

and the survival function of Y1:n2 is

G1:n2(x) = [F (x)]

p2∑
i=1

βi

[G(x)]

n2∑
i=p2+1

βi

.
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Consider the ratio

(3.9)
F 1:n1(x)
G1:n2(x)

= [F (x)]

0
B@

p1∑
i=1

αi −
p2∑
i=1

βi

1
CA

[G(x)]

0
B@

n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

1
CA

Differentiating (3.9) with respect to x,

d

dx

(
F 1:n1(x)
G1:n2(x)

)
= −F 1:n1(x)

G1:n2(x)

( p1∑
i=1

αi −
p2∑
i=1

βi

)
f(x)
F (x)

+

 n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

 g(x)
G(x)


< 0,

whenever
p1∑
i=1

αi >

p2∑
i=1

βi and
n1∑

i=p1+1

αi >

n2∑
i=p2+1

βi. Hence the result follows.

When the random variables X1:n1 or Y1:n2 is DFR then X1:n1 ≤disp Y1:n2 .

If we consider a similar problem wherein the random variables follows a PRHR distri-
bution, we arrive at the following theorem.

Theorem 3.4. Consider an independent set of n1 random variables X1, X2, ..., Xp1 ,

Xp1+1, ..., Xn1 such that the distribution function of Xi, FXi(x) = [F (x)]αi for i = 1, 2, ..., p1

and FXi(x) = [G(x)]αi for i = p1 + 1, ..., n1. Another set of n2 independent components

Y1, Y2, ..., Yp2 , Yp2+1, ..., Yn2 are such that the distribution function of Yi, FYi(x) = [F (x)]βi ,

i = 1, 2, ..., p2 and FYi(x) = [G(x)]βi for i = p2 + 1, ..., n2. Then Xn1:n1 ≥rh Yn2:n2 whenever
p1∑
i=1

αi >

p2∑
i=1

βi and

n1∑
i=p1+1

αi >

n2∑
i=p2+1

βi.

Proof: The distribution functions of Xn1:n1 and Yn2:n2 are

Fn1:n1(x) = [F (x)]

p1∑
i=1

αi

[G(x)]

n1∑
i=p1+1

αi

,

Gn2:n2(x) = [F (x)]

p2∑
i=1

βi

[G(x)]

n2∑
i=p2+1

βi

respectively. Differentiating the ratio
Fn1:n1(x)
Gn2:n2(x)

with respect to x, we observe,

d

dx

(
Fn1:n1(x)
Gn2:n2(x)

)
=
Fn1:n1(x)
Gn2:n2(x)

( p1∑
i=1

αi −
p2∑
i=1

βi

)
f(x)
F (x)

+

 n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

 g(x)
G(x)


> 0,

whenever
p1∑
i=1

αi >

p2∑
i=1

βi and
n1∑

i=p1+1

αi >

n2∑
i=p2+1

βi and the result follows.
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The above theorem deals with a different set of parameters and baseline distributions
as compared to that of theorem 3.7 from [31] where the component lifetimes are dependent
but the parameters are restricted and the baseline distributions are all same. If Xn1:n1 or
Yn2:n2 is IRFR then from the above theorem we can observe that Xn1:n1 ≤disp Yn2:n2 .
We can observe the inter-relationship between reversed hazard rate ordering and dispersive
ordering, as mentioned in Corollary 4.4 of [7]. For two random variables X and Y ,

1. If X ≤rh Y and X or Y is IRFR, then Y ≤disp X;

2. If X ≤disp Y and X or Y is DRFR, then Y ≤rh X.

It is interesting to note that in [21], Proposition 4.4 can be realized from Theorem 3.3
and 3.4. Such as, if p1 = n and p2 = n in theorem 3.3 then

X1:n ≤hr Y1:n whenever
n∑

i=1

αi >
n∑

i=1

βi,

and if p1 = n and p2 = n in theorem 3.4 then

Xn:n ≥rh Yn:n whenever
n∑

i=1

αi >

n∑
i=1

βi.

Next we consider a reversed hazard rate ordering result for the parallel system having Pareto
distributed components such that the sample sizes are equal. Pareto distribution is DRFR
hence we have obtained a reversed hazard rate ordering for Xn:n and Yn:n.

Theorem 3.5. LetX1, X2, ..., Xn and Y1, Y2, ..., Yn be two sets of n-independent Pareto

distributed random variables such that the survival function of Xi is F i(x) =
(
1 +

x

θ

)−αi

,

x > 0, θ > 0, αi > 0 and that of Yi is Gi(x) =
(
1 +

x

θ

)−α∗
i
, x > 0, θ > 0, α∗i > 0. Let

α = (α1, α2, ..., αn), α∗ = (α∗1, α
∗
2, ..., α

∗
n), then α ≺w α∗ ⇒ Xn:n ≤rh Yn:n.

Proof: The distribution function of Xn:n is

(3.10) FXn:n(x) =
n∏

i=1

[
1−

(
1 +

x

θ

)−αi
]
,

and the corresponding reversed hazard rate function is

(3.11) r̃Xn:n(x) =
1

x+ θ

n∑
i=1

g(αi),

where g(α) =
α(x

θ
+ 1
)α
− 1

. Let u =
(x
θ

+ 1
)α

and u > 1 such that g(α) =
α

uα − 1
. Now,

(3.12) g′(α) =
uα(1− α lnu)− 1

(uα − 1)2

and

(3.13) g′′(α) =
uα lnu((uα lnu+ lnu)α− 2uα + 2)

(uα − 1)3
.



PHR and PRHR distribution 403

g′′(α)
sgn
= uα(lnu)φ(u), where φ(u) = (uα lnu+ lnu)α− 2uα + 2, φ(1) = 0. Also,

φ′(u) = α2uα−1 lnu+
α

u
− αuα−1

=
α

u
φ1(u),

such that φ1(u) = αuα lnu+ 1− uα and φ1(1) = 0. And

φ′1(u) = α2uα−1 lnu

> 0.

Hence it is observed that g′′(α) > 0 for x > 0 (u > 1), i.e., g(α) is convex in α. Hence,
using Lemma 2.2 we obtain, r̃Xn:n(x) is Schur convex w.r.t α. Moreover,

g′(α)
sgn
= uα(1− α lnu)− 1, u > 1

= h(u) say,

then h′(u) = −α2uα−1 lnu. Also h(1) = 0, then g′(α) < 0 for x > 0 (u > 1). Thus r̃Xn:n(x)
is decreasing in α and Schur convex w.r.t α. Using Lemma 2.3, we infer that α ≺w α∗

⇒ r̃Xn:n(x) ≤ r̃Yn:n(x). Hence the result follows.

3.2. Star ordering result for unequal sample sizes

In this section we present a comparison between two systems based on star ordering.
Consider a series system with components following PHR model and have unequal sample
sizes.

Theorem 3.6. Let X1, X2, ..., Xn1 be a n1-independent set of non-negative random

variables such thatXi ∼ [F (x)]αi for i = 1, 2, ..., n1 and Y1, Y2, ..., Yn2 be another n2-independ-

ent set of non-negative random variables such that Yi ∼ [F (x)]βi for i = 1, 2, ..., n2, where n1

and n2 may or may not be the same. Then

n1∑
i=1

αi ≤
n2∑
i=1

βi ⇒ X1:n1 ≥∗ Y1:n2 , whenever xr(x) is decreasing.

Proof: The survival function of X1:n1 is

(3.14) F 1:n1(x) = [F (x)]

n1∑
i=1

αi

.

Let
n1∑
i=1

αi = α, then F 1:n1(x) = [F (x)]α = Fα(x) (say).

The corresponding probability density function is

fX1:n1
(x) = αf(x)[F (x)]α−1

= fα(x).
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Note that the ratio

(3.15)
F ′

α(x)
fα(x)

= − 1
α

lnF (x)
r(x)

,

where Fα(x) = 1− [F (x)]α and F ′
α(x) = d

dαFα(x).

The theorem follows by differentiating the ratio
F ′

α(x)
xfα(x)

with respect to x.

Note that

d

dx

(
F ′

α(x)
xfα(x)

)
=

1
α

(
x(r(x))2 + (xr′(x) + r(x)) lnF (x)

(xr(x))2

)
> 0,

whenever xr(x) is decreasing in x. Now using Lemma 2.4, we obtain X1:n1 ≥∗ Y1:n2 whenever
n1∑
i=1

αi ≤
n2∑
i=1

βi.

We observe here that the hazard rate functions of X1:n1 and Y1:n2 are rX1:n1
(x) =

n1∑
i=1

αir(x) and rY1:n2
(x) =

n2∑
i=1

βir(x) respectively, where r(x) is the hazard rate function of

baseline distribution F (x). Then

rX1:n1
(x) ≤ rY1:n2

(x) whenever
n1∑
i=1

αi ≤
n2∑
i=1

βi.

The class of decreasing proportional hazard rate has been studied by [22] where several exam-
ples are also provided. The above result is applicable for multiple-outlier models. Moreover
this theorem can be considered as a more general form of theorem 3.9 from [31]. Here the
parameters are all different and only a simple inequality exists between them.

3.3. Dependent model

In this section we have considered a dependent set of random variables instead of in-
dependent random variables as discussed in the earlier sections. [12] studied scaled samples
with proportional hazard and proportional reversed hazard rate models whereas [30] stud-
ied stochastic ordering results of Resilience-scaled(RS) models (X ∼ RS(α, λ) if FX(x) =
Fα(λx), α > 0, λ > 0) for series and parallel systems with dependent set of components.
Moreover, [13] and [14] have discussed about the stochastic ordering between two systems
where the component lifetimes are independent and each belongs from a location-scale family,
necessarily with the same baseline distribution function. [18] discussed stochastic ordering
results for series system from dependent and independent random variables following location-
scale family of distributions. Thus it might be interesting to study the conditions under which
a series (parallel) system can be compared with another series (parallel) system, where all the
component lifetimes are dependent and each belonging from location family of distributions,
the baseline distribution functions for both the sets are also different.
Hence we shall observe few definitions required especially to study the dependent models.
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Definition 3.1. Survival copula: Let (X1, ..., Xn) be a n-dimensional random vector
defined on a probability space (Ω,F,P), the multivariate survival function is defined as

F (x1, ..., xn) = P [X1 > x1, ..., Xn > xn]

= C̃(F 1(x1), ..., Fn(xn)), x1, ..., xn ∈ R,

where C̃ is the n-dimensional survival copula of the random vector (X1, ..., Xn).
C̃ is a continuous function defined over the n-dimensional space as C̃ : [0, 1]n 7→ [0, 1], to
develop multivariate survival functions from the marginal survival functions.

Archimedean copula is a very widely used class of survival copula because of its ana-
lytical tractability.

Definition 3.2. Archimedean copula

A n-dimensional Archimedean copula C̃ : [0, 1]n 7→ [0, 1] is represented as

C̃(u1, ..., un) = ψ(ψ−1(u1) + ...+ ψ−1(un)), uk ∈ [0, 1] for k = 1, ..., n,

where the survival copula C̃ is generated by the generator function (also known as
Archimedean generator function) ψ : [0,∞) 7→ [0, 1], ψ is n -monotone (n ≥ 2) over an open
interval I ⊂ R (where the end points of the interval I belongs to the limit point of R) if ψ
has derivatives upto order n− 2 and

(−1)rψ(r)(x) ≥ 0 for r = 0, 1, 2, ..., n− 2

for any x ∈ I and also (−1)(n−2)ψ(n−2) is non-increasing and convex over I. φ = ψ−1 is the
corresponding inverse function. Clayton copula, Frank copula are few archimedean copulas
studied in the literature.

For a detailed discussion on Archimedean Copula one can refer to [20].
Recently, [27] have published results for systems with heterogeneous, dependent and distribu-
tion-free components. The following two propositions are mentioned here, the proofs of these
propositions can be easily derived from the proof of propositions 3.16 and 3.7 from [27].

Proposition 3.1. Let Y1, Y2, ..., Yn be n random variables such that Yi = X − µi,

(P [X > x] = F (x)) where µi for i = 1, 2, ..., n are the corresponding location parameters re-

spectively, then the survival function of the minimum of Y1, Y2, ..., Yn (P [min{Y1, Y2, ..., Yn} >
x]) is given by

J1(µ;F (x), ψ1) = ψ1(
n∑

k=1

φ1(F (x+ µk))),

ψ1 is log-convex (log-concave) and F is IFR (DFR) distribution. If there exists another set of

n random variables Z1, Z2, ..., Zn (Zi = W −µ∗i and P [W > x] = G(x)) such that the survival

function for the minimum of Z1, Z2, ..., Zn is

J1(µ∗;G(x), ψ2) = ψ2(
n∑

k=1

φ2(G(x+ µ∗k))),

then as (µ1, µ2, ..., µn) ≺w (≺w) (µ∗1, µ
∗
2, ..., µ

∗
n) we obtain Y1:n ≥st (≤st)Z1:n as ψ is log-convex

(log-concave), X ≥st W and F is IFR (DFR) distribution and φ1 ·ψ2(φ2 ·ψ1) is super-additive.
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Proposition 3.2. Let Y1, ..., Yn and Z1, ..., Zn be two n-dimensional random variables

such that Yi = X − µi and Zi = W − µi∗, i = 1, 2, ..., n. Then

µ ≺w µ∗ (µ ≺w µ∗) ⇒ Yn:n ≥st (≤st)Zn:n

whenever ψ1or ψ2 is log-convex (log-concave), F is IRFR(DRFR) distribution, X ≥st (≤st)W
and φ2 · ψ1(φ1 · ψ2) is super additive.

Here the condition“φ2 ·ψ1 is super-additive”is necessary. Let us consider 2 Archimedean
copula generators as

φ1(t) = (− ln t)2, t ∈ (0, 1] and φ2(t) = (1− t)3, t ∈ (0, 1].

The corresponding inverses are

ψ1(t) = exp(−t1/2) and ψ2(t) = 1− t1/3.

We can observe that ψ1 is log-convex. We are ineterested in finding the sign of the difference
term

φ2 · ψ1(t1 + t2)− φ2 · ψ1(t1)− φ2 · ψ1(t2).

Figure 7 shows that the generators are chosen such that φ2 · ψ1 is not super-additive.

Figure 7: φ2 ·ψ1 is not super additive.

As mentioned in the proposition, we shall consider Yi = X − µi and Zi = W − µ∗i for
i = 1, 2, 3. The location parameters are µ = (0.5, 1, 2) and µ∗ = (1, 2, 3), thus µ ≺w µ∗. The
cdf of X and W are respectively given by

F (x) =
Φ
(x

2

)
0.5

, x ∈ (−∞, 0] and G(x) =
Φ(x)
0.5

, x ∈ (−∞, 0].

The cdf of Y3:3 is

J2(µ;F (x), ψ1) = 1− ψ1


3∑

k=1

− ln
Φ
(
x+ µk

2

)
0.5


2
.
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The cdf of Z3:3 is

J2(µ∗;G(x), ψ2) = 1− ψ2

(
3∑

k=1

(
1−

Φ(x+ µ∗k)
0.5

)3
)
.

We shall observe the difference between the above 2 terms in Figure 8. Thus when φ2 · ψ1 is
not super additive, usual stochastic ordering does not exist between Y3:3 and Z3:3.

y1 = J2(µ;F (x), ψ1)− J2(µ∗;G(x), ψ2)

= 1−

(
3∑

k=1

(
1−

Φ(x+ µ∗k)
0.5

)3
)1/3

− exp

−


3∑
k=1

− ln
Φ
(
x+ µk

2

)
0.5


2


1/2
.

Figure 8: Usual stochastic ordering does not exist between Y3:3 and Z3:3.

When we take the generator function ψ(x) = exp(−x), φ(x) = − lnx. This generator in-
dicates the independence copula (when the random variables are independent). Subsequently
one can obtain the usual stochastic ordering between two sets of independent random vari-
ables.

Consider the Clayton copula generator function as

ψθ(x) = max((1 + θx)−1/θ, 0), θ > 0.

The above Archimedean generator is completely monotone (n-monotone for every n ∈ N) for
θ > 0, and hence generates an Archimedean Copula. Here ψθ is a log-convex function, and
hence the above theorems hold for this archimedean generator.

Examples: Let us consider φ(t) = (− ln t)θ, θ > 1, t ∈ (0, 1], the corresponding inverse
function is ψ(t) = e−t1/θ

, 0 ≤ t <∞. lnψ(t) and its corresponding derivatives with respect to t
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are

lnψ(t) = −t1/θ

d

dt
(lnψ(t)) = −1

θ
t−1+1/θ

d2

dt2
(lnψ(t)) =

θ − 1
θ2

t−2+1/θ.

We can observe that
d2

dt2
(lnψ(t)) is non-negative. Hence ψ(t) is log-convex.

Let us consider φ(t) = ln(1− θ ln t), θ > 0, t ∈ (0, 1], the corresponding inverse function

is ψ(t) = e

1− et

θ , 0 ≤ t <∞. lnψ(t) and its corresponding derivatives with respect to t are

lnψ(t) =
1− et

θ
d

dt
(lnψ(t)) = −e

t

θ
d2

dt2
(lnψ(t)) = −e

t

θ
.

We can observe that
d2

dt2
(lnψ(t)) is non-positive. Hence ψ(t) is log-concave.

4. CONCLUSION

Electronic devices, mechanical or electrical system consists of various units that are
linked with one another either in series, parallel or any other combination, all of them are
prone to failure at a certain point. We often refer to the warranty of the product to under-
stand which system to purchase. Obviously any system which does not fail early is worth
purchasing. If we are able to understand the dispersion of such a system compared to any
other then we can compare two products. In order to understand the lifetime of any series or
parallel system, we considered the random variables corresponding to the components. The
results discussed in this paper can be divided into 3 subpart as Proportional Hazard rate
(PHR) model, Proportional Reversed Hazard rate (PRHR) model, Dependent model. For
PHR model we considered different models, a generalized situation where we consider two
sets of independent PHR random variables and the baseline distribution for both the sets are
different (X1, X2, ..., Xn1 such that Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1 and another
set Y1, Y2, ..., Yn2 , Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2 ). We have obtained conditions
over the parameters and the baseline distributions so that a dispersive ordering exist between
the minimum order statistics. Whereas when both the baseline distributions are same, star
ordering occurs between these minimum order statistics provided xr(x) is decreasing. Since
Pareto distribution is also PHR model, a reversed hazard rate ordering occurs between the
sample maximums (also known as parallel systems) when the shape parameter varies. Pro-
ceeding similarly we have observed a result for PRHR model too. Here the two sets of random
variables follow different baseline distributions and the number of samples are also unequal
(Xi ∼ Fi(x) = (F0(x))αi for i = 1, 2, ..., n1 and Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2). All
of these results are true for multiple-outlier models.
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Another form of generalized model has been studied where X1, ..., Xp1 has survival function
[F (x)]αi and Xp1+1, ..., Xn1 has survival function [G(x)]αi . Similarly another system with n2

components is considered where the components Y1, ..., Yp2 has survival function as [F (x)]βi

whereas the components Yp+1, ..., Yn2 has survival function [G(x)]βi and hazard rate ordering
results has been observed for series systems. A reversed hazard rate ordering result with
PRHR components has been observed.
In the last section, dependent random variables have been studied. Here we obtained usual
stochastic ordering results between two sample minimums and two sample maximums such
that the location parameter corresponding to the random variables from two sets obeys a
weak majorization ordering while the baseline distribution obeys a usual stochastic ordering
and the generating functions follows super-additive property.
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