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1. INTRODUCTION

The probability density function (PDF) of the Lindley distribution [See, Lindley ([8])]
is specified by

(1.1) fX(x, θ) =
θ2

1 + θ
(1 + x) exp (−θx), θ > 0, x > 0,

and the corresponding cumulative density function (CDF) is given by

(1.2) FX(x, θ) = 1− 1 + θ + θx

1 + θ
exp (−θx), θ > 0, x > 0.

A distribution that is close in form to (1.1) is the well-known exponential distribution given
by the PDF

fX(x, θ) = θ exp (−θx), θ > 0, x > 0.

Ghitany et al. ([5]) showed that in many ways the Lindley distribution is a better model than
one based on the exponential distribution. The distribution in (1.1) is a mixture of expo-
nential and gamma distribution with shape parameter 2 and scale parameter θ with mixing
proportions θ

1+θ and 1
1+θ , respectively. So, it is a Bernoulli mixture of gamma distributions

of the form fX(x; θ) =
∑1

k=0

(
1
k

)(
1

θ+1

)k(
θ

θ+1

)1−k
fGA(x; k + 1, θ), where, fGA(x; k + 1, θ) =

θk+1

Γ(k+1)x
k exp(−θx) is the gamma PDF with shape parameter k + 1 and scale parameter θ.

We generalize this distribution to binomial mixing with parameter r and 1
θ+1 of the form

fX(x; θ) =
∑r

k=0

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
fGA(x; k + 1, θ).

It can be written in more generalized form of the PDF as

(1.3) fX(x, θ) =
∑r

k=0 akpkhk(x; θ)∑r
k=0 akpk

, θ > 0, x > 0,

where, pk =
(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, hk(x; θ)) = θk+1

Γ(k+1)x
(k+1)−1 exp(−θx) and ak’s are non-

negative constants.

It can also be rewritten as

(1.4) fX(x, θ) = h(θ)p(x) exp (−θx), θ > 0, x > 0,

where, h(θ) = 1Pr
k=0 ak(r

k) 1

θk+1

, p(x) =
∑r

k=0
ak
k!

(
r
k

)
xk.

A random variable X is said to have a Binomial Mixture One Parameter Polynomial
Exponential (BMOPPE) with parameter θ, if its probability density function (PDF) is given
by

(1.5) fX(x, θ) =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
θk+1

Γ(k+1)x
(k+1)−1 exp(−θx)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, θ > 0, x > 0.
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The CDF of the random variable X is given by

(1.6) F (x) =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
γ(k + 1, θx)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, θ > 0, x > 0,

where γ(s, t) = 1
Γs

∫ t
0 exp(−x)xs−1dx is the lower incomplete gamma function.

The CDF can also be written as

(1.7) F (x) = 1−

(∑r
k=0 ak

(
r
k

)
1

θk+1 Γ(k + 1, θx)∑r
k=0 ak

(
r
k

)
1

θk+1

)
, x, θ > 0,

where Γ(m,x) = 1
Γ(m)

∫∞
x e−uum−1du, the upper incomplete gamma function.
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(a) For r = 3 and θ = 0.5.
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(b) For r = 4 and θ = 0.5.
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(c) For r = 4 and θ = 1.

Figure 1: Plot of PDF of BMOPPE and OPPE for different combinations.

Bouchahed and Zeghdoudi ([4]) proposed a new and unified approach to generalizing
Lindley’s distribution and investigated its properties. Mukherjee et al. ([11]) later called
it the One Parameter Polynomial Exponential (OPPE) family of distributions and studied
the estimation aspect of the PDF and the CDF of the distribution. The natural discrete
version of the OPPE called the Natural Discrete One Parameter Polynomial Exponential
(NDOPPE) family of distributions is studied by Maiti et al. ([9]), and the estimation aspect
of the PMF and the CDF is discussed by Mukherjee et al. ([10]). The OPPE is a mixture of
gamma distributions with some mixing probabilities. In contrast, the BMOPPE is revisited
with a different look, and it is also a mixture of gamma distributions with binomial mixing
probabilities, which is different from the previous one.

The article is organised as follows. Section 2 discusses different order moments and
stochastic orderings of the random variable. In section 3, The maximum likelihood estimator
(MLE) and uniformly minimum variance unbiased estimator (UMVUE) of the PDF and the
CDF are discussed. The estimators are compared in the mean squared error (MSE) sense.
This section also considers the estimation of both mission time and stress-strength reliability
functions. Asymptotic variances of MLEs and variances of MVUEs are derived. UMVUEs of
variances of UMVUE of reliability functions have been derived. Simulation study results have
been reported to verify the theoretical findings in section 4. Three data sets have been anal-
ysed for illustration purposes in section 5. Section 6 is for making some concluding remarks.
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2. MOMENTS AND STOCHASTIC ORDERINGS

The s-th raw moments for BMOPPE distribution is

µ′s =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
Γ(k+s+1)
θsΓ(k+1)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
.(2.1)

The coefficient of skewness and kurtosis measures have been shown in Figure 2. These
are shown for r = 1, 2, 3 and for different values of θ. The constants of polynomial are
taken as ai = 1, i = 0, 1, 2, 3. It is noticed that the distribution is positively skewed, and
skewness decreases with the increment of the degree of the polynomial. Also, the distribution
is leptokurtic, and it becomes long-tailed with the increment of the degree of the polynomial.
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Figure 2: Plot of Skewness and Kurtosis of BMOPPE for different θ and r.

The ordering relations between two BMOPPE random variables have been shown in
the following Theorem.

Theorem 2.1. Let Xi ∼ BMOPPE(θi), i = 1, 2 be two random variables. If θ2 ≤ θ1,

then X1 ≺lr X2, X1 ≺hr X2, X1 ≺st X2 and X1 ≺cx X2.

Proof: Since, Likelihood ratio order =⇒ Hazard rate order =⇒ Stochastic order
and Convex order ⇐⇒ Stochastic order, it is sufficient to show that Likelihood ratio order
holds.

We have

L(x) = ln
(
fX1(x)
fX2(x)

)
= (k + 1) ln

(
θ1
θ2

)
− (θ1 − θ2)x.

Now,

4L(x) =
d

dx

[
ln
(
fX1(x)
fX2(x)

)]
.

Clearly, it is evident that 4L(x) ≤ 0, ∀θ2 ≤ θ1.
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3. ESTIMATION OF PDF AND CDF AND THEIR APPLICATIONS IN
RELIABILITY ESTIMATION

The PDF and the CDF estimates have immense importance in estimating reliability
functions (both mission time and stress-strength), entropy functions, Kullback–Leibler di-
vergence measure, Fisher information, cumulative residual entropy, quantile function, hazard
rate function, etc. In this section, the MLE and UMVUE of the reliability functions are to
be attempted. The asymptotic variances/variances of the estimators and their estimators are
to be discussed.

First, we will discuss the MLE and UMVUE of the PDF and the CDF of BMOPPE fam-
ily of distributions. Let X1, X2, ..., Xn be random sample of size n drawn from the BMOPPE
distribution in (1.5). The MLE of θ which is denoted as θ̃ is obtained by numerically solving
the equation

∑r
k=0 ak

(
r
k

)
k+1
θk+2∑r

k=0 ak

(
r
k

)
1

θk+1

− X̄ = 0.(3.1)

Using the invariance property of MLE, one can obtain the MLEs of the PDF and that of the
CDF by substituting θ̃ in (1.5) and (1.6) respectively. Theoretical expressions for the MSE
of the MLEs are not available. MSE is to be studied through simulation.

To derive the UMVUE of the PDF and that of the CDF (stated in Theorem 3.2), we
will use the following Theorem 3.1 and Lemma 3.1.

Theorem 3.1. Let X1, X2, ..., Xn independently follow BMOPPE(θ). Then the dis-

tribution of T = X1 +X2 + ···+Xn is

f(t) = hn(θ)
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr) exp(−θt) t
Pr

k=0(k+1)yk−1, t > 0,

with y0 + y1 + ···+ yr = n and c(n, y0, y1, ..., yr) = n!
y0!y1!···yr!

Qr
k=0[ak(r

k)]yk

Γ(
Pr

k=0(k+1)yk)
.

Proof: Since Xi’s are independent and identically distributed, the moment generating
function (mgf) of T is

MT (t) = hn(θ)

[
r∑

k=0

ak

(
r

k

)
1

θk+1

(
1− t

θ

)−(k+1)
]n

= hn(θ)

[
a0

(
r

0

)
1
θ

(
1− t

θ

)−1

+ ···+ ar

(
r

r

)
1

θr+1

(
1− t

θ

)−(r+1)
]n

= hn(θ)
∑
y0

∑
y1

···
∑
yr

n!
y0!y1!···yr!

r∏
k=0

[
ak

(
r

k

)]yk

θ−
Pr

k=0(k+1)yk

(
1− t

θ

)−Pr
k=0(k+1)yk

.
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Hence, the distribution of T is

f(t) = hn(θ)
∑
y0

∑
y1

···
∑
yr

n!
y0!y1!···yr!

r∏
k=0

[
ak

(
r

k

)]yk

θ−
Pr

k=0(k+1)ykfGA(t,
r∑

k=0

(k + 1)yk, θ)

= hn(θ)
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr)t
Pr

k=0(k+1)yk−1 exp(−θt).

Lemma 3.1. The conditional distribution of X1 given T = X1 +X2 + ···+Xn is

fX1|T (x|t) =
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1, 0 < x < t,

where

An(t) =
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr)t
Pr

k=0(k+1)yk−1,

and

c(n− 1, q0, q1, ..., qr) =
(n− 1)!
q0!q1!···qr!

r∏
k=0

[
ak

(
r

k

)]qk 1
Γ(
∑r

k=0(k + 1)qk)
,

with q0 + q1 + q2 + ···+ qr = n− 1.

Proof: The proof is obviously conducted from

fX1|T (x|t) =
fX1(x)f(t− x)

f(t)

=
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1.

Theorem 3.2. Let T = t be given. Then

f̂(x) =
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1, 0 < x < t,(3.2)

is UMVUE for f(x) and

F̂ (x) = 1− 1
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr)(3.3)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
Pr

k=0(k+1)qk+k

× B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
, 0 < x < t,

is UMVUE for F (x), where Ix(α, β) = 1
B(α,β)

∫ 1
x u

α−1(1−u)β−1du is an incomplete beta func-

tion and B(α, β) = Γ(α)Γ(β)
Γ(α+β) .
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Proof: The BMOPPE in (1.4) is a member of one parameter exponential family with
T =

∑n
i=1Xi as complete sufficient statistic. Therefore, by the use of Lehmann–Scheffe the-

orem, we get the UMVUE of the PDF from Lemma 3.1.

F̂ (x) = 1−
∫ t

x
f̂(w)dw

= 1−
∫ t

x

p(w)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− w)
Pr

k=0(k+1)qk−1dw

= 1− 1
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
Pr

k=0(k+1)qk+k

× B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
.

3.1. Mission Time Reliability

Suppose the life length of a component X is distributed as BMOPPE(θ). Then the
reliability of that component for a fixed mission time t0 (> 0) is

F̄X(t0) = P (X ≥ t0)

= h(θ)
r∑

k=0

ak

(
r
k

)
θk+1

Γ(k + 1, θt0).

By using the relation between incomplete gamma function and Poisson probability, F̄X(t0)
can be written as

F̄X(t0) = h(θ)
r∑

k=0

ak

(
r
k

)
θk+1

k∑
j=0

e−θt0(θt0)j

j!
.

3.1.1. The MLE

The MLE of F̄X(t0) based on a random sample of size n, is

˜̄FX(t0) = h(θ̃)
r∑

k=0

ak

(
r
k

)
θ̃k+1

k∑
j=0

e−
eθt0(θ̃t0)j

j!
,

where θ̃ is the solution of the equation (3.1). Since MSE( ˜̄FX(t0)) has no closed form expres-
sion, we give the asymptotic distribution of ˜̄FX(t0) by using delta theorem as follows:

√
n
(˜̄FX(t0)− F̄X(t0)

)
d→ N

(
0,

1
I(θ)

[
dF̄X(t0)
dθ

]2
)
,
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where

I(θ) =

[∑r
k=0

ak(r
k)

θk+1

][∑r
k=0

ak(r
k)(k+2)(k+1)

θk+3

]
−
[∑r

k=0

ak(r
k)(k+1)

θk+2

]2

[∑r
k=0

ak(r
k)

θk+1

]2

is the Fisher information about parameter θ for a single observation X.

3.1.2. The UMVUE

Application of incomplete beta function and binomial probability gives the UMVUE of
F̄X(t0) as

̂̄FX(t0) =
1

An(t)

∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−1

c(n− 1, x0, x1, ..., xr)

×
r∑

k=0

ak

(
r
k

)
Γ(k + 1)

t
Pr

k=0(k+1)xk+k
0 B

(
(k + 1),

r∑
k=0

(k + 1)xk

)

×
k∑

j=0

(∑r
l=0(l + 1)xl + k

j

)(
t0
t

)j(
1− t0

t

)Pr
l=0(l+1)xl+k−j

.

For exponential family of distribution, Blight and Rao ([3]) considered Bhattacharya
bounds to calculate the variance of UMVUE of parametric function ψ(θ). So, variance of̂̄FX(t0) can be expressed as

Var( ̂̄FX(t0)) =
∞∑
l=1

[F̄ (l)
X (t0)]2

[J∗l (θ)]2
,

where

[J∗l (θ)]2 = [h(θ)]n
l∑

j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ)]n[h(l−j)(θ)]n

×
∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−1

c(n− 1, x0, x1, ..., xr)

×
Γ(i+ j +

∑r
l=0(l + 1)xl)

θi+j+
Pr

l=0(l+1)xl

is the Bhattacharya function and h(i)(θ) denotes the i-th derivative of h with respect to θ.

Now, for the derivation of UMVUE of Var( ̂̄FX(t0)), we consider the representation

Var( ̂̄FX(t0)) = E( ̂̄F 2

X(t0))− [E( ̂̄FX(t0))]2

= E( ̂̄F 2

X(t0))− F̄ 2
X(t0).

If Q̂1(t0) is the UMVUE of Q1(t0) = F̄ 2
X(t0), we get the UMVUE of Var( ̂̄FX(t0)) as ̂̄F 2

X(t0)−
Q̂1(t0). We start from the fact that

I[X1 ≥ t0, X2 ≥ t0] = I[X1 ≥ t0]I[X2 ≥ t0],
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which implies that I[X1 ≥ t0, X2 ≥ t0] is unbiased for Q1(t0). Then, we get the UMVUE by
using Rao–Blackwell theorem as

Q̂1(t0) =
1

An(t)

∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−2

c(n− 2, x0, x1, ..., xr)

×
r∑

k=0

r∑
l=0

akal

(
r
k

)(
r
l

)
Γ(k + 1)Γ(l + 1)

Pr
m=0(m+1)xm−1∑

i=0

(−1)i
(Pr

m=0(m+1)xm−1
i

)
l + i+ 1

×

tPr
m=0(m+1)xm+l

Pr
m=0(m+1)xm+l∑

u=0

(−1)u
(Pr

m=0(m+1)xm+l
u

)
tu(k + u+ 1)

(tk+u+1 − tk+u+1
0 )

− tl+i+1
0 t

Pr
m=0(m+1)xm−i−1

Pr
m=0(m+1)xm−i−1∑

v=0

(−1)v
(Pr

m=0(m+1)xm−i−1
v

)
tv(k + v + 1)

× (tk+v+1 − tk+v+1
0 )

.

3.2. Stress Strength Reliability

For estimation of stress strength reliability, we assume the stress random variable X
follows BMOPPE(θ1) and strength random variable Y follows BMOPPE(θ2) and they are
independently distributed. Then the expression of stress strength reliability becomes

R = P (X < Y )

=
∫ ∞

0
F̄Y (x)f(x)dx

= h(θ1)h(θ2)
r2∑

k2=0

bk2

(
r2

k2

)
θk2+1
2

r1∑
k1=0

ak1

(
r1

k1

)
θk1+1
1

k2∑
j=0

(
k1 + j

j

)(
θ2

θ1 + θ2

)j( θ1
θ1 + θ2

)k1+1

.

3.2.1. The MLE of R

Let (x1, x2, ..., xn1) and (y1, y2, ..., yn2) be independent samples drawn from
BMOPPE(θ1) and BMOPPE(θ2), respectively. Let the MLEs of θ1 and θ2 be θ̃1 and θ̃2,
respectively. By putting the values of θ̃1 and θ̃2 in the expression of R, we get R̃ by its
invariance property as

R̃ = h(θ̃1)h(θ̃2)
r2∑

k2=0

bk2

(
r2

k2

)
θ̃2

k2+1

r1∑
k1=0

ak1

(
r1

k1

)
θ̃1

k1+1

k2∑
j=0

(
k1 + j

j

)(
θ̃2

θ̃1 + θ̃2

)j(
θ̃1

θ̃1 + θ̃2

)k1+1

.

Similarly as in mission time reliability, we derive the asymptotic distribution of R̃ in the
following theorem.
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Theorem 3.3. If the ratio n1
n2

converges to a positive number κ when both n1 and n2

tends to infinity, then

√
n(R̃−R) d→ N(0, σ2),

where σ2 = 1
I1(θ1) [

∂R
∂θ1

]2 + κ
I2(θ2) [

∂R
∂θ2

]2 and I1(θ1) is a Fisher information about parameter θ1
in a single observation X, I2(θ2) is a Fisher information about θ2 in a single observation Y .

Proof: Since log-likelihood equations satisfies all regularity conditions of asymptotic
normality for MLE, then we have

√
nj(θ̃j − θj)

d→ N(0, [Ij(θj)]−1),

where

I1(θ1) =

[∑r1
k=0

ak(r1
k )

θk+1
1

][∑r1
k=0

ak(r1
k )(k+2)(k+1)

θk+3
1

]
−
[∑r1

k=0

ak(r1
k )(k+1)

θk+2
1

]2

[∑r1
k=0

ak(r1
k )

θk+1
1

]2

and

I1(θ2) =

[∑r2
k=0

bk(r2
k )

θk+1
2

][∑r2
k=0

bk(r2
k )(k+2)(k+1)

θk+3
2

]
−
[∑r2

k=0

bk(r2
k )(k+1)

θk+2
2

]2

[∑r2
k=0

bk(r2
k )

θk+1
2

]2 .

Again, from the fact of independence of θ̃1 and θ̃2, we get

√
n1(θ̃1 − θ1, θ̃2 − θ2)

d→ N2(0, J(θ1, θ2)),

where

J(θ1, θ2) =
[
[I1(θ1)]−1 0

0 κ[I2(θ2)]−1

]
.

Now application of the transformation R = R(θ1, θ2) together with Delta theorem conclude
the proof.

3.2.2. The UMVUE of R

By using the UMVUE of mission time reliability and the PDF of the BMOPPE distri-
bution, the UMVUE of R can be expressed as

R̂ =
∫ Min(t1,t2)

x=0

̂̄F Y (x)f̂X(x)dx,
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where t1 =
∑n1

i=1 xi and t2 =
∑n2

i=1 yi, respectively. Evaluation of the integral gives the final
form of the UMVUE of R as

R̂ =
1

An1(t1)An2(t2)

∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−1

c(n1 − 1, q0, q1, ..., qr1)

× t
Pr1

l=0(l+1)ql

1

∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)

× t
Pr2

m=0(m+1)wm

2 J1

(
r1∑

l=0

(l + 1)ql,
r2∑

m=0

(m+ 1)wm

)
,

where

J1(α, β) =
r1∑

k1=0

ak1

(
r1

k1

)
tk1
1

Γ(k1 + 1)

r2∑
k2=0

bk2

(
r2

k2

)
tk2
2

Γ(k2 + 1)

×
k2∑

j=0

β+k2−j∑
i=0

(−1)i

(
t1
t2

)i+j(β+k2

j

)(
β+k2−j

i

)
B(k2+1, β)B(i+j+k1+1, α)

×
α+i+j+k1∑

l=i+j+k1+1

(
α+ i+ j + k1

l

)(
Min(t1, t2)

t1

)l (
1− Min(t1, t2)

t1

)(α+i+j+k1−l)

.

Under certain regularity conditions, variance of R̂ takes the form [See, Bartoszewicz
([1])] as follows:

Var(R̂) =
∞∑

k=1

k∑
j=0

[
∂kR

∂θj
1∂θ

k−j
2

1
Ij(θ1)Jk−j(θ2)

]2

,

where

[Il(θ1)]2 = [h(θ1)]n1

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ1)]n1 [h(l−j)(θ1)]n1

×
∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−1

c(n1 − 1, q0, q1, ..., qr1)
Γ(i+ j +

∑r1
l=0(l + 1)ql)

θ
i+j+

Pr1
l=0(l+1)ql

1

,

[Jl(θ2)]2 = [h(θ2)]n2

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ2)]n2 [h(l−j)(θ2)]n2

×
∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)
Γ(i+ j +

∑r2
l=0(l + 1)wl)

θ
i+j+

Pr2
l=0(l+1)wl

2

.

As earlier, the following representation

Var(R̂) = E(R̂2)− [E(R̂)]2

= E(R̂2)−R2
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gives the UMVUE of Var(R̂) as R̂2 − Q̂2, where Q̂2 is the UMVUE of Q2 = R2. Similarly,
we give the final expression of Q̂2 in the following equation:

Q̂2 =
1

An1(t1)An2(t2)

∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−2

c(n1 − 2, q0, q1, ..., qr1)

×
∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)

×
r1∑

k1=0

r1∑
l1=0

ak1al1

Γ(k1 + 1)

(
r1

k1

)(
r1

l1

)
Γ(l1 + 1)

r2∑
k2=0

r2∑
l2=0

bk2bl2
Γ(k2 + 1)

(
r2

k2

)(
r2

l2

)
Γ(l2 + 1)

×

Pr2
m=0(m+1)wm−1∑

i=0

(−1)i
(Pr2

m=0(m+1)wm−1
i
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l2 + i+ 1

×

tPr2
m=0(m+1)wm+l2

2

Pr2
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u=0

(−1)u
(Pr2

m=0(m+1)wm+l2
u

)
tu2(k2 + u+ 1)

×

tu2 J2

(
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r1∑
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(m+1)qm−1

)
− J2

(
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r1∑
m=0

(m+1)qm−1

)
− t

Pr2
m=0(m+1)wm−i−1

2

Pr2
m=0(m+1)wm−i−1∑

v=0

(−1)v
(Pr2

m=0(m+1)wm−i−1
v

)
tv2(k2 + v + 1)

×

tk2+v+1
2 J2

(
k1, l1+ l2+i+1,

r1∑
m=0

(m+1)qm−1

)

− J2

(
k1+k2+v+1, l1+ l2+i+1,

r1∑
m=0

(m+1)qm−1

)
,

where

J2(a, b, β) =
β−1∑
i=0

(−1)i

(
β − 1
i

)
ta+b+β+1
1

b+ β + 1
B(a+ 1, b+ β + 1)

×
a+b+β+1∑

j=a+1

(
a+ b+ β + 1

j

)(
Min(t1, t2)

t1

)j (
1− Min(t1, t2)

t1

)a+b+β+1−j

.

4. SIMULATION STUDY

Monte Carlo Simulation technique will not be helpful in generating random samples
from the BMOPPE distribution, since the equation

F (x) = u, u ∈ (0, 1),

cannot explicitly be solved in x. However, since the distribution is a mixture of gamma
distributions given in (1.5), one can utilize this fact. For the BMOPPE distribution, the
generation of a random sample X1, X2, ..., Xn is made using the following algorithm:
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1. Generate Ui ∼ Uniform(0, 1), i = 1(1)n.

2. If
Pj−1

k=0 ak(r
k) 1

θkPr
k=0 ak(r

k) 1

θk

< Ui ≤
Pj

k=0 ak(r
k) 1

θkPr
k=0 ak(r

k) 1

θk

, j = 1, 2, ..., r, then set Xi = Vi, where Vi ∼

gamma(j + 1, θ) and if Ui ≤ a0Pr
k=0 ak(r

k) 1

θk

, then set Xi = Vi, where Vi ∼ exp(θ).

The graphical representation of mean squared error (MSE) of the MLE and UMVUE
of the PDF and the CDF of some BMOPPE distributions for different values of parameter
based on simulation data is shown in Figure 3.

5. DATA ANALYSIS

In this section, we analyse three real data sets for comparing the performances of
the MLE and the UMVUE of the PDF and the CDF. The probability model selection is
made based on Akaike’s Information Criterion (AIC = −2 log-likelihood + 2k, where k is the
number of parameters involved in the model) for each data set. Minimum is the AIC; better
is the model fit. For our BMOPPE model, there is only one parameter θ; it is sufficient to
select the model with a negative log-likelihood. But since this model is compared with other
models with more than one parameter, the analyses are based on AIC. The AIC is calculated
first using the MLE of the parameter(s), and the best model is selected. Then the AIC of
the chosen model is compared with the AIC of this model calculated using the UMVUE of
the PDF. It is mentioned that a0, a1, ..., ar and r are known constants in the model; in
practice, these are chosen by trial and error such that AIC is at its minimum.

Data set-I, which is cited from Gross and Clark ([6]) and is given in Table 1, represents
the relief times (in minutes) of 20 patients receiving an analgesic. We calculate the AIC of
different standard distributions of One Parameter Polynomial Exponential (OPPE) family
and few others from literature (presented in Table 4) and it is observed that BMOPPE family
with r = 2, a0 = 0, a1 = 0.1 and a2 = 1 is a better fit. The negative log-likelihood values of
the selected model calculated using the MLE and the UMVUE of the PDF are presented in
Table 7. Figures 4(a)–(b) show the histogram, the estimated PDF, and the CDF.

Data set-II represents the number of million revolutions before failure for each of the
23 ball bearings in the life test. It is obtained from Lawless ([7]) and shown in Table 2.
For ease of calculation, we divide each observation into the data set by 2. The calculated
AIC of different standard distributions of OPPE family and few others have been shown in
Table 5 and it is noticed that BMOPPE family with r = 2, a0 = 0.2, a1 = 0.1 and a2 = 1
is a better fit. The negative log-likelihood values of the selected model calculated using the
MLE and the UMVUE of the PDF are also presented in Table 7. Figures 4(c)–(d) present
the corresponding histogram, the estimated PDF, and the CDF.

Data set-III is a collection from Bjerkedal ([2]), and Table 3 displays the survival times
(in days) of 72 guinea pigs infected with virulent tubercle bacilli. This data set has been fitted
with a distribution of BMOPPE family with r = 2, a0 = 0.01, a1 = 0.02 and a2 = 4 and it
is found to be a good fit. AIC for this distribution and some other distributions available
in the literature are listed in Table 6 that supports our claim. The negative log-likelihood
values of the selected model calculated using the MLE and the UMVUE of the PDF are also
presented in Table 7. The histogram, the estimated PDF, and the CDF have been shown in
Figures 4(e)–(f).



146 M.K. Ruidas, I. Mukherjee, M.M. Choudhury, S.S. Maiti and S. Adhya

5 10 15 20

0.
00

05
0.

00
10

0.
00

15
0.

00
20

0.
00

25
0.

00
30

Sample Size

M
S

E
_f

(x
)

mse_MLE
mse_UMVUE

(a) For PDF at θ = 1.05, x = 2, a0 = 0,
a1 = 0.1, a2 = 1 and r = 2.
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(b) For CDF at θ = 1.05, x = 2, a0 = 0,
a1 = 0.1, a2 = 1 and r = 2.
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(c) For θ = 1.5, x = 2, a0 = 0.01, a1 = 0.02,
a2 = 4 and r = 2.
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(d) For θ = 1.5, x = 2, a0 = 0.01, a1 = 0.02,
a2 = 4 and r = 2.
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(e) For θ = 0.09, x = 2, a0 = 0.2, a1 = 0.1,
a2 = 1 and r = 2.

5 10 15 20

0e
+

00
2e

−
06

4e
−

06
6e

−
06

8e
−

06
1e

−
05

Sample Size

M
S

E
_F

(x
)

mse_MLE
mse_UMVUE

(f) For θ = 0.09, x = 2, a0 = 0.2, a1 = 0.1,
a2 = 1 and r = 2.

Figure 3: Graph of simulated MSE of the MLE and UMVUE of the PDF and the CDF
of BMOPPE distribution.
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Histogram and estimated PDF fitted to the data set−I
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(a) Fitted PDF at a0 = 0.2, a1 = 0.1 and a2 = 1
to the data set-I.
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(b) Fitted CDF at a0 = 0.2, a1 = 0.1 and a2 = 1
to the data set-I.

Histogram and estimated PDF fitted to the data set−II
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(c) Fitted PDF at a0 = 0, a1 = 0.1 and a2 = 1
to the data set-II.
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(d) Fitted CDF at a0 = 0, a1 = 0.1 and a2 = 1
to the data set-II.

Histogram and estimated PDF fitted to the data set−III
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(e) Fitted PDF at a0 = 0.01, a1 = 0.02 and a2 = 4
to the data set-III.
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(f) Fitted CDF at a0 =0.01, a1 =0.02 and a2 =4
to the data set-III.

Figure 4: Graph of the estimated PDF and CDF of BMOPPE distribution for different data sets.
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Table 1: Relief times (in minutes) of 20 patients receiving an analgesic.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7

4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

Table 2: The number of million revolutions before failure
for each of the 23 ball bearings in the life tests.

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84

51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40

Table 3: Survival times (in days) of 72 guinea pigs.

0.1 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92

0.93 0.96 1 1 1.02 1.05 1.07 1.07 1.08

1.08 1.08 1.09 1.12 1.13 1.15 1.16 1.2 1.21

1.22 1.22 1.24 1.3 1.34 1.36 1.39 1.44 1.46

1.53 1.59 1.6 1.63 1.63 1.68 1.71 1.72 1.76

1.83 1.95 1.96 1.97 2.02 2.13 2.15 2.16 2.22

2.3 2.31 2.4 2.45 2.51 2.53 2.54 2.54 2.78

2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

Table 4: Model selection criterion for data set-I.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 48.10 50.10

Length-biased Lindley 49.70 51.70

Akash 59.52 61.52

Shanker 59.78 61.78

Lindley 60.50 62.50

Moment Exponential 52.32 54.32

Exponential 65.67 67.67

Table 5: Model selection criterion for data set-II.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 195.26 197.26

Sujatha 195.38 197.38

Akash 227.06 229.06

Shanker 231.06 233.06

Lindley 231.47 233.47

Gamma 226.04 230.04

Weibull 232.27 236.27

Exponential 242.87 244.87
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Table 6: Model selection criterion for data set-III.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.18 190.18

OPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.27 190.27

Lindley 213.85 215.85

New Generalized Lindley 188.36 194.36

Moment Exponential 208.40 210.40

Marshall–Olkin Exponential 206.36 210.36

Table 7: Negative log-likelihood value using MLE and UMVUE fitted in data set I–III.

Negative log-likelihood value
Data Set Model

MLE UMVUE

I BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 24.05 23.71

II BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 97.63 97.52

III BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 94.09 94.09

6. CONCLUDING REMARKS

The article searches for a more generalised version of Lindley distribution. Starting
with the Lindley distribution as a Bernoulli mixture of gamma distributions, a generalised
binomial mixture of gamma distributions called the BMOPPE family of distributions has
been derived. It is a revisit of the Lindley distribution from a different angle. As a result,
the generalised version of the Lindley, the OPPE family of distributions, got mixed with
the binomial probabilities, and therefore, the BMOPPE is an improvement. Moments and
stochastic orderings are discussed. The process of generation of observations is pointed out,
and the results are summarised. Estimations of the PDF and the CDF are discussed. The
MLEs and UMVUEs are derived and compared. We have the estimators in biased (i.e., MLE)
and unbiased (i.e., UMVUE) classes. Estimators of reliability functions are derived. Asymp-
totic variances of MLEs and variances of UMVUEs have been derived. The UMVUEs of the
variance of UMVUEs of reliability functions have also been derived. These may be helpful
in data analysis and comparison. Few data sets have been fitted, and it is found that the
proposed distribution fits well in AIC sense. Even though the gain in AIC is minimal com-
pared to the OPPE family of distributions, the BMOPPE is an improvement and is preferred.
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1. INTRODUCTION

There are situations in which the observed data would not be modeled by a proper
stochastic model. In these cases, some general models leading to weighted distributions may
be used. The concept of weighted distributions has been introduced by Fisher [17] and Rao
[35] in connection with modeling statistical data in situation that the standard distribution
was not appropriate for their purposes. A formal definition of a weighted distribution for
random variable X with density (mass) function f(x) and non-negative weight w(x) is ob-
tained by g(x) = w(x)f(x)

E(w(X)) , where E(w(X)) > 0. The corresponding weighted random variable
is denoted by Xw in this paper. For more details about the statistical applications of weighted
distributions, we refer the readers to Patil and Rao [31, 32] and Rao [38]. From Gupta and
Keating [20] to Bartoszewicz [12] and the references therein, the idea of the weighted distri-
butions is developed to various applications and properties. Saghir et al. [44] carried out a
brief review of weighted distributions, and investigated the implications of the differing weight
models as well as characterizations of these distributions based on a simple relationship be-
tween two truncated moments. In recent years, this concept has been applied in many areas of
statistics such as biomedical, human study, wildlife populations, electronic, etc. For example,
Jiang [21] used the weight function distribution to analyze measurement errors of an electro-
magnetic flowmeter. It is of great importance to note that the models of ordered data are
special cases of weighted distributions, for example the i-th order statistic in sample of size n,
denoted by Xi:n 1 ≤ i ≤ n, from a population with probability density function (pdf) f(·) and
cumulative distribution function (cdf) F (·) is a weighted random variable with weight func-
tion w(x) = (F (x))i−1(F̄ (x))n−i. The n-th upper k-record and the n-th lower k-record are
also weighted random variables with weight functions w(x) =

[
− log F̄ (x)

]n−1(F̄ (x))k−1 and
w(x) = [− logF (x)]n−1F (x)k−1, respectively. For more details and literature on order statis-
tics and record values, see for example, Arnold et al. [6, 7] and David and Nagaraja [14]. The
skew distributions are also another kind of weighted distributions. Recently, Gómez-Déniz
et al. [19] investigated the properties and applications of a new family of skew distributions.
Azzalini [8] has done an overview on the progeny of the skew-normal family.

It is known that the theory of estimation is a fundamental discipline dealing with the
specification of probabilistic model in terms of observed data. There are many measures
to evaluate the performance of an estimator like mean squared error (MSE), mean absolute
deviation, etc. The Pitman’s measure of closeness (PMC) introduced by Pitman [33] is
another criterion which has been used by several authors to compare the performance of the
estimators. Let us first recall the formal definition:

Definition 1.1. Let θ̂1 and θ̂2 be two estimators of a common parameter θ. The
Pitman’s measure of closeness of θ̂1 relative to θ̂2 is denoted by π(θ̂1, θ̂2|θ) and defined as

(1.1) π(θ̂1, θ̂2|θ) = Pr(|θ̂1 − θ| < |θ̂2 − θ|), ∀ θ ∈ Θ,

where Θ is the parameter space. If Pr(θ̂1 = θ̂2) = 0 and π(θ̂1, θ̂2|θ) ≥ 1/2 for all θ ∈ Θ, with
strict inequality holding for at least one θ, then θ̂1 is said to be a Pitman closer estimator
than θ̂2 with respect to θ.
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It is obvious that π(θ̂1, θ̂2|θ) determines the relative frequency that the estimator θ̂1 is
closer than θ̂2 to the true but unknown value of the parameter θ. Note that the absolute
difference in (1.1) may be replaced by any other loss function, in this case the associated
probability is called generalized PMC. Several developments in estimation theory via PMC
arguments have been written by Efron [16]. Also, Rao [36, 37] concluded noticeable comments
about the necessity of inference based on PMC. Keating [23] derived various aspects of PMC.
Keating and Mason [24] provided many practical examples in which the PMC may be more
useful than MSE. Sen [45] presented the condition on variance for an estimator being closer
than another. Ghosh and Sen [18] have shown under certain conditions a median unbiased
estimator of parameter is the Pitman closest within a certain class of estimators. Some
characterization results in statistical inference and decision theory with examples have been
explained by Lee [27] in view of the PMC for location and scale families. Nayak [30] used
the PMC to find best estimators of a location or scale parameter. Many relevant references
can be found for example in the monograph by Keating et al. [25]. A useful discussion to the
question “Is Pitman closeness a reasonable criterion?” with comments and rejoinder about
this measure can be found in Robert et al. [43]. Kourouklis [26] used the PMC to get an
improved estimation.

It is of great importance to note that two various statistics in estimating a common
parameter would be considered as two weighted random variables. This motivated us to
study the PMC in view of the weighted distributions. Toward this end, the PMC of weighted
random variables with respect to any unknown parameter is first investigated. A new general
weighted model is also introduced and some properties are investigated. Then, the concept
of PMC is used to measure the nearness of some weighted random variables with respect to
each other.

The rest of the paper is organized as follows: In Section 2, some general results are
given to compute the PMC of the weighted random variables to the parameter of interest.
In Section 3, a new general weighted model is introduced and some numerical results and
conclusions are presented. A real data set is used in this section to illustrate the proposed
procedure. In Section 4, the PMC of two weighted random variables with respect to another
one is investigated. Moreover, the results are applied to another real data set. Finally, some
conclusions are presented in Section 5.

2. GENERAL RESULTS

Let X be a random variable with pdf f(·) and cdf F (·) which is defined on finite interval
[a, b]. Assume Xw1 and Xw2 are two independent weighted random variables of X with weight
functions w1(·) and w2(·), respectively. Again, it is pointed out that these random variables
may be considered as two various estimators for a common parameter θ. Based on (1.1), the
PMC of Xw1 and Xw2 with respect to θ is given by

π(Xw1 , Xw2 |θ) = P (|Xw1 − θ| < |Xw2 − θ|).(2.1)
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A general expression for the probability in (2.1) can be written as follows:

π(Xw1 , Xw2 |θ) = P (Xw1 < Xw2 , Xw1 +Xw2 > 2θ) + P (Xw1 > Xw2 , Xw1 +Xw2 < 2θ)

=
∫ θ

max{a,2θ−b}

∫ b

2θ−x
g1(x)g2(y)dydx+

∫ b

θ

∫ b

x
g1(x)g2(y)dydx

+
∫ θ

a

∫ x

a
g1(x)g2(y)dydx+

∫ min{b,2θ−a}

θ

∫ 2θ−x

a
g1(x)g2(y)dydx

=
∫ θ

max{a,2θ−b}
Ḡ2(2θ − x)g1(x)dx+

∫ b

θ
Ḡ2(x)g1(x)dx

+
∫ θ

a
G2(x)g1(x)dx+

∫ min{b,2θ−a}

θ
G2(2θ − x)g1(x)dx,(2.2)

where for i = 1, 2, the functions gi(x) and Gi(x) are respectively the pdf and cdf of Xwi .
It can be shown that Ḡi(x) = 1−Gi(x) = Bi(x)

E(wi(X)) , where

Bi(x) = F̄ (x)E(wi(X)|X > x) =
∫ ∞

x
wi(t)f(t)dt.

Therefore, we have

π(Xw1 , Xw2 |θ) =
∫ θ

max{a,2θ−b}

B2(2θ − x)
E(w2(X)

w1(x)f(x)
E(w1(X))

dx+
∫ b

θ

B2(x)
E(w2(X))

w1(x)f(x)
E(w1(X))

dx

+
∫ θ

a

(
1− B2(x)

E(w2(X))

)
w1(x)f(x)
E(w1(X))

dx

+
∫ min{b,2θ−a}

θ

(
1− B2(2θ − x)

E(w2(X))

)
w1(x)f(x)
E(w1(X))

dx.(2.3)

In special case of wi(x) = ϕi

(
F (x)

)
(i = 1, 2), by transforming u = F (x), we get

π(Xw1 , Xw2 |θ) =
1

γ1γ2

{ ∫ F (θ)

F (max{a,2θ−b})
B2(2θ−F−1(u))ϕ1(u)du+

∫ 1

F (θ)
B2(F−1(u))ϕ1(u)du

}

− 1
γ1γ2

{ ∫ F (θ)

0
B2(F−1(u))ϕ1(u)du

+
∫ F (min{b,2θ−a})

F (θ)
B2(2θ − F−1(u))ϕ1(u)du

}
+

1
γ1

{ ∫ F (θ)

0
ϕ1(u)du+

∫ F (min{b,2θ−a})

F (θ)
ϕ1(u)du

}
,(2.4)

where γi = E[ϕi(U)] (i= 1, 2), such that U is a Uniform(0, 1) random variable. Table 1 shows
some special cases of ϕi(u) (i= 1, 2), which have been previously studied by several authors.

The definition of the weighted random variables may be extended to a random sample
of size n. Let X1, X2, ..., Xn be independent and identically distributed (iid) random vari-
ables with cdf F (·) and pdf f(·), then a weighted version of this sample can be defined by
(X∗

1 , X
∗
2 , ..., X

∗
n), which have the joint pdf

(2.5) hX∗
1 ,X∗

2 ,...,X∗
n
(x∗1, x

∗
2, ...x

∗
n) =

w(x∗1, x
∗
2, ...x

∗
n)

E[w(X∗
1 , X

∗
2 , ..., X

∗
n)]

n∏
i=1

f(x∗i ).
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Table 1: Some special cases of ϕi(u) related to PMC.

References ϕ1(u) ϕ2(u) Descriptions

Ahmadi and Raqab [4] ui−1(1 − u)m−i+1 uj−1(1 − u)n−j+1 Order statistics in
two samples

Raqab and Ahmadi [39] [− log(1 − u)]i [− log(1 − u)]j
Record values from

two sequences

Volterman et al. [47]
Pi

l=1 aR
l (i)(1 − u)γR

l −1 Pj
l=1 aS

l (j)(1 − u)γS
l −1 Two-sample progressive

type-II censoring

Ahmadi and
[− log(1 − u)]m ui−1(1 − u)n−i+1 Record values

Mohtashami Borzadaran [5] and order statistics

Notice that the joint pdf in (2.5) is a weighted version of
∏n

i=1 f(x∗i ). Now, for the special
case of n = 2, this joint distribution can be expressed as

(2.6) hX∗
1 ,X∗

2
(x, y) =

w(x, y)
E[w(X∗

1 , X
∗
2 )]
f(x)f(y),

where include the joint distribution of two order statistics in a finite random sample or two
k-records in a sequence of iid random variables. By assuming w(x,y) =ϕ(u,v), where u=F (x)
and v = F (y), the PMC of X∗

1 and X∗
2 with respect to parameter θ can be determined as

follows:

π(X∗
1 , X

∗
2 |θ) =

1
A

{ ∫ F (θ)

F (max(a,2θ−b))

∫ 1

F (2θ−F−1(u))
ϕ(u, v)dvdu

+
∫ 1

F (θ)

∫ 1

u
ϕ(u, v)dvdu+

∫ F (θ)

0

∫ u

0
ϕ(u, v)dvdu

+
∫ F (min(b,2θ−a))

F (θ)

∫ F (2θ−F−1(u))

0
ϕ(u, v)dvdu

}
,(2.7)

where A = E[ϕ(F (X∗
1 ), F (X∗

2 ))]. Some special cases of the weighted model in (2.6) have been
previously studied in view of PMC by some authors which are summarized in Table 2.

Table 2: Some special cases of ϕ(u, v) related to PMC.

References ϕ(u, v) Descriptions

Balakrishnan et al. [11] um−1(v − u)i−m−1(1 − v)n−i Sample median and
the i-th order statistic

Balakrishnan et al. [9] ui−1(v − u)j−i−1(1 − v)n−i Two order statistics
in one sample

Ahmadi and Balakrishnan [1] [− log(1−u)]i

1−u

h
− log( 1−v

1−u
)
ij−i−1 Two upper records

in one sequence

Ahmadi and Balakrishnan [3] [− log(u + 1 − v)]i−1 The i-th lower and upper
records in one sequence

Ahmadi and Balakrishnan [2] [− log(1 − u)]i
h
− log( 1−v

1−u
)
ij−i−1

(1−v)k−1

1−u

Two k-records
in one sequence



156 M. Ahmadi, G.R.M. Borzadaran and M. Razmkhah

Remark 2.1. It is worthwhile to note that not only for the special cases presented in
Tables 1 and 2, but also the PMC of the general versions of weighted random variables with
respect to the parameter of interest can be derived by the use of (2.4) and (2.7).

3. A GENERAL WEIGHTED MODEL

In Section 2, a weighted random variable whose weight function was a function of the
baseline cdf was considered in some special cases. Here, we introduce a more general model
contains all previous ones. Let X be a continuous random variable with pdf f(·) and cdf
F (·). For positive real constants α, β, γ and δ, one may consider a general weighted random
variable with the following pdf

gF (x;λ) =
1

M(λ)
[F (x)]α−1[F̄ (x)]γ−1[− logF (x)]β−1[− log F̄ (x)]δ−1f(x),(3.1)

where λ = (α, γ, β, δ) and M(λ) is the normalizing constant which is given by

M(λ) = M(α, γ, β, δ)

=
∫ 1

0
uα−1(1− u)γ−1(− log u)β−1[− log(1− u)]δ−1du.(3.2)

The model defined in (3.1) includes many famous families of distributions, such as distribution
of order statistics (see David and Nagaraja, [14]), distributions of upper and lower k-records
(see, Arnold et al., [6]), Jones model (see Jones, [22]) and proportional (reversed) hazard rate
model. This model can be also considered as the pdf of a weighted k-record statistic and also
weighted order statistics. In the next two subsection we consider two famous member of the
proposed model.

3.1. Results based on records

Let us recall the sequences of upper k-record times, Tn,k, and upper k-record values,
Rn,k, which are defined as follows: T1,k = k with probability one, R1,k = X1:k and for n ≥ 2

Tn,k = min{j : j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k
},

and the n-th upper k-record value is defined by Rn,k = XTn,k−k+1:Tn,k
, for n ≥ 1. For k = 1,

the ordinary records are recovered. Then, the pdf of Rn,k is given by

fn,k(x) =
kn

Γ(n)
[
− log F̄ (x)

]n−1(F̄ (x))k−1f(x),

where Γ(n) =
∫∞
0 xn−1e−xdx stands for the complete gamma function; see Arnold et al. [6] for

more details. It is obvious that by taking γ = k and δ = n, the pdf in (3.1) can be interpreted
as the pdf of a weighted the n-th upper k-record statistic, which is denoted by Rw

n,k. Similarly,
the weighted lower k-records may be defined. The first question arises here is that whether
k-records or the weighted version ones are closer to the parameter of interest. By using (2.4)
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and performing some algebraic calculations, it can be shown that the PMC of Rw
n,k and Rn,k

with respect to θ is

πα,β(Rw
n,k, Rn,k|θ) =

1
M(α, β, k, n)

∞∑
j=β−1

α−1∑
r=0

(
α− 1
r

)
(−1)rCj(β − 1)

×
{

Γ
(
n,−(r + j + k) log F̄ (max(a, 2θ − b))

)
(r + j + k)n

+
∞∑

i=n

ki

i!

(
Γ(n)− 2Γ

(
n,−(r + j + 2k) log F̄ (θ)

)
(n+ j + 2k)n+i

+
∫ − log F̄ (min(b,2θ−a))

− log F̄ (θ)
ψ(y; i, j, r)dy

−
∫ − log F̄ (θ)

− log F̄ (max(a,2θ−b))
ψ(y; i, j, r)dy

)}
,(3.3)

where Γ(n, a) =
∫∞
a xn−1e−xdx stands for the incomplete gamma function, the function

M(α, β, k, n) is as defined in (3.2), Cj(n) is the coefficient of wj in the expansion of (
∑∞

i=1
wi

i )n,
and

ψ(y; i, j, r) =
(
− log F̄ (2θ − F−1(1− e−y))

)i(
F̄ (2θ − F−1(1− e−y))

)k
yn−1e−(r+j+k)y.

Remark 3.1. It is clear that for other different versions of weight functions, we can
express the PMC via similar arguments in (3.3), for which they can be interpreted as appli-
cations and specifications of several forms.

In the rest of this section, the population quantile is considered as the parameter of
interest θ. We recall that the population quantile ξp of order p (0 < p < 1) of the cdf F (·) is
defined by ξp = inf{x : F (x) ≥ p}. Balakrishnan et al. [11, 10] determined the closest order
statistic in a random sample of size n to a specific population quantile and specially studied
the PMC of sample median to population median. Ahmadi and Balakrishnan [1] examined the
PMC of record statistics to the population quantiles of location-scale family of distributions.
Moreover, Ahmadi and Balakrishnan [2] investigated the PMC of k-records and Ahmadi and
Balakrishnan [3] obtained the PMC of current records for location-scale families. Similar
work was done by Razmkhah and Ahmadi [41] regarding the current k-records. The PMC
of upper (lower) records in two independent sequences of iid continuous random variables to
population quantiles was studied by Raqab and Ahmadi [39]. Similarly, the PMC of order
statistics in a two-sample problem was investigated by Ahmadi and Raqab [4]. Moreover,
a comparison study for order statistics and records was performed with some remarks by
Ahmadi and Mohtashami Borzadaran [5]. Davies [15] studied some PMC results for type-I
hybrid censored data from exponential distribution. Morabbi and Razmkhah [29] used the
PMC to get the quantile estimation based on modified ranked set sampling schemes. The
weighted versions of the aforementioned papers, for example, weighted order statistics and
weighted k-records may be of great interest which are discussed in this paper.

From (3.3), it is seen that the PMC is not distribution-free. So, the baseline distribution
has to be specified. Therefore, for as an example, the standard exponential distribution has
been considered and the PMC investigated for the population quantiles. With this in mind,
let {Xi, i ≥ 1} be a sequence of iid random variables from standard exponential distribution.
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The PMC of Rw
n,k and Rn,k with respect to the p-th quantile of this distribution, can be

simplified as follows:

πα,β(Rw
n,k, Rn,k|ξp) =

1
M(α, β, k, n)

∞∑
j=β−1

α−1∑
r=0

(
α− 1
r

)
(−1)rCj(β − 1)

×
{

Γ(n)
(r + j + k)n

+
∞∑

i=n

ki

i!

(
Γ(n)− 2Γ(n,−(r + j + 2k) log q)

(r + j + 2k)n+i

+q2k

∫ − log q2

− log q
h(y; i, j, r)dy − q2k

∫ − log q

0
h(y; i, j, r)dy

)}
,(3.4)

where
h(y; i, j, r) =

(
− log(q2ey)

)i
yn−1e−(r+j)y.

Using (3.4), the numerical values of πα,β(Rw
n,k, Rn,k|ξp) have been computed for n = 3, 4,

k = 3, 4 and some selected values of α, β and p. The results are presented in Table 3.

Table 3: Values of πα,β(Rw,U
n,k , R

U
n,k|ξp) for standard exponential distribution.

p
n k β α

0.10 0.25 0.5 0.60 0.75 0.80 0.90 0.95 0.99

3 3

1

2 0.4036 0.4044 0.4439 0.4899 0.5654 0.5819 0.5955 0.5964 0.5964
3 0.3310 0.3315 0.3805 0.4540 0.5989 0.6347 0.6667 0.6689 0.6690
4 0.2754 0.2757 0.3213 0.4077 0.6099 0.6664 0.7204 0.7244 0.7246
5 0.2321 0.2322 0.2702 0.3591 0.6056 0.6827 0.7613 0.7676 0.7679

2

1 0.6789 0.6745 0.5730 0.4839 0.3626 0.3397 0.3222 0.3212 0.3211
2 0.5748 0.5759 0.5727 0.5437 0.4675 0.4463 0.4267 0.4253 0.4252
3 0.4888 0.4902 0.5363 0.5613 0.5467 0.5319 0.5130 0.5113 0.5112
4 0.4184 0.4194 0.4838 0.5497 0.6030 0.5985 0.5838 0.5816 0.5815
5 0.3609 0.3614 0.4273 0.5201 0.6400 0.6491 0.6414 0.6392 0.6391

4

3

1

2 0.4291 0.4292 0.4371 0.4560 0.5166 0.5392 0.5674 0.5706 0.5709
3 0.3720 0.3720 0.3812 0.4088 0.5149 0.5596 0.6200 0.6275 0.6280
4 0.3254 0.3254 0.3335 0.3633 0.5012 0.5663 0.6609 0.6737 0.6746
5 0.2869 0.2870 0.2933 0.3219 0.4800 0.5631 0.6928 0.7116 0.7130

2

1 0.6884 0.6881 0.6554 0.5937 0.4321 0.3790 0.3183 0.3120 0.3116
2 0.6123 0.6123 0.6099 0.5914 0.4988 0.4559 0.3959 0.3883 0.3877
3 0.5461 0.5462 0.5566 0.5678 0.5440 0.5163 0.4632 0.4546 0.4539
4 0.4890 0.4890 0.5032 0.5325 0.5711 0.5618 0.5211 0.5118 0.5110
5 0.4397 0.4397 0.4535 0.4921 0.5835 0.5943 0.5708 0.5613 0.5603

4

1

2 0.4167 0.4169 0.4456 0.4889 0.5612 0.5745 0.5830 0.5833 0.5833
3 0.3498 0.3500 0.3871 0.4577 0.5992 0.6291 0.6495 0.6501 0.6502
4 0.2959 0.2960 0.3318 0.4166 0.6189 0.6674 0.7028 0.7040 0.7041
5 0.2522 0.2523 0.2830 0.3722 0.6246 0.6927 0.7456 0.7477 0.7477

2

1 0.6601 0.6589 0.5828 0.4942 0.3715 0.3518 0.3402 0.3399 0.3399
2 0.5715 0.5718 0.5667 0.5370 0.4599 0.4417 0.4289 0.4285 0.4285
3 0.4949 0.4953 0.5269 0.5485 0.5310 0.5179 0.5056 0.5051 0.5050
4 0.4297 0.4299 0.4763 0.5371 0.5855 0.5809 0.5710 0.5703 0.5703
5 0.3743 0.3744 0.4232 0.5103 0.6250 0.6317 0.6264 0.6257 0.6257

3

1 0.7803 0.7753 0.5810 0.4165 0.2483 0.2289 0.2198 0.2197 0.2197
2 0.6988 0.6983 0.6137 0.4973 0.3368 0.3136 0.3015 0.3012 0.3012
3 0.6226 0.6231 0.6117 0.5510 0.4180 0.3926 0.3778 0.3774 0.3774
4 0.5537 0.5542 0.5856 0.5789 0.4892 0.4639 0.4468 0.4463 0.4463
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The bold numbers in Table 3 are referring to the fact that the weighted k-records are
Pitman closer than the usual k-records to the specific population quantile. From this table,
it is intuitively observed that for given α and β, there exist real values α0 and p0 ∈ (0, 1) such
that for α ≤ α0 and p ≤ p0, π(RU,w

n,k , R
U
n,k|ξp) > 0.5. Similarly for α > α0, there exist a real

value p∗ ∈ (0, 1), so that for p ≥ p∗, π(RU,w
n,k , R

U
n,k|ξp) > 0.5.

3.2. Results based on order statistics

We recall that the pdf of the r-th order statistic from an iid sample of size n from cdf
F (·) and pdf f(·) is given by

(3.5) fr:n(x) = k

(
n

r

)
F r−1(x)F̄n−r(x)f(x).

Let us denote the weighted order statistic by Xw
r:n. Here, the PMC of Xw

r:n and Xr:n with
respect to the p-th quantile ξp is studied when the baseline distribution is standard exponential
distribution. From (2.4) and (3.5), we find

πβ,δ(Xw
r:n, Xr:n|ξp) =

1
M(r, n− r + 1, β, δ)

{ r−1∑
j=0

∞∑
k=1

(−1)j

(
r − 1
j

)
Ck(β − 1)

×
(

Γ(δ)
(j + n− r + k + 1)

− 1
M(r, n− r + 1, 1, 1)

×
n−r∑
i=0

r+i∑
l=0

(
(−1)i+l

(
n−r

i

)(
r+i

l

)
(1− p)2l

r + i

×
Γ(δ)− Γ

(
δ,−(j + n− r + k − l + 1) ln(1− p)

)
(j + n− r + k − l + 1)δ

))
+

1
M(r, n− r + 1, 1, 1)

n−r∑
i=0

2r+i−1∑
j=0

∞∑
k=1

((−1)i+j
(
n−r

i

)(
2r+i−1

j

)
r + i

×Ck(β − 1)
Γ(δ)− 2Γ

(
δ,−(j + n− r + k + 1) ln(1− p)

)
(j + n− r + k + 1)δ

)}
.(3.6)

For extreme order statistics X1:n and Xn:n we have

πβ,δ(Xw
1:n, X1:n|ξp) =

1
M(1, n, β, δ)

∞∑
k=1

Ck(β − 1)
{

Γ(δ)
(n+ k)

+n
n−1∑
i=0

i+1∑
j=0

(−1)i+j
(
n−1

i

)(
i+1
j

)
i+ 1

×
(

Γ(δ)− 2Γ
(
δ,−(n+ k + j) ln(1− p)

)
(n+ k + j)δ

−
Γ(δ)− Γ

(
δ,−(n+ k − j) ln(1− p)

)
(n+ k − j)δ

(1− p)2j

)}
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and

πβ,δ(Xw
n:n, Xn:n|ξp) =

1
M(n, 1, β, δ)

∞∑
k=1

Ck(β − 1)
{ n−1∑

j=0

(−1)j

(
n− 1
j

)
Γ(δ)

(j + k + 1)

+
2n−1∑
j=0

(−1)j

(
2n− 1
j

)
Γ(δ)− 2Γ

(
δ,−(j + k + 1) ln(1− p)

)
(j + k + 1)δ

−n
n−r∑
i=0

n−1∑
j=0

n∑
l=0

((−1)j+l
(
n−1

j

)(
n
l

)
(1− p)2l

n+ i

×
Γ(δ)− Γ

(
δ,−(j + k − l + 1) ln(1− p)

)
(j + k − l + 1)δ

)}
,

respectively. Using (3.6), the numerical values of πβ,δ(Xw
r:n, Xr:n|ξp) have been computed for

some selected values of n, r, β, δ and p. The results are presented in Table 4. The bold
numbers in this table are referring to the fact that the weighted order statistics are Pitman
closer than the usual order statistics to the specific population quantile.

Table 4: Values of πβ,δ(Xw
r:n, Xr:n|ξp) for standard exponential distribution.

p
n r β δ

0.10 0.25 0.5 0.75 0.90

5

1
2 3 0.2326 0.5067 0.7858 0.8018 0.8019
3 2 0.5243 0.5585 0.5299 0.5276 0.5275

3
2 3 0.3628 0.3658 0.4716 0.6292 0.6372
3 2 0.6371 0.6360 0.5349 0.3758 0.3629

4
2 3 0.4301 0.4302 0.4447 0.5515 0.5751
3 2 0.7064 0.7063 0.6731 0.4180 0.3005

8

1
2 3 0.2361 0.6905 0.8162 0.8169 0.8169
3 2 0.5307 0.5699 0.5636 0.5635 0.5635

7
2 3 0.4833 0.4834 0.4839 0.5180 0.5341
3 2 0.7338 0.7337 0.7313 0.5615 0.2974

10

2
2 3 0.2741 0.5501 0.7414 0.7429 0.7434
3 2 0.5131 0.5259 0.5170 0.5024 0.5000

5
2 3 0.3758 0.3777 0.5190 0.6237 0.6241
3 2 0.5966 0.5958 0.4858 0.4038 0.4033

7
2 3 0.4216 0.4307 0.4415 0.5573 0.5693
3 2 0.6758 0.6547 0.6320 0.3869 0.3454

From Table 4 we observe that, if β ≤ δ (or β > δ), there exist p0 ∈ (0, 1) such that for
p ≥ p0 (or p ≤ p0), we get πβ,δ(Xw

n:n, Xn:n|ξp) ≥ 0.5.
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4. PITMAN CLOSENESS AND WEIGHTED RANDOM VARIABLES

Note that in the field of PMC, there is no necessity to restrict our attention to param-
eters and their estimators. There are situations in which the problem of closeness of some
random variables with respect to each others may be of great importance. For instance, if Z is
a random variable and X and Y are two other random variables, then for an appropriate mea-
sure of distance d(·, ·), we may define GPN(X,Y, Z) = P (d(X,Z) < d(Y, Z)) to determine
the closer random variable between X and Y to Z; see for example, Mendes and Merkle [28].
Here, we focus on the PMC by using the distance d(X,Z) = |X − Z|.

Now, consider the situation in which the cdf of a distribution varies in some steps when
the time proceeds. Let us show the corresponding random variable to the baseline (initial)
distribution by X. Then, the transformed distribution at the i-th temporal step can be
characterized by a weighted random variable, such as Xwi (i ≥ 1) with pdf gi(·). So, the
PMC of any two transformed distribution to the baseline distribution is discussed in what
follows.

Let Xw1 , Xw2 and Xw3 be independent weighted random variables which are considered
to describe the transformations on a baseline distribution by pdf f(·) and cdf F (·). Therefore,
the pdf of Xwi is given by

(4.1) gi(x) =
wi(x)f(x)
E(wi(X))

, E(wi(X)) > 0, i = 1, 2, 3.

Here, we generally focus our attention to compute the probability of closeness of Xw1 and
Xw2 with respect to Xw3 . Note that in the special case of w3(x) = 1, in fact the closeness
of two transformed distributions with respect to the baseline distribution is studied. Using
(1.1), we get

π(Xw1 , Xw2 |Xw3) = P (|Xw1 −Xw3 | < |Xw2 −Xw3 |)
= P (−|Xw2 −Xw3 | < Xw1 −Xw3 < |Xw2 −Xw3 |)
= P (Xw2 < Xw1 < 2Xw3 −Xw2 , Xw2 < Xw3)

+P (2Xw3 −Xw2 < Xw1 < Xw2 , Xw2 > Xw3).

Assuming the random variables are defined on [a, b], we have

π(Xw1 , Xw2 |Xw3) =
∫ b

a

∫ z

a

∫ 2z−y

y
g1(x)g2(y)g3(z)dxdydz

+
∫ b

a

∫ b

z

∫ y

2z−y
g1(x)g2(y)g3(z)dxdydz

=
1
Λ

{ ∫ b

a

∫ z

a
A1(y)F̄ (y)w2(y)f(y)w3(z)f(z)dydz

−
∫ b

a

∫ z

a
A1(2z − y)F̄ (2z − y)w2(y)f(y)w3(z)f(z)dydz

+
∫ b

a

∫ b

z
A1(2z − y)F̄ (2z − y)w2(y)f(y)w3(z)f(z)dydz

−
∫ b

a

∫ b

z
A1(y)F̄ (y)w2(y)f(y)w3(z)f(z)dydz

}
,(4.2)
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where
Λ = E(w1(X))E(w2(X))E(w3(X))

and

A1(x) = E(w1(X)|X > x) =
1

F̄ (x)

∫ b

x
w1(t)f(t)dt.

Let us now suppose that wi(x) = ϕi(F (x)), for i = 1, 2, 3, then by using transformations
u = F (y) and v = F (z), the PMC in (4.2) can be rewritten as follows:

π(Xw1 , Xw2 |Xw3) =
1
Λ

{ ∫ 1

0

∫ v

0
[C1(u, v)− C2(u, v)]dudv −

∫ 1

0

∫ 1

v
[C1(u, v)− C2(u, v)]dudv

}
,

where
C1(u, v) = A1(F−1(u))(1− u)ϕ2(u)ϕ3(v)

and
C2(u, v) = A1(2F−1(v)− F−1(u))F̄ (2F−1(v)− F−1(u))ϕ2(u)ϕ3(v).

By selecting various choices of wi(x), specially those of presented in the previous sec-
tions, the above probability of closeness can be derived via tedious calculations.

It is worth to mention that formula (4.2) can also be used to assess the relationship
among different statistics. Suppose we have three independent sample from the same distri-
bution. It is known that in the context of nonparametric X[np]:n used as an estimator for
ξp. Denote the the sample mean of a standard exponential population by X̄, and consider
the sample quantiles of two independent standard exponential populations by Xr:n and Xs:n,
respectively. Then by using (4.2) we have

π(Xr:n, Xs:n|X) = nnrs

(
n

r

)(
n

s

) r−1∑
i=1

s−1∑
j=1

(−1)i+j

(
r − 1
i

)(
s− 1
j

)

×
{

(n− r + i+ j)−1

(2n− r − s+ i+ j + 2)

(
1
nn

− 1
(3n− r − s+ i+ j + 3)n

− 1
(3n− 2r + 2i+ 2)n

+
1

(4n− 3r − s+ 3i+ j + 4)n

)
+

(3n− r − s+ i+ j + 2)−n

(r − s− i+ j)(2n− r − s+ i+ j + 2)

}
.

5. APPLICATIONS

To illustrate the performance of the proposed procedure in Sections 4 and 5, we use
two real data sets in the following examples.

Example 1 (Telephone calls). Table 5 contains the data concerning the times (in min-
utes) between 48 consecutive telephone calls to a company’s switchboard which is presented
by Castillo et al. [13]. They assumed that the data come from the exponential distribution.
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Table 5: Times (in minutes) between 48 consecutive calls.

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33 2.20 0.62 3.20 1.38
0.96 0.28 0.44 0.59 0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09
2.18 0.07 0.02 0.64 0.28 0.68 1.07 3.25 0.59 2.39 0.27 0.34
2.18 0.41 1.08 0.57 0.35 0.69 0.25 0.57 1.90 0.56 0.09 0.28

By using the definition of k-records, as presented in subsection 3.1, from this data set,
the second upper 2-records (values of R2,2) have been extracted which are 0.33, 1.86, 1.38,
0.44, 0.51, 1.85, 0.07, 0.68, 2.39, 0.34, 0.57 and 0.57. Note that these data are indeed the
second largest observations in the partial samples. Moreover, after observing each data point,
the procedure of collecting the next second upper 2-record has been restarted. Moreover, the
initial sample maxima to attain the second upper 2-records are observed as

1.34, 2.2, 3.2, 0.96, 0.59, 2.18, 0.64, 1.07, 3.25, 2.18, 1.08, 0.69.

The null hypothesis that the above data are coming from a weighted distribution with
pdf (3.1) and the parameters λ = (α, β, 2, 2) (distribution of the second upper 2-record), is
checked by using the Kolmogorov–Smirnov (K-S) distances between the empirical distribution
functions and the fitted distribution function. The observed MLEs of α and β are 3.5 and 0.8,
respectively. Also, the observed value of K-S statistic is 0.2158 and the associated p-value is
0.6311. So, based on these observations, the weighted distribution is adequate for the data
regarding the sample maxima to attain the second upper 2-records. That is, one may accept
that these data are some observed values of Rw

2,2.

Using (3.4), the values of π3.5,0.8(Rw
2,2, R2,2|ξp) have been numerically obtained and

presented in Table 6 for some choices of p. It is observed that for upper quantiles (p ≥ 0.75),
Rw

2,2 is Pitman closer to ξp than R2,2.

Table 6: Values of π3.5,0.8(Rw
2,2, R2,2|ξp) for standard exponential distribution.

p 0.10 0.25 0.5 0.60 0.75 0.80 0.90 0.95 0.99

π3.5,0.8(R
w
2,2, R2,2|ξp) 0.2378 0.2389 0.2935 0.3727 0.5616 0.6341 0.7366 0.7581 0.7621

Example 2 (Air conditioning system). In this example we use the data set which
consist of the intervals between failures (in hours) of the air conditioning system in three
Boeing 720 jet aircrafts. The data are reported in Table 7. See Proschan [34] for a detailed
description of the data set. He tested and accepted the hypothesis that the successive failure
times were iid exponential for each plane, but with different failure rates.

Table 7: Intervals between failures of the air conditioning system in three Boeing 720 jet aircraft.

Plane 7909 90,10,60,186,61,49,14,24,56,20,79,84,44,59,29,118,25,156,310,76,26,44,23,62,130,208,70,101,208

Plane 7912 23,261,87,7,120,14,62,47,225,71,246,21,42,20,5,12,120,11,3,14,71,11,14,11,16,90,1,16,52,95

Plane 7913 97,51,11,4,141,18,142,68,77,80,1,16,106,206,82,54,31,216,46,111,39,63,18,191,18,163,24
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Let us denote the intervals between failures of the air conditioning system of Planes
7913, 7912 and 7909 by X, Xw1 and Xw2 , respectively. As well as assumed by Proschan [34],
the observed values of X come from exponential distribution. Moreover, it can be deduced
that Xw1 and Xw2 are two different weighted versions of X. More precisely, according to
the general weighted pdf presented in (3.1) with baseline exponential distribution, the null
hypotheses that the associated data for Planes 7912 and 7909 are coming from

gF (x; 1, 1.75, 1, 1) = 1.75[F̄ (x)]0.75f(x)

and
gF (x; 1, 1, 1, 1.15) =

1
Γ(1.15)

[− log F̄ (x)]0.15f(x),

respectively, are checked by using the K-S distances. The observed p-values are 0.6455 and
0.9123, respectively. So, based on these observations, the mentioned weighted versions of the
exponential distribution are adequate for the data. By using (4.2) and doing some algebraic
calculations and numerical computations, we get π(Xw1 , Xw2 |X) = 0.0452. That is, the in-
tervals between failures of the air conditioning system of Plane 7909 are Pitman closer than
those of Plane 7912 with respect to Plane 7913.

6. CONCLUSION

In this paper, the weighted random variables were considered and their closeness to a
common parameter was investigated in the sense of PMC. Some general results were derived
and a new general weighted model was introduced which subsumes most of the previous
works as special cases. Some numerical results and conclusions were presented for exponential
distribution in details. It was seen that the weighted upper k-records are Pitman closer than
the usual ones to certain population quantiles. To illustrate the proposed procedure, a real
data set was used. Furthermore, the concept of PMC was applied for measuring the nearness
of some weighted random variables with respect to each other. This procedure was also
explained via application to a real data set.
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1. INTRODUCTION

The grey system is a discipline that studies the problem of uncertainty, which was first
proposed by Deng in 1982, plays an important role in the grey system theory [4]. It has been
a useful tool in processing uncertain or excursive systems with small samples and limited data
set as distinct from the machine learning models, hybrid models, the empirical models, ...,
etc. The grey prediction models have been widely and successfully applied to various fields,
such as science and technology, energy, environmental problems, economy, health and other
fields [24, 35, 36, 7, 1, 33, 5, 18].

Recent studies on grey modelling focus on two main purpose: practicality and prediction
accuracy. For these purposes, important studies have been carried out in recent times. Ma
and Lui [15] proposed a time-delayed polynomial grey prediction model called TDPGM(1, 1)
model, the grey polynomial model with a tuned background coefficient was proposed by
Wei et al. [20], Cui et al. [3] developed a parameter optimization method to improve the
ONGM(1, 1, k) model, Bilgil [1] proposed an exponential grey model named EXGM(1, 1).
Furthermore, Ma et al. [14] developed a novel nonlinear multivariate forecasting grey model
based on the Bernoulli equation named NGBMC(1, n), Wang et al. [19] introduced a seasonal
grey model called SGM(1, 1), Wu et al. [25] proposed a new grey model called BNGM(1, 1, t2)
model, Liu and Wu [12] proposed the ANDGM model, Ma [13] proposed kernel-based
KARGM(1, 1) model, Li et al. [10] developed structure-adaptive intelligent grey forecast-
ing model, Wu et al. [26] developed a novel grey Riccati model (GRM), the modified grey
prediction model with damping trend factor was proposed by Liu et al. [11], the nonlinear grey
Bernoulli model with improved parameters, INGBM(1, 1), was proposed by Jiang et al. [8].

It is clear that most of the existing grey models are defined with a first-order whitening
differential equation. If the original data is a disordered sequence, the characteristic features
of the sequence may not be exactly found out by first-order accumulative generation operation
(1-AGO) [32]. Moreover, first-order derivative models are ideal memory models, which are
not suitable for describing irregular phenomena. As a result of this, the parameters of the
model may not be compatible according to the data characteristics of the actual problem
for a sequence with large data fluctuation. Therefore, fractional accumulation generating
operation and fractional derivative should be introduced into the grey model to overcome
this problem [32].

Wu et al. developed traditional GM(1, 1) with fractional order accumulated operator
named FAGM(1, 1) [23]. Some researchers optimized the FAGM(1, 1) model and reached
better prediction accuracy in recent years. Wu et al. suggested a fractional FAGMO(1, 1, k)
model with linear grey input of time in lieu of constant grey input in the initial FAGM(1, 1)
model and optimized it with optimal order and optimal parameters [27]. Besides, Mao et

al. introduced the fractional grey model FGM(q, 1) [17], a power-driven fractional accumu-
lated grey model named PFAGM is introduced by Zhang et al. [34], Yuxiao et al. proposed
the multivariable Caputo fractional derivative grey model with convolution integral named
CFGMC(q, N), Xie et al. developed a conformable fractional grey model in opposite direction
CFGOM(1, 1) [30].

However, the definition is given by Wu [23] only show us a single situation of fractional
order calculus and differencing. From the perspective of computational complexity, frequently
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operated descriptions of fractional accumulation and its suitable fractional differencing in the
present grey models are not easy to apply, and it causes serious rigours to the more deeply
theoretical analysis. Yang and Xue [31] submitted the fractional order calculus, but the
exact solution of this kind of model include infinite series, and it is clearly difficult to use and
analyse. Furthermore, this kind of complications would also impede the improvement of the
fractional order grey models thanks to some new operators [22, 21].

Lately, Khalil et al. defined a limit-based fractional derivative in 2014 [9], which is
named the conformable fractional derivative. The structure of this new definitions of frac-
tional derivative is simpler than that of other popular fractional derivatives, such as the
Caputo derivative and Riemann–Liouville derivative. Then, Ma et al. [16] introduced the
new useful definitions of the fractional order difference and accumulation based on the con-
formable fractional derivative in which the computational complexity of accumulation is lower
than that of the traditional fractional accumulated operator and they firstly proposed an im-
proved fractional order grey model named CFGM(1, 1). Recently, a continuous grey model
named CCFGM based on the conformable fractional derivative was described by Xie et al. [29].

In this paper, we introduced the novel exponential conformable fractional grey model
(denoted as ECFGM(1, 1) for short) by using the new definitions of conformable fractional
difference and conformable fractional accumulation by Ma et al. [16]. The structural order
of ECFGM(1, 1) is sought out by using the Brute Force algorithm. The effectiveness of
ECFGM(1, 1) is validated by real data sets in comparison with other used new grey models
and it is seen that the performance of the ECFGM(1, 1) model is very successful.

The rest of this paper is organized as follows: Section 1 includes relevant literature.
Some useful properties and definitions of the conformable fractional calculus are given in
Section 2. The presentations and modelling mechanism of the ECFGM(1, 1) are introduced
in Section 3. In Sections 4 and 5, we present a series of samples to validate ECFGM(1, 1).
Finally, the conclusions of this study are given in Sections 6.

2. SOME DEFINITIONS AND PROPERTIES ON CONFORMABLE FRAC-
TIONAL CALCULUS

In this section, some useful definions and properties of the conformable fractional deriva-
tive are summerized.

2.1. The conformable fractional derivative

Definition 2.1 (See [16]). If f : [0,∞)→R is a differentiable function, the conformable
fractional derivative of f with α ∈ (n, n + 1] order is defined as

(2.1) Tα(f)(t) = lim
ε→0

f(t + εtdαe−α)− f(t)
ε

= tdαe−α df(t)
dt

,
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where d·e is the ceil function, i.e. the dαe is the smallest integer no larger than α. It is clear
that dαe = 1 for α ∈ (0, 1]. Hence, equation (2.1) can be written as

Tα(f)(t) = lim
ε→0

f(t + εt1−α)− f(t)
ε

= t1−α df(t)
dt

for all t > 0.

The following theorem gives the properties of the definition (Khalil et al. [9]).

Theorem 2.1 (See [9]). If the functions f and g are differentiable, α∈ (0,1], then we

have:

1. Tα(f)(t) = t1−α df(t)
dt ;

2. Tα(mf + ng) = mTα(f) + nTα(g) for all m,n ∈ R;

3. Tα(f.g) = fTα(g) + gTα(f);

4. Tα

(
f
g

)
= gTα(f)−fTα(g)

g2 ;

5. Tα(c) = 0 for all constant c;

6. Tα(tp) = ptp−α for all p ∈ R;

7. Tα(ecx) = cx1−αecx for all c ∈ R.

Proof: The proof is omitted.

2.2. The conformable fractional accumulation and difference

New definitions to calculate the conformable fractional accumulation (CFA) and the
conformable fractional difference (CFD) are given by Ma et al. [16] as follows.

Definition 2.2 (see [16, 28]). The conformable fractional difference (CFD) of f with
α order is defined as

(2.2) ∆αf(k) = k1−α∆f(k) = k1−α[f(k)− f(k − 1)]

for all k ∈ N+, α ∈ (0, 1], and

(2.3) ∆αf(k) = kdαe−α∆n+1f(k) = kdαe−α
k∑

j=k−dαe

(−1)k−j

(
dαe

k − j

)
f(j)

for all k ∈ N+, α ∈ (n, n + 1].

Definition 2.3 (see [16]). The conformable fractional accumulation (CFA) of f with
α order is defined as

(2.4) ∇αf(k) = ∇
(

f(k)
k1−α

)
=

k∑
j=1

f(j)
j1−α

for all k ∈ N+, α ∈ (0, 1], and

(2.5) ∇αf(k) = ∇n+1

(
f(k)

kdαe−α

)
for all k ∈ N+, α ∈ (n, n + 1].
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3. PRESENTATION OF EXPONENTIAL CONFORMABLE FRACTIONAL
GREY MODEL

In this section, a novel exponential conformable fractional grey model, named
ECFGM(1, 1), is introduced, which optimizes the classical CFGM(1, 1) model with an ex-
ponential grey action quantity.

3.1. Formulation of proposed fractional grey model

The original series X(0) =
(
x(0)(1), x(0)(2), ..., x(0)(n)

)
is given. CFA with α order is

calculated as follows:

(3.1) X(α) =
(
x(α)(1), x(α)(2), ..., x(α)(n)

)
,

where

(3.2) x(α)(k) = ∇αx(0)(k) =
k∑

i=1

[
dαe
k − i

]
x(0)(i)
idαe−α

, α ∈ R+,

where
[
dαe
k−i

]
= Γ(k−i+dαe)

Γ(k−i+1)Γ(dαe) = (k−i+dαe−1)!
(k−i)!(dαe−1)! (see [28]).

Definition 3.1. The first-order whitening differential equation of the ECFGM(1, 1) is
defined as

(3.3)
dx(α)(t)

dt
+ ax(α)(t) = b + ce−t,

where a is a development coefficient, b is called driving coefficient and ce−t is an exponential
grey action quantity. So that, the monotone decreasing term ce−t will suppress the growth
of the prediction error.

When α = 1, the ECFGM(1, 1) model yields the EXGM(1, 1) [9]. In addition, the
proposed model can be translated to the conventional CFGM(1, 1) model for c = 0 [23].

3.2. Parameters estimation

Theorem 3.1. For the computed CFA and the value of fractional order, the system

parameters a, b and c of the ECFGM(1, 1) satisfy the following equation:

(3.4) [a, b, c]> = (B>B)−1B>Y,

where the matrix B and Y are

(3.5) B =


−0.5(x(α)(2) + x(α)(1)) 1 (e− 1)e−2

−0.5(x(α)(3) + x(α)(2)) 1 (e− 1)e−3

...
...

...

−0.5(x(α)(n) + x(α)(n− 1)) 1 (e− 1)e−n

, Y =


x(α)(2)− x(α)(1)
x(α)(3)− x(α)(2)

...

x(α)(n)− x(α)(n− 1)

.
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Proof: Integrating both sides of the whitening equation (3.3) within the interval
[k − 1, k] the discrete form of ECFGM(1, 1) model is obtained as follows:

(3.6)

k∫
k−1

dx(α)(t)
dt

dt + a

k∫
k−1

x(α)(t)dt =

k∫
k−1

(b + ce−t)dt.

According to the Newton–Leibniz formula, the first integral of (3.6) can be expressed
as

(3.7)

k∫
k−1

dx(α)(t)
dt

dt = x(α)(k)− x(α)(k − 1).

It is clear that the integration term
k∫

k−1

x(α)(t)dt denotes the area between t-axis and the curve

x(α)(t) in the interval [k − 1, k]. Then, using the generalized trapezoid formula as in many
recent studies [23, 25, 16, 29, 26, 17, 10, 21], the second integral of (3.6) can be obtained as

(3.8) a

k∫
k−1

x(α)(t)dt =
a

2

(
x(α)(k) + x(α)(k − 1)

)
and the right side of (3.6) is equal to

(3.9)

k∫
k−1

(b + ce−t)dt = b + c(e1−k − e−k).

Substituting equations (3.7)–(3.9) into equation (3.6), it can be written as

(3.10)
(
x(α)(k)− x(α)(k − 1)

)
+

a

2

(
x(α)(k) + x(α)(k − 1)

)
= b + c(e1−k − e−k),

where k = 2, 3, ..., n.

The linear equations system (3.10) can be written as follows:

(3.11)

x(α)(2)− x(α)(1) = −0.5a(x(α)(2) + x(α)(1)) + b + c(e−1 − e−2)

x(α)(3)− x(α)(2) = −0.5a(x(α)(3) + x(α)(2)) + b + c(e−2 − e−3)
...

...
...

x(α)(n)− x(α)(n− 1) = −0.5a(x(α)(n) + x(α)(n− 1)) + b + c(e1−n − e−n)

and system (3.11) can be written as

(3.12) Y = Bρ,

where

(3.13) B =


−0.5(x(α)(2) + x(α)(1)) 1 (e− 1)e−2

−0.5(x(α)(3) + x(α)(2)) 1 (e− 1)e−3

...
...

...
−0.5(x(α)(n) + x(α)(n− 1)) 1 (e− 1)e−n

, Y =


x(α)(2)− x(α)(1)
x(α)(3)− x(α)(2)

...
x(α)(n)− x(α)(n− 1)


and ρ = [a, b, c]> in which n is the number of samples used to construct the model.
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The parameter estimation of the ECFGM(1, 1) model using the least squares method
can be obtained. For the estimated value of the parameter sequence ρ, the x(α)(k)−x(α)(k−1)
on the left side of the equation (3.11) is replaced with −0.5a(x(α)(k) + x(α)(k − 1)) + b +
c(e1−k − e−k), the error sequence ε = Y −Bρ is obtained. Here,

(3.14) ε = [ε2, ε3, ..., εn]>

and εk represents the error for each equation in the system (3.11) for k = 2, 3, ..., n.

Notice, S(ρ) is defined as the sum of squares of errors, which yields

(3.15)

S(ρ) =
n∑

k=2

ε2k

= ε>ε

= (Y −Bρ)>(Y −Bρ)

= (Y> − ρ>B>)(Y −Bρ)

= Y>Y − Y>Bρ− ρ>B>Y + ρ>B>Bρ

= Y>Y − 2ρ>B>Y + ρ>B>Bρ.

The parameter vector ρ = [a, b, c]> that minimize S(ρ) satisfies

(3.16)
∂S

∂ρ
= −2B>Y + 2B>Bρ = 0,

so

(3.17) B>Y = B>Bρ.

Thus

(3.18) ρ = (B>B)−1B>Y,

or

(3.19) [a, b, c]> =
(
B>B

)−1
B>Y.

Thence the proof is completed by using the least square estimation method.

3.3. Response function and restored values

Theorem 3.2. The discrete form of the response function of ECFGM(1, 1) model is

given as

(3.20) x̂(α)(k) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−k) +

b

a
+

c

a− 1
e−k,

where k = 2, 3, ..., n.
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Proof: It is clear that the solution of the first order linear whitening differential equa-
tion (3.3) can be obtained as

(3.21) x(α)(t) =
b

a
+

c

a− 1
e−t + de−at,

where d is integral constant. By using the initial condition x(α)(1) = x(0)(1), the constant d

can be found as

d =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea.

Therefore the grey prediction model equation (3.21) can be obtained as

x̂(α)(t) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−t) +

b

a
+

c

a− 1
e−t

and the discrete form of the response function can be written as

x̂(α)(k) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−k) +

b

a
+

c

a− 1
e−k.

The proof is completed.

Theorem 3.3. Then, restored values can be given as

(3.22) x̂(0)(k) = ∆αx̂(α)(k) = kdαe−α∆n+1x̂(α)(k), α ∈ (n, n + 1],

where k = 2, 3, ..., n.

Proof: From (3.2) it can be seen that x̂(α)(k) = ∇αx̂(0)(k). If we apply the inverse
operator ∆α, it is obtained as

x̂(0)(k) = ∆αx̂(α)(k)

and from Definition 2.2 it can be written as

x̂(0)(k) = ∆αx̂(α)(k) = kdαe−α∆n+1x̂(α)(k), α ∈ (n, n + 1].

This completes the proof.

It is clear that, the restored values for α ∈ (0, 1] can be written as

(3.23) x̂(0)(k) = k1−α(x̂(α)(k)− x̂(α)(k − 1)).

3.4. Evaluative accuracy of the forecasting model

The relative percentage error (RPE) and the mean absolute percentage error (MAPE)
are used to evaluate the fitting and predicting performance of ECFGM(1, 1). The lowest
MAPE value indicates the best prediction model. They are defined as follows:

RPE(k) =

∣∣∣∣∣ x̂(0)(k)− x(0)(k)
x(0)(k)

∣∣∣∣∣× 100%,(3.24)

MAPE =
1
n

n∑
k=1

RPE(k),(3.25)

where x(0)(k) is the original series, and x̂(0)(k) is the predicted series.
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For a raw sequence with n samples, the metric MAPEfit is defined as the fitting perfor-
mance metric while MAPEpre is defined as a prediction performance metric. Mathematically,
they can be formulated as:

MAPEfit =
1
p

p∑
k=1

RPE(k),(3.26)

MAPEpre =
1

n− p

n∑
k=p+1

RPE(k),(3.27)

where p represents the number of samples used for fitting a model while the rest of the raw
sequence is used to examine the prediction accuracy of the model. The total MAPE is given
in (3.25) and it is used to evaluate the whole performance of a model.

3.5. Computation steps

The computation steps of ECFGM(1, 1) model with given sample and α can be sum-
marized as follows:

Step 1: Create a raw data set
(
x(0)(1), x(0)(2), ..., x(0)(n)

)
;

Step 2: Take as α = 0.01 to the initial value and designate an initial value of MAPEmin;

Step 3: Compute the CFA series with α order of the given raw data set by using (3.2);

Step 4: Build the matrix B and Y using (3.5);

Step 5: Calculate the parameters a, b and c using (3.4);

Step 6: Calculate the predictedvalues and the response functionusing (3.20) and (3.22);

Step 7: Calculate the mean absolute percentage error (MAPE) using (3.25);

Step 8: If MAPE is greater than MAPEmin, set α as α = α + h (where h is the step
size), otherwise take as MAPEmin = MAPE and go to Step 3; where step 8
is continued until α reaches the predetermined value.

Brute Force is a straightforward approach, which is also known as the Naive algorithm,
for solving optimization problems that rely on sheer computing power and trying every possi-
bility rather than advanced techniques to improve efficiency. Unlike some of the other popular
swarm intelligence algorithms, Brute Force is applicable to a very wide variety of problems
and it is an effective and easy method to find the optimum value in the solution interval.

Despite the convergence speed advantages of other algorithms, it is a disadvantage that
they may focus on the local extremum point rather than the global extremum. However,
the Brute Force algorithm scans the whole domain, evaluates each point, then calculates the
MAPE’s on these points and reaches optimum parameters without any delusion.

In this paper, our purpose is to find the optimum parameter α that minimizes the
model’s mean absolute percentage error (MAPE). Therefore we enumerate all the values in
an interval with step 0.01. For suitability, in the next section, α will be generated in (0, 1]. In
this way, all the α points in the whole interval and the MAPE’s at these points are calculated.
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Hence α, which give the minimum of the calculated MAPE’s, is determined as the optimum
parameters. The computational steps mentioned above are employed for all the α points.

From equation (2.5), as the α value approaches 1, the CFA series approaches the 1-AGO
series, and as the α value approaches 2, the CFA series approaches the 2-AGO series. Obviously,
it can be seen that for each point the CFA value x(α)(k) becomes larger with larger α, and
the growing speed also increases with larger α [16].

According to the Theorem 3.3, if α ∈ (0, 1] the following first-order fractional difference
must be calculated to evaluate the x̂(0)(k) values:

(3.28) x̂(0)(k) = k1−α(x̂(α)(k)− x̂(α)(k − 1)),

where k = 2, 3, ..., n. This shows that the error in x̂(0)(k) values is due to two points of the
CFA series. If α ∈ (1, 2], the following second-order fractional difference must be calculated
to evaluate the x̂(0)(k) values:

(3.29) x̂(0)(k) = k2−α∆2x̂(α)(k) = k2−α(x̂(α)(k)− 2x̂(α)(k − 1) + x̂(α)(k − 2)),

where k = 3, ..., n. If k = 2, x̂(α)(0), x̂(α)(1), and x̂(α)(2) values are needed to determine the
value of x̂(0)(2). However, according to equation (3.20), since there is no x̂(α)(0) value in
the CFA series, the second-order difference can only be calculated for k = 3, 4, ..., n. In this
case, although x̂(α)(1) is known as x(0)(1) according to the initial value, the value of x̂(α)(2)
can only be calculated with the help of a first-order fractional difference. This will increase
the total error rate. According to equation (3.29), the error of restored value is effected by
the errors of the CFA series with three points, which will be another factor that increases
the error rate. Moreover, 99% optimal α values in the CFGM model are in the range of
[0, 1). In the FGM model, 72% optimal α values are in the range of (0, 1) (for more detailed
information, see [16]). In the ECFGM model, 89% optimal α values are in the range of (0, 1)
and 10% optimal α are obtained at 1.

All these processes are completed in about five seconds by writing a simple FORTRAN
code.

4. VALIDATION OF THE ECFGM(1,1)

In this section, two instructive examples are given to demonstrate the efficacy of the
proposed model.

4.1. Example A

In this subsection, a numerical example is presented to show the computational steps of
the ECFGM(1, 1) model with the raw data X(0)(k) = (13.21, 18.82, 26.45, 36.04, 42.34, 51.00,

59.12). In this example, we select the raw data as a monotone increasing series.
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4.1.1. Selecting the optimal α

By using the Brute Force strategy, calculated MAPEs with α in the interval (0, 1] with
step 0.01 are given in Figure 1. It can be seen that the values of MAPE increase when
the α moves away from its optimum value. For this example, the optimal α is obtained at
α = 0.14, and the MAPE is calculated for the optimal α as MAPE = 0.9843. It is seen that
the optimal α is easily obtained by using the Brute Force strategy. Furthermore, it is clear
that the performance of the proposed ECFGM(1, 1) model is respectable.
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Figure 1: MAPEs of ECFGM model with α in (0, 1] for example A.

4.1.2. Computing the CFA of the original series and modelling the ECFGM(1,1)

Computation of the CFA of the original series is the first step to build the ECFGM(1, 1)
model. For the optimum α = 0.14, the conformable fractional accumulation series can be
obtained using (3.2) as X(0.14)(k) = (13.2100, 23.5789, 33.8615, 44.8014, 55.4095, 66.3329,

77.4234).

The matrices B and Y can be constructed as

B =



−18.3945 1 0.2325
−28.7202 1 0.0855
−39.3314 1 0.0315
−50.1054 1 0.0116
−60.8712 1 0.0043
−71.8781 1 0.0016

, Y =



10.3689
10.2826
10.9399
10.6081
10.9235
11.0905

.
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Then we obtain the parameters â, b̂ and ĉ using the least squares solution as

[a, b, c]> =
(
B>B

)−1
B>Y

and
a = −0.0136199261,
b = 10.0950218700,
c = −0.0670244100.

By substituting the parameters into the response function equation (3.20) we have

(4.1) x̂(α)(k) = 754.3807 e−0.0136(1−k) − 741.1951 + 0.06612 e−k.

Then the restored can be obtained using (4.1) by k from 1 to 7 as

X̂(0.14)(k) = (13.2100, 23.5396, 34.0206, 44.6491, 55.4247, 66.3485, 77.4223).

Then the restored values can be obtained using the CFD in (3.23) as

X̂(0)(k) = (13.2100, 18.7485, 26.9607, 35.0141, 43.0085, 51.0018, 59.0312).

The original raw series X(0)(k) and predicted values X̂(0)(k) are plotted in Figure 2.
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Figure 2: Actual values and forecasting values of example A.

4.2. Example B

Different from example A, the raw data are not a monotone increasing series here. The
computational mechanism is similar to example A. In this example, the raw data select as
X(0)(k) = (120.21, 131.83, 143.45, 150.02, 134.34, 121.04, 110.15).
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4.2.1. Selecting the optimal α

The calculated MAPEs with α in the interval (0, 1] with step 0.01 is given in Figure 3.
For this example, the minimum MAPE is calculated at optimal α as α = 0.89. The MAPE is
calculated for the optimal α as MAPE = 1.1836. It is seen that the prediction performance
of the proposed ECFGM(1, 1) model is successful again.
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Figure 3: MAPEs of ECFGM model with α in (0, 1] for example B.

4.2.2. Computing the CFA of the original series and modelling the ECFGM

Computation of the conformable fractional accumulation series of the original series is
the first step to build the ECFGM model. For α = 0.89, the CFA series can be obtained using
(3.2) as X(0.89)(k) = (120.2100, 242.3621, 369.4831, 498.2851, 610.8281, 710.2157, 799.1407).

The matrices B and Y can be constructed as

B =



−181.2861 1 0.2325
−305.9223 1 0.0855
−433.8841 1 0.0315
−554.5566 1 0.0116
−660.5219 1 0.0043
−754.6782 1 0.0016

, Y =



122.1521
127.1210
127.1210
112.5430
99.3876
88.9250

.

Then we obtain the parameters â, b̂ and ĉ using the least squares solution as

[a, b, c]> =
(
B>B

)−1
B>Y

and
a = 0.1266697621,
b = 184.88810740,
c = −174.9875634.
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By substituting the parameters into the response function equation (3.20) we have

(4.2) x̂(α)(k) = −1413.1086 e0.12667(1−k) + 1459.6073 + 200.3681 e−k.

Then the restored can be obtained using (4.2) by k from 1 to 7 as

X̂(0.89)(k) = (120.2100, 241.7407, 372.7221, 496.9157, 609.5692, 710.0100, 798.9388).

Then the restored values can be obtained using the CFD in (3.23) as

X̂(0)(k) = (120.2100, 131.1594, 147.8062, 144.6525, 134.4718, 122.3227, 110.1547).

The original raw series X(0)(k) and predicted values X̂(0)(k) are plotted in Figure 4.
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Figure 4: Actual values and forecasting values of example B.

5. VALIDATION OF ECFGM(1,1) WITH A REAL CASE

One of the renewable clean energy sources is wind. Generally, comparing with the many
other energy sources, producing energy using wind has fewer effects on the environment.
There is no released emission that can pollute the air or water and they do not require
water for cooling. Wind turbines may also have the benefit that reduce the amount of power
generation from fossil fuels, which outcomes in lower total air pollution and carbon dioxide
emissions that could help solve the shortage problem of energy. From prehistoric to today,
human beings have used wind energy for sailing, windmills, and wind turbines. Electric
generators convert wind energy to electrical energy [16].

One of the biggest countries with large land mass and coastline is China has rich wind
resources. With regard to the evaluations by China Meteorological Administration, based on
the relatively low height of 10 m above ground, the total theoretical wind power reserves in
China 4350 GW, while the technically exploitable wind resources estimated at 297 GW [9].
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In this section, we use the novel ECFGM(1, 1) model to predict wind energy consump-
tion in China. The data set from [34, 2, 6] is used to test for the efficacy and applicability of
the proposed grey model. Furthermore, the ECFGM model compared with the six effective
models, including the GM(1, 1), EXGM(1, 1), FAGM(1, 1), FAGMO(1, 1, k), PFAGM(1, 1)
and CFGM(1, 1). The response function of the grey models can be given as follows.

The response function of standard GM(1, 1) model is obtained as

(5.1) x(1)(k) = 56.12166e0.22483(k−1) − 49.87166.

The response function of EXGM(1, 1) is

(5.2) x(1)(k) = 67.78567e−0.20588(1−k) − 70.97226.

For FAGM(1, 1) model, the response function is

(5.3) x(0.36872)(k) = 37.55924e0.17072(k−1) − 31.35924.

The response function of FAGMO(1, 1, k) is

(5.4) x(1.13366)(k) = 283.1282e0.13851(k−1) − 30.4471k − 246.4811.

The response function of PFAGM(1, 1) is,

(5.5) x(0.17874)(k) = 19.69290e0.17874k − 14.47094e−0.08124(k−1) − 2.87604.

The response function of CFGM(1, 1) model is obtained as

(5.6) x(0.07)(k) = 81.63469e0.06355(k−1) − 75.38469.

Here, the optimal value of α is obtained as 0.07 by using the Brute Force strategy for the
CFGM(1, 1).

The response function of ECFGM(1, 1) model is obtained as

(5.7) x(0.3319)(k) = 66.64788e0.10331(k−1) + 3.98468e−k − 61.86377.

In addition, the mean absolute percentage error (MAPE) is used to assess the prediction
accuracy of these grey models. Firstly, we split the raw sequence into two groups to build a
model and test the model. The first group, including the consumption from 2009 to 2017, is
used to build models for the seven grey models separately. The second group, including wind
energy consumption from 2018 to 2020, is used to verify the prediction accuracy of these grey
models. In this section we enumerate all the values in the interval [0, 2] with step 0.0001,
then use the computational steps presented in Section 3.4 and select the α corresponding to
the minimum MAPEfit as the optimal value. Optimum α is found as α = 0.3319 by using
the Brute Force strategy and values of α and calculated MAPEs are shown in Figure 5.
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Figure 5: MAPEs of ECFGM model for the real data set. (a) α ∈ (0, 1]; (b) α ∈ (1, 2].

From Figure 5 it is clear that the values of MAPE increase when the α moves away from
its optimum value. The optimal parameters are calculated as α = 0.3319, a = −0.10331,
b = 6.39111 and c = −4.39633. The prediction results and the mean absolute percentage
errors of the recent models are shown in Table 1.

Table 1: The results generated by the proposed model and other comparative grey models for
forecasting values of China’s wind energy consumption (million tonnes oil equivalent).

Year
Actual

GM(1, 1) EXGM(1, 1) FAGM(1, 1) FAGMO(1, 1, k) PFAGM CFGM ECFGM
Value

2009 6.25 6.2500 6.2500 6.2500 6.2500 6.2500 6.2500 6.2500
2010 10.10 14.1489 9.5314 10.9059 10.7861 10.8294 10.2050 10.0534
2011 15.91 17.7160 16.8448 15.9000 15.9521 15.9001 15.8554 16.0464
2012 21.72 22.1824 22.5845 21.4733 21.7572 21.5803 22.0785 22.2010
2013 31.95 27.7749 28.4425 27.8495 28.3244 28.0628 28.9531 28.8472
2014 35.32 34.7772 35.2004 35.2395 35.7864 35.5571 36.5538 36.2435
2015 42.03 43.5450 43.3416 43.8718 44.2900 44.3005 44.9565 44.5937
2016 53.64 54.5231 53.2845 54.0032 53.9997 54.5677 54.2405 54.0796
2017 66.75 68.2690 65.4787 65.9310 65.1024 66.6817 64.4903 64.8821

MAPEfit 8.4111 3.6099 3.1595 3.1901 3.1104 3.0416 2.8418

2018 82.82 85.4804 80.4526 80.0030 77.8110 81.0239 75.7962 77.1931
2019 93.31 107.0310 98.8466 96.6289 92.3686 98.0478 88.2555 91.2232
2020 107.30 134.0148 121.4447 116.2921 109.0538 118.2925 101.9728 107.2063

MAPEpre 14.2714 7.3248 5.1128 2.8971 5.8303 6.2875 3.0392

MAPE 9.8762 4.5386 3.6478 3.1169 3.7904 3.8531 2.8912
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According to the Table 1, the essential conclusions can be drawn as follows:

i. Table 1 reveals that, the seven grey models’ MAPEfit values are 8.4111%, 3.6099%,
3.1595%, 3.1901%, 3.1104%, 3.0416% and 2.8418%, respectively. So that, in the
fitting period, the fitting performance of the ECFGM(1, 1) model is best.

ii. The MAPEpre values of seven models are calculated as 14.2714%, 7.3248%,
5.1128%, 2.8971%, 5.8303%, 6.2875% and 3.0392%, respectively. At this point,
the FAGMO(1,1, k) model has the smallest MAPEpre value while the ECFGM(1,1)
model has the second smallest MAPEpre.

iii. It is observed from Table 1 that for the whole period, the total MAPEs of seven
models are 9.8762%, 4.5386%, 3.6478%, 3.1169%, 3.7904%, 3.8531% and 2.8912%,
respectively. Thence, in the whole period, the performance of the ECFGM(1, 1)
model is the best (see Figure 6).
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Figure 6: Total MAPE values of the models.

iv. The wind energy consumption of China can be estimated properly with the pro-
posed ECFGM(1, 1) model. Hence, the forecasting values of wind energy con-
sumption of China are given in Table 2.

Table 2: Forecasted wind energy consumption of China.

Years
Forecasting values

of wind energy consumption

2021 125.4042
2022 146.1105
2023 169.6550
2024 196.4082
2025 226.7862
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It is seen from Figure 7 that the actual (red line) and forecasted (black line) values of
wind energy consumption of China are matched to each other.
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Figure 7: Actual, fitting and forecasting values of wind energy consumption of China.

6. CONCLUSION

Since the fractional calculations are most important to the grey prediction model, there
are many scholars proposing new methods on the fractional grey models. Hence, a novel op-
timization for the CFGM(1, 1) and EXGM(1, 1) models have been developed in this study.
The results of the numerical examples indicated that the proposed grey prediction model aims
to achieve very effective performance. The structural parameters (a, b and c) of the model
can be dynamically adjusted according to the real world systems. The optimal value of frac-
tional order, α, is calculated by using the brute-force approach. The proposed ECFGM(1, 1)
model is suitable for predicting the data sequence with the characteristics of non-homogeneous
exponential law. Comparison results indicate, ECFGM(1,1) performs better than those achieved
by the other grey models such as GM(1, 1), EXGM(1, 1), FAGM(1, 1), FAGMO(1, 1, k),
PFAGM(1, 1) and CFGM(1, 1). However, they can all be employed for estimations.

Wind energy with cleanliness and pollution-free will have a positive attitude on global
energy transformation. Because of this, research on more accurate prediction of wind energy
consumption is quite important for wind power generation. Therefore, the wind energy
consumption of China is predicted successfully by using a novel proposed fractional grey model
based on the conformable fractional difference and conformable fractional accumulation in
the paper. The forecasting results show that wind energy consumption of China will develop
rapidly in recent years, and will reach approximately 200 million tones oil equivalent by 2023.

Using two examples and a case study in Sections 4 and 5, we show that the MAPE of
the ECFGM(1, 1) model is very low.

The proposed ECFGM(1, 1) model may play an important role in enriching the theoret-
ical system of grey forecasting theory and it can be used for other real cases of small sample
forecasting in the future. Besides, the combination of other fractional forecasting models, es-
pecially for the time series with highly effective, is also an interesting direction for next studies.
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1. INTRODUCTION

System lifetime data are commonly encountered in industrial and engineering settings.
In system reliability studies, engineers are always interested in the lifetime distribution of
the system as well as the lifetime distribution of the components which make up the system.
We consider here the situation that the lifetimes of an n-component system can be observed
but not the lifetime of the components. This situation occurs when putting the individual
component on a life testing experiment after the n-component system is built is not possible,
or when the distribution of the component lifetimes changes while they are used in a specified
system. Suppose the lifetimes of the n components in an n-component system are independent
and identically distributed (i.i.d.) random variables, denoted as X1, X2, ..., Xn, with prob-
ability density function (p.d.f.) fX(t;θ), cumulative distribution function (c.d.f.) FX(t;θ)
and survival function (s.f.) F̄X(t;θ), where θ is the parameter vector. We further denote
the ordered component lifetimes within an n-component system as X1:n < X2:n < ··· < Xn:n

with Xi:n be the i-th ordered component lifetime. Although the i.i.d. assumption is restric-
tive, there are many practical situations in which the i.i.d. assumption is applicable. For
instance, Bhattacharya and Samaniego [3] discussed some of the practical examples that the
i.i.d. assumption is reasonable such as batteries in a lighting device, wafers in a digital com-
puter, and spark plugs in an automobile, and Jin et al. [13] discussed that the performance
of “Redundant Array of Independent Disks (RAID)” computer hardware with n independent
disks can be designed to perform like a k-out-of-n system.

When the component lifetime follows an absolutely continuous distribution, the failure
time of an n-component system corresponds to the failure time of one of the n components.
We consider the coherent system in which every component is relevant and the system has
a monotone structure function [7]. In a coherent system consists of n i.i.d. components, the
system structure can be described by the system signature defined as an n-element probability
vector s = (s1, s2, ..., sn), where the i-th element is the probability that the i-th ordered
component failure causes the failure of the system [24], i.e.,

si = Pr(T = Xi:n) , i = 1, 2, ..., n.

Note that the system signature is only depending on the system structure and hence, it is
distribution-free. To illustrate the idea of system signature, we consider the 4-component
series-parallel III system with system lifetime T = min{X1,max{X2, X3, X4}} (Figure 1a).
For the 4-component series-parallel III system, there are 4! = 24 possible arrangements of
the component lifetimes. The 24 arrangements and their corresponding system lifetimes are
presented in Table 1. From Table 1, we can obtain

s1 = Pr(T = X1:4) = 6/24 = 1/4,

s2 = Pr(T = X2:4) = 6/24 = 1/4,

s3 = Pr(T = X3:4) = 12/24 = 1/2,

and s4 = Pr(T = X4:4) = 0.

Hence, the system signature of the 4-component series-parallel III system is s = (1/4, 1/4, 1/2, 0).
Similarly, for the 4-component mixed parallel I system (Figure 1b), the system signature is
s = (0, 1/2, 1/4, 1/4).
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n1
n2
n4
n3

n1
n2 n3 n4

a. series-parallel III system b. mixed parallel I system

Figure 1: Two 4-component systems for illustration.

Table 1: The 24 possible arrangements of the component lifetime in
a 4-component series-parallel III system.

System System
Arrangement

lifetime T
Arrangement

lifetime T

X1 < X2 < X3 < X4 X1:4 X3 < X1 < X4 < X2 X2:4

X1 < X2 < X4 < X3 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X4 < X2 < X3 X1:4 X3 < X1 < X2 < X4 X2:4

X1 < X4 < X3 < X2 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X3 < X2 < X4 X1:4 X3 < X2 < X1 < X4 X3:4

X1 < X3 < X4 < X2 X1:4 X3 < X2 < X4 < X1 X3:4

X2 < X1 < X3 < X4 X2:4 X4 < X1 < X2 < X3 X2:4

X2 < X1 < X4 < X3 X2:4 X4 < X1 < X3 < X2 X2:4

X2 < X3 < X1 < X4 X3:4 X4 < X2 < X1 < X3 X3:4

X2 < X3 < X4 < X1 X3:4 X4 < X2 < X3 < X1 X3:4

X2 < X4 < X1 < X3 X3:4 X4 < X3 < X1 < X2 X3:4

X2 < X4 < X3 < X1 X3:4 X4 < X3 < X2 < X1 X3:4

Given the system signature s, the p.d.f. and s.f. of the system lifetime T of an
n-component system can be expressed as

fT (t;θ) =
n∑

i=1

si

(
n

i

)
ifX(t;θ)[FX(t;θ)]i−1[F̄X(t;θ)

]n−i(1.1)

and F̄T (t;θ) =
n∑

i=1

si

i−1∑
j=0

[FX(t;θ)]j
[
F̄X(t;θ)

]n−j
,(1.2)

respectively [15]. Based on system lifetimes with known system signatures, the statisti-
cal inference of the component lifetime distribution have been discussed in the literature.
Balakrishnan et al. [1] developed an exact nonparametric inference for population quantiles
and tolerance limits of component lifetime distribution in a system. Balakrishnan et al. [2]
derived the best linear unbiased estimator (BLUE) for the parameters in the component
lifetime distribution. Navarro et al. [21] discussed the method of moments, the maximum
likelihood method and the least squares methods for system lifetime data under a propor-
tional hazard rate model. Chahkandi et al. [8] proposed several nonparametric methods to
construct prediction intervals for the lifetime of coherent systems. Zhang et al. [28] pro-
posed a regression-based estimation method for the model parameters of component lifetime
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distribution based on censored system failure data. Yang et al. [26] proposed a stochastic
expectation-maximization (EM) algorithm to obtain an approximation of the maximum like-
lihood estimates (MLEs) of the parameters in component lifetime distribution. Recently,
Yang et al. [27] and Hermanns et al. [12] considered the EM algorithm to obtain the MLEs
of the parameters in component lifetime distribution based on system lifetime data when the
system structure is unknown. The theory and applications of system signatures are an active
research area. For a comprehensive review and bibliometric analysis on system signatures,
one can refer to a recent paper by Naqvi et al. [19].

In industrial experiments on systems, there are many situations in which systems are
removed from experimentation before the occurrence of the failure of the system. Two com-
mon reasons for pre-planned censoring are saving the time on tests and reducing the cost
associated with the experiment because failure implies the destruction of a system which
may be costly [9, 18]. In this paper, we consider Type-II right censoring scheme in which the
number of observed failures is pre-specified as r and the experiment is terminated as soon as
the r-th ordered system failure is observed. Several studies on the Type-II censored system
lifetime data in a system with system signature have been conducted [2, 12, 21, 28, 26, 27].

In the manufacturing industry, defectives could be induced in the manufacturing pro-
cess due to different reasons such as human error, insufficient quality control, and failure
in addressing reliability aspects during the design stage, etc.. As Raina [22] pointed out,
zero-defect is an impossible goal to achieve or cost-prohibitive in the manufacturing pro-
cess. Manufacturing defects often lead to potential outliers or contamination of the lifetime
data. When there is outliers exist in observed lifetime data, the performance of the maxi-
mum likelihood or other classical estimation methods may be affected and a poor estimate of
the component reliability characteristics may be yielded. Note that the maximum likelihood
estimation is sensitive to the outliers as each observation contributes equal information to
the estimate. Therefore, it is desired to develop parameter estimation procedures that are
less sensitive to contaminated observations. Basu et al. [4] developed a family of density-
based divergences measures with a single parameter α that controls the trade-off between
robustness and efficiency, and proposed a procedure for estimating model parameters based
on minimizing the density divergence. Basu et al. [5] further extended the minimum den-
sity divergence procedure to censored survival data with and without contamination, and
found that the minimum density divergence estimator (MDE) is superior to the MLE when
there is contamination in the censored survival data. Recently, Riani et al. [23] developed
an alternative minimum density power divergence estimation procedure using the methods
of S-estimation. Basak et al. [6] proposed a procedure to determinate the optimal density
power divergence tuning parameter.

In this paper, we study the robust minimum density divergence estimation method
for the system lifetime with and without contamination. In Section 2, we introduced the
minimum density power divergence and its application to system lifetime data with known
system signatures. We also discuss the estimation of the standard error of the estimate and
interval estimation, and we show that the bootstrap method for standard error estimation
can be adopted for the MDEs. In Section 3, a numerical example is used to illustrate the
proposed MDEs. A Monte Carlo simulation study is presented in Section 4 to study the
performance of the proposed methodologies. Finally, some concluding remarks and possible
extensions are provided in Section 5.
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2. MINIMUM DENSITY DIVERGENCE ESTIMATOR FOR SYSTEM LIFE-
TIME DATA

2.1. Minimum density divergence estimator

The density power divergence, proposed by Basu et al. [4], describes a family of density-
based divergence measures between two p.d.f.s g(t) and f(t) with a single parameter α.
Consider that f(t;θ) is a parametric p.d.f. of the fitted model with parameter vector θ and
g(t) is the target p.d.f., the density power divergence between f(t;θ) and g(t) is defined as

dα(g, f) =
∫ [

f1+α(t;θ) −
(

1 +
1
α

)
g(t)fα(t;θ) +

1
α

g1+α(t)
]
dt, α > 0

(2.1)

and

(2.2) d0(g, f) = lim
α→0

dα(g, f) =
∫

g(t) ln
[

g(t)
f(t;θ)

]
dt.

dα(g, f) = 0 when f(t;θ) = g(t). The MDE of the parameter vector θ can be obtained by
minimizing the density power divergence between f(t;θ) and g(t) with respect to (w.r.t.) θ.
Since the term

∫ [
(1/α)g1+α(t)

]
dt in (2.1) does not depend on the parameter vector θ,

the minimum divergence estimator of θ can be obtained by minimizing

(2.3)
∫ [

f1+α(t;θθθ) −
(

1 +
1
α

)
g(t)fα(t;θθθ)

]
dt

w.r.t. θ.

The density power divergence reduces to the Kullack–Leibler divergence [16] when
α = 0, and is the mean squared error when α = 1. Hence, the minimum density power
divergence procedure is degenerated into the maximum likelihood method when α = 0, and
becomes the minimization of the mean squared error when α = 1. The parameter α in (2.1)
controls the trade-off between robustness and efficiency of the minimum divergence estimator
[4, 5]. It has been shown that the typical value of α is in between 0 and 1 and the estimation
procedure becomes less efficient as α increases [4]. Hence, in this paper, we consider the value
of α in (0, 1).

Basu et al. [5] proposed a method for using the empirical c.d.f. Ĝn to estimate the
target distribution G to obtain∫ [

f1+α(t;θ) − (1 + 1/α)g(t)fα(t;θ)
]
dt =

∫
f1+α(t;θ)dt −

∫
(1 + 1/α)fα(t;θ)dG(t)

≈
∫

f1+α(t;θ)dt −
∫

(1 + 1/α)fα(t;θ)dĜ(t).

Suppose that in a life testing experiment with m independent n-component systems and a
Type-II censored system lifetime data T1:m < T2:m < ··· < Tr:m (r < m) is observed, the em-
pirical c.d.f. of the system lifetime, ĜT (t), can be obtained by using the Kaplan–Meier (K-M)
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estimator of the survival function ŜT (t) = 1− ĜT (t) [14] based on the Type-II censored system
lifetime data. Then, the MDE of θ can be obtained at the system level by minimizing

(2.4) d̂α(g, f) =
∫

f1+α
T (t;θ)dt −

∫ (
1 +

1
α

)
fα

T (t;θ)dĜT (t)

w.r.t. θ. As this minimization is carried out at the system lifetime level, this estimator is
named as the MDE at system lifetime level, denoted as MDES .

In addition to the MDE at system lifetime level, the MDE can be considered at the
component level. Based on the K-M estimator of the survival function of the system lifetime
ŜT (t), a nonparametric empirical distribution of the component lifetime distribution ĜX(t)
can be obtained based on the relationship between FT and FX in (1.2) as

ŜT (t) =
n∑

i=1

si

i−1∑
j=0

[
ĜX(t)

]j[
1 − ĜX(t)

]n−j
.

Then, the model parameter θ can be estimated by minimizing the density power divergence
at component lifetime distribution

(2.5) d̂α(g, f) =
∫

f1+α
X (t;θ)dt −

∫ (
1 +

1
α

)
fα

X(t;θ)dĜX(t).

Since the MDE is obtained based on component lifetime distribution, we refer to the estimator
obtained by minimizing (2.5) as the MDE at the component lifetime level, denoted as MDEC .

Instead of estimating the c.d.f. nonparametrically, we consider the nonparametric kernel
density estimator to estimate the p.d.f. of system lifetime gT (t) [25]. With the observed
Type-II censored system lifetime data, the p.d.f. of system lifetime can be estimated using
the Gaussian kernel density estimator, denoted as ĝT (t). Then, the density power divergence
function can be expressed as

(2.6) d̂α(g, f) =
∫

f1+α
T (t;θ)dt −

∫ (
1 +

1
α

)
fα

T (t;θ)ĝT (t)dt.

A MDE of θ can be obtained by minimizing the density power divergence in (2.6) with the
estimated kernel density ĝT (t) w.r.t. θ. We name the MDE obtained by minimizing (2.6) as
the MDE with estimated p.d.f., denoted as MDEP .

For comparative purposes, we also consider the MLE of θ based on Type-II censored
system lifetime data. The log-likelihood function based on the observed Type-II censored
system lifetime data t1:m < t2:m < ··· < tr:m is

(2.7) lnL(θ|t1:m, t2:m...tr:m) =
r∑

k=1

ln fT (tk:m;θ) + (m − r) ln F̄T (tr:m;θ),

where r ≤ m is the number of observed system failures and m is the total number of systems
on the test. The MLE of θ can be obtained by maximizing the log-likelihood function in (2.7)
w.r.t. θ.
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2.2. Standard error estimation and confidence intervals

2.2.1. Based on the theoretical results from Basu et al. [4]

For the MDE, Theorem 2.2 in [4] proved that under some regularity conditions, the
MDE of the parameter θ (denoted as θ̂) is a consistent estimator for θ, and n1/2(θ̂ − θ)
is asymptotically multivariate normally distributed with zero mean and variance-covariance
matrix J−1KJ−1, where

J =
∫

uθ(t)u>θ(t)f
1+α(t, θ)dt

+
∫ [

iθ(t) − αuθ(t)u>θ(t)
]
[g(t) − f(t;θ)]fα(t;θ)dt(2.8)

and

K =
∫

uθ(t)u>θ(t)f
2α(t;θ)g(t)dt

−
[∫

uθf
α(t;θ)g(t)dt

][∫
uθf

α(t;θ)g(t)dt

]>
,(2.9)

with uθ(t) = ∂ ln f(t;θ)/∂θ, and iθ(t) = −∂uθ(t)/∂θ. Basu et al. [5] further proved that
the asymptotic property of the MDE holds for censored survival data as well. Based on
these results, the variance of the MDE can be approximated by discretizing the integrals in
(2.8) and (2.9) with the nonparametric estimated c.d.f. Ĝ(t) or the nonparametric estimated
p.d.f. ĝ(t). Considering the estimator MDES , θS , the standard error of the MDES can be
approximated as

ŜEA(θS) =
√

Ĵ−1
S K̂S Ĵ−1

S /n,(2.10)

where

ĴS =
∫ [

(1 + α)uθ̂S
(t)u>

θ̂S
(t) − iθ̂S

(t)
]
f1+α

T (t, θ̂S)dt

+
∫ [

iθ̂S
(t) − αuθ̂S

(t)u>
θ̂S

(t)
]
fα

T (t; θ̂S)dĜT (t)

and

K̂S =
∫

uθ̂S
(t)u>

θ̂S
(t)f2α

T (t; θ̂S)dĜT

−
[∫

uθ̂S
(t)fα

T (t; θ̂S)dĜT

][∫
uθ̂S

fα
T (t; θ̂S)dĜT

]>
,

where

uθ̂S
(t) =

1
fT (t;θ)

∂fT (t;θ)
∂θ

∣∣∣∣
θ=

ˆθS

and iθ̂S
(t) = −∂uθ(t)

∂θ

∣∣∣∣
θ=

ˆθS

.

The variance-covariance matrices of the estimators MDEC and MDEP , θ̂C and θ̂P , can
be obtained in a similar manner.
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2.2.2. Based on Fisher information matrix of the MLE

In our preliminary study (results are not presented here), we found that the performance
of the standard error estimation based on the theoretical results in [5] may not be satisfactory.
Therefore, we consider different ways to approximate the standard error of the MDE proposed
in this paper. Based on our observations in the preliminary study, the standard error of the
MLE and the standard error of the MDE is in the same order of magnitude, especially when
the value of α is close to 0. Hence, we consider a standard error estimation method based
on the Fisher information matrix similar to using the inverse of observed Fisher information
matrix in estimating the standard error of MLE. For the MLE of θ, the asymptotic variance-
covariance matrix of the MLE can be approximated by the inverse of the observed Fisher
information matrix, i.e.,

ŜEF (θ̂) =
√

V̂ar(θ̂) =

√√√√diag
([

−∂2 lnL(θ)
∂θ∂θ′

∣∣∣∣
θ=

ˆθ

]−1
)

,

where diag(A) denotes the diagonal elements of matrix A. According to the asymptotic theory
of the MLE, the sampling distribution of n1/2(θ̂− θ) is asymptotically multivariate normally
distributed with mean zero and variance Var(θ̂). When α = 0, the MDE is equivalent to the
MLE. Here, we propose to approximate the variance of the MDEs by inverting the observed
Fisher information by substituting θ with its MDE.

2.2.3. Based on bootstrap method

As we expected, when the value of α is far from zero, the performance of the approxima-
tion based on the Fisher information matrix may not fulfilling the expectations, therefore, we
also consider approximating the standard error of the MDE based on the bootstrap method.
Given the estimated parameters, parametric bootstrap samples of system lifetimes are gen-
erated with the corresponding censoring proportion. For each bootstrap sample, the MDE
is obtained as a bootstrap MDE. Based on B bootstrap MDEs, we compute the standard
deviation of those bootstrap MDEs as an approximation of the standard error of the MDE.
For instance, consider the MDE based on system-level data, suppose we have B bootstrap
samples and the B bootstrap MDEs are θ̂

(1)

S , θ̂
(2)

S , ..., θ̂
(B)

S , the standard error of the estimator
θ̂S can be approximated as

ŜEB(θ̂S) =

√√√√ 1
B

B∑
b=1

(θ̂
(b)

S − ¯̂
θS)2,(2.11)

where ¯̂
θS =

∑B
b=1 θ̂

(b)

S /B. The size of bootstrap samples needed will be discussed in Section 3
based on a Monte Carlo simulation study.

After obtaining the standard error estimate based on the methods described in Sections
2.2.1, 2.2.2, and 2.2.3, a two-sided 100(1 − α)% normal approximated confidence interval of
the k-th element of the parameter vector θ can be obtained as

[θkl, θku] =
[
θ̂k − z1−α/2ŜE(θ̂k), θ̂k + z1−α/2ŜE(θ̂k)

]
,
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where zq is the q-th upper percentile of the standard normal distribution. The performance
of the standard error estimation methods and the corresponding confidence intervals will be
evaluated via a Monte Carlo simulation study in Section 3.

3. MONTE CARLO SIMULATION STUDIES

In this section, Monte Carlo simulation studies are used to evaluate the performance of
the proposed estimation methods for different system structures, different sample sizes with
different censoring rates, different underlying distributions, and different values of α for the
MDE and different contamination proportions. Based on our preliminary study, since similar
observations are obtained based on different sample sizes, different system structures, and
different underlying distributions, for the sake of simplicity, we only present the simulation
results for the 4-component series-parallel III system (namely System I) and the 4-component
mixed parallel I system (namely System II) in Figure 1 for sample size m = 50 (with different
censoring rate) and the component lifetime X follows the two-parameter Weibull distribution
with p.d.f.

fX(x; a, b) =
b

a

(x

a

)b−1
exp

[
−

(x

a

)b
]
, x > 0,(3.1)

where a is the scale parameter and b is the shape parameter (denoted as Weibull(a, b)). The
Weibull distribution is considered here as it is one of the commonly used probability models
in lifetime data analysis which can be used to model items with increasing, constant, and
decreasing failure rates [17, 18]. Moreover, many other commonly used probability distri-
butions such as the exponential distribution and the Rayleigh distribution are special cases
of the Weibull distribution. We consider the scale parameter a = 3 or a = 9 and the shape
parameter to be 2 (b = 2). For the case that the contaminates have a longer lifetime than the
true distribution on average (namely the longer-life contamination model), the Weibull(3, 2)
distribution with a mean lifetime of 2.6587 is the true distribution, and the Weibull(9, 2) dis-
tribution with mean lifetime 7.9760 is the contaminated distribution. Similarly, for the case
that the contaminates have a shorter lifetime than the true distribution on average (namely
the shorter-life contamination model), the Weibull(9, 2) distribution is the true distribution
and the Weibull(3, 2) distribution is the contaminated distribution. We also consider other pa-
rameter settings; however, for the sake of brevity, we only present the results for Weibull(9, 2)
and Weibull(3, 2) here. In the simulation study, the contamination proportion is set to be
0%, 5%, 10% and 15%, the Type-II censoring rate (1− r/m) is set to be 0% and 5% (i.e., no
censoring and r = 0.95m, respectively). The power parameter α in the MDE method is set
to be 0.01, 0.1, 0.25, 0.5, 0.75 and 0.9.

3.1. Results for point estimation

To evaluate the performance of the proposed estimation procedures for point estimation,
the three proposed MDEs — MDES , MDEC and MDEP — are compared with the MLE in
terms of their mean squared errors (MSEs) for estimating the mean component lifetime, i.e.,
aΓ(1 + 1/b), where Γ(·) is the gamma function. Specifically, in the `-th simulation, we first



198 X. Zhu, H.K.T. Ng and P.S. Chan

estimate the parameter θ = (a, b) based on different methods, denoted as θ̂(`) = (â(`), b̂(`)) for
Weibull(a, b) distribution, and then the estimated mean component lifetime is computed as
â(`)Γ(1 + 1/b̂(`)). The MSE of an estimator is computed as

1
L

L∑
`=1

[
â(`)Γ(1 + 1/b̂(`)) − aΓ(1 + 1/b)

]2
.

The simulation results in this subsection are computed based on 10000 realizations (L =
10000). For comparative purposes, we define the relative efficiency of the MDE to MLE as

REMDE =
MSE(MLE)
MSE(MDE)

.

The value of relative efficiency greater than 1 indicates that the performance of the MDE is
better than the MLE. The relative efficiency for different censoring rates, different contami-
nation proportions, and different values of α for the combinations of System I and System II,
and the longer-life contamination model and shorter-life contamination model, are plotted
in Figures 2–5. From Figures 2–5, we observe that the performance of the MDEC is the
worst among the three proposed MDEs as the relative efficiency is below 1 in many cases.
Therefore, we focus the discussion of the results below on the MDES and MDEP .

In Figures 2 and 4, the relative efficiency of MDES , MDEC and MDEP for System I and
System II with longer-life contamination model are presented, respectively. We can observe
that MDES and MDEP have similar performance for System I and System II. When there
is no contamination (dashed lines with triangles in Figures 2 and 4), the relative efficiency is
less than 1 for MDES and MDEP , which indicates that the MLE performs better than MDES

and MDEP in terms of MSEs. When the contamination rate increases, the relative efficiency
increases and becomes larger than 1 for MDES and MDEP . Moreover, we observe that the
performances of MDES and MDEP improve when α gets closer to 1. These observations
are consistent in both no censoring case (Figures 2 and 4(a)–(c)) and the 5% censoring
case (Figures 2 and 4(d)–(f)). However, in the longer-life contamination model, the relative
efficiency in the censoring case is smaller than those in the complete sample case. This
indicates that Type-II censoring reduces the influence of the contamination in estimating the
parameters. It is likely that the contaminated observations with a longer life are censored in
the Type-II censoring scheme. For example, the relative efficiency of the MDES with α = 0.9
is close to 15 when the contamination rate is 15% with no censoring, while the relative
efficiency of the MDES with α = 0.9 reduces to 10 when the contamination rate of 15% with
5% censoring.

In Figures 3 and 5, the relative efficiency of MDES , MDEC and MDEP for System I and
System II with shorter-life contamination model are presented. We can observe that MDES

and MDEP have similar performance for System I and System II. In contrast to the longer-
life contamination model, MDES and MDEP have different performances in the shorter-life
contamination model. In the complete sample case, the MDES and MDEP have relative
efficiency greater than 1 when the contamination rate is over 10% in most cases (Figures 3
and 5 (a) and (c)). In the Type-II censoring with 5% censoring case, the MDES has relative
efficiency greater than 1 when the contamination rate is 15% and the value of α is close to
1 (Figures 3 and 5 (d)), while the MDEP has relative efficiency less than 1 in most cases
(Figures 3 and 5 (f)).
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Figure 2: Relative efficiency of estimated mean component lifetime for
System I with longer-life contamination model.
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Figure 3: Relative efficiency of estimated mean component lifetime for
System I with shorter-life contamination model.

In summary, the proposed estimator MDES has a better performance compared to
MDEC and MDEP and it shows an advantage over the MLE when there is contamination
present in the data. Moreover, the performance of MDES is not much worse than the MLE
even when there is no contamination or with a low contamination rate (i.e., relative efficiency
less than but close to 1). In the contamination cases, the value of α closer to 1 for the MDES

has better performance. Therefore, we recommend the use of MDES , especially when it is
suspected that there is contamination exists in the data. Based on these simulation results
and for the simplicity sake, we consider the MDES but not the MDEC and MDEP in the
subsequent study of the performance of standard error estimation and interval estimation.
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Figure 4: Relative efficiency of estimated mean component lifetime for
System II with longer-life contamination model.
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Figure 5: Relative efficiency of estimated mean component lifetime for
system II with shorter-life contamination model.

3.2. Results for standard error estimation and interval estimation

3.2.1. Determining a suitable bootstrap size for standard error estimation

To determine the required bootstrap size B for the standard error estimation for MDE
described in Section 2.2.3, following Efron and Tibshirani [10], we consider evaluating the
coefficient of variation of the standard error estimates to obtain a reasonable value of the
number of bootstrap replicates. We consider the coefficient of variation of the standard
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error estimates, which is computed as the ratio of the variance of the bootstrap estimate of
standard error ŜEB to the expectation of ŜEB with different bootstrap size B. The variability
of bootstrap estimates can be evaluated by using the coefficient of variation and a suitable
value of B is a value such that the variability does not change significantly after increasing
the value of B.

A Monte Carlo simulation is carried out to evaluate the coefficient of variation for
different bootstrap sizes B in order to determine the proper number of bootstrap replica-
tions. We simulate 200 samples of m = 50 system lifetimes based on System I (4-component
series-parallel III system) with true underlying component lifetime distribution Weibull(3, 2),
no contamination, and no censoring. For each simulation, given a bootstrap replication
number B, the bootstrap standard error estimate of MDES is calculated, denoted as ŜEB.

Then, with the 200 bootstrap standard error estimates ŜE
(1)

B , ŜE
(2)

B , ..., ŜE
(200)

B , the simulated
coefficient of variation is computed as:

ĈV (ŜEB) =
V̂ar(ŜEB)

Ê(ŜEB)
,

where

Ê(ŜEB) =
1
B

200∑
i=1

ŜE
(i)

B ,

and V̂ar(ŜEB) =
1
B

200∑
i=1

(ŜE
(i)

B − Ê(ŜEB))2.

Figure 6 presented the simulated coefficient of variation of the standard error of MDES . From
Figure 6, we observe that when the bootstrap size B gets above 250, a further increase in the
bootstrap size does not bring a substantial reduction in the variation. Hence, we consider the
number of bootstrap replications B = 250 in the Monte Carlo simulation study for evaluating
the performance of confidence intervals.
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Figure 6: Coefficients of variation of ŜEB for (a) shape parameter and (b) scale parameter
as functions of the number of bootstrap samples B.
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3.2.2. Performance of standard error estimates

To evaluate the performance of the three standard error estimation methods for MDE
presented in Section 2.2, we compare the simulated standard errors of the MDE based on the
system-level data, MDES , and the averaged values of the standard error estimates based on
the theoretical results from Basu et al. [4] (i.e., ŜEA), based on observed Fisher information
matrix (i.e., ŜEF ), and based on bootstrap method (i.e., ŜEB) with bootstrap size B = 250.
We simulate 1000 samples of m = 50 system lifetimes based on System 1 (4-component series-
parallel III system) with true underlying component lifetime distribution Weibull(3, 2), no
contamination, and no censoring. The simulation results are presented in Table 2.

Table 2: Simulated standard errors the MDES and the averaged standard error estimates
based on the theoretical results from [4] (ŜEA), based on observed Fisher information
matrix (ŜEF ), and based on bootstrap method (ŜEB) with bootstrap size B = 250.

α = 0.01 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Simulated cSE(â) 0.179 0.180 0.184 0.196 0.210 0.219

Average cSEA(â) 0.013 0.011 0.008 0.006 0.005 0.005

Average cSEF (â) 0.214 0.206 0.190 0.172 0.165 0.164

Average cSEB(â) 0.205 0.210 0.197 0.183 0.187 0.189

Simulated cSE(b̂) 0.247 0.248 0.257 0.290 0.326 0.336

Average cSEA(b̂) 0.009 0.007 0.005 0.003 0.003 0.002

Average cSEF (b̂) 0.203 0.207 0.215 0.232 0.244 0.248

Average cSEB(b̂) 0.238 0.230 0.255 0.322 0.375 0.389

From Table 2, we observe that the standard error estimates based on the theoretical
results from Basu et al. [4] can seriously underestimate the standard error of MDES , while the
standard error estimates based on observed Fisher information matrix provide a reasonable
approximation to the standard errors of MDES when α is close to 0. Overall, among the
three standard error estimation methods for MDE, the bootstrap method with bootstrap
size B = 250 provides a reasonable approximation to standard error of the MDES for all
the values of α considered here. Therefore, in the following simulation study for confidence
intervals, we use the standard error estimates based on the bootstrap method.

3.2.3. Performance of confidence intervals

In this subsection, the simulated coverage probabilities and the average widths of 95%
confidence intervals of the Weibull parameters a and b for the MLE and the MDE based
on system-level data (MDES) with different values of α are compared. The two systems
(System I and System II) and the longer-life and shorter-life contamination models described
in Section 3 are considered here. Specifically, a two-sided 100(1− α)% normal approximated
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confidence interval of a is constructed as

[al, au] =
[
â − z1−α/2ŜE(â), â + z1−α/2ŜE(â)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap method. Sim-
ilarly, a two-sided 100(1 − α)% normal approximated confidence interval of b is constructed
as

[bl, bu] =
[
b̂ − z1−α/2ŜE(b̂), b̂ + z1−α/2ŜE(b̂)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap method. The
simulated coverage probability (CP) is computed as the proportion of cases that the true
value of the parameter falls within the confidence interval, and the average width (AW)
is computed as 2z1−α/2ŜE(â) and 2z1−α/2ŜE(b̂) for parameters a and b, respectively. The
simulation results are presented in Tables 3–4.

Table 3: Simulated coverage probabilities (in %) and average widths of confidence intervals of
the scale parameter computed based on MLE and MDES with different values of α
under the longer-life and shorter-life contamination models for System I.

Coverage Longer-life Contamination Model Shorter-life Contamination Model

Probability No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 93.9 88.1 44.9 18.0 93.3 92.0 58.0 24.5 93.7 92.4 86.3 80.7 93.6 92.3 87.8 82.0
MDES (α = 0.01) 93.9 92.3 59.1 31.7 87.9 93.1 79.5 50.6 93.6 92.2 86.0 80.0 88.6 84.7 75.3 67.5
MDES (α = 0.10) 93.9 94.7 73.5 45.9 89.7 93.2 81.3 55.5 93.7 92.5 87.1 81.6 89.8 87.0 79.6 72.1
MDES (α = 0.25) 93.9 95.2 93.1 82.6 91.3 93.2 86.1 70.2 93.3 91.8 83.3 73.2 90.9 89.2 82.8 73.6
MDES (α = 0.50) 93.3 94.6 95.9 95.8 92.7 93.3 92.6 91.5 92.6 91.4 82.8 71.3 92.0 91.2 85.2 75.7
MDES (α = 0.75) 92.9 94.0 95.4 95.9 93.1 93.6 94.8 95.5 92.1 90.5 81.4 68.8 92.2 91.4 85.2 74.8
MDES (α = 0.90) 92.3 93.8 95.3 95.7 93.2 93.6 95.0 95.9 91.6 90.1 80.2 67.6 92.2 91.3 84.6 73.8

Average Longer-life Contamination Model Shorter-life Contamination Model

Width No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 0.69 0.99 1.32 1.50 0.70 0.77 1.06 1.33 2.06 2.14 2.24 2.30 2.09 2.18 2.30 2.37
MDES (α = 0.01) 0.69 1.08 1.45 1.64 0.63 0.73 1.19 1.45 2.06 2.14 2.22 2.26 1.89 1.97 2.06 2.10
MDES (α = 0.10) 0.69 0.93 1.33 1.54 0.64 0.74 1.14 1.41 2.08 2.17 2.27 2.32 1.92 2.02 2.12 2.18
MDES (α = 0.25) 0.71 0.82 1.11 1.35 0.66 0.76 1.06 1.31 2.12 2.23 2.34 2.38 1.99 2.10 2.22 2.27
MDES (α = 0.50) 0.75 0.82 0.98 1.15 0.71 0.80 1.04 1.23 2.24 2.38 2.52 2.57 2.12 2.25 2.40 2.46
MDES (α = 0.75) 0.80 0.86 0.98 1.11 0.76 0.87 1.08 1.22 2.39 2.53 2.68 2.75 2.27 2.42 2.58 2.65
MDES (α = 0.90) 0.83 0.89 1.00 1.11 0.80 0.91 1.10 1.21 2.47 2.61 2.78 2.85 2.38 2.52 2.70 2.77

From Tables 3–4, we observe that when there is no contamination, the confidence in-
tervals based on MLEs give coverage probabilities close to the nominal 95% for both scale
and shape parameters. Compared with MDES , the confidence intervals based on MLEs give
the highest coverage probabilities and the smallest average widths when there is no contam-
ination (i.e., contamination rate is 0). However, when the contamination rate increases, the
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coverage probabilities of the confidence intervals based on MLEs decrease for both scale and
shape parameters and the average widths increase for the scale parameter but decrease for
the shape parameter. These observations are consistent in both the longer-life and shorter-life
contamination models with and without censoring for System I and System II. We also ob-
serve that the coverage probabilities of the confidence intervals based on MLEs are sensitive
to the contamination rate and the type of contamination. In the longer-life contamination
model, the coverage probabilities for both scale and shape parameters drop dramatically when
the contamination rate increases. For example, in Table 3, when the contamination rate is
15% with no censoring, the simulated coverage probabilities of the confidence intervals based
on MLE are only 18% for the scale parameter and 2% for the shape parameter under the
longer-life contamination model, while the simulated coverage probabilities of the confidence
intervals based on MLE are 80.7% for the scale parameter and 68.7% for the shape parameter
under the shorter-life contamination model.

Table 4: Simulated coverage probabilities and average widths of confidence intervals of the
shape parameter computed based on MLE and MDES with different values of α
under the longer-life and shorter-life contamination models for System I.

Coverage Longer-life Contamination Model Shorter-life Contamination Model

Probability No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 95.2 36.8 6.5 2.0 95.0 93.0 49.8 20.4 95.2 93.7 82.0 68.7 95.3 93.3 81.6 68.7
MDES (α = 0.01) 92.4 42.3 4.4 1.0 88.7 91.7 73.0 33.8 92.4 92.1 74.8 52.6 88.9 91.9 91.4 82.0
MDES (α = 0.10) 92.4 70.0 10.3 2.3 89.3 92.2 72.6 33.2 92.5 91.4 72.2 47.7 89.7 92.3 89.4 77.2
MDES (α = 0.25) 92.5 91.8 70.3 37.5 89.9 92.6 77.7 40.4 92.2 90.0 65.4 37.6 90.3 91.8 83.7 64.2
MDES (α = 0.50) 92.5 93.0 91.6 87.5 91.1 92.8 88.8 80.0 91.9 89.8 62.2 31.9 91.2 90.8 75.8 49.7
MDES (α = 0.75) 92.3 93.0 92.8 91.1 92.1 93.4 91.6 89.7 91.4 88.2 60.3 28.9 91.6 89.5 70.0 41.6
MDES (α = 0.90) 92.3 93.0 92.6 91.6 92.4 93.3 92.3 90.8 91.2 87.3 59.9 28.7 91.4 88.7 67.6 39.0

Average Longer-life Contamination Model Shorter-life Contamination Model

Width No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 0.95 0.68 0.56 0.53 1.02 0.96 0.77 0.66 0.95 0.90 0.84 0.80 1.02 0.96 0.89 0.85
MDES (α = 0.01) 1.01 0.78 0.57 0.54 1.25 1.12 0.98 0.79 1.01 0.86 0.71 0.64 1.25 1.04 0.85 0.76
MDES (α = 0.10) 1.01 0.84 0.60 0.55 1.24 1.11 0.94 0.77 1.01 0.86 0.70 0.62 1.24 1.04 0.84 0.74
MDES (α = 0.25) 1.05 1.03 0.89 0.74 1.25 1.10 0.91 0.76 1.05 0.89 0.71 0.62 1.25 1.06 0.83 0.73
MDES (α = 0.50) 1.20 1.18 1.14 1.09 1.33 1.17 1.02 1.00 1.20 1.01 0.75 0.63 1.31 1.12 0.84 0.70
MDES (α = 0.75) 1.41 1.37 1.31 1.24 1.49 1.34 1.21 1.19 1.39 1.17 0.82 0.65 1.45 1.23 0.90 0.71
MDES (α = 0.90) 1.51 1.47 1.39 1.32 1.57 1.46 1.31 1.28 1.54 1.28 0.88 0.68 1.55 1.34 0.94 0.73

Similar to the MLEs, the coverage probabilities of the confidence intervals based on
MDES are also sensitive to the contamination rate and the type of the contamination. For the
longer-life contamination model, the coverage probabilities of confidence intervals of the scale
parameter based on MDES with α close to 1 are closer to the nominal levels when the contam-
ination rate is high. However, for the shorter-life contamination model, the coverage proba-
bilities of the confidence intervals of the scale parameter based on MDES with α close to 1
are far away from the nominal level when the contamination rate is high (see Table 3).
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The confidence intervals based on MDES have better coverage probabilities than the confi-
dence intervals based on MLE in the longer-life contamination model when the contamination
rate is high. For example, when the contamination rate is 15% under the longer-life contam-
ination model, the coverage probabilities of the confidence intervals based on MDES with α

close to 1 can still maintain at 95.7% for the scale parameter (Table 3) and 91.6% for shape
parameter (Table 4), while the coverage probabilities of the confidence intervals of based on
MLE are down to 18% for scale parameter and 2% for shape parameter.

In general, for the longer-life contamination model, compared to the confidence intervals
based on MLE, the confidence intervals based on MDES have higher coverage probabilities
and larger average widths (Tables 3 and 4). Nevertheless, for the shorter-life contamination
model, compared to the confidence intervals based on MLE, the confidence intervals based
on MDES have lower coverage probabilities.

4. ILLUSTRATIVE EXAMPLE

In this section, a numerical example based on the system lifetime data of the 4-compo-
nent series-parallel III system with Weibull component lifetimes is used to illustrate the
estimation methods proposed in this paper. The system lifetime data was originally pre-
sented in [2] and further analyzed by [26]. The data are 10 system lifetimes from the
4-component system with system signature s = (1/4, 1/4, 1/2, 0) with component lifetime
follows Weibull(3, 2):

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 1.76789, 2.6786, 3.02676, 3.25943, 3.78497.

To illustrate the effect of contamination in the statistical inference procedures, we simulated
an observation from the Weibull(9, 2) to replace one of the observations in the original data
set. Specifically, the observation 1.76789 is replaced by 5.48619. The contaminated data set
is as follows.

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 5.48619, 2.6786, 3.02676, 3.25943, 3.78497.

Based on the original and the contaminated data sets, the MLE and the three proposed
MDEs of the Weibull parameters a and b and the corresponding confidence intervals are
presented in Tables 5 and 6.

For point estimation, form Tables 5 and 6, the MLE, MDES , MDEC and MDEP with
different values of α provide similar point estimates of the parameters a and b. By comparing
the estimates obtained from the data sets with and without contamination, the difference
between MDEs (especially α close to 1) obtained from the data sets with and without con-
tamination is smaller than the difference between MLEs obtained from the data sets with
and without contamination in general. For example, the MLE of a is 2.695 for the data set
without contamination and the MLE of a is 3.249 for the data set with contamination which
has a difference 0.554, while the MDES with α = 0.9 is 2.691 for the data set without con-
tamination and the MDES with α = 0.9 is 3.105 for the data set with contamination, which
has a difference 0.414.
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Table 5: Point and interval estimates for Weibull parameters
for the original data set presented in Section 4.

95% CI based on 95% CI based on 95% CI based on
Estimator â

cSEA(â) cSEF (â) cSEB(â)

MLE 2.695 (1.978, 3.412) (1.980, 3.410)

MDES

α = 0.01 2.696 (2.490, 2.902) (1.976, 3.416) (2.014, 3.378)
α = 0.10 2.700 (2.504, 2.896) (1.961, 3.439) (1.967, 3.433)
α = 0.25 2.706 (2.531, 2.881) (1.937, 3.475) (1.922, 3.490)
α = 0.50 2.710 (2.495, 2.925) (1.900, 3.520) (1.780, 3.640)
α = 0.75 2.703 (2.507, 2.899) (1.867, 3.539) (1.731, 3.675)
α = 0.90 2.691 (2.495, 2.887) (1.850, 3.532) (1.667, 3.715)

MDEC

α = 0.01 2.617 (2.421, 2.813) (2.003, 3.231) (2.019, 3.215)
α = 0.10 2.628 (2.442, 2.814) (2.002, 3.254) (2.027, 3.229)
α = 0.25 2.647 (2.483, 2.811) (1.997, 3.297) (2.024, 3.270)
α = 0.50 2.677 (2.538, 2.816) (1.987, 3.367) (1.976, 3.378)
α = 0.75 2.700 (2.576, 2.824) (1.972, 3.428) (1.909, 3.491)
α = 0.90 2.709 (2.585, 2.833) (1.960, 3.458) (1.896, 3.522)

MDEP

α = 0.01 2.769 (2.453, 3.085) (1.892, 3.646) (1.937, 3.601)
α = 0.10 2.782 (2.505, 3.059) (1.884, 3.680) (1.877, 3.687)
α = 0.25 2.802 (2.579, 3.025) (1.872, 3.732) (1.866, 3.738)
α = 0.50 2.829 (2.665, 2.993) (1.851, 3.807) (1.853, 3.805)
α = 0.75 2.848 (2.633, 3.063) (1.835, 3.861) (1.815, 3.881)
α = 0.90 2.855 (2.649, 3.061) (1.827, 3.883) (1.780, 3.930)

95% CI based on 95% CI based on 95% CI based on
Estimator b̂

cSEA(b̂) cSEF (b̂) cSEB(b̂)

MLE 2.004 (0.945, 3.063) (0.566, 3.442)

MDES

α = 0.01 1.999 (1.847, 2.151) (0.942, 3.056) (0.668, 3.330)
α = 0.10 1.946 (1.794, 2.098) (0.916, 2.976) (0.430, 3.462)
α = 0.25 1.872 (1.733, 2.011) (0.878, 2.866) (0.275, 3.469)
α = 0.50 1.782 (1.630, 1.934) (0.832, 2.732) (0.000, 3.705)
α = 0.75 1.718 (1.594, 1.842) (0.799, 2.637) (0.000, 5.163)
α = 0.90 1.690 (1.566, 1.814) (0.788, 2.592) (0.000, 4.666)

MDEC

α = 0.01 2.340 (2.188, 2.492) (1.079, 3.601) (0.310, 4.370)
α = 0.10 2.276 (2.124, 2.428) (1.058, 3.494) (0.349, 4.203)
α = 0.25 2.184 (2.045, 2.323) (1.024, 3.344) (0.257, 4.111)
α = 0.50 2.065 (1.941, 2.189) (0.974, 3.156) (0.000, 4.671)
α = 0.75 1.978 (1.854, 2.102) (0.932, 3.024) (0.000, 9.267)
α = 0.90 1.937 (1.813, 2.061) (0.911, 2.963) (0.000, 6.431)

MDEP

α = 0.01 1.732 (1.462, 2.002) (0.800, 2.664) (0.715, 2.749)
α = 0.10 1.713 (1.473, 1.953) (0.787, 2.639) (0.775, 2.651)
α = 0.25 1.688 (1.536, 1.840) (0.773, 2.603) (0.373, 3.003)
α = 0.50 1.653 (1.501, 1.805) (0.748, 2.558) (0.403, 2.903)
α = 0.75 1.627 (1.503, 1.751) (0.731, 2.523) (0.279, 2.975)
α = 0.90 1.615 (1.491, 1.739) (0.723, 2.507) (0.028, 3.202)

For interval estimation, in both with and without contamination cases (Tables 5 and 6),
the confidence intervals for the scale parameter based on the observed Fisher information ma-
trix are very close to the one obtained from the bootstrap method. However, the confidence
intervals for the shape parameter based on the bootstrap method is wider than those based
on the observed Fisher information matrix. The confidence intervals using MDEs with stan-
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dard error estimates based on the theoretical results are much narrower than the confidence
intervals with standard error estimates based on the observed Fisher information matrix and
based on the bootstrap method. This observation agrees with the results in the Monte Carlo
simulation that the standard error estimates based on the theoretical results are likely to
underestimate the standard errors of the MDEs.

Table 6: Point and interval estimates for Weibull parameters
for the contaminated data set presented in Section 4.

95% CI based on 95% CI based on 95% CI based on
Estimator â

cSEA(â) cSEF (â) cSEB(â)

MLE 3.249 (2.172, 4.326) (2.192, 4.306)

MDES

α = 0.01 3.248 (2.851, 3.645) (2.169, 4.327) (2.194, 4.302)
α = 0.10 3.235 (2.853, 3.617) (2.154, 4.316) (2.183, 4.287)
α = 0.25 3.210 (2.859, 3.561) (2.131, 4.289) (2.129, 4.291)
α = 0.50 3.165 (2.861, 3.469) (2.100, 4.230) (2.010, 4.320)
α = 0.75 3.124 (2.884, 3.364) (2.072, 4.176) (1.935, 4.313)
α = 0.90 3.105 (2.941, 3.269) (2.057, 4.153) (1.855, 4.355)

MDEC

α = 0.01 3.203 (2.887, 3.519) (2.261, 4.145) (2.329, 4.077)
α = 0.10 3.207 (2.910, 3.504) (2.247, 4.167) (2.292, 4.122)
α = 0.25 3.213 (2.965, 3.461) (2.225, 4.201) (2.269, 4.157)
α = 0.50 3.216 (3.030, 3.402) (2.194, 4.238) (2.168, 4.264)
α = 0.75 3.206 (2.983, 3.429) (2.165, 4.247) (2.090, 4.322)
α = 0.90 3.192 (2.969, 3.415) (2.148, 4.236) (2.036, 4.348)

MDEP

α = 0.01 3.368 (2.952, 3.784) (2.096, 4.640) (2.168, 4.568)
α = 0.10 3.379 (2.973, 3.785) (2.089, 4.669) (2.076, 4.682)
α = 0.25 3.392 (3.005, 3.779) (2.080, 4.704) (2.071, 4.713)
α = 0.50 3.406 (3.050, 3.762) (2.069, 4.743) (2.008, 4.804)
α = 0.75 3.414 (3.080, 3.748) (2.065, 4.763) (1.912, 4.916)
α = 0.90 3.416 (3.100, 3.732) (2.062, 4.770) (1.685, 5.147)

95% CI based on 95% CI based on 95% CI based on
Estimator b̂

cSEA(b̂) cSEF (b̂) cSEB(b̂)

MLE 1.607 (0.782, 2.432) (0.485, 2.729)

MDES

α = 0.01 1.604 (1.300, 1.908) (0.779, 2.429) (0.404, 2.804)
α = 0.10 1.588 (1.284, 1.892) (0.770, 2.406) (0.476, 2.700)
α = 0.25 1.569 (1.272, 1.866) (0.761, 2.377) (0.319, 2.819)
α = 0.50 1.550 (1.287, 1.813) (0.751, 2.349) (0.000, 3.695)
α = 0.75 1.535 (1.411, 1.659) (0.741, 2.329) (0.000, 4.102)
α = 0.90 1.525 (1.386, 1.664) (0.736, 2.314) (0.000, 3.997)

MDEC

α = 0.01 1.825 (1.593, 2.057) (0.899, 2.751) (0.206, 3.444)
α = 0.10 1.786 (1.571, 2.001) (0.879, 2.693) (0.382, 3.190)
α = 0.25 1.732 (1.580, 1.884) (0.851, 2.613) (0.162, 3.302)
α = 0.50 1.668 (1.504, 1.832) (0.816, 2.520) (0.000, 8.867)
α = 0.75 1.625 (1.501, 1.749) (0.791, 2.459) (0.000, 4.849)
α = 0.90 1.606 (1.482, 1.730) (0.781, 2.431) (0.000, 5.860)

MDEP

α = 0.01 1.464 (1.167, 1.761) (0.697, 2.231) (0.733, 2.195)
α = 0.10 1.455 (1.158, 1.752) (0.691, 2.219) (0.626, 2.284)
α = 0.25 1.444 (1.147, 1.741) (0.685, 2.203) (0.533, 2.355)
α = 0.50 1.433 (1.149, 1.717) (0.676, 2.190) (0.432, 2.434)
α = 0.75 1.428 (1.158, 1.698) (0.674, 2.182) (0.292, 2.564)
α = 0.90 1.426 (1.170, 1.682) (0.672, 2.180) (0.021, 2.831)
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5. CONCLUDING REMARKS

In this paper, we study the robust estimation method for the model parameters in the
component lifetime distribution based on system lifetime data with known system structure.
The minimum density power divergence estimation method is considered and three different
MDEs are proposed. Standard error estimation and interval estimation procedures based on
the MDEs are also studied. The three proposed estimation procedures are compared to the
maximum likelihood estimation method via a Monte Carlo simulation study. It is shown that
the minimum density power divergence estimation method based on system-level data can
provide better performance in both point and interval estimation when there is longer-life
contamination in the data. We have also shown that the standard error estimates based on
the bootstrap method can be adopted for estimating the standard errors of the MDEs.

From our simulation study, for point estimation, the MLE outperforms the MDEs when
there is no contamination in the data. However, we observe that the system-level MDE,
MDES , is a robust estimation procedure than the MLE when there is contamination in the
data. For interval estimation, we observe that the contaminated data considerably affect the
coverage probabilities of the confidence intervals based on MLE and MDES . The confidence
intervals based on MDES perform better than those based on MLE for contaminated data,
especially when the contamination rate is high (say, 10% or 15%) in the longer-life contam-
ination model. For contamination data with longer lifetimes, MDES with large value of α

(α = 0.75 or 0.9) is recommended. For contamination data with shorter lifetimes, MDES

with small value of α (α = 0.01 or 0.1) is recommended. Since the choice of the value α for
the MDES affects the results for the interval estimation, it is interesting to study the choice
of the value of α in the system-level minimum divergence estimator MDES . In practice, the
sample size m, the system signature s, and the censoring proportion are known, but the
underlying component lifetime distribution and the contamination rate are usually unknown.
The performance of the estimators with different values of α can be studied under different
underlying component lifetime distributions and contamination rates via simulation, and then
a reasonable range of the value of α can be obtained.

For future research, a systematic way to choose the value of α for the MDE can be stud-
ied. On the other hand, since the simulated coverage probabilities of the confidence intervals
based on the estimators studied in this paper can be much lower than the nominal level when
there is contamination in the data, it is desired to develop better standard error estimation
methods and confidence interval estimation methods which can provide better coverage prob-
abilities when the contamination rates. The current work can be extended to the situation
when the lifetime of the unit may be affected by one or more factors/explanatory variables
(such as temperature, voltage, load, etc.). For example, consider a Weibull regression model
in which K covariates z = (z1, z2, ..., zK) affect the scale parameter a in (3.1), then, we have
a parametric proportional hazard model for the lifetime X

fX(x;θ) = fX(x; a(z), b),

where

a(z) = exp(ν0 + ν1z1 + ν2z2 + ··· + νKzK)

and the parameter vector is θ = (ν0, ν1, ..., νK , b). The proposed minimum density divergence
estimation method can be applied to estimate the parameter vector θ = (ν0, ν1, ..., νK , b).
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On the other hand, we assume that the system signature is known in this paper, however,
for some black box systems, we may not have any knowledge on the system structures.
Following the work by Yang et al. [27], one can develop robust procedures for estimating the
parameters of the component lifetime distribution and for identifying the system structure
based on system-level data simultaneously by assuming the system is a coherent system. We
are currently working on these extensions and we hope to report the findings in future work.
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1. INTRODUCTION

Semi-parametric structures are a powerful tool in statistical modeling when incorporat-
ing covariates that can contribute parametrically or nonparametrically in the model [20, 21].
The Birnbaum–Saunders (BS) distribution has received considerable attention in recent years,
due to its theoretical arguments associated with cumulative damage processes, its properties,
and its relation with the normal distribution. Specifically, the amount of cumulative damage
that allows the BS distribution to be generated is assumed to follow a normal distribution.
The BS model corresponds to a unimodal, positively skewed, two-parameter distribution and
with support in the positive real numbers. The BS distribution has its genesis from engi-
neering, but it has been also mathematically justified and applied to solve environmental
problems [7, 8, 28, 31, 35, 40, 48].

Extensive work has been done on different aspects with regard to the BS distribu-
tion during the last two decades. The main addressed topics are related to mathematical
and statistical properties of this distribution, point and interval estimation with classical or
Bayesian methods, hypothesis testing, log-linear and non-linear regression models, random
number generators, development of packages in the R software, generalizations and reparam-
eterizations, multivariate versions, and extensions to temporal and spatial modeling; for a
recent and detailed review on these issues, see [3, 30].

A new parameterization of the BS (RBS) distribution stated in [46, 47] is based on its
mean and precision parameters. By using this parametrization, a type of generalized linear
model (GLM) was formulated in [27] based on the BS distribution although this does not
belong to the exponential family. Such a formulation permits us to model the mean and
variance simultaneously, maintaining the original scale of the data with no transformations
on the modeled variable, because it is well known that transformations reduce interpretability.
Statistical modeling based on BS distributions has considerably attracted the attention of a
number of researchers; see, for example, [10, 32, 42, 49]. To the best of our knowledge, no
semi-parametric models based on the RBS distribution have been derived until now in the
literature.

Diagnostic analytics is an important step to be considered in all data modeling. Diag-
nostics can be conducted by goodness-of-fit techniques, residual analysis, and global/local
influence methods. Goodness-of-fit methods allow us to assess the adequacy of a model to
a data set. Residual analysis is a helpful tool for evaluating the fit of a statistical model.
Several types of residuals for BS regressions were proposed in [27, 29], stating by simulations
which of them has better performance. Global influence techniques remove cases and evaluate
their effect on the fitted model. Local influence was proposed in [9] and permits us to detect
the effect of perturbations on the estimates of model parameters. Local influence methods
for RBS regression models were derived in [27] by calculating the normal curvatures under
different perturbation schemes. To the best of our knowledge, no diagnostic analytics in
semi-parametric additive models (SAM) based on BS distributions have been considered in
the literature at present.

Our main objective is to formulate a novel RBS semi-parametric additive regression
model (RBS-SAM). This semi-parametric model enables us to describe the mean and variance
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simultaneously. Our secondary objectives are:

(i) to estimate the model parameters with the maximum penalized likelihood (MPL)
method and a back-fitting algorithm;

(ii) to describe the nonparametric structure with cubic smoothing splines;

(iii) to derive local influence for model diagnostics by calculating the normal curva-
tures under different perturbations;

(iv) to implement the obtained results in the R software;

(v) to apply the results to real data associated with pollutant contents in Santiago
of Chile — one of the most polluted cities in the world [33, 8, 40].

These data were secured from the website of the Chilean Ministry of Environment. Our
numerical illustrations were developed with the R software [41].

The application presented in this study is motivated by the fact that inclusion of non-
parametric functions greatly enhances the modeling when accommodating non-linear effects
of covariates [21, 20]. These covariates correspond in our case to contents of pollutants and
meteorological variables as atmospheric pressure, precipitation, relative humidity, tempera-
ture, and wind speed [40]. Semi-parametric estructures have been successfully used to model
non-linear components [23]. In addition, the application considered in the present study is
supported by theoretical arguments that permit us to justify the use of BS distributions for
describing environmental data. This argumentation was formalized in [28] employing a novel
mathematical model for environmental sciences based on physical laws.

This article is organized as follows. Section 2 provides an overview of BS distributions,
introduces the RBS-SAM, and considers a penalized log-likelihood function for parameter
estimation. In Section 3, we obtain the MPL estimators, use a back-fitting algorithm, derive
the penalized score vector and Hessian matrix, determine the degrees of freedom, select the
smoothing parameter, and conduct inference for the corresponding parameters. In Section 4,
the main concepts of local influence and the derivation of normal curvatures for some pertur-
bation schemes are presented. Section 5 introduces the empirical application of the proposed
model to an environmental data set. In Section 6, some concluding remarks and ideas for
future research are given.

2. PARAMETRIC SPECIFICATION AND NONPARAMETRIC COMPONENT

In this section, an overview of BS distributions, the RBS-SAM structure, and the
corresponding penalized log-likelihood function for parameter estimation are stated.

2.1. The BS distribution and related models

Next, we present the traditional BS distribution and related models. If a random vari-
able Y ∗ is BS distributed with shape (α> 0) and scale (β > 0) parameters, we employ the nota-
tion Y ∗∼ BS(α, β). Note that Z = (1/α)((Y ∗/β)1/2− (β/Y ∗)1/2) ∼ N(0, 1) if Y ∗∼ BS(α, β).
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Hence, each BS distributed random variable Y ∗ may be obtained as a transformation of a
standard normal distributed random variable Z by means of

(2.1) Y ∗ = β

αZ
2

+

√(
αZ

2

)2

+ 1

2

.

Note from the formula stated in (2.1) that the quantile function or 100q-th quantile of the
BS distribution is directly generated as

(2.2) y∗(q;α, β) = β

αz(q)
2

+

√(
αz(q)

2

)2

+ 1

2

, 0 < q ≤ 1,

where z(q) is the 100q-th quantile of the standard normal distribution. We observe that, if q =
0.5, then z(0.5) = 0, which corresponds to the mean, median and mode of Z ∼ N(0, 1). Thus,
from the quantile function defined in (2.2), we have that y∗(0.5;α, β) = β, which confirms
that the scale parameter β > 0 is also the BS median. The expression given in (2.1) is used
for generating random numbers of the BS distribution and also for deriving goodness-of-fit
tools associated with this distribution.

Let Y ∗∼ BS(α, β). Then, the probability density function of Y ∗ is stated as

fY ∗(y;α, β) =
1√
2π

exp
(
− 1

2α2

(
y

β
+
β

y
− 2
))

1
2αβ

((
y

β

)−1/2

+
(
y

β

)−3/2
)
,(2.3)

for y,α,β > 0. Properties of Y ∗∼BS(α, β) are: bY ∗∼BS(bα, β), with b>0; 1/Y ∗∼BS(α, 1/β).
Also, the mean and variance of Y ∗ are E(Y ∗) = β(1 +α2/2) and Var(Y ∗) = β2α2(1 + 5α2/4).

It is worth noting that diverse models related to the BS distribution have been derived.
The probability density function formulated in (2.3) corresponds to the traditional BS dis-
tribution and this is quite flexible. However, new versions of the BS distribution have been
proposed with different properties and shapes even more flexible. For some recent works on
these new versions and their mathematical and statistical features, the interested reader is re-
ferred to [2] for a mixture Birnbaum–Saunders distribution with applications in biomedicine;
to [1] for skew BS distributions with illustrations in fatigue of materials; to [5] for a transmuted
BS distribution with examples in problems of engineering and medicine; to [36, 37, 38, 45]
for unit and quantile BS distributions considering applications in economy, medicine and
politics; to [43] for a bimodal BS distribution with illustrations using environmental and
medical data; and to [13] for a BS-gamma distributed claim size applied to insurance.

2.2. RBS distribution

The RBS distribution is a novel model related to the traditional BS case, based on the
parameters µ, δ > 0, where µ is a scale parameter and the distribution mean, whereas δ is
a shape and precision parameter. In this case, the notation Y ∼ RBS(µ, δ) is used. Based
on this reformulation of the BS distribution, the probability density function of the random
variable Y ∼ RBS(µ, δ) is given by

(2.4) fY (y;µ, δ) =
exp(δ/2)

√
δ + 1

4 y3/2√πµ

(
y +

δµ

δ + 1

)
exp
(
−δ

4

(
y(δ + 1)
δµ

+
δµ

y(δ + 1)

))
,
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where y, µ, δ > 0. The mean and variance of Y are stated as E(Y ) = µ and Var(Y ) = µ2/φ,
respectively, with φ = (δ + 1)2/(2δ + 5) so that, as mentioned, δ is a precision parameter.
Note that, for fixed values of µ, Var(Y ) → 0 as δ →∞, but if δ → 0, then Var(Y ) → 5µ2. In
addition, Var(Y ) is similar to the variance of the gamma distribution, which has a quadratic
relation with its mean. It is also possible to show that b Y ∼ RBS(b µ, δ), with b > 0, and
1/Y ∼ RBS(µ∗, δ), where µ∗ = (δ + 1)/(δµ).

2.3. Modeling

Let Y = (Y1, ..., Yn)> be independent random variables, where Yi ∼ RBS(µi, δ), for i ∈
{1, ..., n}, and y = (y1, ..., yn)> are the corresponding observations of Y . Then, we define the
RBS-SAM structure based on (2.4) by the systematic component expressed as

(2.5) h(µi) = ηi = x>i β + f1(t1i) + ···+ fs(tsi), i ∈ {1, ..., n},

or, equivalently,

(2.6) h(µi) = x>i β + n>1i
f1 + ···+ n>si

fs,

where x>i = (1, xi2 , ..., xip) is the i-th row of observed values for the covariates matrix X and
β = (β1, ..., βp)> is a vector of regression parameters to be estimated. In addition, n>ki

denotes
the i-th row of the incidence matrix Nk, whose (i, l)-th element is equal to the indicator
function 1 (tki

= t0kl
);fk = (ξk1 , ..., ξkrk

)> is an rk×1 vector such that ξkj
= fk(t0kj

), where fk
is an arbitrary unidimensional (scalar) smooth function that quantifies the effect of the k-th
covariate tk for k ∈ {1, ..., s} (note that fk is different from the vector fk above defined);
and t0kj

, for l ∈ {1, ..., rk}, are the distinct and ordered values of the covariate tk. Note that
the model stated in (2.5) is formed by both parametric and nonparametric components. In
effect, for p < n, x>i β is the parametric component of the model and n>1i

f1 + ···+n>si
fs is the

corresponding nonparametric component. In matrix terms, (2.6) can be written as h(µ) =
Xβ +N1f1 + ···+Nsfs, where µ = (µ1, ..., µn)> and µi = h−1(x>i β +n>1i

f1 + ···+n>si
fs),

for i ∈ {1, ..., n}, with h−1 being the inverse of the link function h: R R+, which is strictly
monotone, positive, and at least twice differentiable; for example, h(µ) = log(µ) or h(µ) =

√
µ.

Formally, in the RBS-SAM, we have that Var(Yi) is a function of µi and, consequently,
of the covariates xi. Then, because we are modeling the mean based on a particular structure,
we are also modeling the variance due to Var(Yi) = µ2

i /φ. Therefore, problems where a non-
constant variance is present could be analyzed by using this model as well.

2.4. Penalized likelihood function

The RBS-SAM log-likelihood function defined in (2.5) for θ = (β>,f>1 , ...,f
>
s , δ)

>

is given by

(2.7) `(θ) =
n∑
i=1

`i(µi, δ; yi),
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where

`i(µi, δ; yi) =
δ

2
− log(16π)

2
− 1

2
log
(

(δ + 1)y3
i µi

(δ yi + yi + δµi)2

)
− yi(δ + 1)

4µi
− δ2µi

4(δ + 1)yi
.

To avoid the problem of overfitting and non-identification of the parameter β, we can incor-
porate a penalty term in the log-likelihood function of the model, denoted here by J(fk),
on each smooth function fk, with fk belonging to the Sobolev function space defined as
W(2)

2 ≡ {fk: f
(1)
k , f

(2)
k ∈ L2[ak, bk]}, where fk is an absolutely continuous function and

f
(2)
k (tk) = d2fk(tk)/dt2k. Therefore, in our case, the log-likelihood function given in (2.7)

is now expressed as a penalized function stated by

`p(θ, λ1, ..., λs) = `(θ) +
s∑

k=1

λ∗kJ(fk),(2.8)

where λk is a constant that depends on the smoothing parameter λk ≥ 0 that controls the
trade-off between goodness-of-fit and the selected smoothness functions.

Different types of penalties have been proposed depending on the method to fit the
nonparametric curves. We consider, as a measure of the curvature of the functions, the
formula established as

(2.9) J(fk) =
∫ bk

ak

f
(2)
k (tk)2dtk.

The first term on the right side of (2.8) measures the goodness of fit, whereas the second term,
defined by (2.9), penalizes the roughness of each fk with a fixed parameter λk. In this case,
the selection of fk leads to a cubic spline with knots at the points t0kl

, that is, this is a third
degree polynomial partitioned on each interval [tkl

, tkl+1
], for l ∈ {1, ..., rk − 1}. According to

[14], J(fk) can be written as J(fk) = f>k Kkfk, where Kk is an rk × rk non-negative-definite
matrix that depends only on the knots t0k. Then, if we consider λ∗k = −λk/2, the penalized
log-likelihood function given in (2.8) may be expressed as

(2.10) `p(θ,λ) = `(θ)−
s∑

k=1

λk
2
f>k Kkfk,

where λ = (λ1, ..., λs)> denotes an s× 1 vector of smoothing parameters. Note that an essen-
tial aspect of the semi-parametric modeling process is related to the selection of smoothing
parameters. In the literature there are several efficient methods of selection, among which
cross validation, generalized cross validation, Akaike information criterion (AIC) and mean
average squared error can be mentioned.

3. PARAMETERS ESTIMATION AND INFERENCE

In this section, we discuss the process of obtaining MPL estimators, as well as the
derivation of a back-fitting algorithm, the penalized score vector, the penalized Hessian
matrix, the determination of degrees of freedom, the selection of the smoothing parameter,
and the corresponding statistical inference.
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3.1. Penalized score function

Assuming that the function given in (2.10) is regular with respect to β, f1, ...,fs and
δ, we have that the penalized score function vector of θ is stated as

Up(θ) =
∂`p(θ,λ)

∂θ
=


Uβ

p (θ)
Uf1

p (θ)
...

Ufs
p (θ)

U δp(θ)

,

whose elements of the vector have the form Uβ
p (θ) =X>Daz,U

fk
p (θ) =N>

k Daz−λkKkfk,
for k ∈ {1, ..., s}, and U δp(θ) = tr

(
Db

)
, where Da = diag{a1, ..., an} and Db = diag{b1, ..., bn}

are n× n matrices, while z = (z1, ..., zn)>, with

zi = − 1
2µi

+
δ

(δ yi + yi + δµi)
+
yi(δ + 1)

4µi2
− δ2

4yi(δ + 1)
,

bi =
1
2
− 1

2(δ + 1)
+

(yi + µi)
(δ yi + yi + δµi)

− yi
4µi

− δ(δ + 2)µi
4(δ + 1)2yi

, ai =
1

h′(µi)
,(3.1)

where h′ is the derivative of h. In the RBS-SAM context, the MPL estimators of the model
parameters cannot be obtained in an explicit form and need to be calculated by solving
a non-linear equation. The Fisher scoring method was used in [27] to estimate the RBS
regression parameters. We propose to adjust the RBS-SAM by combining the proposals
given in [21, 27] to jointly determine the regression coefficients, the smooth functions, and
the precision parameter based on penalized likelihood criterion.

3.2. Penalized Hessian and information matrix

Let ῭
p(θ) be the p∗ × p∗ penalized Hessian matrix with its (j∗, l∗)-th element being

given by ∂2`p(θ,λ)/∂θj∗θl∗ , for j∗, l∗ ∈ {1, ..., p∗} and p∗ = 1 + p+
∑s

k=1 rk. After algebraic
manipulation, we find that the corresponding penalized Hessian matrix has the form

῭
p(θ) =

∂2`p(θ,λ)
∂θ∂θ>

=



῭ββ
p (θ) ῭βf1

p (θ) ··· ῭βfs
p (θ) ῭βδ

p (θ)
῭βf>1
p (θ) ῭f1f1

p (θ) ··· ῭f1fs
p (θ) ῭f1δ

p (θ)
...

...
. . .

...
...

῭βf>s
p (θ) ῭f1f>s

p (θ) ··· ῭fsfs
p (θ) ῭fsδ

p (θ)
῭βδ
p (θ) ῭f1δ

p (θ) ··· ῭fsδ
p (θ) ῭δδ

p (θ)

,(3.2)

whose elements of the matrix can be written as

῭ββ
p (θ) = X>DcX, ῭βfk

p (θ) = X>DcNk, k ∈ {1, ..., s},
῭βδ
p (θ) = X>Dam, ῭fkδ

p (θ) = N>
k Dam, ῭δδ

p (θ) = tr(Dd),

῭fkf
k
′

p (θ) =


−N>

k DcNk − λkKk, k = k
′
,

N>
k DcNk

′ , k 6= k
′
,
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whereDa = diag{a1, ...,an},Dc = diag{c1, ..., cn},Dd = diag{d1, ..., dn}, andm= (m1, ...,mn)>,
with ai being stated as in (3.1) and

ci =
∂2`i(µi, δ)

∂µ2
i

(
dµi
dηi

)2

+
∂`i(µi, δ)
∂µi

(
∂

∂µi

dµi
dηi

)
dµi
dηi

,

di =
1

2(δ + 1)2
− (yi + µi)2

(δ yi + yi + δµi)2
− µi

2(δ + 1)3yi
,

mi =
yi

(δ yi + yi + δµi)2
+

yi
4µ2

i

− δ(δ + 2)
4(δ + 1)2yi

, i ∈ {1, ..., n}.

In addition, calculating the expectation of the matrix − ῭
p(θ) given in (3.2), we obtain the

p∗ × p∗ penalized expected information matrix expressed as

Ip(θ) =



Iββ
p (θ) Iβf1

p (θ) ··· Iβfs
p (θ) Iβδ

p (θ)

Iβf>1
p (θ) If1f1

p (θ) ··· If1fs
p (θ) If1δ

p (θ)
...

...
. . .

...
...

Iβf>s
p (θ) If1f>s

p (θ) ··· Ifsfs
p (θ) Ifsδ

p (θ)
Iβδ

p (θ) If1δ
p (θ) ··· Ifsδ

p (θ) Iδδp (θ)

,(3.3)

where each element of the matrix can be written as

Iββ
p (θ) = X>DvX, Iβfk

p (θ) = X>DvNk, k ∈ {1, ..., s},
Iβδ

p (θ) = X>Das, Ifkδ
p (θ) = N>Das, Iδδp (θ) = tr(Du),

I
fkf

k
′

p (θ) =


N>
k DvNk + λkKk, k = k

′
,

N>
k DvNk′ k 6= k

′
,

with Dv = diag{v1, ..., vn}, Du = diag{u1, ..., un} and s = (s1, ..., sn)>, considering

vi =
δa2
i

2µ2
i

+
δ2a2

i

(δ+1)2
J (θ), ui =

(δ2 +3δ+1)
2δ2(δ+1)2

+
µ2
i

(δ+1)4
J (θ), si =

1
2µi(δ+1)

+
δµi

(δ+1)3
J (θ),

for i ∈ {1, ..., n}, where

J (θ) = E

((
Y +

µδ

(δ + 1)

)−2
)

=
∫ ∞

0

√
δ + 1 exp(δ/2)
4
√
πµy3/2

(
y +

δµ

δ + 1

)−2

exp

(
− δ

4

(
(δ + 1)y
δµ

+
δµ

(δ + 1)y

))
dy.

Note that, in the RBS-SAM, the property of orthogonality between parameters vectors (β,fk)
and δ is not verified, unlike what is observed in other models, as the class of GLM, among
others. In general, the orthogonality property simplifies the estimation process, in the sense
that it allows the parameters to be estimated separately. More details about this issue in the
semi-parametric context can be found in [21].

3.3. Finding the solution in practice: Iterative process

To estimate the model parameters by the MPL method, we solve the equation Up(θ) = 0.
However, as mentioned, no closed-form expressions for the MPL estimate of θ are available.
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Then, an iterative method for non-linear optimization is needed, such as the Fisher scoring or
Newton or quasi-Newton algorithms, where the Broyden–Fletcher–Goldfarb–Shanno method
provides often good results. Considering that the matrix − ῭

p(θ) can be non-positive definite,
we suggest replacing it with the matrix −Ip(θ) and using the Fisher scoring method. Then,
the algorithm for estimating θ is given by

θ(m+1) = θ(m) + (Ip(θ)−1)(m)Up(θ)(m), m ∈ {0, 1, ...},

which is equivalent to solving the matrix equation


X>DvX X>DvN1 ··· X>DvNs X>Das
N>

1 DvX N>
1 DvN1 + λ1K1 ··· N>

1 DvNs N>
1 Das

...
...

. . .
...

...
N>
s DvX N>

s DvN1 ··· N>
s DvNs + λsKs N

>
s Das

s>DaX s>DaN1 ··· s>DaNs tr(Du)


(m)


∆(m+1,m)
β

∆(m+1,m)
f1

...
∆(m+1,m)

fs

∆(m+1,m)
δ



=


X>Daz
N>

1 Daz − λ1K1f1
...

N>
s Daz − λsKsfs

tr(Db)


(m)

(3.4)

where ∆(m+1,m)
β = β(m+1)−β(m), ∆(m+1,m)

fk
= f

(m+1)
k −f (m)

k and ∆(m+1,m)
δ = δ(m+1)− δ(m).

Then, after algebraic manipulation, we obtain expressions for the iterative solutions stated
as

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
ψ

(m)
β −D(m)

v,a s∆
(m+1,m)
δ −

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

×
(
ψ

(m)
fl

−D(m)
v,a s∆

(m+1,m)
δ −X∆(m+1,m)

β −
s∑

k=1,k 6=`
Nk∆

(m+1,m)
fk

)
, k ∈ {1, ..., s},

δ(m+1) = tr−1(D(m)
u )

×
(
tr(D(m)

b ) + tr(D(m)
u )δ(m) − s>D(m)

a X∆(m+1,m)
β − s>D(m)

a

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

where ψ(m)
β =D(m)

v,a z(m) +Xβ(m) and ψ(m)
fl

=D(m)
v,a z(m) +Nlf

(m)
l , with D(m)

v,a =D(m)−1

v D
(m)
a .

In general, the system of equations given in (3.4) is consistent and the back-fitting
algorithm stated as in (3.5) converges to a solution for any starting values if the Dv weight
matrix is symmetric and positive-definite. Additionally, this solution is unique under no
concurvity in the data [4, 21].
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When δ is known, it is possible to obtain simplified expressions for the iterative solutions
of β(m+1) and f (m+1)

k . Indeed, after some algebraic manipulation, we get that

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
ψ

(m)
β −

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

(
ψ

(m)
fl

−X∆(m+1,m)
β −

s∑
k=1,k 6=`

Nk∆
(m+1,m)
fk

)
,

for k ∈ {1, ..., s}, or, equivalently,

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
r(m)
v,a −

s∑
k=1

Nkf
(m+1)
k

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

(
r(m)
v,a −Xβ(m+1) −

s∑
k=1,k 6=`

Nkf
(m+1)
k

)
,

where r(m)
v,a = D

(m)
(v,a)z

(m) + η(m), with η(m) = Xβ(m) +
∑s

k=1Nkf
(m)
k . It is possible to prove

that these expressions correspond to the weighted back-fitting (Gauss–Seidel) iterations con-
sidering r(m)

v,a as a dependent modified variable and Dv as a matrix of weights that changes
with each iteration of the process. A general formula for these iterations is stated as

f
(m+1)
l = S

(m)
l

(
r(m)
v,a −

s∑
k=0,k 6=l

Nkf
(m+1)
k

)
, l ∈ {0, 1, ..., s},(3.5)

where r(m)
v,a = D

(m)
v,a z(m) + η(m), with η(m) =

∑s
k=0Nkf

(m)
k , N0 = X, f0 = β, and

S
(m)
0 = (N>

0 D
(m)
v N0)−1N>

0 D
(m)
v ,S

(m)
k = (N>

k D
(m)
v Nk+λkKk)−1N>

k D
(m)
v , k ∈ {1, ..., s}.

Note that if the nonparametric component is not present in the model formulated in (2.5),
the iterative process presented in (3.5) reduces to the expressions proposed in [27], that is, to
β(m+1) = (X>D

(m)
v X)−1X>D

(m)
v z

(m)
β , where z(m)

β =D
(m)
v,a z(m) +Xβ(m). A similar formula

can be obtained for the case where the parametric component is absent in the model and
only a smooth function is considered as linear predictor. Specifically, the iterative process
would reduce to f (m+1) = (N>D

(m)
v N)−1N>D

(m)
v z

(m)
f , where z(m)

f = D
(m)
v,a z(m) +Nf (m).

Thus, at convergence, β̂ and f̂ can be interpreted as least squares estimators of D1/2
bv ẑβ and

D
1/2
bv ẑf against the columns of D1/2

bv X and D1/2
bv N , respectively, where ẑβ = D

bv,baẑ +Xβ̂
and ẑf = D

bv,baẑ +Nf̂ .

3.4. Approximate standard errors

Next, we consider the problem of estimating the variance-covariance matrix of the MPL
estimator θ̂. Considering the fact that we obtain the MPL estimate of θ through the Fisher
scoring algorithm, it is reasonable to derive the corresponding variance-covariance matrix by
using the inverse of the penalized Fisher information matrix [20, 50, 51]. To compute the
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inverse matrix of Ip(θ) given in (3.3), consider

I11
p =


Iββ

p (θ) Iβf1
p (θ) ··· Iβfs

p (θ)

Iβf>1
p (θ) If1f1

p (θ) ··· If1fs
p (θ)

...
...

. . .
...

Iβf>s
p (θ) If1f>s

p (θ) ··· Ifsfs
p (θ)

, I12
p =


Iβδ

p (θ)
If1δ

p (θ)
...

Ifsδ
p (θ)

, I22
p = Iδδp .

Thus, the matrix Ip(θ) can be written as

Ip(θ) =

(
I11

p I12
p

I12>
p I22

p

)
.(3.6)

Assuming that all the necessary inverses exist, some algebraic manipulations on the expression
stated in (3.6) show that the inverse matrix of Ip(θ) assumes a block form given by

I−1
p (θ) =

 I11.1
p −I11.1

p I12
p I22−1

p

−I22−1

p I12>
p I11.1

p I22.1
p

,
where I11.1

p = (I11
p −I12

p I22−1

p I12>
p )−1 and I22.1

p = I22−1

p +I22−1

p I12>
p I11.1

p I12
p I22−1

p . There-
fore, the asymptotic variance-covariance matrix of θ̂ is defined as

Ĉov(θ̂) ≈ I−1
p (θ)

∣∣
bθ
.(3.7)

In particular, we have that Ĉov(β̂, f̂1, ..., f̂s) ≈ I11.1
p

∣∣
bθ

and Ĉov(δ̂) ≈ I22.1
p

∣∣
bθ
. To approximate

the pointwise standard errors (SE) bands for nonparametric functions fk, one can evaluate
the accuracy of the estimators f̂k for different locations within the range of interest [17]. In
our case, these SE bands are constructed using the corresponding diagonal elements of the
matrix Ĉov(β̂, f̂1, ..., f̂s) as estimators of the SE of fk. Indeed, we can consider as approximate
pointwise SE bands the expression defined as SE(fk(t0l )) = f̂k(t0l )± 2(V̂ar(f̂k(t0l )))

1/2, where
Var(f̂k(tl)) is the l-th principal diagonal element of the matrix stated in (3.7), for l ∈ {1, ..., r}.
Note that t0l corresponds to the knots associated with each variable whose contribution to
the model is nonparametric.

Observe that the asymptotic approach based on the penalized Fisher information matrix
to approximate the variance-covariance matrix of θ̂ has been used by several authors, and has
resulted in an efficient tool to approximate the SEs of θ̂ and construct SE bands for smooth
functions [22, 23, 50].

3.5. Degrees of freedom

Next, we define the degrees of freedom associated with the parametric and nonpara-
metric components. In the latter case, they correspond to the number of effective parameters
that are being considered in the nonparametric modeling, and that are used in the selection
of the smoothing parameters. Our definition of degrees of freedom is based on the conver-
gence of the iterative process given in (3.5) to select f̂l, for l ∈ {0, 1, ..., s}. Indeed, fixing δ
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and λk, we obtain f̂l = Ŝlr̂
∗
v,a, for l ∈ {0, 1, ..., s}, where r̂∗v,a = r̂v,a −

∑s
k=0,k 6=lNkf̂k, with

r̂v,a = D̂v,aẑ + η̂, η̂ =
∑s

k=0Nkf̂k and

Ŝ0 = (N>
0 D̂vN0)−1N>

0 D̂v,

Ŝk = (N>
k D̂vNk + λkKk)−1N>

k D̂v, k ∈ {1, ..., s}.

In the literature concerning to additive models, there are different definitions for the degrees
of freedom, depending on the context in which they are used [6]. In our case, the degrees of
freedom associated with the parametric component, N0f̂0 namely, are defined as

dfN0 = tr
{
N0(N>

0 D̂vN0)−1N>
0 D̂v

}
= p ,

where p is the rank of N0 = X. In addition, the degrees of freedom for the nonparametric
component, Nkf̂k namely, are stated as

df(λk) = tr
{
Nk(N>

k D̂vNk + λkKk)−1N>
k D̂v

}
,(3.8)

which measure the individual effect contribution of the k-th nonparametric component.

3.6. Selection of smoothing parameters

Note that, based on [23], we consider a grid of values for the smoothing parameter and
select one of them for which the AIC is minimized. Alternatively, we can consider the inverse
relationship between the degrees of freedom and the smoothing parameter [23], and select
the value of this parameter associated with a specific value of the degrees of freedom.

In the previous sections, the smoothing parameters λk were assumed fixed. However, in
practice situations, the smoothing parameters should be selected from the data. A criterion
to select the smoothing parameters based on the AIC is described below. Before proposing a
criterion to select the smoothing parameters, remember that, under the RBS-SAM, we have
a total of 1 + p+ df(λ) parameters to be determined, with df(λ) =

∑s
k=1 df(λk) denoting the

number of effective parameters involved in the modeling of the smooth functions. In this case,
the AIC (or alternatively the Bayesian information criterion) can be used for selecting the
smoothing parameters λk. The idea is to minimize a function with respect to λ formulated
as

AIC(λ) = −2`p(θ̂,λ) + 2(1 + p+ df(λ)),

where `p(θ̂,λ) denotes the penalized log-likelihood function evaluated at θ̂ for a fixed λ.
A grid (surface) for different values of λ and its corresponding AIC(λ) are helpful to choose
the suitable smoothing parameters.

Other approach to selecting the smoothing parameters is when the degrees of freedom
given in (3.8) depends only on λk and, therefore, the corresponding smoothing parameter
can be specified. In other words, we specify an objective df(λk) for a function and then find
the value λk that achieves this objective. Such an approach has been used by a number of
authors [6, 18, 22, 44].
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4. DIAGNOSTIC ANALYTICS

In this section, we derive the local influence method for different perturbation schemes
to assess the potential influence of some observations on the RBS-SAM. These schemes are
the case-weight, response and precision parameter perturbations.

4.1. The local influence method

Let ω = (ω1, ..., ωn)> be an n× 1 vector of perturbations restricted to some open subset
Ω ∈ Rn and `p(θ,λ;ω) be the logarithm of the perturbed penalized likelihood function. It
is assumed that exists ω0 ∈ Ω, a vector of no perturbation, such that `p(θ,λ;ω0) = `p(θ,λ).
To assess the influence of small perturbations on the MPL estimate θ̂, we can consider the
likelihood displacement stated as

LD(ω) = 2
(
`p(θ̂,λ)− `p(θ̂ω,λ)

)
≥ 0,

where θ̂ω is the MPL estimate under `p(θ,λ;ω). The measure LD(ω) is helpful for assessing
the distance between θ̂ and θ̂ω. In [9], it was suggested to study the local behavior of LD(ω)
around ω0. The procedure consists of selecting a unit direction d ∈ Ω, with ‖d‖ = 1, and
then to consider the plot of LD(ω0 +ad) against a, where a ∈ R. This plot is called lifted line.
Each lifted line may be characterized by considering the normal curvature Cd(θ) around a = 0.
The suggestion is to assume the direction d = dmax corresponding to the largest curvature
Cdmax(θ). The index plot of dmax can identify those cases that, under small perturbations,
provoke an importante potential influence on LD(ω). According to [9], the normal curvature
at the unitary direction d is expressed as

Cd(θ) = −2
(
d>∆>

p
῭−1
p ∆pd

)
,

with

῭
p =

∂2`p(θ,λ)
∂θ∂θ>

∣∣∣∣
θ=bθ

, ∆p =
∂2`p(θ,λ;ω)
∂θ∂ω>

∣∣∣∣
θ=bθ, ω=ω0

.

Note that − ῭
p is the penalized observed information matrix evaluated at θ̂ (see Subsec-

tion 3.2) and ∆p is the penalized perturbation matrix evaluated at θ̂ and ω0. Observe that
Cd(θ) denotes the local influence on the estimate θ̂ after perturbing the model or data. In [11],
it was proposed to study the normal curvature at the direction d = ei, where ei is an n× 1
vector with a one at the i-th position and zeros at the remaining positions. Thus, the normal
curvature, called total local influence of the i-th case, assumes the form Cei(θ) = 2|cii|, for
i ∈ {1, ..., n}, where cii is the i-th principal diagonal element of the matrix C = ∆>

p
῭−1
p ∆p.

The local influence results presented in the following sections are extensions of the work
presented in [27] but for the case where the linear predictor includes a parametric term and
also an additive term of smooth functions.
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4.2. Case-weight perturbation

The perturbation of case-weight is considered to identify observations with high contri-
bution to the likelihood function and that can exercise strong influence on the MPL estimates.
Let us to consider the attributed weights for the cases in the penalized log-likelihood function
as

`p(θ,λ;ω) =
n∑
i=1

ωi`i(θ)−
s∑

k=1

λk
2
f>k Kkfk,

where ω = (ω1, ..., ωn)> is the vector of weights, with 0 ≤ ωi ≤ 1, for i ∈ {1, ..., n}, and ω0 =
(1, ..., 1)> denotes the vector of no perturbation. Differentiating `p(θ,λ;ω) with respect to
the elements of θ and ω, we obtain

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂z,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂z, k ∈ {1, ..., s},

∂2`p(θ,λ;ω)
∂δ∂ω

∣∣∣
θ=bθ,ω=ω0

= b̂,

for i ∈ {1, ..., n}, with Da and b being defined in previous sections, whereas that Dz =
diag{z1, ..., zn}.

4.3. Response perturbation

According to [27], the additive perturbation on the i-th response is given by yiωi =
yi + ωis(yi), where s(yi) = (µ̂2

i /φ̂)1/2 and ωi ∈ R, for i ∈ {1, ..., n}. Then, the perturbed
penalized log-likelihood function is constructed from the expression defined in (2.10) with yi
being replaced by yiω, that is,

`p(θ,λ;ω) = `(θ;ω)−
s∑

k=1

λk
2
f>k Kkfk,

where ` is given in (2.7) with yiωi in the place of yi, for i ∈ {1, ..., n},. Here, the vector of
no perturbation is stated as ω0 = (0, ..., 0)>. Differentiating `p(θ,λ;ω) with respect to the
elements of θ and ω, we obtain, after some algebraic manipulation, that

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂ψD̂ϑ,
∂2`p(θ,λ;ω)

∂δ∂ω

∣∣∣
θ=bθ, ω=ω0

= τ̂>Dϑ,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂ψD̂ϑ, k ∈ {1, ..., s},

where D̂ϑ = diag{ϑ̂1, ..., ϑ̂n}, D̂ψ = diag{ψ̂1, ..., ψ̂n}, and D̂τ = diag{τ̂1, ..., τ̂n}, with ϑ̂i =
s(yi),

ψ̂i = − δ̂(δ̂ + 1)

(δ̂yi + yi + δ̂µ̂i)2
+

(δ̂ + 1)
4µ̂2

i

+
δ̂2

4(δ̂ + 1)y2
i

,

τ̂i = − µ̂i

(δ̂yi + yi + δ̂µ̂i)2
− 1

4µ̂i
+

δ̂(δ̂ + 2)µ̂i
4y2
i (δ̂ + 1)2

, i ∈ {1, ..., n}.
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4.4. Perturbation on the precision parameter

Perturbation of the precision parameter is used for evaluating the sensitivity of the
MPL estimate to small modifications of δ. Initially, the RBS-SAM assumes that the pre-
cision parameter is constant across data. However, under the perturbed model, the preci-
sion parameter is non-constant across cases, this is, Yi ∼ RBS

(
µi, δi

)
, where δi = δ/ωi, with

ωi > 0, for i ∈ {1, ..., n}. Under this perturbation, the vector of no perturbation is given by
ω0 = (1, ..., 1)>. Then, the perturbed penalized log-likelihood function is constructed from
the expression given in (2.10) with δ being replaced by δi. Taking derivatives of `p(θ,λ;ω)
with respect to the elements of θ and ω, we obtain, after some algebraic manipulation, that

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂$,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂$, k ∈ {1, ..., s},

∂2`p(θ,λ;ω)
∂δ∂ω

∣∣∣
θ=bθ, ω=ω0

= ϕ̂>,

where D̂$ = diag{$̂1, ..., $̂n} and ϕ = (ϕ̂1, ..., ϕ̂n)>, with

$i = − δ̂yi

(δ̂yi + yi + δ̂µ̂i)2
− δ̂yi

4µ̂2
i

+
δ̂2(δ̂ + 2)

4yi(δ̂ + 1)2
, i ∈ {1, ..., n},

ϕ̂i = −1
2

+
1

2(δ̂ + 1)2
− yi(yi + µ̂i)

(δ̂yi + yi + δ̂µ̂i)2
+

yi
4µ̂i

+
δ̂2µ̂i(δ̂ + 3)

4yi(δ̂ + 1)3
+

δ̂µ̂i

yi(δ̂ + 1)3
.

5. APPLICATION TO REAL POLLUTION DATA

In this section, we provide the empirical application of the proposed model to environ-
mental data obtained from the website of the Chilean Ministry of Environment using the R

software. This application is motivated, as mentioned, by the fact that inclusion of nonpara-
metric functions greatly enhances the modeling when accommodating non-linear effects of
covariates. These covariates correspond in our case to contents of pollutants and meteoro-
logical variables as atmospheric pressure, precipitation, relative humidity, temperature, and
wind speed, with the response variable being the particulate matter (PM) content.

5.1. Data and definition of the problem

PM pollution is one of the main global urban environmental problems, affecting human
health and life quality. According to the World Health Organization (WHO), nine out of
every ten people on the planet breathe air that contains high levels of pollutants and seven
million people die every year due to this cause (www.who.int). PM is classified according to
its diameter, because particle size determines sites of deposition within the respiratory tract.

www.who.int
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Coarser particles (those with a diameter over 10 micrometers–µm–) do not penetrate into
airways. Instead, these particles are deposited in the upper respiratory tract and are cleared
by cilia action. Inhalable particles measuring less than 10 µm are called PM10, whereas
those smaller than 2.5 µm are called PM2.5. As size decreases, there is a higher possibility
for PM to penetrate deeper into smaller alveoli and airways. Specifically, various effects are
produced from exposure to PM, but the nature of those induced effects vary according to
the PM composition. Indeed, there is evidence of an increase in the risk of cardiovascular
diseases and mortality from exposure to PM2.5, which occurs even after short time periods
[8].

In Chile, according to the Ministry of the Environment, 3,494 people died prematurely
due to critical air levels during 2017 mainly due to extreme contents of PM2.5, and nine
million inhabitants are exposed to levels of pollution that exceeds the air quality standards
(https://bit.ly/2u40gDq). Santiago of Chile is one of the most polluted cities in the world
in terms of PM2.5 and PM10, because of a combination of anthropogenic, meteorological and
topographic factors [31]. Several studies indicate that inhabitants of Santiago are under risk,
because of the city’s poor air quality. As urban air quality declines, the risk of stroke, heart
disease, lung cancer, and chronic and acute respiratory diseases, including asthma, increases
for the people who live in cities with high air pollution levels. Specifically for Santiago,
several investigations provide evidence that exposure to air pollutants produces a risk to the
inhabitants of this city; see [34] and references therein.

Periodic episodes of extreme levels of air pollution sometimes occur for certain at-
mospheric contaminants. Such episodes and their associated high contents vary with geo-
graphical and meteorological fluctuations, depending on changes in both source and type
of emissions. Because of these variations, PM contents are treated as non-negative random
variables that can be modeled by statistical distributions. Frequently, these distributions
are asymmetrical and present positive skewness [31]. The current official methodology em-
ployed by the Chilean authority in Santiago to predict PM10 contents is based on a multiple
regression model using contents of atmospheric pollutants and meteorological variables as
covariates [39]. It helps to forecast the maximum value of the 24-hour average content of
PM10 in µg/normalized cubic meters (Nm3) for the period from 00:00 to 24:00 hours of the
next day. Furthermore, in 2015, through Supreme Decree number 15/2015 and resolution
number 9664/2015, it was instructed by the Chilean Ministry of Health to declare sanitary
alert employing also PM2.5 contents.

5.2. Descriptive data analysis

We consider the environmental data set related to air pollution. In particular, the data
provided by the National Air Quality Information System (https://sinca.mma.gob.cl)
corresponding to air pollution in the commune of Pudahuel in Santiago during the critical
episodes management (CEM) period (01 April 2019 to 31 August 2019). In this application,
we are interested on detecting the association of polluting contents with meteorological vari-
ables by utilizing the RBS-SAM. For motivating the semi-parametric models, we consider
PM2.5 as response variable and two covariates, PM10 contents and WIND (speed wind in
meters/second). In the CEM period, we work with a total of 153 observations.

https://bit.ly/2u40gDq
https://sinca.mma.gob.cl
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Table 1 provides a descriptive summary of PM2.5, which includes mean (y), median
(MD), standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS),
coefficient of kurtosis (CK), minimum (y(1)), maximum (y(n)), and the total of observations
(n). Figure 1 contains the histogram and boxplot of PM2.5 contents. The primary air quality
regulation for PM2.5 is 50µg/Nm3, as 24-hour level.

Table 1: Descriptive statistics for the response variable PM2.5 in the CEM period
with data from Santiago, Chile.

y MD SD CV CS CK y(1) y(n) n

42.27 37 21.51 0.51 0.89 3.26 8 105 153

According to Table 1, the primary regulation is exceeded for the response; see, for ex-
ample, the maximum contents registered in the CEM period. Note that CS = 0.89, indicating
a slight asymmetry in the data of the response variable, and its CK = 3.26, indicating a prob-
ability density function with heavy tails in relation to the normal distribution. In addition,
from the histogram displayed in Figure 1, we note that the values of PM2.5 have an empirical
distribution that is positively skewed, while from Figure 1(b), we identify case #63 as an
atypical observation in the boxplot. Consequently, from Table 1 and Figure 1, we propose
that the RBS-SAM may be suitable for describing the mean of the data, the non-constant
variance and asymmetry detected in the distribution of these data.
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Figure 1: Histogram (a) and boxplot (b) for the response variable PM2.5 in CEM period
with data from Santiago, Chile.

Figure 2 contains the scatter plots between the response variable and each covariate.
In Figure 2(a), we see that the linear correlation between PM2.5 and the covariate PM10
seems to be positive, which is supported by the correlation coefficient between both variables
(0.9261). In addition, we observe that the variability of PM2.5 tends to increase as the
PM10 values increase, which could be an indication of a non-constant variance in the data.
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Figure 2(a) also shows evidence that the straight line do not go through the origin, so that
considering the intercept in the parametric component of the selected model could be helpful.
Figure 2(b) indicates that the relationship between PM2.5 and WIND seems to be non-linear.

50 100 150 200

20

40

60

80

100

PM10

P
M

2
.5

(a)

0.5 1.0 1.5

20

40

60

80

100

WIND

P
M

2
.5

(b)

Figure 2: Scatter plots of PM2.5 versus PM10 (a) and PM2.5 versus WIND (b)
with data from Santiago, Chile.

After this descriptive data analysis, we can see that the response variable presents char-
acteristics of the RBS distribution, such as positive asymmetry. In addition, as mentioned,
the BS distribution has mathematical arguments that allows us to justify its use when de-
scribing environmental data. Furthermore, from the scatter plots, note that the covariates
contribute linearly and non-linearly to the response variable. Therefore, a semi-parametric
structure may be proposed to model PM2.5 contents as a function of PM10 and WIND,
contributing parametrically and nonparametrically to the model, respectively.

5.3. Model fitting

The trends described in the exploratory data analysis suggest an RBS-SAM among
PM2.5 and the covariates, assuming the identity link function, that is,

h(µi) = µi = β1 + xiβ2 + f(ti), i ∈ {1, ..., 153},

where xi and ti denotes the values of PM10 and WIND from the i-th case, respectively,
(β1, β2)> is a parameter vector, and f is a smooth function. We apply the procedure described
in Subsection 3.6 to select the smoothing parameter, which results to be λ = 0.0001.

To estimate the parameters of the parametric component of the model, we maximize
the penalized log-likelihood function as described in Subsection 3.3, obtaining β̂1 = −30.013,
β̂2 = 0.387 and δ̂ = 60.991, whose corresponding SEs are 0.000095, 0.0068 and 0.0000011,
respectively. To assess that the RBS-SAM is adequate to describe the mean of the response
variable, we verify the assumptions established for the model. First, note that β1 and β2

are highly significant at 5%, since both empirical p-values (omitted here) are close to zero,
as expected by the exploratory data analysis that we performed. Thus, the parametric
component of the selected model seems to be adequate.
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5.4. Residual analysis

Figure 3 shows the plot of the partial residuals defined as

r
(p)
i = µ̂i − (β̂1 + xiβ̂2), i ∈ {1, ..., n}.

We note that the effect of the WIND covariate seems to be non-linear on the mean of the
PM2.5 response variable, which indicates that it is reasonable to quantify such an effect
through a smooth function.
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Figure 3: Plot of partial residuals versus WIND covariate with the estimated smooth function
overlapped with data from Santiago, Chile.

Figure 4 contains the theoretical quantile versus empirical quantile (QQ) plot (a),
histogram (b) and index plot (c) for the standardized residuals defined as

r
(s)
i =

yi − µi√
V̂ar(Yi)

=
φ̂1/2(yi − µ̂i)√

µ̂2
i

, i ∈ {1, ..., n},

with φ and µi being stated in Subsections 2.2, for the model formulated in (2.5).

To verify the distributional assumption established in the model, we consider Figure 4(a).
This figure does not show inusual features, so that the response variable seem to be well
described by the RBS-SAM. In addition, the independence assumption is also verified. In
Figure 4(b), we see a considerable symmetry of the standardized residuals. From Figure 4(c),
we note that the standardized residuals take values in the interval [−2.0, 2.0] mostly, except
for some values that are outside the bands defined as two times the standard deviation for
each residual.

For comparative purposes, we also consider a generalized additive model (GAM) [15, 16]
assuming a Gaussian family with link function equal to identity to describe the data set of
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pollution. The estimates of the parametric part of the model are β̂1 = 0.668 and β̂2 = 0.428,
whose estimated SEs are 1.956 and 0.018, respectively, with a total of three degrees of freedom
associated with this fit.
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Figure 4: QQ plot (a), histogram (b), and index plot (c) for the standardized residuals of RBS-SAM
with data from Santiago, Chile.

Figure 5 shows a residual analysis of the model. Observe the behavior of the tails
of the distribution in Figure 5(a) and 5b. In addition, in Figure 5(c), note that there are
several points outside the bands defined as twice the standard deviation of the residuals. The
corresponding AIC of the fitted model is 1081.612. According to the AIC, the RBS-SAM
presents a better fit, since the value of the AIC is 1032.003, with this value being less than
the value obtained for the adjusted GAM.
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Figure 5: QQ-plot (a), histogram (b), and index plot (c) for the standardized residuals of GAM
with data from Santiago, Chile.
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5.5. Local influence analysis

Figures 6 (a)–(c) present the index plots of Ci for the case-weight scheme. Considering
Figure 6 (a)–(b), we notice that cases #9 and #151 have the highest potential influence on
β̂ and δ̂, whereas case #63 is more influential on f̂ ; see Figure 6(c).

Figures 6 (d)–(f) display the index plot of Ci for the response perturbation scheme. We
observe that case #151 has a small influence on β̂ and δ̂, whereas that cases #74 and #151
have the highest potential influence on f̂ .

Figures 6 (g)–(i) show the index plot of Ci for the precision perturbation scheme. We
see that cases #9 and #151 have the highest potential influence on β̂ and δ̂, whereas case
#63 is the more influential on f̂ ; see Figure 6(i). Note that cases #9, #63, #74 and #151
correspond to 09 April, 02 June, 13 June, and 29 August 2019, respectively.

We now analyze how the MPL estimates change when the cases detected as potentially
influential are removed. To perform this analysis, the set of case(s) {9}, {63}, {151}, {9, 63},
{9, 151}, {63, 151}, and {9, 63, 151} are removed and the estimates of the parameters are cal-
culated again. Table 2 provide the relative changes (RC) in the parameter estimates, in their
corresponding estimated SEs, and the associated p-value. These changes are calculated from
RC

bβj(i)
= |(β̂j − β̂j(i))/β̂j | × 100% and RC

SE(bβj)(i)
= |(SE(β̂j)− SE(β̂j)(i))/SE(β̂j)| × 100%,

where β̂j(i) and SE(β̂j)(i) denote the MPL estimates of βj and their corresponding SEs,
obtained after extracting case i, for j ∈ {1, 2} and i ∈ {1, ..., 153}. Table 2 reports that the
highest values of RCs are associated with β1, in particular, for cases {9} and {9, 63}, corre-
sponding to the most influential observations on the parametric, nonparametric and precision
components. Note that the influential cases on the parametric component are not necessarily
the same on the nonparametric component, as reported in [24]. In addition, note that the
significance of the parameters at 5% does not change since the p-values remain below 0.01.
Table 2 reports that the diagnostic measures derived here identify potentially influential cases,
being them cases {9, 63}, which affect the inference of the model, but not their significance.
These cases correspond to the dates: 09 April 2019 and 02 June 2019 of the CEM period.
Note that, for case #9, a low PM2.5 content was recorded, close to the minimum, as well as
for PM10, while the wind speed was high and close to the maximum recorded. Regarding
case #63, this was the day with maximum PM2.5 content recorded throughout the CEC
period, while on this day the wind speed recorded the minimum measurement. In addition,
for case #151, the PM2.5 content registered its minimum value in the CEC period and the
PM10 content was very close to the minimum value recorded, while the wind speed reached
its maximum value. Considering the above results, the maximum or minimum PM2.5 con-
tent for cases #9, #63 and #151 are strongly related to wind speed, since on those days this
speed reached extreme measurements. In summary, the diagnostic analytics based on the
local influence method and residuals confirm that the RBS-SAM presented in Section 2 is
suitable for modeling environmental data, even if there are outliers and potentially influential
observations.
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Figure 6: Index plots of Ci for β (a,d,g), δ (b,e,h) and f (c,f,i) under case-weight (a,b,c);
response (d,e,f); and precision (g,h,i) perturbations with data from Santiago, Chile.
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Table 2: RCs (in %) in MPL estimates and in the corresponding estimated SEs for the
indicated removed case(s), and respective p-values using environmental data
and the RBS-SAM with data from Santiago, Chile.

Removed case(s) RCs in the estimate of β1 β2 δ

Parameter — — —
None SE — — —

(p-value) < 0.01 < 0.01 —

Parameter 8.52 0.14 1.18
{9} SE 0.15 1.55 7.85

(p-value) < 0.01 < 0.01 —

Parameter 0.47 0.37 0.94
{63} SE 0.26 1.57 7.94

(p-value) < 0.01 < 0.01 —

Parameter 1.28 0.27 1.52
{151} SE 1.09 2.17 9.23

(p-value) < 0.01 < 0.01 —

Parameter 7.29 0.41 2.14
{9, 63} SE 0.21 1.67 7.75

(p-value) < 0.01 < 0.01 —

Parameter 2.84 0.33 1.12
{9, 151} SE 1.33 2.40 9.37

(p-value) < 0.01 < 0.01 —

Parameter 0.92 0.84 2.49
{63, 151} SE 1.03 2.29 9.13

(p-value) < 0.01 < 0.01 —

Parameter 2.13 0.90 2.10
{9, 63, 151} SE 1.25 2.52 9.27

(p-value) < 0.01 < 0.01 —

6. CONCLUDING REMARKS

In this study, we proposed and derived a reparametrized Birnbaum–Saunders semi-
parametric additive model. This model allowed us to describe the mean of a random variable
whose dispersion is non-constant through covariates. These covariates can contribute para-
metrically or nonparametrically in the model. Furthermore, it was possible to maintain the
original scale of the data, since performing transformations on the modeled variable can re-
duce interpretability. We used a back-fitting algorithm to obtain the maximum penalized
likelihood estimates by using the cubic smoothing splines.

To find potentially influential observations, we derived local influence techniques for
the proposed model under case-weight, response variable and precision parameter perturba-
tions. We apply the proposed model to real pollution data, verifying that the reparametrized
Birnbaum–Saunders semi-parametric additive model is adequate to work with this type of
data.
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As future research, a package in R will be implemented so that various users have this
model computationally to their disposal to be applied in practice. Currently, the R codes
are available from the authors upon request. Also, the reparametrized Birnbaum–Saunders
semi-parametric model can be extended to the reparametrized Birnbaum–Saunders semi-
parametric case with varying precision, thin-plate spline, and partially varying-coefficient
models. In addition, the use of functional, latent, spatial, and temporal structures, as well as
reduction of dimensionality employing partial least squares regression, and mixture models
that can facilitate the parameters estimation, are aspects to be considered in further studies
with optimism because they have been explored in the Birnbaum–Saunders parametric case
[12, 19, 25, 26, 35].
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1. INTRODUCTION

In the statistical literature, numerous distributions exist with two or more parameters.
However, multi-parameter distributions can have problems with estimation and prediction
due to non-identification. Therefore, in practice it is sometimes convenient to work with
one-parameter distributions. One of the most popular single-parameter distributions is the
half-normal (HN) distribution. In a recent study, Huang and Roth [10] demonstrated that
the HN distribution is not only used for lifetime data but also in pragmatic randomized
trials proving the convenience of the HN distribution for modeling different real data sets.
The probability density function (pdf) and cumulative distribution function (cdf) of the HN
distribution are given, respectively, by

f(x; θ) =
2

Γ
(

1
2

)
θ

exp
{
−
(x

θ

)2
}

, x > 0,

and

(1.1) F (x; θ) = 1−
Γ
(

1
2 ,
(

x
θ

)2)
Γ
(

1
2

) ,

where θ > 0 is a scale parameter and Γ(α, z) is the upper incomplete gamma function defined
by

Γ(α, z) =

∞∫
z

e−yyα−1dy, α, z > 0.

The distribution given with a cdf (1.1) will be denoted by HN(θ) for the remainder of this
study. Shanker et al. [23] derived some statistical properties of the HN distribution (they
called it Quasi-Exponential), such as moments, hazard and the hazard rate function, survival
function and mean residual function. The maximum likelihood estimator (MLE) of the scale
parameter is also studied. They examined the real data modeling capability of the HN
distribution using lifetime data from biomedical science.

In reliability applications, the data is generally collected under some censoring schemes
when the lifetime of the products is too long. One of the most popular schemes is progressive
censoring. It should be pointed out that progressive censoring is not only used for reliability
applications but also quite common in clinical trials due to the staggered entry. We refer
readers to [15], [16], [20] and [21] for progressive censoring with staggered entry. In this
paper, we consider the point and interval estimation (prediction) of the HN distribution
under the progressive censoring scheme. A progressively Type-II censoring scheme is well-
discussed by Balakrishnan and Aggarwala [4]. Progressively Type-II censored samples can
be explained as follows: Let n units are put on a life test. When the first failure is observed,
randomly selected r1 of the n− 1 surviving units are removed (withdrawn or censored) from
the test. When the second failure occurs, randomly selected r2 of the n− 2− r1 surviving
units are removed from the test and this process is repeated. At the time of the m-th failure,
the remaining rm = n−m− r1 − ··· − rm−1 surviving units are removed randomly from the

test. It can be easily observed that n = m+
m∑

i=1
ri. The progressively Type-II censored (PCII)

failure times are denoted by Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n.



Estimation and prediction for the HN distr. based on progressively type-II censored samples 241

There are several studies discussing the estimation and prediction problem based on the
PCII sample. Seo and Kang [22] discussed the problem of point and interval estimation for
the scaled half-logistic distribution and proposed a method to estimate the scale parameter
using the pivotal quantity method under PCII samples. They also tackled the problem of
estimation and prediction for the two-parameter half-logistic distribution. Ma and Gui [17]
used the pivotal quantity method to derive the estimator for the inverse Rayleigh distribution
based on general PCII samples. They also derived an explicit estimator of the scale parameter
by the approximation of the likelihood equation using Taylor expansion. Khan [11] studied
on the predictive inference for the HN distribution under the Type II censoring scheme. In a
more recent study, Sindhu and Hussain [24] used Bayesian methods and made predictive in-
ference on the HN distribution for left-censored data. Asgharzadeh and Valiollahi [3] studied
prediction intervals for the PCII from proportional hazard rate models. El-Din and Shafay
[18] derived one-sample and two-sample Bayesian prediction intervals based on PCII using
Exponential, Pareto, Weibull and Burr Type X-II models. Dey et al. [5] discussed the param-
eter estimation problem for generalized inverted exponential distribution under PCII. The
studies conducted by Wang et al. [26], Hemmati [9] and Kinaci et al. [12] are also examples of
studies on deriving exact confidence intervals under PCII. Recently, Ahmadi et al. [2] studied
statistical inference for the two-parameter generalized half-normal distribution based on a
PCII sample.

In this study, the point estimation, interval estimation and prediction intervals are dis-
cussed for the HN model under PCII. This paper is organized as follows: In Section 2, the
maximum likelihood and an approximate maximum likelihood estimation are discussed. In
Section 3, pivotal type estimation is studied with an approximate version. Interval estimation
is also discussed through MLE, likelihood ratio statistic and a pivotal quantity in Section 4.
In Section 5, the prediction of the removed failure times is discussed. The predictive intervals
are derived in Section 6. In Section 7, a simulation study is performed to observe the be-
havior of the point and interval estimates. A simulation study is also conducted to compare
the predictors and predictive intervals. In Section 8, a numerical example is presented for
illustration. The concluding remarks are given in Section 9.

2. MLE AND APPROXIMATE MLE ESTIMATION

Let Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n be the progressively censored order statistics from

HN(θ). Then the log-likelihood function can be written by

(2.1) `(θ) ∝ −m log(θ)−
m∑

i=1

(xi

θ

)2
+

m∑
i=1

ri log
(

Γ
(

1
2
,
(xi

θ

)2
))

,

where xi is a realization of Xr
i:m:n for i = 1, 2, ...,m. The log-likelihood function (2.1) is

non-linear in parameter θ and MLE can not be obtained, explicitly. Therefore, nonlinear op-
timization methods such as Nelder-Mead or BFGS should be applied to get the MLE of the
scale parameter θ. Initial point selection is an important problem in nonlinear optimization
methods. An arbitrary initial point may lead us to misinterpretation. Therefore, the ana-
lytically obtained approximate MLE (AMLE) estimator, which does not require a searching
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method, will be discussed below. Let us consider a first-order likelihood equation

(2.2)
d`(θ)
dθ

= −m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi exp
((

xi
θ

)2)
Γ
(

1
2 ,
(

xi
θ

)2) = 0.

We consider the random variable Z = X/θ, it is easy to know that Z has the standard
HN distribution (with θ=1) since the θ is a scale parameter. After some algebra, the Eq (2.2)
can be re-written by

(2.3) −m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi
exp
(
−z2

i

)
Γ
(

1
2 , z2

i

) = 0,

where zi is a realization of Zr
i:m:n = Xr

i:m:n/θ which is progressively censored order statistic
from standard HN distribution for i = 1, 2, ...,m.

Since equation (2.3) can not be solved analytically, we approximate the tricky part
exp(−z2

i )
Γ( 1

2
,z2

i )
by expanding it in Taylor series around vi = E(Zr

i:m:n). By the way, we can write

(2.4) G(Zr
i:m:n) = Ur

i:m:n

by using the probability integral transformation, where Zr
i:m:n is the i-th the progressively

censored order statistic from standard HN distribution with cdf

(2.5) G(z; θ) = 1−
Γ
(

1
2 , z2

)
Γ
(

1
2

) , z > 0,

and Ur
i:m:n is the standard uniform progressively censored order statistic.

According to Balakrishnan and Aggarwala [4], and using transformation (2.4) one can
write

(2.6) vi = E(Zr
i:m:n) ≈ G−1(pi),

where

(2.7) pi = E(Ur
i:m:n) = 1−

m∏
j=m−i+1

j + rm−j+1 + ···+ rm

j + 1 + rm−j+1 + ···+ rm
.

Using equations (2.5)–(2.7), vi can be determined by solving the equation

(2.8) Γ
(

1
2
, v2

i

)
= Γ

(
1
2

)
(1− pi), i = 1, 2, ...,m.

Let us turn back to (2.3) and we now focus on the Taylor expansion on the part

H(zi) =
exp
(
−z2

i

)
Γ
(

1
2 , z2

i

) .

Let h be the first-order derivative of the function H which is given by

h(zi) = −
2zi exp

(
−z2

i

)
Γ
(

1
2 , z2

i

) +
exp
(
−z2

i

)
exp(−zi)

Γ2
(

1
2 , z2

i

)√
zi

.
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Then

H(zi) ≈ H(vi) + (zi − vi)h(vi)

= Ai + Bizi,(2.9)

where

Ai = H(vi)− vih(vi)(2.10)

=
Γ
(

1
2 , v2

i

)(
1− 2v2

i

)
exp
(
v2
i

)
− 2vi

Γ2
(

1
2 , v2

i

)
and

Bi = h(vi)(2.11)

=
2vi exp

(
v2
i

)
Γ
(

1
2 , v2

i

) +
2

Γ2
(

1
2 , v2

i

) .
Eventually, using (2.9) in (2.3), we can reach to the approximate likelihood equation

−m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi

(
Ai + Bi

xi

θ

)
= 0.

After some algebra, AMLE of the parameter θ can be obtained by

(2.12) θ̃ =
c +

√
c2 + 4mb + 4md

2m
,

where

b = 2
m∑

i=1

(Xr
i:m:n)2,

c = 2
m∑

i=1

riX
r
i:m:nAi,

and

d = 2
m∑

i=1

ri(Xr
i:m:n)2Bi.

It is noticed that the estimate (2.12) is not novel but it is another form of the MMLE
given in Ahmadi et al. [2]. It is important here that the following revision brings us to the
original ML estimate of θ without any searching methods.

Revised estimates: Following a suggestion by Lee et al. [13], we now calculate Ai

and Bi in (2.10)–(2.11) with replacing vi by

(2.13) vi =
xi,

θ̃
, 1 ≤ i ≤ m.

and calculate the revised estimate θ̃revised by using (2.12). This process should be repeated a
few times until the coefficients stabilize sufficiently enough. The flowchart is given in Figure 1
to illustrate the revising process.
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START

END

,

Count=0

true

false
Count<=N

0

Count=Count+1

i=1,2,...,m

Figure 1: Flow chart for revised estimates.

3. A PIVOTAL QUANTITY ESTIMATION

In the previous section, AMLE is obtained for the scale parameter θ. In this section,
the pivotal quantity type inference is discussed. This method is adopted from the results in
Ma and Gui [17]. Let Xr

1:m:n < Xr
2:m:n < ··· < Xr

m:m:n be a PCII sample from the HN(θ). Let

Y r
i:m:n = − log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
, i = 1, 2, ...,m.

It can be easily seen that, Y r
1:m:n < Y r

2:m:n < ··· < Y r
m:m:n are PCII samples from a standard

exponential distribution. Let us consider the following transformations:

S1 = nY r
1:m:n,

Si =

n−
i−1∑
j=1

(rj + 1)

(Y r
i:m:n − Y r

i−1:m:n

)
, i = 2, ...,m.
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According to Thomas and Wilson [25], S1, S2, ..., Sm are also independent and identically dis-
tributed from a standard exponential distribution. It is well-known that the pivotal quantity

W (θ) = 2
m∑

i=1

Si

= 2
m∑

i=1

(ri + 1)Y r
i:m:n

= −2
m∑

i=1

(ri + 1) log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
(3.1)

is distributed χ2 distribution with 2m degrees of freedom.

Ma and Gui [17] pointed out that the pivotal quantity W (θ)/(2m + 2) converges to one
in probability as m →∞. In this case, the pivotal type estimate θ∗ of θ can be proposed by
solving the equation

(3.2)
m∑

i=1

(ri + 1)

− log

Γ
(

1
2 ,
(

Xi:m:n
θ

)2
)

Γ
(

1
2

)

 = m + 1.

However, (3.2) does not allow for an explicit solution for θ. Since one-dimensional searching
method can be used to get the pivotal type estimate of θ, the approximation method discussed
in the previous section can also be applied to solve the (3.2). Let us start the re-write (3.2)
by

(3.3)
m∑

i=1

(ri + 1)

{
− log

(
Γ
(

1
2 , z2

i

)
Γ
(

1
2

) )}
= m + 1,

where zi is a realization of Zr
i:m:n = Xr

i:m:n/θ which is standard progressively censored order
statistic from HN (1) for i = 1, 2, ...,m.

We expand the tricky part

K(zi) = − log

(
Γ
(

1
2 , z2

i

)
Γ
(

1
2

) )
around the point vi = E(Zr

i:m:n) which is already defined in (2.8). Let k denotes the first-order
derivative of K and it is given by

k(zi) =
2 exp

(
−z2

i

)
Γ
(

1
2 , z2

i

) .

Hence, we can write

K(zi) ≈ K(vi) + (zi − vi)k(vi)

= Ci + Dizi, i = 1, 2, ...,m,

where

Ci = K(vi)− vik(vi)(3.4)

= − log

(
Γ
(

1
2 , v2

i

)
Γ
(

1
2

) )
−

2vi exp
(
−v2

i

)
Γ
(

1
2 , v2

i

) ,
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and

Di = k(vi)(3.5)

=
2 exp

(
−v2

i

)
Γ
(

1
2 , v2

i

) .

Hence, the left-hand side of (3.3) can be approximated by

m∑
i=1

(ri + 1)
(

Ci + Di
Xr

i:m:n

θ

)
= m + 1

and the approximate pivotal quantity type estimate is obtained by

(3.6) θ∗(a) =

m∑
i=1

(ri + 1)Xr
i:m:nDi

m + 1−
m∑

i=1
(ri + 1)Ci

.

Revised estimates: We now use the method proposed by Lee et al. [13], and calculate
Ci and Di in the (3.4)–(3.5) by replacing vi by

vi =
xi,

θ∗
, 1 ≤ i ≤ m.

and calculate the revised estimate θ
∗(a)
revised by using (3.6). This process should also be repeated

a few times until the coefficients stabilize sufficiently enough.

4. INTERVAL ESTIMATIONS

In this section, we discuss the confidence interval estimation of the parameter θ based
on progressively censored data Xr

1:m:n < Xr
2:m:n < ··· < Xr

m:m:n from the HN(θ). In the ML
theory, it is well-known that

θ̂ ≈ AN
(
θ, I−1(θ)

)
,

where

I(θ) = −E

(
d2

dθ2
`(θ)

)
is the Fisher Information. It can be estimated by

I
(
θ̂
)

= −
(

d2

dθ2
l(θ)

)∣∣∣∣
θ̂

and standard error of θ̂ is estimated by SE
(
θ̂
)

=
√

I−1
(
θ̂
)
. Then we can write an approxi-

mate (1− α)100% confidence interval for θ as follows:

(4.1)
(
θ̂ − z1−α

2
SE
(
θ̂
)
, θ̂ + z1−α

2
SE
(
θ̂
))

,

where za is the a-th quantile of the standard normal distribution.
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Let us define

W (θ) = −2
m∑

i=1

(ri + 1)Q(θ), θ > 0,

where

Q(θ) = log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
.

It is well-known that the pivot W (θ) is distributed as χ2 with 2m degrees of freedom. The
following lemma is given before introducing a new confidence interval (CI) for the parameter θ.

Lemma 4.1. Suppose that 0 < a1 < a2 < ··· < am < ∞. Then, W (θ) is strictly de-

creasing in θ for any θ > 0. Furthermore, if t > 0, the equation W (θ) = t has a unique solution

for any θ > 0.

Proof: Let us consider the first-order derivative of Q(θ) in θ which is given by

dQ(θ)
dθ

= −
2 exp(−a2

i
θ2 )x

√
πθ2
(
erf(x)

(
ai
θ

)
− 1
) ,

where erf(·) is a well-known error function and it is defined as

erf(x) =
2√
π

x∫
0

exp
(
−t2
)
dt.

Since the erf(x)(x) ∈ [0, 1), it is observed that dQ(θ)
dθ > 0. This indicates that dW (θ)

dθ < 0 and
W (θ) is decreasing function in θ. Furthermore, limθ→0 W (θ) = ∞ and limθ→∞W (θ) = 0.
Thus, if t > 0, W (θ) = t has a unique solution for any θ > 0.

Let χ2
(a)2m denotes the a-th quantile of the χ2 distribution with 2m degrees of freedom.

The following theorem gives an exact CI for parameter θ.

Theorem 4.1. A (1− α)100% exact CI for θ is constructed by

(4.2)
(
W−1

(
χ2

(1−α/2)2m

)
,W−1

(
χ2

(α/2)2m

))
,

where W−1(t) is the solution of equation W (θ) = t.

Proof: The proof follows from Lemma 4.1 and the fact W (θ) ∼ χ2
(2m)

Corollary 4.1. An approximately (1− α)100% CI for θ is constructed by

(4.3)


m∑

i=1
(ri + 1)DiX

r
i:m:n

χ2
(1−α/2)2m

2 −
m∑

i=1
(ri + 1)Ci

,

m∑
i=1

(ri + 1)DiX
r
i:m:n

χ2
(α/2)2m

2 −
m∑

i=1
(ri + 1)Ci

,

where Ci and Di are defined as in (3.4) and (3.5) respectively.

Proof: The proof is analogous to that of Theorem 4.1 in Ma and Gui [17].
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By the way, there is another method called the uncorrected likelihood ratio (ULR)
interval, which has desirable properties. The ULR intervals are discussed in Doganaksoy
and Schmee [6] and Doganaksoy [7]. The ULR interval can be described as follows: Under
some mild regularity conditions, if the θ is the true parameter, then the likelihood ratio
statistic Λ = −2

(
`(θ)− `

(
θ̂
))

is distributed as χ2 with degrees of freedom 1, where ` is the

log-likelihood function as in (2.1) and θ̂ is the MLE of θ. The test statistic Λ can be used
for testing H0 : θ = θ0 against H0 : θ 6= θ0 with critical region Λ > χ2

(1)(1− α). Then, we

conclude that the ULR confidence interval for θ readily arises a nice set
{

θ : Λ < χ2
(1)(α)

}
.

Using this fact, 100(1− α)% ULR CI limits

(4.4) (θL, θU )

that satisfy

(4.5) −2
(
`(θ)− `

(
θ̂
))

− χ2
(1)(1− α) = 0

with θL < θ̂ and θU > θ̂.

It is noticed by Fraser [8] that the ULR and asymptotically normal (AN) CIs are
asymptotically equivalent. The ULR CIs are transformation invariant, unlike the AN method.
Furthermore, the ULR CIs always produce limits inside of the parameter space.

In the following section, the prediction problem is discussed for the removed failure
times within the PCII scheme.

5. PREDICTION

Let Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n be progressively censored sample from the HN(θ)

distribution and Y = Yj:rk
denotes the j-th order statistics related to the removed sample of

size rk at the progressive stage k. Using the theorem in Ng et al. [19], the conditional pdf of
Y |Xr

k:m:n can be written by

fY |Xr
k:m:n

(y|xk) =
rk!

(j − 1)!(rk − j)!
f(y)(F (y)− F (xk))

j−1

×(1− F (y))rk−j(1− F (xk))
−rk (y > xk),

where y and xk are the realizations of Y and Xr
j:m:n. Then, the predictive log-likelihood

function is given by

`(y, θ) ∝ `(θ)− log(θ)−
(y

θ

)2

+(j − 1) log
{

Γ
(

1
2
,
(xk

θ

)2
)
− Γ

(
1
2
,
(y

θ

)2
)}

+(rk − j) log
{

Γ
(

1
2
,
(y

θ

)2
)}

−rk log
{

Γ
(

1
2
,
(xk

θ

)2
)}

.(5.1)
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The predictive log-likelihood (5.1) is non-linear in y and parameter θ, and they can not
be obtained explicitly. Therefore nonlinear optimization methods such as Nelder-Mead or
BFGS should be applied to get the maximum likelihood predictor (MLP) of Y and predictive
maximum likelihood estimate (PMLE) of the scale parameter θ. The MLP and PMLE are
denoted by Ŷ and θ̂P , respectively. It is noted that the MLP of Y is the same as Xr

k:m:n for
j = 1.

From Lemma 3.1 in Seo and Kang [22], the pivot

(5.2) Wθ(Y ) =
1− F (Y )
1− F (xk)

=
Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2 ,
(

xk
θ

)2)
has beta distribution with parameters rk − j + 1 and j.

When the parameter θ is known or given, we can obtain a predictor for Y by solving
the following equation:

(5.3) Wθ(Y ) =
Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2 ,
(

xk
θ

)2) ≈ E(Brk−j+1,j) =
rk − j + 1

rk + 1
,

where Brk−j+1,j beta random variable with parameters rk − j + 1 and j. This predictor is
denoted by Ŷ2. If θ is unknown, we can use θ̂P for θ in (5.3), then a new predictor of Y can
be obtained by the solution of the equation

Wθ̂P
(Y ) =

rk − j + 1
rk + 1

,

where θ̂P is PMLE of θ and this predictor is denoted by Ŷ3.

Presently, we aim to obtain some predictors which give explicit predictions. Let us
define

p∗ = E(Uj:rk
|Uk:m:n > F (xk))

=
rk!(1− F (xk))

−rk

(j − 1)!(rk − j)!

1∫
F (xk)

y(y − F (xk))
j−1(1− y)rk−jdy

=
rk!(1− F (xk))

−rk

(j − 1)!(rk − j)!

j−1∑
i1=0

rk−j∑
i2=0

(
j − 1

ii

)(
rk − j

i2

)

×(−1)i1+i2F i1(xk)
(

1− F j−i1+i2+1(xk)
j − i1 + i2 + 1

)
,(5.4)

where Uk:m:n is the k-th standard uniform progressive censored statistic and Uj:rk
is the

standard uniform j-th ordinary order statistics related to removed sample of size rk at the
stage k. Using the same methodology in Section 3, we can also write

(5.5) Nθ(Y ) = − log

Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2

)
 ≈ L + M

Y

θ
,
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where

L = − log

(
Γ
(

1
2 , ξ2

)
Γ
(

1
2

) )
−

2ξ exp
(
−ξ2

)
Γ
(

1
2 , ξ2

) ,

M =
2 exp

(
−ξ2

)
Γ
(

1
2 , ξ2

) ,

and
ξ = E(Yj:Rk

) ≈ G−1(p∗).

Using (2.5) and (5.4), ξ can be determined by solving the following equation:

Γ
(

1
2
, ξ2

)
= Γ

(
1
2

)
(1− p∗).

We are now ready to give a new explicit predictor. Using (5.5) in (5.3), a new predictor
of Y is given by

Ŷ4 =

θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
Γ
(

1
2

) rk − j + 1
rk + 1

− L


M

,

where θ is given or known. If the θ is unknown, another predictor of Y can be defined as

Ŷ5 =

θ̂P

− log

Γ
(

1
2 ,
(

xk

θ̂P

)2
)

Γ
(

1
2

) rk − j + 1
rk + 1

− L


M

.

In the following section, the predictive intervals are discussed for failure times of progressively
removed units.

6. PREDICTIVE INTERVALS

In this section, we discuss the predictive intervals (PIs) for Y . Using maximum likeli-
hood theory, an approximately predictive interval for Y can be written by

(6.1)
(
Ŷ − z1−α

2
SE
(
Ŷ
)
, Ŷ + z1−α

2
SE
(
Ŷ
))

,

where SE
(
Ŷ
)

can be found in a similar way in Section 4 by using the negative Hessian matrix
of predictive log-likelihood function (5.1).

Let us consider the pivot (5.2) to construct a new PI for Y . For this purpose, we need
the following lemma.

Lemma 6.1. Suppose that 0 < a1 < a2 < ··· < am < ∞. Then, Wθ(y) is strictly de-

creasing in y for any y > 0. Furthermore, if t > 0, the equation Wθ(y) = t has a unique

solution for any y > 0.

Proof: The proof is similar to the proof of Lemma 4.1 and it is omitted.
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Let β(a) be the a-th quantile of the beta distribution with parameters rk − j + 1 and j.
Then the following theorem gives an exact PI of Y .

Theorem 6.1. An exact 100(1−α)% predictive interval for Y can be constructed by

(6.2)
(
W−1

θ

(
β(1−α/2)

)
,W−1

θ

(
β(α/2)

))
,

where scale parameter θ is known.

Proof: The proof follows by using Lemma 6.1 and Lemma 3.1 in Seo and Kang [22].

Corollary 6.1. When the scale parameter θ is unknown, an approximately 100(1−α)%
predictive interval for Y can be given by

(6.3)
(
W−1

θ̂P

(
β(1−α/2)

)
,W−1

θ̂P

(
β(α/2)

))
,

where θ̂P is PMLE of θ.

However, PIs in (6.2)–(6.3) cannot be obtained explicitly. In the following, we provide
an explicit solution for the PI bounds. Using the pivot in (5.2), we have

1− α ≈ P
(
β(α/2) < Wθ(Y ) < β(1−α/2)

)
= P

(
Γ
(

1
2
,
(xk

θ

)2
)

β(α/2) < Γ

(
1
2
,

(
Y

θ

)2
)

< Γ
(

1
2
,
(xk

θ

)2
)

β(1−α/2)

)

= P

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(1−α/2)

Γ
(

1
2

)
 < Nθ(Y ) < − log

Γ
(

1
2 ,
(

xk
θ

)2)
β(α/2)

Γ
(

1
2

)
.(6.4)

By substituting (5.5) in (6.4), we have the following corollaries.

Corollary 6.2. An approximately 100(1− α)% predictive interval for Y can be con-

structed by

(6.5)


θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(1−α/2)

Γ
(

1
2

)
− L


M

,

θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(α/2)

Γ
(

1
2

)
− L


M


,

where the scale parameter θ is known.
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Corollary 6.3. When the scale parameter θ is unknown, an approximately 100(1−α)%
predictive interval for Y can be constructed by

(6.6)
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In the following section, all estimation and prediction methods are compared through
the Monte Carlo simulation.

7. SIMULATION STUDY

In this section, we perform a simulation study to observe the performance of estimators,
predictors, confidence intervals and predictive intervals discussed in Sections 2-6. Several
censoring schemes are used in this study. 5000 trials are used in the simulation. The bias,
variance and mean squared errors (MSEs) of the estimates θ̂, θ̃, θ̃revised, θ

∗, θ∗(a) and θ
∗(a)
revised

are simulated. 100 iteration is performed to reach all the revised estimates. The coverage
probabilities (CPs) and average lengths (ALs) of the CIs given in (4.1)–(4.4) are calculated.
Furthermore, the bias and mean squared prediction errors (MSPEs) of the predictors Ŷ1, Ŷ2,
Ŷ3, Ŷ4 and Ŷ5 are simulated. The CPs and ALs of the PIs given in (6.1), (6.2), (6.3), (6.5)
and (6.6) are also calculated. The nominal value is fixed at α = 0.05 for all CIs and PIs.

In the following tables, the CIs has given in (4.1)–(4.4) are denoted by CI1, CI2, CI3,
CI4 and CI5 respectively. The PIs given in (6.1), (6.2), (6.3), (6.5) and (6.6) are denoted by
PI1, PI2, PI3, PI4 and PI5. A little part of the simulation results are presented in Tables
1–4, and the rest of the tables are included in the supplementary file.

According to Table 1 and the rest of the results in the supplementary file, it is concluded
that θ̂ and θ̃revised have identical MSEs and bias. This result shows that the revised AMLE
tends to MLE. θ∗, θ∗(a) and θ

∗(a)
revised are worse than the others with a slight difference in terms

of MSEs. It is observed that the censoring made at the first stage is a better choice to get
low MSEs. It is also observed from Table 2 that the CI2, CI3 and CI4 have desired CPs even
if small sample cases. However, the CPs of CI1 are not at the desired level for a small sample
case but it reaches to the nominal value for the moderate size of m. It should be pointed out
that CI4 (ULR) has the smallest average length in almost all censoring schemes.

According to Tables 3–4 and the rest of the results in the supplementary file, it is
concluded that as j increases, the MSPEs of all predictors increases whereas the MSPEs of
predictors decrease as k increases. The MSPEs of Ŷ2 and Ŷ4 are the same where Ŷ2 is obtained
by a numerical method and Ŷ4 is obtained explicitly. Then we concluded that Ŷ4 should be
used to predict the Y instead of Ŷ2 when the the θ is known. The MSPEs of Ŷ3 and Ŷ5 are
almost the same where Ŷ3 is obtained by a numerical method and Ŷ5 is obtained explicitly.
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It is concluded that Ŷ5 should be used to predict the Y instead of Ŷ3 when the θ is unknown.
The Ŷ5 has better MSPEs than the Ŷ1 has when the small values of j. This pattern is reversed
for the large values of j.

Table 1: MSEs, bias (in parenthesis) and variances for estimates of the scale parameter (θ̂=1).

n m Censoring Schemes θ̂ eθ eθrevised θ∗ θ∗(a) θ
∗(a)
revised

10 10
�
10∗0

�
0.0487 (−0.0253) 0.0487 (−0.0253) 0.0487 (−0.0253) 0.0565 (−0.1347) 0.0518 (−0.0965) 0.0498 (−0.0799)

0.0480 0.0480 0.0480 0.0384 0.0425 0.0435

20 10
�
10∗1

�
0.0583 (−0.0236) 0.0621 (0.0021) 0.0583 (−0.0236) 0.0654 (−0.1437) 0.0596 (−0.0955) 0.0584 (−0.0838)

0.0577 0.0621 0.0577 0.0448 0.0505 0.0513

10
�
5, 8∗0, 5

�
0.0584 (−0.0238) 0.0600 (−0.0094) 0.0584 (−0.0238) 0.0655 (−0.1440) 0.0588 (−0.0902) 0.0583 (−0.0841)

0.0579 0.0599 0.0579 0.0447 0.0507 0.0513

10
�
5, 5, 8∗0

�
0.0507 (−0.0252) 0.0508 (−0.0230) 0.0507 (−0.0252) 0.0586 (−0.1368) 0.0541 (−0.0986) 0.0519 (−0.0807)

0.0501 0.0503 0.0501 0.0399 0.0443 0.0454

10
�
8∗0, 5, 5

�
0.0689 (−0.0154) 0.07001 (−0.0077) 0.0689 (−0.0154) 0.0724 (−0.1424) 0.0667 (−0.0848) 0.0664 (−0.0799)

0.0687 0.0700 0.0687 0.0522 0.0595 0.0601

10
�
4∗0, 5, 5, 4∗0

�
0.0560 (−0.0237) 0.0562 (−0.0205) 0.0560 (−0.0237) 0.0634 (−0.1415) 0.0591 (−0.1014) 0.0565 (−0.0825)

0.0554 0.0558 0.0554 0.0434 0.0488 0.0497

20
�
20∗0

�
0.0244 (−0.0119) 0.0244 (−0.0119) 0.0244 (−0.0119) 0.0270 (−0.0716) 0.0257 (−0.0496) 0.0250 (−0.0404)

0.0243 0.0243 0.0243 0.0219 0.0232 0.0234

40 20
�
20∗1

�
0.0295 (−0.0113) 0.0326 (0.0137) 0.0295 (−0.0113) 0.0319 (−0.0770) 0.0303 (−0.0497) 0.0298 (−0.0429)

0.0293 0.0325 0.0293 0.0260 0.0278 0.0280

20
�
10, 18∗0, 10

�
0.0296 (−0.0116) 0.0301 (−0.0028) 0.0296 (−0.0116) 0.0319 (−0.0772) 0.0299 (−0.0457) 0.0298 (−0.0431)

0.0294 0.0301 0.0294 0.0259 0.0278 0.0279

20
�
10, 10, 18∗0

�
0.0249 (−0.0119) 0.0250 (−0.0109) 0.0249 (−0.0119) 0.0276 (−0.0722) 0.0263 (−0.0502) 0.0256 (−0.0406)

0.0248 0.0249 0.0248 0.0223 0.0237 0.0239

20
�
18∗0, 10, 10

�
0.0324 (−0.0106) 0.0326 (−0.0068) 0.0324 (−0.0106) 0.0345 (−0.0798) 0.0324 (−0.0460) 0.0323 (−0.0442)

0.0323 0.0325 0.0323 0.0281 0.0303 0.0304

20
�
9∗0, 10, 10, 9∗0

�
0.0281 (−0.0112) 0.0282 (−0.0095) 0.0281 (−0.0112) 0.0307 (−0.0755) 0.0296 (−0.0529) 0.0287 (−0.0420)

0.0279 0.0281 0.0279 0.0250 0.0268 0.0269

50 50
�
50∗0

�
0.0095 (−0.0039) 0.0095 (−0.0039) 0.0095 (−0.0039) 0.0103 (−0.0300) 0.0101 (−0.0206) 0.0100 (−0.0165)

0.0095 0.0095 0.0095 0.0094 0.0097 0.0097

100 50
�
50∗1

�
0.0116 (−0.0038) 0.0143 (0.0178) 0.0116 (−0.0038) 0.0123 (−0.0324) 0.0121 (−0.0209) 0.0120 (−0.0175)

0.0116 0.0140 0.0116 0.0113 0.0117 0.0117

50
�
25, 48∗0, 25

�
0.0116 (−0.0040) 0.0117 (0.0001) 0.0116 (−0.0040) 0.01236 (−0.0325) 0.0119 (−0.0186) 0.0119 (−0.0177 )

0.0116 0.0117 0.0116 0.0113 0.0116 0.0116

50
�
25, 25, 48∗0

�
0.0096 (−0.0039) 0.0096 (−0.0036) 0.0096 (−0.0039) 0.0104 (−0.0301) 0.0102 (−0.0207) 0.0100 (−0.0165)

0.0096 0.0096 0.0096 0.0095 0.0098 0.0098

50
�
48∗0, 25, 25

�
0.0129 (−0.0037) 0.0129 (−0.0021) 0.0129 (−0.0037) 0.0135 (−0.0337) 0.0131 (−0.0187) 0.0131 (−0.0182)

0.0129 0.0129 0.0129 0.0124 0.0128 0.0128

50
�
24∗0, 25, 25, 24∗0

�
0.0110 (−0.0037) 0.0110 (−0.0031) 0.0110 (−0.0037) 0.0118 (−0.0316) 0.0117 (−0.0222) 0.0114 (−0.0171)

0.0110 0.0110 0.0110 0.0108 0.0112 0.0112

Table 2: CPs and ALs of CI for the scale parameter θ̂ at the 0.95 confidence level (θ̂=1).

CPs ALs
n m Censoring Schemes

CI1 CI2 CI3 CI4 CI1 CI2 CI3 CI4

10 10 (10∗0) 0.8988 0.9504 0.9516 0.9464 0.8530 1.0435 0.9810 0.9613

20 10 (10∗1) 0.9014 0.9542 0.9518 0.9512 0.9427 1.1611 1.0788 1.0739

10 (5, 8∗0, 5) 0.8918 0.9514 0.9438 0.9452 0.9417 1.1570 1.0658 1.0731
10 (5, 5, 8∗0) 0.9052 0.9512 0.9540 0.9478 0.8798 1.0793 1.0167 0.9937
10 (8∗0, 5, 5) 0.9010 0.9492 0.9462 0.9460 0.9852 1.2102 1.1193 1.1263
10 (4∗0, 5, 5, 4∗0) 0.8976 0.9490 0.9518 0.9478 0.9236 1.1426 1.0762 1.0492

20 (20∗0) 0.9208 0.9514 0.9488 0.9448 0.6115 0.6791 0.6634 0.6488

40 20 (20∗1) 0.9234 0.9486 0.9490 0.9464 0.6741 0.7504 0.7260 0.7191

20 (10, 18∗0, 10) 0.9266 0.9518 0.9496 0.9510 0.6737 0.7479 0.7188 0.7188
20 (10, 10, 18∗0) 0.9292 0.9488 0.9524 0.9468 0.6194 0.6899 0.6738 0.6576
20 (18∗0, 10, 10) 0.9226 0.9488 0.9488 0.9490 0.7078 0.7852 0.7561 0.7566
20 (9∗0, 10, 10, 9∗0) 0.9252 0.9452 0.9472 0.9454 0.6584 0.7359 0.7196 0.7013

50 50 (50∗0) 0.9368 0.9580 0.9550 0.9530 0.3895 0.4088 0.4068 0.3988

100 50 (50∗1) 0.9374 0.9490 0.9506 0.9490 0.4295 0.4509 0.4458 0.4407

50 (25, 48∗0, 25) 0.9422 0.9508 0.9510 0.9518 0.4306 0.4507 0.4437 0.4418
50 (25, 25, 48∗0) 0.9450 0.9510 0.9546 0.9498 0.3928 0.4128 0.4106 0.4022
50 (48∗0, 25, 25) 0.9346 0.9482 0.9484 0.9476 0.4504 0.4707 0.4637 0.4625
50 (24∗0, 25, 25, 24∗0) 0.9352 0.9500 0.9494 0.9466 0.4167 0.4393 0.4372 0.4273
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The CPs of PI3 and PI5 are at the nominal level for small values of j. When j increases,
CPs of PI3 and PI5 decrease from the nominal level 0.95. It should be pointed out that the as
j increases, CPs are may decrease to 0.88, 0.91 and 0.93 for m = 20, 40 and 100, respectively.
Fortunately, increasing m overcomes the low CPs problem. Also, the PI2 and PI4 keep the
nominal level since the PI2 is an exact predictive interval and PI4 is an approximated version
of PI2 with a Taylor expansion. The CPs of PI1 increase first to the nominal level and then
decrease when the j increases. We conclude that PI3 should be used for small and large
values of j, respectively. PI1 can be used for moderate values of j. That is, if r10 = 10, PI1
may be used to construct the PI of Y , for j = 6, 7, 8, otherwise, PI3 should be used instead
of PI1. As j increases, the ALs of all predictive intervals increase whereas they get smaller
for large values of k. PI1 and PI3 have almost the same AL when they have the same CPs.
PI2 (PI3) has smaller ALs than PI4 (PI5) for all cases discussed here.

Table 3: MSEs, bias (in parenthesis) for Ŷi and CPs [ ], ALs [ ] for PIi
when θ̂=1, m=20, r=(5,5,...,5).

CSs k j Ŷ1 [PI1] Ŷ2 [PI2] Ŷ3 [PI3] Ŷ4[PI4] Ŷ5 [PI5]

(5*m) k=5 j=2 0.0437 (−0.1042) 0.0329 (−0.0070) 0.0365 (−0.0109) 0.0329 (−0.0070) 0.0365 (−0.0109)
CPs [0.8898] [0.9518] [0.9324] [0.9296] [0.9118]
ALs [0.6862] [0.6940] [0.6848] [0.7609] [0.7503]

j=3 0.0631 (−0.0940) 0.0544 (−0.0273) 0.0642 (−0.0307) 0.0544 (−0.0273) 0.0642 (−0.0307)
CPs [0.9184] [0.9478] [0.9124] [0.9302] [0.9010]
ALs [0.8560] [0.8778] [ 0.8713] [0.9589] [0.9513]

j=4 0.0907 (−0.0879) 0.0837 (−0.0502) 0.1014 (−0.0555) 0.0837 (−0.0502) 0.1014 (−0.0555)
CPs [0.9262] [0.9486] [0.9078] [0.9348] [0.9086]
ALs [1.1337] [1.0959] [1.0871] [1.2107] [1.2005]

j=5 0.1785 (−0.1140) 0.1737 (−0.1392) 0.2122 (−0.1444) 0.1737 (−0.1392) 0.2123 (−0.1444)
CPs [0.9244] [0.9490] [0.9012] [0.9458] [0.9172]
ALs [1.7537] [1.5142] [1.5060] [1.7623] [1.7522]

k=10 j=2 0.0429 (−0.1079) 0.0313 (−0.0127) 0.0350 (−0.0144) 0.0313 (−0.0127) 0.0350 (−0.0143)
CPs [0.8786] [0.9538] [0.9324] [0.9358] [0.9170]
ALs [0.6404] [0.6712] [0.6673] [0.7336] [0.7279]

j=3 0.0592 (−0.0947) 0.0505 (−0.0276) 0.0598 (−0.0313) 0.0505 (−0.0276) 0.0598 (−0.0312)
CPs [0.9156] [0.9476] [0.9184] [0.9374] [0.9122]
ALs [0.8970] [0.8548] [0.8480] [0.9322] [0.9232]

j=4 0.0913 (−0.0989) 0.0833 (−0.0594) 0.1022 (−0.0660) 0.0833 (−0.0594) 0.1022 (−0.0660)
CPs [0.9230] [0.9480] [0.9072] [0.9398] [0.9082]
ALs [1.0754] [1.0738] [1.0630] [1.1846] [1.1713]

j=5 0.1719 (−0.1189) 0.1664 (−0.1390) 0.2071 (−0.1518) 0.1664 (−0.1390) 0.2071 (−0.1517)
CPs [0.9294] [0.9516] [0.9120] [0.9454] [0.9170]
ALs [1.3226] [1.4936] [1.4737] [1.7355] [1.7109]

k=15 j=2 0.0389 (−0.1030) 0.0283 (−0.0105) 0.0319 (−0.0130) 0.0283 (−0.0105) 0.0319 (−0.0217)
CPs [0.8746] [0.9480] [0.9266] [0.9301] [0.9082]
ALs [0.6047] [0.6382] [0.6325] [0.6942] [0.6857]

j=3 0.0561 (−0.0936) 0.0475 (−0.0265) 0.0567 (−0.0306) 0.0475 (−0.0265) 0.0567 (−0.0303)
CPs [0.9132] [0.9476] [0.9140] [0.9336] [0.9042]
ALs [0.7431] [0.8203] [0.8129] [0.8919] [0.8813]

j=4 0.0860 (−0.0978) 0.0779 (−0.0579) 0.0962 (−0.0626) 0.0779 (−0.0579) 0.0962 (−0.0624)
CPs [0.9248] [0.9482] [0.9106] [0.9410] [0.9086]
ALs [1.0573] [1.0395] [1.0321] [1.1441] [1.1333]

j=5 0.1550 (−0.0988) 0.1508 (−0.1202) 0.1866 (−0.1280) 0.1508 (−0.1202) 0.1866 (−0.1278)
CPs [0.9336] [0.9514] [0.9112] [0.9444] [0.9160]
ALs [1.4495] [1.4608] [1.4490] [1.6924] [1.6756]
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Table 4: MSEs, bias (in parenthesis) for Ŷi and CPs [ ], ALs [ ] for PIi
when θ̂=1, m=20, r=(10,10,...,10).

CSs k j Ŷ1 [PI1] Ŷ2 [PI2] Ŷ3 [PI3] Ŷ4[PI4] Ŷ5 [PI5]

(10*m) k=5 j=2 0.0151 (−0.0671) 0.0105 (−0.0023) 0.0172 (−0.0018) 0.0105 (−0.0013) 0.0117 (−0.0018)
CPs [0.8540] [0.9528] [0.9360] [0.9404] [0.9220]
ALs [0.3494] [0.3881] [0.3893] [0.4114] [0.4124]

j=3 0.0193 (−0.0589) 0.0159 (−0.0048) 0.0184 (−0.0061) 0.0159 (−0.0048) 0.0184 (−0.0060)
CPs [0.9040] [0.9496] [0.9218] [0.9354] [0.9130]
ALs [0.4719] [0.4746] [0.4721] [0.5005] [0.4976]

j=4 0.0224 (−0.0509) 0.0199 (−0.0055) 0.0245 (−0.0175) 0.0199 (−0.0055) 0.0245 (−0.0075)
CPs [0.9310] [0.9488] [0.9170] [0.9418] [0.9110]
ALs [0.5689] [0.5484] [0.5450] [0.5763] [0.5725]

j=5 0.0284 (−0.0488) 0.0261 (−0.0111) 0.0338 (−0.0130) 0.0261 (−0.0111) 0.0338 (−0.0130)
CPs [0.9344] [0.9438] [0.8986] [0.9356] [0.8926]
ALs [0.6365] [0.6174] [0.6147] [0.6479] [0.6447]

j=6 0.0343 (−0.0478) 0.0320 (−0.0169) 0.0439 (−0.0222) 0.0320 (−0.0169) 0.0439 (−0.0222)
CPs [0.9344] [0.9500] [0.8900] [0.9420] [0.8898]
ALs [0.6699] [0.6886] [0.6815] [0.7229] [0.7152]

j=7 0.0409 (−0.0465) 0.0389 (−0.0230) 0.5556 (−0.0293) 0.0389 (−0.0230) 0.05556 (−0.0293)
CPs [0.9426] [0.9512] [0.8878] [0.9414] [0.8894]
ALs [0.7445] [0.7692] [0.7616] [0.8104] [0.8021]

j=8 0.0539 (−0.0536) 0.0516 (−0.0407) 0.0780 (−0.0420) 0.0516 (−0.0407) 0.0780 (−0.0420)
CPs [0.9346] [0.9512] [0.8764] [0.9482] [0.8766]
ALs [0.8408] [0.8733] [0.8719] [0.9276] [0.9257]

j=9 0.0754 (−0.0553) 0.0731 (−0.0594) 0.1128 (−0.0641) 0.0731 (−0.0594) 0.1128 (−0.0641)
CPs [0.9420] [0.9526] [0.8710] [0.9432] [0.8798]
ALs [1.0038] [1.0361] [1.0310] [1.1206] [1.1148]

j=10 0.1513 (−0.0698) 0.1538 (−0.1347) 0.2165 (−0.1382) 0.1538 (−0.1347) 0.2170 (−0.1379)
CPs [0.9348] [0.9480] [0.8738] [0.9482] [0.8800]
ALs [1.5188] [1.4091] [1.4053] [1.6079] [1.6033]

k=10 j=2 0.0137 (−0.0634) 0.0097(0.0001) 0.0108 (−0.0011) 0.0097(0.0001) 0.0108 (−0.0010)
CPs [0.8544] [0.9542] [0.9370] [0.9398] [0.9258]
ALs [0.3423] [0.3792] [0.3762] [0.4013] [0.3975]

j=3 0.0182 (−0.0604) 0.0146 (−0.0070) 0.0172 (−0.0081) 0.0146 (−0.0070) 0.0172 (−0.0080)
CPs [0.9050] [0.9540] [0.9246] [0.9454] [0.9162]
ALs [0.4557] [0.4647] [0.4626] [0.4895] [0.4866]

j=4 0.0222 (−0.0539) 0.0193 (−0.0089) 0.0244 (−0.0102) 0.0193 (−0.0089) 0.0244 (−0.0101)
CPs [0.9266] [0.9542] [0.9162] [0.9468] [0.9138]
ALs [0.5367] [0.5381] [0.5359] [0.5651] [0.5621]

j=5 0.0284 (−0.0509) 0.0258 (−0.0132) 0.0343 (−0.0142) 0.0258 (−0.0132) 0.0343 (−0.0142)
CPs [0.9328] [0.9462] [0.9016] [0.9394] [0.8958]
ALs [0.5935] [0.6073] [0.6059] [0.6369] [0.6346]

j=6 0.0333 (−0.0476) 0.0310 (−0.0164) 0.0435 (−0.0217) 0.0310 (−0.0164) 0.0435 (−0.0217)
CPs [0.9366] [0.9524] [0.8880] [0.9416] [0.8860]
ALs [0.7046] [0.6787] [0.6716] [0.7122] [0.7043]

j=7 0.0401 (−0.0466) 0.0379 (−0.0232) 0.0553 (−0.0268) 0.0379 (−0.0232) 0.0553 (−0.0268)
CPs [0.9422] [0.9546] [0.8890] [0.9462] [0.8856]
ALs [0.7768] [0.7597] [0.7554] [0.8000] [0.7949]

j=8 0.0535 (−0.0557) (0.0511)-0.0418 (0.0769)-0.0458 0.0511 (−0.0418) 0.0769 (−0.0458)
CPs [0.9348] [0.9554] [0.8762] [0.9512] [8784]
ALs [0.8871] [0.8643] [0.8598] [0.9176] [0.9121]

j=9 0.0751 (−0.0599) 0.0736 (−0.0635) 0.1106 (−0.0687) 0.0736 (−0.0635) 0.1106 (−0.0687)
CPs [0.9340] [0.9498] [0.8758] [0.9474] [0.8808]
ALs [1.1053] [1.0274] [1.0217] [1.1106] [1.1037]

j=10 0.1401 (−0.0639) 0.1413 (−0.1266) 0.2050 (−0.1345) 0.1413 (−0.1266) 0.2054 (−0.1343)
CPs [0.9372] [0.9528] [0.8748] [0.9482] [0.8874]
ALs [1.3007] [1.4006] [1.3915] [1.5969] [1.5859]

k=15 j=2 0.0129 (−0.0611) 0.0092(0.0004) 0.0103 (−0.0005) 0.0092(0.0004) 0.0103 (−0.0004)
CPs [0.8506] [0.9516] [0.9282] [0.9340] [0.9168]
ALs [0.3302] [0.3653] [0.3629] [0.3856] [0.3819]

j=3 0.0174 (−0.0580) 0.0140 (−0.0056) 0.0166 (−0.0079) 0.0140 (−0.0056) 0.0166 (−0.0077)
CPs [0.8992] [0.9476] [0.9184] [0.9394] [0.9144]
ALs [0.4316] [0.4496] [0.4451] [0.4727] [0.4670]

j=4 0.0221 (−0.0569) 0.0189 (−0.0122) 0.0237 (−0.0144) 0.0189 (−0.0122) 0.0237 (−0.0143)
CPs [0.9192] [0.9444] [0.9056] [0.9380] [0.9044]
ALs [0.5284] [0.5224] [0.5187] [0.5479] [0.5427]

j=5 0.0253 (−0.0499) 0.0229 (−0.0124) 0.0300 (−0.0142) 0.0229 (−0.0124) 0.0300 (−0.0141)
CPs [0.9348] [0.9536] [0.9032] [0.9438] [0.9034]
ALs [0.6051] [0.5915] [0.5891] [0.6198] [0.6159]

j=6 0.0322 (−0.0528) 0.0295 (−0.0216) 0.0418 (−0.0256) 0.0295 (−0.0216) 0.0418 (−0.0255)
CPs [0.9328] [0.9528] [0.8858] [0.9464] [0.8888]
ALs [0.6727] [0.6632] [0.6579] [0.6955] [0.6887]

j=7 0.0400 (−0.0496) 0.0378 (−0.0254) 0.0549 (−0.0329) 0.0378 (−0.0254) 0.0549 (−0.0328)
CPs [0.9356] [0.9474] [0.8764] [0.9410] [0.8788]
ALs [0.7739] [0.7448] [0.7358] [0.7839] [0.7734]

j=8 0.0497 (−0.0466) 0.0479 (−0.0329) 0.0718 (−0.0364) 0.0479 (−0.0329) 0.0718 (−0.0363)
CPs [0.9424] [0.9486] [0.8852] [0.9432] [0.8864]
ALs [0.8077] [0.8496] [0.8458] [0.9014] [0.8961]

j=9 0.0734 (−0.0581) 0.0715 (−0.0619) 0.1099 (−0.0646) 0.0715 (−0.0619) 0.1099 (−0.0645)
CPs [0.9378] [0.9514] [0.8686] [0.9474] [0.8682]
ALs [0.9801] [1.0135] [1.0107] [1.0947] [1.0902]

j=10 0.1332 (−0.0635) 0.1367 (−0.1266) 0.1952 (−0.1327) 0.1367 (−0.1266) 0.1956 (−0.1324)
CPs [0.9426] [0.9556] [0.8858] [0.9504] [0.8916]
ALs [1.4331] [1.3869] [1.3801] [1.5792] [1.5699]
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8. ILLUSTRATIVE EXAMPLE

The real dataset represents the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 in Lee [14]. For the complete data,
the parameter estimation of the θ is obtained by ML methodology. The likelihood values,
MLE of θ with the standard error, some goodness of fit tests such as Anderson-Darling (A),
Cramer-von Mises (W) and Kolmogrov-Smirnov(K) test statistic, and corresponding p values
(in parentheses) are given in Table 5. HN plot is also presented in Figure 2 which indicates
the possibility to model for breast cancer data. In addition, since the p-values for the good-
ness of fit tests reported in Table 5 are greater than 0.05, the hypothesis that the data comes
from the HN distribution cannot be rejected at a significance level 0.05.

Table 5: Some results for survival times of 121 patients data when complete data.

` A W K θ̂ SE

−579.4310 0.6606 0.0896 0.0548 82.2258 5.2856
(0.5922) (0.6388) (0.8596)
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Figure 2: Half-Normal plot for the real data.

Let us censoring the complete data with scheme r =

109 times “0”︷ ︸︸ ︷
109 ∗ 0 , 5, 5

. Then the

progressively censored data is produced by: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5,
8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8,
17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2,
29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0,
40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0,
51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0,
67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 129.0.
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Using this progressively censored data, θ̂, θ̃, θ̃revised, θ∗, θ∗(a) and θ
∗(a)
revised give the estimates

87.1066, 97.7986, 87.1079, 84.9575, 85.1070 and 85.5067 respectively. CI1, CI2,CI3 and CI4
are also calculated as (75.3322, 98.8810), (75.7754, 99.3832), (74.9352, 98.5545) and (76.5309,
97.1066). Using this progressively censored data, predictions and predictive intervals are given
in Table 6.

Table 6: PMLEs, MLPs and PIs for the first real data.

k j Yj θ̂P Ŷ1 Ŷ3 Ŷ5 PI1 PI3 PI5

110 2 117 88.1947 117.5966 120.3328 121.6912 (101.1574, 134.0358) (110.5625, 141.9586) (110.9140, 147.9162)
3 125 88.4368 128.4170 128.0046 129.1463 (102.7937, 154.0403) (113.5498, 157.2334) (113.6089, 164.7992)
4 129 88.7842 140.7604 138.3815 139.2926 (106.9345, 174.5862) (118.4837, 179.0106) (118.5047, 189.3842)
5 139 89.3816 160.4515 155.1442 155.7899 (112.6896, 208.2134) (127.2086, 222.6391) (127.6536, 241.9852)

111 2 111 88.7016 136.7600 139.1889 140.9083 (121.8496, 151.6704) (130.3967, 158.9649) (131.0636, 164.8641)
3 126 88.9844 146.1106 146.1730 147.6439 (123.2522, 168.9689) (133.0780, 173.1843) (133.3209, 180.5102)
4 127 89.3725 158.1813 155.712 156.9107 (126.6520, 189.7105) (137.5327, 193.7159) (137.5481, 203.5679)
5 154 89.9751 175.3795 171.2774 172.1548 (131.3465, 219.4126) (145.4661, 235.4339) (145.6123, 253.4672)

9. CONCLUDING REMARKS

This study addresses the problem of estimating the scale parameter of HN distribution
under progressively Type-II censoring. An approximate maximum likelihood, pivotal type
and approximate pivotal type estimators (predictors) are derived and confidence intervals
(predictors) are constructed for the scale parameter. The performance of the derived esti-
mators (predictors) is compared under different censoring schemes. In addition, a numerical
example is presented. It is concluded that under progressive Type-II censoring, the above-
mentioned estimators (predictors) and CIs (PIs) can be used in HN distribution and they
are competitive with the MLEs (PMLEs). Furthermore, some of our estimators (predictors)
are explicitly obtained unlike MLEs (PMLEs). Considering several methods and proving
their superior performances with different criterias, this study contributes to estimation and
prediction problems in different ways.
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1. INTRODUCTION

The inverse Gaussian (IG) distribution was first introduced by Schrödinger [12] and
Smoluchowsky [18] as the probability distribution of the first passage time in Brownian mo-
tion. This distribution was named as IG by Tweedie [17] since there exists inverse relationship
between the cumulant generating function of the first passage time distribution and that of
the normal distribution. The IG distribution is also known as Wald’s distribution, especially
in Russian literature.

The probability density function (pdf) of the IG(µ, λ) distribution is defined as

(1.1) f(x;µ, λ) =

√
λ

2x3π
exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, µ > 0, λ > 0,

where λ is a scale parameter and µ is the mean of the distribution.

The IG(µ, λ) distribution has the following attractive properties (see, Tian [16]; Shi
and Lv [14]; Seshadri [13]):

• it is closed under convolution;

• it is suitable to model positively-skewed data sets;

• it is the only distribution that shares many elegant properties with Gaussian models
among the distributions used to model positively skewed data, see for example Tian
[16].

Due to the aforementioned properties, the IG distribution has been widely used in
various fields such as cardiology, pharmacokinetics, linguistics, employment services, mathe-
matical finance, demography, hydrology, management sciences, etc. For example, Chhikara
and Folks [1] considered the use of the IG distribution for a lifetime model. Folks and Chhikara
[5] reviewed the development of the IG distribution and of statistical methods based on it
(Chhikara and Folks [2]). Doksum and Hbyland [3] developed models for variable-stress-
accelerated life testing experiments based on Wiener processes and the IG distribution. Tak-
agi et al. [15] calculated the percentiles of the IG distribution and considered the application
of IG to occupational exposure data. Durham and Padgett [4] used IG models to develop a
new general method based on cumulative damage for describing the failure of a system. Mud-
holkar and Tian [10] presented an entropy characterization of the IG family. Kara et al. [7]
considered the statistical inference problem for the geometric process when the distribution
of the first occurrence time is IG. Punzo [11] considered models based on the IG distribution
for the problem of fitting the distribution of insurance and economic data.

Testing the equality of means of k independent IG populations is one of the common
problems in statistics. The null and alternative hypotheses for this problem are defined as

(1.2) H0 : µ1 = µ2 = ··· = µk and H1 : not all µi’s are equal,

respectively. Here, µi (i = 1, ..., k) is the mean of the i-th population.

To test the null hypothesis against the alternative, analysis of reciprocals (ANORE)
F test is used under the assumption of homogeneity of scale parameters. This assumption is
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not always valid in most of the real-life problems, therefore, in recent years, there have been
many studies testing the equality of several IG means under the assumption of heterogene-
ity of scale parameters. For example, Tian [16] developed a test based on the generalized
p-value (GP ) approach to test the equality of several IG means. Ma and Tian [9] proposed
a parametric bootstrap (PB) approach and compared it with the GP approach in terms of
the type I error rates. Shi and Lv [14] defined a new generalized pivot quantity and the gen-
eralized p-value based on this pivot. Gökpınar et al. [6] proposed a computational approach
test (CAT ) using a simple test statistic to assess the equality of several IG means under
heterogeneity of scale parameters. Different from Gökpınar et al. [6], in this study, we pro-
pose three different test procedures by plugging the Wald (W ), score (S) and likelihood ratio
(LR) test statistics into CAT . W , S and LR test statistics are asymptotically equivalent.
However, they differ in small samples and therefore their type I errors are different from the
nominal level for small samples in general. Consequently, in this study we incorporate W ,
S and LR test statistics into CAT to improve their performances in terms of Type I error
rates. Restricted maximum likelihood (RML) estimators are used in developing the proposed
test procedures. In this study, in contrast to Ma and Tian [9] who derived RML estimators
of the parameters by using expectation-maximization (EM) algorithm, the bisection method
is used to obtain the numerical solutions for the RML estimators by maximizing the profile
likelihood function under the null hypothesis.

This article is organized as follows. In Section 2, maximum likelihood (ML) and RML
estimators for the parameters of the IG distribution are obtained. In Section 3, the PB

approach proposed by Ma and Tian [9] and GP approach proposed by Tian [16] are briefly
reviewed. In Section 4, W , S and LR test statistics are defined and the CAT procedure is
explained for testing the equality of IG means under heterogeneity of scale parameters. In
Section 5, simulated Type I error rates and powers of the existing and proposed tests are
presented. Proposed tests are illustrated by using a real data set in Section 6. Concluding
remarks are given in Section 7.

2. MAXIMUM LIKELIHOOD AND RESTRICTED MAXIMUM LIKELI-
HOOD ESTIMATORS

Let Xij , i = 1, ..., k; j = 1, ..., ni be k independent random samples from IG(µi, λi).
Here, Xij represents the j-th observation of the i-th population and ni denotes the number
of observations in the i-th population. Then the log-likelihood function (lnL1) under the
unrestricted model (H1) is obtained as follows:

(2.1) lnL1 =
k∑

i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µi)2

2µ2
i Xij

.

To obtain the ML estimators of the parameters µi and λi, we take the derivatives of lnL1

with respect to the unknown parameters and then equate them to zero as follows:

(2.2)
∂ lnL1

∂µi
=

ni∑
j=1

λi(Xij − µi)
µ3

i

= 0
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and

(2.3)
∂ lnL1

∂λi
=

ni

λi
−

ni∑
j=1

(Xij − µi)2

µ2
i Xij

= 0.

Solutions of these likelihood equations in (2.2) and (2.3) are the ML estimators of the pa-
rameters µi and λi. They are obtained as

(2.4) µ̂i = X̄i, i = 1, ..., k,

and

(2.5) λ̂i =

 1
ni

ni∑
j=1

(
1/Xij − 1/X̄i

)−1

=
(
X−1

i − (X̄i)−1
)−1

, i = 1, ..., k,

respectively. Here, X−1
i = (1/ni)

ni∑
j=1

(1/Xij). Similarly, under the restricted model (H0), the

log-likelihood function (lnL0) is obtained as

(2.6) ln L0 =
k∑

i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µ)2

2µ2Xij
.

By taking derivatives of ln L0 with respect to the parameters µ and λi and equating them to
zero, the following likelihood equations are

(2.7)
∂ lnL0

∂µ
=

k∑
i=1

ni∑
j=1

(
λiXij

µ3
− λi

µ2

)
= 0

and

(2.8)
∂ lnL0

∂λi
=

ni

2λi
−

ni∑
j=1

(Xij − µ)2

2µ2Xij
= 0,

respectively. Solutions of likelihood equations in (2.7) and (2.8) are called as RML estimators.
RML estimators of the parameters λi and µ are

λ̃i =
niµ

2

ni∑
j=1

(Xij−µ)2

Xij

, i = 1, ..., k,(2.9)

and

µ̃ =

k∑
i=1

niλiX̄i

k∑
i=1

niλi

,(2.10)

respectively.

It is obvious from equations (2.9) and (2.10) that the estimators of the unknown pa-
rameters have no explicit analytical solutions since there exists µ in the estimator of the
parameter λi and vice versa. Therefore, the profile likelihood method is used to eliminate
the effect of nuisance parameters (λ1, ..., λk) and consequently to estimate the parameter µ.
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The profile log-likelihood function (lnL∗) is obtained by replacing λi in equation (2.6) with
λ̃i given in (2.9) as

(2.11) lnL∗ =
1
2

k∑
i=1

ni

ln(niµ
2)− ln

 ni∑
j=1

(Xij − µ)2/Xij

 + constant.

Then we take the derivative of the profile log-likelihood function with respect to the parameter
µ as follows:

(2.12)
∂ lnL∗

∂µ
=

k∑
i=1

ni

 1
µ

+

ni∑
j=1

(Xij − µ)/Xij

ni∑
j=1

(Xij − µ)2/Xij

.

After rearranging the (2.12) and equating it to zero, we obtain the following equality

(2.13)
k∑

i=1

ni(X̄i − µ)

µ(X̄i − 2µ + µ2X−1
i )

= 0.

By solving (2.13), the restricted profile maximum likelihood (RPML) estimator of µ denoted
by µ̃∗ is obtained. Finally, by incorporating µ̃∗ into (2.9), we obtain the RPML estimator of
λi as

(2.14) λ̃∗i =
ni(µ̃∗)2

ni∑
j=1

(Xij−µ̃∗)2

Xij

, i = 1, ..., k.

Unfortunately, the RPML estimator of µ has no closed form. Therefore, the bisection method
is used to obtain a numerical solution for the estimate value of the parameter µ. It requires an
interval in which a root of the given equation must lie. Since the parameter µ is the common
mean, the root of the given equation, i.e., the estimate of the parameter µ, must lie between
the smallest and the largest group means. Hence, the bisection method always converges to
a root and the RPML estimate of the parameter µ is obtained.

3. REVIEWING SOME EXISTING TESTS

In this section, we briefly describe the GP and PB approaches proposed by Tian[16]
and Ma and Tian [9], respectively.

3.1. Generalized p-value (GP ) approach

Tian [16] calculated the p-value based on the GP approach using the following algo-
rithm.
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Step 1: Rλi
= λiVi/vi ∼ χ2

(ni−1)/vi, i = 1, ..., k, which is a generalized pivot for λi is

generated and Rµ̂ =

kP

i=1
niRλi

x̄i

kP

i=1
niRλi

is calculated. Here, Vi =
ni∑

j=1
(X−1

ij − X̄−1
i ),

vi is the observed value of Vi and x̄i =
ni∑

j=1
xij/ni.

Step 2: q =
k∑

i=1
niRλi

(x̄−1
i −R−1

µ̂ ) is calculated.

Step 3: Q ∼ χ2
(k−1) is generated.

Step 4: Step 2 and Step 3 are repeated m times.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(Q ≥ q)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

3.2. Parametric Bootstrap (PB) approach

Ma and Tian [9] calculated the p-value based on the PB approach using the following
algorithm.

Step 1: For a given data set xij , vi and x̄i are calculated. Here, vi is the observed

value of Vi =
ni∑

j=1
(X−1

ij − X̄−1
i ) and X̄i =

ni∑
j=1

Xij/ni, i = 1, ..., k; j = 1, ..., ni.

Then RML estimates µ̃, λ̃1, λ̃2, ..., λ̃k are calculated via EM algorithm. Based

on these estimate values QB0 =
k∑

i=1
niλ̃i(x̄−1

i − µ̃−1) is computed.

Step 2: X̄Bi ∼ IG

(
k∑

i=1
niλ̂ix̄i/

k∑
i=1

niλ̂i, niλ̂i

)
and λBi ∼ χ2

(ni−1)/vi, i = 1, ..., k are

generated independently. Here λ̂i = ni/vi.

Step 3: QB =
k∑

i=1
niλBi

(
1

X̄Bi
− 1

µ̂B

)
is computed. Here, µ̂B =

kP

i=1
niλBiX̄Bi

kP

i=1
niλBi

.

Step 4: Step 2 and Step 3 are repeated m times and Q
(l)
B , l = 1, ...,m, are obtained.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(Q(l)

B ≥ QB0)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

4. THE PROPOSED CAT PROCEDURE USING LIKELIHOOD BASED
TEST STATISTICS

In this section, the likelihood based test statistics W , S and LR are derived for testing
the equality of IG means and then they are plugged into the CAT procedure.
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4.1. Wald (W ) test statistic

The test statistic W is defined as

(4.1) W = (µ̂− µ̃∗)′
(
Iµ,µ(µ̂, λ̂)

)−1
(µ̂− µ̃∗).

Here, µ̂ and µ̃∗ are the ML and RPML estimators of mean vector µ=(µ1, ..., µk), respectively.
Also,

(µ̂− µ̃∗)′ = (µ̂1 − µ̃∗, .., µ̂k − µ̃∗)

and
Iµ,µ(µ,λ) =

(
Iµ,µ(µ,λ)− Iµ,λ(µ,λ)I−1

λ,λ(µ,λ)Iλ,µ(µ,λ)
)−1

.

To obtain (4.1) the following steps are considered:

(i) By taking the second partial derivatives of the lnL1 with respect to the param-
eters, expected information matrix

(4.2) I =
[
Iµ,µ(µ,λ) Iµ,λ(µ,λ)
Iλ,µ(µ,λ) Iλ,λ(µ,λ)

]
is obtained. Here,

(4.3) Iµ,µ(µ,λ) =


n1λ1

µ3
1

0 ··· 0

0 n2λ2

µ3
2

··· 0
...

...
. . .

...
0 0 ··· nkλk

µ3
k

,

(4.4) Iµ,λ(µ,λ) = Iλ,µ(µ,λ) =


0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0


and

(4.5) Iλ,λ(µ,λ) =


n1

2λ2
1

0 ··· 0
0 n2

2λ2
2
··· 0

...
...

. . .
...

0 0 ··· nk

2λ2
k

.

(ii) Using (4.3), (4.4) and (4.5),

(4.6) Iµ,µ(µ,λ) =


µ3

1
n1λ1

0 ··· 0

0 µ3
2

n2λ2
··· 0

...
...

. . .
...

0 0 ··· µ3
k

nkλk
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and

(4.7) (Iµ,µ(µ,λ))−1 =


n1λ1

µ3
1

0 ··· 0

0 n2λ2

µ3
2

··· 0
...

...
. . .

...
0 0 ··· nkλk

µ3
k


are obtained.

(iii) By substituting (µ̂, λ̂) into the (4.7), we get

(4.8)
(
Iµ,µ(µ̂, λ̂)

)−1
= diag(niλ̂i/µ̂3

i ) i = 1, ..., k.

(iv) The test statistic W is derived as follows:

(4.9) W =
k∑

i=1

niλ̂i(µ̂i − µ̃∗)2

µ̂3
i

.

4.2. Score (S) test statistic

The test statistic S is defined as

(4.10) S = U ′
µ(µ̃∗, λ̃

∗
)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)
Uµ(µ̃∗, λ̃

∗
).

Here, µ̃∗ and λ̃
∗

are the RPML estimators of the vector of means µ=(µ1, ..., µk) and the vector
of scale parameters λ=(λ1, ..., λk). Uµ(µ̃∗, λ̃

∗
) is the value of the vector of score function

Uµ(µ,λ) at the point (µ̃∗, λ̃
∗
)=(µ̃∗, ..., µ̃∗, λ̃∗1, ..., λ̃

∗
k). To obtain the (4.10), the following

steps are considered.

(i) By taking the first partial derivatives of the lnL1 with respect to the parameters

(4.11) U ′
µ(µ,λ) =

[
n1λ1(X̄1 − µ1)

µ3
1

, ...,
nkλk(X̄k − µk)

µ3
k

]
is obtained.

(ii) By substituting (µ̃∗, λ̃
∗
) into the (4.11), we get

(4.12) U ′
µ(µ̃∗, λ̃

∗
) =

[
n1λ̃

∗
1(X̄1 − µ̃∗)

µ̃∗3 , ...,
nkλ̃

∗
k(X̄k − µ̃∗)

µ̃∗3

]
.

(iii) By substituting (µ̃∗, λ̃
∗
) into the (4.6), we get

(4.13)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)

= diag(µ̃∗3/niλ̃
∗
i ), i = 1, ..., k.

(iv) The test statistic S is derived as follows:

(4.14) S =
k∑

i=1

niλ̃
∗
i (µ̂i − µ̃∗)2

µ̃∗3 .
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4.3. Likelihood ratio (LR) test statistic

The test statistic LR is derived as

LR = 2[lnL1(µ̂1, ..., µ̂k; λ̂1, ..., λ̂k)− lnL0(µ̃∗, ..., µ̃∗; λ̃∗1, ..., λ̃
∗
k)]

=
k∑

i=1

ni ln
λ̂i

λ̃∗i
.

(4.15)

It should be noted that W , S and LR test statistics are approximated by a chi-square distribu-
tion with (k− 1) degrees of freedom under H0 and their values are asymptotically equivalent
to each other. However, the mentioned approximation to the distributions of the test statis-
tics may not be accurate for small sample sizes. This problem is also valid even for moderately
large sample sizes. To eliminate this problem, likelihood-based test statistics, which are the
most appropriate for PB methods can be used. The CAT procedure is a special case of PB

methods; therefore, we incorporate the likelihood based test statistics W , S and LR into the
CAT and call these tests CATW , CATS and CATLR, respectively.

The algorithm of the CAT procedure based on T (T is any of W , S or LR) test statistic
is as follows:

Step 1: The observed value of the test statistic T , i.e., T0, is calculated.

Step 2: RPML estimators µ̃∗ and λ̃∗i , i = 1, ..., k, are computed.

Step 3: Artificial samples Xij , i = 1, ..., k; j = 1, ..., ni from IG(µ̃∗, λ̃∗i ) are generated
under H0.

Step 4: For a large number of times, say m, step 3 is repeated. For each of the repli-
cated samples, the values of the test statistic T (l), l = 1, ...,m, are calculated.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(T (l) ≥ T0)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

5. SIMULATION STUDY

In this section, the performances of the proposed tests CATW , CATS and CATLR

are compared with the GP approach proposed by Tian [16], the PB approach proposed by
Ma and Tian [9] and the CAT approach proposed by Gökpınar et al. [6] with respect to
the estimated Type I error rate and power criteria via the MATLAB environment under
the specified nominal level α = 0.050. In comparing the performances of the proposed tests
and the existing tests, 5,000 random samples are generated from the IG(µi, λi), i = 1, ..., k

distribution and m = 5, 000 Monte Carlo runs are used for each of the samples. In the
simulation study the following setup is used.
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Sample Sizes Parameter Values

(n1, n2, n3) (λ1, λ2, λ3) (µ1, µ2, µ3)

k=3

(8, 8, 8)
(15, 15, 15) (10, 11, 12) (2, 2.25, 2.5)
(30, 30, 30) (10, 12, 14) (2, 2.5, 3)
(8, 10, 12) (10, 15, 20) (2, 3, 4)
(10, 20, 30)

(n1, n2, n3, n4, n5) (λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5)

Number
of Groups

k=5

(8, 8, 8, 8, 8)
(15, 15, 15, 15, 15) (10, 10, 11, 12, 12) (2, 2, 2.25, 2.5, 2.5)
(30, 30, 30, 30, 30) (10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3)
(8, 8, 10, 12, 12) (10, 10, 15, 20, 20) (2, 2, 3, 4, 4)
(10, 10, 20, 30, 30)

(n1, n2, n3, n4, n5, n6, n7) (λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7)

k=7

(8, 8, 8, 8, 8, 8, 8)
(15, 15, 15, 15, 15, 15, 15) (10, 10, 11, 11, 11, 12, 12) (2, 2, 2.25, 2.25, 2.25, 3, 3)
(30, 30, 30, 30, 30, 30, 30) (10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3)
(8, 8, 10, 10, 10, 12, 12) (10, 10, 15, 15, 15, 20, 20) (2, 2, 3, 3, 3, 4, 4)
(10, 10, 20, 20, 20, 30, 30)

The estimated type I error rates for the proposed and the existing tests are presented
in Tables 1–3.

Table 1: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=3.

(λ1, λ2, λ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(10, 11, 12) 0.0454 0.0486 0.0460 0.0400 0.0616 0.0382
(10, 12, 14) 0.0456 0.0454 0.0476 0.0404 0.0606 0.0398
(10, 15, 20) 0.0448 0.0440 0.0432 0.0374 0.0602 0.0358

(n1, n2, n3) = (15, 15, 15)

(10, 11, 12) 0.0558 0.0558 0.0554 0.0524 0.0636 0.0522
(10, 12, 14) 0.0554 0.0582 0.0558 0.0528 0.0658 0.0506
(10, 15, 20) 0.0482 0.0504 0.0492 0.0444 0.0588 0.0460

(n1, n2, n3) = (30, 30, 30)

(10, 11, 12) 0.0466 0.0464 0.0456 0.0458 0.0496 0.0456
(10, 12, 14) 0.0494 0.0498 0.0496 0.0468 0.0514 0.0504
(10, 15, 20) 0.0464 0.0448 0.0442 0.0436 0.0504 0.0442

(n1, n2, n3) = (8, 10, 12)

(10, 11, 12) 0.0482 0.0514 0.0496 0.0460 0.0654 0.0446
(10, 12, 14) 0.0462 0.0478 0.0464 0.0442 0.0636 0.0380
(10, 15, 20) 0.0500 0.0472 0.0498 0.0466 0.0600 0.0398

(n1, n2, n3) = (10, 20, 30)

(10, 11, 12) 0.0522 0.0522 0.0504 0.0494 0.0584 0.0454
(10, 12, 14) 0.0534 0.0546 0.0534 0.0522 0.0592 0.0498
(10, 15, 20) 0.0524 0.0534 0.0552 0.0542 0.0584 0.0452
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Table 2: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=5.

(λ1, λ2, λ3, λ4, λ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(10, 10, 11, 12, 12) 0.0472 0.0486 0.0484 0.0676 0.0480 0.0322
(10, 10, 12, 14, 14) 0.0480 0.0486 0.0458 0.0614 0.0498 0.0310
(10, 10, 15, 20, 20) 0.0498 0.0514 0.0490 0.0610 0.0508 0.0338

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(10, 10, 11, 12, 12) 0.0536 0.0508 0.0506 0.0522 0.0524 0.0400
(10, 10, 12, 14, 14) 0.0460 0.0468 0.0450 0.0502 0.0470 0.0416
(10, 10, 15, 20, 20) 0.0530 0.0568 0.0564 0.0620 0.0572 0.0460

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30, 30)

(10, 10, 11, 12, 12) 0.0530 0.0546 0.0548 0.0570 0.0556 0.0496
(10, 10, 12, 14, 14) 0.0508 0.0482 0.0486 0.0510 0.0494 0.0452
(10, 10, 15, 20, 20) 0.0500 0.0550 0.0536 0.0556 0.0528 0.0466

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(10, 10, 11, 12, 12) 0.0502 0.0510 0.0508 0.0600 0.0538 0.0350
(10, 10, 12, 14, 14) 0.0466 0.0494 0.0496 0.0602 0.0500 0.0376
(10, 10, 15, 20, 20) 0.0482 0.0472 0.0472 0.0602 0.0468 0.0332

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(10, 10, 11, 12, 12) 0.0516 0.0522 0.0500 0.0602 0.0492 0.0408
(10, 10, 12, 14, 14) 0.0516 0.0522 0.0500 0.0612 0.0492 0.0408
(10, 10, 15, 20, 20) 0.0486 0.0480 0.0496 0.0634 0.0472 0.0364

Table 3: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=7.

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(10, 10, 11, 11, 11, 12, 12) 0.0470 0.0510 0.0518 0.0774 0.0482 0.0298
(10, 10, 12, 12, 12, 14, 14) 0.0482 0.0482 0.0468 0.0716 0.0422 0.0272
(10, 10, 15, 15, 15, 20, 20) 0.0474 0.0550 0.0530 0.0770 0.0484 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(10, 10, 11, 11, 11, 12, 12) 0.0518 0.0522 0.0526 0.0646 0.0516 0.0440
(10, 10, 12, 12, 12, 14, 14) 0.0506 0.0526 0.0534 0.0636 0.0516 0.0388
(10, 10, 15, 15, 15, 20, 20) 0.0488 0.0518 0.0498 0.0636 0.0492 0.0398

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0500 0.0536 0.0516 0.0610 0.0524 0.0462
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0554 0.0562 0.0620 0.0568 0.0494
(10, 10, 15, 15, 15, 20, 20) 0.0500 0.0532 0.0524 0.0624 0.0518 0.0454

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(10, 10, 11, 11, 11, 12, 12) 0.0434 0.0436 0.0442 0.0656 0.0436 0.0306
(10, 10, 12, 12, 12, 14, 14) 0.0486 0.0486 0.0508 0.0708 0.0444 0.0356
(10, 10, 15, 15, 15, 20, 20) 0.0516 0.0488 0.0502 0.0742 0.0458 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0502 0.0576 0.0532 0.0670 0.0534 0.0442
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0500 0.0506 0.0678 0.0474 0.0408
(10, 10, 15, 15, 15, 20, 20) 0.0476 0.0484 0.0462 0.0604 0.0472 0.0400
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Table 4: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=3.

(λ1, λ2, λ3) (µ1, µ2, µ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(2, 2.25, 2.5) 0.1018 0.1028 0.1194 0.1066 *** 0.1006
(10, 11, 12) (2, 2.5, 3) 0.2120 0.1896 0.2392 0.2200 *** 0.2276

(2, 3, 4) 0.5226 0.3314 0.5486 0.5318 *** 0.5660

(2, 2.25, 2.5) 0.1096 0.0940 0.1128 0.1034 *** 0.1036
(10, 12, 14) (2, 2.5, 3) 0.2392 0.1940 0.2600 0.2402 *** 0.2510

(2, 3, 4) 0.5608 0.3254 0.5610 0.5430 *** 0.5800

(2, 2.25, 2.5) 0.1378 0.0914 0.1260 0.1138 *** 0.1160
(10, 15, 20) (2, 2.5, 3) 0.3110 0.1958 0.2952 0.2786 *** 0.2846

(2, 3, 4) 0.6432 0.3352 0.6238 0.6108 *** 0.6222

(n1, n2, n3) = (15, 15, 15)

(2, 2.25, 2.5) 0.1806 0.1616 0.1800 0.1750 *** 0.1848
(10, 11, 12) (2, 2.5, 3) 0.4906 0.4180 0.4814 0.4694 *** 0.4908

(2, 3, 4) 0.9016 0.7620 0.8864 0.8834 *** 0.9054

(2, 2.25, 2.5) 0.2076 0.1840 0.2062 0.1968 *** 0.2020
(10, 12, 14) (2, 2.5, 3) 0.5220 0.4462 0.5156 0.5068 *** 0.5308

(2, 3, 4) 0.9174 0.7596 0.9010 0.8974 *** 0.9228

(2, 2.25, 2.5) 0.2528 0.1918 0.2300 0.2228 0.2546 0.2290
(10, 15, 20) (2, 2.5, 3) 0.6060 0.4696 0.5748 0.5678 0.5966 0.5962

(2, 3, 4) 0.9546 0.7968 0.9372 0.9332 0.9414 0.9510

(n1, n2, n3) = (30, 30, 30)

(2, 2.25, 2.5) 0.3708 0.3466 0.3656 0.3622 0.3792 0.3734
(10, 11, 12) (2, 2.5, 3) 0.8344 0.8036 0.8292 0.8258 0.8410 0.8430

(2, 3, 4) 0.9982 0.9964 0.9986 0.9982 0.9984 0.9982

(2, 2.25, 2.5) 0.3984 0.3564 0.3796 0.3778 0.3966 0.3882
(10, 12, 14) (2, 2.5, 3) 0.8678 0.8272 0.8534 0.8502 0.8610 0.8656

(2, 3, 4) 0.9990 0.9952 0.9986 0.9980 0.9986 0.9986

(2, 2.25, 2.5) 0.4872 0.4090 0.4462 0.4420 0.4622 0.4570
(10, 15, 20) (2, 2.5, 3) 0.9174 0.8720 0.9024 0.8976 0.9080 0.9080

(2, 3, 4) 0.9998 0.9980 0.9996 0.9998 0.9998 0.9998

(n1, n2, n3) = (8, 10, 12)

(2, 2.25, 2.5) 0.1402 0.0964 0.1302 0.1218 *** 0.1188
(10, 11, 12) (2, 2.5, 3) 0.3066 0.1904 0.2808 0.2668 *** 0.2670

(2, 3, 4) 0.6680 0.3410 0.6166 0.6032 *** 0.6240

(2, 2.25, 2.5) 0.1492 0.0912 0.1302 0.1240 *** 0.1164
(10, 12, 14) (2, 2.5, 3) 0.3560 0.2136 0.3212 0.3082 *** 0.3094

(2, 3, 4) 0.7032 0.3448 0.6480 0.6402 *** 0.6564

(2, 2.25, 2.5) 0.1782 0.0898 0.1392 0.1322 *** 0.1262
(10, 15, 20) (2, 2.5, 3) 0.3900 0.2064 0.3408 0.3304 *** 0.3282

(2, 3, 4) 0.7658 0.3682 0.6958 0.6892 *** 0.7072

(n1, n2, n3) = (10, 20, 30)

(2, 2.25, 2.5) 0.2448 0.1264 0.1912 0.1878 0.1958 0.1778
(10, 11, 12) (2, 2.5, 3) 0.5624 0.3250 0.4854 0.4824 0.4842 0.4698

(2, 3, 4) 0.9112 0.5672 0.8634 0.8592 0.8502 0.8644

(2, 2.25, 2.5) 0.2514 0.1406 0.2032 0.2016 0.2176 0.1886
(10, 12, 14) (2, 2.5, 3) 0.5908 0.3352 0.5062 0.5016 0.5132 0.4956

(2, 3, 4) 0.9360 0.5970 0.8832 0.8796 0.8690 0.8874

(2, 2.25, 2.5) 0.2852 0.1472 0.2222 0.2244 0.2364 0.2040
(10, 15, 20) (2, 2.5, 3) 0.6412 0.3972 0.5624 0.5626 0.5684 0.5394

(2, 3, 4) 0.9564 0.6716 0.9162 0.9164 0.9066 0.9128

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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Table 5: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=5.

(λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(2, 2, 2.25, 2.5, 2.5) 0.1126 0.1266 0.1424 *** 0.1462 0.1092
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.2800 0.2886 0.3530 *** 0.3648 0.3104

(2, 2, 3, 4, 4) 0.6882 0.5216 0.7842 *** 0.8000 0.7744

(2, 2, 2.25, 2.5, 2.5) 0.1300 0.1106 0.1414 *** 0.1428 0.1126
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.3320 0.2964 0.3828 *** 0.4018 0.3490

(2, 2, 3, 4, 4) 0.7332 0.5032 0.7970 *** 0.8110 0.7900

(2, 2, 2.25, 2.5, 2.5) 0.1698 0.1172 0.1614 *** 0.1704 0.1304
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.4120 0.2690 0.4224 *** 0.4414 0.3868

(2, 2, 3, 4, 4) 0.8282 0.4770 0.8436 *** 0.8526 0.8390

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(2, 2, 2.25, 2.5, 2.5) 0.2640 0.2408 0.2600 0.2734 0.2642 0.2522
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.6962 0.6596 0.7048 0.7216 0.7186 0.7066

(2, 2, 3, 4, 4) 0.9816 0.9676 0.9890 0.9900 0.9900 0.9906

(2, 2, 2.25, 2.5, 2.5) 0.2790 0.2460 0.2778 0.2974 0.2876 0.2714
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7140 0.6614 0.7232 0.7384 0.7310 0.7312

(2, 2, 3, 4, 4) 0.9918 0.9602 0.9904 0.9922 0.9914 0.9936

(2, 2, 2.25, 2.5, 2.5) 0.3378 0.2542 0.3128 *** 0.3220 0.2982
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8102 0.6916 0.7866 *** 0.7998 0.7896

(2, 2, 3, 4, 4) 0.9950 0.9682 0.9944 *** 0.9954 0.9960

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.5174 0.5080 0.5218 0.5356 0.5324 0.5226
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.9670 0.9626 0.9698 0.9708 0.9702 0.9714

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.5746 0.5482 0.5730 0.5822 0.5812 0.5740
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.9810 0.9728 0.9804 0.9804 0.9810 0.9808

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.6656 0.5830 0.6274 0.6366 0.6332 0.6196
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.9922 0.9832 0.9906 0.9912 0.9914 0.9896

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(2, 2, 2.25, 2.5, 2.5) 0.1718 0.1184 0.1612 *** 0.1616 0.1292
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.4234 0.2792 0.4190 *** 0.4180 0.3956

(2, 2, 3, 4, 4) 0.8606 0.4846 0.8500 *** 0.8470 0.8520

(2, 2, 2.25, 2.5, 2.5) 0.1942 0.1210 0.1726 *** 0.1704 0.1420
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.4752 0.2800 0.4500 *** 0.4508 0.4248

(2, 2, 3, 4, 4) 0.8762 0.4718 0.8636 *** 0.8566 0.8616

(2, 2, 2.25, 2.5, 2.5) 0.2184 0.1098 0.1780 *** 0.1708 0.1510
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.5506 0.2850 0.5000 *** 0.4940 0.4550

(2, 2, 3, 4, 4) 0.9298 0.4582 0.9026 *** 0.8962 0.9020

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.3274 0.1516 0.2532 *** 0.2422 0.2304
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.7514 0.4418 0.6770 *** 0.6580 0.6558

(2, 2, 3, 4, 4) 0.9912 0.7222 0.9792 *** 0.9740 0.9822

(2, 2, 2.25, 2.5, 2.5) 0.3394 0.1642 0.2612 *** 0.2502 0.2418
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7550 0.4274 0.6740 *** 0.6594 0.6650

(2, 2, 3, 4, 4) 0.9930 0.7252 0.9848 *** 0.9788 0.9870

(2, 2, 2.25, 2.5, 2.5) 0.3688 0.1674 0.2928 *** 0.2798 0.2680
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8206 0.4834 0.7488 *** 0.7340 0.7312

(2, 2, 3, 4, 4) 0.9944 0.7646 0.9896 *** 0.9852 0.9900

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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Table 6: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=7.

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1082 0.1154 0.1292 *** 0.1246 0.0954
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2386 0.2548 0.2934 *** 0.2856 0.2668

(2, 2, 3, 3, 3, 4, 4) 0.5970 0.4976 0.6876 *** 0.6808 0.6956

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1122 0.1064 0.1234 *** 0.1176 0.0960
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2570 0.2582 0.3110 *** 0.3018 0.2844

(2, 2, 3, 3, 3, 4, 4) 0.6514 0.5010 0.7162 *** 0.7042 0.7330

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1412 0.1082 0.1392 *** 0.1312 0.1038
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3246 0.2614 0.3580 *** 0.3540 0.3258

(2, 2, 3, 3, 3, 4, 4) 0.7482 0.5286 0.7824 *** 0.7782 0.8010

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1898 0.1958 0.2112 *** 0.2044 0.1914
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.5696 0.5600 0.6168 *** 0.6128 0.6204

(2, 2, 3, 3, 3, 4, 4) 0.9702 0.9168 0.9752 *** 0.9746 0.9832

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2094 0.1966 0.2176 *** 0.2210 0.068
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6228 0.5796 0.6476 *** 0.6504 0.6588

(2, 2, 3, 3, 3, 4, 4) 0.9804 0.9308 0.9822 *** 0.9826 0.9870

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2812 0.2262 0.2672 *** 0.2682 0.2462
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7222 0.6422 0.7256 *** 0.7324 0.7340

(2, 2, 3, 3, 3, 4, 4) 0.9928 0.9510 0.9896 *** 0.9896 0.9946

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4520 0.4534 0.4722 *** 0.4678 0.4692
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9400 0.9262 0.9404 *** 0.9410 0.9474

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4894 0.4600 0.4892 *** 0.4876 0.4892
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9640 0.9464 0.9604 *** 0.9618 0.9652

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.5968 0.5318 0.5752 *** 0.5760 0.5670
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9790 0.9656 0.9752 *** 0.9750 0.9794

(2, 2, 3, 3, 3, 4, 4) 1.0000 1.0000 1.0000 *** 1.0000 1.0000

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1366 0.1086 0.1316 *** 0.1280 0.1112
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3630 0.7380 0.3652 *** 0.3506 0.3298

(2, 2, 3, 3, 3, 4, 4) 0.7752 0.5306 0.7788 *** 0.7572 0.7912

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1526 0.1020 0.1320 *** 0.1288 0.1114
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3752 0.2830 0.3836 *** 0.3702 0.3524

(2, 2, 3, 3, 3, 4, 4) 0.8216 0.5490 0.8094 *** 0.7850 0.8248

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1860 0.1162 0.1634 *** 0.1534 0.1378
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.4652 0.3202 0.4510 *** 0.4424 0.4148

(2, 2, 3, 3, 3, 4, 4) 0.8720 0.6136 0.8608 *** 0.8484 0.8690

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2714 0.1678 0.2230 *** 0.2140 0.2008
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6850 0.4904 0.6396 *** 0.6248 0.6198

(2, 2, 3, 3, 3, 4, 4) 0.9818 0.8286 0.9698 *** 0.9624 0.9722

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2916 0.1768 0.2434 *** 0.2352 0.2214
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7168 0.5176 0.6736 *** 0.6576 0.6534

(2, 2, 3, 3, 3, 4, 4) 0.9888 0.8438 0.9780 *** 0.9680 0.9824

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.3482 0.2162 0.2938 *** 0.2826 0.2522
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7792 0.6010 0.7482 *** 0.7330 0.7146

(2, 2, 3, 3, 3, 4, 4) 0.9966 0.9236 0.9904 *** 0.9864 0.9902

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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It can be seen from Table 1 that the estimated type I error rates of the tests are close
to the nominal level, except for the PB approach when the number of observations in the
populations are equal to (n1, n2, n3) = (8, 8, 8), (8, 10, 12) and (15, 15, 15). It can be seen
from Table 2 that if the sample sizes are small and/or different the estimated type I error
rates for the GP approach are larger than the nominal level. As seen from Table 3 that the
estimated type I error rates for the GP approach are always greater than 0.060. It should be
noted that the estimated type I error rates of the CATW , CATS, CATLR, PB and CAT

approaches are close to the nominal level α = 0.050 in all cases when the number of groups is
moderate to large. The estimated powers of the proposed and the existing tests are presented
in Tables 4–6. It should be noted that in Tables 4–6 the estimated type I error rates of the
tests which are greater or equal to 0.060 are denoted by ***.

It can be seen from Table 4 that CATS shows the worst performance in all cases. In
addition, the CATW outperforms the other tests when the sample sizes are unequal. It can
be seen from Table 5 that the performances of the CATLR and PB tests are similar when
the sample sizes are small and equal. The CATW test is more powerful than the other tests
when the sample sizes are different. Also, CATW shows the best performance when the
sample sizes are moderately large and unequal while CATS shows the worst performance.
Since the simulation results given in Table 6 show a similar behavior as in Table 5, the same
conclusions are drawn from Table 6. Therefore, we do not repeat them for the sake of brevity.

6. REAL DATA EXAMPLE

In this section, the fatigue life data taken from Leiva et al. [8] is analyzed to illustrate
the implementation of the proposed and the existing tests; see Table 7. It contains fatigue
life (T) of 6061-T6 aluminum pieces which were cut parallel to the direction of rolling and
oscillating at 18 cycles/s at maximum stress levels of x1 = 2.1, x2 = 2.6 and x3 = 3.1 psi
(×104); see Leiva et al. [8] for more detailed information. These stress levels denote the
groups whose means are to be compared and the sample sizes of them are n1 = 101, n2 = 102
and n3 = 101, respectively.

Firstly we calculate the values of Lilliefors goodness of fit test and the corresponding
p-value for each of the three groups to test the assumption that the data are from an IG
distribution; see Table 8.

It can be seen from Table 8 that the IG distribution provides a good fit for each group
of the fatigue life data, since the corresponding p-values are all greater than the nominal level
α = 0.050. Then, we compute the ML estimates (µ̂i, λ̂i) of the parameters (µi, λi) and the
RML estimates (µ̃, λ̃i) of the parameters (µ, λi), i = 1, 2, 3, by using the equalities given in
Section 2; see Table 9.

The values of the W , S and LR test statistics based on the ML and RML estimates are
calculated as 300141.0259, 41.2081 and 645.9193 using the (4.9), (4.14) and (4.15), respec-
tively. In addition, to test the hypothesis of equality of means, the p-values for the existing
tests GP and PB and the proposed tests CATW , CATS and CATLR are calculated using
the algorithms given in Sections 3 and 4, respectively. The p-value for the CAT is calculated
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from the algorithm given in Gökpınar et al. [6]. m=5,000 Monte Carlo runs are used in
calculating the p-values for the fatigue life data. p-values for the proposed and the existing
tests are obtained to be very close to zero. Therefore, the hypothesis of equality of means
is rejected for all tests at the significance level α = 0.050. It should be noted that all the
calculations are made using MATLAB software.

Table 7: Fatigue life of aluminum pieces submitted to
the maximum indicated stress level.

stress levels (psi)

I: 2.1× 104

370, 706, 716, 746, 785, 797, 844, 855, 858, 886, 886, 930, 960, 988, 999,
1000, 1010, 1016, 1018, 1020, 1055, 1085, 1102, 1102, 1108, 1115, 1120,
1134, 1140, 1199, 1200, 1200, 1203, 1222, 1235, 1238, 1252, 1258, 1262,
1269, 1270, 1290, 1293, 1300, 1310, 1313, 1315, 1330, 1355, 1390, 1416,
1419, 1420, 1420, 1450, 1452, 1475, 1478, 1481, 1485, 1502, 1505, 1513,
1522, 1522, 1530, 1540, 1560, 1567, 1578, 1594, 1602, 1604, 1608, 1630,
1642, 1674, 1730, 1750, 1750, 1763, 1768, 1781, 1782, 1792, 1820, 1868,
1881, 1890, 1893, 1895, 1910, 1923, 1924, 1945, 2023, 2100, 2130, 2215,
2268, 2440

II: 2.6× 104

233, 258, 268, 276, 290, 310, 312, 315, 318, 321, 321, 329, 335, 336, 338,
338, 342, 342, 342, 344, 349, 350, 350, 351, 351, 352, 352, 356, 358, 358,
360, 362, 363, 366, 367, 370, 370, 372, 372, 374, 375, 376, 379, 379, 380,
382, 389, 389, 395, 396, 400, 400, 400, 403, 404, 406, 408, 408, 410, 412,
414, 416, 416, 416, 420, 422, 423, 426, 428, 432, 432, 433, 433, 437, 438,
439, 439, 443, 445, 445, 452, 456, 456, 460, 464, 466, 468, 470, 470, 473,
474, 476, 476, 486, 488, 489, 490, 491, 503, 517, 540, 560

III: 3.1× 104

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109,
109, 112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123,
124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131,
131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138,
138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145,
146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159,
162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212

Table 8: Lilliefors goodness of fit test for the stress levels (groups)
and the corresponding p-values.

stress levels (psi) I: 2.1× 104 II: 2.6× 104 III: 3.1× 104

Lilliefors test
Test statistic 0.0699 0.0452 0.0752

p-value 0.6011 0.9483 0.5154

Table 9: The ML and RML estimates for the parameters µi, µ and λi.

stress levels ML RML

I µ̂1 = 1400.8 λ̂1 = 14222.3 λ̃1 = 13876.9

II µ̂2 = 397.9 λ̂2 = 15165.8 λ̃2 = 766.8

III µ̂3 = 133.7 λ̂3 = 4573.4 λ̃3 = 159.4
common mean µ̃ = 1334.8
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7. CONCLUSION

In this study, Wald, score and likelihood ratio test statistics are defined for the problem
of testing the equality of IG means. Then they are plugged into the computational approach
test procedure. The proposed tests are compared with the existing tests according to the
estimated type I error rate and power criteria via a Monte Carlo simulation study. The
estimated type I error rates for the proposed tests are close to the nominal level α = 0.050
in all cases considered in the study. The computational approach test based on Wald test
statistic appears to be more powerful than the other tests especially when the sample sizes
are not equal among groups.
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