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1. INTRODUCTION

Recently, an increasing interest can be observed for the art of adding parameters to
some well-known existing distributions for getting different shapes of hazard rate or failure
rate functions for applying it in various real-life situations and also for analyzing data with
a high degree of skewness and kurtosis. In principle, the log-normal distribution is defined
as the continuous probability distribution of a random variable whose logarithm is normally
distributed. It is one of the most widely used distributions for asymmetric datasets. Thus, it
has been widely applied in many different aspects of life sciences, including biology, geology,
ecology, and meteorology as well as in economics, finance, and risk analysis (see [15]), and also
attracts attention quite often in environmental sciences, physics, astrophysics, and cosmology
(see [3], [4], [22]).

On many occasions, the significance of the LN distribution in biological science has
been acknowledged. Bentley (1954) ([9]) provides numerous generic resources for statistical
data generated from biological and agricultural sources. A study on the complexities of
the biochemical mechanisms associated with gene expression has created an emergent LN
distribution of expression levels, according to [2]. Carvalho (2018) ([5]) found that a form of
the LN distribution fits the postpartum blood loss data from numerous geographical areas
quite well, suggesting that the LN distribution may fit postpartum blood loss generally.
Hence, in this article, we utilize a cancer dataset as an application that is related to biological
science.

The probability density function (pdf) for a log-normal random variable W is given by

q(w) =
1√

2πσw
exp
[
−(logw − µ)2

2σ2

]
, w > 0, µ ∈ R, σ > 0.

Zografos and Balakrishnan (2009) (see [26]) proposed a novel family of univariate distributions
generated by gamma random variables. Further Nadarajah et al. (2015) (see [20]) provides
a comprehensive treatment of the general mathematical properties of this family and denote
it with the prefix “Zografos-Balakrishnan-G” or “ZB-G” distributions. They discuss the esti-
mation of parameters by maximum likelihood and provide an application to a real dataset
and also propose a bivariate generalization. For any baseline cumulative distribution function
(cdf) G(x), and x ∈ R, Zografos and Balakrishnan (2009) ([26]) defined a distribution with
pdf f(x) and cumulative distribution function (cdf) F (x) given by

(1.1) f(x) =
1

Γ(α)
{− log[1−G(x)]}α−1g(x),

and

(1.2) F (x) =
γ(α,− log[1−G(x)])

Γ(α)
=

1
Γ(α)

∫ − log[1−G(x)]

0
tα−1 exp(−t)dt,

respectively for α > 0, where g(x) = dG(x)/dx, Γ(α) =
∫∞
0 tα−1 exp(−t)dt denotes the gamma

function, and γ(α, z) =
∫∞
0 tα−1 exp(−t)dt denotes the incomplete gamma function. The cor-

responding hazard rate function (hrf) is

h(x) =
{− log[1−G(x)]}α−1g(x)

Γ(α,− log[1−G(x)])
,

where Γ(α, z) =
∫ z
0 t

α−1 exp(−t)dt denotes the complementary incomplete gamma function.
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Moreover, using the generalization in (1.1) and considering the immense applicability of
the log-normal distribution, Nadarajah et al. (2015) ([20]) also suggests the generalization of
log-normal distribution called Zografos-Balakrishnan log-normal (ZBLN) distribution. How-
ever, little is known in terms of general mathematical properties and in terms of application
for this generalization.

The aim of this article is to derive some mathematical properties of Zografos-
-Balakrishnan log-normal distribution in the most simple, explicit and general forms and
apply it to biological sciences and other reliability analyses. The main motivation for con-
sidering this lifetime model is to study the flexibility of the distribution that can be used to
model lifetime data in a wider class of biological data and reliability problems.

The rest of the paper is organized as follows. In Section 2, we present the definition of
the ZBLN distribution and obtain the weighted form of the same. The moments of the distri-
bution are obtained in Section 3. The quantile function and some of its associated measures
are obtained in Section 4. The various functions and the moments related to the reliability
measures are discussed in Section 5. Section 6 deals with the derivation of the Rényi en-
tropy, and Section 7 deals with the discussion of some inequality measures associated with
the ZBLN distribution. The distributions of order statistics are derived in Section 8. In order
to estimate the unknown parameters of the ZBLN model, the method of maximum likeli-
hood estimation, and the Bayesian estimation procedure are employed, and also a parametric
bootstrap method of simulation is presented in Section 9. To analyze the longstanding per-
formances of maximum likelihood estimators, and the Bayesian estimators of the parameters,
a simulation study has been conducted in Section 10. To illustrate the potentiality of the
ZBLN distribution over competing distributions, one real dataset is analyzed in Section 11.
The final concluding remarks are given in Section 12.

2. DEFINITION OF THE DISTRIBUTION

In this section, we present the definition and some important features of the ZBLN
distribution.

Definition 2.1. Let X be a random variable which follows ZBLN distribution (see
[20]) with parameters α, µ and σ, then its pdf is given by

(2.1) f(x) =
1

σ x Γ(α)

{
− log

[
1− Φ

(
log x− µ

σ

)]}α−1

φ

(
log x− µ

σ

)
,

and the cdf is given by

F (x) =
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

=
1

Γ(α)

∫ − log[1−Φ( log x−µ
σ )]

0
tα−1 exp(−t)dt,(2.2)

where x > 0, µ ∈ R and α, σ > 0. Also, Φ(.) and φ(.) are respectively the cdf and pdf of the
standard normal distribution.
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Note that, ZBLN distribution reduces to the two-parameter log-normal if α = 1. The
plot in Figure 1 portrays the pdf of ZBLN distribution, and we observe that the pdf may
be decreasing and unimodal with a certain flexibility in the mode and tails. It is, however,
mainly right-skewed or almost symmetrical.
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Figure 1: Plots of pdf of the ZBLN distribution.

2.1. Expansions for pdf and cdf

Nadarajah et al. (2015) ([20]) derived some useful expansions for (1.1) and (1.2) using
the concept of exponentiated distributions. For an arbitrary baseline cdf G(x), a random
variable is said to have the exponentiated-G distribution with parameter α > 0, say X ∼
exp-G(α), if its pdf and cdf are respectively given by

f∗α(x) = αGα−1(x)g(x), and F ∗α(x) = Gα(x).

The important properties of exponentiated distributions have been studied by several au-
thors; for examples, see [18] for exponentiated Weibull, [10] for exponentiated Pareto, [12] for
exponentiated exponential, [19] for exponentiated Gumbel and [21] for exponentiated gamma
distributions.

Note that, for any real parameter α > 0, the following formula holds.

{− log[1−G(x)]}α−1 = (α− 1)
∞∑

k=0

(
k+1−α

k

) k∑
j=0

(
k
j

)(−1)j+k pj,k

(α− 1− j)
{G(x)}α+k−1,

where the constants pj,k can be calculated recursively through the relation,

pj,k =
1
k

k∑
m=1

[k −m(j + 1)]cm pj,k−m,
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for k = 1, 2, ... with pj,0 = 1 and ck = (−1)k+1(k+ 1)−1. Thus, Nadarajah et al. (2015) ([20])
demonstrated that (1.1), and the corresponding (1.2) can be expressed as

f(x) =
∞∑

k=0

bk f
∗
α+k(x), and F (x) =

∞∑
k=0

bk F
∗
α+k(x),

where f∗α+k(x) and F ∗α+k(x) respectively denotes the corresponding pdf and cdf of the exp-
G(α+ k) distribution and for any real parameter α > 0, and

(2.3) bk =

(
k+1−α

k

)
(α+ k)Γ(α− 1)

k∑
j=0

(
k

j

)
(−1)j+k pj,k

(α− 1− j)
.

Thus, the cdf and pdf of the ZBLN distribution respectively obtained as

(2.4) F (x) =
∞∑

k=0

bk

[
Φ
(

log x− µ

σ

)]α+k

,

and

(2.5) f(x) =
∞∑

k=0

bk
(α+ k)
σx

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

.

Thus, ZBLN distribution can be expressed as the infinite weighted sum of Exponentiated
log-normal distributions indexed by power parameter α+ k.

3. MOMENTS

In this section, we derive the expression for the rth raw moment of ZBLN distribution.
From Equation (2.5), the moments of the ZBLN distribution can be written as the weighted
sum of probability-weighted moments of the log-normal distribution. Thus, the rth raw
moment of the distribution is given by

µ′r = E(Xr) =
∞∑

k=0

(α+ k)bk µ′r,α+k,

where

µ′r,α+k = E

{
Xr

[
Φ
(

log x− µ

σ

)]α+k−1
}

⇒ µ′r,α+k =
∫ ∞

0

xr

σx
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx,

is the probability weighted moments of the log-normal distribution.
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4. QUANTILE FUNCTION AND ASSOCIATED MEASURES

Generally, a probability distribution can be specified either in terms of the distribution
function or by the quantile function. Quantile functions have several interesting properties
that are not shared by distributions, which makes them more convenient and flexible for
analysis. Moreover, the random numbers from any distribution can be generated using ap-
propriate quantile functions. So, in this section, we derive an explicit expression for the
quantile function of ZBLN distribution and some of its associated measures.

Theorem 4.1. If X follows ZBLN distribution as given in (2.2), then the pth quantile,

Qp = F−1(p) of the distribution is given by

Qp = exp
{
µ+ σ Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]}
,

where Φ−1(.) is the quantile function of standard normal variate.

Proof: For the ZBLN distribution, Qp is the solution of the equation

Q

(
α,− log

[
1− Φ

(
log(Qp)− µ

σ

)])
= 1− u, p ∈ (0, 1)

⇒ − log
[
1− Φ

(
log(Qp)− µ

σ

)]
= Q−1(α, 1− p)(4.1)

On simplifications, (4.1) reduces to

Φ
(

log(Qp)− µ

σ

)
= 1− exp

(
−Q−1(α, 1− p)

)
⇒ log(Qp)− µ

σ
= Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]

(4.2) ⇒ Qp = exp
{
µ+ σ Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]}
.

Remark 4.1. Since Φ−1(.) is the quantile function of standard normal variate, Qp in
Equation (4.2) also written in the form

(4.3) Qp = exp
{
µ+ σ

√
2 erf−1

[
1− 2 exp

(
−Q−1(α, 1− p)

)]}
,

where erf−1(.) is the inverse error function.

Now, by putting p = 0.5, in Equation (4.3), we get the median (M) of ZBLN distribution
and is given by

M = Q0.5 = exp
{
µ+ σ

√
2 erf−1

[
1− 2 exp

(
−Q−1(α, 1/2)

)]}
.

For p = 1/4 and p = 3/4, Equation (4.3) respectively gives first and third quartiles of the
ZBLN distribution.
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5. RELIABILITY MEASURES

Many domains of practical studies, such as physics, engineering, psychology, and others,
rely heavily on reliability measures. As a reason, providing expressions for various reliability
measures is critical. Due to these facts, in this section, we derive expressions for various
measures of reliability.

5.1. Hazard rate function

The hazard rate provides the instantaneous risk that the event of interest happens,
within a very narrow time frame. As a function of age x, the hazard rate function is also
referred to as the failure rate function, instantaneous death rate, force of mortality, and
intensity function in other areas of study like survival analysis, actuarial science, biosciences,
demography, and extreme value theory. Thus, it also plays a substantial role in lifetime data
analysis, mainly in survival and reliability studies. Indeed, the mathematical characterization
of a lifetime distribution for a certain life phenomenon can be made on the basis of its failure
rate pattern. Most commonly, the hazard function can be increasing, decreasing, upside-down
bathtub or bathtub shaped.

By definition, the hazard function h(x) can be defined as h(x) = f(x)/S(x), where
S(x) = 1− F (x) is the survival function. Obviously, the survival function of ZBLN distribu-
tion is given as

S(x) = 1−
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

.

Thus, the hazard function of ZBLN distribution is obtained as

h(x) =
φ
(

log x−µ
σ

){
− log

[
1− Φ

(
log x−µ

σ

)]}α−1

σx Γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)]) ,

where Γ(α, z) =
∫∞
z tα−1 exp(−t)dt denotes the complementary incomplete gamma function.

Also, plots in Figure 3 refers the hazard rate function and observed that ZBLN distribution
possess increasing, decreasing, bathtub, and upside-down bathtub shapes. In this scenario,
the capability of our model to construct a bathtub-shaped failure rate function with a signif-
icantly longer flat region is one of its unique advantages. Nonetheless, this region is crucial
in real-world applications, underscoring the importance of effective flat region modeling (see
[14]). Again, from Figure 2, it can be seen in further detail that the hazard rate func-
tion graph for the shape bathtub happens when α = 0.0001, µ = 1.5, 0.2 ≤ σ ≤ 0.31. When
α ≥ 0.1, µ = 0.01, and σ = 1.1, the shapes also change from decreasing to increasing via an
upside-down bathtub.
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Figure 2: Plots of the hazard rate function of the ZBLN distribution.

5.2. Cumulative hazard rate function

The cumulative hazard rate function, also known as the integrated hazard function, is
the overall number of failures or deaths over a period of time. Like the hazard function, the
cumulative hazard function H(x) is not a probability, but still a measure of risk. The greater
the value of H(x), the greater the risk of failure by time x.

By definition, H(x) = − log{S(x)}. Thus, the cumulative hazard rate function of ZBLN
distribution is given by

(5.1) H(x) = − log

1−
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

.
Note that, log(1− x) = −

∑∞
n=1

xn

n , and also from Equation (2.4), H(x) in Equation (5.1)
can be simplified as

H(x) =
∞∑

n=1

1
n

{ ∞∑
k=0

bk

[
Φ
(

log x− µ

σ

)]α+k
}n

.
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5.3. Reversed hazard rate function

Reversed hazard rate (RHR) function is an important measure as a tool in the analysis
of the reliability of both natural and man-made systems. Recently, the properties of the RHR
have attracted considerable interest from researchers (see for examples [6] and [11]). The
RHR function is defined as r(x) = f(x)/F (x). Thus, the RHR function of ZBLN distribution
is given by

r(x) =
φ
(

log x−µ
σ

){
− log

[
1− Φ

(
log x−µ

σ

)]}α−1

σx γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)]) .

5.4. Conditional moments

For lifetime distributions, it is of greater interest to know the conditional moments
which are important in prediction. The conditional moments of any distribution is defined as

E(Xr|X > t) =
1

S(t)

∫ ∞

t
xrf(x)dx.

Thus, the conditional moments of ZBLN distribution is given by

(5.2) E(Xr|X > t) =
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(r, k),

where S(.) is the survival function, bk is given in Equation (2.3) and I1(r, k) is given as

(5.3) I1(r, k) =
∫ ∞

t
xr−1 φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

5.5. Vitality function

In modeling lifetime data, the vitality function is a very valuable tool. This function
plays important role in reliability engineering, biomedical science, and survival analysis. It
is worth mentioning that the rapid aging of a component needs to low vitality relatively,
whereas high vitality implies relatively slow aging during the given time period. For more
details on the vitality function see [16].

For r = 1, in Equation (5.2), gives the vitality function of ZBLN distribution, and is
given by

(5.4) V (t) = E(X|X > t) =
1

S(t)

∫ ∞

t
xf(x)dx =

1
S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(1, k),

where I1(1, k) is obtained by putting r = 1 in Equation (5.3), and is given by

I1(1, k) =
∫ ∞

t
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.
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5.6. Geometric vitality function

The concept of geometric vitality function is based on the geometric mean of the resid-
ual lifetime. If X be a random variable that represents the lifetime of a component, then
logG(t) = E(logX|X > t) represents the geometric mean of lifetimes of components that
have survived up to time t. For a non-negative random variable X follows an absolutely con-
tinuous distribution function, with E(logX) < 1, the geometric vitality function is defined
as

logG(t) = E(logX|X > t) =
1

S(t)

∫ ∞

t
log x f(x)dx.

Now, the geometric vitality function of the ZBLN distribution is given by

logG(t) =
1

S(t)

∞∑
k=0

(α+ k) bk I2(k),

where I2(k) can be expressed as

I2(k) =
∫ ∞

t

(
log x
σx

)
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

5.7. Moments of residual life

In reliability theory, the concept of residual life is very noteworthy. It represents the
life remaining in a unit after it has attained age t.

The rth order moment of the residual life of the ZBLN distribution is given as

µr(t) = E[(X − t)r|X > t] =
1

S(t)

∫ ∞

t
(x− t)r f(x)dx

=
1

S(t)

r∑
i=0

(
r

i

)
(−1)r−i tr−i

∫ ∞

t
xi f(x)dx,

which can be simplified as

µr(t) =
1

S(t)

r∑
i=0

∞∑
k=0

(
r

i

)
(−1)r−i tr−i

(
α+ k

σ

)
bk I1(i, k),

where I1(r, k) is given in Equation (5.3). Now, for r = 1 and using Equation (2.5), we get
the expression for mean residual life (MRL) function, and is given by

µ1(t) = E(X − t|X > t) =
1

S(t)

∫ ∞

t
(x− t) f(x)dx

=
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I3(k),

where

I3(k) =
∫ ∞

t

(x− t)
x

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.
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Hence, µ1(t) also gets the form, µ1(t) = V (t)− t, where V (t) is given in Equation (5.4).
Similarly, the second moment of the residual lifetime of the ZBLN distribution is given by

µ2(t) =
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(2, k)−

2t V (t)
S(t)

+ t2,

where I1(2, k) is given as

I1(2, k) =
∫ ∞

t
x φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

Thus, the variance of the residual life function of the ZBLN distribution can be obtained
using µ1(t) and µ2(t).

5.8. Moments of reversed residual life

The rth order moment of the reversed residual life of the ZBLN distribution is given by

mr(t) = E[(t−X)r|X ≤ t] =
1

F (t)

∫ t

0
(t− x)r f(x)dx

=
1

F (t)

r∑
i=0

(
r

i

)
(−1)i tr−i

∫ t

0
xi f(x)dx.

On simplification, mr(t) gets the form

(5.5) mr(t) =
1

F (t)

r∑
i=0

∞∑
k=0

(
r

i

)
(−1)r−i tr−i

(
α+ k

σ

)
bk I4(, k),

where I4(i, k) is given as

I4(i, k) =
∫ t

0
xi−1 φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

Now, the mean (m1(t)) and second moment (m2(t)) of the reversed residual life of the ZBLN
distribution can be obtained by setting r = 1, 2; respectively in Equation (5.5). Again, using
m1(t) and m2(t), one can obtain the variance of the reversed residual life function of the
distribution.

6. RÉNYI ENTROPY

Entropy is considered to be the measure of uncertainty of a system and it is typically
used in physical sciences. The study of entropy has gained momentum in the theoretical
perspective as well as in terms of its applications in the field of applied research. Among the
number of entropies available in the literature, one of the most popular entropy measures is
Rényi entropy (see [23]).
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By definition, for any random variable Y with pdf g(y), the Rényi entropy is defined as

Hγ(y) =
1

1− γ
log
∫

R
gγ(y)dy; for γ > 0 and γ 6= 1.

Let f(x) be the density function of the ZBLN distribution, then standard calculations
show that the Rényi entropy of the distribution can be written as

Hγ(x) =
1

1− γ
log
∫ ∞

0
fγ(x)dx

in which, by using (2.1), ∫ ∞

0
fγ(x)dx =

(
1

σ Γ(α)

)γ ∫ ∞

0
τγ(x)dx,

where

τγ(x) =

{
1
x
φ

(
log x− µ

σ

){
− log

[
1− Φ

(
log x− µ

σ

)]}α−1
}γ

.

On simplification, the Rényi entropy of ZBLN distribution gets the expression

Hγ(x) = (1− γ)−1 log
∫ ∞

0
τγ(x)dx− γ(1− γ)−1 log(σ)− γ(1− γ)−1 log(Γ(α)).

7. INEQUALITY MEASURES

Lorenz and Bonferroni curves are income inequality measures that are widely useful and
applicable to some other areas including reliability, demography, medicine, and insurance.
Also, the Zenga curve introduced by Zenga (2007) (see [25]) is another widely used inequality
measure. The Lorenz, Bonferroni, and Zenga curves for the ZBLN distribution will be derived
in this section. The Lorenz curve is defined by

LF (x) =
1

E(X)

∫ x

0
t f(t)dt.

Simple algebra provides the Lorenz curve for ZBLN distribution, and is given by

LF (x) =

∞∑
k1=0

(α+ k1) bk1 I4(k1)

∞∑
k2=0

(α+ k2) bk2 I5(k2)
,

where bk is given in equation (2.3),

I4(k1) =
∫ x

0
φ

(
log t− µ

σ

)[
Φ
(

log t− µ

σ

)]α+k1−1

, and

I5(k2) =
∫ ∞

0
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k2−1

.
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Also, the Bonferroni curve is defined by

BF (x) =
1

E(X)F (x)

∫ x

0
t f(t)dt.

Thus, the Bonferroni curve of ZBLN distribution gets expression given by

BF (x) =

∞∑
k1=0

(α+ k1) bk1 I4(k1){
∞∑

k2=0

(α+ k2) bk2 I5(k2)

}{∑∞
k=0 bk

[
Φ
(

log x−µ
σ

)]α+k
} .

Now, the Zenga curve is defined as

(7.1) AF (x) = 1− µ−(x)
µ+(x)

,

where

µ−(x) =
1

F (x)

∫ x

0
t f(t)dt, and µ+(x) =

1
S(x)

∫ ∞

x
t f(t)dt.

Therefore, µ−(x) and µ+(x) of ZBLN distribution are respectively given by

µ−(x) =

∞∑
k1=0

(
α+k1

σ

)
bk1 I4(k1)

∞∑
k=0

bk

[
Φ
(

log x−µ
σ

)]α+k
, and µ+(x) = V (x),

where V (x) is the vitality function of ZBLN distribution in x, such that the expression for
vitality function of the distribution is given in (5.4). Substituting the values of µ−(x) and
µ+(x) in (7.1), gets the expression of AF (x) for the ZBLN distribution.

8. ORDER STATISTICS

Let X1, X2, ..., Xn be a random sample from the ZBLN distribution and its order statis-
tics is X1:n, X2:n, ..., Xn:n. Let Fi:n(x) and fi:n(x) denote the cdf and pdf of the ith order
statistic Xi:n, respectively. Hence, using the standard expressions of order statistics, Fi:n(x)
and fi:n(x) of ZBLN distribution is respectively given by

Fi:n(x) =
n∑

j=i

(
n

j

)
F j(x) [1− F (x)]n−j ,
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and

fi:n(x) =
n!

(i− 1)! (n− i)!
[F (x)]i−1 [1− F (x)]n−i f(x)

=
1

B(i, n− i+ 1)

n−i∑
k3=0

(−1)k3

(
n− i

k3

)
[F (x)]k3+i−1f(x)

=
1

B(i, n− i+ 1)

n−i∑
k3=0

(−1)k3

(
n− i

k3

)

×

{ ∞∑
k=0

bk

[
Φ
(

log x− µ

σ

)]α+k
}k3+i−1

×
∞∑

k=0

bk
(α+ k)
σx

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function. Now, for i = 1 and n, one can get the
pdf of X(1) = min{X1, X2, ..., Xn} and X(n) = max{X1, X2, ..., Xn} for ZBLN distribution,
respectively.

9. ESTIMATION OF PARAMETERS

In this section, we’ll look at how to estimate the parameters of the ZBLN distribution
using two widely used methods: maximum likelihood (ML) and Bayesian methods.

9.1. Maximum likelihood estimation

This subsection considers the maximum likelihood estimation for the ZBLN model
parameters α, µ, and σ. Let X1, X2, ..., Xn be a random sample taken from the ZBLN dis-
tribution, and x1, x2, ..., xn are the corresponding observed values. Then the log-likelihood
function can be expressed as

Ln =− n log(σ)− n log(Γ(α))−
n∑

i=1

log(xi) +
n∑

i=1

log
[
φ

(
log(xi)− µ

σ

)]

+ (α− 1)
n∑

i=1

log
{
− log

[
1− Φ

(
log x− µ

σ

)]}
.

The score function associated with the log-likelihood function is

U =
(
∂Ln

∂α
,
∂Ln

∂µ
,
∂Ln

∂σ

)T

.

Now, by solving ∂Ln
∂α = 0, ∂Ln

∂µ = 0 and ∂Ln
∂σ = 0, we get the associated nonlinear log-likelihood

equations and are respectively given by

(9.1)
n∑

i=1

log
{
− log

[
1− Φ

(
log x− µ

σ

)]}
− n ψ(α) = 0,
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(9.2)
n∑

i=1

log(xi)− µ

σ2
+
(
α− 1
σ

) n∑
i=1

φ
(

log(xi)−µ
σ

)
[
1− Φ

(
log(xi)−µ

σ

)]
log
[
1− Φ

(
log x−µ

σ

)] = 0,

(9.3)
−n
σ

+
n∑

i=1

(log(xi)− µ)2

σ3
+

n∑
i=1

(α− 1)
(

log(xi)−µ
σ

)
φ
(

log(xi)−µ
σ

)
[
1− Φ

(
log(xi)−µ

σ

)]
log
[
1− Φ

(
log x−µ

σ

)] = 0,

where ψ(α) = d{log Γ(α)}/dα is the digamma function. Now, by solving the equations (9.1),
(9.2) and (9.3) simultaneously, we obtain the maximum likelihood estimators (MLEs) (α̂, µ̂, σ̂)
of the model parameters (α, µ, σ).

Now, we construct the asymptotic confidence intervals for parameters α, µ and σ. On
taking the second partial derivatives of equations (9.1), (9.2) and (9.3), the Hessian matrix
of ZBLN distribution can be obtained, and denoted as H(Θ), where Θ = {α, µ, σ}. Now, the
observed Fisher’s information matrix J(Θ) can be obtained by taking the negative of Hessian
matrix. That is, J(Θ) = −H(Θ). Hence, the inverse of observed Fisher’s information matrix
will provide the variance-covariance matrix of the MLEs, which is given by

Σ = J−1(Θ) =
{
Σij , i, j = 1, 2, 3

}
,

and Σij = Σji for i 6= j = 1, 2, 3. Again, it is well established that the MLEs are asymptoti-
cally normally distributed. That is,

√
n(Θ− Θ̂) ∼ N3(0,Σ), where n is the sample size and

Θ̂ is the MLEs of Θ.

Thus, we obtain 100× (1− δ)% asymptotic confidence intervals of the parameters using
the following formulae:

α ∈
{
α̂∓ Zδ/2

√
Σ11

}
, µ ∈

{
µ̂∓ Zδ/2

√
Σ22

}
, and σ ∈

{
σ̂ ∓ Zδ/2

√
Σ33

}
,

where Zδ is the upper δth percentile of the standard normal distribution.

9.2. Bayesian estimation

The Bayesian analysis for the ZBLN model parameters is performed in this subsection.
Each parameter should have a prior density in order to do so. For this, we utilize two types
of priors: half-Cauchy (HC) and normal (N) priors. The pdf of the HC distribution with
scale parameter a is defined as

fHC(x∗) =
2a

π(x2
∗ + a2)

, x∗ > 0, a > 0.

The HC distribution has no mean or variance. Meanwhile, its mode is equal to 0. Since
the pdf of the HC is virtually flat but not totally flat at scale value equals 25, which verges
on acquiring adequate information for the numerical approximation algorithm to continue
looking at the target posterior pdf, the HC distribution with a = 25 is recommended as a
noninformative prior. Gelman and Hill (2006) ([8]) suggested that the uniform distribution,
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or whether more information is required, is a superior alternative to the HC distribution.
As a result, for the parameters α and σ, the HC distribution with a = 25 is chosen as a
noninformative prior distribution in this article. Thus, we set the prior distributions of the
parameters to be µ ∼ N(0, 1000), and α, σ ∼ HC(25). Thus, we obtain the joint posterior
pdf as given by

(9.4) π(µ, α, σ|x) ∝ Ln × π(µ)× π(α)× π(σ),

where Ln is the likelihood funtion for ZBLN distribution. From Equation (9.4), it is obvious
that there is no analytical solution to find out the Bayesian estimates. Thus, we use a
remarkable method of simulation, namely the Metropolis-Hastings algorithm of the Markov
Chain Monte Carlo (MCMC) method.

9.3. Bootstrap confidence intervals

In this subsection, we use the parametric bootstrap method to approximate the dis-
tribution of the maximum likelihood estimators of the ZBLN parameters. Then, we can
use the bootstrap distribution to estimate the confidence intervals on each parameter of the
fitted ZBLN distribution. Let Θ̂ = Θ(X) be a ML estimator of the set of parameters of
interest Θ = {α, µ, σ} using a given dataset X = {x1, x2, ..., xn}. The bootstrap is a method
to estimate the distribution of the statistic Θ̂ by getting a random sample Θ∗

1,Θ
∗
2, ...,Θ

∗
B

for Θ based on B random samples that are drawn with replacement from the original data
X = {x1, x2, ..., xn} (see [24]). The bootstrap sample Θ∗

1,Θ
∗
2, ...,Θ

∗
B can be used to construct

bootstrap confidence intervals for the parametric set Θ = {α, µ, σ} of ZBLN distribution.

Thus, we obtain 100× (1− δ)% bootstrap confidence intervals of the parameters using
the following formulae:

α ∈
{
α̂∓ zδ/2 ŝeα,boot

}
, µ ∈

{
µ̂∓ zδ/2 ŝeµ,boot

}
, and σ ∈

{
σ̂ ∓ zδ/2 ŝeσ,boot

}
,

where zδ denotes the δth percentile of the bootstrap sample and for Θ = {α, µ, σ}

ŝeΘ,boot =

√√√√ 1
B

B∑
b=1

(
Θ∗

b −
1
B

B∑
b=1

Θ∗
b

)2

.

10. PERFORMANCE OF THE ESTIMATORS USING SIMULATION STUDY

In this section, we conduct simulation experiments to assess the long-run performances
of MLEs and Bayesian estimates of the ZBLN parameters for some finite sample sizes. We
have simulated datasets of sizes n = 50, 100, and 250 from the ZBLN distribution for the
parameter values α = 0.2, µ = 3.5, σ = 0.5 and iterated each sample for 500 times. Then,
we compute the average biases and MSEs for the MLEs to all replications in the relevant
sample sizes.

That is, the analysis computes the values by the given formulae. The equation for
average bias of the simulated estimates equals 1

500

∑500
i=1(Θ̂i−Θ), and the equation for average
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MSE of the simulated estimates equals 1
500

∑500
i=1(Θ̂i−Θ)2 , where Θ̂ = (α̂, µ̂, σ̂) are estimates

of the parameter vector Θ = (α, µ, σ). The results to the simulation for MLEs are reported
in Table 1. It can be concluded that the M.S.E of all the estimators decreases with increasing
sample size. This shows the consistency of the estimators.

Table 1: Estimates, Average bias and MSE values of MLEs from simu-
lation of the ZBLN distribution.

Parameters Sample Size Estimates Bias M.S.E

50 0.6892 0.4892 1.9199
α 100 0.4514 0.2514 0.7520

250 0.2597 0.0597 0.0384

50 3.0965 −0.4035 1.1623
µ 100 3.2030 −0.2970 0.7376

250 3.3702 −0.1298 0.2029

50 0.5418 0.0418 0.0385
σ 100 0.5345 0.0345 0.0297

250 0.5215 0.0215 0.0112

Now, in the case of Bayesian simulation, we consider the prior distributions for the
ZBLN parameters as given in Subsection 9.2. For the respective sample sizes, the posterior
summary results such as mean, standard deviation (SD), Monte Carlo error (MCE), 95%
confidence interval (CI), and median are presented in Table 2. It is observed that the SD
and MCE decrease as the sample size increases, which predicts the consistency of Bayesian
estimates of the ZBLN distribution parameters.

Table 2: Posterior summary results for Bayesian simulation.

Parameters n Mean SD MCE 95% CI Median

α
50 1.6267 1.5925 1.0016 (0.4615, 5.0629) 1.4301

100 0.5894 0.2646 0.1755 (0.1748, 0.8089) 0.7889
250 0.2115 0.0919 0.0458 (0.1748, 0.4371) 0.1931

µ
50 2.5282 0.7701 0.5653 (1.1535, 3.4592) 2.3215

100 2.9731 0.3274 0.2064 (2.7282, 3.5331) 2.8252
250 3.4679 0.1632 0.0813 (3.0676, 3.5331) 3.4131

σ
50 0.6999 0.1494 0.0667 (0.4728, 0.8246) 0.7105

100 0.6444 0.1065 0.0591 (0.4704, 0.7237) 0.6218
250 0.4959 0.0640 0.0319 (0.4704, 0.6530) 0.5715

11. APPLICATION AND EMPIRICAL STUDY

To demonstrate the applicability of the ZBLN distribution, we consider a real dataset
based on a cancer survival study, and the parameters are estimated by using maximum
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likelihood, and the Bayesian estimation methods to compare the data modeling ability of the
ZBLN distribution over some competitive distributions. The dataset is taken from Lee &
Wang (2003) (see [17]), which corresponds to the remission times (in months) of a random
sample of 128 bladder cancer patients. The summary statistics of the dataset is given in
Table 3.

Table 3: Summary statistics of real dataset.

n M Md SD Sk Ku min max

128 9.2094 6.28 10.4026 3.3987 16.3942 0.08 79.05

Now, we study the empirical hazard function of the datasets using the concept of total
time on test (TTT) plot. The TTT plot is a graph that mainly serves to discriminate between
different types of aging represented in hazard rate shapes. For details, the readers are referred
to [1]. The TTT plot is drawn by plotting

T

(
i

n

)
=

i∑
r=1

xr:n + (n− i)xi:n

n∑
r=1

xr:n

against i/n, where i = 1, 2, ..., n and xr:n, r = 1, 2, ..., n are the order statistics of the sample.
Figure 3 indicates that the above-given dataset has an upside-down bathtub shape for the
empirical hazard function. Therefore, the ZBLN distribution can be a credible pick for the
given dataset, since its hazard function satisfies the upside-down bathtub shape.
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Figure 3: The TTT plot of real dataset.
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11.1. Maximum likelihood estimation

To illustrate the potentiality of the ZBLN distribution, the following distributions are
considered for comparison.

• The two-parameter Log-normal (LN) distribution with pdf

f(x) =
1√

2π σx
exp
[
−(log x− µ)2

2σ2

]
, x > 0, µ ∈ R, σ > 0.

• The Exponentiated Log-normal (ELN) distribution with pdf

f(x) =
α

xσ
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α−1

, x > 0, µ ∈ R, α, σ > 0.

• The Weibull distribution with pdf

f(x) =
α

σ

(x
σ

)α−1
e−(x/σ)α

, x > 0, α, σ > 0.

• The New Generalized Lindley distribution (NGLD) (see [7]) with pdf

f(x) =
e−µx

1 + µ

(
µα+1xα−1

Γ(α)
+
µσxσ−1

Γ(σ)

)
, x > 0, α, µ, σ > 0.

• The Zografos-Balakrishnan Lindley distribution (ZBLD) (see [13]) with pdf

f(x) =
1

Γ(α)

[
log
(

1 + θ

1 + θ + θx
eθx

)]α−1 θ2

θ + 1
(1 + x)e−θx, x > 0, α, σ > 0.

We apply the following statistical tools in order to find out the goodness-of-fit of dis-
tributions to the real dataset; log-likelihood (LL), Kolmogorov-Smirnov (KS ), Cramér-von
Misses (W*), Anderson-Darling (A*) statistics, Akaike Information Criterion (AIC ), and
Bayesian Information Criterion (BIC ) values, and are presented in Table 4. We use the
RStudio software for numerical evaluations.

Moreover, Table 4 shows the MLEs and goodness-of-fit statistics of the distributions
for the corresponding dataset. It can be seen that the KS, W*, A*, AIC, and BIC values of
the ZBLN distribution are smaller than that of other distributions. We also present other
important graphs which consist of empirical density plot, empirical cdf plot, Q-Q, and P-P
plots for the real dataset in Figure 4. It again gives some superimposed curves of those fitted
and empirical functions. Thus, we conclude that the ZBLN is the most suitable distribution
for the given dataset while comparing other distributions.

We also utilized the likelihood ratio (LR) test for comparing ZBLN distribution having
additional parameter α with LN distribution. That is, we test H0 : LN against HA : ZBLN
and obtain critical values for the LR test statistics for the cancer dataset. Thus we get
the LR test statistic value as 6.663 and the corresponding p-value as 0.0098 for the given
dataset. Given the value of the test statistics and the associated p-value, we reject the null
hypotheses for the dataset and conclude that the ZBLN model provides a significantly better
representation for the dataset than the LN distribution.
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Table 4: Maximum-likelihood estimates, goodness-of-fit statistics, AIC
and BIC values based on the bladder cancer dataset.

Estimates LN ELN Weibull NGLD ZBLD ZBLN

α̂ — 0.1516 1.0514 1.1852 0.7353 0.2425
µ̂ 1.7422 3.0494 — 0.1287 — 2.9666
σ̂ 1.0646 0.5404 9.4172 1.1850 0.1569 0.6730

LL −412.6565 −410.0441 −411.8925 −411.0846 −413.5513 −409.3414
KS 0.0644 0.0562 0.0721 0.0760 0.0901 0.0542

W* 0.1313 0.0846 0.1666 0.1416 0.2230 0.0736

A* 0.8708 0.5589 1.0488 0.8235 1.2465 0.4828
AIC 829.3131 826.0883 827.7849 828.1691 831.1025 824.6828
BIC 835.0171 834.6444 833.4890 836.7252 836.8066 833.2389
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Figure 4: Various empirical plots of bladder cancer dataset.
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Now, the Hessian matrix corresponding to real dataset is obtained as

H(Θ) =

 2330.9119 794.1654 −1451.9253
794.1654 131391.5635 −191.6978
−1451.9253 −191.6978 132403.6280

.
Hence, the asymptotic variance-covariance matrix for real dataset is obtained as

Σ =

 0.0793 −0.0065 0.0118
−0.0065 0.0189 −0.0005
0.0118 −0.0005 0.0189

.
Again, the 95% asymptotic confidence intervals of the ZBLN parameters are given in Table 5.

Table 5: The 95% asymptotic confidence intervals of the ZBLN parameters
based on bladder cancer dataset.

Parameter Lower Upper

α 0.2017 0.2833
µ 2.9612 2.9720
σ 0.6676 0.6784

Now, we use the obtained MLEs to derive the 95% bootstrap confidence intervals for
the parameters α, µ, and σ. We simulate 1001 samples of size as in the real dataset we
studied, from ZBLN distribution with true values of the parameters taken as MLEs of the
parameters. For each obtained sample, we have estimated the MLEs α̂∗b , µ̂

∗
b , and σ̂∗b , for

b ∈ {1, 2, ..., 1001}. The median and 95% bootstrap confidence interval for parameters α, µ,
and σ of the given dataset is presented in Table 6. It is also interesting to look at the joint
distribution of the bootstrapped values in a matrix of scatter plots in order to understand the
potential structural correlation between parameters. The plots in Figure 5 consist of matrix
scatterplots of the bootstrapped values of ZBLN parameters providing a representation of
the joint uncertainty distribution of the fitted parameters.

Table 6: The median and 95% bootstrap confidence interval for ZBLN parameters
of the bladder cancer dataset.

Parameter Median Bootstrap CI

α 0.2294 (0.1203, 3.9249)
µ 2.9653 (−0.4722, 3.3680)
σ 0.6549 (0.4867, 1.2079)
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Figure 5: Matrix scatter plots of bootstrappped values of ZBLN param-
eters due to the bladder cancer dataset.

11.2. Bayesian estimation

Here, we focus on estimating the parameters of the ZBLN distribution using the
Bayesian procedure based on the same univariate bladder cancer survival dataset which we
discussed in the above subsection. In the context of Bayesian estimation, the analysis was
performed using the Metropolis-Hastings algorithm of the MCMC method with 1001 iter-
ations. For comparing Bayes estimates with the MLEs, both the estimates of the ZBLN
parameters with corresponding standard error (SE) and Monte Carlo standard error (MCSE)
for the real dataset are given in Table 7. The numerical computations on Bayesian estimation
are also done using RStudio software.

Table 7: MLEs and Bayesian estimates of the ZBLN parameters
on bladder cancer dataset.

Parameter MLE (SE) Bayes (MCSE)

α 0.2425 (0.0208) 0.2471 (0.0402)
µ 2.9666 (0.0028) 3.0206 (0.10003)
σ 0.6730 (0.0028) 0.7127 (0.0343)



Zografos-Balakrishnan log-normal distribution 23

12. CONCLUDING REMARKS

In this paper, we studied a distribution that generalizes the log-normal distribution. We
refer to the model as the Zografos-Balakrishnan log-normal (ZBLN) distribution and study
its mathematical and statistical properties. We provide explicit expressions for the moments,
quantile function, various reliability measures, Rényi entropy, and some inequality measures
associated with the ZBLN distribution. It is worth noting that the hazard rate function
supports all of the standard shapes, including increasing, decreasing, bathtub, and upside-
down bathtub. The model parameters are estimated by using the Bayesian technique, and
the method of maximum likelihood, and also, the observed information matrix is presented.
Further, we adopt the parametric bootstrap technique to obtain confidence intervals for the
model parameters. Moreover, the simulation studies based on the defined estimation methods
are also done to confirm the parameter consistencies. The usefulness of the new model
is illustrated by an application to the real dataset based on a cancer survival study using
goodness-of-fit tests. The model provides a consistently better fit than other models available
in the literature. We hope the model may attract wider applications for modeling positive real
datasets in many areas such as physics, engineering, medicine, survival analysis, hydrology,
economics, and so on.
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1. INTRODUCTION

The call function is a non-negative real-valued function of the form

fz(k) = (k − z)+ = max{k − z, 0}, for k ≥ 0 and z ≥ 0.(1.1)

It has been used in several areas of probability and statistics, for example, finance, risk theory,
and derivative pricing, among many others. In particular, it has been successfully applied to
the collateralized debt obligation (CDO). For more details, see Karoui and Jiao [5], Karoui et

al. [6], Hull and White [7], Neammanee and Yonghint [12], Yonghint et al. [17], and references
therein.

For a random variable (rv) W , the study of E[fz(W )] plays an important role in many
real-life applications. For example, if W is the sum of Bernoulli random variables (rvs) then
E[fz(W )] is used to compute the mean value of total percentage loss for each tranche in CDO
(see Neammanee and Yonghint [12], and Yonghint et al. [17] for details). Also, if W has a
complicated structure, for example, W is the sum of locally dependent or independent (but
non-identical) rvs, then E[fz(W )] becomes difficult to compute in practice. In such cases,
an approximation to standard and easy-to-use distribution is of interest. Approximation
to call function has been studied by several authors in the literature, for example, Poisson
approximation has been studied by Neammanee and Yonghint [12], and Yonghint et al. [17],
and Normal approximation has been studied by Karoui and Jiao [5], and Karoui et al. [6].

In this paper, we study negative binomial (NB) approximation to call function using
certain conditions on moments. The main advantage of NB distribution over Poisson dis-
tribution is the extra flexibility parameter that builds our bounds more shaper compare to
the existing bounds for Poisson approximation. Throughout this paper, let Nr,p follow NB
distribution with probability mass function

P(Nr,p = k) =
(

r + k − 1
k

)
prqk, k ∈ Z+,(1.2)

where r > 1, q = 1− p ∈ (0, 1) and Z+ = {0, 1, 2, ...}, the set of non-negative integers. From
Neammanee and Yonghint [12], and Yonghint et al. [17], We observe that the call function
can be studied under a locally dependent or independent setup. Therefore, we consider the
following locally dependent structure that can be used for both cases.

Let J be a finite subset of N = {1, 2, ...}, the set of all positive integers, and {ζi}i∈J be a
collection of non-negative rvs. For each i, let i ∈ Ai ⊆ Bi ⊂ J be such that ζi is independent
of ζAc

i
and ζAi is independent of ζBc

i
, where ζA is the collection of rvs {ζi}i∈A and Ac denotes

the complement of the set A. See Section 3 of Röllin [13] and Section 2 of Kumar [9] for a
similar type of locally dependent structure. Define

V =
∑
i∈J

ζi,(1.3)

the sum of locally dependent rvs. Note that if Ai = Bi = {i} then V is the sum of independent
rvs. Throughout this paper, we let ζA =

∑
i∈A ζi, for a set A ⊂ J , and D(W ) := 2dTV (W,W +

1), for a rv W , where dTV (X, Y ) denotes the total variation distance between X and Y .
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In this paper, our aim is to study the proximity between E[(V − z)+] and E[(Nr,p − z)+].
That is, our interest is to obtain the upper bound for∣∣E[(V − z)+]− E[(Nr,p − z)+]

∣∣.(1.4)

We use Stein’s method to obtain the bound for the above expression discussed in Section 2.

This paper is organized as follows. In Section 2, we develop Stein’s method for NB
distribution using the call function. In Section 3, we obtain uniform and non-uniform bounds
for the expression given in (1.4) and compare our results with the existing results. In Section 3,
we give an application of our results to CDO and give some numerical comparisons. Finally,
in Appendix A, we give some inequalities and their proofs that are useful to develop Stein’s
method for NB distribution.

2. STEIN’S METHOD

Stein’s method (Stein [14]) is a tool for obtaining error bounds between two probability
distributions. This method is mainly based on obtaining the solution of the Stein equation
given by

Ag(k) = f(k)− Ef(X), for k ∈ Z+,(2.1)

where A is a Stein operator for a rv X such that E[Ag(X)] = 0, f and g are real-valued
bounded functions on Z+. Stein’s method has been developed for NB distribution by Brown
and Phillips [4] and Barbour et al. [1] for total variation distance and Wasserstein distance,
respectively. In this section, we develop Stein’s method for NB distribution when f is a call
function, defined in (1.1), which is used to obtain upper bounds for the expression given in
(1.4). The NB approximation via Stein’s method has been studied by several authors such as
Barbour et al. [1], Brown and Phillips [4], Vellaisamy et al. [15], Wang and Xia [16], Kumar
and Upadhye [10], among many others.

Next, let X = Nr,p and f = fz, defined in (1.1), then the Stein equation (2.1) leads to

Ag(k) = (k − z)+ − E[(Nr,p − z)+], for k ∈ Z+ and z ≥ 0.(2.2)

Also, let g = gz be the solution of the above equation. Now, replacing k by V in (2.2) and
taking expectation, we get

|E[Agz(V )]| =
∣∣E[(V − z)+]− E[(Nr,p − z)+]

∣∣.(2.3)

Therefore, to obtain the upper bound for the expression given in (1.4), it is enough to obtain
the upper bound for |E[Agz(V )]|.

Next, the Stein operator of Nr,p is given by

Ag(k) = q(r + k)g(k + 1)− kg(k), for k ∈ Z+.(2.4)

See Lemma 1 of Brown and Phillips [4] for details. Substituting (2.4) in (2.2), we get

q(r + k)g(k + 1)− kg(k) = (k − z)+ − E[(Nr,p − z)+].(2.5)
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It can be easily verified that the solution of (2.5) is

gz(k) =


0 if k = 0;

−
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k

×[(j − z)+ − E[(Nr,p − z)+]] if k ≥ 1.

(2.6)

For more details, see Section 2 of Kumar et al. [11, p. 4] with appropriate changes. Now,
we move to obtain uniform and non-uniform upper bound for |gz(·)| and |∆gz(·)|, where
∆g(k) = g(k + 1)− g(k) denotes the first forward difference operator. Some of the proofs of
the following results are similar to the proofs given by Neammanee and Yonghint [12].

Lemma 2.1. For k ≥ 0 and z ≥ 0, gz defined in (2.6) satisfies the following:

(i) |gz(k)| ≤ p−(r+1).

(ii) |∆gz(k)| ≤ 2p−(r+1) − p−1.

Proof:

(i) As gz(0) = 0, it is enough to prove the result for k ≥ 1. Consider

0 <

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(j − z)+(2.7)

≤ 1 +
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
(j − 1)!

qj−k

= 1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· (j − 1)

qj−k

= 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 1)

qj

≤ p−(r+1), (using Lemma A.2(i)).

Next, consider

0 <
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(2.8)

≤ 1 +
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k

= 1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· j

qj−k

= 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj

≤ 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj

≤ p−r − 1
rq

, (using Lemma A.2(ii)).
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Therefore, from Lemma A.1(i), we have

0 <

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+](2.9)

≤ p−(r+1) − p−1.

Hence, from (2.6), (2.7), and (2.9), we get

|gz(k)| =

∣∣∣∣∣∣
∞∑

j=k

r(r+1) ··· (r+j−1)
r(r+1) ··· (r+k−1)

(k − 1)!
j!

qj−k[(j − z)+ − E[(Nr,p − z)+]]

∣∣∣∣∣∣
≤ p−(r+1).

This proves (i).

(ii) Note that, for k = 0,

|∆gz(0)| = |gz(1)| ≤ p−(r+1) ≤ 2p−(r+1) − p−1.

Now, we prove the result for k ≥ 1. Let

A1(k) =
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(j − z)+

−
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
j!

qj−k−1(j − z)+

and

A2(k) =
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
j!

qj−k−1E[(Nr,p − z)+]

−
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+].

Then

∆gz(k) = gz(k + 1)− gz(k) = A1(k) + A2(k),

Hence, using (2.7) and (2.9), we have

|∆gz(k)| ≤ |A1(k)|+ |A2(k)| ≤ 2p−(r+1) − p−1.

This proves (ii).

Lemma 2.2. For k ≥ 1 and z > 1, gz defined in (2.6) satisfies the following:

|∆gz(k)| ≤



1
z

(
2p−(r+1) − p−1

)
if k ≥ z;

1
z

(
(1 + q−1)p−(r+2) − p−2

)
if 2 ≤ k < z;

(r + 1)
z

(
2p−(r+2) − p−2

)
if k = 1.
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Proof: Let k ≥ z. First, consider

A1(k) =
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k [(r+k)(j +1)(j−z)+ − k(r+ j)(j +1−z)+]

=
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k [(r+k)(j +1)(j−z)− k(r+ j)(j +1−z)].

Observe that

|(r + k)(j + 1)(j − z)− k(r + j)(j + 1− z)| = |r(j + 1)(j − k)− r(j − k)z − (k + r)z|

(2.10)

≤ |r(j + 1)(j − k)− r(j − k)z|+ (k + r)z

= r(j + 1)(j − k)− (r(j − k)− k − r)z

≤
{

(k + r)z if j = k;
r(j + 1)(j − k) if j > k.

Therefore,

|A1(k)| ≤ z

k(k + 1)
+ r

∞∑
j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!(j − k)
j!

qj−k(2.11)

≤ z

k(k + 1)
+

r

k

∞∑
j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
(j − 1)!

qj−k

=
z

k(k + 1)
+

rq

k
+

r

k

∞∑
j=k+2

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
(j − 1)!

qj−k

=
z

k(k + 1)
+

rq

k
+

r

k

∞∑
j=k+2

(r + k + 1) ··· (r + j − 1)
(k + 1) ··· (j − 1)

qj−k

=
1
z

1 + rq + r

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
(k + 1) ··· (j + k − 1)

qj


≤ p−(r+1)

z
, (using Lemma A.2(iii)).

Now, consider

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k =
1
k

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

k!
j!

qj−k

=
1
z

1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
(k + 1) ··· j

qj−k


=

1
z

1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj


≤ p−r − 1

rqz
, (using Lemma A.2(ii)).
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Therefore, from Lemma A.1(i), we have

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+] ≤ p−(r+1) − p−1

z
.(2.12)

Hence, for k ≥ z, from (2.11) and (2.12), we have

|∆g(k)| ≤ |A1(k)|+ |A2(k)| ≤ 1
z

(
2p−(r+1) − p−1

)
.

Next, let k < z and consider

|A1(k)| ≤
∞∑

j=dze−1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k

× |(r + k)(j + 1)(j − z)+ − k(r + j)(j + 1− z)+|

≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k(2.13)

+
r

dze

∞∑
j=dze

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j − 2)!

qj−k (using (2.10))

≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k

+
r

z

r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(dze − 2)!

qdze−k

+
r

z

∞∑
j=dze+1

(r + k + 1) ··· (r + j − 1)
k(k + 1) ··· (j − 2)

qj−k,

where dze is the smallest integer greater than or equal to z. At k = dze − 1, we have

|A1(k)| ≤ 1
z

1 + rq + r

∞∑
j=dze+1

(r + dze) ··· (r + j − 1)
(dze − 1)(dze) ··· (j − 2)

qj−dze+1

(2.14)

=
1
z

1 + rq + r

∞∑
j=dze+1−k

(r + dze) ··· (r + j + k − 1)
(dze − 1)(dze) ··· (j + k − 2)

qj+k−dze+1


=

1
z

1 + rq + r

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 2)

qj


=

1
z

1 + rq + rq
∞∑

j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj

(2.15)

≤ p−(r+2)

z
(using Lemma A.2(iv)).

Now, let k < dze − 1. From (2.13), we have

|A1(k)| ≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k(2.16)

+
r

dze

∞∑
j=dze

(r + k + 1) ··· (r + j − 1)
k(k + 1) ··· (j − 2)

qj−k
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≤ 1
z

(r + k + 1) ··· (r + dze − 1)
k(k + 1) ··· (dze − 2)

(dze − z)qdze−1−k

+
r + 1

z

∞∑
j=dze

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=dze−1

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=k+1

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj(2.17)

≤ p−(r+2)

qz
, (using Lemma A.2(iv)).

Next, for k ≥ 2, consider
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k =
1
k

+
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· j

qj−k(2.18)

≤ 1
2

+
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj

≤ p−r − 1
r(r + 1)q2

, (using Lemma A.2(v)).

Therefore, from Lemma A.1(ii) and (2.18), we get

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+] ≤ p−(r+2) − p−2

z
.(2.19)

Hence, for k < z, from (2.14), (2.16), and (2.19), we have

|∆g(k)| ≤ |A1(k)|+ |A2(k)| ≤ 1
z

(
(1 + q−1)p−(r+2) − p−2

)
.

Next, at k = 1, from (2.15), we have

|A1(1)| ≤ 1
z

1 + rq + rq
∞∑

j=1

(
r + j + 1

j

)
qj

(2.20)

≤ 1
z

(
1 + rqp−(r+2)

)
≤ (r + 1)p−(r+2)

z

and, at k = 1, from (2.17), we have

|A1(1)| ≤ r + 1
z

∞∑
j=1

(
r + j + 1

j

)
qj =

(r + 1)
(
p−(r+2) − 1

)
z

≤ (r + 1)p−(r+2)

z
.(2.21)

Also, using Lemma A.1(ii), it can be easily verified that

|A2(1)| ≤ 1
r

∞∑
j=1

r(r + 1) ··· (r + j − 1)
j!

qj−1E[(Nr,p − z)+] ≤
(r + 1)

(
p−(r+2) − p−2

)
z

.

(2.22)
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Hence, at k = 1, from (2.20), (2.21), and (2.22), we have

|∆g(1)| ≤ |A1(1)|+ |A2(1)| ≤ (r + 1)
z

(
2p−(r+2) − p−2

)
.

This proves the result.

Remark 2.1. From Lemma 2.2, a rather crude uniform bound is given by

‖∆gz‖ ≤ ϑr,p,z :=
r + 1

z

(
(1 + q−1)p−(r+2) − p−2

)
, for k ≥ 1 and z > 1.(2.23)

3. BOUNDS FOR NB APPROXIMATION

In this section, we obtain error bounds between E[(Nr,p − z)+] and E[(V − z)+] such
that Nr,p follows NB distribution and V =

∑
i∈J ζi, where {ζi}i∈J is a collection of Z+-valued

rvs. Throughout this section, let µX and σX denote the mean and variance for the rv X.
The following theorem gives the bound for the locally dependent setup.

Theorem 3.1. Let E(ζ3
i ) < ∞ and V be the sum of locally dependent rvs as defined

in (1.3). Then

1. (uniform bound) supz≥0 |E[Agz(V )]| ≤
(
2p−(r+1) − p−1

)
UJ

2. (non-uniform bound) |E[Agz(V )]| ≤ ϑr,p,zUJ , for all z > 1,

where

UJ =



∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi) + E(ζi(ζAi − 1))] if µNr,p = µV ;

p
∑
i∈J

E(ζi)E[ζAi(2ζBi − ζAi − 1)D(V |ζAi , ζBi)] if µNr,p = µV and

+q
∑
i∈J

E[ζiζAi(2ζBi − ζAi − 1)D(V |ζi, ζAi , ζBi)] σNr,p = σV .

+
∑
i∈J

E[ζi(ζAi − 1)(2ζBi − ζAi − 2)D(V |ζi, ζAi , ζBi)]

+
∑
i∈J

|pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))|

×E[ζBiD(V |ζBi)]

and ϑr,p,z is defined in (2.23).

Proof: Consider the Stein operator given in (2.4) and taking expectation with respect
to V , we get

E[Agz(V )] = rqE[gz(V + 1)] + qE[V gz(V + 1)]− E[V gz(V )](3.1)

= p
∑
i∈J

E(ζi)E[gz(V + 1)] + q
∑
i∈J

E[ζigz(V + 1)]−
∑
i∈J

E[ζigz(V )],
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where the last expression is obtained by using µNr,p = µV . Now, let Vi = V − ζAi then ζi and
Vi are independent rvs. Also, note that

p
∑
i∈J

E(ζi)E[gz(Vi + 1)] + q
∑
i∈J

E[ζigz(Vi + 1)]−
∑
i∈J

E[ζigz(Vi + 1)] = 0.(3.2)

Using (3.2) in (3.1), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E[gz(V + 1)− gz(Vi + 1)](3.3)

+ q
∑
i∈J

E[ζi(gz(V + 1)− gz(Vi + 1))]

−
∑
i∈J

E[ζi(gz(V )− gz(Vi + 1))]

= p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

∆gz(Vi + j)

 + q
∑
i∈J

E

ζi

ζAi∑
j=1

∆gz(Vi + j)


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

∆gz(Vi + j)

.

Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi) + E(ζi(ζAi − 1))].

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV .
Next, using µNr,p = µV and σNr,p = σV , it can be easily verified that[

p
∑
i∈J

E(ζi)E[ζAi ] + q
∑
i∈J

E[ζiζAi ]−
∑
i∈J

E[ζi(ζAi − 1)]

]
E[gz(V + 1)] = 0.(3.4)

Let V ∗
i = V − ζBi then ζi and ζAi are independent of V ∗

i . Now, using (3.4) in (3.3), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))

(3.5)

+ q
∑
i∈J

E

ζi

ζAi∑
j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E[gz(V + 1)− gz(V ∗
i + 1)]

= p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)


+ q

∑
i∈J

E

ζi

ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)


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−
∑
i∈J

E

ζi

ζAi
−1∑

j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E

 ζBi∑
`=1

∆2gz(Vi + `)


= p

∑
i∈J

E(ζi)E

 ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζAi , ζBi ]


+ q

∑
i∈J

E

ζi

ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζi, ζAi , ζBi ]


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζi, ζAi , ζBi ]


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E

 ζBi∑
`=1

E[∆2gz(Vi + `)|ζBi ]

.

Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖

{
p

∑
i∈J

E(ζi)E[ζAi(2ζBi − ζAi − 1)D(V |ζAi , ζBi)]

+ q
∑
i∈J

E[ζiζAi(2ζBi − ζAi − 1)D(V |ζi, ζAi , ζBi)]

+
∑
i∈J

|pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))|E[ζBiD(V |ζBi)]

+
∑
i∈J

E[ζi(ζAi − 1)(2ζBi − ζAi − 2)D(V |ζi, ζAi , ζBi)]

}
.

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV and σNr,p = σV .

Corollary 3.1. Let V1 =
∑

i∈J ζi with pi = P(ζi = 1) and pi,j = P(ζi = 1, ζj = 1).
Then, for µNr,p = µV1 , we have

sup
z≥0

|E[Agz(V1)]| ≤
(
2p−(r+1) − p−1

) ∑
i∈J

(1 + q)
∑
j∈Ai

pi,j + pi

p
∑
j∈Ai

pj − 1

.(3.6)

Remark 3.1.

(i) In Theorem 3.1, note that we have the flexibility to choose one parameter (either r or
p) of our choice when µNr,p = µV . Also, the bound is valid only if E(V ) < Var(V ) when
µNr,p = µV and σNr,p = σV .
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(ii) Observe that V can be expressed as a conditional sum of independent rvs and hence,
Subsections 5.3 and 5.4 of Röllin [13] can be used to obtain the bound of D(V |·). For
more details, see Remark 3.1(ii) of Kumar et al. [11].

Next, the following theorem gives the bound for independent setup.

Theorem 3.2. Let E(ζ3
i ) < ∞ and V be the sum of independent rvs. Then

1. (uniform bound) supz≥0 |E[Agz(V )]| ≤
(
2p−(r+1) − p−1

)
U∗

J

2. (non-uniform bound) |E[Agz(V )]| ≤ ϑr,p,zU
∗
J , for all z > 1,

where

U∗
J =



∑
i∈J

∞∑
k=1

k|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1| if µNr,p = µV ;

√
2
π

1
4

+
∑
j∈J

δj − δ∗

− 1
2

if µNr,p = µV{∑
i∈J

E(ζi)|pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))| and σNr,p = σV

+
∑
i∈J

∞∑
k=2

k(k − 1)
2

|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|

}
,

ϑr,p,z is defined in (2.23), γi,k = P(ζi = k), δj = min{1
2 , 1−dTV (ζj , ζj +1)}, and δ∗ = maxj∈J δj .

Proof: Substituting Ai = {i} in (3.3), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζi∑
j=1

∆gz(Vi + j)

 + q
∑
i∈J

E

ζi

ζi∑
j=1

∆gz(Vi + j)


−

∑
i∈J

E

ζi

ζi−1∑
j=1

∆gz(Vi + j)


= p

∑
i∈J

∞∑
k=1

k∑
j=1

E(ζi)E[∆gz(Vi + j)]γi,k

+ q
∑
i∈J

∞∑
k=1

k∑
j=1

kE[∆gz(Vi + j)]γi,k

−
∑
i∈J

∞∑
k=2

k−1∑
j=1

kE[∆gz(Vi + j)]γi,k

=
∑
i∈J

∞∑
k=1

[(pE(ζi) + qk)γi,k − (k + 1)γi,k+1]
k∑

j=1

E[∆gz(Vi + j)].
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Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
∑
i∈J

∞∑
k=1

k|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|.

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV .
Next, substituting Ai = Bi = {i} in (3.5), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζi∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


+ q

∑
i∈J

E

ζi

ζi∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


−

∑
i∈J

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E

[
ζi∑

`=1

E[∆2gz(Vi + `)|ζi]

]

−
∑
i∈J

E

ζi

ζi−1∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


= p

∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

E(ζi)E[∆2gz(Vi + `)]γi,k

+ q
∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

kE[∆2gz(Vi + `)]γi,k

−
∑
i∈J

∞∑
k=1

k∑
`=1

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E[∆2gz(Vi + `)]γi,k

−
∑
i∈J

∞∑
k=2

k−1∑
j=1

j−1∑
`=1

kE[∆2gz(Vi + `)]γi,k

=
∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

[(pE(ζi) + qk)γi,k − (k + 1)γi,k+1]E[∆2gz(Vi + `)]

−
∑
i∈J

∞∑
k=1

k∑
`=1

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E[∆2gz(Vi + `)]γi,k.

Note that |E(∆2gz(Vi + ·))| ≤ δ‖∆gz‖, where δ = 2 maxi∈J dTV (Vi, Vi + 1) (see Barbour and
Xia [3], and Barbour and Čekanavičius [2, p. 517])). Also, from Corollary 1.6 of Brown and

Phillips [4] (see alsoRemark 4.1 ofVellaisamy et al. [15]), we have δ≤
√

2
π

(
1
4 +

∑
j∈J δj−δ∗

)−1/2

with δj = min{1
2 , 1− dTV (ζj , ζj + 1)} and δ∗ = maxj∈J δj . Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
√

2
π

1
4

+
∑
j∈J

δj − δ∗

− 1
2

(3.7)

×

{∑
i∈J

E(ζi)|pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))|

+
∑
i∈J

∞∑
k=2

k(k − 1)
2

|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|

}
.
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Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV and σNr,p = σV .

Next, for J = {1, 2, ..., n}, we present and compare our results for the sum of Bernoulli
and geometric rvs as special cases.

Remark 3.2.

(i) Note that the expression U∗
J in Theorem 3.2 is similar to the expression given in

Theorems 3.1 and 4.1 of Vellaisamy et al. [15]. Also, for total variation distance
(‖∆g‖ ≤ 1/rq), the bound given in (3.7) is an improvement over Theorem 4.1 of Kadu
[8].

(ii) For J = {1, 2, ..., n}, the bounds given in Theorem 3.2 are of O(np−n) when µNr,p = µV

and O(
√

np−n) when µNr,p = µV and σNr,p = σV . These bounds improved the existing
bounds given by Neammanee and Yonghint [12] which is of O(nen). Moreover, our
bounds are more suitable for sufficiently large values of p.

(iii) Let V2 =
∑n

i=1 ζi be the sum of independent Bernoulli rvs. Then, from Theorem 3.2,
we have

sup
z≥0

|E[Agz(V2)]| ≤
(
2p−(r+1) − p−1

) n∑
i=1

pi(1− pqi),(3.8)

where pi = 1− qi = P(ζi = 1) and r(1− p) = p
∑n

i=1 pi. Note that we can not obtain
the bound by matching mean and variance as E(V2) > Var(V2). From Corollary 1 of
Neammanee and Yonghint [12], we have

sup
z≥0

|E[Agz(V2)]| ≤ (2eλ − 1)
n∑

i=1

p2
i ,(3.9)

where λ =
∑n

i=1 pi. Observe that the bound given in (3.8) is either comparable to or an
improvement over the bound given in (3.9), for example, some numerical comparisons
are given in Table 2.

(iv) Let V3 =
∑n

i=1 ζi be the sum of independent geometric rvs with P(ζi = k) = qk
i pi, for

k ∈ Z+, and qi ≤ 1/2. Then, from Theorem 3.2, we have

sup
z≥0

|E[Agz(V2)]| ≤



(
2p−(r+1) − p−1

) n∑
i=1

|p− pi|qi

p2
i

if µNr,p = µV3 ;

3
(
2p−(r+1) − p−1

)
if µNr,p = µV3

×
√

2
π

(∑n
j=1 qj − 1

4

)−1/2
and σNr,p = σV3 ,

×
n∑

i=1

|p− pi|q2
i

p3
i

(3.10)

where
∑n

i=1 qi > 1/4 when µNr,p = µV3 and σNr,p = σV3 . Note that if pi = p, for all
1 ≤ i ≤ n, then supz≥0 |E[Agz(V2)]| = 0, as expected. From Theorem 1 and Corollary
2 of Neammanee and Yonghint [12], we have

sup
z≥0

|E[Agz(V2)]| ≤ (2eλ − 1)
n∑

i=1

(8− 7pi)q2
i

p3
i

,(3.11)
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where λ =
∑n

i=1(qi/pi). The above bound is better than the bound given by Jiao
and Karoui [5] (shown in Remark 1(1) by Neammanee and Yonghint [12]). Note that
our bound is better than the bound given in (3.11). For instance, let n = 75 and qi,
1 ≤ i ≤ 75, be defined as follows:

Table 1: The values of qi.

i qi i qi i qi i qi i qi i qi

0–10 0.05 11–20 0.10 21–30 0.15 31–40 0.20 41–50 0.25 51–75 0.30

Then, choose r = n if µNr,p = µV , the following table gives a comparison between our
bounds and the existing bounds under Bernoulli and geometric setup.

Table 2: Comparison of bounds.

n

For Bernoulli setup For geometric setup

From (3.9) From (3.8) From (3.11)
From (3.10) From (3.10)

(µNr,p = µV ) (µNr,p = µV and
σNr,p = σV )

10 21.5280 22.2920 0.09390 9.47× 10−17 9.07× 10−17

20 158.986 161.239 2.53041 0.41416 0.06280
30 1438.02 1348.40 60.4516 7.17325 1.23534
40 22467.0 17633.1 2117.84 195.211 27.7360
50 745974 423881 142995 7902.23 1079.63

For large values of n, note that our bounds are an improvement over the existing
bounds for various values of qi. Moreover, for the geometric setup, the bounds are
much sharper than the existing bounds as NB and the sum of geometric rvs consists
of similar properties. Also, observe that the bounds computed by matching mean and
variance are better than the bounds computed by matching mean only, as expected.

4. AN APPLICATION TO CDO

The CDO is a financial tool that transfers a pool of assets such as auto loans, credit
card debt, mortgages, and corporate debt, among many others, into a product and sold to
investors. The assets are divided into several tranches, that is, the set of repayment. Each
tranche has various credit quality and risk levels. The primary tranches in CDOs are senior,
mezzanine, and equity. The investors can opt for multiple tranches to invest as per their
interest. For more details, see Neammanee and Yonghint [12], Yonghint et al. [17], Kumar
[9], and reference therein.
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It is known that the CDO occurs in both, locally dependent and independent setup (see
Yonghint et al. [17] and Neammanee and Yonghint [12] for more details), and therefore, the
results obtained in this paper are useful in applications. Consider the similar type of CDO
discussed by Yonghint et al. [17]. Suppose there are N assets that have a constant recovery
rate R then the percentage cumulative loss in CDO up to time T is

L(T ) =
1−R

N

N∑
i=1

ξi,(4.1)

where ξi = 1{τi≤T}, τi is the default time of the ith asset, and 1A denotes the indicator
function of A. The expression in (4.1) can be rewritten as

E[(L(T )− z∗)+] =
1−R

N
E[(V4 − z∗)+],(4.2)

where z∗ = (1−R)z/N > 0 is the attachment or the detachment point of the tranche and
V4 =

∑N
i=1 ξi. Therefore, the problem is reduced to obtain error bounds for E[(V4 − z∗)+],

and hence, Corollary 3.1 and Remark 3.2(iii) are useful in applications. For more details, we
refer the reader to Yonghint et al. [17], Kumar [9], and reference therein.

Next, we compare our results with the existing results under the locally dependent
and independent setup. For the independent setup, Neammanee and Yonghint [12] gives the
bound discussed in (3.9) and, for the locally dependent setup, from Theorem 2 of Yonghint
et al. [17], we have

sup
z≥0

|E[Agz(V ∗)]| ≤
(
2eλ − 1

) n∑
i=1

 ∑
j∈Ai\{i}

p∗i,j +
∑
j∈Ai

p∗i p
∗
j

,(4.3)

where λ =
∑n

i=1 p∗i , p∗i = P(ξi = 1), and p∗i,j = P(ξi = 1, ξj = 1). Note that our bound given
in (3.6) is better than the bound given in (4.3). For instance, let r = n, p∗i,j = p∗, 1 ≤ i, j ≤ n,
Ai = {i− 1, i, i + 1}, and qi as defined in Table 1, 1 ≤ i ≤ 75, then, the following table gives
a comparison between the upper bounds given in (3.8), (3.9), (3.6), and (4.3) for different
values of p∗ and qi.

Table 3: Comparison for the locally dependent and independent setup.

n
For independent setup For locally dependent setup

From (3.9) From (3.8) p∗ From (4.3) From (3.6)

15 64.0726 65.9832
0.4

247.274 206.347
35 5747.39 4964.44 22958.3 15690.1

55 6.79× 106 3.00× 106

0.7
3.37× 107 1.39× 107

75 4.49× 1010 6.22× 109 2.31× 1011 3.00× 1010

For large values of n, note that our bounds are better than the existing bounds for various
values of p∗ and qi.
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A. APPENDIX: SOME USEFUL INEQUALITIES

Here we give some inequalities and their proofs that have used in Lemmas 2.1 and
2.2. Recall that fz is a call function, defined in (1.1), and Nr,p follows the negative binomial
distribution, defined in (1.2). The following lemma gives uniform and non-uniform upper
bounds for E[fz(Nr,p)] = E[(Nr,p − z)+].

Lemma A.1. The following inequalities hold:

(i) E[(Nr,p − z)+] ≤ rq
p , for z ≥ 0.

(ii) E[(Nr,p − z)+] ≤ r(r+1)q2

zp2 , for z > 1.

Proof:

(i) For z ≥ 0, we have

E[(Nr,p − z)+] =
∞∑

k=1

(k − z)+
(

r + k − 1
k

)
prqk

≤ rpr
∞∑

k=1

(
r + k − 1

k − 1

)
qk =

rq

p
.

This proves (i).

(ii) For z > 1, we have

E[(Nr,p − z)+] =
∞∑

k=dze

(k − z)
(

r + k − 1
k

)
prqk

≤ pr

dze

∞∑
k=dze

r(r + 1) ··· (r + k − 1)
(k − z)
(k − 1)!

qk

≤ pr

z

∞∑
k=dze

r(r + 1) ··· (r + k − 1)
(k − 2)!

qk

≤ r(r + 1)pr

z

∞∑
k=2

(
r + k − 1

k − 2

)
qk =

r(r + 1)q2

zp2
.

This proves (ii).

Next, the following lemma gives some inequalities related to the parameters r and p of Nr,p.
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Lemma A.2. The following inequalities hold:

(i)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 1)

qj ≤ p−(r+1) − 1, for k ≥ 1.

(ii)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj ≤ p−r − 1
rq

− 1, for all k ≥ 1.

(iii)

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
(k + 1) ··· (j + k − 1)

qj ≤ p−(r+1) − 1
r

− q, for k ≥ 1.

(iv)

∞∑
j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj ≤ p−(r+2) − 1
(r + 1)q

− 1, for k ≥ 2.

(v)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj ≤ p−r − 1
r(r + 1)q2

− 1
2
, for k ≥ 2.

Proof: Note that, for k = 1,
∞∑

j=1

(r + 1) ··· (r + j)
1 · 2 ··· j

qj =
∞∑

j=1

(
r + j

j

)
qj = p−(r+1) − 1.

Therefore, the inequality (i) holds for k = 1. Now, suppose it holds for k = m, that is,
∞∑

j=1

(r + m) ··· (r + j + m− 1)
m(m + 1) ··· (j + m− 1)

qj ≤ p−(r+1) − 1.(A.1)

Observe that
∞∑

j=1

(r + m + 1) ··· (r + j + m)
(m + 1) ··· (j + m)

qj

=
∞∑

j=1

m(r + j + m)
(r + m)(m + j)

(r + m) ··· (r + m + j − 1)
m(m + 1) ··· (j + m− 1)

qj

≤
∞∑

j=1

(r + m) ··· (r + m + j − 1)
m(m + 1) ··· (j + m− 1)

qj

≤ p−(r+1) − 1 (using (A.1)).

This implies that the inequality (i) holds for k = m + 1, and hence it holds for all k ≥ 1.
Following similar steps, the inequalities (ii)-(v) can be easily proved.
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1. INTRODUCTION

In the earth sciences, statistical modelling of extreme events is of importance; in fields
like hydrology and oceanography there is a need to estimate return levels, for instance for
the sake of engineering design. For this purpose, quantiles of probability distributions are of
key interest, and hence choice of distribution is crucial. When using statistical methodology
based on likelihood functions, criteria like Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) can be employed for model choice [2], [25]. Often in the applied
literature, goodness-of-fit tests are employed as measures of deviation between the empirical
distribution and the potential distribution family.

The tail behaviour of the probability distribution is a key factor in extreme-value anal-
ysis, e.g. when estimating return levels. When a block-maximum approach is chosen for
studying annual maxima of some quantity (e.g. daily maximum rainfall), extreme-value the-
ory tells that certain distributions serve as limiting distributions, that can be summarised in
the Generalised Extreme Value (GEV) distribution. However, the results are valid asymp-
totically and not seldom only small samples are available. In hydrology, one occasionally also
considers the lognormal distribution and other alternatives, like the five-parameter Wakeby
distribution, first presented in 1978 by Houghton [16] and to be investigated more closely in
the sequel of this paper. Griffiths [10] claims that “the distribution has a secure theoretical
basis and is hydrologically more realistic”. A list of applications of this distribution is given
in a recent paper by Busababodhin et al. along with proposed estimation techniques [7].

In recent years, generalisations of conventional distributions have been introduced,
with the intention of being more flexible. Exponentiated distributions have for instance been
proposed: exponentiated exponential, exponentiated Gumbel etc. For an investigation of the
exponentiated Gumbel applied to series of significant wave height, see Persson and Rydén [23].
Another generalisation of the Gumbel distribution, the so-called Beta Gumbel distribution,
was studied by Jonsson and Rydén [17], where this distribution was compared to the Gumbel
and GEV distributions in a case study of extreme precipitation. However, for that study the
difference between Beta Gumbel and GEV was minor, with respect to infomation criteria as
well as estimated return levels and their uncertainties.

This paper serves two purposes. First, to check the intended flexibility of the Wakeby
distribution through simulation studies for various sample sizes. Estimation of parameters
will be made conveniently by L-moments [13], and hence the likelihood-based AIC and BIC
are not options for model choice. Examinations of the differences between simulated samples
and candidate distributions are based on various measures of minimum distance. As the tail
behaviour is of particular interest for typical applications, upper quantiles are also compared.
The second purpose is to study data of unregulated extreme floods in northern Sweden.
Several distributions are considered, in particular the effects on estimated return levels due
to various distribution assumptions on the tails. Moreover, the influence of record length is
of interest.

The paper is outlined as follows. Section 2 serves as a background, introducing first
of all the Wakeby distribution. Further, a review of the methodology for estimation by
L-moments is given as well as presentation of the approaches for discerning distributions.
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The simulation study is outlined and its main findings given in Section 3, and in Section 4
the case study of extreme floods in Sweden is presented, including estimated return levels for
various situations.

2. BACKGROUND

2.1. The Wakeby distribution with applications

The Wakeby distribution was presented by Houghton [16], along with results of goodness-
of-fit tests for observations of extreme floods. We here give the parametrisation by Hosking
and Wallis found in [15], a five-parameter distribution:

(2.1) x(F ) = ξ +
α

β

[
1− (1− F )β

]
− γ

δ

[
1− (1− F )−δ

]
,

where F ∈ [0, 1]. The following parameter restrictions are valid: either β + δ > 0 or β = γ =
δ = 0; if α = 0 then β = 0; if γ = 0 then δ = 0. The generalised Pareto distribution follows
with the formulation in equation (2.1) as the special α = 0 or γ = 0. Note that the defini-
tion is stated in terms of the quantile function, which faciliates estimation of return levels.
In addition, simulation of random numbers can be performed by the inverse method.

This distribution has been applied successfully for various quantities in the earth sci-
ences. A list of applications is given in [7]. In his landmark paper [16], Houghton examined the
fit of observations of floods from stations in the United States, and Griffiths [10] investigated
flood data from New Zealand.

2.2. Estimation of parameters

In this study, we employ estimation by L-moments, which is convenient for the five-
parameter Wakeby distribution. For instance, Busababodhin et al. point out that maximum-
likelihood estimates are not easily obtained [7]. Moreover, the methodology is in widespread
use in many countries; see [6] for a list of studies performed by L-moments. Hosking [13]
claims that estimation of parameters by L-moments is occasionally more accurate in small
samples. Furthermore, quantile functions can be expressed in terms of L-moments, a clear
advantage in hydrological sciences when estimating return levels. For the computational work
in this paper, the implementations in the R packages lmom and lmomco were used ([14], [5]),
following the parameterisation in equation (2.1).
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2.2.1. Introduction to L-moments

The methodology with L-moments was introduced by Hosking [13]. The L-moments
are the quantities λr as follows, and are linear functions of order statistics:

λr =
1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
E[Xr−k:r], r = 1, 2, ...,

where X1:n ≤ ··· ≤ Xn:n are the order statistics of a random sample of size n drawn from
the distribution of a random variable X. In applied studies, moments could be standardised,
becoming independent of the units of measurement. These so-called L-moment ratios are the
quantities

τr = λr/λ2, r = 3, 4, ... .

The measures τ3 and τ4 can be regarded as measures of skewness and kurtosis. For instance,
for a symmetrical distribution, τ3 = 0. Further details on L-moments are found in Appendix.

2.2.2. Remarks on estimation methodologies

The notion of L-moments has been extended, for instance trimmed L-moments (TL
moments), [9]. TL moments with the smallest value trimmed with an application to the
generalised Pareto distribution were considered in [1]. An estimation method using higher-
order L-moments, so-called LH-moments, was presented in [7].

Recently, versions of L-moments as well as maximum-likelihood methods for estima-
tion of high quantiles of the generalised Pareto and generalised extreme-value distribution
have been compared [27]. The authors concluded that “there are small differences when es-
timating high quantiles of the GPD or GEV distributions. It was revealed that L-moment
and maximum likelihood methods outperform LQ- and TL-moment methods: the L-moment
method is preferred for heavy-tailed distributions, while the maximum likelihood method is
recommended for light-tailed distributions.” Thus, from these findings, we are motivated in
the choice of estimation by L-moments in this paper.

2.3. Evaluating candidate distributions

Already in the paper by Houghton [16], goodness-of-fit tests were considered in the
analysis, and many papers in e.g. hydrology apply various versions of such tests. However,
as pointed out by Wilks [28]: “Of substantially more interest is the closeness of fit on the
right tail, since it is here that extrapolations of relevance to engineering design and other
applications will be made.” In the literature, there seems to be no concensus on a specific
procedure (in the forms of visualisations, goodness-of-fit measures, computer-intensive meth-
ods) to apply. Uses of criteria like AIC and BIC for model choice is often a convenient strat-
egy, not the least to compare distributions (or models) with varying number of parameters.
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However, in this paper we use L-moments for estimation, not maximum-likelihood estimation,
and hence other approaches have to be taken.

In the sequel of this paper, we will perform simulations from a particular distribution
and compare to candidate distributions (to be described in detail in Section 3). The so result-
ing samples will be compared by firstly, two general distance measures, secondly, comparison
of high quantiles. Moreover, when analysing observed river-flow data from stations in Section 4,
the so-called L-moment diagram will assist in interpretations.

2.3.1. Distance measures

In the literature, there is a substantial number of distance, or similarity, measures in
various scientific fields. A review is given by Cha, where measures also are categorised [8].
In the presentation below, we assume that two probability densities P and Q, each in a
discretised “histogram” form of B values, are to be compared.

Some measures are said to belong to Shannon’s entropy family. In this paper, we chose
the Kullback–Leibler distance [18]:

dKL =
B∑

j=1

pi ln
pi

qi
.

In another category, the measures are based on geometric means: the fidelity or squared-chord
family. The simplest version was chosen in this paper, the Fidelity similarity measure:

sF =
B∑

j=1

√
pjqj .

Other alternatives in this category are Bhattacharyya and Hellinger distances. Both dKL and
sF are interpreted that the smaller the value, the two objects (here, distributions) are closer
and have a higher degree of similarity.

2.3.2. Comparison of quantiles

For a simulated sample from a specified random variable X, the upper quantile x0.99

for which P(X > x0.99) = 0.01, is estimated, resulting in x∗0.99, say. Based on the simulated
sample, candidate distributions are fitted with L moments, and the related upper quantiles are
estimated. The absolute differences between these estimates and x∗0.99 are finally calculated.
Further details on the simulation procedure are given in Section 3.1.

3. SIMULATION STUDY: DIFFERENCES AMONG DISTRIBUTIONS

In this section, we investigate how distances between distributions differ, given sim-
ulated observations from a parent distribution. We will use the approaches presented in
Section 2.3. In addition to the Wakeby distribution, we will consider two other distributions
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often encountered in the earth sciences or hydrology: the generalised extreme value (GEV)
distribution and the three-parameter lognormal (LN3). Though familiar and well known in
the research domains mentioned, we present them below in order to present their parameters.

The GEV distribution has three parameters (location µ, scale σ and shape ξ), and is
commonly stated by its distribution function:

F (x;µ, σ, ξ) =

{
exp

{
−

[
1 + ξ x−µ

σ

]−1/ξ
}

, ξ 6= 0,

exp
{
− exp

[
−x−µ

σ

]}
, ξ = 0,

where µ ∈ R, σ > 0 and ξ ∈ R. The shape parameter ξ affects the support of this distribution:
when ξ = 0, the GEV distribution is the Gumbel distribution (with support R). When ξ > 0,
the distribution corresponds to the Fréchet distribution with support x ≥ µ + σ/ξ, and when
ξ < 0 it corresponds to the reversed Weibull distribution with support x ≤ µ− σ/ξ.

Consider the LN3 distribution with distribution function

F (x) = Φ(y), x > 0,

where y = (ln(x− ζ)− µ)/σ and Φ(y) is the distribution function of the standard normal
distribution. In other words, the density function of X is given as

f(x;µ, σ, ζ) =
1

(x− ζ)σ
√

2π
exp

{
−(ln(x− ζ)− µ)2

2σ2

}
, x > ζ ≥ 0,

where µ ∈ R, σ > 0. If X is distributed as above, Y = ln(X − ζ) has a normal distribution
with mean µ and variance σ2.

3.1. Algorithm of simulation study

In this study, we simulate from a given parent distribution: GEV or LN3. The sample
size n was chosen in the range from 25 to 200, in steps of 25 at the lower sample sizes.

1. For each sample size, simulate N = 5000 samples from a parent distribution.

2. For each sample, compute the L-moments by the R package lmomco and then
the probability-density functions for the candidate distributions LN3, Wakeby and
GEV, evaluated at the sample points.

3. Estimate the probability-density function for the sample (by the R routine den-

sity), and compute measures sF and dKL for comparison with the densities ob-
tained in step 2. In addition, compute the upper 0.99 quantiles for the sample and
the candidate distributions.

4. Register which distribution alternative had the smallest deviation from the sim-
ulated sample, in terms of sF, dKL and upper quantile, respectively. Over the N

samples the overall proportions of“winners”(in terms of smallest distance) from the
three distribution alternatives can be collected, resulting in a triple with the three
components summing up to one. For instance, with dKL considered, GEV, LN3
and Wakeby could result in the triple (0.25, 0.15, 0.60), i.e. Wakeby here resulted
in the smallest distance in the majority of cases.
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3.2. L-moment ratio diagram

Before turning to the simulations outlined above, let us illustrate the notion of the
so-called L-moment ratio diagram with simulations from a GEV distribution. In such a
diagram is found τ3 on the abscissa and τ4 on the ordinate. Probability distributions can be
illustrated as curves and in some cases as points. For instance, the uniform distribution has
(τ3, τ4) = (0, 0), for the Gumbel distribution (τ3, τ4)

.= (0.17, 0.15), and the GEV distribution
forms a curve in the τ3-τ4 plane [13].

In Figure 1, the curve for the GEV distribution is drawn along with dots corresponding
to L-moments from 500 simulated samples from a GEV distribution. The left panel shows
the result for sample size n = 25, the right panel shows the case n = 100. We note for the
smaller sample size a considerable spreading in the (τ3, τ4) plane, relatively the larger sample
size. This feature could be kept in mind, when facing real data in Section 4.
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Figure 1: Simulation from a GEV distribution with τ3 = τ4 = 0.14. The
solid curve represents a GEV distribution in the (τ3, τ4) space.
Left panel: sample size 25 (500 samples). Right panel: sample
size 100 (500 samples).

An illustration how this type of plot can assist in distinguishing between
distributions is found in [13], Section 3.5. This visualisation tecnique has shown
itself useful in hydrology [22],[20].

3.3. Case 1. Simulation from GEV distribution

We first study the case of the parent distribution being the standard Gum-
bel distribution,

F (x) = exp(−e−x), x ∈ R.

In Figure 2, the proportions of smallest distance are shown for the three potential
distributions as function of sample size. Thus, for each sample size, the propor-
tions obviously sum to one. The left panel shows results based on distance in
upper quantile, middle panel dKL and right panel sF.

From the plots in Figure 2, the Wakeby distribution is for all the measures
considered, and regardless of the sample size, the choice which for a majority of
cases is the closest to the simulated sample.

Figure 1: Simulation from a GEV distribution with τ3 = τ4 = 0.14. The solid curve represents
a GEV distribution in the (τ3, τ4) space. Left panel: sample size 25 (500 samples).
Right panel: sample size 100 (500 samples).

An illustration how this type of plot can assist in distinguishing between distributions is
found in [13], Section 3.5. This visualisation tecnique has shown itself useful in hydrology [22],
[20].

3.3. Case 1. Simulation from GEV distribution

We first study the case of the parent distribution being the standard Gumbel distribution:

F (x) = exp(−e−x), x ∈ R.
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In Figure 2, the proportions of smallest distance are shown for the three potential distributions
as function of sample size. Thus, for each sample size, the proportions obviously sum to one.
The left panel shows results based on distance in upper quantile, middle panel dKL and right
panel sF.
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Figure 2: Simulation from a Gumbel distribution (τ3 = 0.17, τ4 = 0.15).
For each sample size, the proportions of smallest distance for
each distribution family are displayed.

In the next example, a GEV distribution with τ3 = 0.07, τ4 = 0.25 is
the parent distribution, and results are shown in Figure 3. The conclusions are
similar to the preceding case: the Wakeby gives in the majority of cases the best
fit of the simulated data.

Figure 3: Simulation from a GEV distribution (τ3 = 0.07, τ4 = 0.25). For
each sample size, the proportions of smallest distance for each
distribution family are displayed.

3.4. Case 2. Simulation from log-normal distribution (LN3)

We here simulate from the LN3 distribution with τ3 = 0.07, τ4 = 0.25.
Results for the three measures are shown in Figure 4. Again, the Wakeby distri-
bution is the best option, regardless of sample size or measure.

Figure 2: Simulation from a Gumbel distribution (τ3 = 0.17, τ4 = 0.15). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

From the plots in Figure 2, the Wakeby distribution is for all the measures considered,
and regardless of the sample size, the choice which for a majority of cases is the closest to
the simulated sample.

In the next example, a GEV distribution with τ3 = 0.07, τ4 = 0.25 is the parent distri-
bution, and results are shown in Figure 3. The conclusions are similar to the preceding case:
the Wakeby gives in the majority of cases the best fit of the simulated data.
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Figure 3: Simulation from a GEV distribution (τ3 = 0.07, τ4 = 0.25). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

3.4. Case 2. Simulation from log-normal distribution (LN3)

We here simulate from the LN3 distribution with τ3 = 0.07, τ4 = 0.25. Results for the
three measures are shown in Figure 4. Again, the Wakeby distribution is the best option,
regardless of sample size or measure.
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Remark. Note that the GEV and LN3 simulations had the same choices of τ3 and τ4,
respectively. Actually, in order to have realistic values, Station 11 in the next section was
used here: fitting each distribution in case by L-moments and rendering parameters in the
relevant distribution for the actual simulation study. Obviously, the estimates of τ3 and τ4

remain the same, since the same original sample is considered.
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Remark. Note that the GEV and LN3 simulations had the same choices
of τ3 and τ4, respectively. Actually, in order to have realistic values, Station 11
in the next section was used here: fitting each distribution in case by L-moments
and rendering parameters in the relevant distribution for the actual simulation
study. Obviously, the estimates of τ3 and τ4 remain the same, since the same
original sample is considered.

Figure 4: Simulation from an LN3 distribution (τ3 = 0.07, τ4 = 0.25). For
each sample size, the proportions of smallest distance for each
distribution family are displayed.

4. Case study: Flood flows in Sweden

In this section we focus on flood flows from northern Sweden. The aim is
to fit annual maximum flows by the three distributions considered earlier in the
paper (GEV, LN3, Wakeby). We do not consider possible non-stationary effects
due to climate change; for further discussion, see [4], where no significant trends
were discerned in annual maximum daily flow in Sweden over the past 100 years.

Data are available from Swedish Meteorological and Hydrological Institute
(SMHI), online address: http://vattenwebb.smhi.se/station/#. Unregulated
rivers in northern Sweden were considered. As long series as possible were chosen,
for possible GEV asymptotics to work. In all, eleven stations were selected and
descriptions are given in Table 1. For the rest of the paper, they will for simplicity
be referred to as Station 1, . . . , Station 11.

For these stations, the L-moments were estimated for each time series, and
the results are shown in an L-moment diagram (Figure 5). One could note that
stations 7, 9, 10 and 11 tend to form a group in the plane. Indeed, these stations
belong to the same river system (Kalix, River ID 4000). Moreover, Stations 2, 4
and 6 are located close to the curve for GEV distribution.

Figure 4: Simulation from an LN3 distribution (τ3 = 0.07, τ4 = 0.25). For each sample size,
the proportions of smallest distance for each distribution family are displayed.

4. CASE STUDY: FLOOD FLOWS IN SWEDEN

In this section we focus on flood flows from northern Sweden. The aim is to fit an-
nual maximum flows by the three distributions considered earlier in the paper (GEV, LN3,
Wakeby). We do not consider possible non-stationary effects due to climate change; for fur-
ther discussion, see [4], where no significant trends were discerned in annual maximum daily
flow in Sweden over the past 100 years.

Data are available from Swedish Meteorological and Hydrological Institute (SMHI),
online address: http://vattenwebb.smhi.se/station/#. Unregulated rivers in northern
Sweden were considered. As long series as possible were chosen, for possible GEV asymptotics
to work. In all, eleven stations were selected and descriptions are given in Table 1. For the
rest of the paper, they will for simplicity be referred to as Station 1, ..., Station 11.

Table 1: Information on selected stations.

Nr. Station Name River ID River Area (km2) Start End

1 4 Junosuando 1000 Torne 4348.0 1968 2019
2 957 Övre Abiskojokk 1000 Torne 566.3 1986 2019
3 2012 Pajala pumphus 1000 Torne 11038.1 1970 2019
4 2357 Abisko 1000 Torneträsk 3345.5 1985 2019
5 2395 Kallio 2 1000 Muonio älv 14477.1 1988 2019
6 16722 Kukkolankoski övre 1000 Torne 33929.6 1911 2019

7 11 Männikkö 4000 Tärendö 5856.2 1976 2019
8 17 Räktfors 4000 Kalix 23102.9 1937 2019
9 1456 Kaalasjärvi 4000 Kalix 1472.5 1975 2019

10 2159 Killingi 4000 Kalix 2345.5 1976 2019
11 2358 Tärendö 2 4000 Kalix 13000.0 1985 2019
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For these stations, the L-moments were estimated for each time series, and the results
are shown in an L-moment diagram (Figure 5). One could note that stations 7, 9, 10 and 11
tend to form a group in the plane. Indeed, these stations belong to the same river system
(Kalix, River ID 4000). Moreover, Stations 2, 4 and 6 are located close to the curve for GEV
distribution.
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Nr . Station Name River ID River Area (km2) Start End

1 4 Junosuando 1000 Torne 4348.0 1968 2019

2 957 Övre Abiskojokk 1000 Torne 566.3 1986 2019
3 2012 Pajala pumphus 1000 Torne 11038.1 1970 2019
4 2357 Abisko 1000 Torneträsk 3345.5 1985 2019
5 2395 Kallio 2 1000 Muonio älv 14477.1 1988 2019
6 16722 Kukkolankoski övre 1000 Torne 33929.6 1911 2019

7 11 Männikkö 4000 Tärendö 5856.2 1976 2019
8 17 Räktfors 4000 Kalix 23102.9 1937 2019
9 1456 Kaalasjärvi 4000 Kalix 1472.5 1975 2019
10 2159 Killingi 4000 Kalix 2345.5 1976 2019
11 2358 Tärendö 2 4000 Kalix 13000.0 1985 2019

Table 1: Information on selected stations.
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Figure 5: L-moment ratio diagram. Solid line: GEV distribution.
Dashed line: Wakeby distribution, lower bound.
Numbers: Stations 1–11.

Figure 5: L-moment ratio diagram. Solid line: GEV distribution. Dashed line: Wakeby distribution,
lower bound. Numbers: Stations 1–11.

4.1. Estimated quantities

The measures dKL and sF were computed, comparing the original sample and the three
candidate distributions with parameters fitted by L-moments. These measures are presented
in Table 2 along with estimates of τ3, τ4 and the shape parameter ξ in the GEV distribution.

Table 2: Stations 1–11: Estimates of L-moment ratios τ3 and τ4; estimate of
shape parameter ξ in GEV; distance measures dKL and sF respectively,
between sample and fitted candidat distribution.

Station τ3 τ4 Shape ξ dGEV
KL dLN3

KL dWAK
KL sGEV

F sLN3
F sWAK

F

1 0.18 0.19 −0.016 7.304 7.289 7.596 1.765 1.766 1.731
2 0.07 0.12 0.16 13.239 13.262 13.232 2.217 2.215 2.210
3 0.008 0.09 0.27 6.175 6.209 6.130 1.918 1.913 1.926
4 0.07 0.12 0.16 11.667 11.696 11.627 2.269 2.267 2.271
5 0.05 0.08 0.19 12.054 12.077 12.049 2.403 2.397 2.425
6 0.08 0.11 0.15 2.123 2.135 2.091 1.264 1.264 1.264
7 0.07 0.17 0.16 8.862 8.863 9.131 1.949 1.948 1.934
8 0.01 0.08 0.26 2.704 2.690 2.649 1.449 1.446 1.442
9 0.04 0.19 0.21 9.230 9.224 9.039 1.844 1.843 1.825
10 0.05 0.18 0.19 14.759 14.778 15.108 2.062 2.061 2.052
11 0.07 0.25 0.16 11.415 11.417 11.817 1.766 1.765 1.720
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From this table, we may reflect upon the following:

• Absolute differences between the measures are generally quite small; the distribu-
tions are, in this meaning, close for description of data.

• For each distance measure, dKL and sF respectively, Wakeby gives the closest fit in
a majority of cases (7 out of 11 for each measure). For 5 out of 11 samples, both
measures dKL and sF gave preference for Wakeby.

• Station 6 has the longest period of observations, 109 years. Here one can note that
for the measure sF, all three distribution options yield results equal up to the third
decimal.

• The GEV distribution is, interestingly, seldom the distribution with minimum dis-
tance to the sample. The asympotics of the maximum distribution seems not to have
been attained for these samples. From the L-moment ratio diagram in Figure 5, Sta-
tions 2, 4 and 6 are close to the GEV curve, but for the measures considered, there
are only minor differences between the distribution options.

4.2. Return levels

A T -year return level xT is often defined as the high quantile for which the probability
that the annual maximum exceeds this quantile is 1/T , hence F (xT ) = 1− 1/T where F (.)
is the distribution function for the series of maxima. We consider T in the range from 10 to
1000 years and estimate return levels based on quantiles for the three distribution families
considered above: GEV, LN3, Wakeby.

In Figure 6, we note minor differences between distributions for low T values, but for
most stations a considerable spreading for T = 1000. In particular, for Stations 2, 9 and 11,
the Wakeby 1000-year return level is remarkably higher than the alternatives. Station 6, with
the largest observation period, also has a notable difference between distribution choices at
T = 1000, with the LN3 alternative resulting in the highest levels.

5. CONCLUDING REMARKS

In this paper, we have investigated the use of the Wakeby distribution. Through sim-
ulation studies, we found that based on several distance measures, the Wakeby distribution
has a good fit to the tail, regardless of the distribution of origin (lognormal or generalised
extreme-value distribution) and sample size. One could remark that although a certain distri-
bution was registred as the “winner” (in terms of smallest distance), for a particular sample
and choice of distance measure, often in practice the differences between distributions are
quite small; cf. the detailed numerical outcomes for the flood data (Table 2).

In addition, we examined annual extreme floods with respect to fit of distribution and
estimation of return levels. Uncertainties of return levels, e.g. in the form of confidence
intervals, were not provided in the study, but although intervals in this context typically
tend to be wide, the selection of the very distribution shows itself to be of interest for high
quantiles (T = 1000).
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Figure 6: Return levels, based on station data. Abscissa: 1−1/T , where T
is the return period, starting from T = 10, final value T = 1000.
The ordinate shows the related estimated return level.

Figure 6: Return levels, based on station data. Abscissa: 1− 1/T , where T is the return period,
starting from T = 10, final value T = 1000. The ordinate shows the related estimated
return level.
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We studied here the quantity of extreme floods, like in the vintage paper on Wakeby
distribution [16]. In the literature, the Wakeby distribution has also been employed to model
rainfall, [21] (although these authors did not motivate the choice of Wakeby distribution,
compared to other alternatives). Further studies could be performed to investigate extreme
rainfall. Moreover, concerning extreme daily rainfall, Papalexiou and Koutsoyiannis found
by fitting GEV distributions to records worldwide that the record length strongly affects the
estimate of the GEV shape [20]. Furthermore, the influence on the shape parameter was
analysed. Further studies in this direction, employing a Bayesian approach are found in [24].
To conclude, the longer the observation series, the more likely the GEV distribution might
be attained. Further studies on extreme floods with different observation lengths would be
interesting.

Several options for analysis of minimum distance are available; for a review, see [8].
A version of the Anderson–Darling test statistic for analysis of tail deviation at the upper tail
was suggested in [26]. The author experimented with that measure, but overall conclusions
in the simulation studies were as for the measures presented in this paper: the Wakeby
distribution gives the better fit.

To end this paragraph, and indeed the paper, we cite Haktanir and Horlacher [11]:

“Because of the ample availability of computers nowadays, a single-site flood
frequency analysis should be done with the inclusion of many standard probability
distributions, and a final decision should be made combining experience with
engineering judgement.”

Even more today, some decades later, computers and related software are important tools.
In a strategy for estimation for a certain region, one could still agree that several potential
distributions are possible. Methodology for selection of candidates is of interest to further
analyse.
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APPENDIX

Let X be a real-valued random variable with distribution function F (x) and quantile
function x(F ). Moreover, denote by X1:n ≤ X2:n ≤ Xn:n the order statistics for a random
sample of size n. The L-moments are defined in [13] as the quantities

λr =
1
r

r−1∑
k=0

(−1)k

(
r − 1

k

)
E[Xr−k:r], r = 1, 2, ... .

The first four L-moments can be shown to be

λ1 = E[X] =
∫ 1

0
x(F ) dF,

λ2 = E[X2:2 −X1:2] =
∫ 1

0
x(F )(2F − 1) dF,

λ3 =
1
3
E[X3:3 − 2X2:3 + X1:3] =

∫ 1

0
x(F )(6F 2 − 6F + 1) dF,

λ4 =
1
4
E[X4:4 − 3X3:4 + 3X2:4 − x1:4] =

∫ 1

0
x(F )(20F 3 − 30F 2 + 12F − 1) dF.

In practice, L-moments must be estimated from samples. The rth sample L-moment `r,
estimated as a U-statistic, can be computed by

`r =
1
n

r−1∑
k=0

n∑
i=1

(−1)r−1−k

(
r − 1

k

)(
r − 1 + k

k

)
(i− 1)(i− 2)···(i− k)

(n− 1)(n− 2)···(n− k)
xi:n.

Note, for instance, that `1 = x̄ = n−1
∑

i xi.

L-moment ratios are L-moments that are standardized:

τr =
λr

λ2
, r = 3, 4, ... .

Values of τ3 and τ4 are often plotted against each other, resulting in an L-moment diagram.

Hosking presents in [13], Table 1, the L-moment ratios for some common distributions.
For instance, with relevance for this article, the Gumbel distribution has

τ3 = ln(9/8)/ ln 2 .= 0.17,

τ4 = (16 ln 2− 10 ln 3)/ ln 2 .= 0.15.

For a GEV distribution with shape parameter ξ,

τ3 = 2(1− 3)−ξ/(1− 2−ξ)− 3,

τ4 =
[
5(1− 4−ξ)− 10(1− 3−ξ) + 6(1− 2−ξ)

]
/(1− 2−ξ)

(the formula for τ4 is here given following the report [12]; there seems to be a misprint in
[13]).
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1. INTRODUCTION

In the last two decades, there has been an increasing interest in building statistical
models for estimating the probability of rare and extreme events. These models involving
extreme value theory (EVT) are of a great interest in environmental sciences, engineering,
finance, insurance, and many other disciplines. Especially in finance, extreme price movement
of a financial asset or a market index can be defined as the lowest and highest costs in
an observed period (see Gilli, 2006 [19]). EVT shows that the asymptotic minimum and
maximum returns have a definite shape that is independent of the return process itself.
The EVT deals with the probabilistic description of the extremes of a stochastic sequence.
The fundamental results of Fisher and Tippett (1928) [17] constitute the backbone of the
classical EVT. The fundamental theorem states that maxima of independent and identically
distributed random variables have one of the three extreme value distributions: Fréchet
distribution, with infinite upper and heavy tail, Gumbel distribution, whose upper tail is also
infinite, but lighter than the Fréchet distribution, and inverse Weibull distribution with finite
upper tail. The three previous models can be gathered in the following family

(1.1) Gξ(x;µ, σ, ξ) =

 exp {−(1 + ξ(x−µ
σ ))

−1
ξ }; ξ 6= 0,

exp {− exp(−x−µ
σ )}; ξ → 0,

and

(1.2) gξ(x;µ, σ, ξ) =


1
σ exp {−(1 + ξ(x−µ

σ ))
−1
ξ }(1 + ξ(x−µ

σ ))
−1
ξ
−1; ξ 6= 0,

1
σ exp {− exp(−(x−µ

σ ))} exp(−(x−µ
σ )); ξ → 0,

where µ is a location parameter, σ is a positive scale parameter, and ξ is the shape parameter,
for more detail (see De Haan and Ferreira, 2007 [14]). The cumulative distribution function
(CDF) and probability density function (PDF) in Equations (1.1) and (1.2), respectively,
are known as the generalized extreme value distribution under linear normalization (GEVL).
Another reason for using the power normalization in EVT is concerning the possibility of
getting a better rate of convergence in EVT (see Barakat et al., 2010 [2]). The CDF F is said
to belong to the max stable model under power normalization or simply p-max domain of
attraction of a non-degenerate CDF H, denote by F ∈ Dp(H), if for some norming constants
αn > 0 and βn > 0, we have

(1.3) P (|Xn:n

αn
|1/βn sign(Xn:n) ≤ x) = Fn(αn|x|βn sign(x)) w−→n H(x),

where sign(x) = −1, or 0, or 1, according as x < 0, or x = 0, or x > 0. Pantcheva (1985)
[22] proved that H(x) belongs to one p-type of the following six classes of extreme value
distributions

Type-I : H1,β(x) =

{
0; x ≤ 1,

exp {−(log x)−β}; x > 1, β > 0,

Type-II : H2,β(x) =


0; x ≤ 0,

exp {−(− log x)β}; −1 ≤ x ≤ 1,

1; x > 1,
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Type-III : H3,β(x) =


0; x ≤ −1,

exp {−(− log(−x)−β}; −1 ≤ x ≤ 0,

1; x > 0,

Type-IV : H4,β(x) =

{
exp {−(log(−x))β}; x ≤ −1,

1; x > −1,

Type-V : H5(x) =

{
0; x ≤ 0,

exp {−x−1}; x > 0,

and

(1.4) Type-VI : H6(x) =

{
exp {x}; x ≤ 0,

1; x > 0.

Nasri-Roudsari (1999) [28] demonstrated that the six p-max stable laws in can be represented
as two families. We call them log-GEVL distribution in positive support, and negative log-
GEVL distribution in negative support, i.e.:

(1) For x0 > 0, x > 0 and 1 + ξ
σ log(e−µx) > 0

(1.5) Hξ,1(x;µ, σ) =

 exp {−(1 + ξ
σ log(e−µx))

−1
ξ }; ξ 6= 0,

exp {−(xe−µ)
1
σ }; ξ → 0.

(2) For x0 ≤ 0, x ≤ 0 and 1− ξ
σ log(−e−µx) > 0

(1.6) Hξ,2(x;µ, σ) =

 exp {−(1− ξ
σ log(−e−µx))

−1
ξ }; ξ 6= 0,

exp {−(−xe−µ)
−1
σ }; ξ → 0.

The corresponding density function to Equation (1.5) can be formulated as
(1.7)

hξ(x;µ,σ,ξ)=


1

σx exp{−(1 + ξ
σ log(xe−µ) sign(x))

−1
ξ }((1 + ξ

σ log(xe−µ) sign(x)))
−1
ξ
−1; ξ 6=0,

exp{−(xe−µ sign(x))
−1
σ } e−µ

σ (xe−µ sign(x))
−1
σ
−1; ξ→0.

The results of Gnedenko et al. (1943) [21] and De Haan (1971) [13] concerning linear normal-
ization were extended to p-max stable laws. They showed that every CDF attracted to linear
max stable law is necessarily attracted to some p-max stable, and that p-max stable laws, in
fact attract more. For more information about the extreme under power normalization and
its applications, see Galambos (1987) [18], Nasri-Roudsari (1999) [28], Barakat et al. (2010 [2],
2013 [3], 2014a [4], 2014b [5], 2015 [6], 2019 [7]), among others.

In mathematical physics and probability, the q-distribution is more general than classi-
cal distribution. It was introduced by Diaz and Pariguan (2009) [12] and Diaz et al. (2010) [11]
in the continuous case, and by Charalambides (2010) [9] in the discrete version. The construc-
tion of a q-distribution is the construction of a q-analogue of ordinary distribution. Mathai
and Provost (2006) [27] introduced the q-analogue of the gamma distribution with respect
to Lebesgue measure. Recently, several q-type super statistical distributions such as the
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q-exponential, q-Weibull, and q-logistic were developed in the context of statistical mechanics,
information theory and reliability modelling, as discussed for instance in Chung et al. (1994)
[10], Picoli et al. (2003) [24], Gauchman (2004) [20], De Sole and Kac (2003) [31], Mathai
(2005) [26], Srivastava and Choi (2012) [30], among others. Provost et al. (2018) [23] intro-
duced the CDF and PDF of q-generalized extreme value under linear normalization (q-GEVL)
and q-Gumbel distributions as

(1.8) F (x;µ, σ, ξ, q) =

 [1 + q(ξ(sx−m) + 1)−
1
ξ ]−

1
q ; ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q ; ξ → 0, q 6= 0,

and
(1.9)

f(x;µ, σ, ξ, q) =

 s(1 + ξ(sx−m))
−1
ξ
−1[1 + q(ξ(sx−m) + 1)−

1
ξ ]−

1
q
−1; ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q
−1

se−(sx−m); ξ → 0, q 6= 0,

where s = 1
σ and m = µ

σ . In this paper, we propose the q-analogues of the generalized extreme
value under power normalization (q-GEVP) to construct heavy-tailed distributions for mod-
eling real data; to propose various types of the hazard rate function; and to generate flexible
distributions with left-skewed and right-skewed shape, which can be utilized effectively in
modeling extreme observations.

The paper is organized as follows. In Section 2, the q-GEVP model is reported. Some
mathematical properties such as quantile function, moments, moment generating function
and Shanon entropy are derived in Section 3. Section 4, explains how to determine the
maximum likelihood, Cramer-von Mises minimum distance, ordinary and weighted least-
square estimators of the model parameters. A Monte Carlo simulation study is carried out
in Section 5, to compare the behavior of the different estimation techniques which used in
the estimation of the unknown parameters of the model. In Section 6, we fit some models to
COVID-19 in three countries, Japan, Saudi Arabia and Romania. Also, some statistics are
employed in order to assess goodness of fit. Finally, some concluding remarks are introduced
in the last section.

2. ON q-GENERALIZED EXTREME DISTRIBUTION UNDER POWER
NORMALIZATION

The CDF and PDF of the q-GEVP model and q-distribution “ξ → 0” are, respectively,
given by:

(1) For x0 > 0, x > 0 and 1 + ξ
σ log(e−µx) > 0

(2.1) Hq,ξ,1(x;µ, σ) =

 (1 + q(1 + ξ
σ log(e−µx))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q(xe−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0,
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and
(2.2)

hq,ξ,1(x;µ, σ, ξ) =

 (1 + q(1 + ξ
σ log(e−µx))

−1
ξ )

−1
q
−1 1

σx(1 + ξ
σ log(e−µx))

−1
ξ
−1; ξ 6= 0, q 6= 0,

(1 + q(xe−µ)
−1
σ )

−1
q
−1 e−µ

σ (xe−µ)
−1
σ
−1; ξ → 0, q 6= 0.

(2) For x0 ≤ 0, x ≤ 0 and 1− ξ
σ log(−e−µx) > 0

(2.3) Hq,ξ,2(x;µ, σ) =

 (1 + q(1− ξ
σ log(−xe−µ))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q(−xe−µ)
1
σ )

−1
q ; ξ → 0, q 6= 0,

and
(2.4)

hq,ξ,2(x;µ,σ,ξ)=

(1+ q(1− ξ
σ log(−xe−µ))

−1
ξ )

−1
q
−1 1

σx(1− ξ
σ log(−xe−µ))

−1
ξ
−1; ξ 6=0, q 6=0,

(1 + q(−xe−µ)
1
σ )

−1
q
−1 e−µ

σ (−xe−µ)
1
σ
−1; ξ→0, q 6=0,

where x0 = sup{x : F (x) < 1}. Figures 1 and 2 show the PDF of the q-GEVP model in case
of ξ 6= 0 and ξ → 0, respectively, for various values of the parameters.
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Figure 1. The PDF plots of the q-GEVP distribution in case of ξ 6= 0.
Figure 1: The PDF plots of the q-GEVP distribution in case of ξ 6= 0.
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Figure 2. The PDF plots of the q-GEVP distribution in case of ξ → 0.

According to Figures 1 and 2, it is noted that the proposed distribution can be
used to model left and right skewed data. Moreover, the shape of the PDF can
be unimodal and bimodal, which makes the proposed model can be utilized for
modeling various data in different fields.

The hazard function (also called the force of mortality, instantaneous failure
rate, instantaneous death rate, or age-specific failure rate) is a way to model data
distribution in survival analysis. The most common use of the function is to model
a participant’s chance of death as a function of their age. However, it can be used
to model any other time-dependent event of interest. The hazard function (HF)

is defined as h(x)
1−H(x) . Figures 3 and 4 display the HF for the proposed model for

ξ 6= 0 and ξ → 0, respectively, and it is noted that the HF has various shapes
including increasing, decreasing, unimodal, or bathtub.

Figure 2: The PDF plots of the q-GEVP distribution in case of ξ → 0.

According to Figures 1 and 2, it is noted that the proposed distribution can be used
to model left and right skewed data. Moreover, the shape of the PDF can be unimodal
and bimodal, which makes the proposed model can be utilized for modeling various data in
different fields.

The hazard function (also called the force of mortality, instantaneous failure rate, in-
stantaneous death rate, or age-specific failure rate) is a way to model data distribution in
survival analysis. The most common use of the function is to model a participant’s chance of
death as a function of their age. However, it can be used to model any other time-dependent
event of interest. The hazard function (HF) is defined as h(x)

1−H(x) . Figures 3 and 4 display the
HF for the proposed model for ξ 6= 0 and ξ → 0, respectively, and it is noted that the HF has
various shapes including increasing, decreasing, unimodal, or bathtub.

In several cases, lifetimes need to be recorded on a discrete scale rather than on a
continuous analogue. Due to the previous reason, discretizing continuous distributions has
received much attention in the statistical literature. See for example, Bebbington et al.

(2012) [8], Nekoukhou and Bidram (2015) [29], El-Morshedy et al. (2020) [15], Eliwa et al.

(2020) [16], Altun et al. (2020) [1], and references cited therein. Based on discretization
survival approach, the CDF and probability mass function (PMF) of the discrete q-GEVP
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Figure 3. The HRF plots of the q-GEVP distribution in case of ξ 6= 0.Figure 3: The HRF plots of the q-GEVP distribution in case of ξ 6= 0.
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Figure 4. The HRF plots of the q-GEVP distribution in case of ξ → 0.

In several cases, lifetimes need to be recorded on a discrete scale rather than
on a continuous analogue. Due to the previous reason, discretizing continuous
distributions has received much attention in the statistical literature. See for
example, Bebbington et al. (2012), Nekoukhou and Bidram (2015), El-Morshedy
et al. (2020), Eliwa et al. (2020), Altun et al. (2020), and references cited therein.
Based on discretization survival approach, the CDF and probability mass function
(PMF) of the discrete q-GEVP (Dq-GEVP) model can be formulated as

(2.5) Hq,ξ,1(x;µ, σ) =

{
(1 + q(1 + ξ

σ log(e−µ(x+ 1)))
−1
ξ )

−1
q ; ξ 6= 0, q 6= 0

(1 + q((x+ 1)e−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0

and

(2.6)

f(x;µ, σ, ξ, q) =

{
(1 + q(1 + ξ

σ log(e−µ(x+ 1)))
−1
ξ )

−1
q − (1 + q(1 + ξ

σ log(e−µx))
−1
ξ )

−1
q ; ξ 6= 0, q 6= 0

(1 + qe−(sx−m))
− 1
q
−1
se−(sx−m) − (1 + q(xe−µ)

−1
σ )

−1
q ; ξ → 0, q 6= 0,

respectively. Figure A1 shows the PMF and HRF of the Dq-GEVP models for
various values of the model parameters, and it is found that the PMF can be
used to model asymmetric data which have extreme observations. Further, the
HRF can be utilized to model data with have decreasing failure shape.

Figure 4: The HRF plots of the q-GEVP distribution in case of ξ → 0.
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(Dq-GEVP) model can be formulated as

(2.5) Hq,ξ,1(x;µ, σ) =

 (1 + q(1 + ξ
σ log(e−µ(x + 1)))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q((x + 1)e−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0,

and
(2.6)

f(x;µ, σ, ξ, q) =


(1 + q(1 + ξ

σ log(e−µ(x + 1)))
−1
ξ )

−1
q − (1 + q(1 + ξ

σ log(e−µx))
−1
ξ )

−1
q ;

ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q
−1

se−(sx−m) − (1 + q(xe−µ)
−1
σ )

−1
q ;

ξ → 0, q 6= 0,

respectively. Figure 18 shows the PMF and HRF of the Dq-GEVP models for various values
of the model parameters, and it is found that the PMF can be used to model asymmetric
data which have extreme observations. Further, the HRF can be utilized to model data with
have decreasing failure shape.

3. STATISTICAL PROPERTIES

3.1. Quantile function and moments

The quantile function (QF) is frequently utilized for determining confidence intervals
or eliciting certain properties of a distribution. In order to obtain the QF of a random
variable (RV) X, that is, one has to solve the equation F (x) = p with respect to x for some
fixed p ∈ (0, 1), where F (x) denotes the CDF of X. The QFs of the q-GEVP (ξ 6= 0) and
q-distribution (ξ → 0) can be listed as

(3.1) xp = H−1(q, ξ, 1) =

 e
σ
ξ
(qξ(p−q−1)−ξ−1)+µ; ξ 6= 0, q 6= 0,

qσ(p−q − 1)−σeµ; ξ → 0, q 6= 0,

and

(3.2) xp = H−1(q, ξ, 2) =

−e
σ
ξ
(1−qξ(p−q−1)−ξ)+µ; ξ 6= 0, q 6= 0,

−q−σ(p−q − 1)σeµ; ξ → 0, q 6= 0,

respectively. Assume non-negative RV have a q-GEVP model, then the n-th moment, and
moment generating function of X, are given, respectively, as follows:

E(Xn) =
∫ ∞

0
xnh(x;µ, σ, ξ) dx

= Υ(σ,ξ,q)
(n,µ)

∞∑
j=0

(
nσqξ

ξ

)j Γ(1− ξj)Γ
(

1
q + ξj

)
j!Γ

(
1
q + 1

)
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and

MX(t) =
∫ ∞

0
exp(tx)h(x;µ, σ, ξ) dx

= Θ(σ,ξ)
(µ)

∞∑
j=0

∞∑
k=0

tj
(

σqξj

ξ

)k Γ(1− ξk)Γ
(

1
q + ξk

)
j!k!Γ

(
1
q + 1

) ,

where Θ(σ,ξ)
(µ) = 1

2 exp
(
t exp

{
µ− σ

ξ

})
, Υ(σ,ξ,q)

(n,µ) = 1
q exp

{
n
(
µ− σ

ξ

)}
, and the terms (1− ξj),(

1
q + ξj

)
,

(
1
q + 1

)
, (1− ξk),

(
1
q + ξk

)
and

(
1
q + 1

)
should be greater than 0. Figure 5

shows the skewness and kurtosis under different values of the model parameters “ξ = −0.5
and σ = 0.2” in the left panel, and “ξ = −1.5 and σ = 1.2” in the right panel, respectively.
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Figure 5. The skewness and kurtosis of the q-GEVP distribution in case of ξ 6= 0.
Figure 5: The skewness and kurtosis of the q-GEVP distribution in case of ξ 6= 0.

Figure 6 shows the skewness and kurtosis in case of ξ → 0 with σ = 0.5 “left panel” and
σ = 2.5 “right panel”, respectively, which support our results.



70 M.S. Eliwa, E.O. Abo Zaid and M. El-Morshedy

12 M. S. Eliwa, E. O. Abo Zaid and M. El-Morshedy

q

1

2

3

4

5

m
u

1

2

3

4
5

0.30

0.35

0.40

Skewness

q

1

2

3

4

5

m
u

1

2

3

4
5

0.85

0.90

0.95

Skewness

q

1

2

3

4

5

m
u

1

2

3

4
5

1.45

1.50

1.55

Kurtosis

q

1

2

3

4

5

m
u

1

2

3

4
5

10

15

20

Kurtosis

Figure 6. The skewness and kurtosis of the q-GEVP distribution in case of ξ → 0.

3.2. Entropy

An entropy of RV X is a measure of variation of the uncertainty. Shannon
entropy (SnEy) is defined by

(3.3) H(X) = −
∫
A
f(x) log f(x)dx,

where A = x : f(x) > 0. The SnEy of the GEVL family can be expressed as

(3.4) H(X) = log σ̂ + (ξ̂ + 1)γ + 1.

The SnEy of six classes of extreme value distributions which mentioned in Section
one, is evaluated by Ravi and Saeb (2012). Herein, the SnEy of GEVP, q-GEVL
and q-GEVP families are listed in the following theorems.

� Theorem 1. If X is a RV with CDF GEVP for ξ < 0, then the SnEy of
X is given by

(3.5) H(X) = µ+ log σ̂ + (ξ̂ + 1)γ +
σ̂

ξ̂
[Γ(1− ξ̂)− 1] + 1.

Figure 6: The skewness and kurtosis of the q-GEVP distribution in case of ξ → 0.

3.2. Entropy

An entropy of RV X is a measure of variation of the uncertainty. Shannon entropy
(SnEy) is defined by

(3.3) H(X) = −
∫

A
f(x) log f(x)dx,

where A = x : f(x) > 0. The SnEy of the GEVL family can be expressed as

(3.4) H(X) = log σ̂ + (ξ̂ + 1)γ + 1.

The SnEy of six classes of extreme value distributions which was mentioned in Section 1, is
evaluated by Ravi and Saeb (2012) [25]. Herein, the SnEy of GEVP, q-GEVL and q-GEVP
families are listed in the following theorems.
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Theorem 3.1. If X is a RV with CDF GEVP for ξ < 0, then the SnEy of X is given by

(3.5) H(X) = µ + log σ̂ + (ξ̂ + 1)γ +
σ̂

ξ̂
[Γ(1− ξ̂)− 1] + 1.

Proof: From Equations (1.7) and (3.3), we have

H(X) = −E(log hµ,ξ,σ,q) = log σ + E(log |X|) + ∆(µ,ξ,σ) + ∆
(µ,ξ,σ)

,

where ∆(µ,ξ,σ) = E(1 + ξ
σ log |X|e−µ)

−1
ξ and ∆

(µ,ξ,σ)
= (1 + 1

ξ )E(log(1 + ξ
σ log |X|e−µ)). Let

Y = (1 + ξ
σ log|x|e−µ))

−1
ξ , which have the standard exponential (StEx) distribution, then

(3.6) E(log |X|) =
σ

ξ
E(Y −ξ − 1) + µ =

σ

ξ
[Γ(1− ξ)− 1] + µ,

(3.7) ∆(µ,ξ,σ) = E(Y ) = 1

and

(3.8) ∆
(µ,ξ,σ)

= (1 +
1
ξ
)E(−ξ log Y ) = −(1 + ξ)E(log Y ) = (1 + ξ)γ,

where γ = −
∫∞
0 log ye−ydy. From Equations (3.6)–(3.8), Equation (3.5) can be derived.

Theorem 3.2. If X is a RVwith CDF q-GEVL for ξ<0, then the SnEy of X is given by

(3.9) H(X) = log σ̂ + (ξ̂ + 1)γ + (1 + q)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n− 1)

]
.

Proof: Since the PDF of the q-GEVL model can be listed as

fX(x) =
1
σ

(1 +
ξ

σ
(x− µ))−

1
ξ
−1[1 + q(1 +

ξ

σ
(x− µ))−

1
ξ ]−

1
q
−1

.

Then,
H(X) = −E(log fX(X)) = log σ + ∆∗(µ,ξ,σ) + ∆

(µ,ξ,σ)

∗ ,

where ∆∗(µ,ξ,σ)= (1+ 1
ξ )E(log(1+ ξ

σ (X−µ))) and ∆
(µ,ξ,σ)
∗ = (1+ 1

q )E(log(1+ q(1+ ξ
σ (X−µ))

−1
ξ ).

Assume Y = (1 + ξ
σ (x− µ))

−1
ξ , which have the StEx distribution, then Equation (3.9) can be

derived.

Theorem 3.3. If X is a RV with CDF q-GEVP for ξ<0, then the SnEy of X is given by

(3.10)

H(X) = µ+log σ̂+(ξ̂+1)γ+
ξ

σ
E{sign(X)[Γ(1−ξ)−1]}+(1+q)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n−1)

]
.
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Proof: Since the RV have the q-GEVP distribution, then

H(X) = log σ + E(log |X|) + E
(

1 +
ξ

σ
log |X|e−µ

)−1
ξ

+
(

1 +
1
ξ

)
Ω(µ,ξ,σ) +

(
1 +

1
q

)
Ω(µ,ξ,σ),

where Ω(µ,ξ,σ) = E
(
log(1 + ξ

σ log |X|e−µ)
)

and Ω(µ,ξ,σ) = E(log(1 + q(1 + ξ
σ log |X|e−µ)

−1
ξ ).

Let Y =
(
1 + ξ

σ log|x|e−µ
)−1

ξ which have the StEx distribution, then

(3.11) E(log |X|) =
σ

ξ
E(Y −ξ − 1) + µ =

σ

ξ
[Γ(1− ξ)− 1] + µ,

(3.12) (1 +
1
ξ
)Ω(µ,ξ,σ) = (1 +

1
ξ
)E(−ξ log Y ) = (1 + ξ)γ

and (
1 +

1
q

)
Ω(µ,ξ,σ) = (1 +

1
q
)
∫ ∞

0
log(1 + qy))e−ydy

= (1 +
1
q
)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n− 1)

]
.(3.13)

From Equations (3.11)–(3.13), Equation (3.10) can be derived.

Hint: If q → 0 in Equations (3.9) and (3.10), we get Equations (3.4) and (3.5).

4. VARIOUS ESTIMATION APPROACHES

4.1. Maximum likelihood estimation

In order to estimate the parameters of the q-GEVP model and q-distribution whose den-
sity functions are in (2.2), one has to maximize their respective log-likelihood functions with
respect to the model parameters. Given the observations xi, i = 1, ..., n, the log-likelihood
functions of the q-GEVP model and q-distribution are, respectively, given by

(4.1) `(µ, σ, ξ, q) = −n log σ −
n∑

i=1

log xi − (1 +
1
q
)

n∑
i=1

log[1 + q A
−1
ξ

i ]− (1 +
1
ξ
)

n∑
i=1

log Ai

and

(4.2) `∗(µ, σ, q) = −n log σ +
nµ

σ
− (1 +

1
σ

)
n∑

i=1

log xi − (1 +
1
q
)

n∑
i=1

log[1 + q B
−1
σ

i ],

where Ai = 1 + ξ
σ log Bi and Bi = xie

−µ. The associated log-likelihood system of equations
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are, respectively,

∂`

∂µ
= (

ξ + 1
σ

)
n∑

i=1

A
1
ξ

i − (
q + 1

σ
)

n∑
i=1

A
−1
ξ
−1

i

1 + qA
−1
ξ

i

,

∂`

∂σ
= −n

σ
+ (

ξ + 1
σ2

)
n∑

i=1

log Bi

Ai
− (

q + 1
σ2

)
n∑

i=1

A
−1
ξ
−1

i log Bi

1 + qA
−1
ξ

i

,

∂`

∂ξ
=

1
ξ2

n∑
i=1

log Ai − (
ξ + 1
ξσ

)
n∑

i=1

log Bi

Ai
+ (

q + 1
ξσ

)
n∑

i=1

A
−1
ξ
−1

i log Bi

1 + qA
−1
ξ

i

− (
q + 1
ξ2

)
n∑

i=1

A
−1
ξ

i log Ai

1 + qA
−1
ξ

i

,

(4.3)
∂`

∂q
=

1
q2

n∑
i=1

log[1 + qA
−1
ξ

i ]− (
1
q

+ 1)
n∑

i=1

A
−1
ξ

i

1 + qA
−1
ξ

i

and

∂`∗

∂µ
=

n

σ
− (

1 + q

σ
)

n∑
i=1

B
−1
σ

i

1 + qB
−1
σ

i

,

∂`∗

∂σ
= −n

σ
− nµ

σ2
+

1
σ2

n∑
i=1

log xi − (
q + 1
σ2

)
n∑

i=1

B
−1
σ

i log Bi

1 + qB
−1
σ

i

,

(4.4)
∂`∗

∂q
=

1
q2

n∑
i=1

log[1 + qB
−1
σ

i ]− (
1
q

+ 1)
n∑

i=1

B
−1
σ

i

1 + qB
−1
σ

i

.

Solving the nonlinear systems specified by the sets of equations yields the maximum likeli-
hood estimates (MLE’s) of the parameters of the q-GEVP model and q-distribution. Since
these equations cannot be solved analytically; iterative method such as the Newton–Raphson
technique is required.

4.2. Ordinary and weighted least-square estimators

Let x(1), x(2), ..., x(r) be the order statistics (OS) of the random sample of size r from
F (x; q, ξ, σ, µ). The least square estimators (LSEs) of the q-GEVP parameters, say, q̂LS , ξ̂LS ,
σ̂LS and µ̂LS can be obtained by solving the non-linear equations

r∑
d=1

[
F

(
x(d) | q, ξ, σ, µ

)
− d

r + 1

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3, 4,

where

(4.5)


∆1

(
x(d) | q, ξ, σ, µ

)
=

∂

∂q
F

(
x(d) | q, ξ, σ, µ

)
, ∆2

(
x(d) | q, ξ, σ, µ

)
=

∂

∂ξ
F

(
x(d) | q, ξ, σ, µ

)
,

∆3

(
x(d) | q, ξ, σ, µ

)
=

∂

∂σ
F

(
x(d) | q, ξ, σ, µ

)
, ∆4

(
x(d) | q, ξ, σ, µ

)
=

∂

∂µ
F

(
x(d) | q, ξ, σ, µ

)
.
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Whereas the weighted least squares estimators (WLSEs), say, q̂WLS , ξ̂WLS , σ̂WLS and µ̂WLS

can be reported by solving the non-linear equations

r∑
d=1

(r + 1)2(r + 2)
d(r − d + 1)

[
F

(
x(d) | q, ξ, σ, µ

)
− d

r + 1

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3, 4,

where ∆1(·| q, ξ, σ, µ), ∆2(·| q, ξ, σ, µ), ∆3(·| q, ξ, σ, µ) and ∆4(·| q, ξ, σ, µ) are provided in Equa-
tion (4.5).

4.3. Cramer-von Mises minimum distance estimators

The CVMEs of the q-GEVP parameters are derived by solving the non-linear equations

r∑
d=1

[
F

(
x(d) | q, ξ, σ, µ

)
− 2d− 1

2r

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3,

where ∆1(·| q, ξ, σ, µ), ∆2(·| q, ξ, σ, µ), ∆3(·| q, ξ, σ, µ) and ∆4(·| q, ξ, σ, µ) are defined in
Equation (4.5).

5. THE MONTE CARLO SIMULATION STUDY

Here, we have conducted a Monte Carlo simulation study to compare the behavior of the
different estimation techniques (MLEs, LSEs, WLSEs, and CVMEs) used in the estimation
of the unknown parameters of the q-GEVP model in case of ξ 6= 0, and ξ → 0. We have drawn
1000 samples of size n = 20, 50, 100, 150, 200, 250, 300, 500 from q-GEVP(0.5, 0.5, 0.8, 0.5) and
q-GEVP(0.8, ξ → 0, 0.5, 0.3), respectively, through the R software. We have calculated the
MLEs, LSEs, WLSEs, and CVMEs for each of the 1000 samples, say, q̂k, ξ̂k, σ̂k and µ̂k for
k = 1, 2, ..., 1000. We have calculated the biases and mean-squared errors (MSEs) for Υ =
q, ξ, σ, and µ through the following formulas

Bias =
1

1000

1000∑
k=1

(
Υ̂k −Υ

)
and MSE =

1
1000

1000∑
k=1

(
Υ̂k −Υ

)2
.

The empirical results are given in Figures 7 and 8.

From Figures 7 and 8 the following observations can be made:

1. As the value of n increases, the magnitude of the bias decreases towards zero.

2. The MSEs of all the estimators decrease when we increase the value of the sample
size n. This finding supports the first-order asymptotic theory.

3. In view of MSEs, clearly, MLE, LSE, WLSE, and CVME techniques perform sat-
isfactorily in the estimation of q-GEVP parameters in case of ξ 6= 0, and ξ → 0.
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Figure 7. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.5, 0.5, 0.8, 0.5) model.
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Figure 8. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.
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Figure 7: The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.5, 0.5, 0.8, 0.5) model.
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Figure 7. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.5, 0.5, 0.8, 0.5) model.
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Figure 8. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.

From Figures 7 and 8 the following observations can be made:

1. As the value of n increases, the magnitude of the bias decreases towards

Figure 8: The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.
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6. DATA ANALYSIS

In this section, we discuss the empirical importance of the q-GEVP model in case of
ξ 6= 0, and ξ → 0 for a positive random variable by using three applications to COVID-19 data.
The fitted distributions are compared utilizing some criteria namely, Cramér-von Mises (CM),
Anderson-Darling (AD) statistics, and Kolmogorov-Smirnov (KS) statistic with their p-values.
Moreover, Akaike information criterion (AIC) with its corrected value (CAIC) beside Bayesian
information criterion (BIC) and Hannan-Quinn information criterion (HQIC) have been used
as a part from these criteria. We shall compare the fits of the q-GEVP distribution with
some competitive models like GEVP-type I (GEVP-I), inverse Weibull (IW), Gumbel (Gu),
Weibull (W), generalized inverse Weibull (GIW), Gumbel inverse Weibull (GuIW), and type I
generalized exponential inverse Weibull (T1GEIW) in case of ξ 6= 0 “see data sets I and II”,
and ξ → 0 “see data set III”.

6.1. Data set I: COVID-19 in Japan

This data is listed in (https://www.worldometers.info/coronavirus/country/japan/)
which represents the maximum value of the new deaths per a week due to COVID-19 in
Japan from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is explored using the
nonparametric “Kernel density estimation (KDE)” approach in Figure 9, and it is noted that
the density is asymmetric and multimodal functions. The “normality” condition is checked
via the “quantile-quantile (Q-Q) plot” in Figure 9. The extremes are spotted from the “box
plot” in Figure 9, and it is showed that some extreme observations were founded.
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that some extreme observations were founded.
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Figure 9. The KDE, Q-Q, and box plots for data set I.

Tables 1 lists the MLEs with its standard errors (SE) in parentheses, whereas the
goodness-of-fit (GOF) measures have been reported in Table 2 for data sets I.

Table 1. The MLEs with its SE in parentheses for data set I.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.8659(0.5492) −0.9892(0.0236) 3.5633(0.1379) 1.1944(0.2913)
GEVP-I(α, β) −0.6454(0.0632) 1.0229(0.1503) − −
IW(α, β) 9.6646(1.5479) 0.9269(0.0971) − −
Gu(µ, σ) 17.0872(2.8921) 19.9133(2.4818) − −
W(α, β) 30.1519(4.6867) 0.9545(0.1020) − −
GIW(α, β, γ) 1.9247(407.6033) 0.9269(0.0971) 4.4629(876.0921) −
GuIW(γ, δ, α, β) 3.3919(0.5459) 8.9611(0.9268) 2.3058(0.0273) 7.8184(0.0301)
T1GEIW(γ, δ, α, β) 388.4329(2.4× 103) 0.1385(1.5242) 0.1299(1.5230) 0.9254(0.0974)

Table 2. The GOF measures for data set I.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0981 0.3458 0.1079 0.2047 0.1333 0.1079 0.1141 0.1166
p-value 0.7109 ≤ 0.001 0.5929 0.0279 0.3252 0.5929 0.5206 0.4916
A∗ 0.6679 3.1846 0.7298 3.0261 0.8439 0.7298 0.8678 1.5855
p-value 0.5855 0.1510 0.5337 0.0267 0.4498 0.5337 0.4340 0.1574
W∗ 0.0842 0.6189 0.0982 0.4801 0.1421 0.0982 0.1160 0.1846
p-value 0.6701 0.1172 0.5958 0.0444 0.4157 0.5958 0.5134 0.2999
-L 217.4310 252.9968 226.6616 238.7913 225.7776 226.6616 225.3522 229.6592
AIC 442.8620 509.9936 457.3232 481.5826 455.5552 459.3232 458.7045 467.3185
CAIC 443.7316 510.2436 457.5732 481.8326 455.8052 459.8338 459.5741 468.1881
BIC 450.5893 513.8573 461.1868 485.4462 459.4188 465.1186 466.4318 475.0458
HQIC 445.8148 511.4700 458.7996 483.059 457.0316 461.5378 461.6573 470.2713

From Table 2, it is noted that the q-GEVP model provides the best fit among all
competitive distributions because it has the smallest value of CM, AD, KS, AIC,
CAIC, BIC, and HQIC as well as it has the highest p-value. The empirical PDF,
CDF, SF and P-P plots for data set I are displayed in Figure 10, which indicates

Figure 9: The KDE, Q-Q, and box plots for data set I.

Table 1 lists the MLEs with its standard errors (SE) in parentheses, whereas the
goodness-of-fit (GOF) measures have been reported in Table 2 for data sets I.

From Table 2, it is noted that the q-GEVP model provides the best fit among all competi-
tive distributions because it has the smallest value of CM, AD, KS, AIC, CAIC, BIC, and HQIC
as well as it has the highest p-value. The empirical PDF, CDF, SF and P-P plots for data set I
are displayed in Figure10, which indicates that thedata setplausibly came from q-GEVPmodel.

https://www.worldometers.info/coronavirus/country/japan/
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Table 1: The MLEs with its SE in parentheses for data set I.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.8659(0.5492) −0.9892(0.0236) 3.5633(0.1379) 1.1944(0.2913)

GEVP-I(α, β) −0.6454(0.0632) 1.0229(0.1503) − −
IW(α, β) 9.6646(1.5479) 0.9269(0.0971) − −
Gu(µ, σ) 17.0872(2.8921) 19.9133(2.4818) − −
W(α, β) 30.1519(4.6867) 0.9545(0.1020) − −
GIW(α, β, γ) 1.9247(407.6033) 0.9269(0.0971) 4.4629(876.0921) −
GuIW(γ, δ, α, β) 3.3919(0.5459) 8.9611(0.9268) 2.3058(0.0273) 7.8184(0.0301)

T1GEIW(γ, δ, α, β) 388.4329(2.4× 103) 0.1385(1.5242) 0.1299(1.5230) 0.9254(0.0974)

Table 2: The GOF measures for data set I.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0981 0.3458 0.1079 0.2047 0.1333 0.1079 0.1141 0.1166
p-value 0.7109 ≤ 0.001 0.5929 0.0279 0.3252 0.5929 0.5206 0.4916

A∗ 0.6679 3.1846 0.7298 3.0261 0.8439 0.7298 0.8678 1.5855
p-value 0.5855 0.1510 0.5337 0.0267 0.4498 0.5337 0.4340 0.1574

W∗ 0.0842 0.6189 0.0982 0.4801 0.1421 0.0982 0.1160 0.1846
p-value 0.6701 0.1172 0.5958 0.0444 0.4157 0.5958 0.5134 0.2999

-L 217.4310 252.9968 226.6616 238.7913 225.7776 226.6616 225.3522 229.6592
AIC 442.8620 509.9936 457.3232 481.5826 455.5552 459.3232 458.7045 467.3185
CAIC 443.7316 510.2436 457.5732 481.8326 455.8052 459.8338 459.5741 468.1881
BIC 450.5893 513.8573 461.1868 485.4462 459.4188 465.1186 466.4318 475.0458
HQIC 445.8148 511.4700 458.7996 483.059 457.0316 461.5378 461.6573 470.2713
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that the data set plausibly came from q-GEVP model.

PDF Plot

x

P
D

F

0 20 40 60 80 120

0
.0

0
0

.0
2

0
.0

4

0 20 40 60 80 120

0
.0

0
0

.0
2

0
.0

4

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

PP Plot

Obs

E
x
p

0 20 40 60 80 120

0
.0

0
.4

0
.8

CDF Plot

x

C
D

F

0 20 40 60 80 120

0
.0

0
.4

0
.8

C
D

F

0 20 40 60 80 120

0
.0

0
.4

0
.8

SF Plot

x

S
F

0 20 40 60 80 120

0
.0

0
.4

0
.8

S
F

Figure 10. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set I.

Table 3 lists the estimates of the unknown parameters using three estimation
methods for data set I.

Table 3. Various estimators of the q-GEVP model for data set I.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q −0.8659 0.5785 0.2283 0.5634
ξ −0.9892 −0.0333 −0.3006 −0.0338
σ 3.5633 0.8705 1.1325 0.8480
µ 1.1944 2.6773 2.5464 2.6744

KS 0.0981 0.0744 0.0808 0.0693
p-value 0.7109 0.9405 0.8929 0.9672

A∗ 0.6679 0.3633 0.4353 0.3454
p-value 0.5855 0.8837 0.8124 0.9002

W∗ 0.0842 0.0395 0.0554 0.0381
p-value 0.6701 0.9375 0.8454 0.9444

Figure 10: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set I.
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Table 3 lists the estimates of the unknown parameters using three estimation methods
for data set I.

Table 3: Various estimators of the q-GEVP model for data set I.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q −0.8659 0.5785 0.2283 0.5634
ξ −0.9892 −0.0333 −0.3006 −0.0338
σ 3.5633 0.8705 1.1325 0.8480
µ 1.1944 2.6773 2.5464 2.6744

KS 0.0981 0.0744 0.0808 0.0693
p-value 0.7109 0.9405 0.8929 0.9672

A∗ 0.6679 0.3633 0.4353 0.3454
p-value 0.5855 0.8837 0.8124 0.9002

W∗ 0.0842 0.0395 0.0554 0.0381
p-value 0.6701 0.9375 0.8454 0.9444

Table 3 illustrates that all estimation methods work quite well beside the MLE method,
but the CVME approach is the best for data set I. Figure 11 shows the fitted PDFs, estimated
CDFs, and empirical SF plots for data set I utilizing the estimators in Table 3, which support
our results.
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Table 3 illustrates that all estimation methods work quite well beside the MLE
method, but the CVME approach is the best for data set I. Figure 11 shows the
fitted PDFs, estimated CDFs, and empirical SF plots for data set I utilizing the
estimators in Table 3, which support our results.
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Figure 11. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set I.

6.2. Data set II: COVID-19 in Saudi Arabia

This data is reported in (https://www.worldometers.info/coronavirus/country/saudi-
arabia/) which represents the maximum value of the new deaths per a week due
to COVID-19 in Saudi Arabia from 28 Mar 2020 up to 20 Feb 2021. Initial den-
sity shape is explored utilizing the KDE approach in Figure 12, and it is noted
that the density is asymmetric and bimodal functions. Further, the Q-Q and box

Figure 11: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set I.

6.2. Data set II: COVID-19 in Saudi Arabia

This data is reported in (https://www.worldometers.info/coronavirus/country/saudi-
arabia/) which represents the maximum value of the new deaths per a week due to COVID-19
in Saudi Arabia from 28 Mar 2020 up to 20 Feb 2021. Initial density shape is explored utilizing

https://www.worldometers.info/coronavirus/country/saudi-arabia/
https://www.worldometers.info/coronavirus/country/saudi-arabia/
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the KDE approach in Figure 12, and it is noted that the density is asymmetric and bimodal
functions. Further, the Q-Q and box plots are displayed in the same Figure.
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plots are displayed in same Figure.
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Figure 12. The KDE, Q-Q, and box plots for data set II.

Tables 4 and 5 list the MLEs, SE, and GOF measures for data sets II.

Table 4. The MLEs with its SE in parentheses for data set II.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.7945(0.0231) −0.9354(0.1254) 2.0494(0.2415) 1.8730(0.1478)
GEVP-I(α, β) −1.4687(0.1341) 1.1769(0.2136) − −
IW(α, β) 24.0124(7.9202) 1.3077(0.1431) − −
Gu(µ, σ) 15.3915(1.8026) 11.8673(1.4129) − −
W(α, β) 1.5059(0.1742) 25.0505(2.5344) − −
GIW(α, β, γ) 3.5549(910.6226) 1.3077(0.1431) 4.5719(1531.5631) −
GuIW(γ, δ, α, β) 3.0714(0.4487) 9.4339(0.9552) 4.4974(NaN) 11.7043(NaN)
T1GEIW(γ, δ, α, β) 213.3478(1411.1180) 0.2929(6.3869) 0.4758(8.0940) 1.3044(0.1445)

Table 5. The GOF measures for data set II.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.1049 0.3303 0.1417 0.1218 0.1057 0.1417 0.1398 0.1420
p-value 0.6659 ≤ 0.001 0.2898 0.4751 0.6568 0.2898 0.3053 0.2875
A∗ 0.5464 8.6403 1.383 1.1593 0.8067 1.3830 1.3421 1.3869
p-value 0.6992 ≤ 0.001 0.2070 0.2833 0.4756 0.2070 0.2191 0.2059
W∗ 0.0724 1.7523 0.21031 0.1802 0.1243 0.2103 0.2049 0.2111
p-value 0.7394 ≤ 0.001 0.2487 0.3101 0.4798 0.2487 0.2585 0.2473
-L 184.2950 215.4770 196.8051 195.6623 192.2741 196.8051 195.3561 196.8159
AIC 376.5900 434.9540 397.6103 395.3245 388.5482 399.6103 398.7121 401.6319
CAIC 377.5202 435.2207 397.8769 395.5912 388.8149 400.1557 399.6423 402.5621
BIC 384.0748 438.6964 401.3527 399.0669 392.2906 405.2239 406.1969 409.1167
HQIC 379.4185 436.3683 399.0245 396.7388 389.9625 401.7316 401.5406 404.4604

From Table 5, it is noted that the q-GEVP distribution provides the best fit
among all competitive models. The empirical PDF, CDF, SF and P-P plots for

Figure 12: The KDE, Q-Q, and box plots for data set II.

Tables 4 and 5 list the MLEs, SE, and GOF measures for data sets II.

Table 4: The MLEs with its SE in parentheses for data set II.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.7945(0.0231) −0.9354(0.1254) 2.0494(0.2415) 1.8730(0.1478)

GEVP-I(α, β) −1.4687(0.1341) 1.1769(0.2136) − −
IW(α, β) 24.0124(7.9202) 1.3077(0.1431) − −
Gu(µ, σ) 15.3915(1.8026) 11.8673(1.4129) − −
W(α, β) 1.5059(0.1742) 25.0505(2.5344) − −
GIW(α, β, γ) 3.5549(910.6226) 1.3077(0.1431) 4.5719(1531.5631) −
GuIW(γ, δ, α, β) 3.0714(0.4487) 9.4339(0.9552) 4.4974(NaN) 11.7043(NaN)

T1GEIW(γ, δ, α, β) 213.3478(1411.1180) 0.2929(6.3869) 0.4758(8.0940) 1.3044(0.1445)

Table 5: The GOF measures for data set II.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.1049 0.3303 0.1417 0.1218 0.1057 0.1417 0.1398 0.1420
p-value 0.6659 ≤ 0.001 0.2898 0.4751 0.6568 0.2898 0.3053 0.2875

A∗ 0.5464 8.6403 1.383 1.1593 0.8067 1.3830 1.3421 1.3869
p-value 0.6992 ≤ 0.001 0.2070 0.2833 0.4756 0.2070 0.2191 0.2059

W∗ 0.0724 1.7523 0.21031 0.1802 0.1243 0.2103 0.2049 0.2111
p-value 0.7394 ≤ 0.001 0.2487 0.3101 0.4798 0.2487 0.2585 0.2473

-L 184.2950 215.4770 196.8051 195.6623 192.2741 196.8051 195.3561 196.8159
AIC 376.5900 434.9540 397.6103 395.3245 388.5482 399.6103 398.7121 401.6319
CAIC 377.5202 435.2207 397.8769 395.5912 388.8149 400.1557 399.6423 402.5621
BIC 384.0748 438.6964 401.3527 399.0669 392.2906 405.2239 406.1969 409.1167
HQIC 379.4185 436.3683 399.0245 396.7388 389.9625 401.7316 401.5406 404.4604
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From Table 5, it is noted that the q-GEVP distribution provides the best fit among all
competitive models. The empirical PDF, CDF, SF and P-P plots for data set II are displayed
in Figure 13.
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Figure 13. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set II.

Table 6 lists the estimates of the unknown parameters using various estimation
methods for data set II.

Table 6. Various estimators of the q-GEVP model for data set II.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q −0.7945 0.1733 0.1982 0.1614
ξ −0.9354 −0.5311 −0.6364 −0.5547
σ 2.0494 0.9121 0.9321 0.9113
µ 1.8730 2.6956 2.7251 2.6978

KS 0.1049 0.0949 0.1097 0.0939
p-value 0.6659 0.7793 0.6107 0.7911

A∗ 0.5464 0.5914 0.5793 0.5514
p-value 0.6992 0.6552 0.6669 0.6942

W∗ 0.0724 0.0582 0.0616 0.0569
p-value 0.7394 0.8279 0.8060 0.8353

Figure 13: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set II.

Table 6 lists the estimates of the unknown parameters using various estimation methods
for data set II.

Table 6: Various estimators of the q-GEVP model for data set II.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q −0.7945 0.1733 0.1982 0.1614
ξ −0.9354 −0.5311 −0.6364 −0.5547
σ 2.0494 0.9121 0.9321 0.9113
µ 1.8730 2.6956 2.7251 2.6978

KS 0.1049 0.0949 0.1097 0.0939
p-value 0.6659 0.7793 0.6107 0.7911

A∗ 0.5464 0.5914 0.5793 0.5514
p-value 0.6992 0.6552 0.6669 0.6942

W∗ 0.0724 0.0582 0.0616 0.0569
p-value 0.7394 0.8279 0.8060 0.8353

From Table 6, it is clear that all estimation techniques work quite well beside the MLE
method, but the CVME approach is the best for data set II. Figure 14 shows the fitted PDFs,
estimated CDFs, and empirical SF plots for data set II by using the estimators in Table 6,
which support our results.
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From Table 6, it is clear that all estimation techniques work quite well beside
the MLE method, but the CVME approach is the best for data set II. Figure 14
shows the fitted PDFs, estimated CDFs, and empirical SF plots for data set II
by using the estimators in Table 6, which support our results.
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Figure 14. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set II.

6.3. Data set III: COVID-19 in Romania

This data is reported in (https://www.worldometers.info/coronavirus/country/romania/)
which represents the maximum value of the new deaths per a week due to COVID-
19 in Romania from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is
explored using the KDE method in Figure 15, and it is clear that the density
is asymmetric and bimodal functions. Moreover, the Q-Q and box plots are
displayed in the same Figure.

Figure 14: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set II.

6.3. Data set III: COVID-19 in Romania

This data is reported in (https://www.worldometers.info/coronavirus/country/
romania/) which represents the maximum value of the new deaths per a week due to COVID-19
in Romania from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is explored using
the KDE method in Figure 15, and it is clear that the density is asymmetric and bimodal
functions. Moreover, the Q-Q and box plots are displayed in the same Figure.
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Figure 15. The KDE, Q-Q, and box plots for data set III.

Tables 7 and 8 report the MLEs, SE, and the GOF measures for data sets III.

Table 7. The MLEs with its SE in parentheses for data set III.

Model MLEs(SE)

q-GEVP(q, σ, µ) 1.1182(0.7912) 0.4969(0.1408) 4.0881(0.2569) −
GEVP-I(α, β) −1.5821(0.0265) 0.7867(0.1254) − −
IW(α, β) 52.0870(19.6569) 1.1022(0.1117) − −
Gu(µ, σ) 51.7563(6.5298) 43.6582(5.2948) − −
W(α, β) 1.3167(0.1469) 86.5845(9.9331) − −
GIW(α, β, γ) 5.6304(2654.1739) 1.1022(0.1117) 7.7531(4028.5284) −
GuIW(γ, δ, α, β) 9.7866(2.2779) 6.4026(0.6714) 4.5341(0.1529) 7.0421(0.1946)
T1GEIW(γ, δ, α, β) 1115.2175(5733.0614) 0.1679(2.2473) 0.3115(3.9096) 1.1012(0.1116)

Table 8. The GOF measures for data set III.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0900 0.4171 0.1318 0.1438 0.1151 0.1318 0.1322 0.1319
p-value 0.8221 ≤ 0.001 0.3621 0.2627 0.5351 0.3621 0.3584 0.3611
A∗ 0.5499 12.1030 0.9625 1.4830 0.7140 0.9625 0.9693 0.9652
p-value 0.6957 ≤ 0.001 0.3771 0.1806 0.5464 0.3771 0.3733 0.3756
W∗ 0.0821 2.5283 0.1097 0.2313 0.1172 0.1097 0.1106 0.1101
p-value 0.6817 ≤ 0.001 0.5411 0.2145 0.5084 0.5411 0.5372 0.5392
-L 262.1081 311.5210 266.2566 265.1471 260.7146 266.2566 266.2533 266.2694
AIC 530.2162 627.0420 536.5132 534.2943 525.4292 538.5132 540.5066 540.5388
CAIC 530.7495 627.3029 536.7741 534.5551 525.6901 539.0465 541.4157 541.4479
BIC 535.8916 630.8256 540.2968 538.0779 529.2128 544.1886 548.0739 548.1061
HQIC 532.3694 628.4775 537.9487 535.7298 526.8647 540.6664 543.3777 543.4098

From Table 8, it is noted that the q-GEVP model provides the best fit among all
competitive distributions. The empirical PDF, CDF, SF and P-P plots for data
set III are displayed in Figure 16.

Figure 15: The KDE, Q-Q, and box plots for data set III.

Tables 7 and 8 report the MLEs, SE, and the GOF measures for data sets III.

From Table 8, it is noted that the q-GEVP model provides the best fit among all
competitive distributions. The empirical PDF, CDF, SF and P-P plots for data set III are
displayed in Figure 16.

https://www.worldometers.info/coronavirus/country/romania/
https://www.worldometers.info/coronavirus/country/romania/
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Table 7: The MLEs with its SE in parentheses for data set III.

Model MLEs(SE)

q-GEVP(q, σ, µ) 1.1182(0.7912) 0.4969(0.1408) 4.0881(0.2569) −
GEVP-I(α, β) −1.5821(0.0265) 0.7867(0.1254) − −
IW(α, β) 52.0870(19.6569) 1.1022(0.1117) − −
Gu(µ, σ) 51.7563(6.5298) 43.6582(5.2948) − −
W(α, β) 1.3167(0.1469) 86.5845(9.9331) − −
GIW(α, β, γ) 5.6304(2654.1739) 1.1022(0.1117) 7.7531(4028.5284) −
GuIW(γ, δ, α, β) 9.7866(2.2779) 6.4026(0.6714) 4.5341(0.1529) 7.0421(0.1946)

T1GEIW(γ, δ, α, β) 1115.2175(5733.0614) 0.1679(2.2473) 0.3115(3.9096) 1.1012(0.1116)

Table 8: The GOF measures for data set III.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0900 0.4171 0.1318 0.1438 0.1151 0.1318 0.1322 0.1319
p-value 0.8221 ≤ 0.001 0.3621 0.2627 0.5351 0.3621 0.3584 0.3611

A∗ 0.5499 12.1030 0.9625 1.4830 0.7140 0.9625 0.9693 0.9652
p-value 0.6957 ≤ 0.001 0.3771 0.1806 0.5464 0.3771 0.3733 0.3756

W∗ 0.0821 2.5283 0.1097 0.2313 0.1172 0.1097 0.1106 0.1101
p-value 0.6817 ≤ 0.001 0.5411 0.2145 0.5084 0.5411 0.5372 0.5392

-L 262.1081 311.5210 266.2566 265.1471 260.7146 266.2566 266.2533 266.2694
AIC 530.2162 627.0420 536.5132 534.2943 525.4292 538.5132 540.5066 540.5388
CAIC 530.7495 627.3029 536.7741 534.5551 525.6901 539.0465 541.4157 541.4479
BIC 535.8916 630.8256 540.2968 538.0779 529.2128 544.1886 548.0739 548.1061
HQIC 532.3694 628.4775 537.9487 535.7298 526.8647 540.6664 543.3777 543.4098
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Figure 16. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set III.

Table 9 reports the estimates of the unknown parameters using various estimation
approaches for data set III.

Table 9. Various estimators of the q-GEVP model for data set III.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q 1.1182 0.6959 2.2430 0.6642
σ 0.4969 0.6599 0.4102 0.6448
µ 4.0881 3.9588 4.3003 3.9499

KS 0.0900 0.1084 0.0859 0.1024
p-value 0.8221 0.6128 0.8620 0.6827

A∗ 0.5499 0.5272 0.6501 0.4884
p-value 0.6957 0.7184 0.6011 0.7578

W∗ 0.0821 0.0550 0.0793 0.0535
p-value 0.6817 0.8476 0.6979 0.8571

Figure 16: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set III.
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Table 9 reports the estimates of the unknown parameters using various estimation
approaches for data set III.

Table 9: Various estimators of the q-GEVP model for data set III.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q 1.1182 0.6959 2.2430 0.6642
σ 0.4969 0.6599 0.4102 0.6448
µ 4.0881 3.9588 4.3003 3.9499

KS 0.0900 0.1084 0.0859 0.1024
p-value 0.8221 0.6128 0.8620 0.6827

A∗ 0.5499 0.5272 0.6501 0.4884
p-value 0.6957 0.7184 0.6011 0.7578

W∗ 0.0821 0.0550 0.0793 0.0535
p-value 0.6817 0.8476 0.6979 0.8571

Table 9 illustrates that all estimation methods work quite well besides the MLE method.
Figure 17 shows the fitted PDFs, estimated CDFs empirical SF plots for data set III using
the estimators in Table 9, which support our results.

ON q-GENERALIZED EXTREME VALUES 27

Table 9 illustrates that all estimation methods work quite well besides the MLE
method. Figure 17 shows the fitted PDFs, estimated CDFs empirical SF plots
for data set III using the estimators in Table 9, which support our results.
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Figure 17. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set III.

7. CONCLUSIONS

In this paper, we proposed q-generalized extreme values model and its dis-
crete version under power normalization technique. Its various statistical features
have been derived in detail. It was found that the proposed models are a proper
for modelling skewed data sets, especially which have very extreme observations.
Moreover, the new model provides a wide variation in the shape of the HRF, in-
cluding decreasing, increasing, unimodal, and bathtub shapes, and consequently
the proposed distribution can be utilized in modelling several different kinds of
data. The model parameters have been estimated using four different estimation
approaches, namely, MLE, LSE, WLSE, and CVME. A simulation has been per-
formed based on different sample sizes, and it was found that the four methods
work quit effectively in estimating the model parameters. Three distinctive data
sets ”COVID-19” have been analyzed to illustrate and prove the flexibility of the
proposed model. Finally, the q-generalized extreme values model under power
normalization technique would be a better alternative to other lifetime models
available in existing literature, especially, in extreme values field.

Figure 17: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set III.
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7. CONCLUSIONS

In this paper, we proposed q-generalized extreme values model and its discrete version
under power normalization technique. Its various statistical features have been derived in
detail. It was found that the proposed models are a proper for modelling skewed data sets,
especially which have very extreme observations. Moreover, the new model provides a wide
variation in the shape of the HRF, including decreasing, increasing, unimodal, and bathtub
shapes, and consequently the proposed distribution can be utilized in modelling several differ-
ent kinds of data. The model parameters have been estimated using four different estimation
approaches, namely, MLE, LSE, WLSE, and CVME. A simulation has been performed based
on different sample sizes, and it was found that the four methods work quit effectively in
estimating the model parameters. Three distinctive data sets “COVID-19” have been ana-
lyzed to illustrate and prove the flexibility of the proposed model. Finally, the q-generalized
extreme values model under power normalization technique would be a better alternative to
other lifetime models available in existing literature, especially, in extreme values field.
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Figure A1. The PMF and HRF plots of the Dq-GEVP
model for some parameter values.
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1. INTRODUCTION

The specification of identifiable statistical models is an extremely important step in
statistical inference. Data-driven decisions in unidentifiable models may be non-unique, i.e.

it may not be possible to choose a single optimal decision based solely on the data at hand (San
Mart́ın 2018 [22]). Therefore, be it in the classical or Bayesian framework, unidentifiability
may lead to severely wrong answers to scientific inquiries.

In classical statistics, for instance, lack of identifiability implies there does not exist a
consistent estimator for some or all of the model parameters (Paulino and Pereira 1994 [15]).
In other words, no matter how large the sample size, with an unidentifiable model we will never
be able to distinguish the true parameter value from at least one other alternative value.

Unidentifiability can also cause problems in the Bayesian setting. When using flat prior
distributions for unidentifiable parameters, the resulting posterior can still be flat. Moreover,
if the prior is improper, then the posterior may also be improper (Lindley 1971 [14]). However,
even if informative priors are used in this situation, it is not very clear what inferences can be
drawn a posteriori. San Mart́ın (2018) [22] argues for inference on the sufficient parameter
(see meaning therein) and shows how the influence of the prior distribution never vanishes
for unidentifiable parameters.

Most of the models in the statisticians’ basic toolkit enjoy solid theoretical foundations.
However, the recent advances in computational power have led to the appearance of more
complex models for which identifiability is not always guaranteed. Earlier, the theoretical de-
velopment of statistics was followed by the studies of computational feasibility of the models,
however, now a lot of theoretical work is to understand the properties of the newer modeling
strategies.

Due to the difficulty in answering the question of whether or not a particular statistical
model is identifiable, there is a sizable literature suggesting a diverse range of methods. There
have been approaches using differential geometry (Villaverde et al. 2019 [25]), differential
algebra (Bellu et al. 2007 [3]), measure theory (San Mart́ın 2015 [21]) etc. However, sometimes
theory alone does not end the issue and computational strategies are called upon to provide
empirical evidence of model identifiability.

A closely related concept is that of estimability or practical identifiability. It may be
the case that the statistical model is identifiable, but the data available is of poor quality
or the model has been incorrectly specified. This may hinder the ability to estimate the
model parameters and the uncertainty associated with such estimates, which can affect both
inferential and predictive tasks. In other words, estimability deals with the question of
whether the data at hand can reliably estimate the desired quantities. Identifiability, however,
is concerned with the existence, for any two distinct parameter values, of a hypothetical data
set which can differentiate between them. As such, lack of estimability does not imply lack
of identifiability, although the converse is always true (Paulino and Pereira 1994 [15]).

Lack of estimability is commonly caused by low signal-to-noise ratio in the data, low sam-
ple size, or inappropriate sampling scheme (Lele et al. 2010 [13]). These problems often result
in a likelihood function of the parameters that have many local maxima or an almost flat region.



Identifiability analysis using data cloning 89

In these scenarios, any given estimation algorithm might result in parameter estimates which
yield considerably distinct inferential conclusions. Furthermore, confidence regions may
present one or more coordinates assuming unreasonably large values.

Recently, Lele et al. (2007) [12] proposed an algorithm for maximum likelihood esti-
mation, called Data Cloning, which is of particular relevance in latent variable models. The
method is quite intuitive and draws motivation from the idea of replicability of experiments
in frequentist statistics. To be more specific, the data cloning algorithm starts from a prior
distribution on the parameter space and sequentially updates it using the same data set until
some diagnostic measures reach specified thresholds.

As Lele et al. (2010) [13] show, if the model is unidentifiable then convergence issues can
be easily spotted with the tools for diagnosing convergence of the algorithm. Data cloning has
been used earlier for studying model estimability. Campbell and Lele (2014) [4]) proposed an
ANOVA test of estimability based on data cloning and Peacock et al. (2017) [16] employed
data cloning to assess estimability of a spatio-temporal model under distinct study designs
based on an observed data set.

Our objective in this paper is to introduce data cloning as a practical tool for the
assessment of identifiability of statistical models. For this, we show how to plan and perform
a simulation study that can shed light on possible problems in the structure of the statistical
model. Our idea is somewhat similar to that of Peacock et al. (2017) [16] in that we also
employ simulated data. However, instead of exploring possible alternative study designs
based on observed data, we advocate the exploration of a multitude of possible data based
on as many as possible parameter values to study the structure of the model itself.

In Section 2 we present the data cloning algorithm and its main diagnostic measures
that can be used to study model identifiability. In Section 3 we present the formal definitions
of identifiability of statistical models, relate them to data cloning, and show, theoretically,
how the identifiability issue reveals itself in the Gaussian dynamic linear model. Finally, in
Section 4 we present a simulation study using the package dclone (Solymos 2010 [23]) from R
(R Core Team 2020 [19]) and JAGS (Plummer 2017 [18]), and discuss the evidence it brings
about identifiability in the adopted model.

2. DATA CLONING

In the subjective realm of Bayesian inference, a great deal of discomfort in the prior
specification vanishes for highly informative data. An important result in Bayesian asymp-
totics, due to Walker (1969) [26], shows that, under some regularity conditions, for large n the
posterior distribution π(θ|y1, ..., yn) is approximately Gaussian with mean θ̂, the maximum
likelihood estimate of θ, and covariance matrix I−1(θ̂), the inverse of the Fisher information
evaluated at this maximum. For this, see also Turkman et al. (2019), Sec. 8.1 [24].

Suppose we performed an experiment k times independently and happened to observe
the exact same realization y(j) = y = (y1, ..., yn) for all j ∈ {1, ..., k} with probability density
function f(y|θ) for each experiment. Let πk(θ|y) denote the posterior distribution updated
with samples for k such experiments. Since the k experiments are independent, Bayes theorem
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says this distribution is

(2.1) πk(θ|y) ∝ f(y(1), ...,y(k)|θ)π(θ) ∝ π(θ)
k∏

j=1

f(y|θ) ∝ π(θ){f(y|θ)}k .

Let L(θ;y(1), ...,y(k)) and l(θ;y(1), ...,y(k)) denote the likelihood and log-likelihood functions
of these experiments, respectively. If θ̂(n) is maximum likelihood estimate under any one of
the k experiments, then it follows immediately that

(2.2) θ̂ = arg sup
θ∈Θ

L(θ;y(1), ...,y(k)) = arg sup
θ∈Θ

[L(θ;y)]k = arg sup
θ∈Θ

L(θ;y) = θ̂(n)

and if we let V(X) denote the covariance matrix of a random vector X, then

(2.3) I(θ̂) = V

(
∂`(θ;Y(1), ...,Y(k))

∂θ

)∣∣∣∣∣
θ=θ̂

= V

 k∑
j=1

∂`(θ;Y(j))
∂θ

∣∣∣∣∣
θ=θ̂

= kI(θ̂(n)) ,

in which the last equality follows from the independence of the experiments. Therefore, for
a fixed n and k arbitrarily large, our posterior distribution would be well approximated by a
Gaussian distribution with mean θ̂(n) and covariance matrix 1

kI
−1
(
θ̂(n)

)
.

Note that we have not made a single comment about what prior π(θ) we started with.
In fact, the previous results are valid as long as the prior distribution and the likelihood
function satisfy some mild regularity conditions. In other words, for any two such priors π1

and π2 over Θ, there is a number of experiments, k, for which the posterior distributions
would be arbitrarily close to each other (Lele et al. 2010 [13]).

Similarly, with minor modifications, the results above can be applied to latent vari-
able models. Since the experiments are performed independently, realizations of the hidden
stochastic process {X(j)}, j ∈ {1, ..., k}, are also assumed to have occurred k times inde-
pendently. We begin by assigning a joint prior distribution π(θ,x) = π(x|θ)π(θ) for the
parameters and latent variables. The resulting posterior distribution is given by

(2.4) πk(θ,x|y) =
π(θ)

∏k
j=1 f(y(j)|x(j),θ)π(x(j)|θ)

f(y(1), ...,y(k))
.

For inference on the parameter vector, it suffices to marginalize on x, which is made easier
by the assumption of independence:

πk(θ|y) =
∫
X

π(θ,x|y(j), ...,y(k))dx

=

{∫
X
∏k

j=1 f(y|x(j),θ)π(x(j)|θ)dx(j)
}

π(θ)

f(y(1), ...,y(k))

=

{∏k
j=1 L(θ;y)

}
π(θ)

f(y(1), ...,y(k))

=
{L(θ;y)}kπ(θ)∫

Θ{L(θ;y)}kπ(θ)dθ
.(2.5)
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In summary, if we obtained such an odd data set over a very large number of inde-
pendent experiments, from (almost) arbitrary initial prior distributions, we could perform
frequentist inference within the Bayesian setting. All that is required is we take samples from
the posterior distribution of θ and compute the mean vector and covariance matrix.

At first glance, it may seem that we replaced the high-dimensional integral required for
maximum likelihood estimation, namely L(θ;y), with a possibly much more complicated one
in the denominator of (2.5). However, commonly employed Bayesian software for probabilistic
sampling avoid the integration procedure altogether, which surely is an important reason why
there is increasing adoption of the subjective paradigm amongst researchers dealing with
complex latent variable models (Lele et al. 2010 [13]).

2.1. The Algorithm

Admittedly, repeating the same experiment may be just as infeasible as simply increas-
ing the sample size. Thus, given a dataset, Lele et al. (2007) [12] propose that we clone it k

times, with k as large as is computationally possible, and then draw samples from the k-times
cloned posterior πk. Although what we are using is in fact fake data, the machine on which
the sampling algorithm will run cannot tell the difference.

As before, let y = (y1, ..., yn) denote the available realization of a measurement process
generated by a hidden latent process. Suppose θ is a continuous random vector, p(θ) is a
proposal distribution, and define the burn-in length Nburn < Nsim, the simulation length for
the Metropolis-Hastings algorithm. Algorithm 1 provides a way to sample from πk; for the
regularity conditions we direct the reader to Lele et al. (2010) [13].

Algorithm 1: Data Cloning Metropolis-Hastings (Lele et al. 2007 [12])

Generate θ∗ ∼ p(θ) and x∗(1), ...,x∗(k) ∼ π(x|θ∗);1

for l ∈ {1, ..., Nsim} do2

Compute q∗ =
∏k

j=1 f(y|x∗(j),θ∗);3

Generate θ# ∼ p(θ) and x#(1), ...,x#(k) ∼ π(x|θ#);4

Compute q# =
∏k

j=1 f(y|x#(j),θ#);5

Generate U ∼ Uniform(0, 1);6

if U < min
{
1, q#/q∗

}
then7

Set (θ,x(1), ...,x(k))l = (θ#,x#(1), ...,x#(k));8

else9

Set (θ,x(1), ...,x(k))l = (θ∗,x∗(1), ...,x∗(k));10

end11

end12

Discard (θ,x(j), ...,x(k))1, ..., (θ,x(j), ...,x(k))Nburn−1;13

As long as the number of clones k is large enough and the regularity conditions are
satisfied, the mean of the samples drawn from Algorithm 1 is a numerical approximation to
the maximum likelihood estimate. Also, their covariance matrix is the inverse of the k-times
scaled observed Fisher information matrix. As pointed out in Lele et al. (2007) [12], increasing
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the number of clones provides better numerical accuracy in the estimates. However, this does
increase the computational cost of the algorithm considerably, since for each new clone we
must simulate the latent process generating it. For models in which the number of latent
variables grows exponentially with the sample size, the data cloning algorithm will surely
demand an unreasonable amount of computational time. Nevertheless, it performs incredibly
well for longitudinal and time series data, since the number of latent variables is usually on
the order of the sample size.

2.2. Convergence Diagnostics

Another great feature of data cloning is the plethora of diagnostic measures available.
On one hand, since we are using probabilistic sampling algorithms, it is mandatory to diag-
nose convergence of the sampling algorithm itself. For this, measures such as the potential
scale reduction factor R̂ (Gelman and Rubin 1992 [8]) and the effective sample size Neff , for
example, assess convergence of the Markov chains and the within-chains autocorrelations, re-
spectively. For these and other measures and their implementation, see for instance Turkman
et al. (2019), Ch. 9 [24].

On the other hand, for likelihood-based inference, we need to ensure the posterior
distribution is well approximated by a Gaussian distribution and also that this distribution
degenerates at a point. Indeed, only then we can be confident that the influence of the
choice of prior distribution has vanished and the mean of the posterior samples is a good
approximation of the desired maximum likelihood estimate. Specific to the data cloning
algorithm, we need to check whether the posterior distribution

(i) has become nearly degenerate and
(ii) nearly Gaussian.

The number of clones required for these behaviors depends heavily on the likelihood function
and prior distribution chosen. Fortunately, the diagnostic measures recommended by Lele et

al. (2010) [13] are simple to compute and allow the selection of an adequate number of clones
for the problem at hand.

If the assumptions of the data cloning algorithm are satisfied, then the Fisher informa-
tion matrix is positive definite in a neighborhood around the maximum likelihood estimate.
Furthermore, recall from Equation (2.3) that, in the k-times cloned posterior πk, the estimate
of the inverse Fisher information matrix from the posterior samples is scaled by the inverse of
k. Therefore, as we increase the number of clones, the eigenvalues of the estimated covariance
matrix from the samples should decrease at approximately a rate k−1.

For a positive definite matrix, the Courant-Fischer Theorem ensures that the greatest
eigenvalue provides an upper bound on the elements of the main diagonal (Horn and Johnson
2012 [10]). Hence, since the greatest eigenvalue should decrease at the rate k−1, we have an
upper bound on the rate at which the elements of the main diagonal of the estimated inverse
Fisher information matrix must decrease. This enables us to measure the rate at which the
posterior distribution is degenerating to a point mass probability measure on the maximum
likelihood estimate, since the elements in the main diagonal of the said matrix represent an
estimate of the posterior variances for the model parameters.
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Let λmax,k denote the maximum eigenvalue of the k-times cloned posterior covariance
matrix. Then, for large k and under regularity conditions,

(2.6) λS
max,k =

λmax,k

λmax,1
≈ 1

k
.

Lele et al. (2010) [13] call λS
max,k the scaled maximum eigenvalue for k clones. The authors

suggest monitoring this quantity to assess its rate of convergence to zero as we increase the
number of clones. The closer this measure is to zero, the more mass the posterior distribution
assigns to small neighborhoods of the (possibly) maximum likelihood estimate.

For the second item, the normality of the posterior distribution, Lele et al. (2010) [13]
suggest computing two statistics from the posterior samples. As before, let p be the dimension
of the parameter vector θ and N denote the number of samples obtained from Algorithm 1
after discarding the ones from the burn-in period. Let Ei denote the (i− 0.5)/N quantile of
a χ2

p distribution, i ∈ {1, ..., N}. Define

(2.7) Oi = (θi − θ̄)>Σ̂−1(θi − θ̄)

for i ∈ {1, ..., N}, with Σ̂ the estimated posterior covariance matrix and let O(i) denote their
ordered values. Since O(i) are simply estimates of Ei, the statistics

(2.8) MSE =
1
N

N∑
i=1

(O(i) − E(i))
2

and

(2.9) r2 = 1− ρ̂2
(
O(1), ..., O(N);E1, ..., EN

)
,

in which ρ̂ denotes the estimated Pearson correlation coefficient, approach zero as the number
of clones k increases.

Solymos (2010) [23] provides an implementation of data cloning for R (R Core Team
2020 [19]). The package allows the use of common probabilistic sampling software amongst
Bayesian practitioners, such as JAGS (Plummer 2017 [18]) and Stan (Carpenter et al. (2017)
[5]) to perform sampling from the cloned posterior distribution and includes all diagnostic
measures described above. The paper by Solymos (2010) [23] and also the original papers by
Lele et al. (2007) [12] and Lele et al. (2010) [13] provide plenty of examples to get acquainted
with data cloning.

3. IDENTIFIABILITY

Let Y denote a sample space, A a σ-algebra of subsets of Y and M(Y,A) denote the set
of probability measures on (Y,A). In statistical theory, the inferential procedure is enabled by
equipping the measurable space (Y,A) with a family of probability measures F ⊂M(Y,A).
For practical purposes, this family is defined through a known map Φ : Θ →M(Y,A), with
Θ being the parameter space in the parametric scenario. Specifically, a statistical model is a
triple E = (Y,A,F = {Pθ : θ ∈ Θ}), in which F is a family of probability measures on (Y,A)
indexed by the parameter space Θ.
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Notice the definition of a statistical model imposes no restrictions on Θ, allowing for
parametric, semiparametric and nonparametric structures (San Mart́ın 2018 [22]). We assume
in this paper that:

(i) Θ ⊂ Rp is an Euclidean space;

(ii) the sample space Y is equipped with a topology and A = B(Y) is the Borel
σ-algebra obtained from the topology on Y;

(iii) the probability measures in F are absolutely continuous with respect to some
measure on (Y,A).

The latter constraint allows for much simplification in the discussion since now we can rep-
resent F = {fθ : θ ∈ Θ} as a family of probability density functions. We are now ready to
define identifiability of a parameter in the sampling theoretical framework.

Definition 3.1. Let E be a statistical model. A parameter θ ∈ Θ is said to be iden-
tifiable if for any θ∗ ∈ Θ, fθ(y) = fθ∗(y) occurs, for all y ∈ Y, if and only if θ∗ = θ.

The concept above is referred to as global identifiability (Koopmans and Reiersol 1950
[11]). This is done to distinguish it from local identifiability, which we define below. However,
in this paper, we refer to the former property as simply identifiability.

Definition 3.2. Let E be a statistical model. A parameter θ ∈ Θ is said to be locally
identifiable if there exists ε > 0 and a neighborhood Nε(θ) ⊂ Θ of θ such that for any
θ∗ ∈ Nε(θ), fθ(y) = fθ∗(y) occurs, for all y ∈ Y, if and only if θ∗ = θ.

We can see thus that local identifiability is weaker than (global) identifiability. In fact,
a globally identifiable parameter is always locally identifiable. The converse, however, need
not be true.

So far the definitions allow us to talk only about a single point in the parameter space.
For the inferential procedure to be satisfactory, we would like to know whether all parameter
values θ ∈ Θ are identifiable. Fortunately, the definitions above are easily extended to the
entire parameter space Θ.

Definition 3.3. A statistical model E is said to be identifiable (locally identifiable)
if for all θ ∈ Θ, θ is identifiable (locally identifiable).

Parameters which yield the same likelihood function are said to be observationally
equivalent, and it is possible to construct an equivalence relation using the concept of iden-
tifiability; see for example Picci (1977) [17] or Florens and Simoni (2011) [6] and references
therein. This relation ∼ is such that, for any θ,θ∗ ∈ Θ, θ ∼ θ∗ if, and only if, fθ(y) = fθ∗(y)
for all y ∈ Y. Through the equivalence relation defined above we obtain the quotient space
Θ̃ = Θ/∼. The elements of the quotient spaces are the equivalence classes induced by ∼ on
Θ. Thus, there always exists a canonical statistical model EΘ̃ = (Y,A,F = {f[θ] : [θ] ∈ Θ̃})
which is set identifiable, i.e. the family F is indexed by the equivalence classes.

An easy-to-prove property of equivalence classes which makes them very convenient for
studying identifiability is that they are disjoint. Thus, it is sufficient for statistical identifia-
bility to define a function which maps each equivalence class to a single element in that class,
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since then the equivalence classes will be reduced to singletons. Florens and Simoni (2011) [6]
call such functions sections. Let [θ] ∈ Θ̃ denote the class of equivalence of θ ∈ Θ, i.e.

[θ] = {θ∗ ∈ Θ : θ∗ ∼ θ}.

Definition 3.4. A section is a function σ : Θ̃→Θ such that for all [θ]∈ Θ̃, σ([θ])∈ [θ].

As previously mentioned, the equivalence classes being disjoint leads us to an iden-
tifiable statistical model Eσ = (Y,A,F = {fθ : θ ∈ σ(Θ̃)}), in which σ is any one section.
Moreover, the choice of section is really irrelevant, as Paulino and Pereira (1994) [15] point
out, since for any two sections σ and σ∗, there exists a bijective function h : σ(Θ̃) → σ∗(Θ̃).

3.1. Implications to Data Cloning

Another important consequence of identifiability which we exploit in this paper is that,
if E happens to be unidentifiable, then the maximum likelihood estimate of θ for any given
sample (if it exists) is not unique. In fact, given any point estimate θ̂(y) ∈ Θ, there is θ̂∗(y) ∈
[θ̂] such that L(θ̂; y) = L(θ̂∗; y). It becomes clear now why consistency of the maximum
likelihood procedure is no longer guaranteed. Under model unidentifiability thus there is a
class of equivalence of undistinguishable candidates to the maximum likelihood estimate

(3.1) [θ̂] = arg sup
[θ]∈Θ̃

L([θ]; y) =
{

θ ∈ Θ : θ = arg sup
θ∈Θ

L(θ; y)
}

.

Lele et al. (2010) [13] discuss the behavior of the k-times cloned posterior distribution
under model unidentifiability. In this scenario, let [θ̂] be the equivalence class of the maximum
likelihood estimate. The authors show that if [θ̂] is not a singleton, then

(3.2) πk(θ|y) L−→ π(θ)∫
[θ̂] π(θ)dθ

, ∀θ ∈ [θ̂] .

Therefore, it seems we can, in theory, use data cloning to investigate the identifiability of
complex statistical models. If the posterior samples generated using data cloning, for in-
creasing values of k, do not seem normally distributed and/or seem to degenerate at a set of
values, then the model may be unidentifiable.

In reality, however, we must not hurry to conclusions. Identifiability of statistical
models can only be assessed using analytical techniques and it is a mathematical question
in general. It precedes statistical inference (Koopmans and Reiersol 1950 [11]). What we
can study with data cloning diagnostics is model estimability under a particular data set.
However, detecting estimability issues over many distinct data sets would lead us to question
the very structure of the statistical model we are employing. Thus, a general guideline for a
simulation study for assessing identifiability using data cloning is:

(i) for various sample sizes, simulate several data sets from a postulated statistical
model;

(ii) for each data set, fit the model using data cloning with distinct prior distributions
and with increasing values of the number of clones k;

(iii) analyze the posterior samples to study the behavior of the algorithm.
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Data cloning diagnostics should always reveal convergence issues when the algorithm is used to
estimate the parameters of an unidentifiable model. However, under possibly very informative
priors and weakly informative data, it may happen that even for large values of k the sampling
algorithm will output samples from πk which do not indicate problems. This is resonant with
the arguments of Lindley (1971) [14] on the irrelevance of the question of identifiability within
the subjective Bayesian paradigm.

Furthermore, even if the statistical model is identifiable, there are plenty of other ways
in which the data cloning algorithm may fail to converge. It is no coincidence that advances
in Bayesian computational methods have been accompanied by developments of techniques
for diagnosing convergence issues. Since data cloning uses MCMC algorithms for likelihood-
based inference, the same convergence issues of sampling algorithms that Bayesian analyses
face must also be considered.

3.2. Unidentifiability of the Gaussian DLM

The Gaussian dynamic linear model is particularly convenient for our purposes since it
illustrates many aspects of identifiability in a simple manner.

Definition 3.5. The dynamic model with state and observation equations

(3.3)


Yt = FXt + νt , νt

iid∼ N (0, V )

Xt = GXt−1 + ωt , ωt
iid∼ N (0,W )

X0 ∼ N (m0, C0)

is called a univariate Gaussian dynamic linear model with parameter vector θ =
(F,G, V,W ) ∈ R2 × R2

+ and initial information set D0 = {m0, C0}.

The statistical model of Definition 3.5 is not identifiable as it is. This is a well known
result in the literature of dynamic models and some identifiability constraints for the mul-
tivariate scenario can be found in Harvey (1989) [9]. The usual path to a proof of the
unidentifiability of the dynamic linear model employs a change of variables in its defining
observation and process equations. Under Gaussian errors it is easy to see that for any real
number s 6= 0

(3.4)

Yt = FXt + νt

Xt = GXt−1 + ωt

⇐⇒

Yt = (Fs−1)(sXt) + νt

sXt = G(sXt−1) + sωt

⇐⇒

Yt = F ∗X∗
t + νt

X∗
t = GX∗

t−1 + ω∗t

,

in which F ∗ = Fs−1, ω∗t = sωt and X∗
t = sXt, for all t ∈ T . Notice now the process equation

random error is distributed as ω∗t
iid∼ N (0,W ∗), with W ∗ = s2W .

Therefore, this change of variables implies that, if θ = (F,G, V,W ) is the original
parameter vector and θ∗ = (F ∗, G, V,W ∗) is the parameter vector that results from the
transformation proposed, then it follows that for all (y1, ..., yT ) ∈ Y we have fθ(y1, ..., yT ) =
fθ∗(y1, ..., yT ) for any s 6= 0.
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The structural equations define the density functions uniquely and the arguments above
are sufficient to prove this model is unidentifiable. The general suggestions for enforcing model
identifiability in this context are to

(i) fix the parameter F to a known non-zero constant or

(ii) fix the process variance W to a known positive constant and constrain F to be
either strictly positive or strictly negative (Harvey 1989 [9]).

Thus, in the identifiable statistical model, one must choose between estimating F or estimat-
ing W .

There are, however, an infinite number of other restrictions, or sections, on the param-
eter space which lead to the same statistical model up to a bijective function. Firstly, note
that for the Gaussian dynamic linear model, the equivalence classes are readily built from
the proof in (3.4). As a matter of fact, we know that θ ∼ θ∗ if there exists s ∈ R such that

θ = (F,G, V,W ) ∼ (F/s, G, V, s2W ) = (F ∗, G, V,W ∗) = θ∗ .

This, in turn, implies θ ∼ θ∗ whenever F 2W = (F ∗)2W ∗. If we let (a, b, c) ∈ R× R2
+, then

we can write the quotient space as

(3.5) Θ̃ =
⋃

(a,b,c)∈R×R2
+

{
{(F,G, V,W ) ∈ Θ : G = a, V = b and F 2W = c}

}
.

We recall once again that the equivalence classes are disjoint. Therefore, once we
build them, it is sufficient for model identifiability that we find a section σ : Θ̃ → Θ such
that the equivalence classes of σ(Θ̃) ⊂ Θ are singletons (Paulino and Pereira 1994 [15]). For
clarity of exposition, let [(a, b, c)] = {(F,G, V,W ) ∈ Θ : G = a, V = b, F 2W = c} ∈ Θ̃ denote
the equivalence classes on Θ for all (a, b, c) ∈ R× R2

+. The general identifiability constraints
can now be stated as

Proposition 3.1. Let E be the Gaussian dynamic linear model as in Definition 3.5.

A sufficient condition for the function σ : Θ̃ → Θ to be a section on Θ̃ is that for all (a, b, c) ∈
R×R2

+, the set function σ : [(a, b, c)] 7→ (u1(a, b, c), G, V, u2(a, b, c)), with u2
1u2 : (a, b, c) 7→ c.

Proof: We need to show that σ is injective and σ([(a, b, c)] ∈ [(a, b, c)] for all such
equivalence classes. The latter follows immediatly from the fact that if θ = (F,G, V,W ) is
such that G = a, V = b and F 2W = c, then θ ∈ [(a, b, c)]. Moreover, since equivalence classes
are disjoint this implies σ is injective. Therefore, taking F = u1(a, b, c) and W = u2(a, b, c),
the proof is complete.

We can now write the commonly suggested restrictions for the Gaussian DLM as sec-
tions on the parameter space. Fixing F = s, for some real constant s 6= 0, is equivalent to
conducting inference over the section σF : [(a, b, c)] 7→ (s,G, V, c/s2). Also, fixing W = s, for
some s ∈ R+ is equivalent to adopting the section σW : [(a, b, c)] 7→ (

√
c/s, G, V, s).

Nevertheless, there is nothing wrong with using an unidentifiable statistical model as
long as inference (or prediction) is conducted on identifiable quantities. An example, sug-
gested to us by one of the reviewers, is that of a linear model with rank defficient design matrix:
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even though some, or all, of the regression parameters are unidentifiable, the mean response
can always be estimated uniquely from the data. We emphasize, however, that we would
refer to the previous problem as an unidentifiability problem only when the design matrix is
always rank defficient no matter what data we observe, such as in high-dimensional scenar-
ios. In case some exploratory variables collected are perfectly (or highly) correlated only for
a particular data set, we would refer to it as a problem of model estimability.

4. SIMULATION STUDY

In this section we present and discuss the results of several simulation studies in which
the data cloning algorithm is employed to assess identifiability of the Gaussian dynamic
linear model. Ideally, data cloning should not present any convergence issues when used
for maximum likelihood estimation in an identifiable model. On the other hand, we would
expect to see clear failures in all of the convergence measures available whenever data cloning
is employed in an unidentifiable model. Before proceeding to the results there are some
important points that need to be discussed so that the motivation behind the simulation
study is clear.

Firstly, our main objective is to show how to use data cloning as a tool to assess
identifiability statistical models. Our choice to illustrate the procedure through the dynamic
linear model is justified by the fact that it is a latent variable model for which the identifying
constraints are known. Hence, we can perfectly discern convergence issues due to model
unidentifiability from those due to poor performance of the sampling algorithms.

Secondly, Lele et al. (2010) [13] advise using distinct prior distributions when perform-
ing data cloning. A simulation study for identifiability analysis should also take this into
account as we need to be sure that there exists a number of clones for which the influence
of any prior distribution vanishes. The more prior distributions we test the better is the
study. As proposed by Lele et al. (2010) [13], we adopt three prior setups: uninformative,
informative and disinformative. The first is simply as vague as possible, the second puts most
of its probability mass around the true parameter value and the third is also an informative
prior distribution, but most of its probability mass is allocated somewhat far from the true
parameter values.

Lastly, we recommend employing both varying sample sizes and parameters. The former
allows a view of the convergence of the maximum likelihood estimator, while the latter allows
us to explore regions of the parameter space that may be of practical interest.

Data cloning is computationally demanding, although for a single data set setting the
number of clones to a high value may not be a problem. For our purposes, we will be fitting
the same model under multiple distinct settings and it is just not feasible to use a high
number of clones. It does not matter, however, because we are not interested in finding the
maximum likelihood estimate, but in gathering evidence of whether or not it can be found
uniquely. Multiple starting values plus strong diagnostic measures of convergence allow us to
gather solid evidence of model identifiability and issues thereof.
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4.1. Simulation Parameters

We have chosen to simulate time series of sizes 25, 50, and 100. The simulated states
are in Figure 1. To test distinct parameter vectors we vary the amount of noise added to
the sample by the measurement process. This is done by considering the ratio between the
variance of the process and measurement errors to be W/V = 0.5, 1, 2, and 10.
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Figure 1: Simulated states for each adopted sample size.
The true parameter values used are displayed in Table 1.

We recall the parameter vector for the dynamic linear model under normality assump-
tions is θ = (F,G, V,W ) ∈ R2 × R2

+ = Θ. The four true parameter setups we use for simu-
lating the time series are displayed in Table 1. Some illustrations of the effect of increasing
the measurement error are available in Figure 2. We can see in the plots that increasing the
measurement noise makes it harder to visually detect any patterns from the hidden states.
We would expect that noisy and/or small datasets would be very challenging for data cloning
since the likelihood function might not be well-behaved around the (possibly non-unique)
maximum likelihood estimate. Nevertheless, similar situations would be challenging for most
alternative estimation methods as well.

Table 1: True parameter values for simulation of the Gaussian dynamic linear model.

Setup F G V W

W/V = 1/2 1 1 2 1
W/V = 1 1 1 1 1
W/V = 2 1 1 0.5 1
W/V = 10 1 1 0.1 1
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Figure 2: Plot of 10 simulated time series of length 100 arising from the hidden states in Figure 1.
Each panel represents a signal-to-noise ratio W/V as presented in Table 1.

For the standard deviations
√

W and
√

V , we adopted half-Cauchy prior distributions
with scale equal to 10 as uninformative priors. This prior distribution is recommended by
Gelman (2006) [7] for hierarchical models as an ideal alternative to the widely used gamma
prior with small hyperparameters. Since our true parameter values are quite small compared
to the tails of these prior distributions, we expect their added information to be insignificant
compared to the data.

The F parameter receives a N (0, 104) in the uninformative setup. If we were to be
faithful to the identifiability constraints required for this model, we would have to employ
prior distributions which assign zero mass to negative values for F . However, the model is
unidentifiable whether or not we restrict this parameter to the positive real line. Nonetheless,
when performing some pre-tests for the simulation study, sampling F from priors on R+

resulted in running times up to three times longer than when using priors on R.

The parameter G regulates the autoregressive behavior of the hidden states. The data
we simulate assumes that these latent variables behave as a Gaussian random walk. We know
that for values of G outside the open interval (−1, 1) the latent process is non-stationary
(Harvey 1989 [9]). Lele et al. (2007) [12] use a uniform prior distribution on the interval
(−1, 1) for this parameter, enforcing stationarity of the latent stochastic process. In our
simulations, the data is clearly non-stationary. Therefore, we consider a N (0, 104) as the
uninformative prior setup for G. This prior allows the process to present highly explosive
growth behaviors if the data behaves as such. It is highly unlikely that this prior distribution
would be used in a purely Bayesian framework, but data cloning allows us to use such largely
uninformative prior distributions with ease.

In Table 2 we present the uninformative prior setup just discussed together with the
informative and disinformative ones. The choice of the latter two, as previously discussed,
simply aims to assign more probability mass closer or further (respectively) from the true
parameter values. Notice that since the parameterization of the Gaussian distribution in
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JAGS (Plummer 2007 [18]) is given by the mean and precision (i.e. the inverse of the variance),
the prior distributions in Table 2 are provided in terms of the precision parameters 1/W and
1/V instead of W and V , respectively.

Table 2: Prior distributions chosen to represent the uninformative, informative
and disinformative prior setups. The notation HC−2 indicates the dis-
tribution of the inverse of the square of a Half-Cauchy random variable,
while λ denotes the signal-to-noise ratio W/V .

Prior Setup F G 1/V 1/W

Uninformative N (0, 104) N (0, 104) HC−2(0, 10) HC−2(0, 10)
Informative N (1, 1) N (1, 1) Γ(4−1, (4λ)−1) Γ(4−1, 4−1)

Disinformative N (10, 5) N (−1, 1) Γ(1, 5−1) Γ(1, 5−1)

4.2. Data Cloning Diagnostics

We begin our study of identifiability through the scaled maximum eigenvalue, λS
max,k,

of the posterior covariance matrix, which should decay at about the theoretical rate of 1/k, in
which k denotes the number of clones used. In Figure 3 we display this measure for the case
of the unidentifiable dynamic linear model. Since some of the resulting eigenvalues presented
very high values, the graph with all of the observed measures is uninteresting due to the
scaling of the ordinate axis.
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Figure 3: Box-plots of the scaled maximum eigenvalues of the posterior
covariance matrix for the unidentifiable dynamic linear model.
The dashed line represents the theoretical rate of convergence.
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We have chosen thus to display in Figure 3 only the 50% smallest scaled eigenvalues
obtained from the simulations using the informative and disinformative setup. The posteriors
arising from uninformative prior distributions presented extremely high scaled eigenvalues
even at the maximum number of clones for each sample size, which is a very strong evidence of
identifiability issues. Nevertheless, the quantities in Figure 3 should still follow the theoretical
convergence rate as long as the model is identifiable (which we know it is not).

It is easy to see in Figure 3 that λS
max,k does not decay at the theoretical rate for the

disinformative prior distributions. On the other hand, the informative prior setup seems
to yield reasonable values for this diagnostic measure as the number of clones increases.
However, we can see some odd behavior, particularly in the lower sample sizes with a low
signal-to-noise ratio. Note that many λS

max,k are already much below the theoretical rate of
convergence in the first steps of the data cloning. This may be a sign that the variance of
the unidentifiable parameters is being held low by the variance of the prior distribution.

Summing up, the scaled maximum eigenvalues observed from fitting an unidentifiable
model resulted in undesired convergence properties and, in the case of the uninformative prior
distributions, unreasonably high values for the eigenvalues of the posterior covariance matrix.
This is in accordance with what we would expect from an unidentifiable model and indicates
that data cloning is pointing towards identifiability issues when they are indeed present.
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Figure 4: Box-plots of the scaled maximum eigenvalues of the posterior covariance matrix
for the identifiable dynamic linear model in which we have set F to its true value.
The dashed line represents the theoretical rate of convergence.

In Figure 4 we present the λS
max,k drawn from an identifiable model in which we have

fixed the parameter F to its true value. As the number of clones increases the theoretical rate
of convergence is followed tightly by the quantities resulting from all three prior distributions.
This is a clear indicator that the posterior distributions are becoming increasingly degenerated
at the expected rate. Another important consideration is that all three prior setups differ
only within small clone numbers, which indicates the influence of the prior distribution is
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indeed vanishing. Once again, therefore, the main diagnostic for data cloning has provided
satisfactory results for the dynamic linear model. It exhibited no convergence issues when
there are indeed no identifiability problems. This indicates constraining the parameter space
by fixing the parameter F has led to a statistical model for which all parameters can be
reliably estimated.

Table 3 presents the quartiles for λmax,k taken at the best-case scenario: the sample
size is 100 and the number of clones k is 64. We can see the quartiles in the identifiable
model are very close to each other, while the ones for the unidentifiable model are not.
This is yet another strong evidence that there is still a considerable influence of the prior
distributions on the joint posterior distribution of the parameters. There is an issue, however,
because the quartiles for the maximum eigenvalues are quite small under the informative and
disinformative setups even under unidentifiability. This indicates the posterior variance is
decreasing as we increase the number of clones, which obviously should not happen since the
model is unidentifiable. Nonetheless, for the uninformative setup, the maximum eigenvalues
are of an order 104 higher than those from the informative setup.

Table 3: Quartiles for the maximum eigenvalues of the posterior covariance matrix
of the parameters of the dynamic linear model. The values are for both the
unidentifiable and identifiable models at the sample size of 100 and with
number of clones equal to 64.

Identifiable Unidentifiable
W/V Prior

P25 P50 P75 P25 P50 P75

Uninformative 0.0035 0.0045 0.0055 32.1684 65.6898 140.4389
Informative 0.0035 0.0044 0.0054 0.0048 0.0079 0.01150.5
Disinformative 0.0034 0.0044 0.0054 0.0795 0.1493 0.3428

Uninformative 0.0019 0.0024 0.0032 40.4107 76.1869 132.6472
Informative 0.0019 0.0025 0.0032 0.0024 0.0037 0.00661
Disinformative 0.0019 0.0024 0.0032 0.1070 0.1670 0.2772

Uninformative 0.0015 0.0019 0.0024 38.6173 61.5385 113.3972
Informative 0.0015 0.0019 0.0024 0.0017 0.0029 0.00482
Disinformative 0.0015 0.0018 0.0023 0.0496 0.1045 0.2125

Uninformative 0.0012 0.0014 0.0016 29.9088 49.6416 72.4899
Informative 0.0012 0.0014 0.0016 0.0014 0.0019 0.002910
Disinformative 0.0012 0.0013 0.0016 0.0221 0.0454 0.0802

If we compare the quartiles over the three prior setups, it becomes clear there is still
strong influence of the prior distribution even at 100 clones of the original dataset when
the model is unidentifiable. However, under a single prior setup the conclusions related to
the variance of the posterior distribution would differ considerably. In the informative prior
setting, in particular, the quartiles of the maximum eigenvalues indicate no identifiability
problems at all. The quartiles in this case are all small and reasonably close to each other,
indicating the variance of the posterior distribution is small since the maximum eigenvalue
provides an upper bound on the variances of the parameters. Therefore, for our purposes
it would seem that the observed decay rate for the scaled maximum eigenvalue is the most
appropriate of the two measures of degeneracy. By measuring the decay of λS

max,k, we were
able to detect possible identifiability problems across all prior settings.
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We can also check whether the posterior is reasonably close to a Gaussian distribution.
This is done, as suggested by Lele et al. (2010) [13], through the measures presented in (2.8)
and (2.9). In Table 4 we present the average of these diagnostics for each of the scenarios
explored in the simulations. Overall, these diagnostic measures are greater, on average, in the
unidentifiable than in the identifiable model. Furthermore, their averages seem to decrease
in magnitude as the sample size increases, which is also to be expected.

Table 4: Diagnostic measures for normality of the samples from the posterior distribution
of the parameters of the dynamic linear model.

W/V = 0.5 W/V = 1 W/V = 2 W/V = 10
Size Prior Setup Constraint

MSE r̃2 MSE r̃2 MSE r̃2 MSE r̃2

F = 1 3.173 0.088 1.718 0.068 1.590 0.065 1.891 0.078
Uninformative

None 15.327 0.178 10.277 0.155 8.449 0.137 4.551 0.105

F = 1 2.335 0.078 1.416 0.062 1.030 0.052 1.909 0.074
Informative

None 13.662 0.175 10.891 0.159 7.148 0.130 3.779 0.091

F = 1 2.430 0.083 1.398 0.062 0.989 0.052 1.194 0.054

25

Disinformative
None 11.578 0.164 8.214 0.148 7.640 0.135 5.015 0.102

F = 1 3.699 0.092 1.600 0.057 0.624 0.039 0.393 0.030
Uninformative

None 7.237 0.130 4.569 0.110 3.036 0.091 1.933 0.068

F = 1 1.697 0.068 0.965 0.050 0.557 0.037 0.468 0.033
Informative

None 5.467 0.112 3.947 0.101 2.704 0.086 1.301 0.055

F = 1 2.556 0.083 1.229 0.055 0.678 0.040 0.409 0.031

50

Disinformative
None 4.660 0.105 3.876 0.102 2.596 0.083 1.433 0.060

F = 1 0.591 0.037 0.364 0.028 0.253 0.021 0.224 0.020
Uninformative

None 1.541 0.057 1.046 0.050 0.832 0.041 1.051 0.026

F = 1 0.529 0.035 0.344 0.026 0.218 0.020 0.241 0.022
Informative

None 1.425 0.059 0.915 0.047 0.578 0.034 0.345 0.024

F = 1 0.623 0.038 0.394 0.029 0.255 0.022 0.177 0.017

100

Disinformative
None 1.329 0.057 0.905 0.046 0.511 0.032 0.450 0.029

However, we would be hard-pressed to say these quantities have provided evidence
of model unidentifiability (or identifiability). The values obtained under both scenarios,
especially for the r̃2, are satisfactory and also not very far apart from each other. For the
MSE, in particular, it is to be expected that a model with one extra parameter, which is
the case for the unidentifiable model, would require larger sample sizes or number of clones
to achieve the same precision as a model with a lower number of parameters.

Furthermore, the quadratic form in Equation (2.7) may follow a chi-squared distribution
even if the underlying probability distribution is not Gaussian. Azzalini and Valle (1996) [1],
for example, show that this result holds for the quadratic form of p-variate Skew-Gaussian
random variables. Therefore, these measures alone do not suffice to assess identifiability issues
when using data cloning because it is possible these present reasonable values even when the
posterior distribution is not Gaussian.

Therefore, although both the MSE and r̃2 certainly serve their purpose when the
interest is in obtaining the maximum likelihood estimates, for identifiability purposes they
have not presented themselves as useful indicators of identifiability issues for this simple
model and we do not advocate them to be heavily relied upon.
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4.3. MCMC Diagnostics

We now move to the assessment of the quality of the posterior samples for maximum
likelihood estimation. Firstly, we would like to know whether the Markov chains resulting
from each of the three distinct prior setups, at the largest number of clones adopted, are
targeting the same posterior distribution. For this task, we simply pretend we have run three
independent chains under the same initial conditions, when in fact we used three distinct prior
distributions. Within the Bayesian paradigm, individuals carrying distinct prior information
about the same quantities need not arrive at the same inferential conclusions for finite samples,
although asymptotic theory ensures this happens under some regularity conditions (Walker
1969 [26]). The differences in the posterior distributions for such individuals are even more
pronounced whenever complex models and small and/or weakly informative data is at hand.

We emphasize yet again, however, that data cloning is a maximum likelihood estimation
algorithm. Being so, it can not be affected by prior opinions. By collecting the chains from
the three distinct prior setups, diagnostics such as the R̂ can be used to check if the samples
are being drawn from the same posterior distribution.

We provide in Table 5 the proportion of the simulations in which the R̂ comparing
three chains, one from each prior setup, is below the usual thresholds of 1.05 and 1.10. It
is immediately clear that none of the simulations for the unidentifiable model have yielded
joint posterior distributions for the parameter vector which are acceptably close enough from
each other when starting from different prior distributions. For the identifiable model, the
proportion starts low for the lower sample size of 25 and a low signal-to-noise ratio of 0.5 and
reaches 1 for the sample size of 100. This is as to be expected, if not for the fact that many
simulations do not yield close enough joint posterior distributions for some of the scenarios
explored in this identifiable statistical model.

Table 5: Proportion of the simulations for which there is evidence that, starting from distinct
prior distributions, the Markov chains are targeting the same posterior distribution.
The values for the Gelman-Rubin diagnostic are computed at the highest number of
clones for each sample size of the dynamic linear model.

Identifiable Unidentifiable
Size W/V

R̂ < 1.05 R̂ < 1.10 R̂ < 1.05 R̂ < 1.10

0.5 0.74 0.76 0 0
1.0 0.90 0.91 0 0
2.0 0.84 0.86 0 0

25

10.0 0.44 0.51 0 0

0.5 0.51 0.55 0 0
1.0 0.86 0.90 0 0
2.0 0.98 0.99 0 0

50

10.0 0.97 0.98 0 0

0.5 1.00 1.00 0 0
1.0 1.00 1.00 0 0
2.0 1.00 1.00 0 0

100

10.0 0.94 0.98 0 0
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It is possible that for some of the length 25 time series, the likelihood is very flat
in a region around the maximum likelihood estimate. In this scenario, we would need a
much larger number of clones to see that the Markov chains target the same joint posterior
distribution. Nevertheless, the results from the Gelman-Rubin diagnostic point towards the
clear failure of the data cloning when the model is unidentifiable, and present extremely
promising results for the identifiable one. Were we unaware of the model’s identifiability
issues, these results, albeit not proof of unidentifiability, would surely lead us to reconsider
the model structure.

There is one last point we need to verify when checking for model identifiability: the
posterior means. The Gelman-Rubin diagnostic does not necessarily indicate that the poste-
rior means, which are maximum likelihood estimates for a sufficiently large number of clones,
are different. It can happen that the posterior means are very close to each other, while the
posterior variance is not. Recall the Gelman-Rubin diagnostic indicates whether independent
Markov chains happen to target the same posterior distribution. In other words, we could
start from two or more distinct prior distributions and arrive at posterior distributions with
the same mean but different variances. These are, thus, different posterior distributions and
the Gelman-Rubin diagnostic will point towards convergence issues.

From Table 5 and Figure 3 we already know there is evidence of model unidentifiability.
However, if the posterior means from distinct prior distributions were the same, we would
have some evidence that we are able to reliably estimate the model parameters. Moreover, it
might be the case that the unidentifiability issues found so far arise from poor tuning of the
sampling algorithm.

In Table 6 we provide the average of the posterior means for the unidentifiable and iden-
tifiable Gaussian dynamic linear model with true signal-to-noise ratio W/V = 1 and sample
size of 100. We also display the average effective sample size as a measure of the quality of
the estimation of the posterior mean. Since we have drawn 1000 samples from each posterior
distribution, we would want the effective sample size to be as close as possible to the total
number of samples drawn. However, due to the very nature of MCMC algorithms it is ex-
pected that Neff will be lower than the number of samples even if the model is identifiable.
When using this measure, we are looking for parameters for which the Neff is noticeably
lower than both the total number of samples and the Neff for other parameters.

If we focus on the parameters G and V , we can see that the averages of their posterior
means are not considerably far apart from each other. However, we see that for the trouble-
some parameters W and F the posterior means under unidentifiability are heavily influenced
by the choice of the prior distribution. Furthermore, the average effective sample size ranges
from 1% to 5% of the total number of samples, indicating the chains for both parameters
are highly autocorrelated. These results point towards extremely poor mixing of the Markov
chains and, together with the diagnostics previously discussed, indicate clear failure of the
model fitting procedure for the unidentifiable dynamic linear model.

However, the results for the identifiable functional F 2W , although not as good as that
for the identifiable model, are still close to each other and also to the true value. This
illustrates our previous comment that there is no harm in using unidentifiable statistical
models, as long as the inferences are based on identifiable quantities. Hence, if we were
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interested in maximum likelihood estimation of any identifiable functional of θ, data cloning
would yield good numerical approximations even if we had chosen to use the unidentifiable
dynamic linear model.

Table 6: Averages of posterior means and effective sample sizes for the unidentifiable and
identifiable Gaussian DLM with true signal-to-noise ratio W/V = 1 and sample size
of 100. The true value for all parameters is 1 (see Table 1).

Identifiable Unidentifiable
Parameter Prior Setup

Mean Neff Mean Neff

Uninformative — — 0.09 3.81
Informative — — 1.89 3.69F
Disinformative — — 8.34 2.69

Uninformative 1.01 507.96 1.01 500.96
Informative 1.01 504.54 1.01 503.79G
Disinformative 1.01 494.54 1.01 507.68

Uninformative 1.23 369.44 1.23 370.97
Informative 1.23 284.53 1.23 282.88V
Disinformative 1.23 291.20 1.23 274.98

Uninformative 0.76 302.04 110.5 16.81
Informative 0.76 208.40 0.22 16.87W
Disinformative 0.76 213.76 0.01 8.37

Uninformative 0.76 302.04 0.76 311.37
Informative 0.76 208.40 0.77 210.41F 2W
Disinformative 0.76 213.76 0.80 218.34

Furthermore, as expected, the behavior within the identifiable model, in which we set
F = 1, is exactly what we would want to see if we were using data cloning for maximum
likelihood estimation. The posterior means, which we would like to call maximum likelihood
estimates, seem to be independent of the choice of the prior distribution at the largest number
of clones. The effective sample sizes are all satisfactory and indicate that the chains may be
adequately exploring the posterior distribution. Given that the R̂ diagnostics in Table 5
revealed the posterior distribution seems to be independent of the choice of prior distribution
in the identifiable model at the highest number of clones adopted, we could gather the samples
from all three chains to increase the effective sample size even further. Doing so would reduce
the Monte Carlo variance of the numerical approximation to the maximum likelihood estimate
and, consequently, improve the estimation of the Fisher information matrix.

5. FINAL COMMENTS

In this paper, we have explored the capabilities of data cloning as a tool for identifiability
analysis of statistical models through a simulation study with the Gaussian dynamic linear
model. Through an example, we have shown how such a simulation study can be planned
and performed to gather evidence of possible model unidentifiability and how to interpret the
most relevant diagnostic measures for the data cloning algorithm.
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We found the bounds on the posterior covariance matrix of the parameters, its max-
imum eigenvalue λmax,k, to be a good indicator of model identifiability. Its scaled version,
λS

max,k, also yielded strong results since it exhibited convergence problems when they existed,
while also indicating proper convergence of the algorithm in the identifiable model. The mea-
sures of normality did not present results as interesting as did λS

max,k. Both r̃2 and MSE,
suggested by Lele et al. (2010) [13], did not show significantly distinct values under either the
identifiable or unidentifiable model. If we also consider the fact that these diagnostics can be
satisfactory for quadratic forms of distributions other than the Gaussian, then our conclusion
is that they are unreliable for identifiability analysis. However, for the purpose of maximum
likelihood estimation using data cloning they must not be overlooked.

By exploiting distinct prior distributions, we were able to find clear parameter iden-
tifiability issues through the Gelman-Rubin diagnostic R̂. Together with the data cloning
diagnostics and the posterior means of the parameters, the evidence gathered through the
diagnostics led us to the correct conclusion that the unconstrained Gaussian dynamic linear
model is unidentifiable. Nonetheless, it also allowed us to conclude that fixing the parameter
F to a known constant was enough to ensure statistical identifiability.

Overall, we find the results from the simulation study are very promising and indicate
data cloning can (and should) be used as a tool for identifiability analysis, although some care
must be taken as to how to do it properly. We emphasize here, once more, the importance of
employing distinct prior distributions, parameter values and sample sizes in the simulation
study to ensure that the evidence of identifiability, or lack of it, are consistent across an as
wide as possible range of real possibilities.

There are also models for which MCMC algorithms either perform poorly or are simply
too computationally demanding, for example those involving stochastic partial differential
equations. As mentioned by one of the reviewers, the integrated nested Laplace approxi-
mation (Rue et al. 2009 [20]), or INLA for short, employs deterministic approximations to
posterior distributions and has been paired up with data cloning for maximum likelihood
estimation (see Baghishani et al. 2012 [2]). Although not as widely applicable as MCMC
algorithms, INLA has been shown to be both extremely fast and precise when compared to
the former. Furthermore, we are unaware of any studies on the usage of INLA and data
cloning specifically for identifiability analysis and this may be an interesting venture within
this topic.

Finally, we must also emphasize that identifiability cannot in general be proved based
on simulation studies. After all, identifiability is a structural property of statistical models
and it is impossible to exhaust the possible combinations of parameters and infinite sample
sizes in a simulation study. Therefore, we are restricted to finite samples and a few points
of interest in the parameter space. This implies that, at best, we can gather evidence of
local identifiability in a region of practical interest of the postulated parameter space. The
enterprise is nevertheless worth the effort since any evidence even of local unidentifiability in
a statistical model can indicate undesired behavior of inferential procedures.
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1. INTRODUCTION

Antibodies are proteins produced by B cells upon recognition of an antigen derived from
an infectious agent. In general, they contribute to microbial clearance and, if maintained in the
body over time, they translate into a quicker and more efficient immune response upon repeated
exposure to the same infection. In turn, autoantibodies bind to antigens from the body and they
areusuallypresent inautoimmunitydiseases, suchasmultiple sclerosis andrheumatoid arthritis.

In routine laboratories, antibodies (or autoantibodies) against a specific antigen are
quantified by the enzymatic-linked immunosorbent assays (ELISA) using serum samples. The
readout of these assays is a light intensity, also known as optical density, which is converted
into a concentration or a titre using a calibration curve of known antibody concentrations.
In practice, these assays are easily standardized, widely available, and ideal for high-through-
put analysis of antibodies against a single antigen [1]. Such advantages make them suitable
for large-scale serological surveys where one aims to estimate the prevalence of exposure to a
given pathogen in the population [1, 2, 3].

With the development of high-throughput technologies, antibody quantification is shift-
ing from the ELISA to microarray, luminex, or cytometry bead assays, where many antibodies
can be evaluated in the same serum sample. However, these technologies are still being op-
timized before their wide use.

Antibody (or serological) statistical analysis of antibody (or serological) data often as-
sumes the existence of multiple latent populations each one representing a distinct level of
exposure to a given antigen. This basic assumption calls for the use of finite mixture models.
In general, these models can be more or less complex, depending on the number of mixing
distributions used to describe the data [4]. In routine serological applications, one assumes a
model with only two latent populations: seronegative and seropositive individuals or, equiv-
alently, antibody-negative and antibody-positive individuals [5, 6, 7]. Models comprising
more than two serological populations are also used in practice [8, 9, 10, 11, 12], but their
interpretation is not straightforward [13].

A common choice for the mixing distribution is the Lognormal distribution in the
original scale of the measurements or, equivalently, the Normal distribution after applying
the logarithmic transformation to the data [6, 8]. Gamma and Weibull are other choices
among textbook probability distributions [7, 11].

Less-trivial mixture models can be also used in the analysis. For example, a mixture
of two truncated Normal distributions was used to describe data where observations could
fall below the lower limit of detection or above the upper limit of detection of the assay [9].
Another alternative model was the mixture of a Normal distribution and a combination of
half-Normal distributions for the seronegative and seropositive populations, respectively [5].
The rationale behind this model is that antibody levels decrease over time and, therefore, the
seropositive populations should have left-skewed distributions [8]. Similarly, seronegative pop-
ulations should have right-skewed distribution due to the detection of non-specific antibodies
at lowerconcentrationsof the targetantibodies. Notwithstanding the suitabilityof thesealterna-
tive models to tackle specific characteristics of serological data, none of the above models shows
sufficient flexibility in terms of skewness and flatness of each mixing distribution that could
be used serological data analysis and its automation in the context of high-throughput data.
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We then propose using finite mixture models based on Skew-Normal and Skew-t distri-
butions scale in routine serological data analysis. These alternative families of distributions
are highly flexible due to three parameters that control the location, the scale, and the skew-
ness of the resulting distribution. In the case of the Skew-t distribution, further flexibility
can be achieved by an additional parameter that controls the weight of tails. These distribu-
tions also have the advantage of including the Normal distribution, the Generalized Student’s
t-distribution, and its skewed version as special cases [14]. As an example of application, we
use these models to analyse a data set of 6 antibody responses to herpesviruses in the context
of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) [15].

2. DATA UNDER ANALYSIS

ME/CFS is a multifactorial disease whose patients experience persistent fatigue that
cannot be alleviated by rest, or they suffer from post-exertional malaise upon minimal physical
and mental activity [16]. The cause of the disease remains unknown, but it is often linked to
infections by herpesviruses.

The data set under analysis is part of the United Kingdom ME/CFS biobank, and it
was published in a recent study with the aim of investigating the immunological component
of the disease [15]. In the data set, there is a total of 406 individuals divided into three main
groups: healthy controls (HC, n = 107; 26.4%), patients with ME/CFS (n = 250; 61.8%), and
patients with multiple sclerosis (MS, n = 49; 12.1%). The group of patients with ME/CFS
was subdivided into 196 patients with mild or moderate symptoms (ME-M) and 54 severely
affected patients who are home- or even bed-bound (ME-S).

The data set comprises six serological antibody concentrations measured by commercial
ELISA kits and related to the following common herpesviruses: human cytomegalovirus,
CMV; Epstein-Barr virus, EBV; human herpesvirus-6, HHV-6; types 1 and 2 herpes simplex
viruses, HSV-1 and HSV-2, respectively; and varicella-zoster virus, VZV. Note that the tested
antibodies against EBV were specific to the viral-capsid antigen.

The concentration of the antibodies was expressed in arbitrary units per ml (U/ml).
According to the kit manufacturers, individuals with antibody concentration ≤ 8 U/ml or
≥ 12 U/ml should be classified as seronegative or seropositive, respectively, for all antibod-
ies except for the one against HHV-6. For antibodies against HHV-6, seronegative and
seropositivity should be defined as ≤ 10.5 U/ml or ≥ 12.5 U/ml, respectively. Samples with
concentrations between the above limits were considered equivocal.

3. STATISTICAL ANALYSIS OF SEROLOGICAL DATA

3.1. Finite mixture models

Let G1, ..., Gg be the partition from a superpopulation G (sample space) and π1, ..., πg

the probabilities of sampling an individual belonging to each latent population (with the usual
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restriction of
∑g

k=1 πk = 1 and 0≤ πk ≤ 1). A random variable Z is a finite mixture of indepen-
dent random variables Z1,Z2, ...,Zg if the probability density function (pdf) of Z is given by

(3.1) f(z) =
g∑

k=1

πk fZk
(z;θk) ,

where fZk
(z;θk) is the mixing probability density function (pdf) of Zk associated with the

k-th latent population and parameterized by the vector θk = {θ1, ..., θg}.

A common choice for the mixing distribution in the serological analysis is the Normal
distribution which is symmetric around the mean, and it is a mesokurtic distribution (with
kurtosis of 3 irrespective of the mean and standard deviation). Alternatively, the Generalized
Student’s t can be used as the mixing distribution because it has heavier tails than the
Normal distribution. However, data from malaria seroepidemiological studies show long tails
and marked right asymmetry in each latent population even after applying a logarithmic
transformation [7]. In such cases, one aims to incorporate asymmetry and heavy tails in the
finite mixture modelling. This is the purpose of using the Skew-Normal and Skew-t as mixing
distributions [17, 18]. These alternative distributions are members of the so-called scale
mixtures of Skew-Normal (SMSN) distributions [14]. This class of probability distributions
is defined as follows.

Let Zk be a random variable following a SMSN distribution with µk, σ2
k, and αk as the

location, scale, and skewness parameters, respectively, and Hk( · ;vk) as the mixing distribu-
tion parameterized by θk. Then, it can be written as

(3.2) Zk = µk +
Wk√
Uk

,

where Uk is a random variable with distribution function Hk( · ;vk) and Wk ∼ SN (0, σ2
k, αk),

and Wk and Uk are two independent random variables [14]. See Appendix A in the Supple-
mentary Material for additional theoretical discussion about this class of distributions.

3.1.1. Skew-Normal as a mixing distribution

Let Wk be a random variable with a Skew-Normal distribution with location param-
eter µk, scale parameter σ2

k and skewness parameter αk (denoted as Wk ∼ SN (µk, σ
2
k, αk)).

The corresponding pdf is given by

fWk
(w) = 2

1√
2πσk

e
− (w−µk)2

2σ2
k ×

∫ αk
(w−µk)

σk

−∞

1√
2π

e−
x2

2 dx

= 2φ

(
w − µk

σk

)
Φ
(

αk(w − µk)
σk

)
, w, µk, αk ∈ R , σk ∈ R+,

where φ(·) and Φ(·) denotes the pdf and the cumulative distribution function (cdf) of the
standard Normal distribution, respectively [14, 19, 20].

When αk = 0, the above formula recreates the pdf of the Normal distribution.
In this case, the Fisher information matrix of the Skew-Normal is singular, thus, influenc-
ing the asymptotic properties of the maximum likelihood estimators in the vicinity of zero.
A detailed discussion about this topic can be found elsewhere [21, 22, 23].
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When αk =∞, the limiting distribution is the half-Normal distribution [21]. In this
case, the location parameter µk determines the support of the distribution. This property
makes the Skew-Normal distribution particularly useful to model data with a lower or an
upper bound.

Note that the Skew-Normal distribution can be obtained from (3.2) when H( · ; θk) is
a degenerate mixing distribution. Alternatively, the Skew-Normal distribution is a special
case of the skew Normal-Normal [24] and the skew Student-t-Normal distribution [25]. These
two flexible distributions are members of the so-called skew scale mixtures of Normal distri-
butions [25]. This class of probability distributions differs from the class of SMSN in terms
of the respective stochastic representation and dependence between skewness and kurtosis
coefficients; see Ferreira et al. [25] for more details. In theory, distributions from this class
can be seen as alternative candidates to the SMSN ones for the choice of mixing distributions.
However, in practice, there are no estimation algorithms available for the context of finite
mixture models.

3.1.2. Skew-t as a mixing distribution

Let Zk be a random variable that follows a Skew-t distribution with location parameter
µk, scale parameter σ2

k, skewness parameter αk, and vk degrees of freedom. Then, its pdf is
given by

fZk
(z) =

2
σk

t(d; vk) T

(
A

√
vk + 1
d + vk

; vk + 1

)
,

where d = (z − µk)/σk, A = αk(z − µk)/σk, t( · ; v) and T ( · ; v) are the pdf and cdf of the
standard Student’s t distribution with v degrees of freedom, respectively [14].

When αk = 0, the above distribution converts to the Generalized Student’s t-distribution
with location parameter µk, scale parameter σk and vk degrees of freedom. When vk = 1,
one obtained the Skew-Cauchy distribution. Finally, when the degrees of freedom vk tend to
infinity, one obtains the Skew-Normal as the limiting distribution [14, 19, 20].

Note that the Skew-t distribution can be derived from (3.2) when Uk is a Gamma distri-
bution with parameters α = vk/2 and β = vk/2 [14]. As an additional note, Theodossiou [26]
introduced the skew generalized t distribution with five parameters: location, scale, skew-
ness, and two shape parameters. It can be derived from a ratio between a generalized gamma
distribution and an appropriate transformation of a skew exponential power distribution, but
it cannot be expressed as an SMSN distribution. As such, this alternative distribution has
different skewness and kurtosis when compared to the above Skew-t distribution. See Arslan
and Genç [27] and the references therein for more information.

3.2. Estimation of Skew-Normal and Skew-t mixture models

Let X1, ..., Xn be a random sample that represents the measured antibody levels in
n individuals. In general, it is difficult to determine the maximum likelihood (ML) estimates
of a finite mixture model by direct maximization of the log-likelihood function. To overcome
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this problem, one can use the Expectation-Maximization (EM) algorithm given that the latent
serological status of each individual is unknown and, thus, serological data are incomplete in
that sense.

An EM-type algorithm for estimating SMSN mixture models is fully described else-
where [14]. Briefly, the E-step is the same as in Gaussian mixture models, which has been
largely studied in the literature [14, 17, 28]. Replacing the classical M-step with a sequence
of conditional maximization steps (CM-steps), one obtains closed form expressions for the
parameter estimates and the Fisher’s information matrix [25]. To ensure convergence to the
global maximum of the likelihood function, one should initiate the algorithm with different
values for the parameter estimates. The final parameter estimates should be the ones that
provide the highest value of the log-likelihood among all the different runs of the algorithm.
Note that, for Gaussian mixture models, there are modifications of the classical EM algorithm
that do not require the use of initial conditions and jointly determine the optimal number of
the mixture components [29, 30]. These characteristics of the proposed algorithms reduces
the computational time of analyses including a large number of screened antibodies. However,
similar modifications remain to be done for the context of SMSN mixture models.

To obtain confidence intervals (CIs) for the model parameters, one can simply use the
Wald’s CIs. In the case of skewness parameters αk’s, the respective CIs are given by

α̂k ± Φ−1
(γ+1)/2 se(α̂k) ,

where α̂k is the ML estimate of αk, γ is the confidence level, and Φ−1
(γ+1)/2 is the probit function

evaluated at (γ + 1)/2. However, according to Zeller et al. [40], Wald’s intervals for these
parameters tend to inflate the underlying uncertainty in the case of a single Skew-Normal
distribution. Such inflation can be derived from a poor quadratic approximation of the profile
likelihood (PL) taken as a function of α [41]; see Pawitan for a more general discussion
[42]. In addition, the PL is expected to show an inflexion point at α = 0, which affects the
asymptotic normal approximation for the distribution of the respective ML estimator [21].
Similar argument is expected to hold when estimating the same parameter of a single Skew-t
distribution. In these cases, the PL can be used to determine a more accurate CI for α:

2
{
l(α̂)− l(α)

}
< χ2

γ,1 ,

where α̂ is the ML estimate of α, l(α) is the PL taken as a function of α, and χ2
γ,1 is the

γ quantile of the χ2 distribution with one degree of freedom. See Zeller et al. [40] and
Montenegro et al. [41] for the application of this CI to non-serological data. In the context of
SMSN finite models, the PL approach is not a viable solution due to the presence of different
subpopulations with their own skewness parameter.

3.3. Model selection

Model selection aims to determine the best mixture model for the data in terms of
the number of the constituent components, g, and the respective mixing distributions. With
this purpose, one can use information criteria based on penalized forms of the log-likelihood
function: the Akaike’s Information Criterion (AIC) [31], the Integrated Complete Likelihood
(ICL) [32], the Bayesian Information Criterion (BIC) [33] and its modified versions [34, 35].
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However, AIC tends to overestimate g in Gaussian mixture models even when n is very large
[36]. This overestimation can be explained by a weak penalization of AIC to complex models
with spurious mixing components that can arise from unbounded likelihood functions or from
the presence of multiple local maximizers of the log-likelihood function [37]. In the case of
serological applications, the overestimation of g compromises interpretability of a mixture
model with more than 2 components [13]. In contrast, ICL tends to underestimate g and it is
more adequate when the mixture components are well separated [32]. Finally, In this regard,
BIC offers a higher penalization of models with a higher components when compared to AIC.
However, the regularity conditions for using BIC do not necessarily hold in analysing finite
mixture models [33, 35]. However, simulation studies suggested a satisfactory performance of
this criterion (or its modified versions) in determining the true number of Gaussian mixture
components [29, 35]. Therefore, at this stage, BIC seems the recommended measure when
comparing different mixture models. Simulation studies should be conducted in the future
to confirm this recommendation.

To complement the analysis based on information criteria, one can also carry out the
likelihood ratio test (LRT) for determining the optimal number of mixture components, g [4].
However, the regularity conditions for the asymptotic χ2 approximation of the test statistic
are not met in finite mixture models, because the null hypothesis is specified in the boundary
of the parameter space [4]. To overcome this problem, one can use a parametric Bootstrap
approach to estimate the p-value of this non-standard LRT [38, 39], as described below.

Consider the test for confronting H0 : g = g0 versus H1 : g = g1 where g0 < g1. Let ψ0

and ψ1 be the parameter vectors of the mixture models under H0 and H1, respectively;
x = (x1, ..., xn) the observed data and T (x;ψ0,ψ1) the test statistic of LRT. The bootstrap
approach is given by the following algorithm [39]:

1. Use the EM algorithm to estimate the ψ0 and ψ1 estimates under the H0 and H1

hypotheses, respectively. Calculate T (x; ψ̂0, ψ̂1);

2. Simulate N = 10, 000 independent samples x∗1, ...,x
∗
n using the mixture model under

H0 and parameterized by ψ̂0;

3. For each bootstrap sample i, calculate T (x∗i ; ψ̂0i , ψ̂1i), where ψ̂0i and ψ̂1i are the
estimated parameter vectors for the bootstrap sample i under the H0 and H1 hy-
potheses, respectively;

4. Estimate the p-value as 1
N

∑N
i=1 I

{
T (x∗i ; ψ̂0i , ψ̂1i) > T (x; ψ̂0, ψ̂1)

}
, where I{·} is

the indicator function.

Finally, the estimated models should be assessed in terms of their goodness of fit. For a
matter of simplicity, one can simply used the Pearson’s χ2 test [43, 44]. To apply this test, one
can divide the data into bins defined by the respective 5%-quantiles or deciles. Alternatively, one
can use the Kolmogorov-Smirnov, Anderson-Darling, and Walton’s test among others [45].

3.4. Estimation of seroprevalence

After determining the best finite mixture model for the data, the next step of the anal-
ysis is usually to estimate the seroprevalence, that is, the prevalence of antibody-positive
individuals in the population (or, the probability of an individual being antibody-positive).
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Seropositivity is traditionally defined by a cutoff, denoted by c, in the respective antibody
distribution above which individuals would be considered seropositive. In the context of finite
mixture models, cutoff determination requires the interpretation of each latent population in
terms of seronegativity and seropositivity. To do that, one typically assumes the seronegative
population as the one with lowest average while the remaining components are interpreted as
different levels of seropositivity upon recurrent infections. In this scenario, the seropositivity
of i-th individual can be seen as resulting from a Bernoulli random variable Yi ∼ Ber(p) where
p = P [Xi ≥ c] and Xi (i = 1, ..., n) represents the random variable representing the underly-
ing antibody concentration. The probability p is also called seroprevalence and it embodies
the probability of exposed individuals to a given antigen in the population. According to the
maximum likelihood method, seroprevalence can be estimated as the proportion of seropos-
itive individuals in the sample. Therefore, different estimates for the seroprevalence can be
obtained according to the methods used to determine the cutoff.

In this work, we consider the following three different methods for determining the
seropositivity cutoff:

– Method 1: It is based on the 99.9%-quantile associated with the estimated sero-
negative population. This method is the most popular in sero-epidemiology [13, 46].
It is often called as the 3σ rule, because the 99.9%-quantile is given by the mean plus
3 times the standard deviation of a normally distributed seronegative population;

– Method 2: It relies on the minimum of the density mixture functions. In the case
of two latent populations, the cutoff corresponds to the absolute minimum, and in the
case of three or more latent populations the cutoff corresponds to the lowest relative
minimum. This point can be calculated using the Dekker’s algorithm [47]. It should
be noted that the minimum of the mixing function is not expected to coincide with the
point of intersection of the probability densities of each individual subpopulation;

– Method 3: It imposes a threshold in the the so-called conditional classification curves
[13]. Under the assumption that all components but the first one refer to seropositive
individuals, the conditional classification curve of seropositive individuals given the
antibody level x is defined as

p+|x =
∑g

k=2 πk fk(x;θk)∑g
k=1 πk fk(x;θk)

.

In turn, the classification curve of seronegative individuals is given by

p−|x = 1− p+|x .

After calculating these curves, one can impose a minimum value for the classification of
each individual. In this case, two cut-off values arise in the antibody distribution, one for
the seronegative individuals and another for seropositive individuals. Mathematically,
the classification rule is given as follows

Ci =


seronegative , if xi ≤ c− ,

equivocal , if c− < xi < c+ ,

seropositive , if xi ≥ c+ ,

where c− and c+ are the cutoff values in the antibody distribution that ensure a minimum
classification probability, say 90%. To calculate these cutoff values in practice, one can
use the bisection method providing an initial interval where they might be located [13].
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Note that the cutoff values based on the above methods are dependent on the data under
analysis and, therefore, they should be seen as random realizations of the respective estimator
distributions. In other words, they have some uncertainty associated with them due to
random sampling. However, this uncertainty is typically neglected in serological data analysis.
This topic will be discussed elsewhere in the near future.

3.5. R packages

We used the package mixsmsn to fit different SMSN mixture models [48]. In the EM
algorithm, the tolerance value for the norm of the difference between parameter estimates
from two consecutive iterations was 10−5 with a maximum of 10,000 iterations. For each
model and antibody under analysis, the EM algorithm was started with 100 random initial
guesses for the parameter estimates. The reported estimates were the ones that led to the
maximum of the likelihood function among all the runs of the algorithm. For fitting the
Generalized Student’s t-distribution, we considered the R package extraDistr [49], namely,
the functions dlst and plst to calculate its pdf and cdf, respectively. The estimation of the
Skew-Normal and Skew-t distributions was done in the package sn [50]. See Appendix B in
the Supplementary Material for a detailed discussion about the computational costs of the
proposed methodology.

4. RESULTS

Serological data refer to positive quantities bounded by an upper limit of detection.
In theory, the Skew-Normal or the Skew-t distributions can describe bounded data by setting
the respective skewness parameter close to infinity. However, this situation reduces model
flexibility by forcing the analysis to be done with SMSN mixture models composed of highly
asymmetric mixing distributions. Besides that, it is possible to obtain a good fit of the
Gaussian mixture models to serological data after a data transformation [7]. To avoid reducing
model flexibility while checking the appropriateness of Gaussian normal models, we applied
the logarithmic transformation to the data. For an intuitive interpretation of the resulting
data, we used the base 10 logarithmic transformation.

4.1. Exploratory data analysis

In this preliminary data analysis, we aimed to demonstrate the necessity of using alter-
native mixture models beyond the ones based on the Normal distribution. For this purpose,
we partitioned each data set according to the cutoff values suggested by the manufacturers
of the commercial kits (see Section 2). We assumed that antibody values below and above
these values reflected somehow the distributions of the seronegative and seropositive popula-
tions, respectively. We then calculated the empirical skewness and excess kurtosis coefficients
in each subset of data (Supplementary Table 2). Note that negative and positive estimates
of the excess kurtosis indicated distributions with lighter or heavier tails than the Normal
distribution, respectively.
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As expected, the putative seropositive populations tended to have a skewness close to
zero (HHV-6 and HSV-2) or a negative skewness (CMV, EBV, HSV-1, and VZV) of the
respective antibody distribution. Similar evidence could be taken by a visual inspection of
the histograms of the data (Figure 1A and B). The empirical estimates of the excess kurtosis
were in most cases negative, which suggested distributions with lighter tails than the Normal
distribution. However, these negative estimates might have simply resulted from dividing the
data into two parts, and such a division limits the “size” of the tails associated with each
serological population.

With respect to the putative seronegative populations, the skewness estimates were
close to zero in the case of CMV, HSV-1, and HSV-2. For the remaining cases (EBV, HHV-6,
and VZV), the skewness estimates were unexpectedly negative. The estimates of the excess
kurtosis suggested similar weights of the tails for HSV-2 and VZV. For the remaining, the
tails seemed to be lighter or heavier than the Normal distribution.

Finally, there was no evidence based on skewness and excess kurtosis alone for an
antibody distribution in which both the seronegative and seropositive populations were similar
to the Normal distribution. This suggested the necessity of considering finite mixture models
based on families of probability distributions, such as the Skew-Normal or Skew-t, in which
skewness and the weight of tails can be modelled appropriately.

4.2. Serological data analysis using Skew-Normal and Skew-t mixture models

To avoid selecting mixture models with difficult biological interpretation due to a
high number of components g, we restricted our analysis to models with g = 1 (data exclu-
sively composed of a single population, seronegative or seropositive), g = 2 (presence of both
seronegative and seropositive populations), and g = 3. When fitting the Skew-tmixture models,
the package mixsmsn only allowed to estimate models with the same degree of freedom for
all the mixing distributions (i.e., v1 = ··· = vg = v).

Before fitting different SMSN mixture models, we first conducted a preliminary analysis
based on Gaussian mixture models. In this analysis, we applied an alternative EM algorithm
in which there was no need for setting initial values for the parameter estimates while si-
multaneously determining the optimal number of the components, ĝ [30]. The criterion for
determining ĝ was the maximization of the likelihood function penalized by entropy. For the
antibodies against EBV, HSV-2 and VZV viruses, the best Gaussian mixture models were
composed of two serological populations. These populations could be interpreted as putative
seropositive and seronegative populations. For the remaining antibodies, the best models
suggested the presence of three serological populations in the respective data. In this case,
the biological interpretation of the respective serological populations is not straightforward,
as discussed elsewhere [13].

When compared to our preliminary analysis, the best SMSN mixture models according
to BIC tended to require a lesser number of components. In particular, antibodies could be
divided into three major classes:

(i) antibodies against HHV-6 and VZV in which data suggested the presence of a
single serological population (Table 1 and Figure 1A);
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(ii) antibodies against CMV, EBV, and HSV-2 for which there was evidence for two
serological populations (Table 2 and Figure 1B);

(iii) antibodies against HSV-2 in which the optimal mixture model is composed of
three serological populations (Table 2 and Figure 1B).

Table 1: Analysis of antibody data with evidence for a single serological population,
where g represents the number of serological populations, p is the respective
number of model parameters, Lmax is the value of the maximized log-likelihood
function, pgof is the maximum p-value for the goodness-of-fit test when di-
viding data into deciles or 5%-quantiles, and pboot is the Bootstrap p-value
for testing H0 : g = 1 versus H1: g = 2. Best models according to BIC and the
goodness-of-fit tests are written in bold.

Virus SMSN g p Lmax AIC BIC pgof pboot

HHV-6

Normal
1 2 −129.46 263.00 270.94 0.064 0.064
2 5 −116.97 244.13 263.97 0.169
3 8 −110.43 241.51 268.91 0.462

Skew-Normal
1 3 −121.35 248.80 260.71 0.140 0.027
2 7 −117.35 249.03 276.75 0.084
3 11 −109.40 241.22 284.87 0.152

Student’s t
1 3 −124.38 254.86 266.77 0.157 0.042
2 6 −117.14 246.55 270.32 0.122
3 9 −105.36 229.06 264.78 0.254

Skew-t
1 4 −118.81 245.78 261.65 0.148 0.409
2 8 −116.83 253.54 281.71 0.076
3 12 −104.00 234.73 282.36 0.001

VZV

Normal
1 2 −108.76 221.58 229.53 < 0.001 0.000
2 5 −7.28 24.72 44.60 0.159
3 8 −1.70 19.95 51.45 0.153

Skew-Normal
1 3 −23.94 53.99 65.90 < 0.001 0.180
2 7 −0.11 14.69 42.27 0.406
3 11 0.10 16.87 65.87 0.068

Student’s t
1 3 −61.90 129.88 141.80 < 0.001 0.000
2 6 −7.41 26.99 50.86 0.082
3 9 −1.68 21.98 57.42 0.113

Skew-t
1 4 −7.89 24.29 39.81 0.076 0.375
2 8 −0.05 16.76 48.16 0.211
3 12 5.47 25.31 62.14 0.134

Data of antibodies against HHV-6 and VZV were best described by the Skew-Normal
and the Skew-t distributions, respectively. The estimated distributions showed left asymmetry
(Figure 1A) with the respective skewness parameter estimated at −1.87 and −5.14 for HHV-6
and VZV datasets, respectively. Accordingly, the Wald’s and the PL 95%s CIs provided
negative values for this parameter in the case of the HHV6 data: (−2.44; −1.02) and (−2.57;
−1.25), respectively. In this case, the likelihood ratio based on the PL can be roughly
approximated by a quadratic function, and, therefore, these two CIs did not substantially
differ from each other (Figure 2A). According to the theoretical findings of Chiogna [21],
this function showed an inflexion point at α = 0. At the level of 5%, there was evidence for
a single Skew-Normal against a mixture of two Skew-Normal distributions (pboot = 0.027).



122 T. Dias Domingues, H. Mouriño and N. Sepúlveda

In the case of VZV antibody data, the Wald’s and the PL 95% CIs also agreed in terms of
a negative skew: (−6.94; −2.14) and (−8.00; −3.32), respectively. However, the likelihood
ratio based on the profile likelihood was far from a quadratic function and, therefore, the
Wald’s CI is not expected to produce reliable results for these data. Finally, there was strong
evidence for a single Skew-t distribution compared to a mixture of two Skew-t distributions
(pboot = 0.375).
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Figure 1: Carry forward and percentage change indices.
Both indices tend to approximate in the months with less prices.

In terms of the respective serological interpretation, a single population for antibodies
against HHV-6 and VZV is consistent with a seropositive population, given that HHV-6 and
VZV are usually acquired during childhood, and more than 95% of the adult populations
show the presence of antibodies against these viruses [51]. In addition, the core values of
these distributions are higher than the cutoff for seropositivity suggested by the lab protocol.
Finally, a left skewness is also predicted for a hypothetical seropositive population because
the antibodies should decay over time in the absence of repeated infections [8].
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Table 2: Analysis of antibody data with evidence for more than one serological population.
See Table 1 for further details.

Virus SMSN g p Lmax AIC BIC pgof

CMV

Normal
1 2 −409.11 822.29 830.24 < 0.001
2 5 −245.75 501.66 521.54 0.016
3 8 −233.70 483.64 515.45 0.018

Skew-Normal
1 3 −357.61 721.30 733.23 < 0.001
2 7 −233.82 482.66 509.69 0.038
3 11 −226.64 489.78 519.35 0.146

Student’s t
1 3 −410.14 826.36 838.29 < 0.001
2 6 −238.54 489.27 513.12 0.038
3 9 −231.23 480.81 516.59 0.046

Skew-t
1 4 −357.71 723.55 739.45 < 0.001
2 8 −231.55 479.34 511.45 0.072
3 12 −226.93 478.22 525.93 0.324

EBV

Normal
1 2 −342.30 688.67 696.62 < 0.001
2 5 −152.66 315.48 335.36 < 0.001
3 8 −129.30 274.84 306.65 0.173

Skew-Normal
1 3 −226.42 458.93 470.86 < 0.001
2 7 −130.57 275.34 303.17 0.084
3 11 −128.02 278.51 322.10 0.054

Student’s t
1 3 −240.21 486.50 498.43 < 0.001
2 6 −151.61 315.39 339.26 < 0.001
3 9 −129.41 277.09 312.88 0.117

Skew-t
1 4 −173.14 354.40 370.31 < 0.001
2 8 −125.63 267.65 299.32 0.248
3 12 −126.29 280.61 324.66 0.087

HSV-1

Normal
1 2 −442.27 888.61 896.56 < 0.001
2 5 −291.59 593.34 613.22 < 0.001
3 8 −264.94 546.14 577.94 0.003

Skew-Normal
1 3 −394.55 806.62 807.11 < 0.001
2 7 −260.74 538.10 563.52 0.003
3 11 −252.32 527.39 570.70 0.104

Student’s t
1 3 −443.73 893.55 905.48 < 0.001
2 7 −291.73 595.65 619.51 < 0.001
3 9 −264.98 548.23 584.02 0.002

Skew-t
1 4 −395.43 812.55 814.88 < 0.001
2 8 −260.88 541.64 569.82 0.001
3 12 −251.86 528.84 575.79 < 0.001

HSV-2

Normal
1 2 −427.29 858.63 866.59 < 0.001
2 5 −277.62 565.39 585.27 0.516
3 8 −269.24 565.92 586.54 0.007

Skew-Normal
1 3 −337.36 684.60 692.74 < 0.001
2 7 −264.32 544.79 570.68 0.013
3 11 −257.19 550.71 580.45 0.003

Student’s t
1 3 −428.40 862.88 874.81 < 0.001
2 6 −277.84 567.85 591.71 0.688
3 9 −269.60 557.52 593.26 0.004

Skew-t
1 4 −337.79 687.68 699.60 < 0.001
2 8 −264.52 547.40 577.10 0.007
3 12 −257.38 562.77 586.83 0.001
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Note that most of the SMSN mixture models could also provide a good fitting of the data
of these two antibodies. This is the case of the mixture of two or three Normal distributions
(pgof = 0.169 and 0.462 for antibodies against HHV-6 and pgof = 0.159 and 0.153), which are
typically used in serological data analysis. Therefore, although not being the best models
for HHV-6 and VZV-related antibodies, these models could have been used for subsequent
serological analyses.

For the remaining antibodies, the respective data analysis was not straightforward be-
cause the model with lowest BIC estimate could not fit the data well according to the Pearson’s
goodness-of-fit test at 5% significance level (Table 2). This occurred for the mixtures of two
Skew-Normal distributions for the antibodies against CMV (BIC = 509.69 and pgof = 0.038),
HSV-1 (BIC = 563.52 and pgof = 0.003), and HSV-2 (BIC = 570.68 and pgof = 0.013).
For these antibodies, the best models were considered to be a mixture of two Skew-t dis-
tributions (BIC = 511.45 and pgof = 0.072), a mixture of three Skew-Normal distributions
(BIC = 570.70 and pgof = 0.104), and a mixture of two Normal distributions (BIC = 585.27
and pgof = 0.516), respectively, because they were the first models ranked by BIC with a
good fit for the data (Figure 1B). Interestingly, for the HSV-2-related antibody data, when
the mixture of two Normal distributions was compared to the mixture of two Skew-Normal
distribution by a likelihood ratio test, the first model was strongly rejected (p < 0.0001),
which suggested the asymmetry of at least one of the components. This inconsistency be-
tween this test and the selected model can be explained by the unavailability of fitting
a mixture of a Normal distribution and a Skew-Normal distribution in the package smsn.
For the antibody against EBV, the best model was a mixture of two Skew-t distributions,
which also had a good fit for the data (BIC = 299.32 and pgof = 0.248; Figure 1B).

With respect to the biological interpretation of each component, there was evidence
of putative seronegative and seropositive populations for antibodies against CMV, EBV,
and HSV-2 (Figure 1B). This interpretation was supported by the observation that the cutoff
value suggested by the commercial kits lies between these hypothetical serological populations.
In the case of antibodies against HSV-1, the respective interpretation was not so obvious,
because

(i) the best mixture model was composed of three components and

(ii) the cutoff suggested by the commercial kits lies in the middle of the intermediate
distribution, which shows right asymmetry.

In theory, the distribution of a putative seronegative population is expected to have right
asymmetry [8] and, if so, this intermediate component should be interpreted accordingly.
However, one cannot rule out that there are two seronegative populations resulting from dis-
tinct background signals in the absence of antibodies. Without additional information about
the serological data, this intermediate component was considered to represent a putative
seronegative population.

Finally, we performed a similar model selection using AIC instead. Again, we selected
the best models with the lowest AIC estimates and with a good fit to the data (pgof > 0.05)
at the same time. In contrast with BIC results, this alternative model selection could not
provide evidence for a single serological population in the data of HHV-6 and VZV (Table 1).
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In these two cases of HHV-6, the best models were mixtures of three Generalized Student-t
distributions (AIC = 229.06 and pgof = 0.254) and of two Skew-Normal distributions (AIC =
14.69 and pgof = 0.406), respectively. For antibody against CMV, the best model was a mix-
ture of three Skew-t distributions (AIC = 478.2 and pgof = 0.32), which reflected an increase
in the number of components compared to model selection using BIC (Table 2). For the
remaining antibodies, it was selected the same model (Table 2). In summary, AIC tended to
select models with an increased number of components required to explain the data of each
antibody.
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Figure 2: Likelihood ratio (LR) based on the profile likelihood as a function of the skew parameter α,
when fitting the Skew-Normal and Skew-t distributions to HHV-6 (A) and VZV (B) data,
respectively. The horizontal dashed lines represent the 95% quantile of a χ2 distribution
with one degree of freedom. The grey rectangles represent the 95% CI for α according to
this method.

4.3. Estimation of cutoff for seropositivity

After fitting the mixture models to the data, the following step of the analysis was to
estimate a cutoff value for seropositivity and the subsequent seroprevalence in the different
study groups (Table 3).

For CMV and HSV-2 antibody data, the cutoff values did not vary substantially from
one method to another. Interesting, the cutoff values estimated by method 1 (the 3σ rule)
almost perfectly matched with the ones suggested by the commercial kits (12.6 U/ml and
12.0 U/ml for CMV and HSV-2 respectively versus 12.0). This good matching between es-
timates could be explained by a good approximation of the Normal distribution for the
seronegative population (Figure 1B) and, therefore, we could infer that the cutoff value sug-
gested by the commercial kits was derived from the 3σ rule; this information was absent from
the original study [15]. Since the seronegative and seropositive populations were separated
well in these antibody distributions, the seroprevalence estimates across the different study
groups were almost invariant with respect to the cutoff value used.

With respect to the EBV antibody data, the hypothetical seronegative population is
asymmetric to the right (α1 = 1.74; 95% CI = (−1.30; 4.80); bootstrap 95% CI = (0.04; 7.90);
Figure 1B) with heavy tails (v = 4.52; 95%CI = (0.79; 8.26); bootstrap 95%CI = (3.00; 14.88)).
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Consequently, the cutoff value of 249.5 U/ml derived from method 1 was quite different from
the one suggested by the commercial kit. However, this cutoff value was considered non-
informative because it was well located within the seropositive population and implied sero-
prevalence estimates close to zero for the different study groups. In contrast, the cutoff values
from the remaining methods were in the same order of magnitude of the one suggested by the
commercial kits. Therefore, the subsequent seroprevalence estimates of each study group did
not differ substantially among these methods. Again, the consistency of the resulting sero-
prevalence estimates was due to the fact that the seronegative and seropositive populations
were well separated in these data.

Table 3: Seroprevalence (%) by cutoff method for seropositivity and by study group.
c− and c+ are on the linear scale (U/ml). Seroprevalence was calculated
based on c+. The method denoted by “M” refers to the cutoff suggested by
the protocol of the commercial kit. The confidence intervals (CI) refer to
the Clopper-Pearson exact confidence interval for a proportion.

Seroprevalence (95% CI)
Virus Method c− c+

Global HC ME-M ME-S MS

CMV

M 8.0 12.0
33.5

(28.9–38.4)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
33.3

(21.1–47.5)
36.7

(23.4–51.7)

1 — 12.6
33.5

(28.9–38.4)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
33.3

(21.1–47.5)
36.7

(23.4–51.7)

2 — 13.5
33.2

(28.6–38.1)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
31.5

(19.5–45.6)
36.7

(23.4–51.7)

3 9.4 14.1
32.9

(28.4–37.9)
37.4

(28.2–47.3)
28.1

(21.9–34.9)
31.5

(19.5–45.6)
36.7

(23.4–51.7)

EBV

M 8.0 12.0
87.3

(83.6–90.4)
87.9

(80.1–93.4)
86.2

(80.6–90.7)
81.5

(68.6–90.7)
75.5

(61.1–86.7)

1 — 249.5
2.0

(0.09–3.9)
1.9

(0.02–6.6)
1.5

(0.03–4.4)
0.0

(0.0–6.6)
6.1

(1.3–16.9)

2 — 11.5
87.3

(83.6–90.4)
87.9

(80.1–93.4)
86.2

(80.6–90.7)
81.5

(68.6–90.7)
75.5

(61.1–86.7)

3 5.6 20.4
85.5

(81.7–88.9)
87.9

(80.1–93.4)
82.7

(76.6–87.7)
81.5

(68.6–90.7)
75.5

(61.1–75.5)

HSV-1

M 8.0 12.0
45.2

(40.2–50.2)
42.1

(32.6–51.9)
41.8

(34.8–49.1)
51.9

(37.8–65.6)
46.9

(32.5–61.7)

1 — 271.0
0.0

(0.0–0.1)
0.0

(0.0–3.4)
0.0

(0.0–1.2)
0.0

(0.0–6.6)
0.0

(0.0–7.3)

2 — 46.9
34.5

(29.8–39.4)
28.0

(19.8–37.5)
34.7

(28.1–41.8)
38.9

(25.9–53.1)
34.7

(21.7–49.6)

3 42.7 83.2
30.7

(26.2–35.5)
24.3

(16.5–33.5)
32.1

(25.7–39.2)
33.3

(21.1–47.5)
28.6

(16.6–43.3)

HSV-2

M 8.0 12.0
38.1

(33.3–43.1)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
32.7

(19.9–47.5)

1 — 12.0
38.1

(33.3–43.1)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
32.7

(19.9–47.5)

2 — 10.7
38.8

(33.9–43.8)
33.6

(24.8–43.4)
39.3

(32.4–46.5)
40.7

(27.6–54.9)
36.7

(23.4–51.7)

3 7.1 12.6
37.8

(33.0–42.8)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
30.6

(18.3–45.4)
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The largest differences in the cutoff values for seropositivity were observed for the
HSV-1 antibody data. Coincidentally, this was the data set where the best mixture model
was composed of three components. As discussed earlier in this paper, the intermediate
component was considered a second hypothetical seronegative population, which resulted
in a shift in the calculation of seropositivity towards higher values. As such, the cutoff
seropositive based on the commercial kit led to the highest seroprevalence estimates for all
study groups with a global estimate of 45.2% (95%CI = (40.2%; 50.2%). As an extreme case,
the 3σ rule produced a too-high cutoff value again due to the right asymmetry of both
seronegative populations. Such unrealistic cutoff value led to a zero seroprevalence estimates
and rendered the respective analysis useless.

Finally, although not being the main objective of this study, the comparison of the
four study groups suggested that, given a method for determining seropositivity and anti-
body under analysis, the seroprevalence of patients with ME/CFS did not appear to differ
significantly from the one of healthy controls and patients with multiple sclerosis alike.

5. CONCLUSIONS

This study aimed to review the Skew-Normal and Skew-t mixture models and recom-
mend their routine use in serological data analysis. Such recommendation sets its foundation
in the high flexibility of these models in describing different data patterns, as illustrated
with the data analysis of antibodies against 6 herpesviruses. In particular, high modelling
flexibility is desirable given that right and left asymmetry can emerge from seronegative and
seropositive populations, respectively. In this regard, most popular distributions used in
Statistics are not able to exhibit either left or right asymmetry depending on the parameters
specified. A less-known family of distributions that shows such stochastic property is the
Generalized Tukey’s λ distribution [54, 55]. This distribution offers a great variety of shapes
owing to four parameters controlling the location, the scale, the skewness, and the flatness
of the resulting distribution. However, the Generalized Tukey’s λ distribution is only defined
in terms of its quantile function and, hence, its estimation is cumbersome. This distribution
has already been proposed for mixture modelling, but there are only theoretical and compu-
tational developments for the case of two components [52, 53]. This limits the application of
these alternative models in data sets where there is evidence for more than two serological
populations, such as the case of the antibodies against HSV-1 here analyzed or against the
influenza virus reported elsewhere [11]. Therefore, Skew-Normal and Skew-t mixture models
would appear the most general and flexible approach for analysing serological data.

For data analysis, we recommend using the package mixsmsn for estimating the fi-
nite mixture models [48]. Notwithstanding this recommendation, the package only estimates
SMSN mixture models where all mixing distributions belong to the same family of SMSN
probability distributions. Hence, it can only fit 4 different models per number of compo-
nents. In theory, there are 42 = 16 possible two-component mixture models resulting from
the combination of Normal, Skew-Normal, Generalized Student’s t, and Skew-t distributions
as mixing distributions. Note that these possible models are nested in each other by imposing
parametric restrictions to the most general mixture model based on the Skew-t distribution.
For three-component mixture models, the number of possible models increases to 43 = 64.
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Therefore, the package mixsmsn excludes a vast number of possible models, which ultimately
affects the detection of the most parsimonious model for the data; this model could be a com-
bination of probability distributions from different families. The same limitation could also
explain some inferential inconsistencies in the example of application. For instance, a single
Skew-Normal distribution was considered the best model for the antibodies against HHV-6.
However, the hypothesis of a single Skew-Normal distribution against a mixture of two Skew-
Normal distributions could be rejected by bootstrap at the 5% significance level. A possible ex-
planation for this statistical inconsistency is that the best model for these data could be a mix-
ture of a Normal distribution for the seronegative population and a Skew-Normal distribution
for the seropositive population. Therefore, there is a research opportunity to extend the package
allowing each mixing component to be described by different families of SMSN distributions.

Another limitation of using mixsmsn package is that, for mathematical tractability,
the mixtures of generalized Student t and Skew-t distributions were assumed to have the
same degrees of freedom in all the mixing distributions. In theory, this assumption could
be relaxed so this parameter could vary from one component of the mixture to another.
This modelling option was available in the package EMMIXuskew for the mixture of Skew-t
distributions [56]. However, this package is currently discontinued. In practice, we expect
some degree of numerical instability when estimating different degrees of freedom in data
where the serological populations overlap substantially with each other. In this regard, future
research could be conducted to determine the stochastic and sampling conditions in which
different degrees of freedom could infer from different components.

The problem of determining the optimal cutoff value for seropositivity has been inten-
sively investigated, discussed, and revisited over the years [46, 57, 58, 59]. In this regard, the
most popular cutoffs for seropositivity are simply defined by the mean plus a given number
of times the standard deviation of the hypothetical seronegative population without checking
the Normality assumption of the hypothetical seronegative population. The resulting cutoffs
are associated with high-order quantiles of the Normal distribution, such as 97.7% or 99.9%
for the 2σ and 3σ rules, respectively. In practice, these cutoffs imply a high specificity but
show an arbitrary sensitivity for the respective serological classification. When the hypotheti-
cal seronegative population shows a right-skewed distribution, similar cutoffs can be obtained
by calculating the same high quantiles of the estimated SMSN, as done here. The reverse
argument can be made when analysing antibodies where seropositivity could be considered
the default serological state of an individual, such as the case of antibodies against HHV-6
and VZV here analyzed or vaccine-related antibodies in populations where vaccination is
mandatory. Similar cutoffs can be determined for these antibodies by the mean minus a given
number of times the standard deviation of the hypothetical seropositive population assumed
to be normally distributed. For a left-skewed seropositive population, the cutoff values for
seropositivity are now calculated using the low order quantiles (e.g., 2.3% and 0.1%-quantiles
for the 2σ and 3σ rules, respectively). Inversely, these cutoffs generate a high sensitivity
but an arbitrary specificity for the respective serological classification. It is worth noting
that it is up to the analyst to decide on what she/he wants to control, whether specificity,
sensitivity, or both with respect to the resulting serological classification. A similar decision
problem occurs in analyses based on the Receiver Operating Characteristic curve. Given the
multiplicity of criteria for estimating this cutoff and its uncertainty, several authors advocate
a free-cutoff approach for serological analysis [6, 60]. However, a detailed discussion about
the advantages and disadvantages of free-cutoff approaches was out of the scope of this study.
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In summary, the mixture models based on Skew-Normal and Skew-t distributions show
promise to become a routine tool for serological data analysis. They have the advantage
of including the Gaussian mixture models as special cases. However, given the statistical
complexity of these models and some inferential problems highlighted throughout the paper,
their application should be done in a closer collaboration between biomedical researchers who
generate the serological data and biostatisticians who have in principle the knowledge and
skills to fit and compared these mode properly.
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