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Editorial

In memoriam - Carlos Daniel Paulino [1951-2023]

On the 18th of April 2023, the statistical community in Portugal and abroad was chocked with

the sad news that Carlos Daniel Paulino had passed away.

Although Daniel had a degree in Chemical Engineering, in his heart he had been always a

mathematician. As such, he initiated his academic career in 1975 as an assistant in the Depart-

ment of Mathematics at Instituto Superior Técnico (IST) in Lisbon, where he was attracted to

the Statistical Science. In 1984 he completed the MSc. in Statistics and Operational Research,

Faculty of Sciences of the University of Lisbon, with a dissertation on Bayesian Statistics, that

later became his main focus of research. He took his Ph.D. degree in Statistics at the Institute of

Mathematics and Statistics of the University of São Paulo in 1989. After returning to Portugal,

he resumed his position in the Department of Mathematics at IST as an Assistant Professor

and later in 1995 as an Associate Professor in Statistics, with habilitation in Statistics and

Operational Research since 2005. In IST he lectured many subjects, both at postgraduate and

undergraduate level. He retired from the IST in 2014, but he continued very active in research,

as a Senior Researcher at the Centre of Statistics and its Applications (CEAUL), University of

Lisbon.

Besides Bayesian Statistics, Carlos Daniel Paulino main research interests were on Statistical

Inference, Categorical Data Analysis, Incomplete and Missing Data, Survival Analysis and Sta-

tistical Applications to Biomedical Sciences, subjects that he lectured, not only at the postgradu-

ate level at IST, but also at other institutions as advanced courses, both in Portugal and abroad.

He co-authored three books on Bayesian Statistics, a book on Categorical Data Analysis and a

book of exercises in Probability and Statistics. He collaborated with researchers from Portugal,

Brazil, United States, Mexico, Spain, Belgium and England. His last work, jointly with Julio

Singer and their student Eliardo Costa, was recently published (2023) in Statistical Methods and

Applications (DOI: 10.1007/s10260-022-00639-0). Although already ill, Daniel worked hard on

the article, making a point of having it accepted for publication, before his very good friend, Julio

Singer, who was very ill, would know about the publication before passing away, which actually

happened in May 2022 (https://revstat.ine.pt/index.php/REVSTAT/article/view/476).

Daniel was a very enthusiastic communicator, a very dedicated teacher, a very generous su-

pervisor, a very exigent researcher, a true scholar, and a staunch defender of the Portuguese

language, as a scientific language and not only. Within the Portuguese Statistical Society (SPE),



he was one of the main contributors and promotor of the Statistics Glossary English-Portuguese

(https://www.spestatistica.pt/en/glossary), which became a common project with the

Brazilian Statistics Association (ABE). He was President of SPE from 2013-2015, being a pro-

moter of Statistics activities for young people and driving the creation of the SPE Biometrics

Section, which in turn promoted several scientific events together with the Galician Society for

the Promotion of Statistics and Operational Research (SGAPEIO). He also served, with strong

dedication and rigor, as an Associate Editor of REVSTAT – Statistical Journal from 2014-.

And finally making ours the words of Peter Müller ‘Daniel was one of our brightest heads, and

a true academic. We’ll miss him!’

May 24, 2023

Maria Antónia Amaral Turkman (Former Co-Editor)

Giovani L. Silva (Current Co-Editor)
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Abstract:
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kind are applied in this paper to a bivariate distribution with generalized skew-normal conditionals
(and normal marginals), to obtain a new bivariate Birnbaum–Saunders distribution. Parameter
estimation for this model is implemented using an EM algorithm. A simulation study sheds light on
the performance of the estimation strategy. Data from a cancer risk study is used to illustrate use
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skew-normal based model already discussed in the literature. Possible multivariate extensions of
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1. INTRODUCTION

While there are many univariate models available for analysis of survival data, the same
cannot be said for cases involving bivariate or, even more challenging, multivariate cases. In
the univariate case there has been a flurry of recent activity focused on the Birnbaum–
Saunders (BS) distribution (see, Birnbaum and Saunders [14]). A particularly attractive
feature of the BS model is its representation as a monotone transformation of a standard
normal variable.

Analogous distributions, which can be called distributions of the BS type, can be con-
structed by assuming that the normal random variable which is transformed to obtain a BS
distributed variable, is replaced by a random variable with a different distribution. Recent
papers dealing with the BS distribution and its close relatives include those of Balakrishnan
and Kundu [13], Athayde [8], Bourguignon et al. [15], Arrué et al. [7], Carrasco et al. [16],
Dasilva et al. [17] and Mart́ınez-Flórez et al. [30]. See also the book by Leiva [27].

In particular we may consider replacing the normal component that is transformed to
yield a BS variable by some skewed normal random variable. The traditional skew-normal
(SN) distribution was introduced by Azzalini [9]. The skew-generalized-normal (SGN) dis-
tribution, introduced by Arellano-Valle et al. [2] (see also Arnold et al. [4]), includes an
additional parameter. The SGN model can be viewed as a shape parameter mixture of SN
distributions, where the shape parameter is endowed with a standard normal distribution.
The model contains the SN model as particular case. The parameter space for the SGN
distribution is {(λ, θ) : −∞ < λ < ∞, θ ≥ 0}. As discussed in Arellano-Valle et al. [2], this
model has identifiability problems which can be circumvented by restricting the parameter
space, resulting in a distribution known as the skew-curved-normal (SCN) distribution (see,
Gómez et al. [23]) . It is this SCN distribution that we propose to use instead of a standard
normal distribution in order to arrive at a flexible extension of the BS model, which we will
call a skew-curved-normal-BS (SCNBS) model.

While there has been much discussion of univariate variations on the BS theme, there
is much less available for analyzing higher dimensional survival data. The present paper will
make a contribution towards filling this gap. Our interest, then, is in the development of
flexible bivariate and multivariate BS distributions. The bivariate case will be discussed in
detail. Our goal is to seek models which have BS marginals and, in addition, will exhibit
well behaved conditional structure. As will be seen, approaches involving conditional speci-
fication of joint distributions will prove to be fruitful. A convenient reference for discussion
of conditionally specified models is Arnold et al. [6].

The paper will be organized as follows. Section 2 reviews the construction of the uni-
variate BS distribution and its variants, and introduces the new bivariate SCNBS (BSCNBS)
model and its main properties. Section 3 presents the inference for the BSCNBS model
based on a classical approach and includes discussion of residuals for this model from both a
marginal and a bivariate point of view. Section 4 includes a simulation study to assess the
performance of the estimators obtained with the EM algorithm in finite samples and includes
a real data application to illustrate the performance of the BSCNBS model. Multivariate
extensions are not difficult to envision and are described briefly in Section 5. In Section 6
we present the main conclusions of the paper, together with discussion of related topics.



A new bivariate Birnbaum–Saunders type distribution... 3

2. THE MODEL

In this Section, we introduce the BSCNBS model, where the conditional distributions
are SCNBS and the marginal distribution are BS. Some properties of the model are discussed,
as is a procedure to draw values from the model.

2.1. A background of related univariate distributions

A random variable T is said to have a BS(α, β) distribution if it can be represented in
the form

(2.1) T = β

⎡⎣αZ

2
+

√(
αZ

2

)2

+ 1

⎤⎦2

,

where Z ∼N(0, 1), i.e., the standard normal distribution. The density function of such a
random variable is given by

(2.2) fT (t) = φ

(
1
α

[√
t

β
−
√

β

t

])
t−3/2(t + β)

2α
√

β
, t > 0,

where φ denotes the density function for the standard normal distribution. As mentioned in
the introduction, we may replace Z by some skewed normal random variable.

The density function of a random variable with SGN distribution is given by

(2.3) fU (u) = 2φ(u)Φ
(

λu√
1 + θu2

)
, u ∈ R,

where Φ denotes the cumulative distribution function for the standard normal model. Note
that if θ = 0, this simplifies to the form of the traditional SN model. The parameter space for
the SGN distribution is {(λ, θ) : −∞ < λ < ∞, θ ≥ 0}, which is reduced to the SCN model
for θ = λ2.
In addition, the SCNBS model is obtained considering Z with SCN distribution in the trans-
formation in equation (2.1). The associated density function for the SCNBS distribution
is

fT (t) = 2φ(a)Φ
(

λa√
1 + λ2a2

)
A, t > 0,

where a = α−1
[
(t/β)1/2 − (β/t)1/2

]
and A = t−3/2(t + β)/(2α

√
β). We use the notation

SGN(λ, θ) to refer to a random variable with this density function. Those distributions
are very relevant to the construction of the our proposal.

2.2. A Bivariate SCNBS distribution

Before describing the proposed bivariate distribution, which has Birnbaum Saunders
marginals and SCNBS conditional distributions, we review two bivariate BS distributions that
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have been discussed in the literature. As will be seen, both the existing bivariate BS models
and the one proposed in this paper are constructed by means of marginal transformations
applied to bivariate densities with normal marginals and normal or skew-normal conditionals.

The first bivariate BS (BVBS) model was proposed by Kundu et al. [26]. They began
by assuming that (Z1, Z2) has a classical bivariate normal distribution with standard normal
marginals and correlation ρ. They then defined, as in (2.1)

(2.4) Ti = βi

⎡⎣αiZi

2
+

√(
αiZi

2

)2

+ 1

⎤⎦2

, i = 1, 2.

It is evident that the bivariate random variable (Z1, Z2) so defined has BS marginal distri-
butions and BS conditional distributions.

In order to enhance the flexibility of the model (2.4), Lemonte et al. [28] proposed
a more general model using a parallel construction which utilizes a distribution with SN
conditionals introduced by Arnold et al. [3]. This bivariate density is of the form

(2.5) f(z1, z2) = 2φ(z1)φ(z2)Φ(λz1z2), (z1, z2) ∈ R2.

Lemonte et al. [28] then apply the marginal transformation (2.4) to a bivariate random
variable (Z1, Z2) with joint density of the form (2.5). Since the Arnold et al. [3] density (2.5)
is readily verified to have standard normal marginals and SN conditionals, it follows that the
Lemonte et al. [28] distribution will have BS marginals and skew-normal-Birnbaum–Saunders
(SNBS) conditionals. The bivariate SNBS (BSNBS) density studied by Lemonte et al. [28] is

fT1,T2(t1, t2) = 2φ(a1)φ(a2)Φ(λa1a2)A1A2, (t1, t2) ∈ R2
+,

where aj = aj(αj , βj) = α−1
j

[√
tj/βj −

√
βj/tj

]
and

Aj = Aj(αj , βj) = t
−3/2
j (tj + βj)/(2αj

√
βj), j = 1, 2.

In addition to the density (2.5), Arnold et al. [4] proposed a more general two parameter
model of the form

(2.6) f(z1, z2) = 2φ(z1)φ(z2)Φ

(
λz1z2√

1 + θz2
1z

2
2

)
, (z1, z2) ∈ R2

+,

where λ ∈ (−∞,∞) and θ ∈ [0,∞). In this paper, we will consider the case θ = λ2. This
distribution then has standard normal marginals and has generalized skew-normal conditional
distributions. Specifically we have, if (Z1, Z2) has density (2.6) with θ = λ2 then

(2.7) Z1|Z2 = z2 ∼ SCN(λz2)
and
(2.8) Z2|Z1 = z1 ∼ SCN(λz1).

It is to this joint distribution that we apply the marginal transformations (2.4) to obtain
a flexible bivariate distribution with BS marginals that will be the focus of the remainder of
this paper. The resulting joint density is of the form

(2.9) fT1,T2(t1, t2) = 2φ(a1)φ(a2)Φ

(
λa1a2√

1 + λ2a2
1a

2
2

)
A1A2, (t1, t2) ∈ R2

+.

If a random variable (T1, T2) has its density of the form (2.9) then we write (T1, T2) ∼
BSCNBS(α1, α2, β1, β2, λ).
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For the BSCNBS(α1, α2, β1, β2, λ) distribution, we have the following properties:

(1) Ti ∼BS(αi, βi), i = 1, 2.

(2) T1 |T2 = t2 ∼SCNBS(α1, β1, λa2) and T2 |T1 = t1 ∼SCNBS(α2, β2, λa1).

(3) (c1T1, c2T2) ∼BSCNBS(α1, α2, c1β1, c2β2, λ), ci > 0, i = 1, 2.

(4) (c1T1, c2T
−1
2 ) ∼BSCNBS(α1, α2, c1β1, c2β

−1
2 ,−λ), ci > 0, i = 1, 2.

(5) (c1T
−1
1 , c2T2) ∼BSCNBS(α1, α2, c1β

−1
1 , c2β2,−λ), ci > 0, i = 1, 2.

(6) (c1T
−1
1 , c2T

−1
2 ) ∼BSCNBS(α1, α2, c1β

−1
1 , c2β

−1
2 , λ), ci > 0, i = 1, 2.

(7) And, going back, if Zi = α−1
i

[√
Ti/βi −

√
βi/Ti

]
, i = 1, 2, then Z1 |Z2 = z2 ∼

SCN(λz2) and Z2 |Z1 = z1 ∼SCN(λz1). Using Proposition 10 in Arellano-Valle et

al. [2], the first conditional distribution is equivalent to Z1 |Z2 = z2, U = u ∼SN(u)
and U ∼N(λz2, λ

2z2
2). Similarly, Z2 |Z1 = z1, U = u ∼SN(u) and U ∼N(λz1, λ

2z2
1).

Parts (1) and (2) are obtained directly from the definition of the distribution and the results
given in (3) to (6). are obtained using appropriate transformations in the density given in (2.9).
The representation given in (7) of the conditional distributions are useful for simulation pur-
poses, as illustrated in the following Sub-Section. Figure 1 shows the contour levels and Figure 2
shows the density for BSCNBS model for some combinations of the parameters. Note that
the contours exhibit different and a greater variety of shapes than the BSNBS model.
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Figure 1: Contours levels for BSCNBS(α1 = 0.5, α2 = 0.5, β1 = 2, β2 = 2, λ)
distribution considering: (a) λ = 7; (b) λ = 2.5; (c) λ = −3.5 and;
(d) λ = −1.
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Figure 2: Density for BSCNBS(α1, α2, β1 = 2, β2 = 2, λ) distribution considering:
(a) α1 = α2 = 0.5 and λ = 1; (b) α1 = α2 = 0.5 and λ = −1; (c) α1 = 0.2,
α2 = 0.7 and λ = 0.5; (d) α1 = 0.2, α2 = 0.4 and λ = −2.

The non-singularity of the Fisher information matrix (FIM) for λ = 0 is verified in the
Appendix. This point is very important because λ = 0 represents the case where the model
is reduced to two independent BS variates. Therefore, the non-singularity of the FIM allows
to apply usual hypothesis test such as maximum likelihood ratio, score and Wald tests to
decide between BSCNBS and independent BS variates.

2.3. Drawn values from BSCNBS distribution

The fact that this model has conditional and marginal distributions in closed form
allows one to draw values from the distribution BSCNBS in a relatively simple way using the
following Algorithm 1.
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Algorithm 1 Simulate a value from the BSCNBS(α1, α2, β1, β2, λ) distribution.
1: Draw Z1 ∼N(0, 1).
2: Draw Z2 |Z1 = z1 ∼ SCN(λz1).

2.1: Draw U ∼ N(λz1, λ
2z2

1).
2.2: Draw Z2 |U = u ∼ SN(u).

2.2.1: Draw V1, V2 ∼ N(0, 1) (independent).
2.2.2: Let Z2 =

(
u√

1+u2

)
|V1| +

(
1√

1+u2

)
V2.

3: Make the usual BS-type transformation

Tj = βj

⎡⎣αjZj

2
+

√(
αjZj

2

)2

+ 1

⎤⎦2

, j = 1, 2.

Remark 2.1. This algorithm requires only obvious minor modification to produce a
drawn value from the Lemonte et al. [28] distribution.

3. ESTIMATION

In this Section we consider the parameter estimation problem based on a classical
approach. An EM algorithm is developed for this problem. Initial values for such procedures
and two kind of residuals also are presented.

3.1. Estimation based on the EM algorithm

For the BSCNBS model, the log-likelihood function for ψ = (α1, α2, β1, β2, λ) in a ran-
dom sample t = t1, t2, ..., tn (where ti = (ti1, ti2)) is, up to a constant, given by

�(ψ) = −n

2

2∑
j=1

[
1
α2

j

(
s̄j

βj
+ r̄jβj − 2

)
+ 2 log(αj) + log(βj)

]
+

2∑
j=1

n∑
i=1

log(βj + tij)

+
n∑

i=1

log Φ

⎛⎝ λai1ai2√
1 + (λai1ai2)

2

⎞⎠,(3.1)

where

sj =
1
n

n∑
i=1

tji and rj =

(
1
n

n∑
i=1

t−1
ji

)−1

, j = 1, 2.

and aij = α−1
j

[
(tij/βj)

1/2 − (βj/tij)
1/2

]
. The maximum likelihood (ML) estimation requires

the maximization of eq. (3.1) in relation to ψ. However, such a procedure can be difficult to
implement because it involves maximization over a parameter space of dimension 5. For this
reason, we discuss the development of an EM-type algorithm (Dempster et al. [18]) for this
problem. This algorithm has been applied satisfactorily in BS models and their extension by
Balakrishnan et al. ([10],[11],[12]), Pradhan and Kundu [34], Reyes et al. ([36], [37]), Romeiro
et al. [38], among others.
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A hierarchical representation of the BSCNBS model is given by

T1i |T2i = t2i, Ui = ui ∼ SCNBS(α1, β1, ui)

Ui |T2i = t2i ∼ N(λa2i, λ
2a2

2i)

T2i ∼ BS(α2, β2), i = 1, ..., n.(3.2)

Let t and u = (u1, ..., un) the observed values and the unobserved latent values, respectively.
The complete data set then is tc = (tT ,uT )T . Using (3.2), the log-likelihood of the complete
data set is given by

�c(ψ | tc) ∝
2∑

j=1

n∑
i=1

[
− 1

α2
j

(
tji
βj

+
βj

tji
− 2

)
+ log(tji + βj) − log(αj) − 1

2
log(βj)

]

− n log λ + n log α2 − 1
2

n∑
i=1

[
log

(
t1i

β1
+

β1

t1i
− 2

)
+ log Φ(uia1i)

− 1
2λ2a2

2i

(u2
i + λ2a2

2i − 2λuia2i)
]
.

Let ûk
i = E(Uk

i | ti,ψ = ψ̂), k = 1, 2. Note that

f(ui | t1i, t2i,ψ) ∝ f(t1i | t2i, ui,ψ)f(ui |ψ),

∝ φ

(
ui − λa2i

λa2i

)
Φ(uia1i), ui ∈ R.

Defining Cki =
∫∞
−∞ uk

i φ
(
(λa2i)−1(ui − λa2i)

)
Φ(uia1i)dui, we have ûr

i = Cri/C0i, r = 1, 2. Note
that the existence of Cri is guaranteed since

∫ ∞

−∞
ur

i φ

(
ui − λa2i

λa2i

)
Φ(uia1i)dui ≤ λa2i

∫ ∞

−∞
ur

i

1
λa2i

φ

(
ui − λa2i

λa2i

)
dui < ∞.

In this manner, the estimation process for this model, using the EM algorithm, may be
described as follows in Algorithm 2.

The process is repeated iteratively until convergence is attained. For instance, we considered
ε = 10−4.

Remark 3.1.

i) The application of the ECM algorithm requires only uni-dimensional procedures,
instead of the original problem which required a maximization of dimension 5.

ii) The integrations involved in the E-step can be easily computed in the R software
(R Core Team, [35]) with the integrate function.

iii) The CM steps of the algorithm explicitly update λ, α1 and α2 and require the
solution of a non-linear equation for β1 and β2. Such equations can be solved
using the uniroot function in the R software.
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Algorithm 2 Provide the ML estimates based on the EM algorithm for the BSCNBS distri-
bution.

Set initial values ψ(0) = (α(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2 , λ(0))

k ← 0
dif ← 1
while dif > ε do

i ← 1
while i ≤ n do

(E-step) Compute the expected values for Ui and U2
i

û
(k+1)
i = C

(k)
1i

C
(k)
0i

and û2
i = C

(k)
2i

C
(k)
0i

.

i ← i + 1
end while
(CM-step I) Update λ

λ̂(k+1) =

n∑
i=1

u
(k+1)
i

n∑
i=1

a
(k)
2i

.

j ← 1
while j ≤ 2 do

(CM-step II) Update αj

α̂
2(k+1)
j = Sj

�β
(k)
j

+
�β
(k)
j

Rj
− 2

(CM-step III) Update βj as the solution of the equation

β̂
2(k+1)
j − β̂

(k+1)
j

[
Kj(β̂

(k+1)
j ) + 2Rj

]
+ Rj

[
Kj(β̂

(k+1)
j ) + Sj

]
= 0

where Kj(x) =
{

1
n

∑n
i=1(x + tji)

}−1.
j ← j + 1

end while
ψ(k+1) = (α(k+1)

1 , α
(k+1)
2 , β

(k+1)
1 , β

(k+1)
2 , λ(k+1)).

dif= ||ψ(k+1) −ψ(k)||, where ||x|| denotes the Euclidean norm of the vector x.
k ← k + 1

end while

3.2. Initial values of the algorithm

Since Tj ∼BS(αj , βj), we can use modified moment estimators of the BS distribution to
estimate αj and βj , j = 1, 2 (see Ng et al. [33]). Thus, the initial values for those parameters
are

(3.3) α̂
(0)
j =

√√√√2

(√
sj

rj
− 1

)
and β̂

(0)
j =

√
sjrj , j = 1, 2.

With those values, we can construct a profile version of (3.1) for λ and choose the value of λ

that maximizes that function.
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3.3. Residuals for the BSCNBS model

In order to check the goodness of fit of the BSCNBS model, we evaluate the marginal
quantile residuals (MQR; Dunn and Smyth, [19]) and the bivariate quantile residuals (BQR;
Kalliovirta, [24]). Such theoretical residuals are given by

r
MQR
ij = aij and r

BQR
i = Φ−1(νi(1 − log νi)),

respectively, for i = 1, ..., n, j = 1, 2, where

νi = Φ(ai1)
∫ ai2

−∞
2φ(u)Φ

⎛⎝ λa1iu√
1 + λ2a2

1iu
2

⎞⎠du, i = 1, ..., n,

where aij = α−1
j

[
(tij/βj)1/2 − (βj/tij)1/2

]
, i = 1, ..., n, j = 1, 2. The observed MQR and BQR

(say r̂
MQR
i1 , r̂

MQR
i2 and r̂

BQR
i ) are the theoretical MQR and BQR, respectively, evaluated

as functions of the estimated parameters.
If the BS model is correctly specified for the j-th variable, then r̂

MQR
1j , ..., r̂

MQR
nj has a

N(0, 1) distribution.
In a similar way, if the BSCNBS model is correctly specified for the two variables (jointly),

then r
BQR
1 , ..., r

BQR
n has a N(0, 1) distribution. Such hypothesis can be tested considering,

for instance, the Kolomogorov–Smirnov (KS; Kolmogorov, [25]) test.

4. NUMERICAL RESULTS

In this Section we present details computational aspects used for this work. We also
present a simulation study to assess the performance of the ML estimators obtained by
the ECM algorithm discussed previously and a real data illustration in order to show the
performance of the BSCNBS model. For the sake of comparison, we also consider the BSNBS
model of Lemonte et al. [28] and the BVBS model of Kundu et al. [26].

4.1. Computational aspects

All the programs used in this work were run in R Core Team [35] in a computer with
processor Intel(R) Core(TM) i7-7700HQ CPU 2.8GHz with 16 GB of RAM memory. The
used packages for the development were the VGAM package [40] which includes some functions
related to the BS model, the mvtnorm package [22] which includes some functions related to
the multivariate normal model, the goftest package [20] including some functions related to
goodness-of-fit tests and the DAAG package [29] which include the data used in the application
presented in subsection 4.3. Codes for the application are included as supplementary material.
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4.2. Simulation study

In this Section we report on a small simulation study with the objective of verifying
that the EM-based estimation procedure is capable of recovering, approximately, the param-
eter values used to simulate data sets from the model (2.9). To simulate the data sets, we
use the procedure described in Section 2.1. Then we use as the initial values, those dis-
cussed in Section 3.1 together with the EM algorithm outlined in Section 3. In particular
we consider the parameter values α1 = α2 = β1 = β2 = 1 in all cases while λ ranges over the
set {−5,−2,−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 2, 5}. In addition, we consider three
sample sizes: n = 100, n = 250 and n = 500. In each case we make 1, 000 replications and
calculate the mean absolute bias (AB), the mean of the standard errors (SE1), the standard
deviation of the estimated parameters (SE2), and the coverage proportion (CP) of the nom-
inal 95% intervals for the parameters. The results are presented in Tables 1 and 2. In these
Tables we see that the biases of the estimates of α1, α2, β1 and β2 are negligible in all cases
considered. However, the bias of the estimates of λ can be considerable in cases in which
the true value of λ is far from 0. Although, as expected, the biases decrease as sample size
increases.

Table 1: Simulation study for the BSCNBS model.

n = 100 n = 250 n = 500
Case Parameter

AB SE1 SE2 CP AB SE1 SE2 CP AB SE1 SE2 CP

α1 −0.007 0.070 0.073 0.940 −0.004 0.045 0.044 0.952 −0.001 0.032 0.031 0.956
α2 −0.005 0.071 0.072 0.936 −0.004 0.045 0.047 0.935 −0.001 0.032 0.033 0.941

λ = −5.00 β1 0.001 0.067 0.072 0.908 −0.001 0.042 0.043 0.943 0.000 0.030 0.031 0.939
β2 0.005 0.069 0.072 0.921 0.002 0.042 0.044 0.924 0.001 0.029 0.030 0.931
λ −1.758 5.891 5.391 0.863 −1.075 3.030 3.371 0.935 −0.637 1.847 2.510 0.943

α1 −0.006 0.070 0.069 0.939 −0.004 0.045 0.044 0.959 −0.001 0.032 0.032 0.939
α2 −0.006 0.070 0.070 0.939 −0.003 0.045 0.044 0.947 −0.002 0.032 0.032 0.949

λ = −2.00 β1 −0.001 0.079 0.079 0.943 0.002 0.050 0.051 0.945 0.000 0.035 0.035 0.944
β2 0.004 0.079 0.082 0.925 0.003 0.050 0.052 0.936 0.001 0.035 0.036 0.938
λ −0.725 2.052 2.679 0.904 −0.263 0.875 1.071 0.931 −0.128 0.543 0.572 0.956

α1 −0.009 0.070 0.070 0.930 −0.005 0.045 0.044 0.942 −0.003 0.032 0.032 0.947
α2 −0.010 0.070 0.070 0.941 −0.001 0.045 0.045 0.943 −0.001 0.032 0.032 0.940

λ = −1.00 β1 0.008 0.084 0.087 0.933 0.003 0.053 0.053 0.952 0.000 0.038 0.037 0.947
β2 0.004 0.084 0.087 0.937 0.000 0.053 0.055 0.937 0.001 0.038 0.037 0.954
λ −0.324 0.842 1.237 0.906 −0.074 0.377 0.409 0.927 −0.036 0.251 0.260 0.941

α1 −0.011 0.070 0.069 0.935 −0.004 0.045 0.046 0.949 −0.001 0.032 0.029 0.957
α2 −0.009 0.070 0.074 0.918 −0.003 0.045 0.044 0.944 −0.002 0.032 0.032 0.939

λ = −0.75 β1 0.008 0.086 0.089 0.934 0.001 0.054 0.053 0.958 −0.002 0.038 0.039 0.941
β2 −0.003 0.085 0.088 0.937 0.001 0.054 0.057 0.938 0.001 0.038 0.038 0.954
λ −0.175 0.559 0.773 0.913 −0.046 0.283 0.304 0.941 −0.025 0.191 0.198 0.942

α1 −0.008 0.070 0.074 0.930 −0.003 0.045 0.046 0.948 −0.003 0.032 0.031 0.952
α2 −0.002 0.071 0.070 0.947 −0.003 0.045 0.045 0.949 −0.002 0.032 0.031 0.952

λ = −0.50 β1 0.006 0.087 0.087 0.947 0.001 0.055 0.056 0.946 0.002 0.039 0.040 0.944
β2 0.004 0.087 0.086 0.947 −0.002 0.055 0.054 0.945 −0.001 0.039 0.039 0.952
λ −0.150 0.410 0.565 0.931 −0.039 0.203 0.220 0.947 −0.020 0.137 0.143 0.945

α1 −0.010 0.070 0.070 0.942 −0.003 0.045 0.044 0.935 −0.001 0.032 0.031 0.953
α2 −0.007 0.070 0.070 0.951 −0.002 0.045 0.045 0.945 −0.002 0.032 0.032 0.950

λ = −0.25 β1 0.002 0.087 0.089 0.947 0.003 0.056 0.055 0.955 0.001 0.039 0.041 0.939
β2 0.007 0.088 0.087 0.946 −0.001 0.055 0.056 0.942 0.003 0.039 0.039 0.944
λ −0.054 0.229 0.261 0.945 −0.023 0.130 0.135 0.955 −0.006 0.087 0.089 0.950

α1 −0.009 0.070 0.069 0.949 −0.004 0.045 0.044 0.951 0.000 0.032 0.031 0.960
α2 −0.010 0.070 0.070 0.938 −0.001 0.045 0.044 0.947 −0.002 0.032 0.031 0.952

λ = 0.00 β1 0.001 0.087 0.089 0.943 0.000 0.056 0.054 0.951 −0.001 0.039 0.041 0.933
β2 0.004 0.088 0.088 0.939 0.005 0.056 0.056 0.941 0.001 0.039 0.039 0.938
λ 0.006 0.156 0.176 0.996 0.001 0.086 0.086 0.990 0.002 0.059 0.057 0.978
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Note that the values of SE1 y SE2 are very similar for α1, α2, β1 and β2 in all cases
considered, which suggests that the standard errors of the estimates are themselves well
estimated. However, for estimates of λ in most cases we have SE2 > SE1, suggesting that the
standard errors of the λ estimates are underestimated, especially, once again, when the true
value of λ is far from 0. We note that the coverage percentages of the interval estimates are
close to the nominal values for all parameters in all cases, except for the intervals for λ when
the true value of λ satisfies |λ| ≥ 1 in the case in which n = 100.

Table 2: Simulation study for the BSCNBS model (continuation).

n = 100 n = 250 n = 500
Case Parameter

AB SE1 SE2 CP AB SE1 SE2 CP AB SE1 SE2 CP

α1 −0.012 0.070 0.073 0.926 −0.003 0.045 0.045 0.944 −0.003 0.032 0.030 0.957
α2 −0.010 0.070 0.068 0.949 −0.003 0.045 0.046 0.934 −0.003 0.032 0.031 0.947

λ = 0.25 β1 0.007 0.087 0.087 0.947 0.002 0.056 0.054 0.955 −0.001 0.039 0.040 0.944
β2 0.003 0.087 0.091 0.940 0.002 0.056 0.055 0.958 0.000 0.039 0.039 0.955
λ 0.078 0.247 0.356 0.944 0.013 0.126 0.126 0.952 0.011 0.088 0.091 0.950

α1 −0.006 0.070 0.072 0.928 −0.005 0.045 0.044 0.954 −0.001 0.032 0.032 0.954
α2 −0.007 0.070 0.070 0.933 −0.002 0.045 0.045 0.939 −0.001 0.032 0.032 0.949

λ = 0.50 β1 0.009 0.087 0.085 0.961 0.003 0.055 0.054 0.953 0.001 0.039 0.041 0.940
β2 0.006 0.087 0.090 0.942 0.003 0.055 0.056 0.949 0.001 0.039 0.039 0.947
λ 0.103 0.374 0.469 0.943 0.030 0.199 0.209 0.949 0.016 0.137 0.140 0.947

α1 −0.008 0.070 0.070 0.940 −0.002 0.045 0.044 0.946 −0.002 0.032 0.031 0.961
α2 −0.010 0.070 0.071 0.937 0.000 0.045 0.046 0.945 −0.002 0.032 0.031 0.938

λ = 0.75 β1 0.003 0.085 0.089 0.941 0.004 0.054 0.055 0.940 0.003 0.038 0.039 0.946
β2 0.004 0.085 0.088 0.949 0.001 0.054 0.056 0.941 0.001 0.038 0.039 0.947
λ 0.171 0.568 0.775 0.916 0.041 0.284 0.306 0.939 0.026 0.192 0.196 0.947

α1 −0.008 0.070 0.071 0.932 −0.005 0.045 0.044 0.946 −0.001 0.032 0.033 0.928
α2 −0.004 0.071 0.074 0.935 −0.003 0.045 0.046 0.937 −0.002 0.032 0.032 0.942

λ = 1.00 β1 0.002 0.084 0.088 0.931 0.001 0.053 0.056 0.936 0.002 0.038 0.038 0.952
β2 0.005 0.084 0.085 0.950 0.002 0.053 0.054 0.956 0.002 0.038 0.038 0.940
λ 0.346 0.847 1.526 0.908 0.080 0.379 0.462 0.933 0.032 0.250 0.265 0.945

α1 −0.009 0.070 0.070 0.949 −0.005 0.045 0.045 0.948 −0.001 0.032 0.032 0.941
α2 −0.006 0.070 0.071 0.937 −0.002 0.045 0.045 0.943 −0.002 0.032 0.032 0.940

λ = 2.00 β1 0.004 0.078 0.082 0.933 0.003 0.050 0.054 0.930 0.000 0.035 0.034 0.951
β2 0.003 0.079 0.084 0.923 0.000 0.050 0.051 0.939 0.000 0.035 0.037 0.940
λ 0.875 2.158 3.217 0.886 0.229 0.841 1.038 0.939 0.085 0.531 0.602 0.947

α1 −0.006 0.071 0.072 0.935 −0.005 0.045 0.046 0.940 −0.001 0.032 0.032 0.944
α2 −0.006 0.071 0.073 0.928 −0.002 0.045 0.045 0.952 −0.002 0.032 0.032 0.940

λ = 5.00 β1 0.005 0.067 0.073 0.909 −0.001 0.042 0.044 0.940 0.000 0.029 0.030 0.937
β2 0.005 0.068 0.074 0.915 0.000 0.042 0.045 0.920 0.000 0.029 0.032 0.929
λ 1.668 5.676 5.215 0.873 1.184 3.227 3.772 0.919 0.675 1.839 2.071 0.949

4.3. Real data set: Ais data set

The ais data set (see DAAG package, Maindonald and Braun, [29]) includes information
about 13 characteristics measured in 202 Australian athletes. We considered two of those
variables: the red blood cell count (rcc) and the lean body mass (in kg, lbm). We model such
variables jointly with the BSCNBS distribution. From the data we obtain s1 = 4.7186, s2 =
64.8737, r1 = 4.6753 and r2 = 62.2709, providing the following initial values for the estimation
algorithm: α̂

(0)
1 = 0.0961, α̂

(0)
2 = 0.2034, β̂

(0)
1 = 4.6969, β̂

(0)
2 = 63.5590 and λ(0) = 4.53. Table 3

shows the estimates for the three considered models. We also use two tests to verify the
improved performance of the BSCNBS model compared to the BSNBS and BVBS models.
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Table 3: ML estimates for BSCNBS and BSNBS models in betaplasma data set
(standard errors in parenthesis).

parameter BSCNBS BSNBS BVBS

α1 0.0962 (0.0048) 0.0961 (0.0048) 0.0962 (0.0048)
α2 0.2034 (0.0101) 0.2035 (0.0101) 0.2034 (0.0101)
β1 4.6969 (0.0279) 4.6946 (0.0277) 4.6967 (0.0317)
β2 63.5588 (0.6720) 63.2352 (0.7882) 63.5568 (0.9049)
λ 4.5003 (1.8784) 1.2132 (0.1843) —
ρ — — 0.5573 (0.0485)

log-likelihood −881.3825 −885.485 −890.9184
AIC 1772.77 1780.97 1791.84
BIC 1789.31 1797.51 1808.38

The Kolmogorov–Smirnov (KS) statistics are used to verify marginally the BS fit of the rcc

and lbm variates. In addition, it is very important to also consider the bivariate fit of the
data to the model. For this, we use an empirical goodness-of-fit test for multivariate distri-
butions proposed in McAssey [31]. We denote AT as the statistic for such test. Note that
both the Akaike information criterion (AIC) (Akaike [1]) and Bayesian information crite-
rion (BIC) (Schwarz [39]) are lower for the BSCNBS model. Additionally, Table 4 shows
that both, marginal and bivariate tests provides greater p-values for the BSCNBS model.
Thus both, marginal and bivariate tests, suggest better performance for the BSCNBS model.

Table 4: Goodness-of-fit to betaplasma data set (p-values in parenthesis).

Test
BSCNBS BSNBS BVBS

rcc lbm rcc lbm rcc lbm

KS (marginal) 0.078 (0.172) 0.060 (0.456) 0.079 (0.152) 0.066 (0.334) 0.078 (0.170) 0.060 (0.455)
AT (bivariate) 5.723 (0.150) 6.574 (0.021) 6.158 (0.063)

Figure 3 also shows the scatterplot for this data set superimposed on contours of the three
fitted models and Figure 4 shows the histogram and estimated density function based on the
marginal BS for rcc and lbm variables. A visual inspection indicates a somewhat better fit
of the BSCNSBS relative to the BSNBS model and that the BS distribution is appropriate
marginally for this data set. Figure 5 presents the MQR for both variables, the BQR and
the respective p-values for the KS test to check the normality hypothesis. Note that, under
the usual significance levels, the hypothesis for both, marginal and bivariate residuals, is not
rejected, reinforcing the idea that the BSCNBS is appropriate for this data set.
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Figure 3: Scatterplot of rcc versus lbm for ais data set:
(a) BSCNBS; (b) BSNBS and; (c) BVBS models.
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Figure 4: Histogram and density function for: (a) rcc; and (b) lbm, and their estimated
density function based on the marginal BS distributions.
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Figure 5: QQ-plot for the MQR for: (a) the variable rcc; (b) the lbm variable and; (c) the BQR,
based on the fitted BSCNBS model in the ais data set. Also is presented the p-value for
the KS test to check if the residuals have standard normal distribution.
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5. MULTIVARIATE EXTENSIONS

To obtain a k-dimensional extension of the model discussed in this paper, it is only
necessary to identify a specific k-dimensional skewed distribution with normal marginals and
skew-normal conditionals to which appropriate marginal transformations are to be applied.
For example, one might consider the following joint density.

(5.1) f1(x1, x2, ..., xk; λ) = 2

[
k∏

i=1

φ(xi)

]
Φ

⎛⎝ λ
∏k

i=1 xi√
1 + λ2

∏k
i=1 x2

i

⎞⎠,

which, when marginally transformed, yields a natural extension of the bivariate model dis-
cussed in the present paper. Instead of (5.1) we might consider

(5.2) f2(x1, x2, ..., xk; λ) = 2

[
k∏

i=1

φ(xi)

]
Φ

(
λ

k∏
i=1

xi

)
,

which yields the k-dimensional version of the Lemonte et al. [28] model.

Both of these models suffer from the fact that only a single dependence parameter, λ,
is present. Based on our experience with multivariate normal models and their close relatives,
we might prefer to have perhaps k(k − 1)/2 dependence parameters, if not more, to ensure
sufficient flexibility of the model. An extreme example is one which involves use of a
k-dimensional joint density which has skew generalized normal conditionals with 2k−1 or 3k−1

parameters, which is to be transformed to have BS marginals. In practice, some intermediate
configuration of dependence parameters might be expected to be appropriate in a particular
data setting.

6. CONCLUSIONS, LIMITATIONS AND FUTURE RESEARCH

The model (2.9) that has been investigated in this paper is, of course, only one of the
many bivariate models with BS marginals. In complete generality, one could consider two BS
quantile functions and apply them to any copula (i.e., any distribution with standard uniform
marginals). Perusal of Nelsen [32] will reveal that essentially there are a limited number of
copulas with analytic forms that are readily available for such constructions. Moreover many
of the well known copula families have only a single dependence parameter, as is the case
with the families of distributions discussed in the present paper. It does thus seem reasonable
to consider some of these copula based bivariate BS models as competitors to the models of
this paper.

Another approach that might be considered for data sets with BS characteristics, is to
take advantage of the fact that the family of univariate BS distributions is an exponential
family. Following Arnold and Strauss [6] we might wish to consider the exponential family of
bivariate densities with BS conditionals (rather than marginals) as competitors of the models
in this paper. Such models have been investigated in Arnold et al. [5].
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Yet a third general class of models might be considered. For it, assume that X ∼BS(α, β)
and that, for each x > 0, Y |X = x ∼BS(A(x; θ), B(x; θ)), for certain positive functions A(x; θ)
and B(x; θ). Filus and Filus [21] have investigated models of this genre, in cases in which the
roles of the BS distributions are played by normal or exponential distributions.

Multivariate extensions of all the concepts alluded to in this Discussion are readily
envisioned.

A. APPENDIX

The Fisher information matrix for the BSCNBS model is given by

I(ψ) =

⎛⎜⎜⎜⎜⎝
Iα1α1 Iα1α2 Iα1β1 Iα1β2 Iα1λ

Iα2α1 Iα2α2 Iα2β1 Iα2β2 Iα2λ

Iβ1α1 Iβ1α2 Iβ1β1 Iβ1β2 Iβ1λ

Iβ2α1 Iβ2α2 Iβ2β1 Iβ2β2 Iβ2λ

Iλα1 Iλα2 Iλβ1 Iλβ2 Iλλ

⎞⎟⎟⎟⎟⎠,

with

Iα1α1 =
2
α2

1

+
λ3

α2
1

E

(
ωa3

1a
3
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

α2
1

E

(
ω2a2

1a
2
2

(1 + λ2a2
1a

2
2)3

)
+

3λ3

α2
1

E

(
ωa3

1a
3
2

(1 + λ2a2
1a

2
2)5/2

)
− 2λ

α2
1

E

(
ωa1a2

(1 + λ2a2
1a

2
2)3/2

)
Iα1α2 =

λ3

α1α2
E

(
ωa3

1a
3
2

(1 + λ2a2
1a

2
2)7/2

)
+

λ2

α1α2
E

(
ω2a2

1a
2
2

(1 + λ2a2
1a

2
2)3

)
− λ

α1α2
E

(
ωa1a2

(1 + λ2a2
1a

2
2)5/2

)
+

2λ3

α1α2
E

(
ωa3

1a
3
2

(1 + λ2a2
1a

2
2)5/2

)
Iα1β1 =

2λ3

α2
1β1

E

(
ωa2

1a
3
2d1

(1 + λ2a2
1a

2
2)7/2

)
+

6λ3
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2d1
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Iα2β2 =
λ3

2α2
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where dj = (Tj/βj)
1/2 + (βj/Tj)

1/2, j = 1, 2, ω = φ(b)/Φ(b) and b = λa1a2/
√

1 + λa2
1a

2
2.

Note that for ψ0 = (α1, α2, β1, β2, λ = 0), this matrix is reduced to

I(ψ0) = diag
(

2
α2

1

,
2
α2

2

,
1

α2
1β

2
1

+ E[(T1 + β1)−2],
1

α2
2β

2
2

+ E[(T2 + β2)−2],
1

2
√

2π

)
.

Then, the determinant of I(ψ0) is

|I(ψ0)| =
2√

2πα2
1α

2
2

2∏
j=1

{
(αjβj)−2 + E

[
(Tj + βj)−2

]}
> 0.

Therefore, the Fisher information matrix is not singular at λ = 0.
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ABBREVIATIONS

The following abbreviations are used in this manuscript:

BS Birnbaum–Saunders
SN Skew-normal
SGN Skew-generalized-normal
SCN Skew-curved-normal
SCNBS Skew-curved-normal-Birnbaum–Saunders
BSCNBS Bivariate skew-curved-normal-Birnbaum–Saunders
BVBS Bivariate Birnbaum–Saunders
SNBS Skew-normal-Birnbaum–Saunders
BSNBS Bivariate skew-normal-Birnbaum–Saunders
FIM Fisher information matrix
ML Maximum likelihood
MQR Marginal quantile residuals
BQR Bivariate quantile residuals
AB Absolute bias
SE1 Mean of the standard errors
SE2 Standard deviation of the estimated parameters
CP Coverage proportion
KS Kolmogorov–Smirnov
AIC Akaike information criterion
BIC Bayesian information criterion
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apart from the folded bivariate normal and folded bivariate t distributions (of these two only the
former has received any real applications), nothing is known about folded bivariate distributions.
Here, we introduce six new folded bivariate distributions. Applications involving stock indices of
ten major economies show the value of the proposed distributions.
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1. INTRODUCTION

Let X and Y be two random variables taking values on the entire real line (for example,
stock returns for two different commodities). Their magnitude correlation is defined as the
correlation between |X | and |Y | , i.e., the correlation between the absolute values of X and
Y . Its derivation clearly requires the use of folded bivariate distributions.

The concept of magnitude correlation arises in many areas of the sciences, engineering
and medicine. One prominent area is stock modeling. Let X denote the stock return for one
commodity and Y the stock return for another commodity. It is of interest to know if large
values of X in magnitude are associated with large values of Y in magnitude, if large values
of X in magnitude are associated with small values of Y in magnitude, if small values of X

in magnitude are associated with large values of Y in magnitude, or if small values of X in
magnitude are associated with small values of Y in magnitude. The magnitude correlation
of stock returns has been studied by many authors. Some recent examples are: Firth [22]
observes that the“correlation between the magnitudes of the changes in dividends and changes
in future earnings (over the next two years) is highly significant and positive”; While modeling
volatility of Dhaka stock exchange, Islam et al. [32] observe that the “correlations between
the magnitudes of returns on nearby days are positive and statistically significant”; While
investigating the overnight effect on the Taiwan stock market, Tsai et al. [49] examine the
“cross correlation between the magnitude of daytime (trading hour) returns, overnight (off-
hour session) returns, and total (close-to-close) returns”; Tsai et al. [49] observe “a larger
magnitude of overnight return implies a higher probability that the sign of the following
daytime return is the opposite of the sign of overnight return”; Chabakauri [11] finds “a
positive relationship between the amount of leverage in the economy and magnitudes of stock
return correlations and volatilities”; Fukuda and Tanaka [23] show that “during the global
financial crisis the magnitude correlation between TIBOR and LIBOR reversed depending
on whether they were in yen or dollars”; Bhamra et al. [6] show that the magnitude of asset
return correlation depends on “three structural parameters: the degree of market integration,
the level of fundamental correlation and the rate of time preference”; While investigating
equity market reactions to CreditWatch events, Gu et al. [25] find evidence of a “positive
correlation between the magnitude of the cumulative abnormal returns prior to the listing
day and the magnitude of the rating changes announced on the delisting day”; Hamalainen
[28] says “Correlation between the magnitudes of asset returns is an overlooked concept in
financial research. It affects portfolio variance explicitly when the directions of returns are
predictable”. See also Kutergin and Filimonov [39].

Magnitude correlation is one area requiring the use of folded bivariate and folded mul-
tivariate distributions. Other areas include: approximations to the mean and variance of the
index of dissimilarity in contingency tables (Inman and Bradley [31], Mulekar et al. [41]);
noise sensitivity of a new singularity index (Muralidhar et al. [42]); distribution and estima-
tion of trading costs (Kourtis [38]); the joint distribution of indemnity payment and allocated
loss adjustment expense for general liability claims (Guillou et al. [26]).

In all of these applications and others, only the folded bivariate/multivariate normal
distribution appears to have been used. We are not aware of applications of any other folded
bivariate/multivariate distribution. The normal distribution does not give good fits to many
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types of data including heavy tailed data (for example, stock returns). Hence, there is a need
for folded bivariate/multivariate distributions for non-normal data.

Psarakis and Panaretos [45] were the first to introduce the folded bivariate normal dis-
tribution and study its statistical properties. They derived its marginal distributions and
joint moment generating function. Chakraborty and Chatterjee [12] gave a multivariate form
of the folded normal distribution and derived expressions for its mean vector, covariance ma-
trix and joint moment generating function. They also discussed possible areas of applications
of the folded multivariate normal distribution.

We are aware of only one folded bivariate distribution for non-normal data, the folded
bivariate t distribution. We are aware of no folded multivariate distributions for non-normal
data. The folded bivariate t distribution was also introduced by Psarakis and Panaretos [45].
They derived its marginal distributions and established its relationship to the folded bivariate
normal distribution.

Neither of the papers (Psarakis and Panaretos [45] or Chakraborty and Chatterjee [12])
discussed real data applications or even simulation studies. The aim of this paper is to:

i) introduce six new folded bivariate distributions;
ii) illustrate real data applications of all of the folded bivariate distributions.

The six new folded bivariate distributions are based on the: bivariate skew normal
distribution due to Azzalini and Dalla Valle [4]; bivariate skew t distribution due to Azzalini
and Capitanio [3]; bivariate logistic distribution due to Gumbel [27]; bivariate Kotz type
distribution due to Kotz [36]; bivariate Laplace distribution of the first kind due to Eltoft
et al. [19]; bivariate Laplace distribution of the second kind due to Ernst [20]. We have
chosen these distributions because they are some of the most tractable and applied bivariate
distributions for non-normal data, see Balakrishnan and Lai [5] and references therein.

For each of the new distributions and for the two known ones, we give expressions for the
joint probability density function. Expressions for the joint cumulative distribution function,
joint moment generating function and the log-likelihood function can be obtained from the
corresponding author. As a by product of the six new distributions, we also introduce two
new univariate distributions: the folded univariate skew normal distribution and the folded
univariate skew t distribution.

Our real data application involves forty five bivariate data sets on log returns of stocks.
We show that:

i) the folded bivariate t and folded bivariate skew t distributions provide the best fits
for the majority of the data sets;

ii) each of the folded distributions outperforms the corresponding truncated unfolded
version for each of the forty five data sets.

The latter observation is a further advocate for the need for folded bivariate distributions.

The expressions in Section 2 involve standard normal cumulative distribution function
defined by

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt
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and the modified Bessel function of the second kind (Abramowitz and Stegun [1]) defined by

Kν(x) =

⎧⎪⎪⎨⎪⎪⎩
πcsc(πν)

2
[I−ν(x) − Iν(x)], if ν 
∈ Z,

lim
μ→ν

Kμ(x), if ν ∈ Z,

where Iν(·) denotes the modified Bessel function of the first kind of order ν defined by

Iν(x) =
∞∑

k=0

1
Γ(k + ν + 1)k!

(x

2

)2k+ν
.

2. NEW FOLDED BIVARIATE DISTRIBUTIONS

Let (X, Y ) denote a random vector on (−∞,∞)× (−∞,∞) with joint probability den-
sity function fX,Y (x, y) and joint cumulative distribution function FX,Y (x, y). Set (U, V ) =
(|X|, |Y |). Then the joint probability density function of (U, V ) is

fU,V (u, v) = fX,Y (u, v) + fX,Y (u,−v) + fX,Y (−u, v) + fX,Y (−u,−v).(2.1)

The distribution given by fU,V (u, v) is said to be the folded version of the distribution given
by fX,Y (x, y).

Let fX , fY denote the marginal probability density functions of (X, Y ). Let fU , fV

denote the marginal probability density functions of (U, V ). It follows from (2.1) that fU (u) =
fX(u) + fX(−u) and fV (v) = fY (v) + fY (−v).

2.1. Folded bivariate normal distribution

The bivariate normal distribution due to the work of Laplace, Plana, Gauss and Bravais
is given by the joint probability density function

fX,Y (x, y) =
1

2πs1s2

√
1 − ρ2

exp
[
− Q(x, y)

2(1 − ρ2)

]
for −∞ < x < ∞ and −∞ < y < ∞, where

Q(x, y) =
(

x − μ1

s1

)2

+
(

y − μ2

s2

)2

− 2ρ

(
x − μ1

s1

)(
y − μ2

s2

)
(2.2)

for −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0 and −1 < ρ < 1. The corresponding folded
version has the joint probability density function

fU,V (u, v) =
1

2πs1s2

√
1 − ρ2

{
exp

[
− Q(u, v)

2(1 − ρ2)

]
+ exp

[
− Q(u,−v)

2(1 − ρ2)

]

+ exp

[
− Q(−u, v)

2(1 − ρ2)

]
+ exp

[
− Q(−u,−v)

2(1 − ρ2)

]}
.

The marginals of the folded bivariate normal distribution are the folded univariate normal
distributions due to Leone et al. [40].
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2.2. Folded bivariate t distribution

The bivariate t distribution is given by the joint probability density function

fX,Y (x, y) =
Γ(1 + ν/2)

νπΓ(ν/2)s1s2

√
1 − ρ2

[
1 +

Q(x, y)
ν(1 − ρ2)

]−1−ν/2

for −∞ < x < ∞, −∞ < y < ∞, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, ν > 0 and
−1 < ρ < 1, where Q is given by (2.2). The corresponding folded version has the joint prob-
ability density function

fU,V (u, v) =
Γ(1 + ν/2)

νπΓ(ν/2)s1s2

√
1 − ρ2

{[
1 +

Q(u, v)
ν(1 − ρ2)

]−1−ν/2

+

[
1 +

Q(u,−v)
ν(1 − ρ2)

]−1−ν/2

+

[
1 +

Q(−u, v)
ν(1 − ρ2)

]−1−ν/2

+

[
1 +

Q(−u,−v)
ν(1 − ρ2)

]−1−ν/2}
(2.3)

for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, ν > 0 and −1 < ρ < 1. The
particular case for ν = 1 is the folded bivariate Cauchy distribution, another new folded
bivariate distribution. The marginals of the folded bivariate t distribution are the folded
univariate t distributions due to Psarakis and Panaretos [44].

2.3. Folded bivariate skew normal distribution

The bivariate skew normal distribution due to Azzalini and Dalla Valle [4] has the joint
probability density function specified by

fX,Y (x, y) =
1

πs1s2

√
1 − ρ2

exp

[
− Q(x, y)

2(1 − ρ2)

]
Φ(α1x + α2y)

for −∞ < x < ∞, −∞ < y < ∞, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, −∞ < α1 <

∞, −∞ < α2 < ∞ and −1 < ρ < 1, where Q is given by (2.2). The corresponding folded
version has the joint probability density function

fU,V (u, v) =
1

πs1s2

√
1 − ρ2

{
exp

[
− Q(u, v)

2(1 − ρ2)

]
Φ(α1u + α2v)

+ exp

[
− Q(u,−v)

2(1 − ρ2)

]
Φ(α1u − α2v)

+ exp

[
− Q(−u, v)

2(1 − ρ2)

]
Φ(−α1u + α2v)

+ exp

[
− Q(−u,−v)

2(1 − ρ2)

]
Φ(−α1u − α2v)

}
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for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, −∞ < α1 < ∞, −∞ < α2 <

∞ and −1 < ρ < 1. The marginals of the folded bivariate skew normal distribution are the
folded univariate skew normal distributions, which appear to be new.

2.4. Folded bivariate skew t distribution

The bivariate skew t distribution due to Azzalini and Capitanio [3] has the joint prob-
ability density function specified by

fX,Y (x, y) =
2Γ(1 + ν/2)

νπΓ(ν/2)s1s2

√
1 − ρ2

[
1 +

Q(x, y)
ν(1 − ρ2)

]−1−ν/2

R(x, y)

for −∞ < x < ∞ and −∞ < y < ∞, where Q is given by (2.2) and

R(x, y) = G

((
α1(x − μ1)√

s11
+

α2(y − μ2)√
s22

)√
ν + 2

Q(x, y) + 2
; ν + 2

)
,

where −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, −∞ < α1 < ∞, −∞ < α2 < ∞, ν > 0,
−1 < ρ < 1, and G(·; ν) denotes the cumulative distribution function of a Student’s t random
variable with ν degrees of freedom. The corresponding folded version has the joint probability
density function

fU,V (u, v) =
2Γ(1 + ν/2)

νπΓ(ν/2)s1s2

√
1 − ρ2

{[
1 +

Q(u, v)
ν(1 − ρ2)

]−1−ν/2

R(u, v)

+
[
1 +

Q(u,−v)
ν(1 − ρ2)

]−1−ν/2

R(u,−v)

+
[
1 +

Q(−u, v)
ν(1 − ρ2)

]−1−ν/2

R(−u, v)

+
[
1 +

Q(−u,−v)
ν(1 − ρ2)

]−1−ν/2

R(−u,−v)

}

for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, −∞ < α1 < ∞, −∞ < α2 <

∞, ν > 0 and −1 < ρ < 1. The marginals of the folded bivariate skew t distribution are the
folded univariate skew t distributions which appear to be new too. The G term does admit
closed form expressions if ν is an integer, see Jamalizadeh et al. [33].

2.5. Folded bivariate logistic distribution

The bivariate logistic distribution due to Gumbel [27] has the joint probability density
function specified by

fX,Y (x, y) =
2 exp[−(x − μ1)/s1 − (y − μ2)/s2]

s1s2{1 + exp[−(x − μ1)/s1] + exp[−(y − μ2)/s2]}3
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for −∞ < x < ∞, −∞ < y < ∞, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, and s2 > 0. The
corresponding folded version has the joint probability density function

fU,V (u, v) =
2

s1s2

{
exp[−(u − μ1)/s1 − (v − μ2)/s2]

{1 + exp[−(u − μ1)/s1] + exp[−(v − μ2)/s2]}3

+
exp[−(u − μ1)/s1 + (v + μ2)/s2]

{1 + exp[−(u − μ1)/s1] + exp[(v + μ2)/s2]}3

+
exp[(u + μ1)/s1 − (v − μ2)/s2]

{1 + exp[(u + μ1)/s1] + exp[−(v − μ2)/s2]}3

+
exp[(u + μ1)/s1 + (v + μ2)/s2]

{1 + exp[(u + μ1)/s1] + exp[(v + μ2)/s2]}3

}

for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, and s2 > 0. The marginals of the
folded bivariate logistic distribution are the folded univariate logistic distributions due to
Cooray et al. [13].

2.6. Folded bivariate Kotz type distribution

The bivariate Kotz type distribution is given by the joint probability density function

fX,Y (x, y) =
srN/s

(
1 − ρ2

)1/2−N

s1s2πΓ(N/s)
[Q(x, y)]N−1 exp

{
− r

(1 − ρ2)s [Q(x, y)]s
}

(2.4)

for −∞ < x < ∞, −∞ < y < ∞, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, N > 0, r > 0,
s > 0 and −1 < ρ < 1, where Q is given by (2.2). When s = 1, this is the original Kotz
distribution introduced in Kotz [36]. When N = 1, s = 1 and r = 1/2, (2.4) reduces to
the bivariate normal probability density function. When N = 1, s = 1/2 and r = 1, (2.4)
reduces to the joint probability density function of the bivariate Laplace distribution of the
second kind. The folded bivariate Kotz type distribution corresponding to (2.4) has the joint
probability density function

fU,V (u, v) =
srN/s

(
1 − ρ2

)1/2−N

s1s2πΓ(N/s)

[
[Q(u, v)]N−1 exp

{
− r

(1 − ρ2)s [Q(u, v)]s
}

+[Q(u,−v)]N−1 exp
{
− r

(1 − ρ2)s [Q(u,−v)]s
}

+[Q(−u, v)]N−1 exp
{
− r

(1 − ρ2)s [Q(−u, v)]s
}

+[Q(−u,−v)]N−1 exp
{
− r

(1 − ρ2)s [Q(−u,−v)]s
}]

for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, N > 0, r > 0, s > 0 and
−1 < ρ < 1. The marginals of the folded bivariate Kotz type distribution are the folded
univariate exponential power distributions due to Nadarajah and Bakar [43].
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2.7. Folded bivariate Laplace distribution of the first kind

The bivariate Laplace distribution of the first kind due to Eltoft et al. [19] has the joint
probability density function specified by

fX,Y (x, y) =
1
πr

K0

(√
2
r

√
Q(x, y)

)

for −∞ < x < ∞, −∞ < y < ∞, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, r > 0 and
−1 < ρ < 1, where Q is given by (2.2). The corresponding folded version has the joint prob-
ability density function

fU,V (u, v) =
1
πr

[
K0

(√
2
r

√
Q(u, v)

)
+ K0

(√
2
r

√
Q(u,−v)

)

+K0

(√
2
r

√
Q(−u, v)

)
+ K0

(√
2
r

√
Q(−u,−v)

)]

for u > 0, v > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞, s1 > 0, s2 > 0, r > 0 and −1 < ρ < 1. The
marginals of the folded bivariate Laplace distribution of the first kind are the folded univari-
ate Laplace distributions, special cases of the folded exponential power distribution due to
Nadarajah and Bakar [43].

2.8. Folded bivariate Laplace distribution of the second kind

The folded bivariate Laplace distribution of the second kind is the particular case of the
folded bivariate Kotz type distribution for N = 1, s = 1/2 and r = 1. So, the corresponding
joint probability density function follows from the expression given in Section 2.6. The
marginals of the folded bivariate Laplace distribution of the second kind are also the folded
univariate Laplace distributions.

3. APPLICATION

In this section, we study the magnitude correlation for daily log returns of stock values
from the 3rd of January 2000 to the 28th of February 2014 for the ten countries: the United
States of America (S & P 500), Canada (S & P TSX), the United Kingdom (FTSE 100),
Germany (DAX), China (SSE), Japan (Nikki), Brazil (BOVESPA), Argentina (MERVAL),
South Africa (FTSE/JSE) and Nigeria (S & P). The data were obtained from the database
Datastream.

The distributions in Section 2 assume that the data on each country are independent
and identically distributed (i.e., randomness), have no serial correlation, and have no het-
eroskedasticity. We tested for randomness using Cox and Stuart [15]’s test, the rank test
and the turning point test. We tested for no serial correlation using Durbin and Watson
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[16, 17, 18]’s method and the method due to Godfrey [24] and Breusch [8]. We tested for
no heteroskedasticity using Breusch and Pagan [9]’s test. The corresponding p-values not
reported here showed no evidence are randomness, no serial correlation or no heteroskedas-
ticity.

The magnitude correlation between returns for any two countries can be studied by:

i) fitting a folded bivariate distribution to positive log returns from the countries
(that is, considering only those days where the log returns are positive for both
countries);

ii) fitting a truncated unfolded bivariate distribution (truncation made to the positive
quadrant) to positive log returns from the countries.

We have data for ten countries, so forty five pairs of bivariate data.

Section 2 describes eight folded bivariate distributions. Each of these has a correspond-
ing truncated unfolded version. These sixteen distributions were fitted to positive log returns
from: USA / CAD, USA / UK, USA / GER, USA / CHI, USA / JPN, USA / BRA, USA /
ARG, USA / SA, USA / NG, CAD / UK, CAD / GER, CAD / CHI, CAD / JPN, CAD /
BRA, CAD / ARG, CAD / SA, CAD / NG, UK / GER, UK / CHI, UK / JPN, UK / BRA,
UK / ARG, UK / SA, UK / NG, GER / CHI, GER / JPN, GER / BRA, GER / ARG, GER
/ SA, GER / NG, CHI / JPN, CHI / BRA, CHI / ARG, CHI / SA, CHI / NG, JPN / BRA,
JPN / ARG, JPN / SA, JPN / NG, BRA / ARG, BRA / SA, BRA / NG, ARG / SA, ARG
/ NG and SA / NG. The method of maximum likelihood was used. The maximization of
the log-likelihood functions was performed using the routine optim in the R software package
(R Development Core Team [46]).

The folded and the corresponding truncated unfolded distributions have the same num-
ber of parameters. So, criteria like the Akaike information criterion and the Bayesian infor-
mation criterion reduce to comparing log-likelihood values. In other words, the one giving
the larger log-likelihood value can be regarded as the better model. Boxplots of the dif-
ferences between the log-likelihood values for the forty five pairs are shown in Figure 1.
We see that the differences are huge. They range from: 575.7203 to 865.9098 when the trun-
cated bivariate normal and folded bivariate normal distributions are compared; 436.8568 to
744.1456 when the truncated bivariate t and folded bivariate t distributions are compared;
380.7097 to 865.9098 when the truncated bivariate skew normal and folded bivariate skew
normal distributions are compared; 180.1524 to 299.9072 when the truncated bivariate skew
t and folded bivariate skew t distributions are compared; 1275.391 to 2159.847 when the
truncated bivariate logistic and folded bivariate logistic distributions are compared; 1243.677
to 2298.231 when the truncated bivariate Laplace and folded bivariate Laplace distributions
of the first kind are compared; 401.2748 to 644.6660 when the truncated bivariate Kotz type
and folded bivariate Kotz type distributions are compared; 4229.656 to 7849.704 when the
truncated bivariate Laplace and folded bivariate Laplace distributions of the second kind are
compared. This is compelling evidence that the folded distributions are much better models.

The fit of the eight folded distributions were compared in terms of log-likelihood val-
ues as well as the Akaike information criterion due to Akaike [2], the Bayesian information
criterion due to Schwarz [47], the consistent Akaike information criterion (CAIC) due to Boz-
dogan [7], the corrected Akaike information criterion (AICc) due to Hurvich and Tsai [30],
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the Hannan-Quinn criterion due to Hannan and Quinn [29] and p-values of the chisquared
goodness of fit statistic.
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Figure 1: Boxplots of the differences between the log-likelihood values
under the folded and truncated unfolded distributions for the
forty five pairs.

The log-returns for each country exhibit heavy tails, presence of heavy tails was tested
using the methods in Koning and Peng [35]. The p-values not reported here showed no
evidence against heavy tails for each country. Hence, the log-returns for each pair of countries
should be expected to exhibit heavy tails too. Of the eight distributions in Section 2, only
the folded bivariate t and folded bivariate skew t distributions exhibit heavy tails.

For the following pairs (USA, CAD), (USA, ARG), (USA, SA), (USA, NG), (CAD,
UK), (CAD, GER), (CAD, CHI), (CAD, JPN), (UK, GER), (UK, BRA), (UK, ARG), (GER,
CHI), (GER, ARG), (CHI, JPN), (CHI, SA), (CHI, NG), (JPN, BRA), (JPN, ARG), (JPN,
SA), (BRA, NG), (ARG, SA) and (SA, NG), the folded bivariate t distribution gave the
best fit. The bivariate t distribution is heavy tailed but is also symmetric. The tests for
bivariate symmetry (Snijders [48]) of the log-returns for these pairs showed no evidence against
symmetry, see Table 3. This explains why the bivariate skew t distribution, a heavy tailed
distribution accommodating for asymmetry, did not provide better fits for these pairs. None
of the other distributions gave a significant p-value at the five percent significance level for
each of these pairs.
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For the following pairs (USA, UK), (USA, GER), (USA, CHI), (USA, JPN), (USA,
BRA), (CAD, BRA), (CAD, ARG), (CAD, NG), (UK, SA), (GER, JPN), (GER, BRA),
(GER, SA), (GER, NG), (CHI, ARG), (JPN, NG), (BRA, ARG), (BRA, SA) and (ARG, NG),
the folded bivariate skew t distribution gave the best fit. The tests for bivariate symmetry of
the log-returns for these pairs showed evidence against symmetry, see Table 3. This explains
why the bivariate t distribution, a heavy tailed but symmetric distribution, did not provide
better fits for these pairs. Again none of the other distributions gave a significant p-value at
the five percent significance level for each of these pairs.

For the five remaining pairs of countries neither of the two heavy tailed distributions
gave the best fit. For the pairs (CAD, SA), (UK, CHI), (UK, JPN) and (CHI, BRA), the
folded bivariate Laplace distribution of the first kind gave the best fit. For the pair (UK,
NG), the folded bivariate Kotz type distribution gave the best fit. The bivariate Laplace and
Kotz type distributions are light tailed and are symmetric. We have not been to explain why
these pairs were not best fitted by a heavy tailed distribution. However, the folded bivariate t

distribution gave the second smallest values for AIC, BIC, CAIC, AICc, HQC and the second
largest p-value for each of these pairs. Furthermore, the tests for bivariate symmetry for these
pairs did not show evidence against symmetry, see Table 3.

Because of space concerns and to avoid repetitive discussion, we give details for only
one of the forty five pairs, (USA, CAD). Table 1 gives the parameter estimates and standard
errors for the fit of the eight folded distributions. Table 2 gives the log-likelihood values, AIC
values, BIC values, CAIC values, AICc values, HQC values and p-values of the chisquared
goodness of fit statistic for the fit of the eight folded distributions. We see that the folded
bivariate t distribution gives the smallest values for AIC, BIC, CAIC, AICc and HQC and
the largest p-value. The folded bivariate skew t distribution gives the second smallest values
for AIC, BIC, CAIC, AICc and HQC. Contours of the joint probability density function of
the best fitting distribution are shown in Figure 2. Also shown in this figure are the actual
data values. The fit appears reasonable.

The magnitude correlations based on the best fits for the forty five pairs are given in
Table 3. Also given in the table are p-values of the likelihood ratio test of the hypothesis that
the absolute values of the components in each pair are independent. All of the correlations
appear positive. This is expected since global economies are so inter dependent these days.
One would not expect large stock values in magnitude for one country to be associated with
small stock values in magnitude for another country or small stock values in magnitude for
one country to be associated with large stock values in magnitude for another country. We
also see that all of the correlations are significant except for (BRA, NG) and (ARG, NG).
The strongest positive and significant correlations are for (UK, GER), (UK, SA) and (USA,
CAD). The weakest positive and significant correlations are for (USA, NG), (CAD, NG),
(UK, NG), (GER, NG), (CHI, NG), (JPN, NG) and (SA, NG).

We now give predictions based on bivariate value at risk curves. Under the folded t

distribution, a bivariate value at risk curve with probability p is the solution of

∫ x

0

∫ y

0
f(u, v)dvdu = p,(3.1)
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where f(u, v) is given by (2.3) with (μ1, μ2, σ1, σ2, ρ, ν) replaced by (μ̂1, μ̂2, σ̂1, σ̂2, ρ̂, ν̂), the
maximum likelihood estimates of (μ1, μ2, σ1, σ2, ρ, ν). So, (x, y) satisfying (3.1) can be inter-
preted as the positive log returns for (USA, CAD) occurring with probability p. The curves
of (x, y) are plotted in Figure 3 for p = 0.9, 0.95, 0.99.

Table 1: Fitted models, parameter estimates and standard errors for USA / CAD.

Model Parameter estimates (ses)

�μ1 = 2.598 × 10−5
�
1.102 × 10−2

�
, �μ2 = 1.215 × 10−4

�
6.726 × 10−3

�
,

folded biv norm �s1 = 1.374 × 10−2
�
2.724 × 10−4

�
, �s2 = 1.410 × 10−2

�
2.844 × 10−4

�
,

�ρ = 7.102 × 10−1
�
1.630 × 10−2

�

�μ1 = 2.112 × 10−3
�
1.037 × 10−3

�
, �μ2 = 5.417 × 10−3

�
6.712 × 10−4

�
,

folded biv t �s1 = 8.997 × 10−3
�
4.028 × 10−4

�
, �s2 = 8.852 × 10−3

�
5.069 × 10−4

�
,

�ρ = 6.842 × 10−1
�
3.804 × 10−2

�
, �ν = 3.589

�
3.350 × 10−1

�

�μ1 = 2.599 × 10−5
�
1.437 × 10−2

�
, �μ2 = 1.215 × 10−4

�
2.831 × 10−3

�
,

folded biv skew norm
�s1 = 1.374 × 10−2

�
2.724 × 10−4

�
, �s2 = 1.410 × 10−2

�
3.447 × 10−4

�
,

�ρ = 7.102 × 10−1
�
1.989 × 10−2

�
, �α1 = 1.789 × 10−11(3.257),

�α2 = −1.953 × 10−12
�
1.823 × 10−1

�

�μ1 = 2.112 × 10−3
�
1.354 × 10−3

�
, �μ2 = 5.417 × 10−3

�
8.358 × 10−4

�
,

folded biv skew t
�s1 = 8.997 × 10−3

�
3.266 × 10−4

�
, �s2 = 8.852 × 10−3

�
2.341 × 10−4

�
,

�ρ = 6.842 × 10−1
�
3.144 × 10−2

�
, �α1 = 0.000

�
6.279 × 10−1

�
,

�α2 = 0.000
�
6.301 × 10−1

�
, �ν = 3.589

�
3.283 × 10−1

�

folded biv logis
�μ1 = −3.405 × 10−3(2.427), �μ2 = 2.300 × 10−3(2.863),
�s1 = 60.4(4962.5), �s2 = 72.3(6761.5)

�μ1 = 13.4(8.4), �μ2 = −13.0(2.3),
folded biv Lap 1 �s1 = 30.8(55.1), �s2 = 34.7(77.3),

�ρ = 9.999 × 10−1
�
3.204 × 10−2

�
, �r = 3.870 × 10−3

�
3.202 × 10−6

�

�μ1 = 4.678 × 10−3
�
4.393 × 10−3

�
, �μ2 = 6.530 × 10−3

�
8.504 × 10−3

�
,

folded biv Kotz
�s1 = 9.928 × 10−3

�
2.001 × 10−2

�
, �s2 = 9.500 × 10−3

�
1.003 × 10−3

�
,

�ρ = 5.823 × 10−1
�
5.332 × 10−2

�
, �r = 200.3(6.2),

�s = 5.821 × 10−2(11.2), �N = 6.838(4.522)

�μ1 = 1.726 × 10−4
�
1.912 × 10−3

�
, �μ2 = −2.919 × 10−3

�
2.455 × 10−3

�
,

folded biv Lap 2 �s1 = 9.928 × 10−3
�
7.655 × 10−2

�
, �s2 = 9.500 × 10−3

�
5.366 × 10−3

�
,

�ρ = 9.999 × 10−1
�
9.022 × 10−2

�

Table 2: Fitted models, log-likelihood values and selection criteria for USA / CAD.

Model − ln L AIC BIC CAIC AICc HQC p-value

folded biv norm −10210.2 −20410.4 −20384.1 −20379.1 −20410.3 −20400.6 0.04
folded biv t −10418.3 −20824.6 −20793.1 −20787.1 −20824.5 −20812.8 0.23
folded biv skew norm −10210.2 −20406.4 −20369.6 −20362.6 −20406.3 −20392.7 0.05
folded biv skew t −10418.3 −20820.6 −20778.6 −20770.6 −20820.5 −20804.9 0.23
folded biv logis 1710.3 3428.5 3449.5 3453.5 3428.5 3436.4 0.01
folded biv Lap 1 −6313.4 −12614.9 −12583.4 −12577.4 −12614.8 −12603.1 0.02
folded biv Kotz −10406.9 −20797.8 −20755.8 −20747.8 −20797.7 −20782.1 0.04
folded biv Lap 2 −4518.0 −9026.0 −8999.7 −8994.7 −9025.9 −9016.2 0.03
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Figure 2: Contours of the joint probability density function of the fitted
folded t distribution for (USA, CAD).

Finally, we check robustness of the fitted models by splitting the data into two halves.
The first half was taken to be the data from 3rd January 2000 to 31 December 2007. The
second half was taken to be the data from 1st January 2008 to 28th February 2014. We fitted
the same models to each half. The results turned out to be the same as before. The folded
bivariate t distribution gave the best fit for (USA, CAD), (USA, ARG), (USA, SA), (USA,
NG), (CAD, UK), (CAD, GER), (CAD, CHI), (CAD, JPN), (UK, GER), (UK, BRA), (UK,
ARG), (GER, CHI), (GER, ARG), (CHI, JPN), (CHI, SA), (CHI, NG), (JPN, BRA), (JPN,
ARG), (JPN, SA), (BRA, NG), (ARG, SA) and (SA, NG) for each half. The folded bivariate
skew t distribution gave the best fit for (USA, UK), (USA, GER), (USA, CHI), (USA, JPN),
(USA, BRA), (CAD, BRA), (CAD, ARG), (CAD, NG), (UK, SA), (GER, JPN), (GER,
BRA), (GER, SA), (GER, NG), (CHI, ARG), (JPN, NG), (BRA, ARG), (BRA, SA) and
(ARG, NG) for each half. The folded bivariate Laplace distribution of the first kind gave
the best fit for (CAD, SA), (UK, CHI), (UK, JPN) and (CHI, BRA) for each half. The
folded bivariate Kotz type distribution gave the best fit for (UK, NG) for each half. The
explanations for these best fits are the same as before.
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Table 3: Estimated magnitude correlations, test for independence and
test for bivariate symmetry.

Pair
Magnitude p-value for p-value for
correlation independence symmetry

(USA, CAD) 0.596 0.000 0.112
(USA, UK) 0.499 0.000 0.006
(USA, GER) 0.533 0.000 0.048
(USA, CHI) 0.298 0.000 0.049
(USA, JPN) 0.153 0.000 0.001
(USA, BRA) 0.531 0.000 0.034
(USA, ARG) 0.317 0.000 0.086
(USA, SA) 0.366 0.000 0.057
(USA, NG) 0.049 0.003 0.074
(CAD, UK) 0.575 0.000 0.065
(CAD, GER) 0.509 0.000 0.095
(CAD, CHI) 0.342 0.000 0.077
(CAD, JPN) 0.189 0.000 0.084
(CAD, BRA) 0.507 0.000 0.021
(CAD, ARG) 0.312 0.000 0.013
(CAD, SA) 0.506 0.000 0.090
(CAD, NG) 0.057 0.001 0.004
(UK, GER) 0.743 0.000 0.068
(UK, CHI) 0.380 0.000 0.082
(UK, JPN) 0.210 0.000 0.062
(UK, BRA) 0.501 0.000 0.067
(UK, ARG) 0.268 0.000 0.081
(UK, SA) 0.626 0.000 0.042
(UK, NG) 0.051 0.002 0.066
(GER, CHI) 0.316 0.000 0.060
(GER, JPN) 0.175 0.000 0.006
(GER, BRA) 0.479 0.000 0.059
(GER, ARG) 0.259 0.000 0.055
(GER, SA) 0.529 0.000 0.008
(GER, NG) 0.043 0.009 0.002
(CHI, JPN) 0.370 0.000 0.075
(CHI, BRA) 0.306 0.000 0.076
(CHI, ARG) 0.152 0.000 0.034
(CHI, SA) 0.372 0.000 0.058
(CHI, NG) 0.064 0.000 0.091
(JPN, BRA) 0.145 0.000 0.094
(JPN, ARG) 0.097 0.000 0.056
(JPN, SA) 0.236 0.000 0.075
(JPN, NG) 0.075 0.000 0.009
(BRA, ARG) 0.351 0.000 0.028
(BRA, SA) 0.435 0.000 0.019
(BRA, NG) 0.022 0.191 0.077
(ARG, SA) 0.215 0.000 0.083
(ARG, NG) 0.020 0.222 0.012
(SA, NG) 0.041 0.012 0.067
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Figure 3: Value at risk curves of the fitted folded t distribution at p = 0.9, 0.95, 0.99
for (USA, CAD).

4. CONCLUSIONS

Motivated by the concept of magnitude correlation of stock returns, we have introduced
the following folded bivariate distributions: the folded bivariate skew normal distribution;
the folded bivariate skew t distribution; the folded bivariate logistic distribution; the folded
bivariate Kotz type distribution; the folded bivariate Laplace distribution of the first kind;
the folded bivariate Laplace distribution of the second kind. We have also introduced the
following folded univariate distributions: the folded univariate skew normal distribution; the
folded univariate skew t distribution.

We fitted eight folded bivariate distributions to forty five real data sets. The two heavy
tailed distributions, the folded bivariate t and folded bivariate skew t distributions, gave the
best fit for forty of the data sets. The remaining five data sets were best fitted by folded
bivariate Laplace distribution of the first kind and the folded bivariate Kotz type distribution,
two of the lighted tailed distributions. We have not been able to explain why these five data
sets were best fitted by light tailed distributions when all of the data sets are heavy tailed.

We also compared the fits of the folded and truncated unfolded distributions using
the same data sets. Remarkably each folded distribution outperformed the corresponding
truncated unfolded distribution for each of the forty five data sets. This shows that magnitude
correlations can be better modeled by folded bivariate distributions.

A future work is to extend the results of this paper for folded multivariate distributions,
folded matrix variate distributions and folded complex variate distributions.
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1. INTRODUCTION

Ranked set sampling (RSS) was introduced by McIntyre [13] as an advantageous al-
ternative to simple random sampling (SRS). McIntyre [13] studied mean estimator based on
RSS and showed that this estimator is more efficient than mean estimator using SRS. Then,
mathematical theory of RSS was first suggested by Takahasi and Wakimoto [25]. By Dell and
Clutter [6], it was proved that mean estimator based on RSS is unbiased and more efficient
than mean estimator based on SRS even if ranking is not perfect. In the literature, there
are some other estimators based on RSS such as estimation of correlation coefficient [22],
estimation of variance [23] and estimation of population proportion [15, 29, 30]. Also, for
more extended literature about RSS, see Kaur et al. [11] and Al-Omari and Bouza [3].

The estimation of cumulative distribution function (CDF) with various settings of the
RSS has been studied by many authors. Stokes and Sager [24] suggested an unbiased es-
timator based on RSS for population distribution function. Samawi and Al-Sagheer [19]
considered EDF estimator based on extreme ranked set sampling and median ranked set
sampling. EDF using double ranked set sampling was investigated by Abu-Dayyeh et al. [1].
Al-Omari [2] studied EDF based on quartile ranked set sampling. Sevil and Yildiz [20] devel-
oped estimation of distribution function using RSS based on level-2 sampling design. Also,
Kolmogorov Smirnov (KS) test statistic based on RSS was compared with KS test statistic
based on SRS by Sevil and Yildiz [20]. EDF estimators using RSS based on three different
sampling designs were given by Yildiz and Sevil [26, 27]. Some goodness of fit tests based
on these EDF estimators were investigated in their study. Sevil and Yildiz [21] discussed
design-based estimators based on level-0, level-1 and level-2 for distribution function of finite
population. Some other distribution function estimators were considered for extreme median
ranked set sampling [12], selective order ranked set sampling [4], partially rank-ordered set [16]
and pair ranked set sampling [28].

By using percentiles instead of quartiles, more flexible selection procedure named as
percentile ranked set sampling (PRSS) was suggested by Muttlak [14]. In Muttlak’s study,
estimation of mean is investigated using PRSS. Since PRSS is general form of quartile ranked
set sampling (QRSS) and extreme ranked set sampling (ERSS), EDF estimators based on
QRSS and ERSS can be obtained by using EDF estimator based on PRSS. Moreover, EDF
estimator based on median ranked set sampling (MRSS) can be derived by using EDF esti-
mator of PRSS when the set size is even. So, the EDF estimator using PRSS becomes quite
useful estimator. Therefore, we considered the performance of EDF estimator using PRSS
under perfect and imperfect rankings.

This study is organized as follows. In section two, PRSS procedure is defined. The
EDF estimator based on PRSS is given in section three. Also, the properties of the EDF
estimator are discussed. In section four, we introduce Frey’s one-parameter ranking error
model [7] and study imperfect ranking case for proposed EDF estimator. Also, we obtained
some results under imperfect ranking in this section. Some inferences about CDF, F (x), are
given in section five. Moreover, body mass index data is used to illustrate the EDF using
PRSS. Finally, some conclusion remarks are stated in section six.
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2. PERCENTILE RANKED SET SAMPLING

Muttlak [14] proposed PRSS as practical sampling scheme according to RSS. In litera-
ture, modified versions of PRSS can be seen such as double PRSS [9] and multistage PRSS
[10].

In this method, p-th and q-th percentile of the sample are selected for full measurement,
0 < p < 1 and q = 1− p. Before we describe the procedure of PRSS, we give some notations.
Let k, l and n denote set size, number of cycles and total sample size, respectively. Also,
(X11j , X12j , ..., X1kj), (X21j , X22j , ..., X2kj), ..., (Xk1j , Xk2j , ..., Xkkj) are random sets of size k

from j-th cycle, j = 1, ..., l. Here, it is assumed that Xitj is selected from a population with
continuous density function f(x) and CDF F (x). The order statistics of the i-th set are
denoted by Xi(1)j , Xi(2)j , ..., Xi(k)j , i = 1, ..., k.

Now, we define the procedure of PRSS. First, k2 units are selected without replacement
from the population. These units are divided into the k random sets, each of size k. In each
set, these units are ranked from the smallest to the largest. If the set size k is odd, PRSS is
denoted by PRSSO and it is obtained by using the following steps:

(i) From the first (k − 1)/2 sets, the r-th smallest units are measured, X(r);

(ii) The median ranked unit is measured from the ((k + 1)/2)-th set, X(m);

(iii) Then, the s-th smallest units are measured from the remaining (k − 1)/2 sets,
X(s);

where r and s are the nearest integer value of p(k + 1) and q(k + 1), respectively. Note that
r = 1 if p(k + 1) < 0.5 and s = k if the nearest integer value of q(k + 1) is larger than k.
If the set size k is even, PRSS is denoted by PRSSE and it is obtained by using the following
steps.

(i) From the first k/2 sets, the r-th smallest units are measured, X(r);

(ii) Then, the s-th smallest units are measured from the remaining k/2 sets, X(s).

To obtain n = lk sample observations, these procedures are repeated l times. PRSSO and
PRSSE are denoted by

PRSSO =
{

X1(r)j , X2(r)j , ..., Xk−1
2

(r)j , Xm(m)j , X k+3
2

(s)j , ..., Xk−1(s)j , Xk(s)j

}
and

PRSSE =
{

X1(r)j , ..., Xk
2
(r)j , X k+2

2
(s)j , ... , Xk(s)j

}
,

respectively, where m = (k + 1)/2 and j = 1, ..., l.

As defined in Stokes and Sager [24], lk independent copies (Y, R) are observed as follows:
R is first selected at random from 1, ..., k and Y is observed according to F(i)(x) (the CDF
of the i-th order statistics), then the marginal joint distribution of Y ’s is the same as that of
the SRS. This statement is given in the part (a) of the Theorem 1 by Stokes and Sager [24].
Part (b) of the Theorem 1 capitalizes on this characterization to link RSS with SRS.
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Let T
′
=(T1, T2, ..., Tk) be a multinomial random vector with lk trials and P =( 1

k , 1
k , ..., 1

k )
be a probability vector. It is supposed that the lk random variables were obtained by first
observing T and then selecting Ti units randomly from a population with probability density
function (PDF) f(i)(x), i = 1, ..., k. Also, the obtained lk units are denoted by Y1, Y2, ..., Ylk.

Theorem 2.1. With the same conditions of Theorem 1 in Stokes and Sager [24], we

give the following:

(1) When the set size is odd, {Y1, Y2, ..., Ylk | T = (0, ..., 0, tr = (k−1)l
2 , 0, ..., 0,

tm = l, 0, ..., 0, ts = (k−1)l
2 , 0, ..., 0)} has the same probability structure as

{Xg(r)j , Xm(m)j , Xh(s)j ; g = 1, 2, ..., k−1
2 ; m = k+1

2 ; h = k+3
2 , k+5

2 , ..., k; j = 1, 2, ..., l}
where ranks of the measured observations could be one of the (r, s) pairs,

{(1, k), (2, k − 1), ...,
(

k−1
2 , k+3

2

)}.
(2) When set size is even, {Y1, Y2, ..., Ylk |T = (0, ..., 0, tr = lk

2 , 0, ..., 0, ts = lk
2 , 0, ..., 0)}

has the same probability structure as {Xg(r)j , Xh(s)j ; g = 1, 2, ..., k
2 ; h = k+2

2 , k+4
2 ,

..., k; j = 1, 2, ..., l} where ranks of the measured observations could be one of the

(r, s) pairs, {(1, k), (2, k − 1), ...,
(

k
2 , k+2

2

)}.
These parts (1) and (2) are proved in Appendices.

3. EMPIRICAL DISTRIBUTION FUNCTION OF PERCENTILE RANKED
SET SAMPLING

In this section, we described the suggested EDF estimator based on PRSS. Also, prop-
erties of the EDF estimator are given. Bias and efficiency of the EDF based on PRSS are
investigated and compared with distribution function estimators using SRS and RSS. It is
assumed that X1, X2, ..., Xn be a simple random sample. EDF based on SRS is denoted by
F̂SRS(x),

F̂SRS(x) =
1
n

n∑
i=1

I(Xi ≤ x).

where I(.) is indicator function. The EDF based on SRS is unbiased estimator of F (x) for
given x, with variance V (F̂SRS(x)) = 1

nF (x)(1 − F (x)).

Stokes and Sager [24] proposed F̂RSS(x) for estimating the distribution function F (x).
Let

{
X1(1)j , X2(2)j , ..., Xk(k)j

}
be the order statistics that are obtained by using RSS,

(3.1) F̂RSS(x) =
1
lk

l∑
j=1

k∑
i=1

I
(
Xi(i)j ≤ x

)
They showed that F̂RSS(x) is unbiased with variance

V
(
F̂RSS(x)

)
=

1
lk2

k∑
i=1

F(i)(x)
(
1 − F(i)(x)

)
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where F(i)(x) is distribution function of the i-th order statistic, and

F̂RSS(x) − E
(
F̂RSS(x)

)
(
V
(
F̂RSS(x)

))1/2

converges in distribution to standard normal as l → ∞, when x and k are held fixed.

Let F̂PRSSO
(x) and F̂PRSSE

(x) are the EDFs of a PRSS data when set size is odd and
even, respectively. If set size is odd,

F̂PRSSO
(x) =

1
lk

⎡⎣ l∑
j=1

k−1
2∑

i=1

I
(
Xi(r)j ≤ x

)
+

l∑
j=1

k−1
2∑

i=1

I
(
X k+1

2
+i(s)j ≤ x

)
+

l∑
j=1

I
(
Xm(m)j ≤ x

)⎤⎦
(3.2)

and if set size is even,

F̂PRSSE
(x) =

1
lk

⎡⎣ l∑
j=1

k
2∑

i=1

I
(
Xi(r)j ≤ x

)
+

l∑
j=1

k
2∑

i=1

I
(
X k

2
+i(s)j ≤ x

)⎤⎦(3.3)

where r ≈ p(k + 1), s ≈ q(k + 1) and m = k+1
2 is the median ranked unit. Under the perfect

ranking, we state the following propositions for some basic properties of these distribution
function estimators.

Proposition 3.1.

(a) Using PRSSO

i. E
(
F̂PRSSO

(x)
)

=
(

1
2 − 1

2k

)(
F(r)(x) + F(s)(x)

)
+ 1

kF(m)(x),

ii. V
(
F̂PRSSO

(x)
)

= 1
lk2

[ (
k−1
2

)(
F(r)(x)

(
1 − F(r)(x)

)
+ F(s)(x)

(
1 − F(s)(x)

))
+

F(m)(x)
(
1 − F(m)(x)

) ]
;

(b) Using PRSSE

i. E
(
F̂PRSSE

(x)
)

= 1
2

(
F(r)(x) + F(s)(x)

)
,

ii. V
(
F̂PRSSE

(x)
)

= 1
2lk

[
F(r)(x)

(
1 − F(r)(x)

)
+ F(s)(x)

(
1 − F(s)(x)

)]
;

where F(r)(x), F(s)(x) and F(m)(x) are distribution function of X(r), X(s) and X(m), respec-

tively.

Part (a) and part (b) are proved in Appendices. As seen in Proposition 3.1, F̂PRSSO
(x)

and F̂PRSSE
(x) are biased estimators for F (x). However, the bias is almost zero as F (x)

gets closer to 1, 0.5 and 0 under perfect ranking. Also, the biases of these estimators do
not depend on the number of cycles. The biases of these EDFs can be calculated by using
following equations.

(3.4) Bias[F̂PRSSO
(x)] = F (x) − E(F̂PRSSO

(x)),

(3.5) Bias[F̂PRSSE
(x)] = F (x) − E(F̂PRSSE

(x)).
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(a) When p = 0.1, the bias of EDFs. (b) When p = 0.4, the bias of EDFs.

Figure 1: Bias for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.

These biases of F̂PRSSO
(x) and F̂PRSSE

(x) are given by Figure 1 when p = 0.1 and p = 0.4.
These EDF estimators are unbiased as F (x) gets closer to 1, 0.5 and 0. The bias increases as k

increases except for F (x) = 0.5. In the Figure 1(b), the blue and black curves are overlapping.

Mean squared error is used as a measure of performance of the proposed estimators.
Then, relative efficiencies (RE) of F̂PRSSO

(x) and F̂PRSSE
(x) with respect to F̂SRS(x) are

described as

RE[F̂PRSSO
(x), F̂SRS(x)] =

V (F̂SRS(x))
MSE(F̂PRSSO

(x))
,

and

RE[F̂PRSSE
(x), F̂SRS(x)] =

V (F̂SRS(x))
MSE(F̂PRSSE

(x))
.

REs are illustrated by the Figure 2. When p = 0.1, it is seen that the REs peak on the middle
of the distribution function. Even, the EDFs based on PRSS are more efficient than the EDF
based on RSS whenever F (x) is close to 0.5 comparing with Stokes and Sager [24]. The REs
increase while the set size increases. When p = 0.4, Figure 2 shows that the REs are higher
on the tails of the distribution function. Whenever F (x) is close to 0.1 (or 0.9) comparing
with Stokes and Sager [24], the EDFs based on PRSS are more efficient than the EDF based
on RSS. Also, the REs are almost equal to or larger than 1 for any F (x) when k = 3, 4, 5, 6
and p = 0.4.

(a) When p = 0.1, the REs of EDFs. (b) When p = 0.4, the REs of EDFs.

Figure 2: REs for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.
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Table 1 indicates REs of EDFs using PRSS when F (x) = 0.1 and F (x) = 0.5 relative
to RSS. The REs are obtained by using the following equations.

RE[F̂PRSSO
(x), F̂RSS(x)] =

V (F̂RSS(x))
MSE(F̂PRSSO

(x))
,

and

RE[F̂PRSSE
(x), F̂RSS(x)] =

V (F̂RSS(x))
MSE(F̂PRSSE

(x))
.

It can be shown that the EDFs based on PRSS (with p = 0.4) have higher performances than
the EDF based on RSS when F (x) = 0.1. Also, the EDFs using PRSS (with p = 0.1) are
more efficient than the EDF using RSS when F (x) = 0.5.

Table 1: The REs of the EDF estimators based on PRSS with respect to RSS.

F (x) = 0.1 F (x) = 0.5

k p = 0.1 p = 0.4 p = 0.1 p = 0.4

3 1.000 1.000 1.760 0.625
4 0.522 2.333 1.473 0.636
5 0.557 1.635 1.227 0.720
6 0.263 7.303 1.045 0.500

The following proposition is needed to study some asymtotic inference about the ex-
pected value of the estimators, F̂PRSSO

(x) and F̂PRSSE
(x). The Proposition 3.2 is proved in

Appendices.

Proposition 3.2. For fixed k and l → ∞, the following results are obtained:

(a)
F̂PRSSO

(x)−E(F̂PRSSO
(x))�

V (F̂PRSSO
(x))

converges in distribution to N(0, 1);

(b)
F̂PRSSE

(x)−E(F̂PRSSE
(x))�

V (F̂PRSSE
(x))

converges in distribution to N(0, 1).

4. IMPERFECT RANKING

The efficiency of PRSS is affected by ranking steps. In general, the ranking is performed
by subjective judgement or according to concomitant (auxiliary) variable that is correlated
to the variable of interest. In the ranking steps, it is assumed that the ranking is completely
accurate. However, this is not a realistic assumption. Therefore, one of the interesting topic
is ranking error models in the literature. Dell and Clutter [6] proposed adaptive perceptual
error model. Bohn and Wolfe [5] suggested ranking error model that constructs the judgement
class distributions as a mixture distribution of the actual order statistics. Then, Frey [7, 8]
extended the model [5] and introduced new class of models for imperfect ranking. Ozturk
[17] estimated the parameters of ranking error models of Bohn and Wolfe [5] and Frey [7, 8].



46 Y.C. Sevil and T.O. Yildiz

He proved that one-parameter ranking error model [7, 8] is more efficient than ranking error
model [5].

In this section, we investigated the effect of imperfect ranking on PRSS using Frey’s
one-parameter judgement ranking [7]. It is assumed that k! possible judgment orderings of
the true order statistics X(i1:h), ..., X(ik:h) selected from a larger set of size h, h ≥ k. Random
selection of set of size k yields

(
h
k

)
possible selection of k order statistics out of h order

statistics in the larger set and all these selections are equally likely. Let AAA(i1, ..., ik) be a
doubly stochastic matrix. Frey [7] specified a way to compute the matrix AAA(i1, ..., ik),

AAA(i1, ..., ik) =
1
k!

∑
π∈Sk

q(iπ(1), ..., iπ(k)) × Per(π(1), ..., π(k)),

where q(iπ(1), ..., iπ(k)) denotes the probability that corresponds to the ordering of X(i1:h) <

··· < X(ik:h), Per(π(1), ..., π(k)) is the permutation matrix whose (i, π(i))-th entry is one
for i = 1, ..., k and all other entries are zero, and Sk is the set of all permutations. The
probabilities q(iπ(1), ..., iπ(k)) are obtained by selecting an appropriate weight function w(π)
with π ∈ Sk. These weights must be normalized, so these are actually probabilities. A class
of weight function was suggested by Frey [7],

w(π) = exp

⎧⎨⎩δ

k∑
j=1

jλ

(
iπ(j)

h + 1

)⎫⎬⎭
where δ is called as power and δ ∈ [0,∞). When δ = 0, a completely random ranking model
is constructed. When δ approaches infinity, the probability q(iπ(1), ..., iπ(k)) concentrates on
the single permutation having the largest value of

k∑
j=1

jλ

(
iπ(j)

h + 1

)
and corresponds to a perfect ranking model. Also, a wide range of imperfect ranking models
can be obtained using the other values of δ. Frey [7] proposed three different λ function
which are λ1(u) = u, λ2(u) = −u−1 and λ3(u) = (1 − u)−1 to obtain symmetric, skewed-left
and skewed-right imperfect ranking probabilities. Note that these probabilities do not depend
on shape of underlying distributions. ΩΩΩ(i1, ..., ik) is a k × h matrix to exhaust the selection
of all possible judgment orderings. In this matrix, the (i

′
, ii′ )-th entry is one for i

′
= 1, ..., k

and all other entries are zero. Then, the matrix product

NNN(i1, ..., ik) = AAA(i1, ..., ik)ΩΩΩ(i1, ..., ik)

is a k×h matrix that constructs relation between AAA(i1, ..., ik) and the set of independent order
statistics X(i1:h), ..., X(ik:h) in the larger set of size h. The distribution of X[i], conditional on
the values of i1, ..., ik is given by

F[i](x|i1, ..., ik) =
h∑

ι=1

NNN(i1, ..., ik)iιF(ι)(x)

where NNN(i1, ..., ik)iι is the (i, ι)-th entry of NNN(i1, ..., ik). When the contribution of all
(
h
k

)
equally likely choices of the values of i1, ..., ik the CDF of X[i] can then be written

F[i](x) =
h∑

ι=1

pk,h(i, ι)F(ι)(x)
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where PPP k,h = (pk,h(i, ι)) is the k × h matrix average

PPP k,h =
(

h

k

)−1 ∑
1≤i1<i2<···<ik≤h

NNN(i1, ..., ik)iι

In our study, we assumed that PPP k,h is a square matrix, so we use PPP and p(i, ι) instead of PPP k,h

and pk,h(i, ι), respectively. For more details about Frey’s one-parameter judgement ranking
model, see Frey [7]. The matrix PPP can be estimated by using an R-function that is proposed
by Ozturk [17] for any correlation coefficient (ρ), the set size (k) and the larger set size (h).
For theoretical backgrounds of the R-function, see Ozturk [17]. In the following example, we
illustrate the matrix PPP .

Example 4.1. It is assumed that set size k = 4 and the units in the set are ranked
perfectly. Then, the matrix PPP is as follows:

PPP =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
If the units in the set are ranked randomly, then the matrix PPP is as follows:

PPP =

⎡⎢⎢⎣
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

⎤⎥⎥⎦

Let us define that Xi[1]j , Xi[2]j , ..., Xi[k]j be judgement order statistics in the i-th set,
i = 1, ..., k and j = 1, ..., l. Then, the EDF based on RSS [24] as follows.

(4.1) F̂ ∗
RSS(x) =

1
lk

l∑
j=1

k∑
i=1

I
(
Xi[i]j ≤ x

)
On the other hand, the measured units in the steps of the PRSS are denoted by X[r], X[s]

and X[m]. Thus, the measured units in PRSSO and PRSSE are represented by

PRSSO =
{

X1[r]j , X2[r]j , ..., Xk−1
2

[r]j , Xm[m]j , X k+3
2

[s]j , ..., Xk−1[s]j , Xk[s]j

}
and

PRSSE =
{

X1[r]j , ..., Xk
2
[r]j , X k+2

2
[s]j , ..., Xk[s]j

}
,

respectively, where m = (k + 1)/2 and j = 1, ..., l. The CDF estimators based on PRSSO

and PRSSE are given by

F̂ ∗
PRSSO

(x) =
1
lk

⎡⎣ l∑
j=1

k−1
2∑

i=1

I
(
Xi[r]j ≤ x

)
+

l∑
j=1

k−1
2∑

i=1

I
(
X k+1

2
+i[s]j ≤ x

)
+

l∑
j=1

I
(
Xm[m]j ≤ x

)⎤⎦
(4.2)
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and if set size is even,

F̂ ∗
PRSSE

(x) =
1
lk

⎡⎣ l∑
j=1

k
2∑

i=1

I
(
Xi[r]j ≤ x

)
+

l∑
j=1

k
2∑

i=1

I
(
X k

2
+i[s]j ≤ x

)⎤⎦(4.3)

where r ≈ p(k + 1), s ≈ q(k + 1) and m = k+1
2 is the median ranked unit. The following

proposition gives the properties of F̂ ∗
PRSSO

(x) and F̂ ∗
PRSSE

(x).

Proposition 4.1.

(a) Using PRSSO

i. E
(
F̂ ∗

PRSSO
(x)

)
=
(

1
2 − 1

2k

)(
F[r](x) + F[s](x)

)
+ 1

kF[m](x),

ii. V
(
F̂ ∗

PRSSO
(x)

)
= 1

lk2

[ (
k−1
2

)(
F[r](x)

(
1 − F[r](x)

)
+ F[s](x)

(
1 − F[s](x)

))
+

F[m](x)
(
1 − F[m](x)

) ]
;

(b) Using PRSSE

i. E
(
F̂ ∗

PRSSE
(x)

)
= 1

2

(
F[r](x) + F[s](x)

)
,

ii. V
(
F̂ ∗

PRSSE
(x)

)
= 1

2lk

[
F[r](x)

(
1 − F[r](x)

)
+ F[s](x)

(
1 − F[s](x)

)]
;

where

F[t](x) =
k∑

ι=1

p(t, ι)F(ι)(x), t = {r, s,m}.

The proof the Proposition 4.1 is the same as the proof of the Proposition 3.1. We gave
an example in order to illustrate obtaining the distribution of judgement order statistics F[t].
Also, we investigated the properties of F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x) under random ranking

case in this example. First, we give the following lemma that is noted by Dell and Clutter
[6]. Detailed proof of this lemma was given by Presnell and Bohn [18].

Lemma 4.1. 1
k

k∑
i=1

F[i](x) = F (x), ∀x.

Using this lemma, the results are provided in the following example.

Example 4.2. Let {X1[r]j , X2[r]j , ..., X k−1
2

[r]j , Xm[m]j , X k+3
2

[s]j , ..., Xk−1[s]j , Xk[s]j} are

obtained using PRSSO under random ranking case. Then, p(t, ι) = 1
k in the matrix PPP for

each t = {r, s,m} and ι = 1, ..., k. Thus, F[t](x) is obtained according to Lemma 4.1:

F[t](x) =
k∑

ι=1

1
k
F(ι)(x) = F (x)

Straightforwardly, it can be seen that

E
(
F̂ ∗

PRSSO
(x)

)
= F (x),

V
(
F̂ ∗

PRSSO
(x)

)
=

1
n

F (x)(1 − F (x)).

Besides, we have to note that the obtained results are not surprising. It means that F̂ ∗
PRSSO

(x)
reduce to F̂ (x) under random ranking case. Obviously, these results are the same for
F̂ ∗

PRSSE
(x) as well.
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Now, we investigated the performances of F̂PRSSO
(x) and F̂PRSSE

(x) under the imper-
fect ranking. To construct imperfect ranking schemes, we take the correlation coefficients as
ρρρ = {0.90, 0.75, 0.50}. The matrix PPP υ, υ = 1, 2, 3 corresponding to each correlation coefficient
are estimated using Ozturk’s R-function. When k = 3, the estimated matrices are

PPP 1 =

⎡⎣0.841 0.151 0.008
0.151 0.698 0.151
0.008 0.151 0.841

⎤⎦,

PPP 2 =

⎡⎣0.762 0.210 0.028
0.210 0.580 0.210
0.028 0.210 0.762

⎤⎦,

and PPP 3 =

⎡⎣0.555 0.303 0.142
0.303 0.395 0.303
0.142 0.303 0.555

⎤⎦,

for ρ = 0.90, ρ = 0.75 and ρ = 0.50, respectively. These matrices are estimated for k = 4,
k = 5 and k = 6 as well. Bias for F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x) are obtained by using Equations

(4.4) and (4.5). Figure 3 gives bias for the CDF estimators based on PRSS with p = 0.1 and
p = 0.4, respectively. For any ρ, these EDF estimators are unbiased as F (x) gets closer to 1,
0.5 and 0. Also, the bias increases as k increases except for F (x) = 0.5. It can be seen that
the biases decrease as ρ decreases. This is a result of the Example 4.2:

(4.4) Bias[F̂ ∗
PRSSO

(x)] = F (x) − E(F̂ ∗
PRSSO

(x)),

(4.5) Bias[F̂ ∗
PRSSE

(x)] = F (x) − E(F̂ ∗
PRSSE

(x)).

Besides, relative efficiencies (RE) of F̂PRSSO
(x) and F̂PRSSE

(x) with respect to F̂SRS(x)
are described as

RE[F̂ ∗
PRSSO

(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗
PRSSO

(x))
,

RE[F̂ ∗
PRSSE

(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗
PRSSE

(x))
.

REs are given by Figure 4 for p = 0.1 and p = 0.4, respectively. For any ρ, it is seen that the
REs peak on the middle of the distribution function when p = 0.1. Also, the REs increase
while the set size increases. On the other hand, the REs are higher on the tails of the
distribution function when p = 0.4. Also, the REs are almost equal to or larger than 1 for
any F (x) and ρ when k = 3, 4, 5, 6 and p = 0.4.

Table 2 gives REs of EDFs using PRSS when F (x) = 0.1 and F (x) = 0.5 relative to
RSS. The REs are obtained by using the following equations.

RE[F̂ ∗
PRSSO

(x), F̂ ∗
RSS(x)] =

V (F̂ ∗
RSS(x))

MSE(F̂ ∗
PRSSO

(x))
,

and

RE[F̂ ∗
PRSSE

(x), F̂ ∗
RSS(x)] =

V (F̂ ∗
RSS(x))

MSE(F̂ ∗
PRSSE

(x))
.
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(a) When p = 0.1, the bias of EDFs for ρ = 0.90. (b) When p = 0.4, the bias of EDFs for ρ = 0.90.

(c) When p = 0.1, the bias of EDFs for ρ = 0.75. (d) When p = 0.4, the bias of EDFs for ρ = 0.75.

(e) When p = 0.1, the bias of EDFs for ρ = 0.50. (f) When p = 0.4, the bias of EDFs for ρ = 0.50.

Figure 3: Bias for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.



Estimation of distribution function using percentile ranked set sampling 51

(a) When p = 0.1, the REs of EDFs for ρ = 0.90. (b) When p = 0.4, the REs of EDFs for ρ = 0.90.

(c) When p = 0.1, the REs of EDFs for ρ = 0.75. (d) When p = 0.4, the REs of EDFs for ρ = 0.75.

(e) When p = 0.1, the REs of EDFs for ρ = 0.50. (f) When p = 0.4, the REs of EDFs for ρ = 0.50.

Figure 4: REs for F̂PRSSO
and F̂PRSSE

where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively.

Table 2 shows that even if ρ = 0.5, the gain in efficiency from EDFs using PRSS with
p = 0.4 (and with p = 0.1) are substantial when F (x) = 0.1 (and when F (x) = 0.5).
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Table 2: The REs of the EDF estimators based on PRSS with respect to RSS.

F (x) = 0.1 F (x) = 0.5

ρ k p = 0.1 p = 0.4 p = 0.1 p = 0.4

3 1.000 1.312 1.000 0.740

0.9
4 0.629 1.379 1.782 0.695
5 0.647 1.233 1.504 0.749
6 0.323 1.128 4.784 0.527

3 1.000 1.185 1.000 0.798

0.75
4 0.749 1.251 1.461 0.760
5 0.738 1.204 1.379 0.785
6 0.434 1.231 2.993 0.578

3 1.000 1.036 1.000 0.936

0.5
4 0.952 1.046 1.091 0.923
5 0.962 1.036 1.070 0.939
6 0.651 1.231 1.775 0.696

The Proposition 4.2 is needed to study some asymptotic inference about the expected
value of the estimators, F̂ ∗

PRSSO
(x) and F̂ ∗

PRSSE
(x).

Proposition 4.2. For fixed k and l → ∞, the following results are obtained:

(a)
F̂ ∗

PRSSO
(x)−E

�
F̂ ∗

PRSSO
(x)
�

�
V
�
F̂ ∗

PRSSO
(x)
� converges in distribution to N(0, 1);

(b)
F̂ ∗

PRSSE
(x)−E

�
F̂ ∗

PRSSE
(x)
�

�
V
�
F̂ ∗

PRSSE
(x)
� converges in distribution to N(0, 1).

The proof of the Proposition 4.2 is similar to proof of Proposition 3.2.

5. INFERENCES ABOUT F (x)

In this section, we now consider a pointwise estimate of F (x). It supposed that we
interest with the proportion, F (x) of population below a specified value X. We know that
100(1 − α)% confidence interval for F (x) using SRS is as follows:

F̂SRS(x) ± Zα
2

√
V̂ (F̂SRS(x))

where Zα
2

is the upper quantile of the standard normal distribution and

V̂ (F̂SRS(x)) =
1

n − 1
F̂SRS(x)

(
1 − F̂SRS(x)

)
.

Also, Stokes and Sager [24] gave a 100(1 − α)% for F (x) using RSS:

F̂RSS(x) ± Zα
2

√
V̂ (F̂RSS(x))
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where

V̂ (F̂RSS(x)) =
1

(l − 1)k

k∑
i=1

F̂(i)(x)
(
1 − F̂(i)(x)

)
.

According to Proposition 3.2, an approximate 100(1 − α)% confidence intervals can be con-
structed when l is larger. For F̂PRSSO

(x), confidence interval of F (x) can be obtained as

(5.1) p

⎛⎝Zα
2
≤ F̂PRSSO

(x) − E(F̂PRSSO
(x))√

V̂ (F̂PRSSO
(x))

≤ Z1−α
2

⎞⎠ = 1 − α,

where

V̂ (F̂PRSSO
(x)) =

1
(l − 1)k2

[(
k − 1

2

)
F̂(r)(x)(1 − F̂(r)(x))

+
(

k − 1
2

)
F̂(s)(x)(1 − F̂(s)(x)) + F̂(m)(x)(1 − F̂(m)(x))

]
.

By solving the Equation (5.1) for E(F̂PRSSO
(x)), the limits are obtained.

Lower Bound(LB) = F̂PRSSO
(x) − Z1−α

2

√
V̂ (F̂PRSSO

(x)),

and
Upper Bound(UB) = F̂PRSSO

(x) + Zα
2

√
V̂ (F̂PRSSO

(x)).

Thus, 100(1−α)% confidence interval of F (x) can be found by solving the following equations,
numerically or any suitable method such as Newton Raphson.

2LB =
1
k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ),
(5.2)

and

2UL =
1
k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ).
(5.3)

For confidence interval of F (x) based on F̂PRSSE
(x),

p

⎛⎝Zα
2
≤ F̂PRSSE

(x) − E(F̂PRSSE
(x))√

V̂ (F̂PRSSE
(x))

≤ Z1−α
2

⎞⎠ = 1 − α,(5.4)

where

V̂ (F̂PRSSE
(x)) =

1
2(l − 1)k

[
F̂(r)(x)(1 − F̂(r)(x)) + F̂(s)(x)(1 − F̂(s)(x))

]
.

Thus, the limits are obtained as

LB = F̂PRSSE
(x) − Z1−α

2

√
V̂ (F̂PRSSE

(x)),

and
UB = F̂PRSSE

(x) + Zα
2

√
V̂ (F̂PRSSE

(x)).
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100(1 − α)% confidence interval of F (x) can be found by solving the following equations:

(5.5) 2LB = F(r)(x) + F(s)(x) = Ψ(F ),

and

(5.6) 2UL = F(r)(x) + F(s)(x) = Ψ(F ).

Note that Ψ(F ) is increasing function in F (x) so the solutions of the Equations (5.2), (5.3),
(5.5) and (5.6) should be unique. Similarly, confidence intervals are obtained using F̂ ∗

PRSSO
(x)

and F̂ ∗
PRSSE

(x).

5.1. A real data application

In the literature, the distribution function estimators are applied to real data such as
bilirubin level [19], lung cancer [28] and airquality [27]. The number of case studies can be
increased. In the case studies, it can be seen that some quantiles are important hence the
probabilities corresponding to them are substantial as well. Thus, if we can estimate the
distribution function, these probabilities can also be estimated.

In this section, we consider body mass index data (BMI) to give an illustrative example.
BMI is a measure for indicating nutritional status in adults. BMI is frequently used to screen
for weight categories that may lead to health problems. A table that includes the weight cat-
egories was reported by World Health Organization (WHO), http://www.euro.who.int/en/
health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

and this categories are given by Table 3.

Table 3: The weight categories.

BMI Nutritional status

Below 18.5 Underweight
18.5−24.9 Normal weight
25.0−29.9 Pre-obesity
30.0−34.9 Obesity class I
35.0−39.9 Obesity class II
Above 40 Obesity class III

According to WHO, the health problems caused by obesity are as follows: premature
death, cardiovascular diseases, high blood pressure, osteoarthritis, some cancers and diabetes.

Orginal data includes 500 adult people (255 of 500 are women) and four variables
such as gender, height (m), weight (kg) and index (0: extremely weak, 1: weak, 2:
normal, 3: overweight, 4: obesity and 5: extreme obesity). This data can be available
in https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex.
However, we assume a population that includes 255 women and their measurements such
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as height (m) and weight (kg) in our study. Note that we limited the population size as 255
to give sample observations. Thus, we aimed to illustrate the application, clearly. Also, it is
supposed that the proportion of women in the Obesity class III is close to 0.5, 1−F (40) ≈ 0.5.
Therefore, using PRSS with p = 0.1 is appropriate in this case. From this population, n = 100
observations are selected using PRSS with p = 0.1. To obtain PRSS, we take the set size and
the number of cycles as k = 5 and l = 20, respectively.

In the process PRSS, 25 observations are first selected at random among 255 women in
j-th cycle, j = 1, ..., 20. Then, the 25 observations are assigned into 5 sets at random. Ranking
the BMI of the 25 observations may be performed by subjective ranking or according to a
concomitant variable such as height of the observations. Also, it is assumed that ranking is
almost perfect. The ranked sets are given as follows.

Table 4: Selected units in PRSS for j-th cycle, j = 1, ..., 20.

Set Ranked Units Measured Units

S1 X1[1]jX1[1]jX1[1]j ≤ X1[2]j ≤ X1[3]j ≤ X1[4]j ≤ X1[5]j X1[1]j

S2 X2[1]jX2[1]jX2[1]j ≤ X2[2]j ≤ X2[3]j ≤ X2[4]j ≤ X2[5]j X2[1]j

S3 X3[1]j ≤ X3[2]j ≤ X3[3]jX3[3]jX3[3]j ≤ X3[4]j ≤ X3[5]j X3[3]j

S4 X4[1]j ≤ X4[2]j ≤ X4[3]j ≤ X4[4]j ≤ X4[5]jX4[5]jX4[5]j X4[5]j

S5 X5[1]j ≤ X5[2]j ≤ X5[3]j ≤ X5[4]j ≤ X5[5]jX5[5]jX5[5]j X5[5]j

In the sets, bold faced units represent the measured BMIs of 5 observations among
25 observations. For the first cycle, the measured BMIs are X1[1]1 = 18.52, X2[1]1 = 12.75,
X3[3]1 = 32.45, X4[5]1 = 52.89 and X4[5]1 = 66.66. These BMIs are given in the first row of
Table 5. 1 − F̂PRSSO

(40) = 0.41 is obtained according to the sample. Also, 95% confidence
interval of 1 − F (40) ≈ 0.5 is (0.35, 0.46).

6. CONCLUSION

In this study, PRSS procedure is considered to estimate the distribution function. Prop-
erties of the EDF using PRSS are investigated. We examined how well the estimator performs
in comparison with its SRS and RSS counterparts. Finally, we can summarize the following
remarks:

1. Whether the ranking is perfect or not, the EDFs based on PRSS are unbiased as
F (x) gets closer to 1, 0.5 and 0.

2. Compared with F̂SRS(x), the EDFs based on PRSS are more efficient under perfect
and imperfect ranking.

3. If there is a known prior information that the value of F (x) gets closer to 0.1, PRSS
with p = 0.4 can be preferred instead of RSS whether the ranking is perfect or not.

4. Also, PRSS with p = 0.1 can be preferred instead of RSS when F (x) is close to 0.5.
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5. As in our application for BMI data, PRSS with p = 0.1 is recommended when
estimating for the center of the distribution.

6. Also, it is suggested to use PRSS with p = 0.4 when estimating the extremes of the
distribution.

7. In many studies on EDF estimators based on RSS and its modifications, theoretical
results are presented for perfect ranking case while empirical results are presented
for imperfect ranking case. Empirical results are obtained by running Monte Carlo
simulations in the studies. Unlike the other studies, the present paper shows that
the proposed EDF estimator can be examined theoretically by using Frey [7]’s
ranking error model even in the case of imperfect ranking.

As a future work, the moment-based (MB) and maximum likelihood (ML) estimators
of the CDF can be considered. A comparable study of the MB, ML and the EDF estimators
based on PRSS can be meaningful. The authors continue to work towards this goal.
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A. APPENDIX

Proof of Theorem 2.1

To prove this theorem, we follow the Proof of Lemma 2.1 in Samawi and Al-Sagheer
[19] and the Proof of Theorem 1 in Stokes and Sager[24].

(1) Units in PRSSO are sampled from specific groups. It is assumed that tr =
(k−1)l

2 observations comes from f(r)(x), ts = (k−1)l
2 from f(s)(x) and tm = l from

f(m)(x), where f(m)(x) is density function of m-th order statistic. Note that
t1 = ··· = tr−1 = 0, tr+1 = ··· = tm−1 = 0, tm+1 = ··· = ts−1 = 0 and ts+1 = ··· =
tk = 0. This is accomplished by first randomly select R from 1, ..., k with re-
placement and if r = 1, r = k or r = m then observe Y according to Fr(x), oth-
erwise reject r. In SRS the order in which the groups are sampled is random,
by rearranging and relabeling, a realization (y1, ..., ykl) of (Y1, ..., Ykl) becomes
(Zr1, ..., Zr

(k−1)l
2

, Zm1, ..., Zml, Zs1, ..., Zs
(k−1)l

2

) the groups {Zij , Zmj′ ; i = r, s;

j = 1, ..., (k−1)l
2 ; j

′
= 1, ..., l}. It is necessary to specify a consistent order for the

units of the PRSSO and SRS to compare their distributions logically. Otherwise,
because of the arbitrariness of listing order, a coordinate wise of PDF’s or CDF’s
between PRSSO and SRS might imply unequal distributions, although the only
difference would be a permutation of coordinates. Given

T =
(

0, ..., 0, tr =
(k − 1)l

2
, 0, ..., 0, tm = l, 0..., 0, ts =

(k − 1)l
2

, 0, ..., 0
)

and P (T = ti)= 1
k , i=1, ..., k then, there are (kl)!

tr!···tm!···ts! =
(kl)!��

(k−1)l
2

�
!
�2

l!
rearrange-

ments of Y yielding the same Z. So the conditional CDF of Y given T = t is
1

P (T = t)
P
{

Zr1 ≤ ar1, ..., Zr
(k−1)l

2

≤ a
r

(k−1)l
2

, Zm1 ≤ am1, ..., Zml ≤ aml,

Zs1 ≤ as1, ..., Zs
(k−1)l

2

≤ a
s

(k−1)l
2

;T

}
=

=
1

(kl)!
(tr!···tm!···ts!)

(
1
k
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k

)tm ···( 1
k

)ts

×
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(
F(r)(ari) × 1

k

)(
F(s)(asi) × 1

k

)
×

l∏
i′=1

(
F(m)(ami

′ ) × 1
k

)⎤⎥⎦
where the sum is over all rearrangements of Y consistent with T = t. So

∑
(k−1)l

2∏
i=1

(
F(r)(ari) × F(s)(asi)

) l∏
i′=1

(
F(m)(ami′ )

)
(kl)!��
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2
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!
�2
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=

(k−1)l
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(
F(r)(ari) × F(s)(asi)

) l∏
i
′
=1

(
F(m)(ami

′ )
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(2) It is assumed that tr = lk
2 observations come from f(r)(x) and ts = lk

2 from f(s)(x),
where f(r)(x) and f(s)(x) are density functions of r-th and s-th order statistics,
respectively. This proof follows from the part (1).

Proof of Proposition 3.1

(a) For F̂PRSSO
(x),

i.

E
(
F̂PRSSO

(x)
)

=
1
lk

⎡⎣ l∑
j=1

k−1
2∑

i=1

E
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑

i=1

E
(
I
(
X k+1

2
+i(s)j ≤ x

))

+
l∑

j=1

E
(
I
(
Xm(m)j ≤ x

))⎤⎦
I
(
Xi(r)j ≤ x

)
, I
(
X k+1

2
+i(s)j ≤ x

)
and I

(
Xm(m)j ≤ x

)
have Bernoulli distribu-

tions with parameters F(r)(x), F(s)(x) and F(m)(x), respectively. Therefore,

E
(
I
(
Xi(r)j ≤ x

))
= F(r)(x),

E
(
I
(
X k+1

2
+i(s)j ≤ x

))
= F(s)(x) and

E
(
I
(
Xm(m)j ≤ x

))
= F(m)(x).

Thus,

E
(
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=
(

1
2
− 1

2k

)(
F(r)(x) + F(s)(x)

)
+

1
k
F(m)(x).

ii.
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)

=
1
lk

⎡⎣ l∑
j=1

k−1
2∑

i=1

V
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑

i=1

V
(
I
(
X k+1

2
+i(s)j ≤ x

))

+
l∑

j=1

V
(
I
(
Xm(m)j ≤ x

))⎤⎦
Since I

(
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)
, I
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2
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and I

(
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)
have Bernoulli

distribution, variance of these indicator functions are given bellow:

V
(
I
(
Xi(r)j ≤ x

))
= F(r)(x)

(
1 − F(r)(x)

)
,
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V (I(X k+1
2

+i(s)j ≤ x)) = F(s)(x)(1 − F(s)(x)),

V
(
I
(
Xm(m)j ≤ x

))
= F(m)(x)

(
1 − F(m)(x)

)
.

Thus, variance of the estimator can be obtained:

V
(
F̂PRSSO

(x)
)

=
1

lk2

[(
k − 1

2

)
F(r)(x)

(
1 − F(r)(x)

)
+
(

k − 1
2

)
F(s)(x)

(
1 − F(s)(x)

)
+ F(m)(x)

(
1 − F(m)(x)

)]
.

(b) E
(
F̂PRSSE

(x)
)

and V
(
F̂PRSSE

(x)
)

can be proved by using the same steps in
Proof (a).

Proof of Proposition 3.2

Following Samawi and Al-Sagheer[19] and Kim et al. [12],

(a) Let Zj = 1
k

⎡⎣ k−1
2∑

i=1

(
I(Xi(r)j ≤x)+I

(
X k+1

2
+i(s)j ≤x

))
+I(Xm(m)j ≤x)

⎤⎦, j =1, ..., l.

Since Zj are independent and identically with finite mean and variance, then
based on Central Limit Theorem⎛⎜⎝ Z̄ − E(Zj)(

var(Zj)
l

)1/2

⎞⎟⎠ D−→ N(0, 1)

(b) Similarly, this part can be proved by assuming

Zj =
1
k

k
2∑

i=1

(
I(Xi(r)j ≤ x) + I

(
X k

2
+i(s)j ≤ x

))
.
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Percentile ranked set sample

Table 5: Sample observations that are obtained using PRSS.

PRSS

l 1st 1st 5th 5th 3rd

1 18.52 12.75 52.89 66.66 32.45
2 23.59 28.20 43.17 53.01 37.57
3 12.75 20.90 66.66 40.75 39.21
4 21.37 20.96 43.11 68.96 30.48
5 16.38 28.07 57.96 57.70 32.42
6 29.17 30.64 52.89 66.66 28.67
7 20.90 22.65 67.06 52.89 35.58
8 25.98 17.43 43.56 57.70 32.42
9 22.63 33.96 44.63 71.93 32.15
10 24.12 22.45 57.96 54.86 30.42
11 20.02 28.07 48.15 59.49 33.77
12 17.43 27.35 68.41 59.69 35.58
13 18.34 16.04 51.17 55.66 32.42
14 24.12 25.46 44.90 53.01 44.79
15 28.07 20.52 32.69 59.94 39.44
16 12.75 35.29 67.94 78.85 49.34
17 33.88 17.09 59.84 71.93 43.56
18 21.37 20.52 39.06 78.85 52.80
19 22.10 32.15 43.17 52.26 39.68
20 23.23 26.40 36.95 63.38 23.59
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• Trees are the main sources of paper production, in most of the cases, as far as the intellectual
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rapid growth of population, urbanization, and increased pollution, more importantly non-judicial
utilization of such kind. Indian education sectors (schools, colleges, universities) utilize a major
part in consumption of papers as a classical practice for conducting examinations and other docu-
mentation activities. Our attempt in this article is to investigate and provide an optimal estimate
of the number of pages actually required in answer booklet in higher education sector. Truncated
Poisson distribution is found to be the best fit for the data on number of pages left blank in an
answer booklet after conduction of semester end examinations. To predict the outcome based on
various factors such as, lines per pages, words per line, types of examinations etc. suitable regres-
sion modelling is performed. A real data set, collected over a period of one month, is been analysed
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1. INTRODUCTION

It goes without saying that trees are the main sources of producing papers, until al-
ternatives are proven to be exactly similar, that are utilized for many possible activities in
day to day execution of us. Most of the paper mills are in existence for a long time and
hence present technologies fall in a wide spectrum ranging from oldest to the most modern.
In Indian scenario, the mills use a variety of raw material viz., wood, bamboo, recycled fibre,
bagasse, wheat straw, rice husk, etc. In terms of share in total production, approximately
25% are based on wood, 58% on recycled fibre and 17% on agro-residues. India’s share in
global paper demand is gradually growing as domestic demand is increasing at a steady pace
while demand in the western nations is contracting. According to Indian Paper Mill Associ-
ation, the domestic demand in India grew from 9.3 million tonnes in financial year 2008-09
to 17 million tonnes in financial year 2017-18 at a compound annual growth rate (CAGR) of
6.9%. The futuristic view is that growth in paper consumption would be in multiples of gross
domestic product and hence an increase in consumption by one kg per capita would lead to
an increase in demand of one million tonnes. Among five important demand drivers, a likely
pick-up from the education sector is prominent one. Printing and writing segment demand is
expected to grow at a CAGR of 4.2% and reach 5.7 million tonnes in financial year 2020-21
on the back of an anticipated pick-up from the education sector with improving literacy rates
and growing enrolment as well as increasing number of schools and colleges.

Therefore, caring nature by reducing the usage of papers is obvious one can easily do, if
not striving for a proper alternative that fulfil our need in every possible sense (see Skog and
Nicholson [13]; Manzardo et al. [8]). Although there are regular plantation of trees required
to produce paper products (Rudel [11]), there are several alternatives of non-judicial and
unstructured ways of misutilization of the same.

The caring nature in paper usage is an indirect approach of caring by scientifically
fulfilling our classical need of papers for examination systems. However, the following two
facts are noted in connection to the improper paper utilization in examination systems at the
different academic institutions in India. Firstly, students are gradually losing the capacity of
writing in case of broad answer type questions, and secondly, the number of pages provided
in the main answer scripts during examination are not scientifically matched with actual
demand or requirement.

Our objective in the current investigation is three-fold:

(a) To identify the distribution of unutilized papers in examination at higher education
and to find an optimal setting for number of papers should be provided in an
answer script;

(b) To find out possible effects due to other variables to the leaving papers blank in
examination answer scripts who take the examination in a classical pattern;

(c) To address the utilization maximization in view of cost constraints related to
answer scripts used.

For the purpose of fulfilling the above objectives, truncated Poisson distribution along with
count regression procedure are applied for modelling supported by a real data illustration.
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A multiple linear discriminant analysis is also performed in view of grouping into important
categories with the help of a real data. The rest of the article is organized as follows. Trun-
cated Poisson is described with its possible applications in section 2. Section 3 deals with
count regression models with emphasis given in right truncated Poisson model with mixed
effects. In section 4, a real data set on the pages left blank at a semester end examination
in a higher education institute in India is been analysed as per the objectives of the research
mentioned above and the corresponding results are discussed in dedicated subsections. Sec-
tion 5 discusses about maximization of a linear utility function of pages in answer scripts
subject to certain cost constraints. Finally, the section 6 concludes.

2. TRUNCATED POISSON DISTRIBUTION

The Poisson distribution is a discrete probability distribution usually applied to the
number of events occurring within a specified period of time or space. Theoretically, the pos-
sible values of a Poisson random variate is non-negative integers (including 0) and there is no
upper limit a Poisson random variate can stop for. The Poisson distribution is characterized
by a single parameter, usually denoted by λ(> 0).

Definition 2.1. A random variable X is said to have a Poisson distribution with
parameter λ if its probability mass function (pmf) is of the form

Pr[X = x] =
λxe−λ

x!
for x = 0, 1, 2, ....(2.1)

Numerous applications of Poisson distribution can be found in literature. Some well
known applications could be, number of arrivals in a service queue during a specific time
interval, number of accidents per month in a city, number of order received per week for
a particular product, number of defects in a quality inspection, and number of printing
mistakes per page in a book. The wide applicability of Poisson distribution, however, does
not lower down its importance, rather newer applications and characterizations are found out
in recent years, see Ahmed [1], Johnson et al. [5], for more details. Nevertheless, the Poisson
distribution is successfully used for situations where some kind of counting is involved.

Truncation in Poisson distribution arises when some specified values are not possible to
record (in terms of process and not in terms of availability) either initially or at the end of a
Poisson variate range. The former is known as left truncation, while the later is known as right
truncation. The theoretical truncated Poisson distribution was introduced by Plackett [10].

Right truncation (omission of values exceeding a specified value r) can occur if the
counting mechanism is unable to deal with large numbers or the counting process under
consideration is bounded by a finite number.

Definition 2.2. A random variable X is said to have a right truncated Poisson dis-
tribution, right truncated at r i.e. the realized values of X is bounded at a specified positive
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integer r, with parameter λ if its pmf is of the form

Pr[X = x] =
λx

x!

⎛⎝ r∑
j=1

λj

j!

⎞⎠−1

, x = 0, 1, 2, ..., r.(2.2)

If X1, X2, ..., Xn are n independent and identically distributed random variables from
right truncated Poisson, then the maximum likelihood estimator (MLE) λ̂ of λ satisfies the
following equation:

(2.3)
r∑

j=1

(x̄ − j)λ̂j

j!
= 0.

The simple estimator (Moore [9]) is λ∗ =
∑

j
xj

m , where m is the number of values of x that
are less than r − 1; this is an unbiased estimator of λ.

3. THE COUNT REGRESSION MODELS

Count data regression models are used for special cases in which the response variable
takes count values. It represents the number of events that occur in a given time period.
Winkelmann [15] studied the number of live births over a specified age interval of the mother,
where the interest was to analyse the variation in terms of the mother’s schooling, age, and
household income. Another example of count modelling is studied by Cameron et al. [2],
where they studied the number of times that individuals utilize a health service, such as
visits to a doctor or days in the hospital in the past year. The most popular methods to
model count data are Poisson and negative binomial regression (Saffari and Adnan [12]).
Poisson regression is the more popular of the two and is applied to various fields.

3.1. Poisson regression model

In many situations of practical interest the response variable in an experiment or ob-
servational study is a count that is assumed to follow the Poisson distribution. Therefore, a
more suitable way to deal with count data is to use the Poisson distribution. The regression
model that uses these kinds of option is called the Poisson regression or the Poisson log-linear
regression model. For more details use of Poisson regression, one could refer to Frome [4],
Lawless [7], Consul and Famoye [3]), Lambert [6] and references therein.

3.2. Truncated Poisson regression models

When the response variable follows a right truncated Poisson distribution, we use right
truncated Poisson regression model. In our investigation, to model the number of pages left
blank in the main answer booklet in semester end examinations, right truncated Poisson
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distribution is utilized owing to the fact that counting is restricted by the total number of
available pages in main answer booklet.

There could be three different varieties for right truncated Poisson regression, namely,
fixed effect model, random effect model, and mixed effect model. We concentrate in right
truncated Poisson regression model for fixed effect on the predictors and random effects for
clusters of explanatory variables. Moreover, the random effects to follow a normal distribution
with mean 0 and variance σ2.

3.2.1. Method of estimation

Suppose that we have a sample of n observations Y1, Y2, ..., Yn which can be treated
as realizations of independent Poisson random variables, with Yi ∼ Poi(λi) right truncated
at Yi ≤ r, and suppose that we want to let the mean λi depend on a vector of explanatory
variables xi and random effects. For the Poisson probability function, a model for count data
truncated on the right at value r can be expressed as

Pr(Yi = yi|Yi ≤ r) =
Pr(Yi = yi)
Pr(Yi ≤ r)

=
λyi

i(∑r
k=0

λk
i

k!

)
yi!

, i = 1, 2, ...,m,(3.1)

where m is the number of observation after truncation.

The standard assumption is to use the exponential mean parametrization,

λi = exp(xT
i β + zi

T ui) , i = 1, 2, ..., n.

In this expression, xi is a vector of covariates and β is a vector of parameters (fixed effect
coefficients). The coefficient β can be interpreted as average proportionate change in the
conditional mean E[Yi|xi] for a unit change is xi. Z is a design matrix of random effects
clusters and u is a vector of random effects for that.

In general matrix notation, we can write it as

λ = exp(Xβ +Zu),(3.2)

where:

X: Design matrix of order n × p for fixed effect explanatory variables;
β: Vector of fixed effect coefficients;
Z: Design matrix of order n×q for random effect explanatory variables (clusters/groups);
u: Vector of random effect coefficients.

The method of hierarchical likelihood method of estimation (h-Likelihood) is used to
obtain the values of regression coefficients. Let Yij(i = 1, ...,m; j = 1, ..., ni) be the observa-
tions of the response variable. Let ui be the unobserved random effect on the ith individual.
We consider the model

(3.3) Pr(Yij = yij |ui, yij ≤ r) =
λ

yij

ij(∑r
k=0

λk
ij

k!

)
yij !
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such that

(3.4) λij = exp(xij
T β + zij

T ui) , i = 1, 2, ..., n.

We assume a normal distribution for the random effects

(3.5) ui ∼ Normal
(
0, σ2

)
.

Therefore, the h-likelihood (h) is defined by

(3.6) h = L1(β; y|u) + L2

(
σ2,u

)
where L1(β; y|u) is the logarithm of the conditional Poisson density function for the response
Y given u with parameter λ = exp(Xβ+Zu), and L2

(
σ2,u

)
is the logarithm of the Normal

density function for the random effect u. Thus,

L1(β; y|u) =
∑
ij

[
yij ln (λij) − log (yij !) − ln

r∑
k=0

λk
ij

k!

]

=
∑
ij

[
yij

(
xij

T β + zij
T ui

)− ln
r∑

k=0

(
exp(xij

T β + zij
T ui)

)k

k!
− log (yij !)

]
(3.7)

and

(3.8) L2

(
σ2,u

)
= −

∑
i

[
ln (2π)

2
+

ln (σ2)
2

+
ui

2

2σ2

]
.

The maximum h-likelihood estimators (MHLEs) are obtained by solving the following equa-
tions:

∂h

∂βl
=
∑
ij

⎡⎣yij − 1∑r
k=0

(exp(xij
T β+zij

T ui))
k

k!

∑
k

(
exp(xij

T β + zij
T ui)

)k

(k − 1)!

⎤⎦xijl = 0

for l = 1, ..., p(3.9)

and

∂h

∂ui
=
∑

j

⎡⎣yij − 1∑r
k=0

(exp(xij
T β+zij

T ui))
k

k!

∑
k

(
exp(xij

T β + zij
T ui)

)k

(k − 1)!

⎤⎦zij − ui

σ2
= 0

for i = 1, ...,m.(3.10)

Iterative techniques like, Fisher scoring or Newton-Raphson method can be used to obtain
the estimators of the parameters. For more details on the method of estimation for truncated
Poisson regression with normal random effects, one could refer to Suaiee [14].

4. APPLICATION WITH REAL LIFE DATA

This section illustrates the methods, described above, with the help of a real data analysis.
For the purpose, a sample of 200 students appeared for semester end examination (SEE) are
collected from a leading higher education institute in India during November-December, 2018.
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Students from various courses and subjects are been considered for balancing possible bias in
sampling procedure. However, convenience sampling scheme were applied with adjustments
in courses and paper types (quantitative and non-quantitative) for which SEE is taken by
the students. Information on the following variables are collected:

1. Course type (under graduate and post graduate);

2. Type of paper written (quantitative and non-quantitative);

3. Number of pages left blank1;

4. Number of lines written per page2;

5. Number of words written per line.

For the last three variables, three random observations are taken to ensure unbiasedness and
their average is considered.

Statistical software R (version 3.6.0) is utilized for calculations and we see that there
are 24% post graduate and 76% undergraduate students in the sample. Quantitative paper
was for 56% and non-quantitative for 44%. From Figure 1, we see that the variable pages
left blank is normally distributed whereas words written per line is positively skewed. The
scatter plots for response variable and predictors are displayed in Figure 2.

Figure 1: Histograms for response variable and predictors.

1The total number of pages in main answer booklet is 25 in the sample collected, excluding front cover
page, its immediate back page and one back cover page.

2Number of lines per page is 29 in the sample collected.
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(a) 2D Scatter plot. (b) 3D scatter plot.

Figure 2: Scatter plots for response variable and predictors.

4.1. Justification for using truncated Poisson

Before going to have certain model building on the response variable “pages left blank”,
let us have the justification for using truncated Poisson distribution (right truncated at 25,
the maximum pages in an answer script). We fit the observations on the number of pages
left blank with Poisson distribution (without truncation) and right truncated Poisson distri-
butions, respectively. We use maximum likelihood (ML) method of estimation and fitted the
Poisson and right Truncated Poisson distributions for the data on the variable “number of
pages left blank”. As a model selection criteria, the following measures are considered:

(i) Akaike information criteria (AIC): AIC = 2k − 2 ln(loglikelihood);

(ii) Bayesian information criteria (BIC): BIC = k ln(n) + 2 ln(loglikelihood).

Here, n: number of observations and k: number of parameters estimated. Lower the values
of AIC and BIC, better is the fit. From Table 1, we observe that, right truncated (truncated
at 25) Poisson distribution is better for the purpose of modeling. We obtain (refer Table 1)
expected number of pages left blank= 11.969 ≈ 12. From Figure 3, we see that the pages left
blank data is fitted with right truncated Poisson distribution.

Table 1: ML estimates and model section measures.

Distribution λ̂ (Std. Error) AIC BIC

Poisson 11.965 (0.24459) 1215.955 1219.253
Right truncated Poisson 11.969 (0.24527) 1214.035 1217.333
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Figure 3: Data fitted with right truncated Poisson and normal curve.

4.2. Truncated Poisson regression with different clusters

In this section we consider response variable as “number of pages left blank”. The
predictors or explanatory variables are taken as “lines written per page” and “number of
words written per line” along with a general mean effect (intercept). We develop three right
truncated Poisson regression models considering normal random effects for three different
cluster types.

4.2.1. Model-A: Course types as clusters

We consider course type classified as “under-graduate” and “post-graduate” as different
clusters having normal random effect. The predictors or explanatory variables are taken as
“lines written per page” and “number of words written per line” along with a general mean
effect (intercept).

Applying right truncated Poisson regression with normal random effects for course types
as clusters, the result obtained is given in Table 2. The log-likelihood, AIC, and BIC values
for the model are obtained as −786.5943, 1579.189, and 1589.084, respectively.

Table 2: Regression analysis table: random effects for course type clusters.

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.03723 (0.10307) 19.766 < 0.0001
Lines per page 0.01666 (0.00378) 4.408 0.00010
Words per line 0.00502 (0.01106) 0.454 0.65000
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4.2.2. Model-B: Each individual as cluster

Next, we have considered each individual/student as different clusters having normal
random effect. The predictors or explanatory variables are taken as “lines written per page”
and “number of words written per line” along with a general mean effect (intercept).

Applying right truncated Poisson regression with normal random effects for individual
clusters, the result obtained is given in Table 3. The log-likelihood, AIC, and BIC values for
the model are obtained as −711.2469, 1428.494, and 1438.389, respectively.

Table 3: Regression analysis table: random effects for individual clusters.

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.10554 (0.10326) 20.392 < 0.0001
Lines per page 0.01349 (0.00378) 3.570 0.00036
Words per line 0.00650 (0.01105) 0.588 0.55683

4.2.3. Model-C: Types of paper written as clusters

We next consider type of paper written (classified as quantitative and non-quantitative)
as two different clusters having normal random effect. The predictors or explanatory variables
are taken as “lines written per page” and “number of words written per line” along with a
general mean effect (intercept).

Applying right truncated Poisson regression with normal random effects for clusters,
the result obtained is given in Table 4. The log-likelihood, AIC, and BIC values for the model
are obtained as −702.2191, 1410.438, and 1420.333, respectively.

Table 4: Regression analysis table: random effects for paper type clusters.

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.13408 (0.10324) 20.670 <0.0001
Lines per page 0.00768 (0.00377) 2.036 0.0418
Words per line 0.01012 (0.01104) 0.916 0.3595

According to AIC and BIC values, Model-C (types of paper written as clusters) comes
out as improved model (refer Table 5). However, for each of the model words written per line
is insignificant predictor.

Table 5: Model comparison and information measures.

Coefficients -Log-likelihood AIC BIC

Model-A -786.5943 1579.189 1589.084
Model-B -711.2469 1428.494 1438.389
Model-C -702.2191 1410.438 1420.333
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4.3. A linear discrimination approach of grouping

In this section, our objective is to determine whether the variables i.e., pages left blank,
lines written per page, and words written per line, will discriminate between quantitative
and non-quantitative type paper. Discriminant analysis is a useful multivariate classification
technique to predict membership in two or more mutually exclusive groups. We have used
paper type (quantitative, non-quantitative) as grouping variable and pages left blank, lines
per page, and words per line as independent variables. We have conducted Box’s test of
homogeneity of covariance matrices and obtained Box’s M value as 13.592 which is significant
with p-value, p = 0.038, to conclude that the groups do differ in their covariance matrices.
Wilks’ lambda, a measure of how well the discriminant function separates cases into groups,
is obtained as 0.543 which is highly significant (p << 0.05). The small significance value
indicates that the discriminant function does better than chance at separating the groups.
The discriminant function is obtained as (considering standardized canonical discriminant
function coefficients)

Di = 0.390 × Bi + 0.923 × Li − 0.288 × Wi,(4.1)

where:

Di: Discriminant score for the ith student;
Bi: Number of pages left blank by the ith student;
Li: Number of lines written per page by the ith student;
Wi: Number of words written per line by the ith student.

The cut-off value of discriminant score is calculated by taking average of group centroids
(mean discriminant score for each group) and is obtained as 18.79. The model will classify
any paper as quantitative if the discriminant score is less than 18.79 and non-quantitative
otherwise. For example, if we take a random observation i.e. an answer script having 9 pages
left blank, 22 lines written per page and 7 words written per line; the discriminant score is
obtained as 0.390× 9 + 0.923× 22− 0.288× 7 = 21.8, which means this answer script would
be classified as a non-quantitative paper type. The classification result (i.e. actual versus
predicted group membership) is shown in Table 6, where the overall 81.5% actual group cases
are correctly classified.

Table 6: Classification results.

Predicted membership
Actual membership

Quantitative Non-quantitative

Quantitative
86 26

(72%) (23%)

Non-quantitative
12 76

(14%) (86%)
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The following important findings along with specific recommendations are noted in this
section:

1. The expected number of pages left blank in main answer script is 12, i.e., expected
number of pages written is 13. We recommend to utilize the residual pages that are
not used in main answer scripts for producing additional answer sheets (each with
4 pages composition). The benefit in doing so is that there could be a reduction in
making cost and wastage of pages would be minimized as additional sheets can be
used whenever required.

2. Types of paper written came out as an important predictor for the response variable,
pages left blank, and hence is a meaningful grouping in discrimination.

3. A cut off score of 18.79 discriminates an answer script in two non-overlapping
categories if certain minimal information is provided.

This next section discusses about a possible maximization of utility of pages in a single
semester of any particular year.

5. DISCUSSION ON UTILITY MAXIMIZATION

The main objective in this section is to discuss about a maximization aspect of the
difference of page utility from current to the modified page numbers, subject to costs incurred
for such modification and to identify the optimal reduction required in number of pages in
answer script. An utility maximization problem can be framed as below:

We define:

X: Number of pages currently used in a main answer script;
N1: Number of main answer script used in any examination;
c11: Making cost per page for an answer script with X number of pages;
X1: Number of pages should be used (after reduction following the procedure described

in section 4) in a main answer script;
c12: Making cost per page for an answer script with X1 number of pages;
c21: Making cost per page for an additional answer script with 4 number of pages;
N2: Number of additional answer script used in any examination;
c22: Per unit cost for making additional (X −X1)/4 number of additional answer script.

Assuming a linear function, let us now define the current and revised utility in terms
of total pages that can be utilized in the whole process:

Current utility: (N1X + 4N2).
Revised utility: N1X1 + 4N2 + N1(X−X1)

4 .

We want to

Maximize U(X, X1) = (N1X + 4N2) −
[
N1X1 + 4N2 +

N1(X − X1)
4

]
+ k

=
3N1(X − X1)

4
+ k,(5.1)
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where k is an integer constant and N1(X − X1) ≡ k (mod 4).

Subject to the constraints,

N1Xc11 − N1X1c12 ≥ A0(5.2)

(surplus cost inequation for main answer script),

4N2c21 +
N1(X − X1)

4
c22 ≤ A0(5.3)

(cost inequation for additional answer script),

with X, X1 ≥ 0.(5.4)

Here, A0 is amount of threshold benefit which is known or specified.

Now, for given values of c′ijs; i = 1, 2, j = 1, 2 and known N1, N2, one can easily optimize
(an integer programming problem) the function in (5.1) for X and X1.

6. CONCLUDING REMARKS

This article provides a scientific way of allocating pages in main answer scripts in clas-
sical examination system in higher education sector. The study is restricted to one particular
higher education institute in India. However, scope for investigations are open for multi-
centric observations in the different educational institute in the same country and/or foreign
institutes. Estimate for the number of pages blank will be an important investigation for
multi-centric study as all the higher education institutes do not provide same number of
pages in main answer scripts. We hope this article shall provide the authorities, all stake
holders, and the student community, an alarming consciousness about the proper utilization
of the pages used for education and thereby shall protect the environment thinking the large
scale impact of the same to the environment.
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1. INTRODUCTION

Given a random variable X defined on a probability space, the quantile of X at level α,
Ψα, is such that α = P[X ≤ Ψα]. However, while univariate quantiles are well documented [3],
the multivariate approach is not as straightforward. The multivariate analysis relies on a
multivariate probability distribution. A useful tool for representing multivariate distributions
is the copula which describes the dependence between random variables. A copula is a d-dimen-
sional distribution function [0, 1]d → [0, 1], where d ∈ N is the number of underlying random
variables [31]. Let G be the multivariate probability distribution of a random vector X =
(X1, ..., Xd)′, i.e. the copula-based probability distribution:

G : (y1, ..., yd) ∈ Rd �→ P[X1 ≤ y1, ..., Xk ≤ yd].

If G1, ..., Gd are the d univariate marginal distribution functions of X, then Sklar’s theorem
affirms the existence of a copula C such that G(y1, ..., yd) = C(G1(y1), ..., Gd(yd)) [40]. Cop-
ulas, as a tool describing the dependence between random variables, have been applied in
many fields, mostly in finance, but also in hydrology [20], astronomy [37, 36], or in telecom-
munication networks [33, 19].

The multivariate quantile of X can be defined as the set of vectors belonging to the
boundary of the α-level set of G. In this set-valued approach, we distinguish the lower-
orthant quantile, Ψα(G), and the upper-orthant quantile, Ψα(G). The lower-orthant quantile
is defined by the set of vectors

(1.1) Ψα(G) = ∂{y ∈ Rd|G(y) ≥ α},

where ∂ denotes the boundary of the mentioned set, whereas the upper-orthant quantile is

(1.2) Ψα(G) = ∂{y ∈ Rd|G(y) ≤ 1 − α},

where G is the survival function associated with G. If (y1, ..., yd)′ ∈ Ψα(G), then

P[X1 ≤ y1, ..., Xd ≤ yd] = α.

In general, the lower-orthant quantile is more conservative than the upper-orthant quantile:
this means that if a vector y belongs to both set-valued orthant quantiles Ψα(G) and Ψα′(G),
then the probability level α′ associated by the lower-orthant quantile to y is lower than the
probability level α associated by the upper-orthant quantile to y.

The notion of multivariate quantile has been studied in various ways in the litera-
ture [38]. For instance we can mention the approach by Embrechts and Puccetti’s [16] based
on the orthant quantiles defined in equations (1.1) and (1.2) for applications in finance and
insurance [11]. Outside the field of finance, the multivariate quantiles have been also stud-
ied [38], and applied in particular to meteorology, where extreme weather depends on a
combination of parameters which cannot be aggregated, such as speed of wind, quantity of
precipitation, temperature, and cloud cover [28] or in hydrology for frequency analysis [9].
These fields require advanced methodological and theoretical support with respect to multi-
variate analysis. Indeed, when dealing with multivariate data, no consensus arises about the
definition of order statistics and quantiles. In particular, the question of quantiles of mul-
tivariate distributions has led to numerous interpretations often inspired by analogies with
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different ways of defining the quantiles of a univariate distribution. Among the various meth-
ods proposed, we can cite the spatial quantile [1, 39, 7, 14] or the geometric quantile [8, 6],
with some applications in finance [24]. The inversion of a mapping is another kind of known
multivariate quantile. In the unidimensional framework, a quantile is indeed defined as the
generalized inverse of the cumulated distribution function. If one defines a mapping F from
Rd to R, then inversions can also define a quantile [27]. The exact definition of a multi-
variate quantile based on the inversion of a mapping is provided by equation (1.1), where
the distribution function G is to be replaced by the mapping F . This method is linked to
multivariate ordering based on a scalarization, which is the ordering of vectors by comparing
scalars, such as isolated coordinates or a function of a linear combination of coordinates [34],
or any mapping [41]. This is the method used for example in the orthant quantile, with F

being in this case the joint distribution of the d coordinates.

Though extensions of orthant quantiles have been proposed, for instance by Cousin
and Di Bernardino [12], who replaced both sets defined by the lower-orthant and the upper-
orthant quantiles by their expected value, engendering a quantile defined by a simple vector
instead of an infinite set of vectors. Also, replacing the set-valued orthant quantile by a
vector-valued quantile has been made possible by selecting a particular direction [42]. The
vector-valued multivariate quantile is then the intersection of the set-valued quantile with a
line in Rd, given the arbitrary choice of the direction of this line. These two singularizations
of the orthant quantile show a need to be able to compare and order multivariate quantiles
of different confidence levels. But a pitfall of the orthant approach is that it does not induce
a total order, as defined below.

Definition 1.1. Given a random vector X defined in a probability space, we consider
a set-valued multivariate quantile function α ∈ [0, 1] �→ Ψα(F ) based on the inversion of a
mapping F : Rd → R defined as the probability of a subset of Rd. In other words, ∀y ∈ Rd,
∃Sy ⊂ Rd, F (y) = P[X ∈ Sy]. We provide the following definitions:

• The vector y ∈ Rd is said to dominate the vector z ∈ Rd if z ∈ Sy. We write it z � y.
If y ∈ Ψα(F ), α is the probability of the set of all the vectors dominated by y.

• The order induced by this set-valued quantile is said to be total if � is a total order.
In particular, ∀y, z ∈ Rd, we have in this case y � z or z � y. If this property does
not hold, the order is said to be partial.

For the lower-orthant quantile, Sy is simply the lower-left orthant of y, that is the set of
vectors for which each component is lower than the corresponding component of y. It could
be interesting to extend the orthant approach, which induces a partial order, to a total order.
We think that this total order is a desirable property for a multivariate set-valued quantile.
Indeed, we consider that if y and z are vectors of Ψα(F ) they should dominate the same
set of vectors, this property leading to a total order. Furthermore, in this case, every vector
x ∈ Ψα′(F ), with α′ < α, is dominated by y and z. This property does not hold for instance
in the orthant approach. The direct consequence of this property is that α is solution of the
equation

(1.3) α = P[X ∈ Ψα′(F )|α′ < α].

In other words, the probability measure of the set-valued quantiles Ψα′(F ) for a probability
level α′ lower than α is exactly α, similarly to the univariate case. To our knowledge, existing
set-valued multivariate quantiles, including orthant quantiles, do not fulfill this property.
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In the family of multivariate quantiles based on the inversion of a mapping F , a proper
choice of F may lead to a total order. We are interested in finding this proper F . In this
quest, we are inspired by another setting of multivariate quantile known as centre-outward
quantile surface. If one is given a statistical depth function, such as the likelihood depth [18]
or the Mahalanobis depth [30], the centre-outward quantile surfaces are defined as concentric
regions around the centre, which is the maximal-depth vector [29, 43]. More precisely, given
a probability p ∈ (0, 1), the p-quantile of a distribution G is the set of vectors of depth αp,
which is defined such that the probability to have vectors of a higher depth than αp is p:
p = P(D(X, G) ≥ αp), where X is a random vector of distribution G and D(X, G) its depth.

The purpose of this paper is to propose an extension of the orthant quantile that
also induces a total order and in particular for which equation (1.3) holds, and to study
its properties. We propose to modify the centre-outward quantile surface to focus on tails
instead of on the centre of the distribution. Instead of determining a spatial median first,
we associate a metric for each vector. Vectors with a metric of the same value are gathered
in an equivalence class. We can then order these classes with respect to this metric. The
metric chosen is the multivariate distribution function and is thus consistent with the orthant
quantile approach. In the quantile surface approach, if y belongs to the p-quantile, then the
metric associated to any random vector X is lower with probability p than the one associated
with y. For this reason, we will use the Kendall probability distribution

K : t ∈ [0, 1] �→ P[G(X) ≤ t],

where G is the multivariate probability distribution function of X, applied to the the random
vector X. The Kendall function indeed defines natural equivalence classes [32]. If vectors y

and z are such that G(y)=G(z), then the vector y is equivalent to z, and these vectors dominate
every vector x such that G(x)<G(y). Contrary to the orthant quantile, we affirm that y is a
vector belonging to the set of the quantile of probability K(G(y)), instead of a probability G(y),
which is lower than K(G(y)) by construction. We base our new definition on the Kendall
stochastic ordering [32] instead of the traditional product ordering. The first one is a total order,
whereas the second one is only partial. An explanatory illustration is provided in Figure 1.

Figure 1: On the left, the thick line is a set of two-dimensional vectors having the same lower-left
cumulated probability. In particular, G(y)=G(z), which is the probability measure of the
lower-left quadrant of y or z. However, some vectors of the lower-left quadrant of z are
not in the lower-left quadrant of y and therefore cannot be compared to y in terms of dom-
inance. On the right, the multivariate probability distribution only leads to the definition
of equivalence classes. Therefore, every vector in the grey zone is dominated by every vec-
tor on the thick line. The vectors dominated by z are the same as those dominated by y.
The probability associated with y and z is therefore the probability measure of the entire
grey zone, that is K(G(y)), which is equal to K(G(z)) and which is greater than G(y).
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This blend of orthant quantile and quantile surface leads to a new definition of the multi-
variate quantile. We call it the lower-orthant or upper-orthant Kendall multivariate quantile,
since it uses the Kendall distribution function. The lower-orthant Kendall multivariate quan-
tile is ΨK

α (G) = ∂{y ∈ Rd|K(G(y)) ≥ α}. The upper-orthant Kendall multivariate quantile is
ΨK

α (G) = ∂{y ∈ Rd|K(G(y)) ≤ 1−α}, where K : t ∈ [0, 1] �→ P[G(X) ≤ t]. According to Def-
inition 1.1, the Kendall multivariate quantile induces a total order, contrary to the orthant
quantile.

In this paper, we present some properties of this multivariate quantile. For instance,
we will observe the extent to which the Kendall multivariate quantiles differ from the orthant
quantiles. In particular, the Kendall multivariate quantile is less conservative than the lower-
orthant quantile and more conservative than the upper-orthant quantile. Indeed, if a vector
y belongs to Ψα(G), Ψα(G), ΨK

αK (G), and ΨK
αK(G), then the probability levels associated to

this vector are ordered in the following way: α ≤ αK ≤ α as well as α ≤ αK ≤ α. Moreover,
nothing indicates which of the lower-orthant quantile and of the upper-orthant quantile should
be preferred. The Kendall quantile can then be seen as a way of diminishing the impact of
such a choice, because there is also a smaller difference between both Kendall quantiles than
between both orthant quantiles: |αK − αK | ≤ |α − α|.

In Section 2, we introduce the Kendall multivariate quantile and some of its properties.
We provide theoretical results comparing the Kendall multivariate quantile with the orthant
ones. In Section 3, we focus on the case of Archimedean copulas and present an application
to simulated data. Section 4 concludes our findings.

2. KENDALL’S MULTIVARIATE QUANTILE

Two approaches relying on Kendall distributions are presented in the next subsection.
Drawing a parallel with lower- and upper-orthant multivariate quantiles presented above, we
formalise the notion of lower- and upper-orthant Kendall quantile. But before this, we state
an assumption that will hold in the whole article.

Assumption 2.1. All the copulas considered have no singular components.

2.1. Definitions

1. Lower-orthant Kendall quantile.

As introduced in the section above, the Kendall distribution function is K : t ∈ [0, 1] �→
P[G(X) ≤ t], where G is the multivariate probability distribution of the random vector X,
associated with a given copula. It is worth noting that the Kendall function does not depend
on the full distribution of X but only on its dependence structure. The Kendall function
has been used, for example, to estimate Archimedean copulas [21] or to create hierarchical
Kendall copulas that deal with high-dimension problems [4]. Using this function, we define
the lower-orthant Kendall quantile.
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Definition 2.1. For a random vector X of dimension d, the lower-orthant Kendall
quantile of probability α ∈ [0, 1], denoted ΨK

α , is the boundary set of the set of vectors
y ∈ Rd such that K(G(y)) ≥ α, where G is the multivariate distribution of X and K the
corresponding Kendall function:

ΨK
α (G) = ∂{y ∈ Rd|K(G(y)) ≥ α}.

2. Upper-orthant Kendall quantile.

Similar to the distinction between lower-orthant and upper-orthant multivariate quan-
tiles, we can make a distinction between two kinds of Kendall quantiles, based either on the
multivariate distribution function G or on the corresponding survival function G. We thus
introduce another Kendall function in Definition 2.2, K : t ∈ [0, 1] �→ P[G(X) ≤ t]. We stress
the fact that K is neither the survival Kendall function associated to G, nor K itself, but it
is the standard Kendall function associated to G.

Definition 2.2. For a random vector X of dimension d, the upper-orthant Kendall
quantile of probability α ∈ [0, 1], denoted ΨK

α , is the boundary set of the set of vectors y ∈ Rd

such that K(G(y)) ≤ 1 − α, where G is the survival function associated to the multivariate
distribution G of X, and K is the Kendall function corresponding to G, that is K : t ∈ [0, 1] �→
P[G(X) ≤ t]:

ΨK
α (G) = ∂{y ∈ Rd|K(G(y)) ≤ 1 − α}.

These different definitions of multivariate quantiles are linked, as exposed in the follow-
ing proposition. Indeed, contrary to lower-orthant and upper-orthant multivariate quantiles,
both Kendall’s multivariate quantiles have some vectors in common.

Proposition 2.1. Let α ∈ [0, 1], G be a non-atomic multivariate distribution function

of dimension d ∈ N, and having a density function whose support is Rd, with K the Kendall

function, supposed to be strictly monotonic, G the survival distribution, both associated with

G, K the Kendall function of G as introduced in Definition 2.2, then:

ΨK
α (G) ∩ ΨK

α (G) 
= ∅.

The proof of Proposition 2.1 is reported in the Appendix.

2.2. Properties

In this section, we focus on specific properties of the Kendall multivariate quantile.
In particular, we specify the difference between the Kendall quantile and the orthant quantile.

As mentioned above, the probability associated with a vector by the Kendall func-
tion is higher (respectively lower) than in the lower-orthant (resp. upper-orthant) approach.
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Using the Fréchet-Hoeffding bounds, it can be demonstrated that t ≤ K(t) ≤ 1 [21] and that
t ≤ K(t) ≤ 1 as well. For a vector y and a multivariate probability distribution G, the lower-
orthant approach links y to the level of probability G(y), whereas the Kendall approach
associates it with a probability K(G(y)), which is, therefore, in the interval [G(y), 1]. In
other words, the two approaches provides a different probability for a same vector. This
probability is higher in the lower-orthant Kendall approach than in the lower-orthant one.
We can compare both quantiles in the following manner:

Proposition 2.2. Let K be strictly monotonic on a neighbourhood of a given proba-

bility α ∈ [0, 1]. Then, the Kendall quantile and the lower-orthant quantile are linked by the

following:

Ψα(G) = ΨK
K(α)(G).

The proof of Proposition 2.2 is reported in the Appendix.

Similarly, we can show that the upper-orthant Kendall quantile (which has a non-empty
intersection with the lower-orthant Kendall quantile as stated in Proposition 2.1) associates
a vector with a lower probability than does the upper-orthant quantile. It is the meaning of
the next proposition, since K is a growing function and since we have 1 −K(1 − α) ≤ α.

Proposition 2.3. Let K be strictly monotonic on a neighbourhood of a given prob-

ability α ∈ [0, 1]. Then, the upper-orthant Kendall quantile and the upper-orthant quantile

are linked by the following:

Ψα(G) = ΨK
1−K(1−α)(G).

The proof is similar to the one of Proposition 2.2 and is thus omitted. We can also
compare the level associated with the lower-orthant Kendall quantile to the level associated
to the upper-orthant quantile, and the comparison can also be between the upper-orthant
Kendall quantile and the lower-orthant quantile.

Proposition 2.4. Let α, α′, α′′ ∈ [0, 1] and G be a probability distribution with no

atoms.

1. If Ψα(G) ∩ ΨK
α′′(G) 
= ∅, then α′′ ≥ α.

2. If Ψα′(G) ∩ ΨK
α′′(G) 
= ∅, then α′′ ≤ α′.

The proof of Proposition 2.4 is reported in the Appendix.

The message conveyed by Propositions 2.2, 2.3, and 2.4 is that both the Kendal quan-
tiles are a compromise between both orthant quantiles.

An interesting metric to compare the lower-orthant Kendall quantile and the lower-
orthant quantile is given by the positive function r : α ∈ [0, 1] �→ K(α) − α. This function r

is the difference of probability associated with a same vector by the lower-orthant Kendall
quantile and by the lower-orthant quantile, for a given level of probability. In other words,
for a probability α, Ψα(G) is a set of vectors corresponding to this probability α. For the
same set of vectors, the lower-orthant Kendall quantile associates another level of probability,
which is K(α) according to Proposition 2.2, and r(α) denotes this difference of probabilities.1

1 For example, the Gumbel copula in Example 3.1 leads to r(α) = −α log(α)
θ

.
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Generally, r can be linked to the Kendall rank correlation coefficient, known as Kendall’s tau
coefficient, as stated by the following proposition.

Proposition 2.5. The average difference between the probabilities associated to the

Kendall function and to the sole copula, for d-dimensional vectors and a continuous copula,

is the following: ∫ 1

0
r(α)dα = (1 − τ)

(
1
2
− 1

2d

)
,

where τ is the Kendall rank correlation coefficient.

The proof of Proposition 2.5 is reported in the Appendix.

In the bivariate case, this average difference is (1 − τ)/4 which belongs to [0, 1/2], due
to the fact that τ ∈ [−1, 1]. When d tends toward infinity, the average difference increases
concomitantly with the dimension d, up to (1 − τ)/2 ∈ [0, 1]. The case of the independent
copula, for which τ = 0, leads to an average r of (1/2) − (1/2)d, whose value, 1/4 for d = 2,
progressively increases with the dimension up to 1/2. It confirms the analysis presented in
Example 3.2. If we consider comonotonic coordinates, then τ = 1 and the average r is equal
to zero, whatever the dimension d. Graphically, it corresponds to a case where all the vectors
dominated by a reference vector belong to the lower-left quadrant of this reference vector. The
order implied by the orthant quantiles, which is partial in general, is total in this particular
case, and there is no difference between the orthant and the Kendall quantiles. In the case of
the opposite, if the coordinates are countermonotonic then τ = −1 and the average r reaches
its maximum, 1− (1/2)d−1, which goes from 1/2, for d = 2, to 1, when d goes toward infinity.

Additionally, we can quantify the difference between the probability associated to
a vector by the upper-orthant method and by the upper-orthant Kendall method: r :
α ∈ [0, 1] �→ α − (1 −K(1 − α)) which is a positive function. Proposition 2.6 states that the
average twist r of the probability level between the upper-orthant quantile and the upper-
orthant Kendall quantile is, in absolute value, exactly the same as the average twist r between
the lower-orthant quantile and the standard Kendall quantile.

Proposition 2.6. The average difference between the probabilities associated to the

sole survival copula and to the Kendall function of the survival copula, for d-dimensional

vectors and a continuous copula, is the following:∫ 1

0
r(α)dα = (1 − τ)

(
1
2
− 1

2d

)
,

where τ is the Kendall rank correlation coefficient.

The proof of Proposition 2.6 is reported in the Appendix.

In the framework of Proposition 2.1, where the upper-orthant and the lower-orthant
Kendall quantiles have a non-empty intersection for a given probability level, the vectors
belonging to both Kendall quantiles can thus be seen as a balanced compromise between
lower- and upper-orthant quantiles. Indeed, in absolute value, they twist the probability
associated with both in average over all the possible probability levels similarly, as stated in
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Propositions 2.5 and 2.6. Nevertheless, for a particular level of probability, the lower-orthant
Kendall quantile can be closer to one or to the other.

In addition to the average error, we can calculate an upper bound of the limit error
r(α), when α tends to 0 or 1, and more widely of the probability distortion between the
lower-orthant and the upper-orthant quantiles. We call probability distortion the difference
of probability according to the lower-orthant and the upper-orthant approach for a vector x

belonging to both sets: if x ∈ Ψα(G)∩Ψα′(G), the probability distortion is α′−α. It depends
on α but also on the choice of x in Ψα(G). To establish ideas, we will focus on a particular
x corresponding to equal marginal probabilities: x = (G−1

1 (u), ..., G−1
d (u)), where u ∈ [0, 1] is

well chosen to have x ∈ Ψα(G). So we have u = δ−1(α), where δ : v ∈ [0, 1] �→ C(v, ..., v) is the
diagonal section of the copula C associated to the joint distribution G. This choice is possible
only if δ is invertible. As x is an element of the set Ψα(G), the probability associated with x

in the lower-orthant approach is α. By definition of the upper-orthant quantile, x is also an
element of the set Ψα′(G) with α′ = 1−G(x) = 1−G

(
G−1

1

(
δ−1(α)

)
, ..., G−1

d

(
δ−1(α)

))
. If we

note α �→ R(α) the function of distortion of probability between the lower-orthant and the
upper-orthant quantiles, then R(α) = α′ − α, which we can equivalently write:

(2.1) R : α ∈ [0, 1] �→ 1 − α − G
(
G−1

1

(
δ−1(α)

)
, ..., G−1

d

(
δ−1(α)

))
.

In Proposition 2.7, we propose an upper bound for R(α)/α.

This distortion R(α) is directly linked to the notion of tail dependence. For a bivari-
ate variable, the lower tail dependence λL is the following limit, if it exists: limα→0 P(X1 ≤
G−1

1 (α)|X2 ≤ G−1
2 (α)). Owing to Bayes’ rule, this expression is symmetric in each component

of the vector. Moreover, it only depends on the copula and not on the marginals. In higher
dimension, one can define several lower tail dependence parameters corresponding to vari-
ous choices of subsets Ik ⊂ {1, ..., d} of size k: λL,Ik

= limα→0 P(Xi ≤ G−1
i (α),∀i ∈ Ik|Xj ≤

G−1
j (α),∀j ∈ Īk) [13, 15]. Contrary to the case d = 2, this expression depends, in general, on

the composition of Ik and not only on its cardinal. We will limit the study to a particular
case of exchangeable copulas, for which λL,Ik

= λL,I′k if |Ik| = |I ′k|. This assumption is in
particular verified for Archimedean copulas [15], and we subsequently write λL,k instead of
λL,Ik

. Symmetrically, one can define upper tail dependence parameters. For instance, for
bivariate variables, it is λU = limα→1 P(X1 > G−1

1 (α)|X2 > G−1
2 (α)), if the limit exists.

Proposition 2.7. Let R be defined as in equation (2.1) for an exchangeable copula C

such that δ : v ∈ [0, 1] �→ C(v, ..., v) is invertible. If all the lower and upper tail dependence

parameters exist and are noted λL,k and λU,k, for k ∈ {1, ..., d − 1}, then the asymptotic

difference R(α) between the probabilities associated to the lower- and upper-orthant quantiles

is such that the following is applicable:

(2.2) lim
α→0

R(α)
α

≤ 1
λL,d−1

d−1∑
k=1

(
d

k

)
(1 − λL,k)

with equality only if the lower tail dependence parameters are all equal to 1, and

(2.3) lim
α→1

R(α)
1 − α − R(α)

≤ 1
λU,d−1

d−1∑
k=1

(
d

k

)
(1 − λU,k),

with equality only if the upper tail dependence parameters are all equal to 1.

The proof of Proposition 2.7 is reported in the Appendix.
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Proposition 2.7 gives an upper bound for the difference of probability associated to the
lower-orthant and the upper-orthant approaches. Naturally, the level of probability associated
to the corresponding Kendall quantile is between lower-orthant and upper-orthant measures.
In particular, r(α) ≤ R(α). This provides an upper bound for r(α). When d = 2, inequalities
in Proposition 2.7 are simplified and upper bounds in equations (2.2) and (2.3) are 2(λ−1

L − 1)
and 2(λ−1

U − 1) respectively. In special cases, if the lower tail dependence is strong, λL is close
to 1 and the upper bound in equation (2.2) is close to 0: the lower-orthant, upper-orthant
and Kendall quantile are very close in the lower tail. On the contrary, when the lower tail
dependence is weak, λL is close to 0 and the upper bound in equation (2.2) tends to infinity:
the lower-orthant, upper-orthant and Kendall quantiles are very disparate in the lower tail.

In Proposition 3.1, we use the result of Proposition 2.7 in the particular framework of
Archimedean copulas with regularly varying generators.

3. KENDALL’S MULTIVARIATE QUANTILE FOR AN ARCHIMEDEAN
COPULA

In this section, we assume that the multivariate distribution of the random vector X

of dimension d is provided by an Archimedean copula C of generator φ:

C : (u1, ..., ud) ∈ [0, 1]d �→ φ−1

⎛⎝ d∑
j=1

φ(uj)

⎞⎠.

It is a wide class of copulas which includes the following copulas: independent, Gumbel,
Clayton, Frank, Joe, and Ali-Mikhail-Haq, among others. Moreover, this framework leads
to simple expressions for the Kendall function, so that it is an interesting illustration of our
theory.2

3.1. Theoretical results

In this Archimedean framework, we make some assumptions regarding φ.

Assumption 3.1. The generator φ is such that:

• φ : (0, 1] → [0,∞),

• φ(1) = 0,

• φ is strict, that is limt→0+ φ(t) = ∞,

• (−1)i(φ−1)(i)(x) > 0 for all 1 ≤ i ≤ d and all x ≥ 0, 3

• limt→0+ φ(t)i(φ−1)(i)(φ(t)) = 0 for all 1 ≤ i ≤ d − 1.

2 It is known that Archimedean copulas can be difficult to use in high dimensions for the purpose of
estimation. Nevertheless, the vine approach permits bypassing this problem. Vine copulas are indeed based
on nested bivariate copulas instead of a sole high-dimension copula [10, 25, 26]. Statistical selection techniques
may help to truncate the vine so as to reduce the dimension of the problem in a relevant way [5]. For non-
Archimedean copulas, semi-parametric methods may be used to estimate the Kendall function [35].

3 In particular, φ is strictly decreasing and convex.
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In Assumption 3.1, the fact that the generator is strict is intended to avoid that the
zero curve of the copula may have a non-zero probability. The other assumptions are required
by equation (3.1), which derives the Kendall distribution function in the Archimedean case
with the help of the generator φ:

(3.1) K : t ∈ (0, 1] �→ t +
d−1∑
i=1

(−φ(t))i

i!
(φ−1)(i)(φ(t)),

where f (i) denotes the i-th derivative of f [2, 22]. We now apply this formula in two examples.

Example 3.1. The Gumbel copula is an Archimedean copula of parameter θ ≥ 1,
generated by the function

φ : t �→ (− log(t))θ.

When θ = 1, the Gumbel copula is equal to the independent copula. The inverse generator
is φ−1(x) = exp(−x1/θ). According to equation (3.1), if we consider the bivariate case, the
Kendall function is as follows:

K : t �→ t − t log(t)
θ

.

In Figure 2, we demonstrate how the Kendall function behaves when θ changes: the greater
θ, the closer the Kendall function and the identity. In particular, when θ tends to infinity,
K converges toward the identity, so that the lower-orthant Kendall quantile and the lower-
orthant quantile are equal in this limit case.

Figure 2: Kendall function (in grey) of the Gumbel copula for θ = 1 (thick line), θ = 2
(medium line), and θ = 3 (thin line). The greater the difference between the Kendall
function and the identity (in black, corresponding to θ → ∞), the greater the dif-
ference between the lower-orthant Kendall quantile and the lower-orthant quantile.

Example 3.2. The independent copula leads to easy formulas in higher dimensions.
It is a particular case of the Gumbel copula with θ = 1. According to equation (3.1), for a
dimension d ≥ 2, we get the following formula for K:

K : t �→ t

(
1 +

d−1∑
i=1

(− log(t))i

i!

)
.

When d goes to infinity,
∑d−1

i=1
(− log(t))i

i! tends toward −1+e− log(t) = −1+1/t, for every t 
= 0.
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Therefore, the limit behaviour of K, for d → ∞, is a discontinuous function equal to 0 for
t = 0 and equal to 1 everywhere else. It leads to the maximal difference possible between the
lower-orthant Kendall quantile and the lower-orthant quantile. In Figure 3, we observe the
Kendall function for various values of d.

Figure 3: Kendall function (in grey) of the independent copula for d = 2 (thick line), d = 3
(medium line), d = 4 (thin line), and the limit case d → ∞ (dotted line). The greater
the difference between the Kendall function and the identity (in black), the greater
the difference between the lower-orthant Kendall quantile and the lower-orthant
quantile.

In Proposition 2.7, we saw that the probability distortion between the orthant and
Kendall approaches was linked to the tail dependence. This is true, regardless of what the
copula is. In the case of Archimedean copulas, we have an additional result allowing to link
the probability distortion to the regular variations of the inverse generator. We first recall
the definition of a regularly varying function:

Definition 3.1. A function f is regularly varying at 0, with index ρ, if

∀s > 0, lim
x→0+

f(sx)
f(x)

= sρ.

Then, we note f ∈ RVρ(0).

Proposition 3.1. If, for a given bivariate Archimedean copula, the inverse generator

φ−1 ∈ RV−ρ(0), with ρ > 0, then the asymptotic difference R(α) between the probabilities

associated to the lower- and upper-orthant quantiles, as defined in equation (2.1), is such

that the following holds:

(3.2) lim
α→0

R(α)
α

≤
d−1∑
k=1

(
d

k

)(
d1/ρ − (d − k)1/ρ

)
.

Proposition 3.1 is a direct consequence of Proposition 2.7 with Theorem 2.1 of lower
tail coefficients in [15]. In equation (3.2), for bivariate variables, the upper bound is 2(21/ρ−1).
The faster φ−1 varies, the greater |ρ| and the closer to zero is the upper bound of equa-
tion (3.2). On the contrary, slowly varying inverse generators are associated with a big
probability distortion between lower-orthant, upper-orthant and Kendall approaches.
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3.2. Simulation experiments

In this section, we apply the methodology presented above and evaluate the Kendall
quantile using various Archimedean copulas. More precisely, we first illustrate the probability
transformation implied by the Kendall distribution. Then, we present and compare orthant
and Kendall quantiles with the help of simulations.

The different existing versions of Archimedean copulas are intended to depict various
types of tail dependence [17]. Figure 4 shows how the Kendall distribution evolves with the
type of copula we are using. It is interesting to note that the shape of the Kendall distribution
obtained with a particular copula is consistent with the nature of the tail dependence of the
copula. In other words, if the copula captures an upper-tail dependence behaviour, that is if
extreme positive events have a tendency to occur simultaneously while others are independent,
the Kendall distribution inflexion point is located in the left tail of the distribution. It is for
instance the case of the Gumbel or, more sharply, of the Joe copula. If the copula captures
a lower-tail dependence behaviour, as it is the case for the Clayton copula, the Kendall
distribution inflexion point is located in the right tail of the distribution. The Frank copula
is more body-centred, i.e. events present in the body are more dependent than those present
in the tails. In this case, the twist in the Kendall function is similar for lower and upper tails.
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Figure 4: Kendall functions of four Archimedean copulas: Clayton, Gumbel, Frank, and Joe.
The parameters of each copula are varying from 1 to 25. The bisector of the unit
square corresponds to the orthant approach.
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We now compare the quantiles obtained from the orthant and the Kendall approaches.
Recall that multivariate quantiles will be represented by sets of vectors. To initiate our
experimentation, we build a Clayton copula function, with parameter equal to 3. We used two
lognormal marginal distributions, with the following sets of parameters: (μ = 5, σ = 2) and
(μ = 8, σ = 1.2). Lower-orthant quantiles are obtained by calculating all the combinations of
all pairs of margins providing the same bivariate probability. As analysed above, the Kendall
distribution transforms the natural probabilities, taking into account the shape of the copula.
This transformation allows us to calculate, in a similar fashion, the lower-orthant quantile
and the Kendall quantile, transforming the lower-orthant percentile into the Kendall one.

Figure 5 shows lower-orthant, upper-orthant, and lower-orthant Kendall quantiles using
the Clayton copula. In this figure, the dotted line, which is a set of vectors, represents the
lower-orthant Kendall quantile, the continuous line located above4 the dotted line represents
the lower-orthant quantile, and the continuous line located below represents the upper-orthant
quantile. In this figure, the quantile is given at the same percentile, but we see that the
lower-orthant Kendall quantile is not equivalent to the lower-orthant quantile, as the Kendall
function twists the probabilities. As a result, the lower-orthant quantile curve which is
identical to the lower-orthant Kendall quantile curve of probability level α is below the lower-
orthant quantile obtained at the same percentile α. The opposite is observed for upper-
orthant quantiles. Indeed, Figure 5 shows the orthant quantiles obtained for α equal to 71%,
as well as their Kendall equivalent, i.e. for K(α) also equal to 71%. To obtain this specific
value for K(α), α has to be equal to 56%. In other results not displayed in figures, the
lower-orthant Kendall quantile of probability level 86% or 98% is equal to the lower-orthant
quantile of probability level 80% or 89%. This illustrates the probability distortion induced
by the choice of copula and the Kendall function.
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Figure 5: Lower-orthant Kendall quantile obtained using a Clayton copula with two different
lognormal marginal distributions. The probability level is 71% for the Kendall quantile
as well as for its lower-orthant (above) and upper-orthant (below) counterparts.

4 The comparison between these sets of vectors must be understood in the sense of the lexicographical
order for each pair of vectors.
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4. CONCLUSION

In this paper, we focus on theoretical results on the concept of Kendall multivariate
quantile, which allows for the calculation of a multivariate quantile using the probability
transformation implied by the Kendall distribution. For instance, the Kendall distribution
captures the intrinsic characteristics of the dependence architecture represented by the se-
lected copula (non-linearity, upper or lower tail dependence etc.) and transfers it in one
dimension. Therefore, the Kendall distribution allows the operation of a percentile trans-
formation. We provide a simple relationship between the Kendall quantiles and the orthant
quantiles, which allows to define the Kendall quantiles as a compromise between the bounds
represented by both orthant quantiles. We also quantify the differences between the Kendall
quantiles and the orthant quantiles, and link these asymptotic differences to tail dependence
parameters.

For the orthant quantiles as well as for the Kendall quantiles, we observed that the non-
linearity of the copulas implies that the sums of each set representing a given percentile are
not constant. This phenomenon will have an important impact if any of these methodologies
are used within financial institutions (for instance, banks or insurance companies), as if these
approaches are used to evaluate the diversified capital pertaining to the various risks faced
by them, the accurate value of the capital as well as the allocation of this capital will be
problematic. Indeed, multiple sets of values will be representative of the same level of risks
going from one end to the other.

In terms of applications, this result provides a variety of possible interpretations which
will be the purpose of a companion paper, though as mentioned in introduction, it is an
important topic considering the implications in terms of financial and climatic risks measure-
ment.
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A. APPENDIX – Proofs

Proof of Proposition 2.1: Let L = {y ∈ Rd | K(G(y)) ≤ α} and U = {y ∈ Rd |
K(G(y)) ≤ 1−α}. Let g be the probability measure associated with G. Then, by inversibility
of the strictly monotonic K, g(L) = P[K(G(X))≤α] = P[G(X)≤K−1(α)] = K(K−1(α)) = α

and g(U) = 1−α. If ΨK
α (G)∩ΨK

α (G) = ∅, there are two possibilities: L and U are overlapping
or they are not, but in both cases they have no boundary in common.

1. Either L ∩ U is an infinite and closed set. Since ΨK
α (G) ∩ΨK

α (G) = ∅, every vector
is at least in one of the two sets L and U . The probability measure of L∩U is then
strictly positive, thanks to the assumptions regarding G, but it is contradictory
to the fact that the measure of Rd, equal to 1, is then g(L) + g(U) − g(L ∩ U) =
α + (1 − α) − g(L ∩ U) = 1 − g(L ∩ U).

2. Or the set S of vectors, defined by S = Rd \ (L ∪ U), is an infinite and closed set.
Then, similar to the previous case, 1 = g(L) + g(U) + g(S) = 1 + g(S), which is
contradictory to the fact that its probability measure is expected to be strictly
greater than 0.

Proof of Proposition 2.2: Let A = {y ∈ Rd | G(y) ≥ α} and B = {y ∈ Rd |
K(G(y)) ≥ K(α)}.

• K is an increasing function, since it is a probability distribution function. Therefore,
it follows immediately that A ⊂ B.

• The reciprocal inclusion does not hold in general. However, with the assumption of
strict monotonicity of K in a neighbourhood Vα of α, the restriction of K to Vα is
invertible. Let y ∈ B and α′ ∈ Vα such that α′ < α (it does not exist if α = 0 but
this case is trivial). Therefore, K(α′) < K(α). Let’s assume y /∈ A. Then G(y) < α.
Two cases arise here. First, if G(y) ≤ α′, then K(G(y)) ≤ K(α′) < K(α), which is
contradictory to the assumption y ∈ B. Second, if G(y) ∈ (α′, α), then G(y) is in Vα,
so that K(G(y)) < K(α); the contradiction also holds. Therefore, the assumption
y /∈ A was absurd, and we can conclude that B ⊂ A.

• Finally, A = B.

As a consequence, when considering the definition of both quantiles, we get the following:

Ψα(G) = ∂{y ∈ Rd|G(y) ≥ α}
= ∂{y ∈ Rd|K(G(y)) ≥ K(α)}
= ΨK

K(α)(G).

Proof of Proposition 2.4: We prove the second assertion, the proof for the first one
being similar. Whatever y and z in ΨK

α′′(G), z cannot be in the interior of the upper orthant of y.
Indeed, in such a case, G(z)>G(y) or, if G(z)=G(y), y would not be on the border of A=
{x∈Rd |K(G(x))≥α′′}, since all the lower orthant of z, in the interior of which is y, belongs toA.

Let y ∈ Ψα′(G) ∩ ΨK
α′′(G). The probability measure of the upper orthant U of y is

1 − α′. Since no vector of A is in the interior of U , the probability measure of A, which is
equal to α′′, is lower than the measure of the complement set of U , since G has no atoms.
Therefore, α′′ ≤ 1 − (1 − α′) = α′.
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Proof of Proposition 2.5: Kendall’s tau and the Kendall function are linked by the
following relation, for a continuous copula [22]:

τ =
2d − 1 − 2d

∫ 1
0 K(α)dα

2d−1 − 1
.

Therefore: ∫ 1

0
r(α)dα =

∫ 1

0
(K(α) − α)dα

=
2d − 1 − (2d−1 − 1)τ

2d
− 1

2

= (1 − τ)
(

1
2
− 1

2d

)
.

Proof of Proposition 2.6: By a change of variable, we have the following:∫ 1

0
r(α)dα =

∫ 1

0
(K(α) − α)dα

=
∫ 1

0
K(α)dα − 1

2
.

Moreover, we note that K is, according to Definition 2.2, the Kendall function corresponding
to the survival distribution function. It can thus be written in terms of the Kendall’s tau of
the survival copula, τ : ∫ 1

0
K(α)dα =

2d − 1 − (2d−1 − 1)τ
2d

.

Besides, we know that the Kendall’s tau of the survival copula is equal to the Kendall’s tau
of the copula itself [23], so that τ = τ . This immediately leads to the result stated in the
proposition.

Proof of Proposition 2.7: First, we look for u ∈ [0, 1], such that α ∼
α→0

G(G−1
1 (u), ...,

G−1
d (u)). By using the corresponding copula, this is equivalent to α ∼

α→0
C(u, .., u). By Bayes’

rule, we thus should have

α ∼
α→0

uλL,d−1.

Therefore, we define u as α/λL,d−1.

Then, we define a vector (x1, ..., xd) = (G−1
1 (u), ..., G−1

d (u)). Since G(G−1
1 (u), ..., G−1

d (u))
= α, this vector belongs to Ψα(G). It also belongs to Ψα+R(α)(G), by the definition of R(α).
Incidentally, the probability measure of the complement of the upper right quadrant of this
vector (x1, ..., xd), that is to say α + R(α), is such that the following is applicable:

α + R(α) = 1 − P(X1 > x1, ..., Xd > xd)
= 1 − P(G1(X1) > u, ..., Gd(Xd) > u)
= 1 − P(U1 > u, ..., Ud > u),
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with U1, ..., Ud uniform variables linked by the same copula C as X1, ..., Xd. Then

α + R(α) = P(U1 ≤ u, ..., Ud ≤ u)

+
d∑

i=1

P(U1 ≤ u, ..., Ui > u, ..., Ud ≤ u)

+
d∑

i=1

d∑
j=1,j 	=i

P(U1 ≤ u, ..., Ui > u, ..., Uj > u, ..., Ud ≤ u)

+ ···

whose asymptote, as α → 0, is
∑d−1

k=0

(
d
k

)
Pd−k, where Pk = P(U1 ≤ u, ..., Uk ≤ u, Uk+1 > u,

..., Ud > u), owing to the assumption that the lower tail dependence parameter is constant
for a given size of Ik, whatever the composition of the subset Ik.

Last, we observe that Pd = C(u, ..., u) ∼
α→0

α and that, for k ≥ 1,

Pk = P(Uk+1 > u, ..., Ud > u| U1 ≤ u, ..., Uk ≤ u) P(U1 ≤ u, ..., Uk ≤ u)

=
(
1 − P(Uk+1 ≤ u, ..., Ud ≤ u| U1 ≤ u, ..., Uk ≤ u)

)
P(U1 ≤ u, ..., Uk ≤ u),

according to Bayes’ rule. The asymptote of Pk, as α → 0, is thus (1 − λL,d−k) P(U1 ≤ u, ...,

Uk ≤ u) ≤ (1− λL,d−k)u according to the upper Fréchet-Hoeffding bound, with equality only
if λL,d−k = 1. The equality also holds if, when focusing on the Fréchet-Hoeffding inequality,
the variables are comonotonic, which also implies that lower tail dependence parameters are
equal to 1. This leads to equation (2.2).

Concerning equation (2.3), we observe that the upper tail dependence parameters of
a random vector are equal to the lower tail dependence of the opposite of the vector. We
can thus directly apply equation (2.2) to (−X1, ...,−Xd), for a probability level α, when it
tends to 0, a difference function R and lower tail dependence parameters λL,k = λU,k. For a
vector (−x1, ...,−xd) belonging to the lower-orthant quantile of level α of the distribution of
(−X1, ...,−Xd), if the probability measure of its upper orthant is α, then α = 1− (α + R(α)),
noting that this upper orthant is the lower orthant of (x1, ..., xd). Moreover, R(α) is 1 minus
the probability measure of both the lower and upper orthants, therefore R(α) = 1− α− α =
R(α).
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1. INTRODUCTION

Regression analysis; including the cause-result relationship examines the relationship
between dependent (response) and independent (predictor) variables. Parametric regression
analysis is based on certain assumptions. The most important of these assumptions, the
mathematical form of the relationship between the dependent and independent variable is
known in advance. The least squares method is proposed to be the most useful for solving
such problems. The estimator of slope by this method is referred as the least squares esti-
mator (LSE), which is the best linear estimator under the means of minimum variance if the
variance of the error term is finite. However, LSE is vulnerable to gross errors and is also
inefficient for distributions with heavy tails. In this case, in order to make better estima-
tions, regression methods which allow the linearity assumption in the parametric regression
to be stretched are needed. These methods are non-parametric regression models known as
regression models. Nonparametric regression analysis, is the method that is successful for
some of the assumptions used in case of failure in order to provide valid parametric regres-
sion methods. Several non-parametric methods were explored in the last century, such as the
Theil–Sen estimator (TSE) [41]; [37], and various M-estimators [21]; [18]; [42].

We consider a multiple linear regression model,

(1.1) Y = βX + ε

where (X,Y) is observable but ε is not. β is an unknown parameter and ε has an unknown
cdf, F. The mean of ε may not be zero. X and ε are independent. Let (x1, y1), ..., (xn, yn) be
independent random observations from the above model. In the literature, some researchers
assumed that xi s are random variables [3] and others assumed that the distribution of Yi is

Fi(y) = F (y − βxi), i = 1, 2, ..., n

where xis i = 1, 2, ..., n are known non-identical constant [37].

Since β is a slope parameter, under the assumption that all xi s are distinct, Theil [41]
proposed an estimator of β defined as

(1.2) β̂ = med

[
(sij�sij =

yj − yi

xj − xi
, 1 ≤ i ≤ j = 1, ..., n)

]
where med stands for median. The estimator was referred to as Theil’s estimator in literature.
Theil’s estimator was not defined if there exist ties among xi s, and was extended by Sen [37]
as

(1.3) β̂n = med

[
(sij�sij =

yj − yi

xj − xi
, ifxi 
= xj1 ≤ i ≤ j = 1, ..., n)

]
.

The new estimator was referred to as TSE.

Consider a multiple linear regression with p ≥ 1:

(1.4) Yj = β0 + XT
j β + εj ; j = 1, 2, ..., n.
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Following the above procedure, first, ϕ = (β0, β
T )T can be found as the solution of

equation (1.4)

(1.5) Yj − β0 − XT
j β = 0, lk+1 = {j1, ..., jk+1}

where, lk+1 is a (k + 1) subsets of {1, ..., n}. That is to say, if matrix (k + 1)× (k + 1) matrix
(Xl : l ∈ lk+1), is invertible. This estimation is described with ϕ̂lk+1

to emphasize dependency
to k + 1 observations. Later, natural expanding of TSE from a simple linear regression model
to a multivariate regression model becomes multivariate median as following:

(1.6) ϕ̂n = Mmed
{
ϕ̂lk+1

: ∀lk+1

}
where, it should be pointed out that ϕ̂lk+1

is at the same time the least squares estimator of
ϕ based on k + 1 observations {(Xj , Yj) : j ∈ lk+1}. In this perspective, t different arbitrary
combination of {(Xj , Yj) : j ∈ l t} can be chosen which means, here, k + 1 ≤ t ≤ n and it
construct least squares estimator of ϕ̂lt . Then, multivariate TSE ϕ̂n of the parameter ϕ is
naturally will be multivariate median of all possible least square estimators and is described
as below:

(1.7) ϕ̂n = Mmed{ϕ̂lt : ∀l t}.

Least squares estimation is as follows:

(1.8) ϕ̂l = (XT
l Xl )−1XT

l Yl .

In multivariate Theil–Sen estimator (MTSE), regression coefficients through the ap-
plication of combination as

(
n
t

)
is estimated with least squares method [10]. After every

combination, spatial median belonging of obtained regression coefficient is computed. Re-
gression coefficients belonging of MTSE are estimated by calculating as the spatial median
obtained.

TSE is, with 0.293 breakdown point, robust and has a limited effect function and
high asymptotic efficiency. For this reason, it is competes well with other slope estimators
[37, 11, 44]. When we explore the literature for asymptotic characteristics of TSE, Sen [37]
examined the asymptotic normality of estimation when cumulative probability function is
continuous and showed that it is super-efficient for discrete error term. Even though most
of its good characteristics are interpreted clearly and a lot of statisticians tried to expand
on it [29, 50]. Since TSE is formulated only for a simple linear model, it is underdeveloped
and rarely used. While for TSE to be expanded to a multiple linear model is obvious and
attractive, this is technically hard and is a case which slows down the generalization and
exploration processes. Oja and Niinimaa [29] generalized Theil–Sen estimation, which is in
simple linear regression, to multiple linear regression using Oja [29] median. Oja’s median is
a special case of spatial median. These studies about Theil–Sen estimation are important for
future studies. Peng et al. [32] established the asymptotic distribution and robust consistency
of Theil–Sen estimation when cumulative probability function of the error term comes arbi-
trarily from both continuous and discrete distribution. Asymptotic distribution and robust
consistency of Theil–Sen estimation can be examined as follows. In literature, there are var-
ious studies about TSE. See, e.g., regression estimation with Theil–Sen regression under the
measurement errors, Fernandes and Leblanc [15]; inverse regression estimation with the help
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of Theil–Sen regression, Lavagnini et al. [23]; multivariate regional estimations using Theil–
Sen estimator, Zhou and Serfling [50]; and asymptotic multiple linear regression estimation
using Theil–Sen regression, Shen [38]. The Theil–Sen estimator has been widely acknowl-
edged in several popular textbooks on nonparametric statistics and robust regression, see,
e.g., Sprent [39], Hollander and Wolfe [19, 20], and Rousseeuw and Leroy [35], Wilcox [46].
It also has been extensively studied in the literature. Sen [37] and Wilcox [44] investigated
its asymptotic relative efficiency to the least squares estimator. Akritas et al. [1] applied it to
astronomy and Fernandes and Leblanc [15] to remote sensing. Wilcox [45] investigated some
results on extensions and modifications of the Theil–Sen regression estimator. Wang [43]
studied its asymptotic properties for model (1.1) with a random covariate. Wang [43] showed
that TSE is strongly consistent, and obtain its asymptotic distribution, which may not be a
normal distribution if F is not absolutely continuous. Many of its extensions can be found
in the literature, for example, in censored data; for details, see, e.g., Akritas et al. [1],
Jones [22], and Mount and Netanyahu [27]. Dang et al. [10] proposed the Theil–Sen esti-
mators of parameters in a multiple linear regression model based on a multivariate median,
generalizing the Theil–Sen estimator in a simple linear regression model. The sample mean
of the bootstrap sample is known as the bagging estimator or smoothed bootstrap estima-
tor. Empirically, bootstrapping with the bagging estimator often outperforms bootstrapping
with the original estimator, especially when the asymptotic distribution is non-normal. See
Breiman [5], Yang [48], and Efron [13]. See Büchlmann and Yu [6] and Friedman and Hall [16]
for theory and references for the bagging estimator. Pelawa Watagoda and Olive [31] show
that if

√
n(Tn − β) → Np(0, Σ), then then under regularity conditions,

√
n
(
T
∗ − Tn

)
→ 0,

√
n(T ∗

i − Tn) → Np(0, Σ) and
√

n
(
T
∗ − β

)
→ Np(0, Σ). We are using a similar idea to bag-

ging with the jackknife to produce the jackknife multivariate Theil–Sen estimator (JMTSE)
estimator. In this paper, following Dang et al. [10], jackknife method which is one of the re-
sampling methods is integrated in the multivariate Theil–Sen method (MTSE) and by doing
this, a new estimator named jackknife multivariate Theil–Sen estimator (JMTSE) is offered.
Robustness property of MTSE and is improved and became attractiveness for accomplishing
well. In order to compare the proposed estimator with MTSE and LSE methods, various
simulation studies are designed and results of multiple Theil–Sen estimation in multiple lin-
ear regression analysis are improved. Also, behaviors of these estimators are examined with
two original data sets.

The remainder of the paper is organized as follows. In Section 2, we describe the prop-
erties of Theil–Sen estimator and spatial median. In Sections 3 and 4, we present jackknife
method which is one of the resampling methods and we present some theoretical results of
the jackknife method. In Section 5, we suggest a new estimator using jackknife method. In
Section 6, we introduce the results for both simulations and real data set examples. In final
section, we made conclusions about the obtained results.
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2. STRONG CONSISTENCY AND ASYMPTOTIC NORMALITY
PROPERTIES OF THEIL–SEN ESTIMATORS

In this section, it is stated the results on the strong consistency and the asymptotic dis-
tribution of TSE β̂n(ϕ) under the assumption that Xis are random variables with V ar(X) > 0.

Let ζ0,
{

ϕ : β̂n(ϕ) = β
}

(for all big n) be an event. That is to say, when ϕ ∈ ζ0 is

n > nϕ for each, β̂n(ϕ) = β is so that there is a nϕ. The following theorem establishes an
interesting property of the estimator

If F is continuous, then TSE β̂nis strongly consistent, that is β̂n → β [43].

In this section, we study the asymptotic distribution of the Theil–Sen estimator for
both discontinuous and continuous error cdf F .

Firstly, F is assumed discontinuous. Then,

(2.1) P
(
nυ
(
β̂n − β

)
→ 0

)
= 1, v ≥ 0.

It has gotten the asymptotic behavior of β̂n [43].

Now supposed that F is continuous. Denote the cdf of X1 by G, the cdf of X1 −X2 by
G2 and the cdf of ε1 − ε2 by F2. Then G2 and F2 are symmetric distribution function. Let

(2.2) μ(t) =
∫

[1 − 2F2(xt)]dG2(x)

and

(2.3) σ2 =
1
3
E
[
(1 − G(X1) − G(X1))

2
]
.

When G is continuous, σ2 = 1
9 ([43, 32]. Also, for further information about strong

consistency and asymptotic distribution belonging of TSE estimation, please look into Wang
[43]. Let’s make statements about the spatial median.

Let W be a p-variate random vector with cdf F, p > 1. The spatial median (sm) of W

minimizes the objective function:

(2.4) DF (w) =
1
n

n∑
i=1

{‖Wi − w‖ − ‖Wi‖}; w ∈ Rd

where ‖.‖ is the Euclidean form. Let S(w) = w/‖w‖(w 
= 0) be the spatial sign function. The
sample statistical spatial depth

(2.5) DF (w) = 1 −
∥∥∥∥∥ 1
n

n∑
i=1

S(w − Wi)

∥∥∥∥∥; w ∈ Rd.

The spatial median is the multivariate median defined by the spatial depth, which is
any value that maximizes the sample depth,

(2.6) ŝm = arg supDF (x);x ∈ Rd.
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The estimate ŝm is unique if the observations do not fall on a line. The spatial median
has good efficiency properties. Möttönen et al. [28] for example calculated the asymptotic rel-
ative efficiencies. For the strong consistency and asymptotic normality of the spatial median
(for see in detail information, Chaudhuri [9] and Bose [4].

3. JACKKNIFE METHOD

Jackknife method is defined as the method which minimizes sample error used to esti-
mate population parameter. First definition of this method is made by Quenouille [33] and
it is improved by Tukey using confidence interval approach [17]. Efron [12] contributed to
the estimation of standard error and bias of the method. Martin and Roberts [25] proposed
jackknife-after-bootstrap method which is developed in order to determine efficient obser-
vations. Jackknife method gives confidence intervals and decreases bias of estimation when
known approaches are having hard time. Jackknife method is a resampling method in esti-
mation of population parameters and developed in order to minimize sample error related to
obtaining narrow confidence intervals. This method is considered as a statistical process that
aims to reveal the relationship between variables in the data set in many fields that require
parameter estimation [40]. Jackknife method does not consider the distribution belonging
to variables in the data set and in this regard, it is known as a non-parametric statistical
process. In parameter estimation process with this method, estimation is made by throwing
out one observation in the sample each time. Thus, effect of deviated values is tried to be
eliminate. The fundamental logic of the Jackknife method is to produce n different sample
(sub-sample), each (n − 1) sized, by excluding each sample observation from the data set.
The fundamental logic of the method bases on calculating sampling statistics from remaining
observations through excluding an observation in data set. Thus, n different observations
from n observations can be formed.

Let be X = (x1, x2, ..., xn) sample and θ̂ = s(X) our estimator. According to jackknife
methods, when i. observation are excluded, new sample is defined as:

(3.1) x(i) = (x1, x2, ..., xi−1, xi+1, ..., xn); i = 1, 2, ..., n.

Because of this, its estimator is also defined as:

(3.2) θ̂(−i) = s
(
x(i)

)
where θ̂(.) is the estimate of θ and calculated through the equation, θ̂(.) =

�n
i=1 θ̂(−i)

n . Jackknife
estimate of standard error is calculated as

(3.3) ŝeJackk =

√√√√∑n
i=1

(
θ̂(−i) − θ̂(.)

)2

n(n − 1)
.

Applying jackknife method in non-parametric regression can be thought as same logic.
By excluding one observation from the current dependent and independent variables, non-
parametric regression method is applied in current data. This process is repeated times of
sample size.
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The parameters of non-parametric regression methods using jackknife method are found
as follows:

• Firstly, (n − 1) sized n different subsamples are formed by removing the observations
from the data one by one.

• Regression coefficients belonging to non-parametric regression methods in interest
are estimated for each formed subsample. This regression coefficients are called
deleted slope coefficients and is indicated by βi(−j), j = 1, 2, ..., n; i = 1, 2, ..., p.

• Lastly, in order to obtain Jackknife estimator of intercept parameter value, mean
of values (yj −

(
β̂1(−j)

)
x1 +

(
β̂2(−j)

)
x2 + ... +

(
β̂p(−j)

)
xp) is estimated as estimate

β̂0(−j) as below:

β̂0(−j) =

∑n
j=1

(
yj −

(
β̂1(−j)

)
x1 +

(
β̂2(−j)

)
x2 + ... +

(
β̂p(−j)

)
xp

)
n − 1

.(3.4)

• Mean value of these coefficients that obtained for each subsample are Jackknife
estimators and expressed as below:

β̂J∗
i =

∑n
j=1

(
β̂i(−j

)
n

; i = 1, 2, ..., p; j = 1, 2, ..., n; β̂J∗
0 =

∑n
j=1 β̂0(−j)

n
.(3.5)

4. SOME PROPERTIES OF JACKKNIFE ESTIMATORS

In this section, the theoretical results of the jackknife estimation on unbiased, consis-
tency, and asymptotic distribution are indicated.

For j = 1, ..., n supposed that the point jackknife estimations of the parameters are β̂J∗

and determine the sampling distribution of these estimators. Here β̂J∗ is defined as in the
following equation. Let us consider the px1 dimensional β̂J∗ jackknife estimator vector of β
parameters:

β̂J∗ =
1
n

n∑
j=1

β̂(−j).(4.1)

First, let’s find the expected value of the estimator β̂J∗ in equation (4.1):

E
(
β̂J∗

)
=

1
n

n∑
j=1

E
(
β̂(−j)

)
,(4.2)

E
(
β̂J∗

)
=

1
n

E
[
β̂(−1) + β̂(−2) + ··· + β̂(−n)

]
,(4.3)

E
(
β̂J∗

)
=

1
n

[
E
(
β̂(−1)

)
+ E

(
β̂(−2)

)
+ ··· + E

(
β̂(−n)

)]
,(4.4)

E
(
β̂J∗

)
=

1
n

[β + β + ··· + β] =
1
n

n∑
j=1

β =
nβ

n
= β.(4.5)
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The result clearly shows that the estimate of β̂J∗ is unbiased for the parameter vector
of βββ [7, 2].

Then, let’s find the variance–covariance of the estimator β̂J∗ in equation (4.1). The
jackknife variance–covariance estimator of β̂J∗ then can be written as follows:

V (β̂J∗) = S(4.6)

=
1
n

n∑
j=1

(β̂(−j) − β̂J∗)′(β̂(−j) − β̂J∗)

=
1
n

⎡⎢⎣
∑n

j=1(β̂1(−j) − β̂J∗
1 )2 ··· ∑n

j=1(β̂1(−j) − β̂J∗
1 )(β̂p(−j) − β̂J∗

p )
...

. . .
...∑n

j=1(β̂1(−j) − β̂J∗
1 )(β̂p(−j) − β̂J∗

p ) ··· ∑n
j=1(β̂p(−j) − β̂J∗

p )2

⎤⎥⎦
(p×p)

=

⎡⎢⎢⎢⎣
V (β̂J∗

1 ) ··· Cov
(
β̂J∗

1 , β̂J∗
p

)
...

. . .
...

Cov
(
β̂J∗

1 , β̂J∗
p

)
··· V

(
β̂J∗

p

)
⎤⎥⎥⎥⎦.

If the expected value of both sides is taken in equation (4.6), equation (4.7) is obtained.

E
[
V
(
β̂J∗

)]
= E(S)(4.7)

=

⎡⎢⎢⎢⎣
E
[
V
(
β̂J∗

1

)]
··· E

[
Cov

(
β̂J∗

1 , β̂J∗
p

)]
...

. . .
...

E
[
Cov

(
β̂J∗

1 , β̂J∗
p

)]
··· E

[
V
(
β̂J∗

p

)]
⎤⎥⎥⎥⎦

(p×p)

=

⎡⎢⎣ V (β1) ··· Cov(β1, βp)
...

. . .
...

Cov(β1, βp) ··· V (βp)

⎤⎥⎦ = Σ.

As a result, the sampling distribution of β̂J∗ in jackknife estimator is obtained asymp-
totically β̂J∗ ∼ N(β;Σ).

The equation (4.7) clearly indicates that the estimate of V
(
β̂J∗

)
is unbiased asymp-

totically for Σ.

Finally, let’s examine the consistency of the jackknife estimator of β̂J∗. Firstly the
estimator has the variance V

(
β̂J∗

)
and then we can write it as follows:

(4.8) lim
n→∞V (β̂J∗) = lim

n→∞S = lim
n→∞

⎡⎣ 1
n

n∑
j=1

(
β̂(−j) − β̂J∗

)′(
β̂(−j) − β̂J∗

)⎤⎦ → 0.

So, the equation (4.8) shows that the jackknife estimation β̂J∗ is consistent for the
parameter vector β. That is, β̂J∗ → β [36].
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5. JACKKNIFE MULTIVARIATE THEIL–SEN ESTIMATOR (JMTSE)
IN MULTIPLE LINEAR REGRESSION MODEL

JMTSE is a modification of the Theil–Sen estimator based on the jackknife method in
multiple linear regression, a technique that narrows the confidence interval and reduces the
effect of extreme values. In the analysis of proposed JMTSE method, subsamples, which are
obtained through excluding each observation value sequentially from sample, are used instead
of sample data. The algorithm steps for proposed JMTSE method is given below:

Step 1: Firstly, n different subsample, each (n − 1) sized, are formed by excluding
each of n observation sequentially.

Step 2: Arbitrary number t is determined as k + 1 ≤ t < n. Here p indicates number
of independent variable and n indicates sample size.

Step 3: Regression coefficients are calculated by applying LSE method to each possi-

ble
(

n − 1
t

)
combinations according to arbitrarily determined t value in order

to estimate parameter estimation values, βi, (i = 1, 2, ..., p). If we express ob-
tained regression coefficients as Lij , regression parameter estimations are mul-
tivariate median of Lij values. The multivariate median used here is spatial
median. In other words, βi(−j) = Mmed(Lij) (i = 1, 2, ..., p); (j = 1, 2, ..., n).
Since this process will be repeated for each subsample, n number of β̂i(−j)

will be calculated.

Step 4: To calculate β̂0(−j) estimation, there are different alternatives. These are:

i) If error term has a symmetric distribution around zero, β̂0(−j) estima-

tion is calculated by calculating each possible
(
yi − β̂i(−j)xi

)
. In other

words, β̂0(−j) = med
(
yi − β̂i(−j)xi

)
.

ii) β̂0(−j) estimation can be calculated by averaging all possible
(
yi−β̂i(−j)xi

)
values. That means β̂0(−j) =

�n
i=1(yi−β̂i(−j)xi)

n−1 .
iii) Alternatively, (β0, βi) values can be estimated simultaneously with mul-

tivariate median in a less restricted situation. In other words, it can be
calculated using (β0, βi) = smed(β0(−j), βi(−j)).

Step 5: Means of all these coefficients for each sub-sample are proposed JMTSE es-

timations. In other words, β̂0 =
�n

j=1 β̂0(−j)

n ve β̂i =
�n

j=1 β̂i(−j)

n .

There are certain things to consider while estimating with MTSE and proposed JMTSE
methods. For example, if independent variables are categorical, then subsamples selected
according to arbitrary t might be zero valued. In this case, estimation values with the LSE
method can take values like (Lij) ±∞. So, uncertainty may occur in this analysis. If Lij

values, which is calculated based on arbitrary t, is excluded from analysis, there would be data
loss and this decreases the reliability of analysis. There are suggestions about this problem
in simple linear regression models in Erilli and Alakuş [14]. If these suggestions are applied
to JMTSE method:
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1. βi is calculated by replacing regression coefficients in (Lij) value, which is found
infinite, with maximum or minimum values in each possible Lij values (in other
words, max(Lij) instead of +∞ and min(Lij) instead of −∞) which is calculated
according to arbitrary m.

2. The median of the data can be placed instead of regression coefficients in Lij , which
is found infinite, after infinite values are excluded from the data.

3. The trimmed mean values can be placed instead of regression coefficients in (Lij),
which is found infinite.

Using these methods, regression parameter estimations are calculated and regression
coefficients for proposed JMTSE estimation method can be calculated considering the algo-
rithm above. There is not a certain conclusion about which method gives the best result. It
is advised to the researcher that all estimation results belonging to the all possible methods
need to be obtained and compared according to data structure in order to obtain the best
result.

In this article, the results of estimation of regression coefficients belonging to JMTSE
method (β0; βi, (i = 1, 2, ..., p)), which is proposed in the simulation and real data applications,
are obtained and interpreted simultaneously. In other words,

(
β̂0, β̂i

)
= smed

(
β̂0(−j), β̂i(−j)

)
[49].

6. RESULTS AND DISCUSSION

We conducted some numerical examples with Monte Carlo simulations and two real
dataset examples. We measured the robustness and efficiency of the coefficients in the sim-
ulations. In real dataset examples we checked the prediction accuracies of the models and
sparseness of the regression coefficients. The datasets are compatible for our aims which
consist of heavy-tailed errors. All implementations were performed in R software [34].

6.1. Calculation and simulation studies

We performed Monte Carlo simulations study to evaluate the efficiency of proposed
method. To compare the performance of proposed estimator, we employed two techniques
ordinary least squares (LSE), multivariate Theil–Sen estimator (MTSE) [10]. Simulation
design was constructed similar to Dang et al. [10].

In this section, various simulation studies are made with regards to robustness and
efficiency in order to examine the behavior of proposed method. Some samples are produced
from multiple linear regression model Yi = 2.5 + 3X1i + 1.5X2i + εi, where, X1i ∼ N(0, 1),
X2i ∼ U(0, 1) and εi are produced from different distributions with different purposes.

In this study, with the help of sub-samples obtained by excluding each observation
values from the sample, we take a random sample of size t from the whole sample between



Integrating jackknife into the Theil–Sen estimator in multiple linear regression model 107

k + 1 ≤ t ≤ n and calculate the LSE based this random sample. This process is repeated
in such a way that it does not exceed the combination of

(
n
t

)
. Then, the spatial median

of the obtained LSE estimators is calculated simultaneously. The mean of these coefficients
calculated for each sub-sample are proposed JMTSE estimates. Breakdown point depends
on the choice of t. The highest breakdown point is reached when t takes its minimal value
t = k + 1. Therefore t = 3 was taken in this study.

Firstly, let us examine the robustness of proposed method. Sample sizes n = 20, 40, 80
are produced from multiple linear regression model Yi = 2.5 + 3X1i + 1.5X2i + εi with distri-
bution εi ∼ N(0, 1). Obtained data set is polluted with outliers (Xi, Yi) of regression model
Yi = −10 − 20X1i − 25X2i + εi. Here, n1 and n2 are, respectively, count of good ones and
count of bad ones (outliers). When we examine Table 1 that without outliers, all the LSE,
MTSE and JMTSE performed well. However, with the presence of outliers, the LSE’s method
has completely deteriorated and become useless. While MTSE’s and JMTSE’s performed well
until the ratio of outliers reaches 35–40%. But, it is seen that JMTSE’s gives results closer
to the real parameter value. Also, in the polluted data, LSE method have distant values to
real regression coefficients. As pollution rate increased, it is observed that regression coeffi-
cients obtained by JMTSE is better compared to regression coefficients obtained by MTSE. In
other words, it is shown that regression coefficients obtained through JMTSE method, which
is proposed by hybridizing the resampling method, jackknife method, with MTSE estimation
that is in literature, are closer to the real regression coefficients. Therefore, as a result of this
simulation study, it is seen that proposed JMTSE method gives sufficient contribution to the
literature.

Table 1: Robustness.

True Parameter (2.5, 3, 1.5)

LSE MTSE JMTSE

n = 20 (2.480, 3.001, 1.521) (2.488, 3.043, 1.523) (2.469, 3.001, 1.509)
n = 30 (2.487, 3.004, 1.530) (2.466, 3.023, 1.494) (2.488, 3.017, 1.501)
n = 40 (1.894, 2.242, 1.084) (2.792, 2.544, 0.417) (2.226, 2.202, 0.875)

n1 = 19, n2 = 1 (2.264, 1.862, −0.436) (2.420, 2.864, 1.550) (2.462, 2.961, 1.482)
n1 = 18, n2 = 2 (0.855, 0.949, −0.219) (2.180, 3.144, 1.370) (2.563, 3.001, 1.221)
n1 = 16, n2 = 4 (−0.732, −2.403, −3.249) (1.210, 2.363, −0.849) (0.826, 1.183, 1.178)
n1 = 14, n2 = 6 (−0.935, −3.601, −6.696) (0.912, 0.480, −2.213) (1.633, 1.667, −1.413)
n1 = 12, n2 = 8 (−0.348, −0.736, −0.860) (1.644, −0.225, 0.369) (−0.187, −0.188, −0.394)

Robust estimator may lose efficiency. To investigate the efficiency, a simulation is
conducted as follows. The values of mean square error belonging to LSE’s, MTSE’s and
JMTSE’s value β̂ with sample size n = 10, 20, 25, 30, 35, 40, 45, 50 distribution εi ∼ N(0, 1),

and various outlier value ratios is calculated using MSE = 1
κ

∑κ
i=1

(
β̂i − βtrue

)2
, where κ =

1000, βtrue = (2.5, 3, 1.5) and β̂i is the estimate for i-th sample.

In Table 2, LSE method gave worse results compared to other methods when all cases of
outlier ratios and sample sizes are considered. When sample size is fixed and outlier ratios are
increased, experimental mean squared errors belonging to examined methods increased. For
example, when sample size is taken as 20 and outlier ratios are 5%, 10%, and 20% respectively,
experimental mean squared errors are 4.8272 when 5%; 15.7596 when 10% and 26.1113 when
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20% respectively. Similarly, experimental mean squared errors belonging to MTSE method
are 0.1373 when 5%, 0.2152 when 10% and 0.7689 when 20%. Finally, mean squared errors
belonging to JMTSE method are 0.1381 when 5%, 0.148 when 10% and 0.7158 when 20%.
That is to say, when examined methods are evaluated, it is seen that experimental mean
squared errors belonging to estimation methods increases when sample size is fixed and outlier
ratios are increased. When regression coefficients belonging to examined methods and outlier
ratios are fixed, mean values for all sample sizes are calculated. In n=10,20,25,...,50 sample
size and 5% pollution rate, MSE values belonging to estimations are calculated as 7.7903 for
LSE, 0.6270 for MTSE and 0.3512 for JMTSE when outlier ratio is 5%; 13.3294 for LSE,
3.1737 for MTSE and 1.6983 for JMTSE when 10%; and 31.2867 for LSE, 5.1085 for MTSE
and 4.4401 for JMTSE when 20%. If it is looked carefully, the in equation, MSEJMTSE <

MSEMTSE < MSELSE exists between MSE’s belonging to estimation methods which are
examined when outlier ratios are fixed. In this regard, when pollution rate is fixed and
sample size is n=10,20,25,...,50, it is seen that JMTSE estimation method gives more efficient
results. In a same way, when sample size is fixed and outlier ratio is increased, again, JMTSE
estimation method gives results closer to real regression coefficients compared to LSE and
MTSE estimation methods. In other words, it is seen that JMTSE method is more efficient
in estimating real parameters in these cases. In summary, it is seen that results belonging to
Theil–Sen method are improved with the addition of jackknife method. It is also observed
that when the sample size increases, the values decrease in the mean square error of the
methods.

Table 2: Efficiency comparisons.

Sample Size

Outlier ratio %

5% 10% 20%

LSE MTSE JMTSE LSE MTSE JMTSE LSE MTSE JMTSE

10 28.80 0.4422 0.5483 32.0605 0.5326 0.5677 66.5179 4.2187 5.2909
20 4.8272 0.1373 0.1381 15.7596 0.2152 0.1484 26.1113 0.7689 0.7158
25 8.145 3.85 1.754 12.0568 0.1455 0.1468 31.2967 1.2035 0.8902
30 4.8467 0.0697 0.0698 10.3119 4.5238 5.8034 27.5454 0.3196 0.3271
35 4.2601 0.0499 0.0499 12.5515 9.9076 0.3733 25.7719 9.1562 9.4418
40 3.2691 0.0509 0.0509 8.734 4.5144 1.8785 26.3822 6.2388 2.8074
45 4.3719 0.0477 0.0478 7.9876 5.4876 4.6048 22.2376 8.6498 7.3089
50 3.8026 0.3682 0.1505 7.1731 0.0631 0.0632 24.4306 10.3123 8.7384

Mean 7.7903 0.6270 0.3512 13.3294 3.1737 1.6983 31.2867 5.1085 4.4401

Considering multiple linear regression model Yi = 2.5 + 3X1i + 1.5X2i + εi, for sample
sizes n = 20, 30, 40 and n = 50 generate 1000 samples with errors from εi ∼ N(0, 1) εi ∼ t(u)
with two different degrees of freedoms (df) u = 1, 3. The prediction accuracies are evaluated
with mean square error (MSE) as the following:

MSE =
1
κ

κ∑
i=1

(
β̂i − βtrue

)2

where κ = 1000, βtrue = (2.5, 3, 1.5) and β̂i is the estimate for i-th sample. As for relative
efficiency (RE) of β̂, it is obtained by dividing the MSE of the LSE by that of β̂. In Tables 3
and 4, the values of MSE and RE are given.
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The relative efficiencies and MSE values of the MTSE and JMTSE are computed with
respect to LSE in Table 3. When we examine Table 3, under the Gaussian model, the
finite sample RE values of MTSE and JMTS are about 12–58% and the 52–98% which are
acceptable. However, it is found that RE values of the JMTSE is bigger than 1 for heavy
tail distributions t with df = 3 and df = 1(Cauchy). Especially, under the Cauchy model,
JMTSE is more efficient compared to LSE.

Table 3: MSE values and Relative efficiencies of the MTSE and JMTSE
with respect to LSE for some continuous distributions.

Normal T3 T1 (Cauchy)

LSE MTSE JMTSE LSE MTSE JMTSE LSE MTSE JMTSE

n=20
MSE 0.072785 0.126266 0.10913 0.941811 0.533084 0.534346 802.2187 2.513192 2.364063
RE 1 0.576442 0.666953 1 1.76672 1.76255 1 319.2031 339.339

n=30
MSE 0.047412 0.081497 0.069998 0.523894 0.372488 0.365735 169.8011 0.856768 0.802462
RE 1 0.581769 0.677338 1 1.406473 1.432442 1 198.188 211.6002

n=40
MSE 0.035762 0.097724 0.068763 0.451233 0.52053 0.351836 163.7145 4.880104 3.658022
RE 1 0.365944 0.520069 1 0.866873 1.28251 1 33.54733 44.75491

n=50
MSE 0.019061 0.156786 0.019393 0.319796 0.267127 0.254355 2.67E+07 3.51E−01 3.28E−01
RE 1 0.121571 0.982851 1 1.197171 1.257285 1 76068376 81402439

Mean 0.411432 0.711803 1.309309 1.433697 19017232 20350759

The relative efficiencies and MSE values of the JMTSE are computed with respect to
MTSE in Table 4. From the Table 4, it can be concluded that when the error comes from
the heavily tail distributions t with df = 3, the JMTSE competes the MTSE, especially for
Cauchy. That means, JMTSE is more efficient compared to MTSE.

Table 4: MSE values and Relative efficiencies of the JMTSE
with respect to MTSE for some continuous distributions.

T3 Cauchy

MTSE JMTSE MTSE JMTSE

n = 20
MSE 0.533084 0.534346 2.513192 2.364063
RE 1 0.99764 1 1.063082

n = 30
MSE 0.372488 0.365735 0.856768 0.802462
RE 1 1.018464 1 1.067674

n = 40
MSE 0.52053 0.351836 4.880104 3.658022
RE 1 1.479468 1 1.334083

n = 50
MSE 0.267127 0.254355 3.51E−01 3.28E−01
RE 1 1.050214 1 1.070122

Mean 1.136446 1.13374

As a result, just like what simulation studies showed, it is found that proposed JMTSE
method has more consistency than LSE and MTSE methods with regard to efficiency and
robustness and results of MTSE method are improved.
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6.2. Numerical illustrations

In this part we conducted some experiments on real datasets to evaluate the predictive
performance of estimators. Meanwhile we presented the sparsity of the regression coefficients.
For the application we used Coleman and Education expenditure data sets which are available
in R software, ”MASS” and ”robustbase” packages [47, 24]. These datasets contain heavy-
tailed errors so the real datasets are conformable for the computations. Coleman dataset
contains 20 observations and 5 independent variables. This data set contains information on
20 schools from the Mid-Atlantic and New England states. The purpose is to predict the
verbal mean test score [26]. Education expenditure data set consists of 50 observations and
3 independent variables. This data set is related with the education expenses of 50 states in
the US. The aim is to predict the per capita expenditure for public education [8].

Predictive performance is measured by cross validation technique. The datasets are
divided in two parts as test-train. Train sets contain 80% and test sets contain 20% of the
datasets, respectively.

95% confidence intervals of the regression coefficients are given for LSE and JMTSE
methods in Tables 5 and 6. From the Table 5, It is seen that independent variables, x3, x4 and
x5, are found significant for the model obtained through LSE method and all independent
variables are found significant for the model obtained through proposed JMTSE method.

Table 5: Confidence intervals of the regression coefficients for the Coleman data set.

Coefficients
LSE JMTSE

Lower Bound Upper Bound Lower Bound Upper Bound

Constant 16.743 59.624 35.175 37.619
x1 −3.013 1.242 −0.675 −0.377
x2 −0.004 0.159 0.058 0.086
x3 0.540 0.835 0.654 0.684
x4 0.323 1.619 0.881 0.975
x5 −8.221 −1.629 −4.723 −4.342

In Table 6, independent variable x2 is found significant for the model obtained through LSE
method and independent variables, x2 and x3, are found significant for the model obtained
through JMTSE method. As a result narrower confidence limits were estimated with the
proposed estimator.

Table 6: Confidence intervals of the regression coefficients for the Education expenditure data set.

Coefficients
LSE JMTSE

Lower Bound Upper Bound Lower Bound Upper Bound

Constant −589.951 77.250 −346.571 −329.127
x1 −0.113 0.134 −0.024 0.008
x2 0.034 0.088 0.066 0.073
x3 −0.142 1.625 0.879 0.954
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The predictive performance of each approaches are given in Table 7. In experimental
results, JMTSE performs better than LSE and MTSE in terms of prediction for new obser-
vations. It should be noted that the JMTSE proposed by using jackknife in MTSE is good
for both data sets.

Table 7: Predictive performance results.

Methods Coleman-MSE Education E-MSE

LSE 16.423 4293.951
MTSE 15.209 3645.489
JMTSE 14.724 3564.373

7. CONCLUSION

Theil–Sen estimator is a point estimator of the slope parameter in the model and has
many nice properties, including asymptotic normality. It has become a useful alternative so-
lution for robust regression modelling with a high breakdown point and asymptotic efficiency.
Although TSE has these many good properties, there are not many researches for Theil–Sen
estimator in multiple linear regression methods. Jackknife method throwing an observation
at a time from the sample which statistics calculates that as the number of individuals in the
sample and the effect of extreme values can be defined as a method with relieving properties.
The paper proposes a modification of the Theil–Sen estimator based on jackknife method.
Simulation studies and real data applications is made in order to improve the results belong-
ing to MTSE. Also, Jackknife estimations of parameters for Theil–Sen regression analysis,
hypothesis test of parameters based on jackknife estimations and confidence intervals are
examined.

According to simulations studies, robustness of methods investigated in the first phase
of the simulation study is explored. When outliers do not exist in the data and distribution
of error term is normal distribution, all of the LSE, MTSE and JMTSE estimation methods
obtained results close to the real regression coefficients as a result of comparison with regard
to robustness. Again, when the errors obtained from simulation study is normally distributed
and the data is polluted with different ratios, LSE method got far away from real regression
coefficients immediately and become unusable. However MTSE and JMTSE methods were
able to endure until a certain point. It is seen that this ratio is around 35—40% for MTSE and
JMTSE. Also JTSE is more capable of determining the real regression coefficients correctly.
These findings exhibit the superiority of jackknife within MTSE in terms of variable selection.
In the second phase of the simulation study, mean square error values are calculated for the
methods which are investigated when errors are distributed normally but data has pollution
with various ratios. As a result, it is clear that the proposed JMTSE method has a smaller
mean square error than LSE and MTSE methods. In the third and fourth phase of the
simulation study, no pollution is added to produced data. But when the error comes from the
heavily tail distributions t with df = 3 and df = 1, it is found that JMTSE method, which is
proposed with regards to sample sizes and arbitrary error term distributions, is more efficient
than LSE and MTSE methods. Immediately after the simulation study, situations of methods
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in interest are investigated considering two original datasets. According to estimation results,
it is found that JMTSE method gives more efficient results than MTSE and LSE methods.
As a result, robustness and effectiveness of MTSE is improved using jackknife method.

It is clearly seen that the proposed JMTSE method works well when n and t are small.
This shows that the proposed JMTSE method is computationally feasible and the method is
to have useful outlier resistance.

Consequently, a new estimator named JMTSE is proposed by integrating Jackknife
method to Theil–Sen method in multiple linear regression. It is observed that proposed
method reduces the effects of outliers even more and gives more reliable results. According to
obtained results, resampling methods like Jackknife method can be applied in non-parametric
regression methods successfully. Moreover, we demonstrated the applicability of jackknife
with MTSE and concluded the success with several numerical examples. We suggest using
JMTSE when there are many predictors for further practical studies to accomplish model
selection in the presence of heavy-tailed errors.
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1. INTRODUCTION

In actuarial science, it is often of interest to compare stochastically extreme claim
amounts from heterogeneous portfolios. In this regard, in the present work, we compare the
extreme order statistics arising from two heterogeneous portfolios in the sense of the usual
stochastic ordering. It is assumed that the portfolios belong to the general exponentiated
location-scale model. The general exponentiated location-scale model includes several im-
portant statistical models such as generalized exponential distribution, generalized Weibull
distribution, generalized Pareto distribution and many more. The exponentiated location-
scale model has three types of parameters: location, scale and shape(or skewness) parameters.
Location parameter is useful in modeling the insurance related data, since an insurance com-
pany suffers a claim from policyholder after a certain period of time from the date of beginning
of the policy. Also, most of the data dealing with health care costs and economy are skewed.
In finance, an investigator may often have small gains, but occasionally may have a few large
losses. In this case, the data will invariably be negatively skewed. If, howeve, we have a
reverse situation, the data in this case will be positively skewed. Thus, fitting skewed models
to these types of data in finance and some other fields is a very important issue. in order to fit
a skewed data, we require a model having a skewness parameter. The general exponentiated
location-scale model possesses this kind of flexibility. For this reason, such a general model is
useful for fitting various kinds of data sets. In practical situations, the extreme claim amounts
play an important role as these provide useful information for determining annual premium.
In actuarial science, it is an important issue in expressing preferences between random future
gains or losses. In this direction, comparisons of claim amounts in two heterogeneous portfolio
of risks based on different stochastic ordering such as usual become very useful. Order statis-
tics have received a great amount of atention from various authors. It plays an important
role in several areas of probability and statistics such as reliability theory, queueing theory,
and survival analysis. Let X1:n ≤ ... ≤ Xn:n denote the order statistics corresponding to the
random variables X1, ..., Xn, where X1:n and Xn:n corresponds to the sample minimum and
sample maximum, respectively. The results of stochastic comparisons of the order statistics
with independent and dependent sampling units can be seen in Dykstra et al. (1997) [9], Zhao
and Balakrishnan (2011) [30], Li and Li (2015) [25], Torrado (2015) [28], Torrado and Kochar
(2015) [29], Kochar and Torrado (2015) [18], Kundu et al. (2016) [24], Kundu and Chowdhury
(2016 [19], 2018 [20], 2019 [21], 2020 [22]), Chowdhury and Kundu (2017 [4], 2018 [5]), Hazra
et al. (2017) [14], Fang and Zhang (2013) [12], Fang and Xu (2019) [13], Das et al. (2020)
[8], Kundu et al. (2022) [23], Chowdhury et al. (2022) [6], and the references there in for a
variety of parametric models. The assumption in the papers lies in the fact that each of the
order statistics X1:n, X2:n, ..., Xn:n occurs with certainty and the comparison is carried out
on the minimums or the maximums of the order statistics. Now, it may so happen that the
order statistics experience random shocks which may or may not result in its occurrence and
it is of interest to compare two such systems stochastically with respect to vector or matrix
majorization. A random variable X is said to follow the exponentiated location-scale model
if it’s cumulative distribution function is given by

(1.1) FX(x;λ, θ, α) =
[
F

(
x − λ

θ

)]α

, x > λ,

where λ ∈ R, α > 0, θ > 0 and F is the baseline distribution function. Here, λ, θ and α are
respectively known as the location, scale, and shape parameters. We write X ∼ ELS(λ, θ, α)
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if X has the distribution function given by (1.1). The probability density function of the
exponentiated location-scale model with (1.1) is denoted by fX . In particular, when α = 1,

the model given in (1.1) reduces to the location-scale family of distributions. Further, when
α = 1 and λ = 0, (1.1) reduces to the scale family and when α = 1 and θ = 1, (1.1) becomes
location family. The model in (1.1) coincides with the exponentiated-scale family when the
location parameter λ is equal to 0. Thus (1.1) is a general family of distribution with great
flexibility.

Let us assume series and parallel systems consist of n independent components in
working conditions. Each component of the system receives a shock which may cause the
component to fail. Let the random variable Xi denote lifetime of the i-th component in
the system which experiences a random shock at binging. Also, suppose that Ipi denotes
independent Bernoulli random variables, independent of X ,

is, with E(Ipi) = pi, where pi will
be called shock parameter hereafter. Then, the random shock impacts the i-th component
(Ipi = 1) with probability pi or doesn’t impact the i-th component (Ipi = 0) with probability
1 − pi. Hence, the random variable Yi = IpiXi corresponds to the lifetime of i-th component
in a system under shock. Fang and Balakrishnan (2018) [10] have compared two such systems
with generalized Birnbaum–Saunders components. Similar comparisons are carried out in the
context of the insurance where largest or smallest claim amounts in a portfolio of risks are
compared stochastically. One may refer to Barmalzan et al. (2017) [3], and Balakrishnan et

al. (2018) [2].

The survival function of Y1:n = min{Y1, ..., Yn} is given by

(1.2) F̄Y1:n(x; p
∼

, λ
∼

, θ
∼

, α
∼

) =
n∏

i=1

pi

[
1 − Fαi

(
x − λi

θi

)]
, x > max{λi, i = 1, ..., n},

and the cumulative distribution function of Yn:n = max{Y1, ..., Yn} is given by

(1.3) FYn:n(x; p
∼

, λ
∼

, θ
∼

, α
∼

) =
n∏

i=1

[
1 − pi

[
1 − Fαi

(
x − λi

θi

)]]
, x > max{λi, i = 1, ..., n},

where x
∼

= (x1, ..., xn) ∈ In be any real vector and In denote a n-dimensional Euclidean space

where I ⊆ R. Hereafter, we assume that Y ∗
1:n(Y ∗

n:n) denotes similarly the smallest (largest)
order statistic arising from Y ∗

i = Ip∗i X
∗
i , i = 1, ..., n, where X∗

1 , ..., X∗
n are independent non-

negative random variables with X∗
i ∼ ELS(λ∗

i , θ
∗
i , α

∗
i ), i = 1, ..., n and Ip∗1 , ..., Ip∗n are inde-

pendent Bernoulli random variables, independent of X∗
i

,s, with E(Ip∗i ) = p∗i , i = 1, ..., n. Let

Pn =
{

(x
∼

, y
∼

; n) : xi > 0, yj > 0 and (xi − xj)(yi − yj) � 0, i, j = 1, ..., n

}
,

Sn =
{

(x
∼

, y
∼

, z
∼

; n) : xi, yj , zk > 0 and xi � (�)xj , yi � (�)yj , zi � (�)zj

}
,

Nn =
{

(x
∼

, y
∼

, z
∼

; n) : zi ≥ 1, xi > 0, yi > 0, xi ≤ (≥)xj , yi ≤ (≥)yj , zi ≤ (≥)zj

}
,

N∗
n =

{
(x

∼

, y
∼

, z
∼

; n) : zi > 0, xi > 0, yi > 0, xi ≤ (≥)xj , yi ≤ (≥)yj , zi ≤ (≥)zj

}
,

Un =
{

(w
∼

, x
∼

, y
∼

, z
∼

; n) : wi, xj , yk, zl > 0, wi � (�)wj , xi � (�)xj , yi � (�)yj , zi � (�)zj

}
.
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The rest of this paper is organized as follows. In Section 2, we introduce some definitions
and fundamental lemmas. In Section 3, we establish some ordering properties for the smallest
and largest order statistics of the ELS model with associated random shocks. In Section 4,
some special cases of our main results are added. Section 5 provides applications of the
established results. Finally, in Section 6, we include some concluding.

2. PRELIMINARIES

In this section we provide some preliminary definitions and lemmas which will be useful
in the sequel. To compare lifetimes of series and parallel systems, stochastic orders have been
extensively used in the literature. Below, we present a few of them. Throughout the paper,
we use the notations R = (−∞,+∞), R+ = (0, +∞) and a

sign
= b means that a and b have the

same sign. Let X be non-negative random variable with distribution function F , and density
function f . The survival function, hazard rate, and reversed hazard rate are F̄ = 1 − F ,
rX = f

F̄
, and r̃X = f

F , respectively.

Definition 2.1. Let X and Y be two absolutely continuous random variables with
respective supports (lX , uX) and (lY , uY ), where uX and uY may be positive infinity, and lX
and lY may be negative infinity. Then, X is said to be smaller than Y in usual stochastic
(st) order, denoted as X �st Y , if F̄X(t) � F̄Y (t) for all t ∈ (−∞,+∞).

Let x
∼

= (x1, ..., xn)∈ In and y
∼

= (y1, ..., yn)∈ In be any two real vectors with x(1), ..., x(n)

being the increasing arrangement of the components of the vector x
∼

. The following definitions

may be found in Marshall et al. (2011) [27].

Definition 2.2.

(i) The vector x
∼

is said to majorize the vector y
∼

(written as x
∼

m
� y

∼

) if
j∑

i=1

x(i) �
j∑

i=1

y(i), j = 1, ..., n − 1, and
n∑

i=1

x(i) =
n∑

i=1

y(i);

(ii) The vector x
∼

is said to weakly supermajorize the vector y
∼

(written as x
∼

w
� y

∼

) if
j∑

i=1

x(i) �
j∑

i=1

y(i) for j = 1, ..., n;

(iii) The vector x
∼

is said to weakly submajorize the vector y
∼

(written as x
∼

�w y
∼

) if
n∑

i=j

x(i) �
n∑

i=j

y(i) for j = 1, ..., n;

(iv) The vector x
∼

is said to be p-larger than the vector y
∼

(written as x
∼

p
� y

∼

) if
j∏

i=1

x(i) �
j∏

i=1

y(i) for j = 1, ..., n;
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(v) The vector x
∼

is said to reciprocally majorize the vector y
∼

(written as x
∼

rm
� y

∼

) if

j∑
i=1

1
x(i)

�
j∑

i=1

1
y(i)

for j = 1, ..., n.

It is not difficult to show that x
∼

m
� y

∼

⇒ x
∼

w
� y

∼

⇒ x
∼

p
� y

∼

⇒ x
∼

rm
� y

∼

.

Definition 2.3. A function ψ : In→R is said to be schur-convex (schur-concave) on In if

x
∼

m
� y

∼

implies ψ(x
∼

) � (�)ψ(y
∼

) for all x
∼

, y
∼

∈ In.

The following definitions related to matrix majorization may be found in Marshall et

al. (2011) [27].

Definition 2.4.

(i) A square matrix Πn, of order n, is said to be a permutation matrix if each row
and column has a single entry 1, and all other entries as zero;

(ii) A square matrix P = (pij), of order n, is said to be doubly stochastic if pij � 0,
for all i, j = 1, ..., n,

∑n
i=1 pij = 1, j = 1, ..., n and

∑n
j=1 pij = 1, i = 1, ..., n;

(iii) A square matrix Tw, is said to be T-transform matrix if it has form Tw =
wI + (1 − w)Π; where 0 � w � 1, I is the identity matrix and Π is the per-
mutation matrix. Let Tw1 = w1I + (1 − w1)Π1 and Tw2 = w2I + (1 − w2)Π2 be
two transform matrices, where 0 ≤ w1, w2 ≤ 1 and Π1 and Π2 are two permuta-
tion matrices that interchange two coordinates. Then, we say Tw1 and Tw2 have
the same structure if Π1 = Π2, where Π1 and Π2 are permutation matrices with
the same dimension, otherwise they are different structures.

Definition 2.5. Consider the m × n matrices A = {aij} and B = {bij} with rows
a1, ..., am and b1, ..., bn, respectively.

(i) A is said to be larger than B in chain majorization, denoted by A � B, if there
exists a finite set of n×n T-transform matrices T1, ..., Tk such that B = AT1···Tk;

(ii) A is said to majorize B, denoted by A > B, if A = BP , where the n × n matrix
P is doubly stochastic. Since a product of T-transforms is doubly stochastic, it
follows that A � B ⇒ A > B;

(iii) A is said to be larger than the matrix B in row majorization, denoted by A
row
> B,

if ai

m
� bi for i = 1, ...,m. It is clear that A > B ⇒ A

row
> B;

(iv) A is said to be larger than the matrix B in row weakly majorization, denoted by

A
w
>B, if ai

w
� bi for i = 1, ...,m. It is clear that A

row
> B ⇒ A

w
>B. Thus it can be

written that A � B ⇒ A > B ⇒ A
row
> B ⇒ A

w
>B.
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Also, we introduce the following notations.

(i) D+ = {(x1, ..., xn) : x1 � ... � xn > 0};
(ii) ε+ = {(x1, ..., xn) : 0 < x1 � ... � xn};

(iii) (h(p
∼

), λ
∼

) =
(

h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
.

The following two Lemmas are used to prove the two Theorems 2.17 and 2.18.

Lemma 2.1. A differentiable function Φ : R8
+ → R+ satisfies

Φ(A) � (�)Φ(B) for all A,B such that A ∈ U2, A � B(2.1)

if and only if

(i) Φ(A) = Φ(AΠ) for all permutation matrice Π and for all A ∈ U2, and

(ii)
4∑

i=1
(aik − aij)[Φik(A) − Φij(A)] � (�)0 for all j, k = 1, 2 and for all A ∈ U2,

where Φij(A) = ∂Φ(A)
∂aij

.

Lemma 2.2. Let the function γ : R4
+ → R+ be differentiable and the functin Φn :

R4n
+ → R+ be defined as

Φn(A) =
n∏

i=1

γ(a1i, a2i, a3i, a4i).

Assume that Φ2 satisfies (2.1). Then for A ∈ Un and B = ATw, we have Φn(A) � (�)Φn(B),
where Tw is the T-transform matrix.

Proof: The proofs of Lemmas 2.1–2.2 are similar to those of Theorems 2 and 3 of
Balakrishnan et al. (2015) [1], and Marshall and Olkin (1997) [26].

3. MAIN RESULTS

In this section we establish some ordering properties for the smallest and largest order
statistics of the ELS model with associated random shocks. We now consider the following
assumption.

Assumption 3.1. Suppose X1, ..., Xn are independent non-negative random variables
with Xi ∼ ELS(λi, θi, αi), and Ip1 , ..., Ipn are independent Bernoulli random variables, inde-
pendent of X ,

is, with E(Ipi) = pi, i = 1, ..., n. Further, suppose X∗
1 , ..., X∗

n are independent
non-negative random variables with X∗

i ∼ ELS(λ∗
i , θ

∗
i , α

∗
i ), and Ip∗1 , ..., Ip∗n are independent

Bernoulli random variables, independent of X∗,

i s, with E(Ip∗i ) = p∗i , i = 1, ..., n.

Theorem 3.1 shows that usual stochastic ordering holds between two parallel systems
of heterogeneous components under random shocks for fixed θ and α.
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Theorem 3.1. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable, in-

creasing and strictly convex function. Also, λi = λ∗
i , θi = θ∗i = θ and αi = α∗

i = α, where

i = 1, ..., n. Then, h(p
∼

) �w h(p∗
∼

) implies Yn:n �st Y ∗
n:n, provided λ

∼

∈ D+, h(p
∼

) ∈ D+, and

h(p
∼

) = (h(p1), ..., h(pn)).

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏

i=1

[
1 − h−1(ui)

[
1 − Fα

(
x − λi

θ

)]]
,

where h(pi) = ui. Let us define ψ1(u
∼

) = FYn:n(x). Differentiating ψ1(u
∼

), partially, with respect
to ui, we get

(3.1)
∂ψ1(u

∼

)

∂ui
= −

dh−1(ui)
dui

(
1 − Fα

(
x−λi

θ

))
1 − h−1(ui)

(
1 − Fα

(
x−λi

θ

))ψ1(u
∼

) � 0,

so, ψ1(u
∼

) is decreasing in each ui. Again, it can be shown that

(3.2)
∂ψ1(u

∼

)

∂ui
−

∂ψ1(u
∼

)

∂uj

sign
=

dh−1(uj)
duj

(
1 − Fα

(
x−λj

θ

))
1 − h−1(uj)

(
1 − Fα

(
x−λj

θ

)) −
dh−1(ui)

dui

(
1 − Fα

(
x−λi

θ

))
1 − h−1(ui)

(
1 − Fα

(
x−λi

θ

))
Now,

∂

∂u

(
1

1 − h−1(u)(1 − Fα
(

x−λ
θ

)) =
dh−1(u)

du

(
1 − Fα

(
x − λ

θ

))
� 0,

implying that 1

1−h−1(u)

(
1−F α(x−λ

θ )
) is increasing in u. Thus, as λ

∼

∈ D+, h(p
∼

) ∈ D+, for i � j

taking λi � λj and ui � uj and noticing that h−1(u) is increasing in u, it can be written that

1 − Fα
(

x−λj

θ

)
1 − h−1(uj)

(
1 − Fα

(
x−λj

θ

)) �
1 − Fα

(
x−λi

θ

)
1 − h−1(ui)

(
1 − Fα

(
x−λi

θ

)) ,

Again, if h(u) is convex in u, then ui � uj gives dh−1(ui)
dui

� dh−1(uj)
duj

which yields

dh−1(uj)
duj

(
1 − Fα

(
x−λj

θ

))
1 − h−1(uj)

(
1 − Fα

(
x−λj

θ

)) �

dh−1(ui)
dui

(
1 − Fα

(
x−λi

θ

))
1 − h−1(ui)

(
1 − Fα

(
x−λi

θ

)) .

Substituting the above result in (3.2), we get
∂ψ1(u

∼
)

∂ui
− ∂ψ1(u

∼
)

∂uj
� 0. Thus, by Lemma 3.1 of

Kundu et al. (2016) [24], ψ1(u
∼

) is Schur concave in u
∼

. Thus the result is proved by Theorem

A.8 of Marshall et al. (2011) [27].



122 M. Abdolahi, G. Parham and R. Chinipardaz

Theorem 3.2 shows that the majorized shape parameter vector leads to smaller systems
lifetime in the sense of the usual stochastic ordering when the location and scale parameter
vectors are constant and shock parameter vectors are heterogeneous.

Theorem 3.2. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗
i = λ, θi = θ∗i = θ, and α∗

i = βi, where i = 1, ..., n. Then,

α
∼

w
�β

∼

implies Yn:n �st Y ∗
n:n, provided α

∼

, β
∼

, h(p
∼

) ∈ ε+.

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏

i=1

[
1 − h−1(ui)

[
1 − Fαi

(
x − λ

θ

)]]
,

where h(pi) = ui. Differentiating FYn:n(x), partially, with respect to αi, we get

∂FYn:n(x)
∂αi

=
h−1(ui)Fαi

(
x−λ

θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(ui)
(

1 − Fαi
(

x−λ
θ

))FYn:n(x) � 0,

so, FYn:n(x) is decreasing in each αi. Again, it can be shown that
(3.3)

∂FYn:n(x)
∂αi

− ∂FYn:n(x)
∂αj

sign
=

h−1(ui)Fαi
(

x−λ
θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(ui)
(

1 − Fαi
(

x−λ
θ

)) − h−1(uj)Fαj
(

x−λ
θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(uj)
(

1 − Fαj
(

x−λ
θ

)) .

Now,

∂

∂α

(
Fα

(
x−λ

θ

)
1 − h−1(u)(1 − Fα

(
x−λ

θ

)) sign
= (1 − h−1(u))Fα

(
x − λ

θ

)
ln
[
F

(
x − λ

θ

)]
� 0,

implying that
F α(x−λ

θ )

1−h−1(u)

(
1−F α(x−λ

θ )
) is decreasing in α. Again, as h(u) is decreasing in u, then

∂

∂u

(
h−1(u)

1 − h−1(u)(1 − Fα
(

x−λ
θ

)) sign
=

∂h−1(u)
∂u

� 0,

implying that h−1(u)

1−h−1(u)(1−F α(x−λ
θ ) is decreasing in u. Thus, as α

∼

∈ ε+, h(p
∼

) ∈ ε+, for i � j

taking αi � αj and ui � uj and noticing that h−1(u) is decreasing in u, it can be written that

h−1(uj)Fαj
(

x−λ
θ

)
1 − h−1(uj)

(
1 − Fαj

(
x−λ

θ

)) �
h−1(uj)Fαi

(
x−λ

θ

)
1 − h−1(uj)

(
1 − Fαi

(
x−λ

θ

))
�

h−1(ui)Fαi
(

x−λ
θ

)
1 − h−1(ui)

(
1 − Fαi

(
x−λ

θ

)) ,

which implies

h−1(uj)Fαj
(

x−λ
θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(uj)
(

1 − Fαj
(

x−λ
θ

)) �
h−1(uj)Fαi

(
x−λ

θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(uj)
(

1 − Fαi
(

x−λ
θ

))
�

h−1(ui)Fαi
(

x−λ
θ

)
ln[F

(
x−λ

θ

)
]

1 − h−1(ui)
(

1 − Fαi
(

x−λ
θ

)) ·
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Hence, substituting the above results in (3.3), we get ∂FYn:n (x)
∂αi

− ∂FYn:n (x)
∂αj

� 0. Thus, by
Lemma 3.3 of Kundu et al. (2016) [24], it can be proved that FYn:n(x) is Schur-convex in α

∼

.

Thus the result is proved by Theorem A.8 of Marshall et al. (2011) [27].

Theorem 3.3. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗
i = λ, θi = θ∗i = θ, and α∗

i = βi, where i = 1, ..., n. Then,

α
∼

−1 �w β
∼

−1 implies Yn:n �st Y ∗
n:n, provided, α

∼

, β
∼

, h(p
∼

) ∈ ε+.

Proof: The cumulative distribution function of Yn:n can be expressed as the function
of ai, where ai = 1

αi
, i = 1, ..., n. We denote it by ψ2(a

∼

), where a
∼

= (a1, ..., an), and

ψ2(a
∼

) =
n∏

i=1

[
1 − h−1(ui)

[
1 − F

1
ai

(
x − λ

θ

)]]
,

where h(pi) = ui. It can be shown that the partial derivative of ψ2(a
∼

), with respect to ai

increasing in i = 1, ..., n. Thus, by Lemma 3.1 of Kundu et al. (2016) [24], it can be proved
that ψ2(a

∼

) is Schur-convex in a
∼

. Thus the result is proved by Theorem A.8 of Marshall et al.

(2011) [27].

Theorem 3.4 shows that Yn:n is smaller than Y ∗
n:n with respect to the usual stochastic

ordering when a vector of scale parameters is p-larger than that of another vector of the scale
parameters with some additional conditions when the location and shape parameter vectors
are constant and shock parameter vectors are heterogeneous. Similar result also hold under
reciprocally majorized based conditions among the scale parameters.

Theorem 3.4. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗
i = λ, θ∗i = δi, and αi = α∗

i = α, where i = 1, ..., n. Then,

(i) θ
∼

p
� δ

∼

implies Yn:n �st Y ∗
n:n, provided θ

∼

, δ
∼

, h(p
∼

) ∈ D+,, and ur̃(u) is increasing in u;

(ii) θ
∼

rm
� δ

∼

implies Yn:n �st Y ∗
n:n, provided θ

∼

, δ
∼

, h(p
∼

) ∈ ε+, and r̃(u) is increasing in u.

Proof:

(i): The cumulative distribution function of Yn:n can be expressed as the function of
ai, where ai = ln θi, i = 1, ..., n. We denote it by ψ3(a

∼

), where a
∼

= (a1, ..., an), and

ψ3(a
∼

) =
n∏

i=1

[
1 − h−1(ui)

(
1 − Fα(e−ai(x − λ))

)]
,

where h(pi) = ui. Differentiating ψ3(a
∼

), partially, with respect to ai, we get

∂ψ3(a
∼

)

∂ai
= −αh−1(ui)e−ai(x − λ)r̃(e−ai(x − λ))Fα(e−ai(x − λ))

1 − h−1(ui)
(
1 − Fα(e−ai(x − λ))

) ψ3(a
∼

) � 0,
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so, ψ3(a
∼

) is decreasing in each ai. Again, it can be shown that

∂ψ3(a
∼

)

∂ai
−

∂ψ3(a
∼

)

∂aj

sign
=

αh−1(uj)e−aj (x − λ)r̃(e−aj (x − λ))Fα(e−aj (x − λ))
1 − h−1(uj)

(
1 − Fα(e−aj (x − λ))

)
− αh−1(ui)e−ai(x − λ)r̃(e−ai(x − λ))Fα(e−ai(x − λ))

1 − h−1(ui)
(
1 − Fα(e−ai(x − λ))

) .

(3.4)

Now,

∂

∂a

(
Fα(e−a(x − λ))

1 − h−1(u)
(
1 − Fα(e−a(x − λ))

)) sign
= − αe−a(x − λ)(1 − h−1(u)) × r̃(e−a(x − λ))

× Fα(e−a(x − λ)) � 0,

implying that F α(e−a(x−λ))
1−h−1(u) (1−F α(e−a(x−λ)))

is decreasing in a. Again, as h(u) is decreasing in u,
then Fang, L. and Balakrishnan, N. (2018) [10]. Ordering properties of the small25 est order
statistics from generalized Birnbaum–Saunders models with associated 26 random shocks,
Metrika, 81, 1, 19-35.

∂

∂u

(
h−1(u)

1 − h−1(u)
(
1 − F a(e−a(x − λ))

)) sign
=

∂h−1(u)
∂u

� 0,

implying that h−1(u)
1−h−1(u) (1−F a(e−a(x−λ)))

is decreasing in u. Thus, as θ
∼

, h(p
∼

) ∈ D+, for i � j

taking ai � aj and ui � uj and noticing that h−1(u) is decreasing in u, it can be written that

h−1(uj)Fα(e−aj (x − λ))
1 − h−1(uj)

(
1 − Fα(e−aj (x − λ))

) � h−1(uj)Fα(e−ai(x − λ))
1 − h−1(uj)

(
1 − Fα(e−ai(x − λ))

)
� h−1(ui)Fα(e−ai(x − λ))

1 − h−1(ui)
(
1 − Fα(e−ai(x − λ))

) ,

As ur̃(u) is increasing in u, then

αh−1(uj)e−aj (x − λ)r̃(e−aj (x − λ))Fα(e−aj (x − λ))
1 − h−1(uj)

(
1 − Fα(e−aj (x − λ))

)
� αh−1(ui)e−αi(x − λ)r̃(e−ai(x − λ))Fα(e−ai(x − λ))

1 − h−1(ui)
(
1 − Fα(e−ai(x − λ))

) .

Hence, from (3.4), we get
∂ψ3(a

∼
)

∂ai
− ∂ψ3(a

∼
)

∂aj
�0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that ψ3(a
∼

) is Schur-convex in a
∼

. Thus the result is proved by Lemma 3.1 of

Khaledi et al. (2002) [16].

(ii): The cumulative distribution function of Yn:n can be expressed as the function of
bi = 1

θi
, i = 1, ..., n. We denote it by ψ4(b

∼

), where b
∼

= (b1, ..., bn):

ψ4(b
∼

) =
n∏

i=1

[
1 − h−1(ui)

(
1 − Fα(bi(x − λ))

)]
,

where h(pi) = ui. Differentiating ψ4(b
∼

), partially, with respect to bi, we see that ψ4(b
∼

) is

increasing in each i = 1, ..., n. Thus, by Lemma 3.1 of Kundu et al. (2016) [24], it can be
proved that ψ4(b

∼

) is Schur-convex in b
∼

. Thus the result is proved by Lemma 4.1 of Hazra et

al. (2017) [14].
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Theorem 3.5 shows that the majorized shape parameter vector leads to smaller systems
lifetime in the sense of the usual stochastic ordering when the location and scale and shock
parameter vectors are heterogeneous.

Theorem 3.5. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable and

decreasing function. Also, λi = λ∗
i , θi = θ∗i , and α∗

i = βi, where i = 1, ..., n. Then, α
∼

w
� β

∼

implies Yn:n �st Y ∗
n:n, provided α

∼

, β
∼

, h(p
∼

), λ
∼

, θ
∼

,∈ ε+.

Proof: The cumulative distribution function of Yn:n is given by

FYn:n(x) =
n∏

i=1

[
1 − h−1(ui)

[
1 − Fαi

(
x − λi

θi

)]]
,

where h(pi) = ui. Differentiating FYn:n(x), partially, with respect to αi, we get

∂FYn:n(x)
∂αi

=
h−1(ui)Fαi

(
x−λi

θi

)
ln
[
F
(

x−λi
θi

)]
1 − h−1(ui)

(
1 − Fαi

(
x−λi

θi

)) FYn:n(x) � 0,

so, FYn:n(x) is decreasing in each αi. Again, it can be shown that

∂FYn:n(x)
∂αi

− ∂FYn:n(x)
∂αj

sign
=

h−1(ui)Fαi

(
x−λi

θi

)
ln
[
F
(

x−λi
θi

)]
1 − h−1(ui)

(
1 − Fαi

(
x−λi

θi

))

−
h−1(uj)Fαj

(
x−λj

θj

)
ln
[
F
(

x−λj

θj

)]
1 − h−1(uj)

(
1 − Fαj

(
x−λj

θj

)) .

Now,

∂

∂α

(
Fα

(
x−λ

θ

)
1 − h−1(u)

(
1 − Fα

(
x−λ

θ

))) sign
= (1 − h−1(u))Fα

(
x − λ

θ

)
ln
[
F

(
x − λ

θ

)]
� 0,

implying that
F α(x−λ

θ )
1−h−1(u)

(
1−F α(x−λ

θ )
) is decreasing in α. Again, as h(u) is decreasing in u, then,

∂

∂u

(
h−1(u)

1 − h−1(u)
(
1 − Fα

(
x−λ

θ

))) sign
=

∂h−1(u)
∂u

� 0,

implying that h−1(u)

1−h−1(u)
(
1−F α(x−λ

θ )
) is decreasing in u. Again,

∂

∂λ

(
Fα

(
x−λ

θ

)
1 − h−1(u)

(
1 − Fα

(
x−λ

θ

))) sign
= −(

α

θ
)r̃
(

x − λ

θ

)
Fα

(
x − λ

θ

)(
1 − h−1(u)

) ≤ 0,

implying that
F α(x−λ

θ )
1−h−1(u)

(
1−F α(x−λ

θ )
) is decreasing in λ. Also,

∂

∂θ

(
Fα

(
x−λ

θ

)
1 − h−1(u)

(
1 − Fα

(
x−λ

θ

))) sign
= − (

α

θ2
)(x − λ)r̃

(
x − λ

θ

)
Fα

(
x − λ

θ

)
× (

1 − h−1(u)
) ≤ 0,
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implying that
F α(x−λ

θ )
1−h−1(u)

(
1−F α(x−λ

θ )
) is decreasing in θ. Thus, as α

∼

, β
∼

, h(p
∼

), λ
∼

, θ
∼

,∈ ε+, for i ≤ j

taking αi ≤ αj , ui ≤ uj , λi ≤ λj , θi ≤ θj and noticing that h−1(u) is decreasing in u, it can
be written that

h−1(uj)Fαj

(
x−λj

θj

)
1 − h−1(uj)

(
1 − Fαj

(
x−λj

θj

)) �
h−1(uj)Fαi

(
x−λj

θj

)
1 − h−1(uj)

(
1 − Fαi

(
x−λj

θj

))

�
h−1(ui)Fαi

(
x−λj

θj

)
1 − h−1(ui)

(
1 − Fαi

(
x−λj

θj

))

�
h−1(ui)Fαi

(
x−λi

θj

)
1 − h−1(ui)

(
1 − Fαi

(
x−λi

θj

))

�
h−1(ui)Fαi

(
x−λi

θi

)
1 − h−1(ui)

(
1 − Fαi

(
x−λi

θi

)) ,

which implies

h−1(uj)Fαj

(
x−λj

θj

)
1 − h−1(uj)

(
1 − Fαj

(
x−λj

θj

)) �
h−1(ui)Fαi(x−λi

θi
)

1 − h−1(ui)
(

1 − Fαi

(
x−λi

θi

)) .

Hence substituting the above results, we get ∂FYn:n (x)
∂αi

− ∂FYn:n (x)
∂αj

≤ 0. Thus by Lemma 3.3 of
Kundu et al. (2016) [24], it can be proved that FYn:n(x) is Schur-convex in α

∼

. thus the result

is proved by Theorem A.8 of Marshall et al. (2011) [27].

Theorem 3.6. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗
i = λ, θi = θ∗i = θ, α∗

i = βi, where i = 1, ..., n. Then,

(i) α
∼

w
�β

∼

implies Y1:n �st Y ∗
1:n, provided α

∼

, β
∼

∈ ε+,
n∏

i=1
pi ≤

n∏
i=1

p∗i ;

(ii) α
∼

−1 �w β
∼

−1 implies Y1:n �st Y ∗
1:n, provided α

∼

, β
∼

∈ ε+,
n∏

i=1
pi ≤

n∏
i=1

p∗i .

Proof:

(i): The survival function of Y1:n is given by

F̄Y1:n(x) =
n∏

i=1

pi

[
1 − Fαi

(
x − λ

θ

)]
,

where h(pi) = ui. To prove the required result, it sufficient to show that F̄Y1:n(x) ≤ F̄Y ∗
1:n

(x),

which is equivalent to proving that
∏n

i=1

[
1−Fαi

(
x−λ

θ

)] ≤∏n
i=1

[
1−F βi

(
x−λ

θ

)]
, since

n∏
i=1

pi ≤
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n∏
i=1

p∗i . Let φ(α
∼

) =
∏n

i=1

[
1 − Fαi

(
x−λ

θ

)]
. Differentiating φ(α

∼

), partially, with respect to αi,

we get
∂φ(α

∼

)

∂αi
= −Fαi

(
x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − Fαi

(
x−λ

θ

) φ(α
∼

) � 0,

so, φ(α
∼

) is increasing in each αi. Again, it can be shown that

∂φ(α
∼

)

∂αi
−

∂φ(α
∼

)

∂αj

sign
=

Fαj
(

x−λ
θ

)
ln
[
F
(

x−λ
θ

)]
1 − Fαj

(
x−λ

θ

)
− Fαi

(
x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − Fαi

(
x−λ

θ

)(3.5)

Now,
∂

∂α

(
Fα

(
x−λ

θ

)
1 − Fα

(
x−λ

θ

)) sign
= Fα

(
x − λ

θ

)
ln
[
F

(
x − λ

θ

)]
� 0,

implying that
F α(x−λ

θ )
1−F α(x−λ

θ ) is decreasing in α. Thus, as α
∼

∈ ε+, for i � j taking αi � αj , it can

be written that
Fαi

(
x−λ

θ

)
1 − Fαi

(
x−λ

θ

) �
Fαj

(
x−λ

θ

)
1 − Fαj

(
x−λ

θ

) ,

which implies
Fαi

(
x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − Fαi

(
x−λ

θ

) �
Fαj

(
x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − Fαj

(
x−λ

θ

) .

Hence, from (3.5), we get
∂φ(α

∼
)

∂αi
− ∂φ(α

∼
)

∂αj
� 0. Thus, by Lemma 3.3 of Kundu et al. (2016) [24],

it can be proved that φ(α
∼

) is Schur-concave in α
∼

. Thus the result is proved by Theorem A.8

of Marshall et al. (2011) [27].

(ii): The survival function of Y1:n can be expressed as the function of ci = 1
αi

,
i = 1, ..., n. We denote it by ψ5(c

∼

), where c
∼

= (c1, ..., cn), and

ψ5(α
∼

) =
n∏

i=1

pi

[
1 − F

1
ci

(
x − λ

θ

)]
,

where h(pi) = ui. To prove the required result, it is sufficient to show that ψ5(α
∼

) ≤ ψ5(β
∼

),

which is equivalent to proving that
n∏

i=1

[
1 − Fαi

(
x−λ

θ

)] ≤
n∏

i=1

[
1 − F βi

(
x−λ

θ

)]
, since

n∏
i=1

pi ≤
n∏

i=1
p∗i . Let φ(c

∼

) =
n∏

i=1

[
1 − F

1
ci

(
x−λ

θ

)]
. It can be shown that the partial derivative of φ(c

∼

),

with respect to ci, is decreasing in each ci. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],
it can be proved that φ(c

∼

) is Schur-concave in c
∼

. Thus the result is proved by Theorem A.8

of Marshall et al. (2011) [27].

Theorem 3.7. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗
i = λ, θi = θ∗i = θ, and α∗

i = βi, where i = 1, ..., n. Then, α
∼

p
�β

∼

implies

Y1:n �st Y ∗
1:n, provided α

∼

, β
∼

∈ D+,
n∏

i=1
pi ≤

n∏
i=1

p∗i .
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Proof: The survival function of Y1:n can be expressed as the function of di, where
di = ln αi, i = 1, ..., n. We denote it by ψ6(d

∼

), where d
∼

= (d1, ..., dn):

ψ6(d
∼

) =
n∏

i=1

pi

[
1 − F edi

(
x − λ

θ

)]
,

where h(pi) = ui. To prove the required result, it is sufficient to show that ψ6(α
∼

) ≤ ψ6(β
∼

),

which is equivalent to proving that
∏n

i=1 pi

[
1 − Fαi

(
x−λ

θ

)] ≤ ∏n
i=1 pi

[
1 − F βi

(
x−λ

θ

)]
, since

n∏
i=1

pi ≤
n∏

i=1
p∗i . Let φ(d

∼

) =
∏n

i=1

[
1−F edi

(
x−λ

θ

)]
Differentiating ψ6(d

∼

), partially, with respect

to di, we get

∂φ(d
∼

)

∂di
= −ediF edi

(
x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − F edi

(
x−λ

θ

) φ(d
∼

) � 0

so, φ(d
∼

) is increasing in each di. Again, it can be shown that

∂φ(d
∼

)

∂di
−

∂φ(d
∼

)

∂dj

sign
=

edjF edj (x−λ
θ

)
ln
[
F
(

x−λ
θ

)]
1 − F edj

(
x−λ

θ

) − ediF edi
(

x−λ
θ

)
ln
[
F
(

x−λ
θ

)]
1 − F edi

(
x−λ

θ

) .(3.6)

Now,
∂

∂d

(
F ed(x−λ

θ

)
1 − F ed

(
x−λ

θ

)) sign
= edF ed

(
x − λ

θ

)
ln
[
F

(
x − λ

θ

)]
� 0,

implying that
F ed(x−λ

θ )
1−F ed(x−λ

θ )
is decreasing in d. Thus, as d

∼

∈ D+, for i � j taking di � dj , it can

be written that
F edi

(
x−λ

θ

)
1 − F edi

(
x−λ

θ

) �
F edj (x−λ

θ

)
1 − F edj

(
x−λ

θ

) ,

which implies

ediF edi
(

x−λ
θ

)
ln
[
F
(

x−λ
θ

)]
1 − F edi

(
x−λ

θ

) �
edjF edj (x−λ

θ

)
ln
[
F
(

x−λ
θ

)]
1 − F edj

(
x−λ

θ

) .

Hence, from (3.6), we get
∂φ(d

∼
)

∂di
− ∂φ(d

∼
)

∂dj
� 0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that φ(d
∼

) is Schur-concave in d
∼

. Thus the result is proved by Lemma 3.1 of

Khaledi et al. (2002) [16].

Theorem 3.8. Let Assumption 3.1 hold and h : [0, 1] → R be a differentiable func-

tion. Also, λi = λ∗
i = λ, θ∗i = δi, and αi = α∗

i = α, where i = 1, ..., n. Then, θ
∼

−1 �w δ
∼

−1

implies Y1:n �st Y ∗
1:n, provided θ

∼

, δ
∼

∈ ε+,
n∏

i=1
pi ≤

n∏
i=1

p∗i , and r̃(u) is increasing in u.

Proof: The survival function of Y1:n can be expressed as the function of ei, where
ei = 1

θi
, i = 1, ..., n. We denote it by ψ7(e

∼

), where e
∼

= (e1, ..., en), and

ψ7(e
∼

) =
n∏

i=1

pi

[
1 − Fα

(
ei(x − λ)

)]
,
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where h(pi) = ui. To prove the required result, it is sufficient to show that ψ7(θ
∼

−1) ≤ ψ7(δ
∼

−1),

which is equivalent to proving that
∏n

i=1

[
1 − Fα

(
1
θi

(x − λ)
)] ≤ ∏n

i=1

[
1 − Fα

(
1
δi

(x − λ)
)]

,

since
n∏

i=1
pi ≤

n∏
i=1

p∗i . Let φ(e
∼

) =
∏n

i=1

[
1 − Fα

(
ei(x − λ)

)]
. Differentiating φ(e

∼

), partially,

with respect to ei, we get

∂φ(e
∼

)

∂ei
= −α(x − λ)r̃(ei(x − λ))Fα(ei(x − λ))

1 − Fα(ei(x − λ))
φ(e

∼

) � 0,

so, ψ7(e
∼

) is decreasing in each ei. Again, it can be shown that

∂φ(e
∼

)

∂ei
−

∂φ(e
∼

)

∂ej

sign
=

α(x − λ)r̃(ej(x − λ))Fα(ej(x − λ))
1 − Fα(ej(x − λ))

− α(x − λ)r̃(ei(x − λ))Fα(ei(x − λ))
1 − Fα(ei(x − λ))

.

(3.7)

Now,

∂

∂e

(
Fα(e(x − λ))

1 − Fα(e(x − λ))

)
sign
= α(x − λ)r̃(e(x − λ))Fα(e(x − λ)) � 0,

implying that F α(e(x−λ))
1−F α(e(x−λ)) is inscreasing in e. Thus, us θ

∼

∈ ε+, for i � j taking ei � ej ,
it can be written that

Fα(ei(x − λ))
1 − Fα(ei(x − λ))

� Fα(ej(x − λ))
1 − Fα(ej(x − λ))

.

As r̃(u) is increasing in u, then

α(x − λ)r̃(ei(x − λ))Fα(ei(x − λ))
1 − Fα(ei(x − λ))

� α(x − λ)r̃(ej(x − λ))Fα(ej(x − λ))
1 − Fα(ej(x − λ))

.

Hence, from (3.7), we get
∂φ(e

∼
)

∂ei
− ∂φ(e

∼
)

∂ej
� 0. Thus, by Lemma 3.1 of Kundu et al. (2016) [24],

it can be proved that φ(e
∼

) is Schur-concave in e
∼

. Thus the result is proved by Theorem A.8

Marshall et al. (2011) [27].

Theorem 3.8 shows that if both the location and shock parameter vectors i.e. the matrix
of location and shock parameters of one system majorizes the other when the scale and shape
parameter vectors remain constant do not lead to better system reliability.

Theorem 3.9. For n = 2, let Assumption 3.1 hold. Further, let h : [0, 1] → R+ be a

differentiable and strictly increasing concave function. Then, for i = 1, 2, if θi = θ∗i = αi =
α∗

i = θ, and (h(p
∼

), λ
∼

) ∈ P2, we have that

(
h(p1)
λ1

h(p2)
λ2

)
�
(

h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

)
,

implies Y ∗
1:2 �st Y1:2, provided r̃(u) is increasing in u.
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Proof: With u1 = h(p1), u2 = h(p2), we have p1 = h−1(u1), p2 = h−1(u2), where h−1

denotes the inverse of the function h. From (1.2), the survival function of Y1:2 is

F̄Y1:2(x;u
∼

, λ
∼

, θ, θ) =
2∏

i=1

h−1(ui)
[
1 − F θ

(
x − λi

θ

)]
, x > max{λi, i = 1, ..., n}.

Note that the function F̄Y1:2(x;u
∼

, λ
∼

, θ, θ) is permutation invariant in (ui, λi), and so condition

(i) of Theorem 2 of Balakrishnan et al. (2015) [1] is satisfied. Next, we have to show that
condition (ii) of Theorem 2 of Balakrishnan et al. (2015) [1] also holds. The assumption
(u

∼

, λ
∼

) ∈ P2 implies that (u1 − u2)(λ1 − λ2) � 0. This implies that u1 � u2 and λ1 � λ2 or
u1 � u2 and λ1 � λ2. We proof only for the case when u1 � u2 and λ1 � λ2. The proof for
the other case is similar. The partial derivatives of F̄Y1:2(x;u

∼

, λ
∼

, θ, θ) with respect to ui and
λi are

∂F̄Y1:2(x;u
∼

, λ
∼

, θ, θ)

∂ui
=

∂h−1(ui)
∂ui

h−1(ui)
F̄Y1:2(x;u

∼

, λ
∼

, θ, θ),

∂F̄Y1:2(x;u
∼

, λ
∼

, θ, θ)

∂λi
= −

r̃
(

x−λi
θ

)
F θ

(
x−λi

θ

)
1 − F θ

(
x−λi

θ

) F̄Y1:2(x; u
∼

, λ
∼

, θ, θ).

For fixed x > max{λi, i = 1, ..., n}, let us define the function ϕ(u
∼

, λ
∼

) as follows:

ϕ(u
∼

, λ
∼

) = (u1 − u2)

(
∂F̄Y1:2(x;u

∼

, λ
∼

, θ, θ)

∂u1
−

∂F̄Y1:2(x;u
∼

, λ
∼

, θ, θ)

∂u2

)

+ (λ1 − λ2)

(
∂F̄Y1:2(x; u

∼

, λ
∼

, θ, θ)

∂λ1
−

∂F̄Y1:2(x;u
∼

, λ
∼

, θ, θ)

∂λ2

)

= (u1 − u2)

⎛⎝ ∂h−1(u1)
∂u1

h−1(u1)
−

∂h−1(u2)
∂u2

h−1(u2)

⎞⎠× F̄Y1:2(x;u
∼

, λ
∼

, θ, θ)

+ (λ1 − λ2)

⎛⎝ r̃
(

x−λ1
θ

)
F θ

(
x−λ1

θ

)
1 − F θ

(
x−λ1

θ

) −
r̃
(

x−λ2
θ

)
F θ

(
x−λ2

θ

)
1 − F θ

(
x−λ2

θ

)
⎞⎠ F̄Y1:2(x; u

∼

, λ
∼

, θ, θ).(3.8)

Since h is strictly increasing and concave, then for u1 � u2 and λ1 � λ2, we have

(3.9)
∂h−1(u1)

∂u1

h−1(u1)
≤

∂h−1(u2)
∂u2

h−1(u2)
.

Furthermore, tθ

1−tθ
is increasing in t for θ > 0. For the reversed hazard rate function r̃ that is

increasing, we have

(3.10) r̃(
x − λ1

θ
) ≥ r̃

(
x − λ2

θ

)
and

(3.11)
r̃
(

x−λ1
θ

)
F θ

(
x−λ1

θ

)
1 − F θ

(
x−λ1

θ

) �
r̃
(

x−λ2
θ

)
F θ

(
x−λ2

θ

)
1 − F θ

(
x−λ2

θ

) .

Combining (3.9) and (3.10) and (3.11), we see that ϕ(u
∼

, λ
∼

) � 0. Condition (ii) Theorem 2 of

Balakrishnan et al. (2015) [1] is satisfied, which completes the proof.
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Counterexample 3.1. Let the baseline distribution function be F (t) = e
−1
t , t > 0.

Take h(p) = − ln p. Here, the baseline reversed hazard rate function is decreasing and
h(p) is decreasing and convex. Thus, the assumptions of the Theorem 3.9 are violated.
Let us take θ1 = θ2 = θ∗1 = θ∗2 = α1 = α2 = α∗

1 = α∗
2 = 1.5, (λ1, λ2) = (0.3, 0.9), (λ∗

1, λ
∗
2) =

(0.54, 0.66), (p1, p2) = (e−0.4, e−0.5) and (p∗1, p∗2) = (e−0.44, e−0.46). Consider the T-transform

matrix T0.6 =
(

0.6
0.4

0.4
0.6

)
. It can be shown that(
h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

)
=
(

h(p1)
λ1

h(p2)
λ2

)
T0.6,

which implies
(

h(p1)
λ1

h(p2)
λ2

)
�
(

h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

)
. Under this set up, F̄Y1:2(2) = 0.2597610428,

F̄Y ∗
1:2

(2) = 0.2599036428, F̄Y1:2(5) = 0.06532417018, F̄Y ∗
1:2

(5) = 0.06516286182, which readily
shows that Y ∗

1:2 �st Y1:2.

The following theorem extends Theorem 3.8 when two sets of n-independent observa-
tions from ELS distribution. The generalization is the direct result of the Theorem 3.8 and
Lemma 5 of Balakrishnan et al. (2018) [2]. So, the proof is omitted.

Theorem 3.10. Let Assumption 3.1 hold and h : [0, 1] → R+ be a differentiable and

strictly increasing concave function. Further, let Tw be a T-transform matrix. Then, for

i = 1, ..., n, if θi = θ∗i = αi = α∗
i = θ, and (h(p

∼

), λ
∼

) ∈ Pn, we have that(
h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

···
···

h(p∗n)
λ∗

n

)
=
(

h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw,

implies Y ∗
1:n �st Y1:n, provided r̃(u) is increasing in u.

Theorem 3.11. Let Assumption 3.1 hold. Further, let Tw1 , ..., Twk
have the same

structure. Suppose h : [0, 1] → R+ is a differentiable and strictly increasing concave function.

Then, for i = 1, ..., n, if θi = θ∗i = αi = α∗
i = θ, and (h(p

∼

), λ
∼

) ∈ Pn, we have that(
h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

···
···

h(p∗n)
λ∗

n

)
=
(

h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw1 ···Twk

,

implies Y ∗
1:n �st Y1:n, provided r̃(u) is increasing in u.

Proof: Since a finite product of T-transform matrices with the same structure is also
a T-transform matrix, so, the desired result is obtained from Theorem 3.9.

Our next Theorem shows that the result in Theorem 3.10 holds for T-transform matrices
with different structure.

Theorem 3.12. Let Assumption 3.1 hold. Further, let Tw1 , ..., Twk
, k > 2, have differ-

ent structures. Suppose h : [0, 1] → R+ is a differentiable and strictly increasing concave func-

tion. Then, for i = 1, ..., n, if θi = θ∗i = αi = α∗
i = θ, (h(p

∼

), λ
∼

) ∈ Pn and (h(p
∼

), λ
∼

) Tw1 ···Twk
∈

Pn, we have that(
h(p∗1)
λ∗

1

h(p∗2)
λ∗

2

···
···

h(p∗n)
λ∗

n

)
=
(

h(p1)
λ1

h(p2)
λ2

···
···

h(pn)
λn

)
Tw1 ···Twk

,

implies Y ∗
1:n �st Y1:n, provided r̃(u) is increasing in u.
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Proof:(
h(p1)(i)

λ
(i)
1

···
···

h(pn)(i)

λ
(i)
n

)
=
(

h(p1)
λ1

···
···

h(pn)
λn

)
Tw1 ···Twi , for i = 1, ..., k.

Assume V
(i)
1 , ..., V

(i)
n , i = 1, ..., k, are independent sets of random variables with V

(i)
j ∼

ELS(λ(i)
j , θj , αj) where θj = θ∗j = αj = α∗

j = θ, j = 1, ..., n and i = 1, ..., k. From the assump-
tion of the theorem, it follows that(

h(p1)(i)

λ
(i)
1

···
···

h(pn)(i)

λ
(i)
n

)
∈ Pn, for i = 1, ..., k.

From these observations and the results of Theorem 3.9, it then follows that

Y1:n �st V
(1)
1:n �st ··· �st V

(k−2)
1:n �st V

(k−1)
1:n �st Y ∗

1:n,

which completes the proof of the theorem.

The following example illustrates the result established in Theorem 3.11.

Example 3.1. Suppose X1, X2 and X3 are independent non-negative random vari-
ables with Xi ∼ ELS(λi, θi, αi), and Ip1 , Ip2 and Ip3 are independent Bernoulli random vari-
ables, independent of X ,

is, with E(Ipi) = pi, i = 1, 2, 3. Further, suppose X∗
1 , X∗

2 and X∗
3

are independent non-negative random variables with X∗
i ∼ ELS(λ∗

i , θ
∗
i , α

∗
i ), and Ip∗1 , Ip∗2 and

Ip∗3 are independent Bernoulli random variables, independent of X∗,

i s, with E(Ip∗i ) = p∗i ,
i = 1, 2, 3. Consider a baseline distribution with distribution function F (x) = 1− e−x, x > 0.
Consider the T-transform matrices as follows:

T0.7 =

⎛⎝ 0.7
0

0.3

0
1
0

0.3
0

0.7

⎞⎠, T0.6 =

⎛⎝ 0.4
0.6
0

0.6
0.4
0

0
0
1

⎞⎠, T0.4 =

⎛⎝ 0.6
0

0.4

0
1
0

0.4
0

0.6

⎞⎠.

Suppose h(p) = p
1+p . Then, for θi = θ∗i = αi = α∗

i = 1, i = 1, 2, 3, let (λ1, λ2, λ3) = (2, 3, 4),
(λ∗

1,λ
∗
2,λ

∗
3)=(3.06,2.76,3.17), (p1, p2, p3)=(0.4,0.3,0.2) and (p∗1, p∗2, p∗3)=(0.285,0.317,0.273).

It is easy to observe that (h(p
∼

), λ
∼

) ∈ P3, (h(p
∼

), λ
∼

)T0.7 ∈ P3 and (h(p
∼

), λ
∼

)T0.7T0.6 ∈ P3 and

(h(p∗
∼

), λ∗
∼

) = (h(p
∼

), λ
∼

)T0.7T0.6T0.4. So, from Theorem 3.11, we have Y ∗
1:3 �st Y1:3.

Theorem 3.13. Let Assumption 3.1 hold for n = 2. Suppose h : [0, 1] → R+ is differ-

entiable and strictly increasing concave function. Further, let r̃(u) and ur̃(u) increasing in u.

Then, if αi = α∗
i = α, and (h(p

∼

), λ
∼

, θ
∼

) ∈ S2, we have that

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

⎞⎠�
⎛⎝ h(p∗1)

λ∗
1

θ∗1

h(p∗2)
λ∗

2

θ∗2

⎞⎠
implies Y ∗

1:2 �st Y1:2.
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Proof: With u1 = h(p1), u2 = h(p2), we have p1 = h−1(u1), p2 = h−1(u2), where h−1

denotes the inverse of the function h. From (1.2), the survival function of Y1:2 is

F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α) =
2∏

i=1

h−1(ui)
[
1 − Fα

(
x − λi

θi

)]
, x > max{λi, i = 1, ..., n}.

Note that the function F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α) is permutation invariant in (ui, λi, θi) and therefore

condition (i) of Lemma 6 of Balakrishnan et al. (2018) [2] is satisfied. Next, we have to show
that Condition (ii) of Lemma 6 of Balakrishnan et al. (2018) [2] also holds. The assumption
(u

∼

, λ
∼

, θ
∼

) ∈ S2 implies that u1 � (�)u2 and λ1 � (�)λ2 and θ1 � (�)θ2. We proof only for the
case when u1 � u2 and λ1 � λ2 and θ1 � θ2. The proof for the other case is similar. The
partial derivatives of F̄Y1:2(x;u

∼

, λ
∼

, θ
∼

, α) with respect to ui and λi and θi are

∂F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂ui
=

∂h−1(ui)
∂ui

h−1(ui)
× F̄Y1:2(x;u

∼

, λ
∼

, θ
∼

, α),

∂F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂λi
=

α

θi
×

r̃
(

x−λi
θi

)
Fα

(
x−λi

θi

)
1 − Fα

(
x−λi

θi

) × F̄Y1:2(x; u
∼

, λ
∼

, θ
∼

, α),

∂F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂θi
=

α

θi
×
(

x−λi
θi

)
r̃
(

x−λi
θi

)
Fα

(
x−λi

θi

)
1 − Fα

(
x−λi

θi

) × F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α).

For fixed x > max{λi, i = 1, ..., n}, let us define the function ϕ(u
∼

, λ
∼

, θ
∼

) as follows:

ϕ(u
∼

, λ
∼

, θ
∼

) = (u1 − u2)

(
∂F̄ Y1:2(x;u

∼

, λ
∼

, θ
∼

, α)

∂u1
−

∂F̄ Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂u2

)

+ (λ1 − λ2)

(
∂F̄ Y1:2(x;u

∼

, λ
∼

, θ
∼

, α)

∂λ1
−

∂F̄ Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂λ2

)

+ (θ1 − θ2)

(
∂F̄ Y1:2(x;u

∼

, λ
∼

, θ
∼

, α)

∂θ1
−

∂F̄ Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

∂θ2

)

= (u1 − u2)

⎛⎝ ∂h−1(u1)
∂u1

h−1(u1)
−

∂h−1(u2)
∂u2

h−1(u2)

⎞⎠× F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α)

+ (λ1 − λ2)

(
1
θ1

r̃

(
x − λ1

θ1

)
l1 − 1

θ2
r̃

(
x − λ2

θ2

)
l2

)
× F̄Y1:2(x;u

∼

, λ
∼

, θ
∼

, α)

+ (θ1 − θ2)

(
1
θ1

(
x − λ1

θ1

)
r̃

(
x − λ1

θ1

)
l1 − 1

θ2

(
x − λ2

θ2

)
r̃

(
x − λ2

θ2

)
l2

)
(3.12)

× F̄Y1:2(x;u
∼

, λ
∼

, θ
∼

, α),

where li = l
(
α, Fα

(
x−λi

θi

))
=

αF α
�

x−λi
θi

�

1−F α
�

x−λi
θi

� , i = 1, 2, is defined in Lemma 2.8 of Torrado (2015)

[28]. Since h is strictly increasing and concave function, then for u1 � u2 and λ1 � λ2 and
θ1 � θ2, we have

(3.13)
∂h−1(u1)

∂u1

h−1(u1)
�

∂h−1(u2)
∂u2

h−1(u2)
.
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(3.14)
1
θ1

r̃

(
x − λ1

θ1

)
l

(
α, Fα

(
x − λ1

θ1

))
� 1

θ2
r̃

(
x − λ2

θ2

)
l

(
α, Fα

(
x − λ2

θ2

))
and
(3.15)
1
θ1

(
x − λ1

θ1

)
r̃

(
x − λ1

θ1

)
l

(
α, Fα

(
x − λ1

θ1

))
� 1

θ2

(
x − λ2

θ2

)
r̃

(
x − λ2

θ2

)
l

(
α, Fα

(
x − λ2

θ2

))
combining (3.13), (3.14) and (3.15) in (3.12), we see that ϕ(u

∼

, λ
∼

, θ
∼

) � 0. So condition (ii) of

Lemma 6 of Balakrishnan et al. (2018) [2] is satisfied, which completes the proof.

Counterexample 3.2. Let the baseline distribution function be F (t) = e
−1
t , t > 0.

Here, r̃(t) and tr̃(t) are decreasing. Take h(p) = p. Thus, the assumption of Theorem 3.13
are violated. Let us take α1 = α2 = α∗

1 = α∗
2 = 2.2, (θ1, θ2) = (5.2, 2.7), (θ∗1, θ∗2) = (4.2, 3.7),

(λ1, λ2) = (2.2, 2.5), (λ∗
1, λ

∗
2) = (2.32, 2.38), (p1, p2) = (p∗1, p∗2) = (0.2, 0.2). Consider the

T-transform matrix T0.6 =
(

0.6
0.4

0.4
0.6

)
. It can be shown that

⎛⎝ h(p∗1)
λ∗

1

θ∗1

h(p∗2)
λ∗

2

θ∗2

⎞⎠ =

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

⎞⎠T0.6,

which implies

⎛⎝h(p1)
λ1

θ1

h(p2)
λ2

θ2

⎞⎠�
⎛⎝h(p∗1)

λ∗
1

θ∗1

h(p∗2)
λ∗

2

θ∗2

⎞⎠. Under this set up, F̄Y1:2(2.8) = 0.9999999923,

F̄Y ∗
1:2

(2.8) = 0.9999999918, F̄Y1:2(5) = 0.8918294672, F̄Y ∗
1:2

= 0.9248659543, which readily shows
that Y ∗

1:2 �st Y1:2.

The following theorem extends Theorem 3.12 when two sets of n-independent observa-
tions are from ELS distribution. The generalization is the direct of the Theorem 3.12 and
Lemma 7 of Balakrishnan et al. (2018) [2]. So, the proof is omitted.

Theorem 3.14. Let Assumption 3.1 hold. Suppose h : [0, 1] → R+ is differentiable

and strictly increasing concave function. Further, let r̃(u) and ur̃(u) are increasing in u.

Then, for i = 1, ..., n and T-transform matrix Tw, if αi = α∗
i = α, and (h(p

∼

), λ
∼

, θ
∼

) ∈ Sn, we

have that ⎛⎝ h(p∗1)
λ∗

1

θ∗1

h(p∗2)
λ∗

2

θ∗2

···
···
···

h(p∗n)
λ∗

n

θ∗n

⎞⎠ =

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn

θn

⎞⎠Tw

implies Y ∗
1:n �st Y1:n.

Theorem 3.15. Let Assumption 3.1 hold and Tw1 , ..., Twk
be T-transform matrices

with same structures. Suppose, h : [0, 1] → R+ is differentiable and strictly increasing concave
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function. Further, let r̃(u), and ur̃(u) are strictly increasing in u,. Then, if αi = α∗
i = α,, and

(h(p
∼

), λ
∼

, θ
∼

) ∈ Sn, we have that

⎛⎝ h(p∗1)
λ∗

1

θ∗1

h(p∗2)
λ∗

2

θ∗2

···
···
···

h(p∗n)
λ∗

n

θ∗n

⎞⎠ =

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn

θn

⎞⎠Tw1 ···Twk

implies Y ∗
1:n �st Y1:n.

Proof: Since, a finite product of T-transform matrices with the same structure is
also a T-transform matrix, so, the desired result can be obtained by repeating the result of
Theorem 3.13.

Theorem 3.16. Let Assumption 3.1 hold and Tw1 , ..., Twk
, k > 2 be T-transform ma-

trices with different structures. Suppose, h : [0, 1] → R+ is differentiable and strictly increas-

ing concave function. Further, let r̃(u) and ur̃(u) are increasing in u. Then, if αi = α∗
i = α,

and (h(p
∼

), λ
∼

, θ
∼

) ∈ Sn and (h(p
∼

), λ
∼

, θ
∼

) Tw1 ···Twi ∈ Sn, i = 1, ..., k − 1, we have

⎛⎝ h(p∗1)
λ∗

1

θ∗1

h(p∗2)
λ∗

2

θ∗2

···
···
···

h(p∗n)
λ∗

n

θ∗n

⎞⎠ =

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

···
···
···

h(pn)
λn

θn

⎞⎠Tw1 ···Twk

implies Y ∗
1:n �st Y1:n.

Proof:⎛⎜⎝ h(i)(p1)
λ

(i)
1

θ
(i)
1

···
···
···

h(i)(pn)
λ

(i)
n

θ
(i)
n

⎞⎟⎠ =

⎛⎝ h(p1)
λ1

θ1

···
···
···

h(pn)
λn

θn

⎞⎠Tw1 ...Twi , for i = 1, ..., k.

Assume V
(i)
1 , ..., V

(i)
n , i = 1, ..., k, are independent sets of random variables with V

(i)
j ∼

ELS(λ(i)
j , θ

(i)
j , αj) where αi = α∗

i = α, j = 1, ..., n and i = 1, ..., k. From the assumption of
the theorem, it follows that ⎛⎜⎝ h(p1)(i)

λ
(i)
1

θ
(i)
1

···
···
···

h(pn)(i)

λ
(i)
n

θ
(i)
n

⎞⎟⎠ ∈ Sn.

Using the results of Theorem 3.13, it then follows that

Y1:n �st V
(1)
1:n �st ··· �st V

(k−2)
1:n �st V

(k−1)
1:n �st Y ∗

1:n,

which completes the proof of the theorem.
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Theorem 3.17. Let Assumption 3.1 hold for n = 2. Suppose h : [0, 1] → R+ is a

differentiable and strictly increasing concave function. Further, assume that r̃(u) and ur̃(u)
are increasing in u, and (h(p

∼

), λ
∼

, θ
∼

, α
∼

) ∈ U2,. Then,

⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

⎞⎟⎟⎠�

⎛⎜⎜⎝
h(p∗1)
λ∗

1

θ∗1
α∗

1

h(p∗2)
λ∗

2

θ∗2
α∗

2

⎞⎟⎟⎠
implies Y ∗

1:2 �st Y1:2.

Proof: With the help of Lemma 2.1, the proof follows from arguments similar to those
in the proof of Theorem 3.13. It is omitted for brevity.

We present a counterexample to show that the comparison result may not hold if the
assumptions are not satisfied.

Counterexample 3.3. Let the baseline distribution function be F (t)=1−exp(1−t0.5),
t ≥ 1. Here r̃(t) and tr̃(t) are decreasing. Take h(p) = ep, where h(p) is convex. Thus, the
assumption of Theorem 3.17 are not violated. Let us set (α1, α2) = (0.2, 0.5), (α∗

1, α
∗
2) =

(0.44, 0.26), (λ1, λ2) = (1, 1.5), (λ∗
1, λ

∗
2) = (1.4, 1.1), (θ1, θ2) = (4, 2), (θ∗1, θ∗2) = (2.4, 3.6),

(p1, p2) = (ln(4), ln(5)), (p∗1, p∗2) = (ln(4.8), ln(4.2)),. Consider a T-transform matrix T0.2 =(
0.2
0.8

0.8
0.2

)
. Then, it can be shown that

⎛⎜⎜⎝
h(p∗1)
λ∗

1

θ∗1
α∗

1

h(p∗2)
λ∗

2

θ∗2
α∗

2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

⎞⎟⎟⎠T0.2,

which implies

⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

⎞⎟⎟⎠�

⎛⎜⎜⎝
h(p∗1)
λ∗

1

θ∗1
α∗

1

h(p∗2)
λ∗

2

θ∗2
α∗

2

⎞⎟⎟⎠. Finally F̄Y1:2(5)− F̄Y ∗
1:2

(5)= 0.4133022299,

F̄Y1:2(7.5) − F̄Y ∗
1:2

(7.5) = −0.0324688838, which readily shows that Y ∗
1:2 �st Y1:2.

In the following theorem, we present a generalization of Theorem 3.17 to the case of
n independent variables.

Theorem 3.18. Let Assumption 3.1 hold. Further, let Tw be a T-transform ma-

trix. Suppose h : [0, 1] → R+ is a differentiable strictly increasing concave function. Further,

assume that r̃(u) and ur̃(u) are increasing in u, and let (h(p
∼

), λ
∼

, θ
∼

, α
∼

) ∈ Un. Then,

⎛⎜⎜⎝
h(p∗1)
λ∗

1

θ∗1
α∗

1

h(p∗2)
λ∗

2

θ∗2
α∗

2

···
···
···
···

h(p∗n)
λ∗

n

θ∗n
α∗

n

⎞⎟⎟⎠ =

⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

···
···
···
···

h(pn)
λn

θn

αn

⎞⎟⎟⎠Tw

implies Y ∗
1:n �st Y1:n.
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Theorem 3.19. Let Tw1 , ..., Twk
be T-transform matrices with same structure. Let

Assumption 3.1 hold and h : [0, 1] → R+ be a differentiable and strictly increasing concave

function. Further, assume that r̃(u) and ur̃(u) are strictly increasing in u, and (h(p
∼

), λ
∼

, θ
∼

, α
∼

) ∈
Un. Then,⎛⎜⎜⎝

h(p∗1)
λ∗

1

θ∗1
α∗

1

h(p∗2)
λ∗

2

θ∗2
α∗

2

···
···
···
···

h(p∗n)
λ∗

n

θ∗n
α∗

n

⎞⎟⎟⎠ =

⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

···
···
···
···

h(pn)
λn

θn

αn

⎞⎟⎟⎠Tw1 ···Twk

implies Y ∗
1:n �st Y1:n.

The following theorem presents a generalization to the case of a finite number of
T-transform matrices with different structures.

Theorem 3.20. Let Assumption 3.1 hold. Further, let Tw1 , ...,Twk
, k>2 be T-transform

matrices, with different structures. Suppose h : [0, 1] → R+ is a differentiable and strictly in-

creasing concave function. Further, assume that r̃(u) and ur̃(u) are increasing in u, and

(h(p
∼

), λ
∼

, θ
∼

, α
∼

) ∈ Un and (h(p
∼

), λ
∼

, θ
∼

, α
∼

) Tw1 ···Twi ∈ Un, i = 1, ..., k − 1. Then,
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1
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1
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θ∗2
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2

···
···
···
···
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n

θ∗n
α∗

n
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⎛⎜⎜⎝
h(p1)
λ1

θ1

α1

h(p2)
λ2

θ2

α2

···
···
···
···

h(pn)
λn

θn

αn

⎞⎟⎟⎠Tw1 ···Twk

implies Y ∗
1:n �st Y1:n.

4. SOME SPECIAL CASES

In this section, we present some special cases of the results obtained in the previous
sections. We consider two special distributions - generalized gamma, half - normal distribu-
tions. For these distributions, we present some comparisons results using the general results
established earlier. In terms of hazard rate function, the following theorems can be proved
like the theorems above, which are proved by reversed hazard rate function. To prevent
recurrence, you can refer to Das et al. (2021) [7].

4.1. Generalized gamma distribution

In this subsection, we consider the generalized gamma distribution with density function

f(t) ∝ ta−1e−tb , a, b, t > 0.

It is easy to check that the hazard rate function of this distribution is increasing for a, b ≥ 1
and decreasing for 0 < a, b ≤ 1(see Hazra et al., 2018 [15]). We now consider the baseline
distribution function to the generalized gamma distribution.



138 M. Abdolahi, G. Parham and R. Chinipardaz

Theorem 4.1. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X∗

n)
be non-negative independent random variables with Xi ∼ELS(λi, θi,αi)[X∗

i ∼ELS(μi, δi,βi)],
i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ],s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Then, for i = 1, 2, if

θi = δi = δ and αi = βi = α ≥ 1, r(x) is increasing. Suppose h(p) = ep ln(1 + p). Then, for

a, b ≥ 1, we have

(
h(p1)

θ1

h(p2)
θ2

)
�
(

h(p∗1)
δ1

h(p∗2)
δ2

)
implies Y ∗

1:2 ≥st Y1:2.

Theorem 4.2. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X∗

n)
be non-negative independent random variables with Xi ∼ELS(λi, θi,αi)[X∗

i ∼ELS(μi, δi,βi)],
i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ],s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Further, let the baseline

hazard rate r(.) be increasing. If αi = βi = α ≥ 1 and (h(p
∼

), λ
∼

, θ
∼

) ∈ N2. Suppose h(p) = p2.

Then, for a, b ≥ 1, we have

⎛⎝ h(p1)
λ1

θ1

h(p2)
λ2

θ2

⎞⎠�
⎛⎝ h(p∗1)

μ1

δ1

h(p∗2)
μ2

δ2

⎞⎠ implies Y ∗
1:2 ≥st Y1:2.

4.2. Half-normal distribution

Consider the probability distribution function of a half-normal distribution given by

f(t) ∝ e
−t2

2 , t > 0.

The hazard rate function of the above half-normal distribution is increasing (see Hazra et al.

(2018) [15]). The distribution function of the half-normal distribution is now taken as the
baseline distribution function.

Theorem 4.3. For a baseline distribution function F (.), let X1, ..., Xn (X∗
1 , ..., X∗

n)
be non-negative independent random variables with Xi ∼ELS(λi, θi,αi) (X∗

i ∼ELS(μi, δi,βi)),
i = 1, ..., n. Further, let Ip1 , ..., Ipn [Ip∗1 , ..., Ip∗n ] be a set of independent Bernoulli random

variables, independent of Xi[X∗
i ],s with E(Ipi) = pi[E(Ip∗i ) = p∗i ], i = 1, ..., n. Further, let

h : [0, 1] → R+ be a differentiable, increasing and convex function. Further, let the baseline

hazard rate r(.) be increasing. If θi = δi = θ and (h(p
∼

), λ
∼

, α
∼

) ∈ N∗
2 . Let h(p) = −p ln(1 − p).

Then

⎛⎝ h(p1)
λ1

α1

h(p2)
λ2

α2

⎞⎠�
⎛⎝ h(p∗1)

μ1

β1

h(p∗2)
μ2

β2

⎞⎠ implies Y ∗
1:2 ≥st Y1:2.

5. APPLICATIONS

In this section, we discuss application of few of our established results in insurance and
auction theory. Suppose X1, ..., Xn are independent exponentiated location-scale random
variables with Xi ∼ ELS(λi, μi, αi), for i = 1, ..., n, and Ip1 , ..., Ipn are independent Bernoulli
random variables, independent of the X ,

is, with E(Ipi) = pi. Let Yi = IpiXi, for i = 1, ..., n.
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Suppose Xi denotes the total of random claims that can be made in an insurance period and
Ipi denotes a Bernoulli random variables associated with Xi defined as follows: Ipi = 1 when
ever the ith policyholder makes random claim Xi and Ipi = 0 whenever he/she does not make
make a claim. In setting, Yi = IpiXi corresponds to the claim amount in a portfolio of risks.
The problem of comparison of number of claims and aggregate claim amounts with respect
to some well-known stochastic orders is of interest on both theoretical and practical view
points. Under some conditions Theorems 3.2, 3.3, 3.4 respectively conclude that Yn:n in the
weakly supermajorized order, weakly submajorized order, p-larger and reciprocally majorized
order is stochastically smaller. There are many real-life applications of the ordering results.
We discuss applications of few of our established results in auction theory. Auction theory
has been an interest topic to various scientists because of its usefulness for sale of variety
of items or purchasing services. For more details in auction theory, we refer to (Klemperer,
(2004) [17]). In real world,among all types of auctions, the sealed-bid private-value auction
is of theoretical interest. Also, this type of auction has been used extensively. In this case,
bidders hand in their bids to the auctioneer simultaneously and can neither observe their
rival bids nor revise their own bids.The bidders having the highest bid wins. The bidders
with the lowest bid wins in the reverse auction. Consequently, the bidder pays his own bid
in the sealed-bid first-price auction (FPA). Few of our established results could be useful for
some new light in the auction theory. Let the bids follow exponentiated locatio-scale model.
Then, under some conditions, Theorems 3.2, 3.3, 3.4 respectively conclude that the final
price in the FPA with more heterogeneous shape parameters in the weakly super majorized
order, reciprocal of the shape parameters in the weakly submajorized, scale parameters in
the p-larger and reciprocally majorized orders is stochastically smaller.

6. CONCLUDING

In this paper, when the matrix of parameters changes to another matrix of parameters
with respect to multivariate chain majorization, we study the usual stochastic order of the
smallest order statistics when each component receives a random shock. Under certain condi-
tions, by using the concept of vector majorization and related orders, we have also discussed
stochastic comparison between series and parallel systems in the sense of the usual stochastic
order under random shock. We have then applied the results for some special cases of the ex-
ponentiated location-scale model with possibly different scale, location and shape parameters
to illustrate the established results.
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