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1. INTRODUCTION

The roots of local polynomial modelling as understood today reach back to
articles from Stone [19] and Cleveland [1]. A nice overview of the current state of
the art is given in Fan & Gijbels [7]. The basic idea of this nonparametric smooth-
ing technique is simply described. Consider bivariate data (X1, Y1), ..., (Xn, Yn),
forming an i.i.d. sample from a population (X,Y ). Assume the data to be gen-
erated from a model

(1.1) Y = m(X) + σ(X) ε ,

where E(ε) = 0, Var(ε) = 1, and X and ε are independent. Of interest is
to estimate the regression function m(x) = E(Y |X= x) and its derivatives
m′(x),m′′(x), ...,m(p)(x). A Taylor expansion yields

(1.2) m(z) ≈
p∑

j=0

m(j)(x)

j!
(z − x)j ≡

p∑
j=0

βj(x) (z − x)j ,

given that the (p+ 1)th derivative of m(·) in a neighbourhood of x exists.
We define Kh(·) = 1

hK( ·h), where K is a kernel function which is usually taken
to be a non-negative density symmetric about zero, and h denotes the band-
width. The task of finding the appropriate bandwidth is the crucial point of local
polynomial fitting; see Section 6 for more details. Minimizing

n∑
i=1

{
Yi −

p∑
j=0

βj(x) (Xi − x)j
}2

Kh(Xi − x)

leads to the locally weighted least squares regression estimator β̂(x) =
(β̂0(x), ..., β̂p(x))

T and the corresponding estimators

(1.3) m̂(j)(x) = j! β̂j(x)

for m(j)(x), j=0, ..., p. Alternative approaches focussed on estimating the con-
ditional quantiles instead of the mean function (Yu & Jones [21], [22]), where a
special case is nonparametric robust regression by local linear medians, applying
an L1 norm instead of an L2 norm (Fan, Hu & Truong [8]).

Local polynomial modelling can be interpreted as fitting the data locally
against the basis functions 1, X− x, (X− x)2, ..., (X− x)p. An obviously arising
question is now: why should just these basis functions be the best possible ones?
In a general framework one may use the basis functions φ0(X), φ1(X), ..., φp(X),
with arbitrary functions φj : R �→ R, j=0, ..., p. However, theoretical results are
only available under some restrictions on the basis functions. Regarding (1.2)
and (1.3), it is seen that estimation and interpretation of parameters is based
on Taylor’s expansion. Furthermore, nearly all asymptotic results, e.g. the bias
of the estimator, are based on Taylor’s theorem. Asymptotics provide a very
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important tool to find bandwidth selection rules etc., so they play an important
role for the use of the estimator in practice.

Thus, if some theoretical background is desired, one needs to develop a
new Taylor expansion for every basis one wants to use. Of course this will not be
possible for all choices of basis functions. In the following section we focus on a
special case, namely the power basis, where this is in fact possible and describe the
estimation methodology. In Section 3 we provide some asymptotics for estimating
the conditional bias and variance of this estimator, analyze the results, and show
that the asymptotic bias may be reduced with a suitable choice of the basis. In
Section 4 we apply this method to a simulated data set and compare the results
for various basis functions. In Section 5 we give some remarks on bandwidth
selection. We apply the method on a real data set in Section 6, and finish with
a short discussion in Section 7.

2. THE POWER BASIS

The family of basis functions that we will treat in this paper is motivated
by the following theorem:

Theorem 2.1 (Taylor expansion for a power basis). Let I be a non-trivial

interval, m,φ : I → R, p+1 times differentiable in I, φ invertible in I, and x ∈ I.
Then for all z ∈ I with z �= x, a value ζ ∈ (x, z) resp. (z, x) exists such that

m(z) =

p∑
j=0

ψ(j)(x)

j!

(
φ(z)− φ(x)

)j
+
ψ(p+1)(ζ)

(p+ 1)!

(
φ(z)− φ(x)

)p+1

with

ψ(j+1)(·) =
ψ′(j)(·)
φ′(·) , ψ(0)(·) = m(·) ,

holds.

The proof is omitted, since this theorem is simply obtained by applying
Taylor’s theorem, as found for example in Lay ([12], p. 211), on the function g(·) =
(m ◦ φ−1)(·) at point φ(x). Assuming the underlying model (1.1), Theorem 2.1
suggests to fit the data locally in a neighborhood of x against the basis functions
1, φ(X) − φ(x), ..., (φ(X) − φ(x))p. We call a basis of this type a power basis of
order p. For φ = id, the power basis reduces to the polynomial basis. For the rest
of this paper, we assume that φ : R → R is p+1 times differentiable and invertible
in a neighborhood of x, though the estimation procedure itself, as outlined from
(2.5) to (2.7), does not necessarily require this assumption.

Since the parameters

γj(x) :=
ψ(j)(x)

j!
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are constructed in a more complex way than the parameters βj(x) for local
polynomial fitting, the simple relationship m(j)(x) = j!βj(x) cannot be retained.
However, by using the simple recursive formula

γj(x) =
1

jφ′(x)
γ′j−1(x) , γ0(x) = m(x) ,

the parameters γj(x) (j ≤ p), which we abbreviate by γj from now on, can be
calculated. In this manner the following relations between parameters and the
underlying function and their derivatives are derived for the power basis:

m(x) = 0! γ0(2.1)

m′(x) = 1!φ′(x) γ1(2.2)

m′′(x) = 2! [φ′(x)]2 γ2 + φ′′(x) γ1(2.3)

m′′′(x) = 3! [φ′(x)]3 γ3 + 3!φ′′(x)φ′(x) γ2 + φ′′′(x) γ1(2.4)

...

Let wi(x) = Kh(Xi − x). Minimizing

(2.5)

n∑
i=1

⎧⎨⎩Yi −
p∑

j=0

γj

(
φ(Xi)− φ(x)

)j

⎫⎬⎭
2

wi(x)

in terms of (γ0, ..., γp), one obtains the local least squares estimator γ̂ = (γ̂0, ..., γ̂p)
T .

The design matrix and the necessary vectors are given by

X =

⎛⎜⎜⎝
1 φ(X1)−φ(x) · · · (

φ(X1)−φ(x)
)p

...
...

...

1 φ(Xn)−φ(x) · · · (φ(Xn)−φ(x)
)p

⎞⎟⎟⎠ ,

y =

⎛⎜⎝ Y1
...
Yn

⎞⎟⎠ , γ =

⎛⎜⎝ γ0
...
γp

⎞⎟⎠ and W =

⎛⎜⎝ w1(x)
. . .

wn(x)

⎞⎟⎠ .

The minimization problem (2.5) can be written as

minγ(y −Xγ)T W(y −Xγ) ,

yielding γ̂ = (XTWX)−1XT Wy, just as in the case of local polynomial fitting
([7]). Then m̂(x) = eT1 γ̂, where e1 = (1, 0, ..., 0)T , is an estimator for the under-
lying function m(·) at point x. Using (2.2) to (2.4), estimators for the derivatives
can be obtained in a similar way. Note that, to ensure that the matrix XTWX

is invertible, at least p+ 1 design points are required to satisfy Kh(Xi − x) > 0.
Furthermore it can be shown that

(2.6) Bias(γ̂|X) = (XTWX)−1 XT Wr ,
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where r = (m(X1), ...,m(Xn))T −Xγ, and X denotes the vector of covariates
(X1, ...,Xn). Finally the conditional covariance matrix is given by

(2.7) Var(γ̂|X) = (XT WX)−1 (XTΣ X) (XT WX)−1 ,

where Σ= diag(w2
i (x)σ

2(Xi)).

3. ASYMPTOTICS

Usually formulas (2.6) and (2.7) cannot be used in practice, since they de-
pend on the unknown quantities r and Σ. Consequently an asymptotic derivation
is required. We denote

μj =

∫ ∞

−∞
ujK(u) du and νj =

∫ ∞

−∞
ujK2(u) du

for the jth moments of K and K2. For technical ease we assume that the kernel
K is a (not necessarily symmetric) bounded probability density function (i.e.
μ0 = 1) with bounded support, though the latter assumption still can be relaxed
significantly (Fan [4], Fan & Gijbels [6]). Further we define the kernel moment
matrices

S = (μj+l)0≤j, l≤p cp = (μp+1, ..., μ2p+1)
T

S̃ = (μj+l+1)0≤j, l≤p c̃p = (μp+2, ..., μ2p+2)
T

S̄ =
(
(j + l)μj+l+1

)
0≤j, l≤p

c̄p =
(
(p+ 1)μp+2, ..., (2p + 1)μ2p+2

)T

S∗ = (νj+l)0≤j, l≤p .

Note that the matrix S is positive definite and thus invertible (Tsybakov [20],
Lemma 1). Furthermore we introduce the denotation ϕ(x) = φ′(x), the ma-
trices H = diag(hj)0≤j≤p and P = diag(ϕj(x))0≤j≤p and recall that ej+1 =
(0, ..., 0, 1, 0, ..., 0)T with 1 at (j+1)th position. oP (1) denotes a sequence of
random variables which tends to zero in probability, and OP (1) stands for a se-
quence of random variables which is bounded in probability. Let f(·) be the
design density of X. Firstly, we consider interior points, i.e. we assume x to be a
fixed point in the support of the design density f .

Theorem 3.1. Assume that f(x) > 0, σ2(x) > 0, ϕ(x) �= 0 and that f(·),
m(p+1)(·), φ(p+1)(·) and σ2(·) are continuous in a neighbourhood of x. Further

assume that h → 0 and nh → ∞. Then the asymptotic conditional covariance

matrix of γ̂ is given by

(3.1) Var(γ̂|X) =
σ2(x)

nhf(x)
P−1 H−1 S−1 S∗ S−1 H−1 P−1

(
1 + oP (1)

)
.

The asymptotic conditional bias is given by

(3.2) Bias(γ̂|X) = hp+1 ϕp+1(x)P−1 H−1
(
γp+1S

−1cp + hbn

)
,
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where bn = OP (1). If in addition f ′(·), m(p+2)(·) and φ(p+2)(·) are continuous in

a neighbourhood of x and nh3 →∞, the sequence bn can be written as

bn =

(
γp+1

f ′(x)
f(x)

+ γp+2 ϕ(x)

)
S−1 c̃p + γp+1

ϕ′(x)
2ϕ(x)

S−1 c̄p(3.3)

− γp+1 S−1

(
f ′(x)
f(x)

S̃− ϕ′(x)
2ϕ(x)

S̄

)
S−1 cp + oP (1) .

This theorem was obtained in the case φ(x) = x and p = 1 by Fan [4], for
general p by Ruppert & Wand [16], and for general φ(·), p = 1, and symmetric
kernels by Einbeck [3]. Based on Theorem 3.1 and formula (2.1) asymptotic
expressions for bias and variance of the estimator of the conditional mean function
can be derived. In particular we obtain

Var(m̂(x)|X) = Var(eT1 γ̂|X)

=
σ2(x)

nhf(x)
eT1 S−1 S∗ S−1 e1

(
1 + oP (1)

)
,(3.4)

which reduces for p = 1 to

(3.5) Var(m̂(x)|X) =
σ2(x)

nhf(x)

∫
(μ2 − uμ1)

2K2(u) du

(μ0μ2 − μ2
1)

2

(
1 + oP (1)

)
.

It is an important observation that the asymptotic variance of m̂(·) does not
depend on the basis function. Next, we take a look at the bias. Using (3.2) and
(2.1) one gets

Bias(m̂(x)|X) = Bias(eT1 γ̂|X)

= hp+1ϕp+1(x) eT1

(
ψ(p+1)(x)

(p+ 1)!
S−1 cp + hbn

)
,(3.6)

reducing for p = 1 to

(3.7) Bias(m̂(x)|X) =
h2

2

(
m′′(x)− ϕ′(x)

ϕ(x)
m′(x)

)
μ2

2 − μ1μ3

μ0μ2 − μ2
1

(
1 + oP (1)

)
.

3.1. Derivatives

Similarly, one might take a look at the formulas for the derivatives. Using
(2.2), one gets for the derivative estimator for p = 1

Var
(
m̂′(x)|X) = Var

(
ϕ(x) eT2 γ̂|X

)
=

σ2(x)

nh3f(x)
eT2 S−1 S∗ S−1e2

(
1 + oP (1)

)
(3.8)

=
σ2(x)

nh3f(x)

∫
(μ1 − uμ0)

2K2(u) du

(μ0μ2 − μ2
1)

2

(
1 + oP (1)

)
,
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and

Bias
(
m̂′(x)|X) = Bias

(
ϕ(x) eT2 γ̂|X

)
= hpϕp+1(x) eT2

(
ψ(p+1)(x)

(p+ 1)!
S−1cp + hbn

)
(3.9)

=
h

2

(
m′′(x)− ϕ′(x)

ϕ(x)
m′(x)

)
μ0μ3 − μ1μ2

μ0μ2 − μ2
1

(
1 + oP (1)

)
,

where (3.8) and (3.9) still hold for general p. Looking at (2.3) and (2.4), one
might have the impression that the asymptotic formulas for higher derivatives will
be extraordinarily complicated. However, first order expansions are easy to de-
rive, since only the leading term j!ϕj(x) γj determines the asymptotic behaviour.
In particular, one gets for arbitrary j ≤ p

Var
(
m̂(j)(x)|X) =

(j!)2 σ2(x)

nh2j+1f(x)
eTj+1 S−1 S∗ S−1 ej+1

(
1 + oP (1)

)
and

Bias
(
m̂(j)(x)|X) = hp+1−j j!ϕp+1(x) eTj+1

(
ψ(p+1)(x)

(p + 1)!
S−1cp + oP (1)

)
.

Note that the formula for the variance is identical to the corresponding formula
for local polynomial modelling ([7], p. 62), and that the variance is independent
of the basis function for any choice of j and p.

3.2. Design adaption and automatic boundary carpentry

One might wonder why we provided a deeper derivation of bn in The-
orem 3.1. This is necessary due to a special property of symmetric kernels.
Let us consider symmetric kernels throughout the rest of this section. Then, we
have μ2k+1 = ν2k+1 = 0 for all k∈N0. The crucial point is that, when estimating
the jth derivative m̂(j)(·), the product eTj+1S

−1cp is zero iff p− j is even. In the
case j = 0, p even, one gets from (3.6)

(3.10) Bias(m̂(x)|X) = hp+2ϕp+1(x) eT1 bn .

Suppose one increases the order of a power basis from an even order p to an
odd order p+ 1. Obviously, the order O

(
1

nh

)
of the variance (3.4) is unaffected,

and Fan & Gijbels ([7], p. 77 f) show that the quantity eT1 S−1S∗S−1e1 remains
constant when moving from an even p to p+ 1. Thus, there is not any change in
variance. What about the bias? As can be seen from (3.10) and (3.6), the order
of the bias remains to be O(hp+2). However, for even p the bias involves the
design density f and its derivative f ′, i.e. the estimator is not “design-adaptive”
in the sense of Fan [4]. Regarding the case j = 1, the situation is similar: the
matrix product eT2 S−1S∗S−1e2 remains constant when moving from an odd p to
p + 1, while the leading term of the bias simplifies. Summarizing, an odd choice
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of p − j should be preferred to an even choice, and local estimators based on a
power basis show exactly the same behavior as local polynomial estimators in
terms of design-adaptivity.

Beside this, “odd” local polynomial estimators have another strong advan-
tage compared to “even” ones: they do not suffer from boundary effects and hence
do not require boundary corrections. Does this property carry over to estimators
based on a power basis as well? We answer this question by considering the case
p = 1 and j = 0, though the findings remain valid for any odd choice of p − j.
For a symmetric kernel and an interior point, (3.5) and (3.7) reduce to

(3.11) Var(m̂(x)|X) =
σ2(x) ν0

nhf(x)

(
1 + oP (1)

)
and

(3.12) Bias(m̂(x)|X) =
h2μ2

2

(
m′′(x)− ϕ′(x)

ϕ(x)
m′(x)

)
+ oP (h2) ,

respectively. The variance is exactly the same as for a local linear fit, while the
bias expression includes an additional term expressing the interplay between the
basis function and the underlying function. Let us consider boundary points now.
Without loss of generality we assume that the density f has a bounded support
[0;1]. We write a left boundary point as x = ch (c ≥ 0), and accordingly a right
boundary point as x = 1 − ch. Calculation of the asymptotic bias and variance
is straightforward as in Theorem 3.1; the only difference is that kernel moments
μj and νj have to be replaced by

μj,c =

∫ ∞

−c
ujK(u) du and νj,c =

∫ ∞

−c
ujK2(u) du

in case of a left boundary point, and analogously in case of a right boundary
point. Thus, the kernel moments never vanish and the problem corresponds to
finding bias and variance for asymmetric kernel functions. Indeed, one obtains
at x = ch

(3.13) Var(m̂(x)|X) =
σ2(0+)

nhf(0+)

∫
(μ2,c − uμ1,c)

2K2(u) du

(μ0,c μ2,c − μ2
1,c)

2

(
1 + oP (1)

)
and
(3.14)

Bias(m̂(x)|X) =
h2

2

(
m′′(0+)− ϕ′(0+)

ϕ(0+)
m′(0+)

)
μ2

2,c− μ1,c μ3,c

μ0,c μ2,c − μ2
1,c

(
1+oP (1)

)
.

Comparing (3.11) and (3.12) with (3.13) and (3.14) unveils that the rate of the
estimator does not depend on the location of the target point x. For a nice
demonstration of the dependence of the constant factors on c see Fan & Gijbels
[5]. For even values of p− j, the rate of convergence at boundary points is slower
than in the interior.
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3.3. Bias reduction

According to equation (3.12), the bias of a first-order-fit depends on the
basis φ(·). This effect may be useful for bias reduction. To investigate this, firstly
note that (3.12) reduces to the well-known formula

Bias(m̂(x)|X) =
h2μ2

2
m′′(x) + oP (h2)

in the special case of local linear fitting. Thus the subtraction of ϕ′(x)
ϕ(x) m

′(x) in

(3.12) provides the chance for bias reduction. In the optimal case, the content of
the bracket in (3.12) is zero, hence the differential equation

m′′(x)ϕ(x) −m′(x)ϕ′(x) = 0

has to be solved, what leads to the solutions

ϕ(x) = c1m
′(x) (c1 ∈ R)

and hence

(3.15) φ(x) = c1m(x) + c2 (c1, c2 ∈ R) .

Note that for symmetric kernels and p − j odd one has eTj+1bn = oP (1). Thus,

the remaining asymptotic bias is even of order oP (h3). Having an optimal basis
function in the form of (3.15), one may ask if there is any gain in increasing the
order p? One finds immediately ψ(1)(x) = 1/c1 and thus

(3.16) γp(x) = ψ(p)(x)/p! = 0 for p ≥ 2 .

Thus any additional terms are superfluous, since their parameters should take
optimally the value zero. The strategy should consequently be the following:
work with p = 1, and try to find a basis which is as near as possible to the
underlying function.

In particular, for c1 = 1, c2 = 0 we get φopt(x) = m(x), thus the underlying
function m(·) is a member of the family of optimal basis functions. Certainly,
the function m(·) is always unknown. However, there are still at least two ways
to use this result. We want to approach them from a philosophical point of view.
What does a basis function actually effect? For a given basis, the smoothing
step in fact balances between the information given by the basis and the data.
A similar concept is well-known from Bayesian statistics (see e.g. Smith & Kohn
[18]). Though the Bayesian prior does not contain a basis function but an as-
sumption about the distribution of unknown parameters, the principle, boldly
compared, is the same, since the posterior distribution can be interpreted as a
trade-off between information in the data and prior knowledge. Thus, having
some (“prior”) knowledge about m, the fitted (“posteriori”) curve can be steered
in the correct direction when incorporating this knowledge in the basis. If there
does not exist any knowledge about m, one can calculate a pilot estimate via a
local linear fit (or any other smooth fit, e.g. with splines) and use the estimated
function as an improved basis. In the following section we will provide examples
for the application of these strategies.
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4. A SIMULATED EXAMPLE

Throughout this section, we consider the underlying function

(4.1) m(x) = x+
1

1.2
√

2π
e−(x−0.2)2/0.02 − 1

0.9
√

2π
e−(x−0.7)2/0.0018 ,

which we contaminate with Gaussian noise with σ = 0.05. The 50 predictors are
uniformly distributed on [0; 1]. We repeated this simulation 50 times, obtaining
50 data sets. See Fig. 3 for getting an impression of the data set. As a measure
of performance, we use the relative squared error

RSE(m̂) =
‖m̂−m‖
‖m‖ =

√∑n
i=1

(
m(Xi)− m̂(Xi)

)2√∑n
i=1m(Xi)2

.

For each simulated data set and for each estimation m̂ of m with different basis
functions and polynomial orders we select the empirically optimal bandwidth
hemp by

hemp = minh RSE(m̂) .

This bandwidth hemp is used for the corresponding fit, and the medians of the
50 RSE values obtained in this manner are shown in Table 1. (Of course, hemp only
may be calculated for simulated data. Bandwidth selection for real data is treated
in Section 5.) The function dnorm(x) denotes the density of the standard normal
distribution. We put a star (∗) behind the RSE if the value is better than that
for local linear fitting (φ(x) = x) and two stars for the winner of the column.

Table 1: Medians of RSEs for various polynomial orders
and basis functions.

φ(x) p = 1 p = 2 p = 3 p = 8

x 0.04819 0.05005 0.04915 0.04973

sinx 0.04810 ∗∗ 0.05003 ∗ 0.04904 ∗ 0.05008
arctan x 0.04812 ∗ 0.04997 ∗ 0.04911 ∗ 0.05011

cosh x 0.04898 0.04919 ∗ 0.04916 0.04634 ∗∗
dnorm x 0.04893 0.04888 ∗∗ 0.04844 ∗∗ 0.04844 ∗

expx 0.04829 0.05005 0.04917 0.04886 ∗
log (x+ 1) 0.04811 ∗ 0.04988 ∗ 0.04917 0.05000

The corresponding boxplots of the RSE values are presented in Fig. 1. Taking
a look at the table and the figure, one notes immediately that the differences
between different basis functions are mostly negligible, and the performance does
not improve when rising the polynomial order. Looking at the table in more
depth, one observes that the group of odd basis functions behaves slightly different
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than the group of even basis functions. In particular, for p = 1 the odd basis
functions outperform the even ones. Recalling equation (3.15), this might be
interpreted as that the underlying function m(·) possesses rather odd than even
characteristics. Finally, one observes that the Gaussian basis yields the best RSE
for p = 2 and p = 3. This is quite intuitive, since the underlying function contains
a sum of Gaussians itself.

0.
03

0.
05

0.
07

p=1

0.
03

0.
04

0.
05

0.
06

0.
07

p=2

0.
02

0.
04

0.
06

p=3

0.
02

0.
04

0.
06

p=8

Figure 1: Boxplots of the relative errors using the basis functions
φ(x) = x, sinx, arctanx, coshx, dnorm(x), expx, log(x+1)
and orders p = 1, 2, 3, 8.
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Next, we will investigate if these results may be improved by the use of
basis functions which contain information about the true function, as suggested
by (3.15). We distinguish two situations:

a) Some information about m is available. We consider exemplarily two cases:

• Assume that the information about the true function is incomplete, e.g.
due to a transmission problem, and the true function is only known on
the interval [0.25; 0.75] (i.e., only half of the true function is known!).
A basis function m1(·) is constructed by extrapolating the known part
of the function by straight lines in a way that the first derivative is
continuous.

• Assume somebody gave us a (partly wrong) information about the
underlying function (4.1), namely

m2(x) = x− 1

1.2
√

2π
e−(x−0.2)2/0.02 − 1

0.9
√

2π
e−(x−0.7)2/0.0018 ,

i.e. the first hump shows down instead of up.

We call basis functions like that “guessed” basis functions.

b) No information about m is available. In this case, we employ the pre-fit
basis functions m̄(·) and m̌(·) calculated with a local constant or linear fit,
respectively. Let gemp be the empirically optimal bandwidth of the pre-
fit, i.e. gemp = hNW

emp for a local constant (Nadaraya-Watson) pre-fit and

gemp = hLL
emp for a local linear (LL) pre-fit. The bandwidth of the pre-fit is

then selected as g = θ · gemp, and the second bandwidth as h = λ · hLL
emp,

where θ and λ are optimized in terms of RSE on [1; 2]×[1; 2].

Keeping in mind observation (3.16) and the conclusions drawn from Table 1,
we only consider the case p = 1 from now on. The medians of 50 RSE values for
each basis function are listed in Table 2. For comparison we added the results
for the linear basis φ(x) = x and the (in practice unavailable) optimal basis
φ(x) = m(x). The corresponding boxplots of RSE values are depicted in Fig. 2.
In Fig. 3 the basis functions from Table 2 and the corresponding fitted curves are
depicted. One notices again: the more similar basis and true function are, the
better is the fitted curve. Further, one observes that there is not much gain in
using a local linear instead of a local constant pre-fit. The benefit of applying
a pre-fit basis is not overwhelming in this example, and is not as impressive as
for multivariate predictors ([3]). Taking into account the difficulty of having to
select two bandwidths, it is at least questionable if this additional work is worth
the effort for univariate predictors. Nevertheless, in the next section we will give
some insight in the nature of this two-dimensional bandwidth selection problem.
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The “guessed” basis functions lead to a significant improvement, which
does not require any extra work compared to a simple local linear fit. This is
finally the principal message of this paper: if you have some information, use it in
your basis, and your fit will improve. If this basis is wrong, but at least smooth,
normally nothing serious should happen, since the commonly applied linear basis
is a wrong basis as well in the most situations. Replacing one wrong and smooth
basis by another wrong and smooth basis function will not make much difference,
as demonstrated in Table 1.

Table 2: Medians of relative squared errors
for improved basis functions.

φ p = 1

x 0.04819

m̄(x) 0.04606 ∗
m̌(x) 0.04538 ∗
m1(x) 0.04488 ∗
m2(x) 0.03758 ∗∗
m(x) 0.01302

0.
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03
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04
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05

0.
06

0.
07

p=1

Figure 2: Boxplots of the relative errors using the basis functions
φ(x) = x, m̄(x), m̌(x), m1(x) and m2(x) (from left to right)
with p = 1.
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Figure 3: Left: basis functions; right: One particular of the 50 simulated
data sets (·), true function (dashed line) and fitted functions (solid
line) for p = 1. The denotations “pre con” and “pre lin” refer to
the basis functions m̄ and m̌, respectively.
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5. NOTES ABOUT BANDWIDTH SELECTION

For bandwidth selection, one has the general choice between classical meth-
ods and plug-in methods. For an overview of bandwidth selection routines, we
refer to Fan & Gijbels ([7], p. 110 ff). Classical methods as cross-validation or
the AIC criterion can be applied directly on fitting with general basis functions.
Promising extensions of the classical methods have been given by Hart & Yi [9]
and Hurvich et al. [11]. In the last decades, classical approaches got the rep-
utation to perform inferior in comparison to plug-in approaches, as treated by
Fan & Gijbels [6], Ruppert et al. [15], and Doksum et al. [2], among others.
However, this seems not to be justified, as Loader [13] explains, since plug-in-
approaches require more theoretical assumptions about the underlying function
than classical approaches. Plug-in estimators perform a pilot estimate in order
to estimate the asymptotic mean square error, which is then minimized in terms
of the bandwidth. Each plug-in-estimator is designed exclusively for a special
smoothing method, so that application of these estimators for general basis func-
tions requires some extra work.

Using Theorem 3.1, plug-in formulas for bandwidth selection can be derived
straightforwardly by extending the corresponding methods for local polynomial
fitting. We will not provide a complete treatment of this topic now, but only
give some impressions of the results. Let us therefore consider the derivation
of the asymptotically optimal variable bandwidth hopt(x), which varies with the
target value x. Minimizing the asymptotic mean square error MSE(m̂(x)|X) =
Bias2(m̂(x)|X)+Var(m̂(x)|X) for odd p−j, whereby (3.6) and (3.4) are employed
for the bias resp. variance, we arrive at an asymptotically optimal bandwidth

(5.1) h
(φ)
opt(x) = C0,p(K)

[
σ2(x)

ψ2
(p+1)(x) f(x)ϕ2p+2(x)

] 1

2p+3

· n− 1

2p+3 ,

where the constant C0,p(K), which only depends on p and the kernel K, is the
same as in [7], p. 67. Recall from the end of Section 3 that ψ(p+1)(x) (p ≥ 1)
approximates zero when φ(x) approximates m(x). Consequently, the optimal
bandwidth tends to infinity when the basis approximates the true function, what
is in conformity to the observations which can be drawn from Fig. 4.

Bandwidth selection is especially difficult for data-adaptive basis functions
as in the previous section: then we need the two bandwidths g and h for the first
and second fit, respectively. We want to give some insight in this bandwidth se-
lection problem, assuming for simplicity that the pre-fit m̄g(x) is a local constant
estimator with constant bandwidth g. Intuitively, one would firstly select an (in
some sense, e.g. asymptotically) optimal bandwidth ḡ of the pre-fit. Afterwards,
one would use the resulting fit m̄ḡ as a basis for the second fit, applying an op-

timized bandwidth h
(m̄ḡ)
opt for this pre-fit basis. However, this step-wise strategy

in practice does not prove to be suitable: when the first fit is too wiggly, the
wiggliness carries over to the second fit. Moreover, when the optimal bandwidth
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is met in the first fit, then the optimal second bandwidth is very high and the
minimum of the RSE curve is very flat. In other words: in this case the second
fit is superfluous, and the improvement compared to a usual local fit is negligible.

Therefore, it is sensible to use somewhat higher bandwidths in the initial
fit. To illustrate this, we return to the example from the previous sections, and
examine exemplarily the particular data set depicted in Fig. 3. Following the
step-wise strategy outlined above, we select g = 0.015 and h = 0.048. However,
minimizing the RSE simultaneously over g and h, one obtains the empirically
optimal bandwidth combination (0.030, 0.021). The dependence of the RSE on
the bandwidth for different basis functions is demonstrated in Fig. 4. The RSE
curve for the initial fit is the solid line, having a minimum at g = 0.015 and
yielding an estimate m̄15(x). Applying this estimate as a basis function, one
gets the dotted line. However, applying the estimate m̄30(x), obtained by a local
constant fit with bandwidth g = 0.030, one gets the dashed curve. One sees that
its minimum is deeper and more localized than that of m̄15(x).

h
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Figure 4: RSE as function of the bandwidth for a local constant fit,
and for the basis functions m̄15(x), and m̄30(x).

In Section 4 we have already suggested that suitable bandwidths g and
h for the pre-fitting algorithm are 1 − 2 times bigger than the optimal band-
widths of a local constant or a local linear fit, respectively. We want to provide
some heuristics to motivate this. Assume that the best bandwidth combination
minimizing the RSE simultaneously over (g, h) is given by (θ · ḡ, λ · hLL

opt), where

ḡ = hNW
opt . Since we cannot access λ directly, we have to apply a sort of trick and

to work with a variable second bandwidth. Setting (5.1) for p = 1 in relation to
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the optimal variable bandwidth hLL
opt(x) for a local linear fit, one obtains

h
(φ)
opt(x)

hLL
opt(x)

=

[
1− φ′′(x)

φ′(x)
· m

′(x)
m′′(x)

]−2/5

.

We define the quantity

m◦(x) =
m′′(x)
m′(x)

,

and substitute for φ the pre-fit basis m̄θ·ḡ. Then one obtains

(5.2) λx :=
h

(m̄θ·ḡ)

opt (x)

hLL
opt(x)

=

[
1− m̄◦θ·ḡ(x)

m◦(x)

]−2/5

≈
[
1− m̄◦θ·ḡ(x)

m̄◦̄g(x)

]−2/5

.

What can be said about the relation between λx and θ? Writing m̄g(x) =
=
∑n

i=1 wi(x)Yi/
∑n

i=1 wi(x), where wi(x) = 1
g K

(
Xi−x

g

)
, one calculates

m̄◦g(x) =
m̄′′g(x)
m̄′g(x)

=

∑n
i=1 wi′′(x)

(
Yi − m̄g(x)

)∑n
i=1wi′(x)

(
Yi − m̄g(x)

) − 2

∑n
i=1wi′(x)∑n
i=1 wi(x)

= −1

g

∑n
i=1K

′′[(Xi − x)/g
] (
Yi − m̄g(x)

)∑n
i=1K

′[(Xi − x)/g
] (
Yi − m̄g(x)

) +
2

g

∑n
i=1K

′[(Xi − x)/g
]∑n

i=1K
[
(Xi − x)/g

] .(5.3)

One observes from (5.3) that, roughly approximated,

m̄◦θḡ(x)

m̄◦̄g(x)
≈ 1

θ
.

We substitute this quotient in (5.2) and get

(5.4) λx ≈
(
1− 1

θ

)−2/5

In order to get a notion about this relation, we assume for a moment equality in
(5.4). The function

(5.5) λ(θ) =
(
1− θ−1

)−2/5

is depicted in Fig. 5 (left). The hyperbolic shape of this function can be ob-
served in reality as well. Let us consider the same data set as utilized in Fig. 4.
Performing the pre-fit algorithm for g, h varying on a two-dimensional grid, the
resulting RSE values are shown in Fig. 5 (right). The same hyperbola appears
again. Thus, the minima of the RSE in terms of the pairs (g, h) are situated
along a hyperbola-formed valley. We want to emphasis three special positions in
this valley:

• θ →∞. Then the first fit is a constant, and the resulting fit is the
Nadaraya–Watson-estimator.
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• λ → ∞. Then the second fit is a parametric regression with a Nadaraya–
Watson estimate as basis (which is approximately the same as the previous
case).

• λ = θ. Then one has 1 = λ − λ−3/2, which is solved at about λ = 1.53.
This number corresponds to the magnitude recommended beforehand.

Yet, a generally optimal choice of λ and θ cannot be given. At least we
can motivate that the main problem of bandwidth selection for the pre-fitting
algorithm can be reduced to the problem of selecting the bandwidth of a local
constant or a local linear fit, for the solution of which exist a variety of well
established methods. The remaining problem is a problem of fine tuning of the
parameters θ and λ. Though all considerations in this sections were outlined
within the framework of a local constant pre-fit, they remain qualitatively the
same for a local linear pre-fit. Indeed, there seems to be no observable advantage
of a local linear compared to a local constant pre-fit. Since local constant fitting
is more simple than local linear fitting, one might prefer local constant; however,
it might be simpler to base both bandwidth selection problems on a local linear
fit.
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Figure 5: Left: function λ(θ); right: RSE for varying (g, h).

6. A REAL DATA EXAMPLE

In this section we consider the motorcycle data, firstly provided by Schmidt
et al. [17], which have been widely used in the smoothing literature to demon-
strate the performance of nonparametric smoothing methods (e.g. [7], p. 2). The
data were collected performing crash tests with dummies sitting on motorcycles.
The head acceleration of the dummies (in g) was recorded a certain time (mea-
sured in milliseconds) after they had hit a wall. (Note however that, strictly
considered, these data are not fitting the models on which they are usually ap-
plied, since there were taken several measurements from every dummy at different
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time points — thus the data possess an inherent dependence structure. As done
in the other literature, we will ignore this problem in the following).

Fig. 6 shows the motorcycle data with a local linear fit (solid line). The
bandwidth value 1.48 is obtained by cross-validation. According to the previous
sections, the bandwidths g and h should be selected from the interval [1.48; 2.96].
Visually, the setting g=h=2.6 was convincing for this data set. The dotted line
shows the local linear pre-fit, and the dashed line is the local fit obtained using
the pre-fit as basis function. For comparison, we also provide the result of a fit
with smoothing splines.

For real data it is hard to judge which fit might be the best one — but at
least it seems that the fit applying a local pre-fit basis is less biased at the first
bend and the first hump, achieving at the same time a higher smoothness in the
outer right area than a local linear fit. The performance seems now comparable
to a spline fit.
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Figure 6: Motorcycle data with a local linear fit, a local pre-fit, a local
fit using the latter fit as basis function, and a spline fit.
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7. DISCUSSION

In a certain sense, the main findings of this paper are quite naive. Certainly,
everyone has the notion that, when instilling more information about the true
function in the basis, the resulting fit should improve. However, it seems that this
notion never has been concretized neither from a theoretical nor from a practical
point of view, though related ideas have already been mentioned in Ramsay &
Silverman ([14], Section 3.3.3) and Hastie & Loader [10]. The main purpose
of this work was to fill this gap, and we could confirm the intuitive notion by
theoretical as well as practical results. Summarizing, bias reduction is definitely
possible when using suitable basis functions, and the possible gain is much bigger
than the possible loss by using wrong, but smooth, basis functions. However,
application of the pre-fit algorithm can not be unrestrictedly recommended in
general, since the possible gain compared to the effort is not overwhelming, at
least in the univariate case.

In the framework of this paper it was not possible to solve all open questions
completely. There remain some open problems especially concerning bandwidth
selection in the case of pre-fitting. Furthermore, it would be useful to know when
pre-fitting yields to a significant improvement and when not.

A. APPENDIX

Proof of Theorem 3.1

I. Asymptotic conditional variance

Whenever there appears in integral in this proof, the borders −∞ and
∞ are omitted. We denote Sn,j =

∑n
i=1 wi(x) (φ(Xi)− φ(x))j and S∗n,j =∑n

i=1 w
2
i (x)σ

2(Xi) (φ(Xi) − φ(x))j . Then Sn := (Sn,j+l)0≤j,l≤p = XTWX and
S∗n := (S∗n,j+l)0≤j,l≤p = XTΣ X hold, and the conditional variance (2.7) can be
written as

(A.1) Var(γ̂|X) = Sn
−1 S∗n Sn

−1

and thus approximation of the matrices Sn and S∗n is required. Using that∫
K(u)uj g(x+ hu) du = μj g(x) + o(1)

for any function g : R �→ R which is continuous in x, we obtain

ESn,j = n

∫
K(u)

(
φ(x+ hu)− φ(x)

)j
f(x+ hu) du

= nhj

∫
K(u)uj ϕj(ζu) f(x+ hu) du

= nhj
(
f(x)ϕj(x)μj + o(1)

)
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where ζu ∈ (x, x+ hu) exists according to Taylor’s theorem. Similar we derive

VarSn,j = nE
(
w2

1

(
φ(X1)− φ(x)

)2j
)
− nE2

(
w1

(
φ(X1)− φ(x)

)j
)

= nh2j−1
(
f(x)ϕ2j(x) ν2j + o(1)

)
= n2h2jO

(
1

nh

)
(A.2)

= o
(
n2h2j

)
.

Since for every sequence (Yn)n∈N of random variables

(A.3) Yn = EYn +OP

(√
Var Yn

)
holds (what can be proven with Chebychev’s inequality), we can proceed with
calculating

Sn,j = ESnj
+OP

(√
VarSn,j

)
= nhjf(x)ϕj(x)μj(1 + oP (1))(A.4)

which leads to

(A.5) Sn = nf(x)PHSHP (1 + oP (1)) .

In the same manner, we find that

S∗n,j = ES∗nj
+OP

(√
VarS∗n,j

)
= nhj−1

(
ϕj(x)σ2(x)f(x) νj + o(1)

)
+OP

(√
o(n2h2j−2)

)
= nhj−1 ϕj(x)σ2(x)f(x) νj(1 + oP (1))

and thus

(A.6) S∗n =
n

h
f(x)σ2(x)PHS∗HP (1 + oP (1))

and finally assertion (3.1) by plugging (A.5) and (A.6) into (A.1).

II. Asymptotic conditional bias

Finding an asymptotic expression for

(A.7) Bias(γ̂|X) = Sn
−1 XT Wr

still requires to approximate r≡(ri)1≤i≤n. Let DK(x) be the set of all data points
within the kernel support. For all i ∈ DK(x) we obtain

ri = m(Xi)−
p∑

j=0

γj

(
φ(Xi)− φ(x)

)j

=
ψ(p+1)(ζi)

(p+ 1)!

(
φ(Xi)− φ(x)

)p+1

= γp+1(x)
(
φ(Xi)− φ(x)

)p+1
+ oP (1)

(
φ(Xi)− φ(x)

)p+1

(p+ 1)!
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where ζi ∈ (Xi, x) resp. (x,Xi) exists according to Theorem 2.1, and the term
oP (1) is uniform over DK(x). Note that the invertibility demanded for φ(·) in
Theorem 2.1 is already guaranteed locally around x by the condition ϕ(x) �= 0.
Finally we calculate

Bias(γ̂|X) = Sn
−1 XT W

[(
φ(Xi)− φ(x)

)p+1(
γp+1 + oP (1)

)]
1≤i≤n

= Sn
−1 cn

(
γp+1 + oP (1)

)
= P−1H−1S−1H−1P−1 1

nf(x)

⎧⎨⎩γp+1cn +

⎛⎝ o(nhp+1)
...

o(nh2p+1)

⎞⎠⎫⎬⎭(
1 + oP (1)

)
= P−1H−1S−1hp+1 ϕp+1(x) γp+1 cp

(
1 + oP (1)

)
,

by substituting the asymptotic expressions for Sn,j (A.4) in cn :=
(Sn,p+1, ..., Sn,2p+1)

T , and thus (3.2) is proven.

Now we proceed to the derivation of bn which requires to take along
some extra terms resulting from higher order expansions. With (a + hb)j =
aj + h(jaj−1b+ o(1)) we find that

ESn,j = nhj

∫
K(u)uj

(
ϕ(x) +

hu

2
ϕ′(ζu)

)j (
f(x) + huf ′(ξu)

)
du

= nhj

∫
K(u)uj

[
ϕj(x) + h

(
j

2
ϕj−1(x)uϕ′(ζu) + o(1)

)](
f(x) + huf ′(ξu)

)
du

= nhj

[
f(x)ϕj(x)μj + h

(
f ′(x)ϕj(x) +

f(x)

2
j ϕj−1(x)ϕ′(x)

)
μj+1 + o(h)

]
(A.8)

with ζu and ξu according to Taylor’s theorem. Plugging (A.8) and (A.2) into
(A.3) yields

(A.9) Sn,j = nhjϕj(x)

[
f(x)μj + h

(
f ′(x) +

f(x)

2

ϕ′(x)
ϕ(x)

j

)
μj+1 + on

]
,

where on = oP (h) +OP

(
1√
nh

)
= oP (h) from the hypothesis nh3 →∞, and

further

(A.10) Sn = nPH

(
f(x)S + hf ′(x)S̃ + h

f(x)

2

ϕ′(x)
ϕ(x)

S̄ + oP (h)

)
HP .

The next task is to derive a higher order expansion for r. With Theorem 2.1 we
obtain

ri =
ψ(p+1)(x)

(p+ 1)!

(
φ(Xi)− φ(x)

)p+1
+
ψ(p+2)(ζi)

(p+ 2)!

(
φ(Xi)− φ(x)

)p+2

= γp+1

(
φ(Xi)− φ(x)

)p+1
+ γp+2

(
φ(Xi)− φ(x)

)p+2

+
(
ψ(p+2)(ζi)− ψ(p+2)(x)

) (φ(Xi)− φ(x))p+2

(p+ 2)!

=
(
φ(Xi)− φ(x)

)p+1
γp+1 +

(
φ(Xi)− φ(x)

)p+2 (
γp+2 + oP (1)

)



124 Jochen Einbeck

with ζi ∈ (Xi, x) resp. (x,Xi). Plugging this and (A.10) into (A.7) and denoting

Tn := f(x)S + h

(
f ′(x)S̃ +

f(x)

2

ϕ′(x)
ϕ(x)

S̄

)
+ oP (h)

leads to

Bias(γ̂|X) = [nPHTnHP]−1
[
cnγp+1 + c̃n(γp+2 + oP (1))

]
= P−1H−1Tn

−1hp+1ϕp+1(x) ·
·
[
γp+1f(x) cp + h

(
γp+1f

′(x) + γp+2 ϕ(x)f(x)
)

c̃p

+ hγp+1f(x)
ϕ′(x)
2ϕ(x)

c̄p + oP (h)

]
,

where the asymptotic expressions (A.9) are substituted in cn and c̃n =
(Sn,p+2, ..., Sn,2p+2)

T . The matrix Tn still has to be inverted. Applying the
formula

(A + hB)−1 = A−1 − hA−1BA−1 +O(h2)

yields

Tn
−1 =

1

f(x)
S−1 − h 1

f(x)
S−1

(
f ′(x)
f(x)

S̃− ϕ′(x)
2ϕ(x)

S̄

)
S−1 + oP (h) ,

and we obtain finally

Bias(γ̂|X) = hp+1ϕp+1(x)P−1H−1 ·

·
{
γp+1S

−1cp + h

[(
γp+1

f ′(x)
f(x)

+ γp+2 ϕ(x)

)
S−1c̃p

+ γp+1
ϕ′(x)
2ϕ(x)

S−1c̄p + γp+1S
−1

(
f ′(x)
f(x)

S̃− ϕ′(x)
2ϕ(x)

S̄

)
S−1cp

]
+ oP (h)

}
.
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partition-distance defined in [7]. We focus our attention in two particular distance
functions between partitions and then do an experimental comparison between the two
corresponding central partitions. In addition, by using the concept of strong patterns
(maximal subset of elements that are always clustered together in all partitions), we
define a new graph where the nodes are the strong patterns. This graph contains
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1. INTRODUCTION

The concept of similarity between two partitions arises in several applica-
tions, such as molecular expression data in computational biology. When several
different clustering methods are applied to the same data, or the same algorithm
with different parameters, different partitions of the same data are produced.
Also, if we have K qualitative variables describing our population, we might
want to find a “central variable” which sumarizes these variables. These two
problems are the same, because there is a one-to-one correspondence between
qualitative variables and partitions. The problem of determining a central par-
tition arises also in the case where the given partitions (qualitative variables)
result from measurements at times t, t+1, ..., t+K−1 and we want to consider the
notion of a moving consensus smoothing the partitions (or qualitative variables)
at those times.

According to Barthelemy and Leclerc [2], there are three overlapping ap-
proaches that have been used to tackle the consensus problem:

(i) the axiomatic approach, where a central partition must satisfy some condi-
tions that arise, for instance, from experimental evidence;

(ii) the constructive approach, where a way to construct the consensus is ex-
plicitly given, like the Pareto rule which states that two objects are linked
in a consensus partition if and only if they are linked in all the K given
partitions;

(iii) the combinatorial optimization problem, where we have some criterion mea-
suring the remoteness (see equation (2.1)) of any partition to the given
K partitions and we search for a partition that minimises this remoteness
function.

This last approach, which goes back to Régnier [14], is the one we use in this
work.

In order to find the best consensus, it becomes necessary to evaluate the
closeness of the partitions produced. There are many distances that can be
defined between two partitions of a dataset. The partition-distance is one such
distance measure. This concept has been defined in [1], although Régnier [14] and
Lerman (see p. 51 of [9]) had considered it before. This distance is further studied
in [7], in which it is shown that the partition-distance between two partitions on
a given set can be computed in polynomial time.

Further in [7], a new class of graphs called partition graphs has been defined.
It is proved that the partition-distance between two partitions is equal to the size
of the smallest node cover of the corresponding partition graph. By establishing
the arrayed layout structure of the partition graph, it is shown in [7], that the
partition graph is perfect.
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Suppose K ≥ 2 partitions of a nonempty set E consisting of n elements
are given. In this paper, we define the notion of central partition with respect to
the partition-distance used in [7]. The concept of central partition has been used
in [5] in another context and with respect to a different measure of distance be-
tween partitions. The central partition is a partition that represents a consensus
between all the initial K partitions obtained by different clustering algorithms or
by the same algorithm with different parameters.

The computation of the central partition is hard. Hence, we have used an
approximate algorithm (heuristic), described in [5], to compute an approximation
to the central partition. In order to do this, we use the concept of strong patterns.
A strong pattern is a maximal subset of elements of E that have been always
clustered together in all of the K partitions. The heuristic consists in assuming
that these elements should also be together in the central partition. In addition,
by using this concept of strong patterns, we can define a graph where the nodes
are the strong patterns, which contains essentially the same information as the
partition graph corresponding to the K partitions, but is much simpler as the
number of strong patterns is expected to be much smaller than n. The complexity
is therefore dominated by determining the strong patterns.

The main goal of our work is first to make a summary of the works that
have been done in the problem of consensus partitions. Then, the distance used in
[5] and the partition-distance are compared using graph terminology. An exper-
imental evaluation of the central partitions corresponding to these two distances
is also presented. Next, a special graph, the strong pattern graph, is defined and
some of its properties are given.

2. RELATED WORK

Suppose that we haveKqualitative variables describing our set of objectsE.
Each such variable defines a partition of the set E. We can associate an equiva-
lence relation on E with each variable: x and y are in the same equivalence
class if the values of this variable are the same for x and y. Thus we obtain K
equivalence relations on E : R1, R2, ..., RK . In 1965 Régnier [14] proposes as a
good clustering of E, a partition whose associated equivalence Ep minimises the
quantity

(2.1)
K∑

i=1

δ(Ep, Ri) ,

which is called a remoteness function. δ(R,Ep) = |R∪Ep|−|R∩Ep| = |R−Ep|+
|Ep−R| is the number of non ordered pairs of points that are in the same cluster
in one partition but not in the other. The partition which minimises equation
(2.1) is called central partition by Régnier.
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In 1981, Barthelemy and Monjardet [3] use the notion of median in order
to unify the treatment of some problems which are based on the minimization
of a remoteness function, like for instance aggregation problems in cluster analy-
sis, social choice theory and paired comparisons methods. We will restrict and
adapt the presentation of their median procedure to the case of clustering. These
authors start by defining the partitions πα (resp. πβ) to be such that two ele-
ments x and y are in the same cluster for this partition iff they are together in
the same cluster for at least K/2 + 1 (resp. K/2 + 0.5) of the initial partitions.
One can easily see that πα≤ πβ, which means that any cluster of πα is included
in a cluster of πβ . The authors define then the median interval of the K initial
partitions to be [πα, πβ ]. If K is odd, then πα = πβ and so there is only one me-
dian partition; otherwise, every partition contained in that interval is a median
partition. Barthelemy and Monjardet [3] then present some properties of this
median procedure and survey some interesting mathematical problems related to
the notion of median. In a later paper, Barthelemy and Leclerc [2], concentrate
on the problem of finding a consensus partition that summarizes a K-tuple of
partitions by using the median procedure. A detailed survey of the median pro-
cedure for partitions is given, from the axiomatic and the algorithmic points of
view.

William Day [6] describes two models for the enumeration of metrics be-
tween partitions, focusing on the complexity of computing these metric distances.
By doing so he rediscovers some metrics that already existed in the literature,
but discovers some new metrics also. For some of them, there exist efficient
algorithms with time complexities ranging from O(n) to O(n3).

Strehl and Ghosh [15] propose three techniques for obtaining high-quality
consensus partitions. The first one uses a similarity measure which is based on the
given K initial partitions and then reclusters the objects using this new similarity
measure. The second technique is based on hypergraph partitioning and the third
technique collapses groups of clusters into meta-clusters which then compete for
each object to determine the central partition. These authors claim that their
techniques have low computational costs and so suggest further to use the three
approaches for a given situation and then choose the best solution.

Monti et al. [10] use a resampling-based method to find the central (con-
sensus) partition in the context of gene-expression microarray data. This type of
data has the particularity of presenting many more variables (genes) than obser-
vations, which is a challenge for classical data analysis methods (see for instance
[11]). Monti et al. [10] call their methodology consensus clustering which pro-
vides for a method to represent the consensus across multiple runs of a clustering
algorithm and to assess the stability of the discovered clusters. They also provide
a visualization tool to inspect and validate the number of clusters, membership
and boundaries.
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3. TWO DISTANCES BETWEEN PARTITIONS BASED ON THE

PARTITION-GRAPH

Let E be a nonempty set consisting of n elements. A cluster of E is a
nonempty subset of E. A partition of E is a collection of mutually exclusive
clusters of E, whose union is E. Two partitions π and π′ of E are identical if
and only if every cluster in π is also a cluster in π′.

Given two partitions π and π′, the partition-distance, Dp(π, π
′), between π

and π′ is the minimum number of elements that must be removed from E such
that the two induced partitions (π and π′ restricted to the remaining elements)
are identical.

In [7] this definition is extended to the case of K>2 partitions. Also in [7],
it is written that the partition-distance is equal to the minimum number of ele-
ments that must be moved between clusters in π, so that the resulting partition
equals π′. This definition had already appeared before in the work of Régnier
[14].

Example 3.1. Let E = {1, 2, 3, 4, 5, 6}. Consider the following partitions,
π and π′ of E:

π =
{
{1, 2, 4, 6}, {3, 5}

}
, π′ =

{
{1, 2, 6}, {3}, {4, 5}

}
;

then the partition-distance between π and π′ equals two, as the removal of two
elements, namely 3 and 4, will make π and π′ identical and no single element of E
has this property.

Proposition 3.1. The partition-distance, Dp(π, π
′), between π and π′

verifies the properties of a distance function.

Proof: The first three properties are obvious. In fact, (i) Dp(π, π) = 0 ;
(ii) Dp(π, π

′)=Dp(π
′, π); (iii) Dp(π, π

′)=0 ⇒ π=π′.

As for the triangular inequality, (iv) Dp(π, π
′) ≤ Dp(π, π

′′) +Dp(π
′′, π′),

let us start by denoting Dp(π, π
′) = n1, Dp(π, π

′′) = n2 and Dp(π
′′, π′) = n3.

Suppose that n1 > n2 + n3. If we remove n2 elements from E, the two induced
partitions of π and π′′ become identical; the same happens between π′′ and π′

if we remove a certain set of n3 elements. This means that if we remove at most
n2 + n3 (corresponding to the union of the two previous sets to be removed)
elements from E, the three induced partitions of π, π′′ and π′ become identical.
This is absurd since by hypothesis, we need to remove at least n1 elements, which
is more than n2 + n3, in order to make the two induced partitions of π and π′

identical. Therefore, we can not have n1> n2 + n3.
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Given two partitions π and π′ of the same set E, consider the graph G(π, π′)
with one node for each element of the set E; two nodes are adjacent iff they are
together in the same cluster of either π or π′, but not in both. G(π, π′) is called
a partition graph (see [7]). A node-cover of a graph is a subset of nodes Q such
that every edge in the graph is incident with at least one node in Q.

As it is shown in [7], the partition-distance between two partitions π and
π′ is equal to the size of the smallest node-cover of the graph G(π, π′) (it has
not been proved that the smallest node cover is unique). This means that the
set of elements that must be removed so that the two induced partitions become
identical is one of the smallest node covers. The distance used in [5] has also an
interpretation in terms of this graph. For each partition πl let vl represent its
associated equivalence relation: vl(i, i

′) = 1 iff the two elements are in the same
cluster. Then, the distance used in [5] is

DC(π, π′) =
1

2

∑
i,i′ ∈E

∣∣v(i, i′)− w(i, i′)
∣∣

where the equivalence relations v and w correspond to the partitions π and π′

respectively. It is easy to see that this distance is equal to the number of edges
of the partition graph G(π, π′).

4. THE CENTRAL PARTITION FOR A PARTITION-DISTANCE

In this section we start by defining the concept of strong pattern. Given K
partitions of a dataset E, a strong pattern is a maximal subset of elements of E
that have been always clustered together in all of the K partitions.

Now, in order to determine the strong patterns, we start by building a
matrix R with n rows and K columns, where each column represents a partition.
So, for instance, if the first partition has 5 clusters, the first column of R is
composed of a sequence of numbers belonging to the set {1, 2, 3, 4, 5}. Thus, the
element Rij of this matrix is the cluster number attributed by partition πj to the
i th observation.

From R we construct a square matrix A, of size n, such that Aii′ is equal
to the number of times that the objects i and i′ are clustered together in the
Kpartitions. The complexity of building the matrix A is therefore n(n−1)×K/2.

Consider now the equivalence relation

∀ (i, i′) ∈ E×E , wK(i, i′) =

{
1 if Aii′ = K

0 otherwise .
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The partition of strong patterns corresponds to this equivalence relation. To find
this partition we look at the elements of matrix A row by row, starting with the
first row. First, to the first element is attributed the first cluster, which we can
call cluster 1. Then, in the first row, everytime we find that A1i′ = K, we put
the element i′ in cluster 1 also, and we delete the row corresponding to i′ from
consideration. Then we go to the next row to be considered, and we do the same,
this time attributing its elements to cluster 2. We proceed in the same manner
until there are no more rows to be considered. The complexity of this step is at
most n(n−1)/2. Therefore the complexity for determining the strong patterns is
O(n2K).

Suppose we have K partitions of E, (π1, π2, ..., πK). We are going to
consider now how to obtain from these K partitions a new partition which
best represents a consensus between all of the initial K partitions. We call it
Central Partition. First of all, the partition corresponding to the strong patterns
represents an unanimous consensus between all the K partitions; nevertheless, it
usually cannot be considered as a central partition because it has got too many
clusters (strong patterns) and is therefore too refined.

Let us denote by π∗ the central partition that we are looking for. We define
the central partition as the one that minimises the following criterium:

C(π∗) =
K∑

k=1

Dp(π
∗, πk)

where Dp(π
∗, πk) is the partition-distance between the partitions π∗ and πk, that

is, the number of elements that have to be removed so that the two induced par-
titions become identical. Intuitively, the central partition minimises the average
number of disagreements between the K partitions. The problem of finding π∗ is
NP-hard and so we are going to use an heuristic to find an approximation of it.
This heuristic has already been used and justified in [5]; we will adapt it to our
context. In [5], the distance between two partitions, DC(π, π′), is equal to the
number of edges of the partition graph G(π, π′) that has been defined in [7].
In our case we use the partition-distance, Dp(π, π

′) .

Let us denote by S the set of strong patterns and q (q<<n) its cardinality.
We define now a square matrix B of size q such that Bpp′ is the number of times
that the strong patterns p and p′ are together in all of the K partitions.

Theoretically, the partition corresponding to the strong patterns is associ-
ated with an equivalence relation uK :

∀ (p, p′) ∈ S×S , uK(p, p′) =

{
1 if Bpp′ = K

0 otherwise .

In a similar way, other relations uj , j = 0, 1, ...,K−1, can be defined:

∀ (p, p′) ∈ S×S , uj(p, p′) =

{
1 if Bpp′ ≥ j

0 otherwise .
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These relations uj , are in general not transitive and so cannot represent a
partition. Only u0 and uK represent partitions. To u0 is associated the elemen-
tary partition, where there is only one cluster; to uK is associated the partition
of strong patterns. For j = 1, ...,K−1, uj does not represent a partition, because
it is generally not transitive, and the authors in [5] associate with each uj an
equivalence relation uj , which is the transitive closure of uj . Let Γj represent the
partition associated with uj . Let Γ0 represent the partition with only one cluster
and ΓK the partition of strong patterns. It is then shown that the partitions
Γ0,Γ1,Γ2, ...,ΓK are nested, that is, Γj is obtained from Γj+1, by merging two of
its clusters.

The heuristic that is then used in order to find the approximate central
partition consists in restraining the search to the partitions Γj . Each such par-
tition is composed of clusters of strong patterns. In 1984 Celeux [4] has shown
that in practice the approximate central partitions obtained by this heuristic are
the same or very close to the exact central partition. That is, the clusters corre-
sponding to both partitions, the exact and the one found using the heuristic, are
similar.

Let S be the set of strong patterns and define the distance index

d(p, p′) = K −Bpp′ , ∀ (p, p′) ∈ S .

Let us now prove that this measure is really a distance index. In fact,
(i) d(p, p)=0 because Bpp =K. Next, (ii) d(p, p′)=d(p′, p) because the matrix
B is symetric. Now, if (iii) d(p, p′)=0, we have Bpp′ = K; this only happens
if the two strong patterns p and p′ are in fact one, that is, p = p′.

Using this distance index, we build a matrix of distance indices between the
strong patterns. The partitions Γj can be obtained in the following manner [5].
Start by building a minimal spanning tree (MST) containing q nodes (the strong
patterns) and using the distance index d(p, p′) = K−Bpp′ defined above. The
edge joining two adjacent nodes p and p′ has weight d(p, p′). Now, in order to
determine the candidate central partitions, Γ0,Γ1, ...,ΓK , we do the following:
Γ0 has just one cluster. Γ1 is obtained from the MST by removing the edge of
maximum weight and writing down the two obtained clusters. We continue by
successively removing the edges of maximum weight, obtaining the other candi-
date central partitions Γ2,Γ3, ...,ΓK . Everytime that we find two or more edges
with maximum weight, we remove all of these at once. Celeux et al. [5] show
that the candidate central partitions obtained by this methodology are the same
defined above associated with uj .

For each candidate central partition, Γj , we compute the criterium defined
above, that is,

C(Γj) =
K∑

k=1

Dp(Γ
j , πk) ,

and we choose the partition which minimises this criterium. So, the central par-
tition obtained is the one which minimises the sum of all the partition-distances
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between the central partition and the initial K partitions.

Example 4.1. Let E = {1, 2, 3, 4, 5, 6} and consider the following four
partitions:

π1 =
{
{1, 2}, {3, 4}, {5}, {6}

}
, π2 =

{
{1, 2, 4}, {3, 5}, {6}

}
,

π3 =
{
{1, 2, 6}, {3, 4}, {5}

}
and π4 =

{
{1, 2, 5}, {4, 6}, {3}

}
.

This is a very small example with quite different partitions, but it serves to
illustrate the determination of central partition. The strong patterns are therefore
the subsets {1, 2}, {3}, {4}, {5}, {6}.

The symetric matrix B is:

{1, 2} {3} {4} {5} {6}
{1, 2} 4 0 1 1 1
{3} 4 2 1 0
{4} 4 0 1
{5} 4 0
{6} 4

From B we construct the matrix of distance indices d(p, p′) = K−Bpp′ :

{1, 2} {3} {4} {5} {6}
{1, 2} 0 4 3 3 3
{3} 0 2 3 4
{4} 0 4 3
{5} 0 4
{6} 0

Now, we build the minimal spanning tree (MST) between the strong pat-
terns using for instance Prim’s algorithm (see Figure 1).

Then, by starting to remove the edges of maximal weight, we get three
candidate central partitions. Whenever two or more edges have maximum weight,
we remove all of them at once.

The candidate central partitions are therefore:

Γ0 =
{

1, 2, 3, 4, 5, 6
}
,

Γ1 =
{
{1, 2}, {3, 4}, {5}, {6}

}
,

Γ2 =
{
{1, 2}, {3}, {4}, {5}, {6}

}
.
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Figure 1: One possible MST between the strong patterns.

Now, in order to choose one of these three candidate central partitions as
a central partition, we need to compute the value of C(Γj), j = 0, 1, 2; we will
do this using the partition-distance defined above:

C(Γ0) = 4 + 3 + 3 + 3 = 13 ,

C(Γ1) = 0 + 2 + 1 + 2 = 5 ,

C(Γ2) = 1 + 2 + 2 + 2 = 7 .

The final partition chosen, that is the one which minimises the criterium
C(Γj), is the partition

{{1, 2}, {3, 4}, {5}, {6}}, which, in this case, coincides with
one of the initial partitions.

5. EXPERIMENTAL COMPARISON BETWEEN THE TWO

CENTRAL PARTITIONS

In this section we will show the results of some experiences in order to
compare the two central partitions corresponding to the partition-distance used
in [7], Dp(π, π

′), and the distance used in [5], DC(π, π′). As was shown above,
the partition-distance between two partitions π and π′ is equal to the size of the
smallest node-cover of the graph G(π, π′) and the distance used in [5] corresponds
to the number of edges of G(π, π′). Since the first of these two distances is more
complicated to compute, it is of interest to know if the corresponding central
partition represents a better consensus between the initialK partitions; otherwise
it would be better to use the other distance. To see which of the two central
partitions represents a better consensus, we use the Rand index [13], which was
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latter corrected for chance in [8]. We start by computing the value of this index
between the central partition and each of the initial K partitions and then find
the average. The formula for the corrected Rand index between two partitions,
one with L clusters and the other with C clusters, is

(5.1) CRI =

L∑
i=1

C∑
j=1

(
nij

2

)
−
(
n
2

)
−1 L∑

i=1

(
ni.

2

) C∑
j=1

(
n.j

2

)
1

2

[
L∑

i=1

(
ni.

2

)
+

C∑
j=1

(
n.j

2

)]
−
(
n
2

)
−1 L∑

i=1

(
ni.

2

) C∑
j=1

(
n.j

2

)

where n is the total number of objects, nij denotes the number of objects that
are common to clusters ui and vj , ni. and n.j referring respectively to the number
of objects in clusters ui and vj . This index takes values in the interval [−1, 1]
where the value 1 indicates a perfect agreement between the partitions, whereas
values close to 0 correspond to cluster agreement found by chance.

We start by generating 19 random partitions of a dataset with 600 elements,
with different numbers of clusters in each partition. We do not take into account
the structure of the dataset underlying those partitions. In fact, the partitions
were obtained by simulating an integer vector of size 600, where each compo-
nent of this vector contains the cluster number attributed to the ith element,
i = 1, 2, ..., 600. This is because the two central partitions considered in this
work only take into account the labels associated to each element of the dataset;
that is, its cluster number, regardless of the structure of the dataset. So, the aim
of this experiment is just to see which central partition best agrees with the initial
partitions. Our aim is not to see if the initial partitions are a good clustering of
any dataset. We suppose we are given K initial partitions and we want just to
find the best possible consensus between them.

To generate the random partitions, we have used the code in [12], where it is
also explained how the random partitions are generated. Then, we have written
a program to compute the two central partitions. Let π∗1 denote the central
partition using the partition-distanceDp(π, π

′) and π∗2 the central partition using
the distance DC(π, π′). Now, we compute the corrected Rand index between each
central partition and the initial 19 partitions and find the average. This procedure
was repeated six times and the results are given in Table 1.

Table 1: CRI values for the two central partitions.

Dataset Values relating to π∗1 Values relating to π∗2

1 .450616 .349814
2 .370913 .220207
3 .434782 .353463
4 .401694 .222835
5 .355193 .239976
6 .360283 .278106
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As can be seen from these results, the central partition corresponding to
the partition-distance presents higher CRI values, indicating therefore greater
average similarity with the initial 19 partitions.

We have performed another controlled experiment that allows us to com-
pare the two central partitions in the presence of noise. First, we partition a set
with 500 elements into 10 clusters at random, as we did above, to obtain the
original clustering. We duplicate this clustering 10 times, but, in each of these
new 10 labelings, a fraction of the labels is replaced with random labels from a
uniform distribution from 1 to 10 (number of clusters). Then, we find the two
central partitions, π∗1 and π∗2, for these 10 noisy partitions, and we compare
each central partition with the initial partition which has no noise. The results,
which are given in Table 2, contain the CRI values between π∗1 and the initial
partition, the average CRI values between π∗1 and the given 10 partitions; and
the same for π∗2.

Table 2: CRI values for the two central partitions in the presence of noise.

Fraction Average CRI CRI between π∗1 Average CRI CRI between π∗2

of noise values for π∗1 and initial part. values for π∗2 and initial part.

10% .818964 .819189 .818964 .819189

20% .672516 .667547 .666279 .651882

30% .556944 .560007 .535590 .546835

40% .454627 .487534 .398607 .414782

50% .355307 .387085 .272208 .290658

60% .274852 .298431 .167627 .174901

70% .194300 .236023 ..060229 .061390

80% .119703 .149001 .024150 .028592

From these last results, we can see that the central partition corresponding
to the partition-distance has higher CRI values with the initial partition than
the other central partition; except for the case of 10% noise, where the results
are the same. It seems also clear that the higher the presence of noise the larger
the difference between the CRI values for the two central partitions. We can
conclude therefore that in the presence of noise, the central partition using the
partition-distance Dp(π, π

′) is superior to the central partition using the distance
DC(π, π′). On the other hand, we can again see that the average CRI values are
higher for π∗1 than for π∗2, which confirms the results obtained above.

From this experimental study, we find that the partition-distance is more
adequate to find a consensus partition.
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6. STRONG PATTERN GRAPH

Having shown experimentally that the partition-distance is more adequate
to find a consensus partition, we now present some independent results that
were developped during the course of our investigation on the central partition.
We start by defining a new graph based on the notion of strong pattern. This
new graph contains essentially the same information as the partition-graph, but
is much simpler. Then, some properties of this new graph are proved.

Let U1, U2, ..., Um be the strong patterns of Kpartitions on a set E of size n.
The strong pattern graph sp(G) consists of m nodes, U1, U2, ..., Um and any two
nodes Uq, Uj are adjacent if the strong patterns Uq and Uj are together in the
same cluster in at least one partition.

We will now prove that the smallest node-cover of G(π, π′), which is a
subset of E, is the union of a set of strong patterns; that is, if an element of
E belongs to the smallest node-cover, all of the elements belonging to the same
strong pattern belong also to the smallest node-cover.

Proposition 6.1. Any smallest node-cover of G(π, π′) is composed of

a subset of strong patterns.

Proof: In order to prove this proposition, consider two elements x and y
belonging to the same strong pattern. Suppose now that x belongs to a smallest
node-cover of G(π, π′). From the results above, x belongs also to a smallest set
of elements that have to be removed so that the two induced partitions become
identical. We want to prove that y belongs also to the same smallest node-cover;
that is, that y has also to be removed. Suppose not; that is, after removing all
the elements that have to be removed so that the two induced partitions become
identical, y stays. This means that the cluster of the induced partition of π
containing y and the cluster of the induced partition of π′ containing y are the
same. Hence, if we add x to these two clusters, these two clusters remain also
the same, because x and y belong to the same strong pattern, that is, are always
clustered together; and so x would not have to be removed, which is absurd by
hypothesis. Therefore y has also to be removed.

A clique in a graph is a subset of nodes which are pairwise adjacent;
let K(G) be the size of the largest clique in graph G. An independent set of
nodes is a subset of nodes where no two nodes are adjacent; let I(G) be the size
of the largest independent set in graph G. If U is a non empty subset of the
node set of graph G, then the subgraph H of G induced by U is the graph having
the node set U and whose edge set consists of those edges of G incident with
two distinct elements of U . The subgraph H is called a node-induced subgraph.
A graph G is called perfect if K(H) = I(H) for every node-induced subgraph H
of G.
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Proposition 6.2. The strong pattern graph for two partitions of the

same set is a perfect graph.

Proof: The strong pattern graph corresponding to two partitions π1 and
π2 is itself a partition graph. In fact we can form two partitions of the set of
strong patterns: π1

S is composed of clusters of strong patterns whose individual
elements were clustered together in π1; similarly for π2

S . The strong pattern graph
defined above corresponds to the partition graph for π1

S and π2
S . It is proved in

[7] that any partition graph is a perfect graph. Therefore, the strong pattern
graph, being a partition graph, is a perfect graph.

7. CONCLUSIONS AND FUTURE WORK

We have considered in this paper the problem of finding a consensus parti-
tion (central partition) between a set of partitions corresponding for instance to
the results of different clustering algorithms. The distance between partitions is
the one defined in [7]. As the determination of the central partition is NP-hard,
we have adapted an heuristic [5] which consists in assuming that if two elements
are always clustered together in all of the initial partitions, they should also be
together in the central partition. We have then shown experimentally that the
central partition corresponding to the partition-distance represents a better con-
sensus than the usual central partition, which uses the distance defined in [5].
By defining a strong pattern to be a maximal subset of elements which are al-
ways together, we have then defined a strong pattern graph where the nodes
correspond to the strong patterns and two nodes are adjacent if the correspond-
ing strong patterns are together in at least one partition. We have then proved
that any smallest node-cover of a partition graph is composed of a subset of
strong patterns and also that the strong pattern graph is a perfect graph.

As for the future work, we plan to implement a computer program to do
some experiments in order to analyse the results of some clustering algorithms.
This will serve as a way of summarising the results of several clustering algo-
rithms, specially when we do not know which one is best suited to the particular
problem at hand. Even if we do know which clustering algorithm to use, its results
usually depend on a set of parameters which are not known. By trying different
parameters, we will get different partitions and once again, it makes sense to find
the central partition (corresponding to the partition-distance) as the one which
minimises the average number of disagreements between the various outputs.
We plan also to study more deeply the strong pattern graph which we introduce
in this article.
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Abstract:

• Let N
α, β, γ

be a discrete random variable whose probability atoms {p
n
}

n∈N
satisfy

f(n+1)

f(n)
= α+ β

E(U
n

0
)

E(U
n

γ
)
, n=0, 1, ..., for some α, β ∈ R, where U

γ
�Uniform(γ, 1),

γ ∈ (−1, 1]. When γ → 1, U
γ
→ U

1
, the degenerate random variable with unit mass

at 1, and the above iterative expression is
p

n+1

pn
= α + β

n+1
for n = k, k+1, ..., used

by Katz and by Panjer (k = 0), by Sundt and Jewell and by Willmot (k = 1) and, for
general k ∈ N, by Hess, Lewald and Schmidt.
We investigate the case U

γ
�Uniform(γ, 1) with γ ∈ (−1, 1) in detail for α = 0.

We then construct classes C
γ

of discrete infinitely divisible randomly stopped sums
such that N

0, β, γ
∈ C

γ
. C

0
is the class of compound geometric random variables, C

1
is

the class of compound Poissons, and |γ
1
|< γ

2
≤ 1 implies C

γ
1

⊂ C
γ
2

⊆ C
1
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1. INTRODUCTION

Let us consider the discrete random variables N
α, β

whose probability mass
functions (p.m.f.) {f

N
α, β

(n)}
n∈N

satisfy

(1.1) f
N

α, β
(n+ 1) =

(
α+

β

n+1

)
f

N
α, β

(n) , α, β ∈ R, n = 0, 1, ...

From (1.1) it follows that f
N

α, β
(n) = f

N
α, β

(0)
n∏

k=1

(
α+ β

k

)
. In particular,

f
N

α, 0
(n) = f

N
α, 0

(0)α
n

= (1−α)α
n

=⇒ N
α, 0

� Geometric(1−α) ,

and we may write

(1.2) f
N

α, 0
(n+1) = α f

N
α, 0

(n) =
n∑

k=0

f
N

α, 0
(n) r

n−j
,

where r
0

= α is the ratio of a geometric series and r
1

= · · · = r
n

= 0.

On the other hand,

f
N

0, β
(n) = f

N
0, β

(0)

n∏
k=1

β

n
= f

N
0, β

(0)
β

n

n!
= e

−β β
n

n!
=⇒ N

α, 0
� Poisson(β) ,

and we may write

(1.3) (n+1) f
N

0, β
(n+1) = β f

N
0, β

(n) =
n∑

k=0

f
N

0, β
(n) r

n−j
,

where r
0

= β and r
1

= · · · = r
n

= 0. Note that similar expressions do not hold

for randomly stopped sums S
N

α, β
= S

N
α, β

(Y ) =
N

α, β∑
k=1

Y
k
, where the summands Y

k

are i.i.d. and independent of the subordinator N
α, β

, with p.m.f. satisfying (1.1),

whenever both α �= 0 and β �= 0. However, for geometric stopped sums
N

α, 0∑
k=1

Y
k

and for Poisson stopped sums,
N

0, β∑
k=1

Y
k

(i.e., when either β = 0 or α = 0) we

get nice similar expressions, with the r
k
≥ 0 and convergence of

∞∑
k=0

r
k
, in the

case of geometric stopped sums, and convergence of
∞∑

k=0

r
k

k+1 , for Poisson stopped

sums. In the definition of randomly stopped sums, P
[
S

N
α, β

=0 | N
α, β

=0
]

= 1,

and therefore P[S
N

α, β
=0] = P[N

α, β
=0] = f

N
α, β

(0) whenever P[Y
k
>0] = 1).
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Panjer (1981) has remarked that the discrete (nondegenerate) random vari-
ables whose p.m.f.’s satisfy equation (1.1) are

• N
0, β

� Poisson(β), β > 0,

• N
α, β

� Binomial
(
−1− β

α ,
α

α−1

)
, in case α < 0 and −β

α ∈ N
+

, and

• N
α, β

� NegativeBinomial
(

α+β
α , 1− α

)
if α ∈ (0, 1) and α+ β > 0.

The dispersion index
var(N

α,β
)

E(N
α,β

) = 1
1−α is less than 1 (underdispersion) for the

binomial and greater than 1 (overdispersion) for the negative binomial.
On the other hand, N

0, β
� Poisson(β) is a yardstick, with dispersion index 1.

We denote Π the class of random variables N
α, β

described above.

These random variables play an important role as subordinators in ran-
domly stopped sums. Compound or generalized random variables (other names
traditionally given to S

N
α, β

, cf. the discussion on terminology in Johnson, Kotz

and Kemp, 1992) are at the core of branching processes and many other subjects
where the aim is to obtain the distribution of randomly stopped sums, namely
in the study of aggregate claims in the risk process, see Klugman, Panjer and
Willmot (1998) and Rólski, Schmidli, Schmidt and Teugels (1999).

Katz (1965) had used an iterative expression equivalent to (1.1) to organize
a coordinated presentation of count distributions. Panjer’s (1981) pathbreaking
result has been to use the iterative expression satisfied by the p.m.f. of the sub-
ordinator N

α, β
to get an iterative algorithm to compute the density function

(probability mass function or probability density function) of S
N

α, β
. This is used

in section 2 to establish characterization theorems for infinitely divisible and for
geometric infinitely divisible generating functions.

In section 3, we investigate discrete random variables N
α, β, γ

whose proba-
bility mass function (p.m.f.) {p

n
}

n∈N
satisfies the more general relation

(1.4)
f

N
α, β, γ

(n+1)

f
N

α, β, γ
(n)

= α+ β
E(U

n

0
)

E(Un

γ
)

= α+
β

n∑
k=0

γk

, α, β ∈ R, n = 0, 1, ...

where U
γ
�Uniform(γ, 1), γ ∈ (−1, 1). As

(1.5) E(U
n

γ
) =

1

n+ 1

1− γn+1

1− γ −−−→
γ→1

1 ,

Panjer’s class corresponds to the degenerate limit case, letting γ −→ 1 so that
U

γ
−→ U

1
, the degenerate random variable with unit mass at 1.
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When α = 0, the iterative expression for the p.m.f. of N
0, β, γ

verifies

(1.6)
1− γn+1

1− γ f
N

α, β, γ
(n+1) =

n∑
k=0

f
N

α, β, γ
(k) r

n−k

with r
0
= β and r

1
= · · · = r

n
= 0, of which (1.2) and (1.3) aren’t but the cases

γ = 0 and γ = 1, respectively. We shall investigate the classes C
γ

of randomly

stopped sums
N

0, β, γ∑
k=0

Y
k
, whose members satisfy (1.6) for nonnegative r

k
, with of

∞∑
k=0

r
k
<∞ .

In section 4 we show that when |γ
1
| < γ

2
≤ 1, C

γ
1
⊂ C

γ
2
. Also, for γ ∈ [0, 1],

the classes C
γ

form an increasing chain of classes of infinitely divisible random
variables, spanning from C

0
, the class of discrete geometric stopped sums, to C

1
,

the class of discrete Poisson stopped sums.

Many of these results rely on properties of absolutely monotone functions
scattered in the literature, that we shall discuss in section 2 below in conjunction
with Panjer theory. Ospina and Gerber (1987) remarked that the representation
theorem for the generating functions of discrete stopped Poisson sums (discrete
infinitely divisible laws) follows from Panjer’s theory, and the same is true for the
representation of geometric infinitely divisible generating functions, see section 2,
and for wider classes of generating functions whose bearing on general p-infinite
divisibility is worth noting. This will be further discussed in the concluding
section.

2. BASIC RESULTS

Let G(s) =
∞∑

n=0
f(n)s

n

, s ∈ [0, r), be the generating function of the sequence

{f(n)}
n∈N

; in other words, f(n) = G(n)
(0)

n! , n ∈ N.

If p
n
≥ 0, n ∈ N, then G(n)

(s) ≥ 0, s ∈ [0, r), and we say that G is absolutely
monotone (abs. mon.) in [0, r). If there exists r > 0 such that G is abs.mon. in
[0, r), we say that the function G is abs.mon. (Bernstein, 1928).

We refer to Widder (1946, chapt. IV) and to Feller (1968, chap. XI) for
basic information on absolutely monotone functions and generating functions;
Skellam and Shelton (1957) or Srivastava and Manocha (1984) provide a thorough
discussion. It is obvious that the sum or the product of abs.mon. functions is
abs. mon.; we shall need the following results:

1. G is abs.mon. ⇐⇒ G(0)≥0 and dG
ds is abs. mon. ⇐⇒ d

ds [sG(s)] is abs.mon.
(since p

n
≥ 0 iff (1+n) p

n
≥ 0).
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2. Let γ ∈ (−1, 1); then, G abs.mon. ⇐⇒ G(s)− γ G(γs) abs. mon. (it is suf-
ficient to note that pn≥ 0 ⇐⇒ pn(1−γn+1

) ≥ 0).

Let |γ| ≤ η < 1; then, G abs.mon. =⇒ η G(ηs)− γ G(γs) abs.mon. (p
n
≥ 0

implies p
n
(η

n+1− γn+1

) ≥ 0).

Note that η G(ηs)− γ G(γs) is no longer abs. mon. if −1 < η < γ ≤ 0.

3. If G
1
is abs.mon. in [0, r

1
), G

2
is abs.mon. in [0, r

2
), and G

2
(s) < r

1
for all

s ∈ [0, r
2
), the compound function G

1
◦ G

2
= G

1
(G

2
) is abs.mon. in [0, r

2
).

In particular:

(a) As G
1
(s) = e

s

is the generating function of p
n
= 1

n! , G
2

abs.mon. im-

plies that (G
1
◦ G

2
)(s) = e

G
2
(s)

is abs.mon.

(b) As G
1
(s) = 1

1−s is the generating function of p
n
= 1, G

2
abs.mon. in

[0, r
2
) with G

2
(s) < 1 for s ∈ [0, r

2
) implies that (G

1
◦ G

2
)(s) = 1

1−G
2
(s)

is abs.mon.

Let us now consider the randomly stopped sum S
N

α, β
=

N
α, β∑

k=1

Y
k
, where Y

k

d
=Y ,

k=1, 2, ..., are i.i.d. counting random variables, with p.m.f. {f
Y
(n)}

n∈N
, indepen-

dent of the Panjer subordinator N
α, β

.

As

E

[
k

n+ 1
Y

1

∣∣∣∣ k∑
i=1

Y
i
= n+ 1

]
= 1

and

P

[
Y

1
= j

∣∣∣∣ k∑
i=1

Y
i
= n+ 1

]
=

f
Y
(j) f

�(k−1)

Y
(n+ 1− j)

f �k

Y
(n+ 1)

, j = 0, ..., n + 1

(Rólski et al., 1999, p. 119), where as usual f
�k

denotes the k-fold convolution

(f
1∗

= f, f
�k

= f ∗ f �(k−1)

), it follows that the probability mass function of a Pois-
son stopped sums (N

0, β
, β>0) verifies

(n+1) f
S

N
0, α

(n+1) =

n∑
k=0

f
S

N
0, α

(k)β (n+1−k) f
Y
(n+1−k)

=

n∑
k=0

f
S

N
0, α

(k) r
n−k

,(2.1)

with r
k
= β (k+1) f

Y
(k+1) ≥ 0, k=0, 1, ..., and it therefore follows that the gen-

erating function H
N

0,β
(s) =

∞∑
k=0

r
k
s

k

of the {r
k
}

k∈N
is absolutely monotone, with

∞∑
k=0

r
k

k+1 =
∞∑

k=0

β f
Y
(k+1) = β (1−f

Y
(0)). Assuming that f

Y
(0) = 0 (i.e., enforcing
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a unique representation by fixing this free parameter), multiplying both sides of
(1.6) by s

n

and summing for n = 0, 1, ..., we get,

(2.2) G
S

N
0, β

(s) = exp

[
β

(
1

β

∞∑
k=0

r
k

k+1
s

k+1 − 1

)]
= e

β[P(s)−1]

,

where P(s) = 1
β

∞∑
k=0

r
k

k+1 s
k+1

is a (unique) p.g.f., such that P(0) = 0.

On the other hand, for geometric stopped sums (N
α, 0
, 0<α<1) we get

(2.3) f
S

N
α, 0

(n+1)=
n∑

k=0

f
S

N
α, 0

(k) r
n−k

where r
k
=

α f
Y

(k+1)

1−α f
Y

(0) . As in the treatment of Poisson stopped sums, we may

get a unique representation theorem by letting the free parameter f
Y
(0)=0,

which implies
∞∑

k=0

r
k

= α, multiplying both sides of (2.3) by s
n

and summing

for n = 0, 1, ... . In terms of generating functions,

G
S

N
(s)− f

N
α, 0

(0)

s
= G

S
N
(s)H

N
α, 0

(s)

whereH
N

α, 0
is the generating function of {r

n
}

n∈N
, which are all nonnegative, with

∞∑
n=0

r
n
= α ∈ (0, 1), i.e. H

N
α, 0

is abs.mon. From G
S

N
(1) =

p
0

1−H
N

α, 0
(1) =

p
0

1−α = 1,

it follows that

G
S

N
(s) =

p
0

1− sH
N

α, 0
(s)

=
1− α

1− s
∞∑

k=0

r
k
sk

=
1− α

1− αP(s)

where P(s) =
∞∑

k=0

r
k

α s
k+1

, such that P(0) = 0, is a p.g.f., because it is abs.mon.

and P(1) = 1. In other words, Panjer’s iteration also provides a straightforward
proof of the representation theorem for geometric infinitely divisible lattice dis-
tributions.

We record these representation theorems for the sake of the corollaries that
we then establish, which will be instrumental in the proof of the extensions in
sections 3 and 4.

Theorem 2.1. The p.g.f. G
S

N
0, β

of a discrete Poisson stopped sum such

that P
[
S

N
0, β

=0
]
=f

S
N

0, β

(0) > 0 has a unique representation G
S

N
0, β

(s) = e
β[P(s)−1]

,

where P is a p.g.f. such that P(0) = 0, and β = − lnG
S

N
0, β

(0).

The p.g.f. G
S

N
α, 0

of a discrete geometric stopped sum such that P[S
N
=0] =

f
S

N
α, 0

(0) > 0 has a unique representation G
S

N
α, 0

(s) = 1−α
1−αP(s) , where P is a p.g.f.

such that P(0) = 0, and α = 1− G
S

N
α, 0

(0).
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Observe also that exp
(
1− 1

G
S

N
α, 0

)
= e

α
1−α

[P(s)−1]

= G
S

N
0, α

1−α

(s). On the

other hand,
1

1− ln
(
G

S
N

0, β

(s)
) =

1− β
β+1

1− β
β+1 P(s)

= G
S

N
β

β+1
, 0

(s).

Corolary 2.1.1.

(1) Let G be a probability generating function such that G(0) > 0; then, G is

the p.g.f. of a discrete Poisson stopped sum iff G′(s)
G(s) is abs.mon.

(2) Let G be a p.g.f. such that G(0) > 0, and γ ∈ (−1, 1). If G is the p.g.f. of a

discrete Poisson stopped sum, then G(s)
G(γs) is abs.mon., and G

γ
(s) = G(γ)G(s)

G(γs)
is also the p.g.f. of a Poisson stopped sum.

(3) Let G be a p.g.f. such that G(0) > 0, and |γ
1
| ≤ γ

2
< 1. If G is the p.g.f.

of a discrete Poisson stopped sum, then
G(γ

2
s)

G(γ
1
s) is abs.mon. and G

γ
1

, γ
2
(s) =

G(γ
1
)

G(γ
2
)

G(γ
2
s)

G(γ
1
s) is also the p.g.f. of a Poisson stopped sum.

(4) Any discrete geometric stopped sum such that P[S
N
=0] = p̃

0
>0 is a Poisson

stopped sum, i.e. infinitely divisible.

Proof: (1) From Theorem 2.1 we know that G, with G(0) > 0, is the

p.g.f. of a Poisson stopped sum iff G′(s)
G(s) = H

N
0,β

(s) =
∞∑

k=0

r
k
s

k

, where

r
k
= β (k + 1) f

Y
(k + 1) ≥ 0, k = 0, 1, ..., and therefore its generating function

H
N

0,β
(s) =

∞∑
k=0

r
k
s

k

is absolutely monotone.

(2) From formula (2.2), we see that G(s) > 0 for all s, therefore G(s)
G(γs) ≥ 1

if 0 ≤ s ≤ 1. On the other hand, d
ds

[
ln G(s)
G(γs)

]
= G′(s)

G(s) − γ G
′(γs)
G(γs) is abs.mon., by

2.1.1.(1) and property 2 of abs.mon. functions. As ln G(s)
G(γs) is nonnegative for s=0,

it is also abs.mon., by property 1 of abs.mon. functions. From property 3(a) of

abs. mon. functions, it follows that G(s)
G(γs) is abs.mon. Since G

γ
(0) = G(γ) > 0,

G
γ
(1) = 1, and

G′

γ
(s)

Gγ (s) = d
ds

[
ln G(s)
G(γs)

]
is abs.mon., we conclude that G

γ
is the p.g.f.

of a Poisson stopped sum.

(3) By 2.1.1.(2),
G(γ

2
s)

G(γ
1
s) is abs.mon., and by property 2 of abs.mon.

functions
G′

γ
1

, γ
2
(s)

Gγ
1

, γ
2
(s) = γ

2

G′(γ
2
s)

G(γ
2
s) − γ1

G′(γ
1
s)

G(γ
1
s) is abs.mon. Since G

γ
1

, γ
2
(0) =

G(γ
1
)

G(γ
2
) > 0

and G
γ
1

, γ
2
(1) = 1, it follows that G

γ
1

, γ
2
(s) =

G(γ
1
)

G(γ
2
)

G(γ
2
s)

G(γ
1
s) is the p.g.f. of a Poisson

stopped sum.
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(4) As we have seen, G with G(0)> 0 is the p.g.f. of a discrete geometric

stopped sum iff G(s) = G(0)
1− sH

N
α, 0

(s) , whereH
N

α, 0
(s) < 1 for s ∈ [0, 1) is abs.mon.

As

G′(s)
G(s)

=

G(0) d

ds

[
sH

N
α, 0

(s)
]

(
1− sH

N
α, 0

(s)
)2

G(0)
1− sH

N
α, 0

(s)

=

d
ds

[
sH

N
α, 0

(s)
]

1− sH
N

α, 0
(s)

,

and from property 1 of abs.mon. functions d
ds

[
sH

N
α, 0

(s)
]

is abs.mon., from

property 3(b) we know that 1
1− sH

N
α, 0

(s) is abs.mon., and the product of abs.mon.

functions is abs. mon., it follows that G′(s)
G(s) is abs.mon. From part (1) of

Corollary 2.1.1., it follows that G is the p.g.f. of a Poisson stopped sum.

If the probability generating function G
Y

of Y�F
Y

depends on the pa-

rameter θ so that G
Y
(s| kθ) = [G

Y
(s| θ)]k , then F

X
∨ F

Y
= F

Y
∧
K
F

X
, where ∨

denotes the stopped sum of Y independent copies of X, and ∧
K

denotes the mix-

ture of Y |K, with mixing distribution F
X

(Gurland, 1957). Therefore the class
of discrete Poisson stopped sums coincides with the class of discrete mixtures of
Poisson random variables. In what mixtures of geometric random variables and
geometric stopped sums, the former is stricly included in the later.

3. EXTENSIONS

We now investigate the nondegenerate discrete random variables N
α, β, γ

whose probability mass function {pn}n∈N
satisfies

(3.1)
p

n+1

p
n

= α+ β
E(U

n

0
)

E(Un

γ
)

= α+ β
1−γ
1−γn+1

for n = 0, 1, ..., α, β ∈ R ,

where U
γ
�Uniform(γ, 1), γ ∈ (−1, 1), with p

0
> 0. If γ = 0, all possible

solutions are geometric random variables, and when γ → 1 we get Panjer’s class
of counting distributions.

For a nondegenerate solution of (3.1) with infinite support to exist, we must
have

α+ β
E(U

n

0
)

E(Un

γ
)

= α+ β
1− γ
1− γn+1

> 0

for every integer n. According to the signs of β and γ, the infimum of this factor
is either α+ β (for n = 0), α+ β

1+γ (for n = 1), or α+ β(1− γ) (when n→∞),

so we must have α+ β > 0, α+ β
1+γ > 0, and α+ β(1− γ) ≥ 0. Then, applying
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the ratio test to the sum∑
k≥0

p
k

= p
0

∞∑
k=0

k−1∏
n=0

(
α+ β

1− γ
1− γn+1

)
we see that it converges iff 0 ≤ α+ β(1−γ) < 1. Thus a necessary and sufficient
condition for a solution of (3.1) with infinite support (random variable with finite
support cannot be infinitely divisible) to exist is that

min

{
α+ β, α+

β

1+γ

}
> 0 and 0 ≤ α+ β(1−γ) < 1 .

Rewriting (3.1) as

(3.2) (1−γn+1

) f
N

α, β, γ
(n+1) =

[
α+ β(1−γ)] f

N
α, β, γ

(n)− α γn+1

f
N

α, β, γ
(n) ,

for γ ∈ (−1, 1), n = 0, 1, ..., multiplying both sides by s
n+1

and summing we get

(3.3)
[
1− (

α+ β(1−γ)) s]G
α, β, γ

(s) = (1− α γ s)G
α, β, γ

(γs) ,

where G
α, β, γ

(s) =
∞∑

n=0
f

N
α, β, γ

(n) s
n

denotes the probability generating function

of the probability mass function
{
f

N
α, β, γ

(n)
}∞

n=0
, and from that

(3.4) G
α, β, γ

(s) = G
α, β, γ

(γ
n+1

s)

n∏
k=0

1− αγk+1

s

1− [
α+ β(1−γ)] γk

s
.

Observing that

(3.5)
G

α, β, γ
(s)

G
α, β, γ

(1)
=
G

α, β, γ
(γ

n+1

s)

G
α, β, γ

(γn+1)

n∏
k=0

1−α γ
k+1

s

1−
[
α+β(1−γ)

]
γks

1−α γk+1

1−
[
α+β(1−γ)

]
γk

and letting n→∞,

(3.6) G
α, β, γ

(s) =
∞∏

k=0

1− α γk+1

s

1− α γk+1

1− [
α+ β(1−γ)] γk

1− [
α+ β(1−γ)] γks

.

If γ ∈ [0, 1), α < 0 and β ∈ (− α
1−γ ,

1−α
1−γ ), we recognize in

G
α, β, γ

(s) =

∞∏
k=0

1− α γk+1

s

1− α γk+1

1− [
α+ β(1−γ)] γk

1− [
α+ β(1−γ)] γk

s
,

the probability generating function of an infinite sum of independent random vari-
ables, the k-th summand being the result of randomly adding 1, with probability

α γ
k+1

α γk+1−1
, to an independent Geometric(1− [α+ β(1−γ)]γk

) random variable.
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The limiting case γ = 1 may be approached as follows: rewriting (3.3) as

G
α, β, γ

(s)− G
α, β, γ

(γs)

α s
[
G

α, β, γ
(s)− G

α, β, γ
(γs)

]
+ (1−γ) s

[
β G

α, β, γ
(s) + αG

α, β, γ
(γs)

] = 1 ,

dividing the numerator and the denominator by (1−γ)s and letting γ→1, we get

G′
α, β, 1

(s)

α sG′
α, β, 1

(s) + β G
α, β, 1

(s) + αG
α, β, 1

(s)
= 1 ⇐⇒ G′

α, β, 1
(s)

G
α, β, 1

(s)
=

α+ β

1− α s ,

the expression we obtain working out the probability generating function in Pan-
jer’s iterative expression p

α, β
(n+1) = (α+ β

n+1) p
α, β

(n), α, β ∈ R, n = 0, 1, ... .

We now focus on the case α = 0, for which β ∈ (0, 1
1−γ ), and

(3.7) G
0, β, γ

(s) =
∞∏

k=0

1− β(1−γ) γk

1− β(1−γ) γks
=

∞∏
k=0

1− w
k

1− w
k
s
,

where w
k
= β(1−γ)γk

. If γ ∈ [0, 1), we get that have N
0, β, γ

=
∞∑

k=0

W
k
, with

W
k
� Geometric(1− β(1−γ) γk

) independent summands. If γ = 0, the above
expression simplifies to G

0, β, 0
(s) = 1−β

1−βs . Therefore we conclude that N
0, β, 0

=
N

β, 0
� Geometric(1− β), β ∈ (0, 1).

Let us point out that the probability mass function of a random variable
N

0, β, γ
, γ ∈ (−1, 1), trivially satisfies

1− γn+1

1− γ p
n+1

=
n∑

k=0

p
k
r

n−k
,

with r
0
= β and r

1
= r

2
= · · · = r

n
= 0, provided that

0 < β =

∞∑
n=0

r
n
s

n

= H(s) <
1

1− γ ,

a point which will be of relevance in the following section.

4. DISCRETE INFINITELY DIVISIBLE DISTRIBUTIONS AND

C
γ

CLASSES

In what follows we investigate the classes C
γ
, γ ∈ (−1, 1), of nondegenerate

counting random variables (distributions, p.g.f.) whose probability mass function
satisfies p̃

0
> 0 and the general recursive relation

(4.1)
1− γn+1

1− γ p̃
n+1

=

n∑
k=0

p̃
k
r

n−k
, n = 0, 1, ... ,
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with r
k
≥ 0, which extends Panjer’s recursive expression for the probability mass

function of the classes of Poisson stopped sums (C
1
) and of geometric stopped

sums (C
0
). It is well known that any geometric infinitely divisible lattice distri-

bution is infinitely divisible in the classical sense, a result that follows from the

fact that 1−p
1−ps = exp

{
ln(1−p) [P(s) − 1]

}
, where P(s) = − 1

ln(1−p)

∞∑
k=0

(ps)
k

k is the

p.g.f. of a logarithmic random variable.

As before, multiplying both members of (4.1) by s
n+1

and summing for
n ≥ 0, we obtain

(4.2)
G(s)− G(γs)

1− γ = sG(s)H
γ
(s) ,

where G(s) =
∞∑

n=0
p̃

n
s

n

and H
γ
(s) =

∞∑
n=0

r
n
s

n

converges at least for |s| ≤ 1. Thus

H
γ

is by definition abs. mon. Since we have excluded degenerate solutions to

(4.1), we must have H
γ
(0) = r

0
=

p̃
1

p̃
0

> 0.

If γ ∈ [0, 1), we have

1 ≥
∞∑

n=0

p̃
n+1

=
∞∑

n=0

1− γ
1− γn+1

n∑
k=0

p̃
k
r

n−k

=
∞∑

k=0

p̃
k

∞∑
n=0

(1− γ) r
n

1− γn+k+1

>

∞∑
k=0

p̃
k

∞∑
n=0

(1− γ) r
n

= (1− γ)
∞∑

n=0

r
n
,

and therefore |H
γ
(s)| ≤ H

γ
(1) =

∞∑
n=0

r
n
< 1

1−γ for |s| ≤ 1.

If γ∈ (−1, 0), then 1−γ
i+1

1−γ ≤ 1 for i = 0, 1, ..., and by a similar reasoning
we conclude that in this case |H

γ
(s)| < 1 for |s| ≤ 1.

As was seen in the previous section, the p.m.f. of N
0, β, γ

verifies recursion

(4.1) with r
0
= β and r

1
= r

2
= ... = 0, with 0 < β < 1

1−γ .

We have the following result:

Theorem 4.1. Let W be a random variable with p.g.f. G, and γ ∈ (−1, 1).

W ∈ C
γ

iff G(s) =

∞∏
k=0

1− (1−γ) γk H
γ
(γ

k

)

1− (1−γ) γk
s Hγ(γ

k
s)
,

where H
γ

is a unique abs. mon. function such that H
γ
(0) > 0 and H

γ
(1)<

max{1, 1
1−γ }.
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Thus, if γ ∈ [0, 1) the elements of C
γ

are infinite sums W =
∞∑

k=0

X
k

of

independent geometric stopped sums X
k
=

N
k∑

i=1
Y

ki
, whose subordinators are

N
k
�Geometric(1− (1−γ) γk H

γ
(γ

k

)) random variables, and whose i.i.d. sum-

mands Y
ki

d
=Y

k
have the p.g.f. P

k
(s) =

sHγ (γ
k
s)

Hγ (γk )
.

Proof: We have established that

G(s)− G(γs)

1− γ = sG(s)H
γ
(s) ⇐⇒ G(s)

G(γs)
=

1

1− (1−γ) s H
γ
(s)

.

Iterating the above expression, similarly to what we have done to obtain (3.6),
we finally get

(4.3) G(s) =
∞∏

k=0

1− (1−γ) γkH
γ
(γ

k

)

1− (1−γ) γksH
γ
(γks)

.

If γ ∈ [0, 1), we further have

G(s) =

∞∏
k=0

1− w
k

1− w
k

sHγ (γks)

Hγ (γk )

=

∞∏
k=0

1− w
k

1− w
k
P

k
(s)

where w
k

= (1−γ) γkH
γ
(γ

k

), and the P
k
(s) =

sHγ (γ
k
s)

Hγ (γk )
are (unique) probability

generating functions such that P
k
(0) = 0.

Theorem 4.2. Let W be a counting random variable with p.g.f. G, and

γ ∈ (−1, 1). W ∈ C
γ

iff H
γ
(s) = G(s)−G(γs)

(1−γ) sG(s) is abs.mon.

We can use this result to show that the geometric distribution verifies (4.1)
for nonnegative γ. In fact, if X

θ
�Geometric(1− θ), with 0 < θ < 1, we have

r
k
= γ

k

θ
k+1≥0 and H

γ
(1)= θ

1− γθ <
1

1−γ . Given the uniqueness of the coefficients
of H

γ
, we may also conclude that the geometric distribution does not belong to

C
γ

when γ ∈ (−1, 0).

The truncated geometric distribution with support on the even integers,
Y

θ
, given by the p.m.f.

p
n

=

{
(1− θ2

) θ
n

if n = 2k even

0 if n = 2k + 1 odd
, 0 < θ < 1 ,

is an element of C
γ

for all γ ∈ (−1, 1], since it verifies (4.1) with r
2k

= 0, r
2k+1

=

(1 + γ) γ
2k

θ
2k+2

, and H
γ
(1) = (1+γ)θ

2

1−(γθ)2
< 1

1−γ .
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It’s interesting to note that the p.g.f. of Y
θ

is G
Y

θ
(s) = 1−θ

2

1−θ
2
s
2 = G

X
θ
2
(s

2

).

It is not difficult to show that if X ∈ C
0

has the p.g.f. G, then G(s
2

) is the p.g.f.
of an element of C

γ
, for every γ ∈ (−1, 1].

Corolary 4.2.1. Let W be a counting random variable with p.g.f. G, and
γ ∈ (−1, 1). If W ∈ C

γ
, G(s)
G(γs) is absolutely monotone.

Proof: From the proof of Theorem 4.1, G(s)
G(γs) = 1

1−(1−γ) sHγ (s) . If γ∈ [0, 1),

we have sH
γ
(s) ≤ H

γ
(1) < 1

1−γ for 0≤ s≤ 1; on the other hand, if γ ∈ (−1, 0)

we have (1−γ)sH
γ
(s) ≤ (1−γ)H

γ
(1) < 1 for 0 ≤ s ≤ 1

1−γ . Thus, it follows

from property 3(b) of abs.mon. functions that G(s)
G(γs) is abs. mon. (in [0, 1] for

nonnegative γ, and in [0, 1
1−γ ] for negative γ).

Corolary 4.2.2. For γ ∈ (−1, 1), C
γ
⊂ C

1
.

Proof: Taking derivatives on both sides of 1− G(γs)
G(s) = (1− γ) sH

γ
(s),

we obtain

G′(s)G(γs) − γ G′(γs)G(s)

G2(s)
= (1− γ) d

ds

[
sH

γ
(s)

]
,

equivalent to

(4.4)
G′(s)
G(s)

− γ G
′(γs)
G(γs)

= (1− γ) G(s)

G(γs)

d

ds

[
sH

γ
(s)

]
.

Therefore, in view of Corollary 4.2.1 and of property 1 of abs. mon. functions
G′(s)
G(s) − γ G

′(γs)
G(γs) is abs.mon. which in turn (property 2 of abs.mon. functions)

implies that G
′(s)
G(s) is abs.mon.

The result follows from Corollary 2.1.1.

The inclusion is strict: the Poisson(μ) distribution belongs to C
1

for all
μ > 0, but does not belong to C

γ
when γ ∈ (−1, 1), since from Theorem 4.2 we

have r
k
= (−1)

k

(1−γ)k μ
k+1

(k+1)! , so that H
γ

is not abs. mon.

Corolary 4.2.3. For |γ
1
| ≤ γ

2
< 1, C

γ
1
⊂ C

γ
2
.

Proof: Let G be the p.g.f. of a random variable W ∈ C
γ
1
⊂ C

1
.

H
γ
2
(s)− γ

1
H

γ
2
(γ

1
s)

H
γ
1
(s)− γ

2
H

γ
1
(γ

2
s)

=
1− γ

1

1− γ
2

G(γ
1
γ
2

s)

G(γ
1
s) − G(γ

2
s)

G(s)

G(γ
1
γ
2

s)

G(γ
2

s) − G(γ
1
s)

G(s)

=
1− γ

1

1− γ
2

G(γ
2
s)

G(γ
1
s)

.
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From Corollary 2.1.1.(3),
G(γ

2
s)

G(γ
1
s) is abs.mon, and from property 2 of abs.mon.

functionsH
γ
1
(s)−γ

2
H

γ
1
(γ

2
s) is abs. mon. ThenH

γ
2
(s)−γ

1
H

γ
2
(γ

1
s), and therefore

H
γ
2
, are also abs.mon., which proves that W ∈ C

γ
2
.

We can see that the inclusion is strict directly from (4.1). Suppose that
−1 < γ < η < 1 and 0 < β < 1

1−η . We know that N
0, β, η

∈ C
η
, since its p.m.f.

satisfies 1−η
n+1

1−η p
n+1

= β p
n
. Assume that N

0, β, η
∈ C

γ
, that is, 1−γ

n+1

1−γ p
n+1

=
n∑

k=0

p
k
r

n−k
. Then p

1
= p

0
r
0

= β p
0

implies r
0
= β, and

(4.5) (1 + γ) p
2

=
β

1 + η
p

1
(1 + η + γ − η) = p

1
r
0
+ p

0
r
1

implies r
1
= − η−γ

1+η β
2

. But this is negative, therefore N
0, β, η

/∈ C
γ
.

Corolary 4.2.4. Let W be a counting random variable with p.g.f. G,
W

γ
the random variable with p.g.f. G

γ
(s) = G(γ)G(s)

G(γ s) , and γ ∈ (−1, 1). W ∈ C
γ

iff
W

γ
∈ C

0
.

Proof: As W ∈ Cγ =⇒ W ∈ C
1
, from Corollary 2.1.1 we know that

G
γ
(s) = G(γ)G(s)

G(γ s) is a p.g.f.

From the proof of Theorem 2.2 (or simply by taking γ = 0 in Theorem 4.1),
in what concerns this p.g.f. G

γ
we obtain, with self-explaining notations,

(4.6) H(Gγ )

0
(s) =

G
γ
(s)− G

γ
(0)

sG
γ
(s)

=
G(s)− G(γs)

sG(s)
= (1− γ)H(G)

γ
(s)

and therefore H(Gγ )

0
is abs.mon. iff H(G)

γ
is abs. mon.

5. FURTHER COMMENTS

1. Geometric infinite divisibility arose from Kovalenko’s (1965) exten-
sions of Rényi’s (1956) work on random rarefaction, with the general charac-
terization of geometric stable laws given in Kozubowski (1994). This led to
a general definition of N -summation schemes, the classical summation scheme
being the special case N

p
= 1

p (degenerate random variables, and therefore a
non-random sum of random variables). It is well known that for some fami-
lies N = {N

p
, p ∈ (0, 1), E(N

p
) = 1

p} there exists N -Gaussian laws (for instance
for N

p
� Geometric(p), the corresponding N -Gaussian random variables being

the Laplace random variables), while other N
p
, for instance N

p
� Poisson(1

p),



160 Dinis D. Pestana and Śılvio F. Velosa

do not admit N -Gaussian laws. Although it is easy to prove that in more general
branching setings N -Gaussian laws do exist, only the usual Gaussian law and
the Laplace geometric–Gaussian law are explicitly exhibited in the references we
know.

This research arose from the observation that C
0
⊂ C

1
and that, more

generaly, 0 < γ
1
< γ

2
< 1 =⇒ C

0
⊂ C

γ
1
⊂ C

γ
2
⊂ C

1
.

Our aim was either to prove that there exist γ ∈ (0, 1) such that for γ
1
≤ γ

we could exhibit aN -Gaussian law in C
γ
1
— which we couldn’t — or else to extend

C
γ

classes for γ < 0 — which we did — and show that for those it was possible
to construct N -Gaussian random variables. Unfortunately for −1 < γ

1
< γ

2
< 0

the chain of inclusions C
γ
1
⊂ C

γ
2
⊂ C

0
is no longer valid.

2. The extension of Katz–Panjer’s iterative relation

(5.1)
f(n+ 1)

f(n)
= α+

β

n+ 1
= α+ β E(U

n

0
) , n = 0, 1, ..., α, β ∈ R ,

by

(5.2)
f(n+ 1)

f(n)
= α+ β

E(U
n

0
)

E(Un

γ
)
, n = 0, 1, ..., α, β ∈ R ,

where U
γ
�Uniform(γ, 1), γ ∈ (−1, 1] may seem arbitrary at this stage, unless

it is considered as a first step in extending (5.1) by using more general Beta,
of which the Uniform in (5.2) isn’t but a special case, or even more general
random variables. Naturaly {f(n)}

n∈N
is not a p.m.f. unless the restrictions in

the parameters are very strong.

3. Panjer’s class Π = Π
(0)

has been generalized by Sundt and Jewell (1981),

who considered the class Π
(1)

of discrete random variables whose probability mass
function satisfies

(5.3) f
α, β

(n+ 1) =

(
α+

β

n+ 1

)
f

α, β
(n) , α, β ∈ R, n = 1, 2, ...

Willmot (1987) published the definitive characterization of Π
(1)

: the probability
mass function of a discrete random variable N , with support S = {1, 2, ...},
satisfies the above expression if N is either a zero-truncated Binomial, Pois-
son or Negative Binomial random variable, or a Logarithmic (when α ∈ (0, 1)
and the index α

α+β −→ 0) or an Engen (1974) Extended Negative Binomial ran-

dom variable (index α
α+β ∈ (−1, 0), where α ∈ (0, 1]), and general solutions N

∗

,
with support S = {0, 1, 2, ...}, arise from a hurdle process (Cameron and Trivedi,

1998, pp. 123–125) N
∗

=

{
0 N
p

0
1− p

0

, where N is one of the above variables.

Klugman et al. (1998) describe the solutions as zero modified N variables.
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Hess, Lewald and Schmidt (2002) considered the even more general setting

Π
(k)

, k = 0, 1, ..., in which the probability mass functions satisfy

(5.4) f
α, β

(n+ 1) =

(
α+

β

n+ 1

)
f

α, β
(n) , α, β ∈ R, n = k, k + 1, ... ,

giving a complete description of Π
(k)

, k = 0, 1, ... in terms of {0, 1..., k − 1} mod-
ified basic claim number distributions, i.e., the left k-truncated binomial, Pois-
son, and negative binomial distributions, the other basic claim number distribu-
tions are the left truncated Logarithmic(k, θ) distribution, and the left truncated
Engen(k, β, θ) distribution. The extension

(5.5)
f

α, β
(n+ 1)

f
α, β

(n)
= α+ β

1− γ
1− γn+1

, α, β ∈ R, n = k, k + 1, ... ,

of (3.1) may investigated along similar lines, but with very cumbersome results.
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1. INTRODUCTION

Let X(i) = {Xgi(n)}n≥1 be stationary sequences of random variables on the

same probability space (Ω,�, P ) with common distribution function F (i), i=1, 2,
respectively. Let us suppose that {gi(n)}n≥1, i = 1, 2, are disjoint and strictly
increasing sequences of integer numbers, such that

{g1(n)}n≥1 ∪ {g2(n)}n≥1 = N .

In this paper we consider sequences that arise from the superposition of the
variables of the sequences X(i), i=1, 2, when considering asymptotically constant
the proportion of variables to superpose from each of the sequences, that is,

(1.1)
si(n)

n
−−−→
n→∞

Li , i = 1, 2, L1 + L2 = 1 ,

where si(n) = #
{
gi(j) : 1 ≤ j ≤ n ∧ 1 ≤ gi(j) ≤ n

}
, i = 1, 2.

We study the extremal limiting behaviour of the superposed sequence

{Xn}n≥1 = {Xg1(n)}n≥1 {Xg2(n)}n≥1 ,

usually a nonstationary sequence. Such a behaviour is derived from the con-
vergence in distribution of the sequence, {Sn}n≥1, of the point processes of ex-
ceedances of real numbers un, n≥1, generated by the sequence {Xn}n≥1, defined
by

Sn(B) = Sn[Xi, un](B) =
n∑

i=1

1{Xi>un} δ i
n

(B) , n ≥ 1 ,

where B is a Borel subset of [0, 1], δx(·) denotes the Dirac measure at x ∈ R and
1A the indicator function of the event A.

By considering, for each i = 1, 2,

S(i)
n (B) = Sn[Xgi(j), un](B) =

n∑
j=1

1{Xgi(j)
>un} δ gi(j)

n

(B) ,

then
Sn(B) = S(1)

n (B) + S(2)
n (B) ,

that is, the sequence of point processes {Sn}n≥1 is the superposition of the point

processes {S(i)
n }n≥1, i=1, 2.

We briefly present, in what follows, some important results concerning the
theory of exceedances point processes generated by dependent sequences, both
stationary and nonstationary.
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Recall that the type of long range dependence condition appropriate for
studying the convergence in distribution of {Sn}n≥1 is the condition Δ(un) de-
fined by Hsing et al. (1988), in the following way.

Definition 1.1. Let {Xn}n≥1 be a sequence of random variables and

{un}n≥1 a sequence of real numbers. For each 1 ≤ i ≤ j, set Bj
i (un) as the

σ-field generated by the events {Xs ≤ un}, i ≤ s ≤ j, and, for 1 ≤ l ≤ n−1,

αn,l = sup
1≤k≤n−l

{∣∣P (A ∩B)− P (A)P (B)
∣∣ : A ∈ Bk

1(un), B ∈ Bn
k+l(un)

}
.(1.2)

The condition Δ(un) is said to hold if there exists a sequence ln = o(n),
as n→∞, such that

αn,ln −−−→n→∞
0 .

Note that by taking in (1.2) only events of the form A = {Xi1 < un, ...,
Xip<un} and B = {Xj1< un, ..., Xjq

< un} with

1 ≤ i1 < · · · < ip < ip + l < j1 < · · · < jq ≤ n ,

we obtain Leadbetter’s D(un) condition.

Under condition Δ(un) and additional assumptions of equicontinuity and
asymptotic negligibility, Nandagopalan (1990) characterized the possible distrib-
utional limits for {Sn}n≥1, as stated in Proposition 1.1.

Let J1, ..., Jkn
, n ≥ 1, be a sequence of partitions of [0, 1] such that for each

i = 1, 2, ..., kn, P (Sn(Ji)>0) > 0, after certain order n0. For each n ≥ n0 define
the following sequences of measures:

νn(B) =

kn∑
i=1

P
(
Sn(Ji)>0

) m(B ∩ Ji)

m(Ji)
, B ∈ B([0, 1]) ,

where m denotes the Lebesgue measure,

Πn,x(k) =

kn∑
i=1

Πn,i(k) δx(Ji) , k ∈ N, x ∈ [0, 1] ,

where
Πn,i(k) = P

(
Sn(Ji) = k | Sn(Ji) > 0

)
, k ∈ N .

Finally for each a ∈ R+ define the functions

gn,a(x) =

∫
N

(
1− exp(ak)

)
dΠn,x(k) .
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Proposition 1.1. Let {Xn}n≥1 be a sequence of random variables verify-

ing condition Δ(un),

(1.3) g(εn) = sup
{
P
(
Sn(I)>0

)
: I⊂ [0, 1], m(I)≤εn

}
−−−→
n→∞

0 if εn−−−→
n→∞

0

and

(1.4) lim inf
n→∞

P
(
Sn([0, 1])=0

)
> 0 .

If {kn}n≥1 is a sequence of integer numbers such that

(1.5) kn

(
αn,ln + g

(
ln
n

))
−−−→
n→∞

0

and J1, ..., Jkn
, is a partition of [0, 1] satisfying

max
{
m(Ji) : i = 1, 2, ..., kn

}
−−−→
n→∞

0

and

for each a ∈ G, where G is some nonempty open subset of R+,

the sequence {gn,a}n≥1 is equicontinuous,

then the following propositions are equivalent

(1) The sequence of point processes {Sn}n≥1 converges in distribution to

some point process S with Laplace transform, LS , given by

(1.6) LS(f) = exp

(
−
∫

[0,1]

∫
N

(
1− exp

(−kf(x)
))
dΠx(k) dμ(x)

)
,

for each non-negative measurable function, f , on [0, 1], where μ is a finite measure

on [0, 1] and Πx is a probability measure on N.

(2) νn converges weakly to a finite measure μ and Πn,x converges weakly

to a probability measure Πx on N, for each x ∈ [0, 1].

Furthermore, Nandagopalan (1990) proves that under conditions
(1.3), (1.4) and (1.5) for some partition J1, ..., Jkn

of [0, 1] such that

max{m(Ji) : i = 1, 2, ..., kn}−−−→
n→∞

0, if Sn
d−−−→

n→∞
S, the Laplace Transform LS is

given by (1.6).

The result of Hsing et al. (1988) which gives the convergence in distribution
of exceedances point processes of a stationary random sequence is contained in the
preceeding proposition. In fact, in the case of stationary sequences for normalized
levels and sequences of integer numbers {kn}n≥1, such that

(1.7) kn−−−→
n→∞

∞ , knαn,ln−−−→n→∞
0 ,

knln
n
−−−→
n→∞

0 ,
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the assumptions established in the above proposition are verified and, furthermore
the multiplicity distribution does not depend on the position of the atom, Πx = Π,
for each x ∈ [0, 1], and the intensity measure μ is equal to a constant times the
Lebesgue measure, μ(·) = ν m(·).

For the class of stationary sequences verifying condition Δ(un), if there
exists the extremal index θ ∈ [0, 1] (Leabetter (1974)), then such a parameter is
given by the inverse of the limiting mean cluster size of exceedances. Indeed, if

P
(
Sn([0, 1])=0

)−−−→
n→∞

e−ν

and

ESn([0, 1]) = nP (X1>un)−−−→
n→∞

τ > 0

then

θ =
(

lim
n→∞

EΠn

)−1

= lim
n→∞

P
(
Sn

(
[0, k−1

n ]
)
> 0

)
E Sn([0, 1])

=
ν

τ
.

In section 2 we introduce a condition that guarantees, locally, the asymp-
totic independence among the maxima of the variables of the sequences, X(i),
i = 1, 2, to superpose. Under this condition, for each non-negative integer k, the
probability of occurrence of k exceedances of the level un by the variables of the
superposed sequence {Xn}n≥1, in intervals of length [ n

kn
], is asymptotically equal.

For each sequence of this class we can apply the results stated in Proposi-
tion 1.1, obtaining a compound Poisson limit S[ν,Π] to {Sn}n≥1. The sequence
{Sn}n≥1 behaves asymptotically as though the sequence {Xn}n≥1 is stationary,
that is, the multiplicity distribution does not depend on x, Πx = Π, for each
x ∈ [0, 1], and the intensity measure is equal a constant times the Lebesgue mea-
sure, μ(·) = ν m(·).

The relations between the intensity measure ν m(·), the distribution of mul-
tiplicities Π(·) and the corresponding measures ν(i)m(·) and Π(i)(·), for each of the
sequences to superpose, will be analyzed in section 3. We prove that ν=ν(1)+ν(2)

and Π(k) =
∑2

i=1
ν(i)

ν Π(i)(k), with ν(i) = θ(i) τ (i)Li, τ (i) = lim
n→∞

nP (Xgi(1)>un)

and Li is given in (1.1), i = 1, 2.

In section 4 we will apply the results in the computation of the bivariate
extremal index.
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2. LIMIT DISTRIBUTION OF THE NUMBER OF EXCEEDAN-

CES IN THE SUPERPOSED SEQUENCE

We define a new condition that guarantees locally, that the maxima of the
random variables of the sequences to superpose are asymptotically independent.
This condition will be essential to obtain the results in this section.

Definition 2.1. The sequence {Xn}n≥1 verifies the condition
•
D (un) if

kn βn−−−→
n→∞

0

where

βn = sup

{∣∣∣∣P(M (1)
n (J)≤un, M

(2)
n (J)≤un

)
−P

(
M (1)

n (J)≤un

)
P
(
M (2)

n (J)≤un

)∣∣∣∣ :

J ⊂ [0,+∞[, m(J)=

[
n

kn

]}
,

M
(i)
n (J) = max

{
Xgi(j) : 1 ≤ gi(j) ≤ n, gi(j) ∈ J

}
and {kn}n≥1 is a sequence of

integer numbers that verifies (1.7).

Under condition
•
D (un) for the superposed sequence {Xn}n≥1 we can, for

each non-negative integer k, approach

P
(
Sn(Jj)=k

)
by P

(
Sn(Jl)=k

)
where Ji =

[
(i−1)[ n

kn
] 1
n , i[

n
kn

] 1
n

]
, j, l ∈ {1, 2, ..., kn} and j �= l.

Proposition 2.1. Suppose that the sequence {Xn}n≥1 resulting from the

superposition of the variables of the stationary sequences {Xgi(n)}n≥1, i = 1, 2,

verifies condition
•
D (un), where {un}n≥1 is a sequence of real numbers such that

(2.1) nP
(
Xgi(1)>un

)−−−→
n→∞

τ (i) , i = 1, 2 .

Then, for each non-negative integer k, we have

knP
(
Sn(Ji)=k

)
= knP

(
Sn(J1)=k

)
+ o(1) .

Proof: Since {Xgi(n)}n≥1, i=1, 2, are stationary sequences

knP
(
Sn(Ji)=k

)
= knP

(
S(1)

n (Ji)=k
)

+ knP
(
S(2)

n (Ji)=k
)

+ kn

∑
s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S
(2)
n (Ji)=s2

)

= knP
(
S(1)

n (J1)=k
)

+ knP
(
S(2)

n (J1)=k
)

+ kn

∑
s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S
(2)
n (Ji)=s2

)
.
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Attending now to condition
•
D (un) we can write

kn

∑
s1+s2=k

s1>0, s2>0

P
(
S(1)

n (Ji)=s1, S
(2)
n (Ji)=s2

)
≤

≤ knP
(
S(1)

n (Ji) > 0, S(2)
n (Ji) > 0

)
≤ knβn + knP

(
S(1)

n (Ji)>0
)
P
(
S(2)

n (Ji)>0
)

= o(1) .

So
knP

(
Sn(Ji)=k

)
= knP

(
Sn(J1)=k

)
+ o(1) .

We will prove next that when the superposed sequence verifies conditions
•
D (un) and Δ(un) we can apply to it the results stated in Proposition 1.1.
Furthermore, and as said before, the sequence {Sn}n≥1 behaves asymptotically as
though the sequence {Xn}n≥1 is stationary, that is, the multiplicity distribution
does not depend on x, Πx = Π, for each x ∈ [0, 1], and the intensity measure is
equal a constant times the Lebesgue measure, μ(·) = ν m(·).

Proposition 2.2. Suppose that the superposed sequence {Xn}n≥1 veri-

fies conditions Δ(un) and
•
D (un), where {un}n≥1 is a sequence of real numbers

verifying (2.1). If the sequence {Sn}n≥1 converges, then we have Sn
d−−−→

n→∞
S[ν,Π],

with ν = lim
n→∞

knP
(
Sn([0, k−1

n ])>0
)

and Π is a probability measure such that

Π(k) = lim
n→∞

P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)
, k ∈ N.

Proof: We are going to prove that the superposed sequence satisfies the
assumptions of Proposition 1.1 with Ji =

(
(i−1)[ n

kn
] 1
n , i[

n
kn

] 1
n

]
, i=1, 2, ..., kn.

For I ⊂ [0, 1] with m(I) ≤ εn and εn−−−→
n→∞

0 we have

P
(
Sn(I)>0

) ≤ n εn max
(
P (Xg1(1)>un), P (Xg2(1)>un)

)
= o(1) ,

since, for each i=1, 2, the sequence {Xgi(n)}n≥1 verifies (2.1).

For each set I ⊂ [0, 1] with Lebesgue measure not greater than ln
n we also

have

knP
(
Sn(I)>0

) ≤ kn
ln
n
nmax

(
P (Xg1(1)>un), P (Xg2(1)>un)

)
= o(1) ,

because {kn}n≥1 is a sequence of integer numbers verifying (1.7).

Since

lim inf
n→∞

P
(
Sn([0, 1])=0

)
= 1− lim sup

n→∞
P
(
Sn([0, 1])>0

)
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and

lim sup
n→∞

P
(
Sn([0, 1])>0

) ≤ lim sup
n→∞

max
(
P
(
S(1)

n ([0, 1])>0
)
, P

(
S(2)

n ([0, 1])>0
))

≤ max
(
e−ν(1)

, e−ν(2))
< 1 ,

we obtain (1.4).

For each a∈R+, the sequence {gn,a}n≥1 is equicontinuous since if |x−x′|<ε
we have from a certain order∣∣gn,a(x)− gn,a(x

′)
∣∣ ≤ ∑

k≥1

∣∣Πn,i(k)−Πn,j(k)
∣∣ ,

for some pair of indexes i and j in {1, ..., kn} such that Ji and Jj are separated
by a length not greater than ε.

By Proposition 2.1, for each Borel subset B of [0, 1], we have

νn(B) =

kn∑
i=1

P
(
Sn(Ji)>0

) m(B ∩ Ji)

m(Ji)

=

kn∑
i=1

(
P
(
Sn(J1)>0

)
+ o(k−1

n )
) m(B ∩ Ji)

m(Ji)

= knm(B)P
(
Sn(J1)>0

)
+ o(k−1

n ) knm(B)

= knm(B)P
(
Sn(J1)>0

)
+ o(1) .

Under condition Δ(un) it follows, by the Lemma of asymptotic indepen-
dence of maxima over disjoint intervals (Leadbetter (1974)), that

exp(−ν) = lim
n
P
(

max
1≤i≤n

Xi ≤ un

)
= lim

n

kn∏
i=1

P
(
Sn(Ji)=0

)
,

so, by Proposition 2.1,

exp(−ν) = lim
n
P kn

(
Sn(J1)=0

)
and consequently

ν = lim
n
knP

(
Sn(J1)>0

)
.

Thus, νn
w−−−→

n→∞
ν m.

Finally, we observe that for each i = 1, 2, ..., kn,

Πn,i(k) =
P
(
Sn(Ji)=k

)
P
(
Sn(Ji)>0

) =
knP

(
Sn(J1)=k

)
+ o(1)

knP
(
Sn(J1)>0

)
+ o(1)
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and as a consequence,

Πn,x(k) =
kn∑
i=1

Πn,i(k) δx(Ji)

= Πn,1(k)
kn∑
i=1

δx(Ji) + o(1)
kn∑
i=1

δx(Ji)

= Πn,1(k) + o(1) , independent of x .

By Proposition 1.1 we can conclude that if the sequence {Sn}n≥1 converges
in distribution then the limit point process, S, has Laplace Transform given by

LS(f) = exp

(
−ν

∫
[0,1]

∫
N

(
1− e−kf(x)

)
dΠ(k) dx

)
that is, {Sn}n≥1 converges to a compound Poisson process with intensity measure
ν and multiplicity distribution Π.

It must be noted that under condition Δ(un) for the superposed sequence
{Xn}n≥1 we also have the validation of such condition for the sequences to su-

perpose, {Xgi(n)}n≥1, i= 1, 2, and so, if the sequence {S(i)
n }n≥1 converges then

the limit point process is a compound Poisson process, S[ν(i),Π(i)], i=1, 2.

3. DESCRIPTION OF THE ASYMPTOTIC BEHAVIOUR OF

THE SEQUENCE {Sn}n≥1 FROM {S(i)
n }n≥1, i = 1, 2

The condition
•
D (un) allow us to describe the asymptotic behaviour of

{Sn}n≥1 from {S(i)
n }n≥1, i=1, 2, as presented in the next result.

Proposition 3.1. Suppose that the conditions of Proposition 2.2 hold,

the sequences {Xgi(n)}n≥1, i = 1, 2, have extremal indexes θ(i), i = 1, 2, respec-

tively, and the proportion of variables to superpose from each of these sequences

is asymptotically constant as established in (1.1).

If, for each i = 1, 2, we have

S(i)
n

d−−−→
n→∞

S[ν(i),Π(i)]

then
knP

(
Sn([0, k−1

n ])>0
) −−−→

n→∞
ν = ν(1) + ν(2)

and

Πn(k) = P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)
−−−→
n→∞

Π(k) =
2∑

i=1

ν(i)

ν
Π(i)(k) ,

with ν(i) = θ(i) τ (i)Li and τ (i) given in (2.1), i=1, 2.
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Proof: By using analogous arguments to the ones used in the proof of
Proposition 2.1, we obtain

lim
n→∞

knP
(
Sn([0, k−1

n ])>0
)

=

= lim
n→∞

knP
(
S(1)

n ([0, k−1
n ])>0

)
+ lim

n→∞
knP

(
S(2)

n ([0, k−1
n ])>0

)
− lim

n→∞
knP

(
S(1)

n ([0, k−1
n ])>0, S(2)

n ([0, k−1
n ])>0

)
= ν(1) + ν(2) .

Relatively to the cluster size of exceedances distribution we have

Πn(k) = P
(
Sn([0, k−1

n ])=k | Sn([0, k−1
n ])>0

)
=

1

P
(
Sn([0, k−1

n ])>0
) (P (S(1)

n ([0, k−1
n ])=k

)
+ P

(
S(2)

n ([0, k−1
n ]) = k

))
+

1

P
(
Sn([0,k−1

n ])>0
) P

⎛⎜⎝ ⋃
s1≥1, s2≥1

s1+s2=k

(
S(1)

n ([0,k−1
n ])=s1, S

(2)
n ([0,k−1

n ])=s2

)⎞⎟⎠ .

Since, for each i = 1, 2, we have

P
(
S

(i)
n ([0, k−1

n ])=k
)

P
(
Sn([0, k−1

n ])>0
) = Π(i)

n (k)
knP

(
S

(i)
n ([0, k−1

n ])>0
)

knP
(
Sn([0, k−1

n ])>0
) −−−→

n→∞
1

ν
Π(i)(k) ν(i) ,

and, under condition
•
D (un)

1

P
(
Sn([0, k−1

n ])>0
) P

⎛⎜⎝ ⋃
s1≥1, s2≥1

s1+s2=k

(
S(1)

n ([0, k−1
n ])=s1, S

(2)
n ([0, k−1

n ])=s2

)⎞⎟⎠ ≤

≤ 1

P
(
Sn([0, k−1

n ])>0
) P(S(1)

n ([0, k−1
n ])>0, S(2)

n ([0, k−1
n ])>0

)
= o(1) ,

the result follows.

Corollary 3.1. Under the conditions of the Proposition 3.1, the extremal

index of the superposed sequence verifies

θ =
θ(1)τ (1)L1 + θ(2)τ (2)L2

τ (1)L1 + τ (2)L2
.

Note that the extremal index of the superposed sequence depends on
lim
n

∑n
i=1 P (Xi>un) = τ (1)L1 + τ (2)L2, as expected since {Xn}n≥1 is a non-

stationary sequence.
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We finish this section with some remarks about the results obtained previ-
ously.

Remark 3.1. Let us suppose that θ(1)=θ(2), F1 �=F2 and for each i=1, 2,
Fi belongs to the domain of attraction of an extreme value distribution, G.
So we have

P

(
max
1≤i≤n

Xi≤un(x)

)
−−−→
n→∞

Gθ(1)

(x) .

We have in this way found a class of non-stationary sequences for which the
so-called Extremal Types Theorem of Leadbetter is still valid.

Remark 3.2. Suppose that the superposed sequence is stationary. Then,
under the long range dependence condition Δ(un) if {Sn}n≥1 converges in distri-
bution to some point process S then S is necessarily a compound Poisson process

and the extremal index θ = lim
n→∞

P
(
Sn([0,k−1

n ])>0
)

ESn([0,1]) .

So it seems natural to ask: When the superposed sequence is stationary are
there any advantages in the application of the results established in this section?
We shall find an affirmative answer.

In the stationary case, the introduction of local dependence conditions
(Leadbetter (1983), Leadbetter and Nandagopalan (1989), Ferreira (1994))
enables us to obtain processes with practical interest to compute the extremal
index, θ.

By assuming that each sequence X(i), i = 1, 2, does not oscillate rapidly
near high extremes in the sense of the usual local dependence conditions we have
not, in general, the validition of these conditions by the superposed sequence and
consequently we can not apply directly to {Xn}n≥1 the avaiable results.

In this case, the application of Proposition 3.1 facilitates the computation
of the extremal index θ of the superposed sequence since we can apply the results
under local dependence conditions to each one of the sequences superposed.

4. APPLICATIONS

As an application of the results established previously we point out the
computation of the extremal index of a stationary sequence of random vectors

X = {(X(1)
n ,X

(2)
n )}n≥1 with common distribution function, F , belonging to the

domain of attraction of a bivariate extreme value distribution, G.

Let us denote by X̂ the independent sequence associated with X and by

max
1≤j≤n

X̂
(i)
j , n≥1, i=1, 2, the corresponding sequences of partial maxima.
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We remember the definition of bivariate extremal index introduced by
Nandagopalan (1990) and that is a generalization of Leadbetter’s definition for
unidimensional sequences.

Definition 4.1. The sequence X=
{
(X

(1)
n ,X

(2)
n )

}
n≥1

has an extremal

index θ(τ (1), τ (2)) ∈ [0, 1], τ = (τ (1), τ (2)) ∈ R
2
+, when for each τ ∈ R

2
+, there are

u
(τ)
n = (u

(τ (1))
n , u

(τ (2))
n ), n≥1, verifying

nP
(
X

(i)
1 >u(τ (i))

n

)
−−−→
n→∞

τ (i) , i = 1, 2 ,

P

(
max

1≤j≤n
X̂

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X̂
(2)
j ≤ u(τ (2))

n

)
−−−→
n→∞

G(τ)

and

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
−−−→
n→∞

G(τ)θ(τ) .

If X has extremal index θ(τ) then, for each i=1, 2, {X(i)
n }n≥1 has extremal

index θ(i) = lim
τ(j)

→0+

j �=i

θ(τ (1), τ (2)).

We shall assume, without loss of generality, that the common distribution F

of the vectors of the stationary sequence X=
{
(X

(1)
n ,X

(2)
n )

}
n≥1

has unit Fréchet
margins, id est,

F1(x) = F2(x) = exp(−x−1) , x > 0 .

For fixed τ (1) and τ (2) and normalized levels u
(τ (i))
n = n

τ (i) for {X(i)
n }n≥1,

i=1, 2, we have

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
=(4.1)

= P

(
max

1≤j≤n
X

(1)
j ≤ n

τ (1)
, max

1≤j≤n
X

(2)
j ≤ n

τ (2)

)
= P

(
max

1≤j≤n
τ (1)X

(1)
j ≤ n, max

1≤j≤n
τ (2)X

(2)
j ≤ n

)
.

Let us consider the stationary sequences
{
Xgi(n) = τ (i)X

(i)
n

}
n≥1

, i = 1, 2.
By superposing the variables of these sequences we can form different sequences
{Xn}n≥1 but the limiting behaviour of {Sn}n≥1 is only affected by the asymptotic
proportion of variables to superpose from each one of these sequences and not by
the order of the variables of the superposed sequence.

By considering, for example,

{Xn}n≥1 =
{
τ (1)X

(1)
1 , τ (2)X

(2)
1 , τ (1)X

(1)
2 , τ (2)X

(2)
2 , ..., τ (1)X(1)

n , τ (2)X(2)
n

}
n≥1

,
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we can rewrite (4.1) in the following way

(4.2) P

(
max

1≤j≤2n
Xj≤ n

)
.

Since, for each i=1, 2,

si(n)

n
=

n
2

n
−−−→
n→∞

Li =
1

2
,

then, under the conditions established in Proposition 3.1, we have

(4.3) lim
n→∞

P

(
max

1≤j≤2n
Xj ≤ n

)
= exp

[
−1

2

(
θ(1)τ ′(1) + θ(2)τ ′(2)

)]
with

(4.4) τ ′(i) = lim
n→∞

nP
(
τ (1)X

(i)
1 >n

)
= lim

n→∞
n
(
1− e− τ(i)

n

)
= τ (i) .

By paying attention to (4.1), (4.2), (4.3) and (4.4) we can write

lim
n→∞

P

(
max

1≤j≤n
X

(1)
j ≤ u(τ (1))

n , max
1≤j≤n

X
(2)
j ≤ u(τ (2))

n

)
=(4.5)

= exp

[
−1

2

(
θ(1)τ (1) + θ(2)τ (2)

)]
.

On the other hand, from the definition of extremal index θ(τ (1), τ (2)),

lim
n→∞

P

(
max

1≤j≤n
τ (1)X

(1)
j ≤ n, max

1≤j≤n
τ (2)X

(2)
j ≤ n

)
=(4.6)

=

(
lim

n→∞
P

(
max

1≤j≤n
τ (1)X̂

(1)
j ≤ n, max

1≤j≤n
τ (2)X̂

(2)
j ≤ n

))θ(τ (1),τ (2))

=

[
exp

[
−1

2

(
τ (1) + τ (2)

)]]θ(τ (1),τ (2))

,

since under condition
•
D (un) for {Xn}n≥1, the sequence {X̂n}n≥1 also satisfies

•
D (un) and, for each i=1, 2, Ŝ

(i)
n ([0, 1]) = Sn[X̂

(i)
n , u

(τi)
n ]([0, 1]) converges in dis-

tribution to a random variable with Poisson distribution with parameter τ (i).

By attending to a (4.5) and (4.6) it follows that

exp

[
−1

2

(
θ(1)τ (1) + θ(2)τ (2)

)]
=

[
exp

(
−1

2

(
τ (1) + τ (2)

))]θ(τ (1),τ (2))

and so

(4.7) θ
(
τ (1), τ (2)

)
= θ(1) τ (1)

τ (1) + τ (2)
+ θ(2) τ (2)

τ (1) + τ (2)
.
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This result is not surprising since under the condition
•
D (un) for {Xn}n≥1

we have the asymptotic independence of the maxima of the vector margins and
Nandagopalan (1994) proves that in this case the bivariate extremal index is a
convex linear combination of the marginal extremal indexes as in (4.7).

We finish this section by exhibiting a nonstationary sequence that verifies

condition
•
D (un).

Example 4.1. Let
{
Z

(1)
n

}
n≥1

and
{
Z

(2)
n

}
n≥1

be independent sequences
of random variables. For 0<λ≤1 constant, consider the autoregressive sequences
of maxima defined as

Xn = λmax
(
Xn−1, Z

(1)
n

)
and

Yn = λmax
(
Yn−1, Z

(2)
n

)
where X0 = Y0 is independent of

{
Z

(1)
n

}
n≥1

.

For each n ≥ 1 it follows that

Xn = max

(
max

1≤j≤n
λjZ

(1)
n−j+1, λ

nX0

)
and

Yn = max

(
max

1≤j≤n
λjZ

(2)
n−j+1, λ

nY0

)
.

So, for each J ⊂ [0,+∞[ such that m(J) = rn = [ n
kn

], we have

P
(
M (1)

n (J)≤un, M
(2)
n (J)≤un

)
=

= P

( ⋂
s∈J

s⋂
j=1

Z
(1)
s−j+1 ≤

un

λj

)
P

(
X0 ≤ un

λn

)
P

( ⋂
s∈J

s⋂
j=1

Z
(2)
s−j+1 ≤

un

λj

)

and

P
(
M (1)

n (J)≤un

)
P
(
M (2)

n (J) ≤ un

)
=

= P

( ⋂
s∈J

s⋂
j=1

Z
(1)
s−j+1 ≤

un

λj

)
P 2

(
X0 ≤ un

λn

)
P

( ⋂
s∈J

s⋂
j=1

Z
(2)
s−j+1 ≤

un

λj

)

and consequently,∣∣∣∣P(M (1)
n (J)≤un, M

(2)
n (J)≤un

)
− P

(
M (1)

n (J)≤un

)
P
(
M (2)

n (J)≤un

)∣∣∣∣ ≤
≤

∣∣∣∣P(X0≤ un

λn

)
− P 2

(
X0≤ un

λn

)∣∣∣∣ −−−→n→∞
0 .
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