


           Catalogação Recomendada 
 

REVSTAT. Lisboa, 2003-     
Revstat : statistical journal  / ed. Instituto Nacional 
de Estatística. - Vol. 1, 2003-         . - Lisboa I.N.E.,  
2003-        . - 30 cm 
Semestral. - Continuação de : Revista de Estatística = 
ISSN 0873-4275. - edição exclusivamente em inglês 

            ISSN 1645-6726 

 
 

CREDITS 

- EDITOR-IN-CHIEF 
- M. Ivette Gomes 

- CO-EDITOR 
- M. Antónia Amaral Turkman 

- ASSOCIATE EDITORS 
- Barry Arnold  
- Jan Beirlant  
- Graciela Boente  
- João Branco 
- Carlos Agra Coelho (2017-2018) 
- David Cox 
- Isabel Fraga Alves  
- Dani Gammerman (2014-2016) 
- Wenceslao Gonzalez-Manteiga  
- Juerg Huesler  
- Marie Husková  
- Victor Leiva  
- Isaac Meilijson  
- M. Nazaré Mendes- Lopes  
- Stephen Morghenthaler  
- António Pacheco  
- Carlos Daniel Paulino  
- Dinis Pestana 
- Arthur Pewsey  
- Vladas Pipiras  
- Gilbert Saporta  
- Julio Singer  
- Jef Teugels 
- Feridun Turkman 

- EXECUTIVE EDITOR 
- Pinto Martins 

- FORMER EXECUTIVE EDITOR 
- Maria José Carrilho 
- Ferreira da Cunha 

- SECRETARY 
- Liliana Martins 

- PUBLISHER 
- Instituto Nacional de Estatística, I.P. (INE, I.P.) 

Av. António José de Almeida, 2 
1000-043 LISBOA 
PORTUGAL 
Tel.: + 351 21 842 61 00 
Fax: + 351 21 845 40 84 
Web site: http://www.ine.pt 
Customer Support Service 
 (National network) : 808 201 808 
Other networks: + 351 218 440 695 

- COVER DESIGN 
- Mário Bouçadas, designed on the stain glass 

window at INE by the painter Abel Manta 

- LAYOUT AND GRAPHIC DESIGN 
- Carlos Perpétuo 

- PRINTING 
- Instituto Nacional de Estatística, I.P. 

- EDITION 
- 150 copies 

- LEGAL DEPOSIT REGISTRATION 
- N.º 191915/03 

- PRICE  [VAT  included] 
- € 9,00 

 

 
 
 
 

© INE,  Lisbon. Portugal, 2017* Reproduction authorised except for commercial purposes by indicating the source. 

http://www.ine.pt/


INDEX

Gamma-Admissibility in a Non-Regular Family with Squared-log

Loss Function

Shirin Moradi Zahraie and Hojatollah Zakerzadeh . . . . . . . . . . . . . . . . . . 473

Estimation through Array-Based Group Tests

João Paulo Martins, Miguel Felgueiras and Rui Santos . . . . . . . . . . . . . 487

Estimating Renyi Entropy of Several Exponential Distributions

under an Asymmetric Loss Function

Suchandan Kayal and Somesh Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Discriminating between Normal and Gumbel Distributions

Abdelaziz Qaffou and Abdelhak Zoglat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Confidence Intervals for Exceedance Probabilities with Applica-

tion to Extreme Ship Motions

Dylan Glotzer, Vladas Pipiras, Vadim Belenky, Bradley Campbell

and Timothy Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Reliability Estimation in Multistage Ranked Set Sampling

M. Mahdizadeh and Ehsan Zamanzade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Non Parametric ROC Summary Statistics

M.C. Pardo and A.M. Franco-Pereira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

The Transmuted Birnbaum–Saunders Distribution

Marcelo Bourguignon, Jeremias Leão, Vı́ctor Leiva

and Manoel Santos-Neto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Abstracted/indexed in: Current Index to Statistics, DOAJ, Google Scholar, Journal Citation
Reports/Science Edition, Mathematical Reviews, Science Citation Index Expandedr, SCOPUS
and Zentralblatt für Mathematic.





REVSTAT – Statistical Journal

Volume 15, Number 4, October 2017, 473–486

GAMMA-ADMISSIBILITY IN A NON-REGULAR

FAMILY WITH SQUARED-LOG LOSS FUNCTION

Authors: Shirin Moradi Zahraie

– Department of Statistics, Yazd University, Yazd, Iran

sh_moradi_zahraie@stu.yazd.ac.ir

Hojatollah Zakerzadeh

– Department of Statistics, Yazd University, Yazd, Iran

hzaker@yazd.ac.ir

Received: July 2014 Revised: April 2015 Accepted: November 2015

Abstract:
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1. INTRODUCTION

Admissibility of estimator is an important problem in statistical decision

theory; Consequently, this problem has been considered by many authors un-

der various type of loss functions both in an exponential and in a non-regular

family of distributions. For example under squared error loss function (Kar-

lin (1958), Ghosh & Meeden (1977), Ralescu & Ralescu (1981), Sinha & Gupta

(1984), Hoffmann (1985), Pulskamp & Ralescu (1991), Kim (1994) and Kim &

Meeden (1994)), under entropy loss function (Sanjari Farsipour (2003,2007)) and

under LINEX loss function (Tanaka (2010,2011,2012)) and squared-log error loss

function (Zakerzadeh & Moradi Zahraie (2015)).

A Bayesian approach to a statistical problem requires defining a prior dis-

tribution over the parameter space. Many Bayesians believe that just one prior

can be elicited. In practice, it is more frequently the case that the prior knowl-

edge is vague and any elicited prior distribution is only an approximation to the

true one. So, we elect to restrict attention to a given flexible family of priors and

we choose one member from that family, which seems to best match our personal

beliefs.

A gamma-admissible (Γ-admissible) approach is used which allows to take

into account vague prior information on the distribution of the unknown param-

eter θ. The uncertainty about a prior is assumed by introducing a class Γ of

priors. If prior information is scarce, the class Γ under consideration is large and

a decision is close to a admissible decision. In the extreme case when no infor-

mation is available the Γ-admissible setup is equivalent to the usual admissible

setup. If, on the other hand, the statistician has an exactly prior information

and the class Γ contains a single prior, then the Γ-admissible decision is an usual

Bayes decision. So it is a middle ground between the subjective Bayes setup and

full admissible.

Eichenauer-Herrmann (1992) gained a sufficient condition for an estimator

of the form (aX + b)/(cX + d) to be Γ-admissible under the squared error loss in

a one-parameter exponential family.

The most popular convex and symmetric loss function is the squared error

loss function which is widely used in decision theory due to its simple mathe-

matical properties. However in some cases, it does not represent the true loss

structure. This loss function is symmetric in nature i.e. it gives equal weightage

to both over and under estimation. In real life, we encounter many situations

where over-estimation may be more serious than under-estimation or vice versa.

As an example, in construction an underestimate of the peak water level is usually

much more serious than an overestimation.
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The squared-log error loss function was introduced by Brown (1968). For

an estimator δ of estimand h(θ), it is given by

(1.1) L(h(θ), δ) = L(∇) := (ln(∇))
2,

where both h(θ) and δ are positive and ∇ := δ/h(θ).

We need the following definitions to express properties of the loss (1.1).

Definition 1.1. A real function g(x) is quasi-convex, if for any given real

number r, the set of all x such that g(x) ≤ r is convex. Any convex function is

quasi-convex, but the converse is not necessarily true.

Definition 1.2. A loss function L(h(θ), δ) is (for any ε > 0):

– downside damaging if L(δ − ε, δ) ≥ L(δ + ε, δ),

– upside damaging if L(δ − ε, δ) ≤ L(δ + ε, δ),

– symmetric if the loss function is both downside and upside damaging.

Remark 1.1. With downside damaging loss function, under-estimation is

penalized more heavily, per unit distance, than over-estimation and with upside

damaging loss function it is reversed.

Remark 1.2. If a loss function be downside damaging or upside damag-

ing, then it is called asymmetric. By using asymmetric loss functions one is able

to deal with cases where it is more damaging to miss the target on one side than

the other.

Definition 1.3. The L(h(θ), δ) is a precautionary loss function if and only

if

(1) L(h(θ), δ) is downside damaging, and

(2) for each fixed θ, L(h(θ), δ) → ∞ as δ → 0.

Definition 1.4. The L(h(θ), δ) is a balanced loss function, if L(h(θ), δ) →

∞ as δ → 0 or δ → ∞. A balanced loss function takes both error of estimation

and goodness of fit into account but the unbalanced loss function only considers

error of estimation.
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From Figure 1, we see that the loss (1.1) has the below properties:

(i) It is asymmetric.

(ii) It is quasi-convex.

(iii) It is a balanced loss function.

(iv) It is a precautionary loss function.

(v) When 0 < ∇ < 1, it rises rapidly to infinity at zero; it has a unique

minimum at ∇ = 1 and when ∇ > 1 it increases sublinearly.

Figure 1: Plot of the squared-log error loss function.

For estimation under (1.1), see Sanjari Farsipour and Zakerzadeh (2005,

2006), Mahmoudi and Zakerzadeh (2011), Kiapour and Nematollahi (2011),

Nematollahi and Jafari Tabrizi (2012) and Zakerzadeh and Moradi Zahraie (2015).

In this paper we consider the Γ-admissibility of generalized Bayes estimators

in a non-regular family of distributions under the loss (1.1) where class Γ consists

of all distributions which are compatible with the vague prior information. To this

end, in Section 2, we state some preliminary definitions and results. In Section

3, we will obtain main theorem. Finally, in Section 4, we give an application of

the Γ-admissibility in proving the Γ-minimaxity of estimators. Some examples

are given.
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2. PRELIMINARIES

2.1. Definition of Γ-admissibility

In the present paper it is assumed that vague prior density on the distribu-

tion of the unknown parameter θ is available. Let Π denote the set of all priors,

i.e. Borel probability measures on the parameter interval Θ and Γ be a non-empty

subset of Π. Suppose that the available vague prior information can be described

by the set Γ, in the sense that Γ contains all prior which are compatible with the

vague prior information.

Eichenauer-Herrmann (1992) defined the Γ-admissibility of an estimator as

follows.

Definition 2.1. An estimator δ∗ is called Γ-admissible, if

r(π, δ) ≤ r(π, δ∗), π ∈ Γ,

for some estimator δ implies that

r(π, δ) = r(π, δ∗), π ∈ Γ,

where r(π, δ) is the Bayes risk of δ.

Remark 2.1. From Definition 2.1, it is obvious that

– A Π-admissible estimator is admissible;

– A {π}-admissible estimator is simply a Bayes strategy with respect to

the prior π;

– In general neither Γ-admissibility implies admissibility nor admissibility

implies Γ-admissibility.

Hence, the available results on admissibility cannot be applied in order to

prove the Γ-admissibility of an estimator. Consequently, it is necessary to study

the problem of Γ-admissibility of estimators.

2.2. A non-regular family of distributions

Let X be a random variable whose probability density function with respect

to some σ-finite measure µ is given by

fX(x; θ) =

{

q(θ)r(x) θ < x < θ,
0 otherwise,
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where θ ∈ Θ := (θ, θ̄) and Θ is a nondegenerate interval (possibly infinite) on the

real line. Also r(x) is a positive µ-measurable function of x and

q−1
(θ) =

∫ θ

θ
r(x)dµ(x) < ∞

for θ ∈ Θ. This family is known as a non-regular family of distributions.

Suppose π(θ) be a prior (possibly improper) by its Lebesgue density pπ(θ)

over Θ which is positive and continuous. Let h(θ) be a continuous function to be

estimated from Θ to R and the loss to be (1.1). The generalized Bayes estimator

of h(θ) with respect to π(θ) is given by δπ(X), where

(2.1) δπ(x) = exp

{

∫ θ̄
x {ln(h(θ))}q(θ)pπ(θ)dθ

∫ θ̄
x q(θ)pπ(θ)dθ

}

for θ < x < θ̄, provided that the integrals in (2.1) exist and are finite.

3. MAIN RESULTS

In this section, the main results will obtain.

For some real number λ0 let a, b : [λ0,∞) 7→ Θ be continuously differentiable

functions with a(λ0) < b(λ0), where a and b are supposed to be strictly decreasing

and strictly increasing, respectively. For λ ≥ λ0 a prior πλ is defined by its

Lebesgue density pπλ
of the form

pπλ
(θ) :=

(

∫ b(λ)

a(λ)
pπ(t)dt

)

−1

I[a(λ),b(λ)](θ)pπ(θ).

Throughout this paper, we restrict estimators to the class

∆ := {δ|(A1) and (A2) are satisfied},

where

(A1) Eθ[{ln(δ(X))}2
] < ∞ for all θ ∈ Θ;

(A2)
∫ b(λ)
a(λ) Eθ[{ln(

δ(X)
h(θ) )}2

]pπ(θ)dθ < ∞ for a(λ) < b(λ) and λ ≥ λ0 .

Remark 3.1. In the statistical game (Γ, ∆, r), a Γ-admissible estimator

is an admissible strategy of the second player.

The next lemma is essential to obtain our results.



480 Moradi Zahraie and Zakerzadeh

Lemma 3.1. Let S(θ) be a continuous and non-negative function over

Θ = (θ, θ̄) and G(λ) :=
∫ b(λ)
a(λ) S(θ)dθ. Suppose that there exists a positive function

R(θ) such that

G(λ) ≤ 4(min{R(b(λ))b′(λ),−R(a(λ))a′(λ)})−1/2
(G′

(λ))
1/2

for λ ≥ λ0. If
∫

∞

λ0

min{R(b(λ))b′(λ),−R(a(λ))a′(λ)}dλ = ∞,

then S(θ) = 0 for a.a. θ ∈ Θ.

Proof: See Eichenauer-Herrmann (1992).

Theorem 3.1. Suppose that δπ ∈ ∆ and put

K(x, θ) :=

∫ θ

x
{ln(

δπ(x)

h(t)
)}q(t)pπ(t)dt,

and

γ(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ
r(x)K2

(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and
∫

∞

λ0

min{γ−1
(b(λ))b′(λ),−γ−1

(a(λ))a′(λ)}dλ = ∞,(3.1)

then δπ(X) is Γ-admissible under the loss (1.1).

Proof: Let δ ∈ ∆ be an estimator such that r(π, δ) ≤ r(π, δπ) for every

prior π ∈ Γ. Since πλ ∈ Γ for λ ≥ λ0, we must have

0 ≤

(

∫ b(λ)

a(λ)
pπ(t)dt

)

{r(πλ, δπ) − r(πλ, δ)}

=

∫ b(λ)

a(λ)
Eθ[L(δπ, h(θ)) − L(δ, h(θ))]pπ(θ)dθ

for all θ ∈ Θ. From Condition (A1), we see that it is equivalent to

0 ≤

∫ b(λ)

a(λ)
Eθ

[

{

ln

(

δ(X)

δπ(X)

)}2
]

pπ(θ)dθ

≤ 2

∫ b(λ)

a(λ)
Eθ

[{

ln

(

δπ(X)

h(θ)

)}{

ln

(

δπ(X)

δ(X)

)}]

pπ(θ)dθ,

for all θ ∈ Θ.
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An application of the Fubini’s theorem gives

0 ≤

∫ b(λ)

a(λ)

∫ θ

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)q(θ)pπ(θ)dµ(x)dθ

≤ 2

∫ b(λ)

θ

[

∫ b(λ)

x

{

ln

(

δπ(x)

h(θ)

)}

pπ(θ)q(θ)dθ

]

{

ln

(

δπ(x)

δ(x)

)}

r(x)dµ(x)

− 2

∫ a(λ)

θ

[

∫ a(λ)

x

{

ln

(

δπ(x)

h(θ)

)}

pπ(θ)q(θ)dθ

]

{

ln

(

δπ(x)

δ(x)

)}

r(x)dµ(x),

which is guaranteed by Condition (A2).

Applying the Cauchy-Schwartz inequality, the first term of the right-hand

side in the above equation, is less than

2

{

∫ b(λ)

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)dµ(x)

}1/2{
∫ b(λ)

θ
r(x)K2

(x, b(λ))dµ(x)

}1/2

.

Hence, if we define

T (θ) :=

∫ θ

θ

{

ln

(

δ(x)

δπ(x)

)}2

r(x)dµ(x),

then we have

0 ≤

∫ b(λ)

a(λ)
T (θ)q(θ)pπ(θ)dθ

≤ 2{T (b(λ))b′(λ)q(b(λ))pπ(b(λ))}1/2{γ−1
(b(λ))b′(λ)}−1/2

+2{−T (a(λ))a′(λ)q(a(λ))pπ(a(λ))}1/2{−γ−1
(a(λ))a′(λ)}−1/2

≤ 4
(

min{γ−1
(b(λ))b′(λ), γ−1

(a(λ))a′(λ)}
)−1/2

×
(

T (b(λ))q(b(λ))pπ(b(λ))b′(λ) − T (a(λ))q(a(λ))pπ(a(λ))a′(λ)
)1/2

for λ ≥ λ0, where the definition of the function γ(θ) has been used. Now a

continuous, differentiable and increasing function H : [λ0,∞] → R is defined by

H(λ) :=

∫ b(λ)

a(λ)
T (θ)q(θ)pπ(θ)dθ.

So the above inequality can be written in the form

H(λ) ≤ 4
(

min{γ−1
(b(λ))b′(λ),−γ−1

(a(λ))a′(λ)
)−1/2

(H ′
(λ))

1/2

for λ ≥ λ0. Therefore, from Lemma 3.1 we obtain T (θ) = 0 for a.a.θ ∈ Θ, and

consequently from (A1), we have δ(x) = δπ(x) a.e.µ. This completes the proof.
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Remark 3.2. K(x, θ) can expressed as

K(x, θ) =

∫ θ
x

∫ θ̄
θ {ln(

h(s)
h(t) )}q(s)pπ(s)q(t)pπ(t)dsdt
∫ θ̄
x q(u)pπ(u)du

by (2.1) and the symmetry of the integrand.

Example 3.1. Suppose that X be a random variable according to an

exponential distribution whose probability density function is given by

fX(x, θ) =

{

ex−θ x < θ,
0 x > θ,

where θ(∈ R) is unknown. The Generalized Bayes estimator of h(θ) = eθ
with

respect to the Lebesgue prior is given by δπ(X) = exp{X +1} which is of the form

ah(X)(a > 0). A direct calculation gives K(x, θ) = e−θ
(θ − x) and γ(θ) = 2. Let

class Γ0 consists of all priors with mean 0, i.e., Γ0 := {π ∈ Π|
∫

Θ θpπ(θ)dθ = 0}.

Define functions a and b by a(λ) = −λ and b(λ) = λ for λ ≥ λ0 > 0, i.e., the

prior πλ is the uniform distribution on the interval [−λ, λ]. Hence, πλ ∈ Γ0 for all

λ ≥ λ0. Since (3.1) is satisfied, Theorem 3.1 implies that δπ(X) is Γ0-admissible

under the loss (1.1).

Remark 3.3. It is difficult to express γ(θ) explicitly and it can have a

complicated form, so to apply Theorem 3.1, we have to seek the suitable upper

bound of γ(θ). For the case when h(θ) is bounded, we can get the next corollary.

Corollary 3.1. Suppose that h(θ) is bounded and δπ ∈ ∆. Put

K̃(x, θ) :=

∫ θ̄
θ q(s)pπ(s)ds

∫ θ
x q(t)pπ(t)dt

∫ θ̄
x q(u)pπ(u)du

,

and

γ̃(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ
r(x)K̃2

(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and
∫

∞

λ0

min{γ̃−1
(b(λ))b′(λ),−γ̃−1

(a(λ))a′(λ)}dλ = ∞,

then δπ(X) is Γ-admissible under the loss (1.1).

Proof: It can be easily shown that there exists a constant C such that

|K(x, θ)| ≤ CK̃(x, θ) for all (x, θ) ∈ {(x, θ)|θ < x < θ < θ̄}. This completes the

proof by Theorem 3.1.
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Example 3.2. Suppose that X1, ..., Xn are independent and identically

distributed random variables according to a uniform distribution over the interval

(0, θ) where θ(∈ R
+
) is unknown. Then the probability density function of the

sufficient statistic X = X(n) is given by

fX(x, θ) =

{

n
θn xn−1

0 < x < θ,
0 otherwise.

Let h(θ) be bounded and π(θ) = 1/θ. We can easily obtain

K̃(x, θ) = (1/(nθn
)) {1 − (x/θ)n} ,

and

γ̃(θ) = θ/(3n2
).

We assume that Γm := {π ∈ Π|
∫

Θ θpπ(θ)dθ = m}, i.e., Γm consists of all priors

with mean m. Define functions a and b by a(λ) = m ln(λ)/(λ − 1) and b(λ) =

λa(λ) for λ ≥ λ0 > 1. Since

∫

Θ

θpπλ
(θ)d(θ) =

(

∫ b(λ)

a(λ)

1

t
dt

)

−1

(b(λ) − a(λ)) = m

for all λ ≥ λ0, so that πλ ∈ Γm. A short calculation yields a′(λ) = mλ−1−λ ln(λ)
λ(λ−1)2

<

0 and b′(λ) = mλ−1−ln(λ)
(λ−1)2

> 0 for λ ≥ λ0. Because of λ − 1 − ln(λ) < λ ln(λ) −

λ + 1 for λ ≥ λ0 and limλ→∞ b(λ) = ∞, one obtains

∫

∞

λ0

min{γ̃−1
(b(λ))b′(λ),−γ̃−1

(a(λ))a′(λ)}dλ = (3n2
)

∫

∞

λ0

min{
b′(λ)

b(λ)
,
a′(λ)

a(λ)
}dλ

= (3n2
)

∫

∞

λ0

b′(λ)

b(λ)
dλ = ∞.

Hence, according to Corollary 3.1 the Generalized Bayes estimator of h(θ) with

respect to π(θ) = 1/θ is Γm-admissible under the loss (1.1).

Remark 3.4. Typically all the result in this paper go through with some

modifications for the density

fX(x, θ) =

{

q(θ)r(x) θ < x < θ̄,
0 otherwise,

where θ ∈ Θ is unknown.
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4. AN APPLICATION

In the presence of vague prior information frequently the Γ-minimax ap-

proach is used as underlying principle. In this section, we provide the definition

of the Γ-minimaxity of an estimator and then express the relation between this

concept and the Γ-admissibility. Finally, we give an example.

Definition 4.1. A Γ-minimax estimator is a minimax strategy of the sec-

ond player in the statistical game (Γ, ∆, r); δ∗ is called a Γ-minimax estimator,

if

sup
π∈Γ

r(π, δ∗) = inf
δ∈∆

sup
π∈Γ

r(π, δ),

where r(π, δ) is the Bayes risk of δ.

Definition 4.2. A Γ-minimax estimator δ∗ is said to be unique, if

r(π, δ) = r(π, δ∗), π ∈ Γ,

for any other Γ-minimax estimator δ.

Remark 4.1.

– From Definition 4.2, it is obvious that a unique Γ-minimax estimator is

Γ-admissible.

– If a Γ-admissible estimator δ is an equalizer on Γ, i.e., r(., δ) is constant

on Γ, then δ is a unique Γ-minimax estimator.

Example 4.1. In Example 3.1, we have Eθ[X] = θ− 1 and Eθ[X
2
] = θ2 −

2θ + 2. Thus, from (1.1), the risk function of δπ is equal to

R(eX+1, eθ
) = Eθ[{ln(eX+1

) − ln(eθ
)}2

]

= Eθ[{X + 1 − θ}2
]

= V arθ[X]

= 1.

So, δπ is an equalizer on Γ0, since its risk function is constant. Hence, δπ(X) =

eX+1
is the unique Γ0-minimax estimator for eθ

.
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1. INTRODUCTION

Evidences of using pooled samples for batch testing date as far back as

1915 (cf. [8]). However, its use in order to reduce costs started only in 1943 with

Dorfman’s seminal work [4] on the detection of the syphilis antigen in U.S. soldiers

during World War II. Dorfman entailed pooling together biological specimens

from different individuals and testing the resulting pools of specimens rather

than testing each individual.

When the aim is the detection of some binary characteristic, Dorfman’s

process comprehends two stages. In its first stage a pool of n individuals is

homogeneously mixed and a portion of the mixed sample is analyzed. A negative

result in the pooled mixture indicates that none of the n individuals has that

characteristic. On the other hand, a positive result implies that at least one of

the n individuals possesses the characteristic under investigation. And, in this

last case, a second stage takes place in which an individual test is performed to

each one of the n suspected individuals. The optimal batch size n∗
is the pool size

which minimizes the expected number of tests since the cost of mixing samples

is, in general, negligible comparing to the cost of the experimental tests, as [13]

points out.

Since Dorfman’s work, the research on methodologies involving pooled sam-

ple tests has been quite active. Thence, some improvements to his work have been

proposed, for instance, by [6, 22, 23]. The common idea of all these algorithm

improvements was to divide each positive pool into smaller subpools until even-

tually all specimens are individually tested. These kind of algorithms are called

hierarchical algorithms with a number of stages equal to the number of times each

individual may be tested. All of them are called one-dimensional since they use

non-overlapping pools. More recent works, considering the experimental errors

measured by the test sensitivity and test specificity, are available in [9, 11, 19, 24].

Another branch in this area has been the application to quantitative character-

istics (only reliable for underlying heavy tailed distributions). More details may

be found, for instance, in [5, 15, 20, 21]. Moreover, the use of pooled samples

does not refer only to the classification problem (identifying all the individuals

which possess some characteristic), since it may also be useful in estimating its

prevalence rate p (estimation problem), as [22] stated.

As different procedures may be applied in a problem involving pooled sam-

ple tests, the expected number of experimental tests per individual is a good

measure of the savings obtained with each procedure. Hence, the relative cost of

a procedure M is defined as

(1.1) RC (M) =
E (TN )

N
,
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where TN stands for the number of experimental tests performed to screen a

sample with N individuals.

When the purpose is to estimate the prevalence rate, the performing of

individual tests is only optional, since the goal is no longer to identify who has

the characteristic under investigation. Thus, this may lead to a lower relative cost.

Furthermore, the estimators obtained by applying compound tests have, under

certain conditions, better performance than the traditional estimators based on

individual tests, cf. [7, 14, 22]. Hence, group testing can be more efficient as well

as more accurate than individual testing.

The use of more complex schemes of mixing samples, i.e., dividing the

amount of sample in two or more parts and using them in different batches had

not been a reasonable choice since the complexity of the process could be itself

another significant source of error. However, in the beginning of this century

the emergence of the robotic and automatic pooling has turned the array-based

group testing into a reliable alternative to hierarchical group testing (cf. [12]).

Our purpose is to show that in the context of a prevalence rate estima-

tion the use of two dimensional arrays may be a reasonable alternative to the

traditional one dimensional array-based procedure. We also discuss strategies to

obtain an estimate from each of the possible ambiguous results of a two dimen-

sional array. A first attempt to solve those ambiguities was performed in [17].

For this goal, an improvement of an algorithm firstly proposed in [16] is provided

and a small simulation study is carried out. It is also claimed that for some low

sensitivity tests, such as some enzyme immunoassays to screen for Clostridium

difficile in fecal specimens described in [1], the performance of one dimensional

arrays procedures may provide prevalence rate estimates outside the interval [0, 1]

whereas the two dimensional arrays procedures always provide valid estimates.

The outline of this article is as follows. Section 2 describes some general

assumptions and additional notation usually used in this research field. Sub-

sequently, Section 3 describes the use of one-dimensional and two-dimensional

array-based group testing in the context of the estimation problem. The core of

this work is Section 4 where it is analyzed the performance of the proposed al-

gorithm for computing an estimate to the prevalence rate based on the results of

two dimensional arrays. In particular, some possible drawbacks of the algorithm

are discussed. Finally, some conclusions are provided in Section 5.

2. FRAMEWORK SETTING

Let us consider a large population of individuals and let p stand for the

probability of randomly choosing an individual infected with some disease. The
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value p is called the prevalence rate of the disease.

When dealing with an estimation problem, i.e., the problem of estimating

the value of p, the most basic and common pooled sample methodology is to di-

vide the individuals among the sample into groups with size n – one dimensional

arrays. For simplicity, admit that n is a divisor of the sample size N (otherwise,

one would have
[

N
n

]

groups with n individuals and one group with N −
[

N
n

]

× n

individuals, where [x] stands for the highest integer lower than x). Then, it is

required to perform TN =
N
n tests. Let us also assume that the individual status

(infected/not infected) within a pooled sample are independent. The probabil-

ity of having an infected pooled sample is πn = 1 − (1 − p)
n
. Hence, the total

number of infected pooled samples is described by a binomial random variable

I ⌢ Bin (TN , πn), where TN is the trials number and πn the success probability.

Thus, the maximum likelihood (ML) estimator of πn is given by

(2.1) π̂n =
I

TN
.

As p is given by a simple transformation of πn, it is straightforward to

show, applying the proprieties of the ML estimators, that the ML estimator of p

is given by

(2.2) p̂ = 1 −

(

1 −
I

TN

)1/n

.

For n = 1, p̂ = 1−
(

1− I
TN

)

=
I

TN
is an unbiased estimator of p. For n > 1,

the estimator is positively biased . Expressions for the expected value and vari-

ance of the estimator can be found in [10].

As screening errors may occur, the above binomial model is, in practice,

unrealistic. Let Xji = 1 denote an infected individual and Xji = 0 denote a non-

infected individual concerning the i-th individual of the j-th pooled sample where

i = 1, ..., n and j = 1, ..., TN . In addition, X+
ji denotes a positive test result and

X−

ji a negative test result performed with a sample collected only from that

individual. The probability ϕs = P

(

X+
ji |Xji = 1

)

is called the test sensitivity

and ϕe = P
(

X−

ji |Xji = 0

)

is called the test specificity. [19] extended the concepts

of specificity and sensitivity to a specific procedure M. These measures assess the

quality of a result provided by M. The procedure sensitivity is the probability

of an infected individual being correctly identified by the procedure M, that is,

ϕM

s = PM

(

X+
ji |Xji = 1

)

. The procedure specificity stands for the probability

of a non-infected individual being correctly classified by the procedure M, that

is, ϕM

e = PM

(

X−

ji |Xji = 0

)

.

As some interaction between the pooled specimens may occur, some general
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assumptions underlying our work must be settled (more details may be found in

[18]).

• Assumption 1 – Any specimen Xji, where i = 1, ..., TN and i = 1, ..., n,

may be described by a Bernoulli random variable Xji where P (Xji = 1)

= p (infected) and P (Xji = 0) = q = 1 − p (non-infected).

• Assumption 2 – The methodology sensitivity equals the test sensitivity,

i.e., ϕM

s = ϕs. Note that this may not always be true as individually

defective specimens may generate a negative result when tested in a

batch. This is called an antagonism effect.

• Assumption 3 – The methodology specificity equals the test specificity,

i.e., ϕM

e = ϕe. As in the last assumption, in some situations the inter-

action between non-infected specimens may produce a positive pooled

sample test result. This phenomenon is called synergism.

• Assumption 4 – Given the true status of any pool, its test result is inde-

pendent of the true status and test result of any other non-overlapping

pool.

3. ARRAY-BASED GROUP TESTING

We will briefly describe how to deal with the estimation problem concerning

two different procedures. In the first one, the individuals are divided into non-

overlapping groups (one-dimensional arrays). In the second one, a one-stage

two-dimensional array procedure, the individuals will be tested twice.

3.1. One-dimensional arrays

One-dimensional arrays are the most common arrays used for batching

individuals into groups in order to perform pooled sample tests. Each individual

is allocated to one and only one group and some amount of its sample is mixed

with the same amount of sample from other individual(s). This procedure will

be represented by D (n).

Given the j-th pooled sample of size n, the probability of it being positively

classified is given by

P
(

X+
j |
∑n

i=1
Xji ≥ 1

)

(1 − (1 − p)
n
) + P

(

X+
j |
∑n

i=1
Xji = 0

)

(1 − p)
n

(3.1)

= ϕs + (1 − ϕs − ϕe) (1 − p)
n .
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Therefore, a ML estimator of p is

(3.2) p̂ = 1 −

(

ϕs −
I

TN

ϕs + ϕe − 1

)1/n

.

The estimator only assumes a value in the interval [0, 1] if

(3.3) 1 − ϕe ≤
I

TN
≤ ϕs.

Whenever this condition is not fulfilled, we are not able to provide a rea-

sonable estimate. For instance, suppose p = 0.01 and that a D(3) procedure is

performed with 50 pools where the test verifies ϕe = 0.98 and ϕs = 0.6. There

is a chance of about 15% of condition (3.3) not be fulfilled. The proportion of

positive samples is not an option as it may be a very biased estimator of the

prevalence rate.

3.2. Two-dimensional arrays

Two-dimensional arrays are an alternative to the one dimensional arrays

which uses overlapping pools. This approach is frequently employed in genetics,

cf. [11], but it is rarely applied in the infectious disease setting. In its simplest

two-stage version (square array), denoted by A (n), a sample of size n2
is placed

in a n × n matrix in the following way. Each individual is allocated to one

and only one matrix position. Then, all the individuals within the same row are

gathered for batch testing, and the same procedure is applied to all the individuals

within the same column. Thus, the two-stage version involves Tn2 ≥ 2n tests as

subsequent individual tests can be performed to the ones lying in a row and/or

column which tested positively. A variant of this methodology (a three-stage

procedure) consists in performing a priori a pooled sample test on all the n2

individuals (master pool). If the master pool test result is negative no further

testing is needed as the individuals are all classified as negative.

The expected number of tests for all these two-dimensional array group

testing procedures is derived in [18] when a classification problem is dealt. In [11]

are computed the operating characteristics of these procedures (with or without

a master pool). An extension to higher-dimensional arrays assuming no test

errors may be found in [3]. More recently, [12] introduced the possibility of

misclassification.

The performance of subsequent individual tests is required to avoid ambi-

guities. For instance, it is possible to have a row tested positive but all columns
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tested negative (the number of infected individuals can be any integer from zero

to n, since certainly there is at least one misclassification error) or to have two

positive rows and columns (the number of infected individuals can be two, three

or four even considering that there was no misclassification). However, it won’t be

required to identify who is infected or either if a row or column has infected ele-

ments when the next proposed methodology for an estimation problem is applied.

Hence, this one-stage procedure is expected to decrease the relative cost.

4. PREVALENCE RATE ESTIMATION

Two-dimensional array-based group testing allows the inclusion of each

individual into two different batches. However, as previously discussed, some

ambiguities may arise due to the experimental test errors described by the test

sensitivity and by the test specificity.

In this case, the use of the proportion of defective individuals (without

performing any individual tests) is not advised as it may lead to an underesti-

mation of the prevalence rate or to an increase of the relative cost as [16] points

out. [16] also provides some guidelines of how to compute a ML estimate of the

prevalence rate using a computational script. Moreover, it computes an exact

expression for the ML estimator, assuming possible test errors, for an one stage

and two-dimensional array procedure A (2).

The inputs of that script are the test sensitivity ϕs, the test specificity

ϕe and the number of arrays that have i − 1 positive rows and j − 1 positive

columns for i = 1, 2, ..., r + 1 and j = 1, 2, ..., c + 1. These values may be recorded

in a (r + 1) × (c + 1) matrix O which resumes the experimental results required

to compute a ML estimate.

To compute the ML function value at p0 it is also required to compute the

probability of observing i − 1 positive rows and j − 1 positive columns, where

i = 1, 2, ..., r + 1 and j = 1, 2, ..., c + 1, given p0. Let us denote this matrix of

probabilities by Pp0
. An approximation to these probabilities can be computed

by the performance of a simple simulation.

The ML function value at p0 knowing O is given by

(4.1) ML(p0|O) =

∏

i,j

Pp0
(i, j)O(i,j).

However, it is necessary to account some special cases which can lead to

inaccurate estimates. For instance, if for some value p0 and some values i and

j, Pp0
(i, j) is high and O(i, j) is zero then the process could converge to a value
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near p0 whereas its “likelihood” is low.

To avoid having to account for this problem, we propose using the sum

of the square of the differences between the values of the matrix O and the

expected values for O, computed using the probabilities of the matrix P , as a

quality measure for comparing different estimates, i.e.,

(4.2) Dif(p0|O) =

∑

i,j

(O(i, j) − s × Pp0
(i, j))2 ,

where s is the total number of two-dimensional arrays (i.e., s =
∑

i,j O(i, j)).

In the next subsections, we provide some guidelines of an algorithm to find

the minimum of the function defined in (4.2) as well as a small simulation study.

4.1. A computational script

As only for a small number of rows and columns it is possible to compute

an exact expression for the function Dif defined in (4.2), in general, it is just

possible to find the minimum of that function using some computational method.

Next, we describe the script which was implemented and highlight the pos-

sible drawbacks due to working with very low values. Some of the issues are

shared by the implementation of the well-known chi-square test of independence

of two random variables.

Our script comprehends the following steps.

• Step 1 – Consider an increasing sequence of possible values for p, say

p1 < p2 < ··· < pm.

We used the golden section search optimization method, cf. [2], as it

presents optimal properties in the numerical search of a maximum when

no expression for the function of interest is available. This method uses

m = 4 and two inner points given at each step by p2 = p4 −ϕ ∗ (p4 − p1)

and p3 = p1 + ϕ ∗ (p4 − p1) where ϕ ≈ 0.61803 is known as the golden

ratio.

• Step 2 – Simulate a large number of individuals (say, equal to r× c× rep

with rep large) extracted from a population with a prevalence rate pi for

i = 1, ..., m where r and c stand for the number of rows and columns of

the array and rep is the number of arrays. These arrays will be used to

obtain an estimate for the values of the matrix P . We used rep = 100

and our simulations have shown that higher values for rep do not change

significantly the final outcome of the simulation.

• Step 3 – For each pi and for each replicate compute the (estimated)
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probability of observing an array corresponding to each position of the

matrix O (the matrix of the experimental results). Add that value to

the position (i, j) of the matrix P .

Note that regardless of the number of infected individuals in the array,

it is always possible to span all possible number of positive rows and

columns due to the presence of the test errors.

• Step 4 – Compute the Dif function given the matrix O.

• Step 5 – Compare the Dif function at p1, ..., pm and choose the two

estimates which minimize the function, say pmin and pmax where pmin <

pmax.

• Step 6 – Consider a new increasing sequence of possible values for p

starting on pmin and finishing on pmax.

In our case, p2 = p4 −ϕ ∗ (pmax − pmin) and p3 = p1 +ϕ ∗ (pmax − pmin).

• Step 7 – Repeat the procedure from step two up to step six until the

distance between the two estimates is lower than some tolerance tol.

4.2. Possible drawbacks

Expression (4.2) for the Dif function involves very small quantities which

are not a problem for the most recent software. However, for avoiding the null

estimate we advise the initial choice of p1 to be equal or higher than tol.

One possible problematic situation that must be taken into account in or-

der to avoid underestimation occurs when the expected number of arrays with i

positive rows and j positive columns, s×P (i, j), is higher than zero and less than

one. Note that, theoretically, all values of the matrix P are higher than zero but

as we are not computing the exact matrix P , as there are some computational

restraints, it is possible to have zero in some entry of P .

In that case, we suggest adding some of those low probabilities till eventu-

ally the sum of the expected number of arrays be at least one.

Hence, suppose you inspect all the values of P (i, j) in some logic sequence

and you find h values of P , say P (r1, c1), ...,P (rh, ch), for which the sum of the

expected values verifies s
∑h−1

i=1 P (ri, ci) < 1 and s
∑h

i=1 P (ri, ci) ≥ 1. Then,

add all those h probability estimates P ∗
=
∑h

i=1 P (ri, ci) and do the same for

the matrix O, i.e., O∗
=
∑h

i=1 O (ri, ci). Replace the position (rh, ch) in the

matrix P and in the matrix O by P ∗
and O∗

, respectively. All the positions

(r1, c1), ..., (rh−1, ch−1) for both matrices should be replaced by zero. This is a

process with some resemblances to the one applied to contingency tables in order

to improve the chi-square test performance.
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In that logic sequence of inspection of all positions it is possible to get a

sequence of values of P for which the sum of the expected values does not achieve

1 due to end of the inspection process. In this case, we suggest a similar process,

however, the sum P ∗
and O∗

should be added to some value of P whose expected

value is at least one. Our simulations showed that the choice of this value is not

relevant.

4.3. A simulation study

A small simulation was performed to assess the algorithm performance.

The chosen measure to assess the accuracy of the estimates was the absolute

value of the bias.

The one-stage square array-based group procedure, A (2n), was compared

to the one-dimensional alternative D (n). Note that both procedures present the

same relative cost.

We considered four different experimental tests with the sensitivity and

specificity described in Table 1.

Table 1: Test sensitivity and test specificity.

Test ϕs ϕe

A 0.99 0.99

B 0.80 0.98

C 0.60 0.98

D 0.99 0.80

It was considered four different prevalence rates: 0.01, 0.05, 0.10 and 0.25.

For each one of them, 20 square arrays were simulated (s = 20) for applying

A(4) and A(6) procedures. The one-dimensional alternative for each of these two

procedures was D (2), with 160 pools, for the first case and D (3), with 240 pools,

for the last one. In each pair of procedures (one and two-dimensional) the number

of tests performed is the same. For all cases, the number of replicates was 100.

The results are summarized in the Table 2.

In some cases, condition (3.3) was not fullfield leading to negative estimates.

Thus, some values are not displayed (the symbol “—” is displayed instead of a

numerical value) since it was observed more than 20 (in 100) negative estimates.

All estimates displayed for a prevalence rate p = 0.01 do not use all 100 estimates
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since 1 to 6 of them were negative and excluded from the calculus of the mean of

the absolute bias.

Table 2: Mean of the absolute bias (multiplied by 10
2
) of 100 estimates

obtained by A (4) (D (2))|A (6) (D (3)) procedures.

p = 0.01 p = 0.05 p = 0.10 p = 0.25

A 0.48(0.34)|0.25(0.16) 0.81(0.33)|0.60(0.28) 0.96(0.49)|0.83(0.40) 1.82(0.94)|1.38(0.86)
B 0.51(—)|0.34(0.35) 0.79(0.68)|0.71(0.59) 1.12(1.03)|1.06(0.72) 2.17(1.82)|2.34(1.53)
C 0.48(—)|0.37(0.45) 0.95(1.18)|0.78(0.90) 1.24(1.41)|1.03(1.15) 2.25(2.45)|2.92(2.07)
D 0.31(0.38)|0.61(—) 1.15(1.55)|0.86(1.01) 1.46(1.61)|1.06(1.04) 1.47(1.54)|1.45(1.36)

Note that the mean of the absolute bias increases with the prevalence rate

since for low prevalence rate values the value zero is a natural limit to the esti-

mates. It is not surprising to observe A(6) procedure performing better than A(4)

since it uses more individuals. However, when the prevalence rate increases the

chance of having a very high number of positive tests greatly increases leading to

a worse performance. Regardless the square array procedure, the one-dimensional

pools generally outperform the square array procedures for moderate and high

prevalence rates (note that the interval of possible prevalence rates is ]0, 0.50]

since for values higher than 0.50 we can study q = 1 − p). For the most inaccu-

rate test considered, test C, the behavior is similar.

5. CONCLUSION

The spreading of the possibility of robotic pooling will certainly highlight

the use of arrays with dimensions higher than one as a practical alternative to the

traditional one dimensional arrays for both estimation and classification problems,

cf. [12].

In this work we address the problem of estimation and show that for very

inaccurate tests (cheaper tests) the use of square arrays assures the experimenter

a reasonable estimate (at least for low prevalence rates). However, whenever

the sample size is low and ϕs and ϕe are high we have just a few square arrays

and the results can be quite inaccurate. In this scenario the D (n) methodology

remains a more reasonable option as it could (almost certainly) provide a good

estimate. Thence, D (n) methodology can, in some situations, outperforms A(2n)

methodology whereas A(2n) works well in a wider parameter support.
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1. INTRODUCTION

The Shannon entropy (see Shannon (1948)) is a fundamental measure of

information content and has been applied in a wide variety of fields such as

statistical thermodynamics, urban and regional planning, business, economics, fi-

nance, operations research, queueing theory, spectral analysis, image reconstruc-

tion, biology and manufacturing. One may refer to Kapur (1990) and Cover

and Thomas (2006) for examples of various applications. Several generalized

information-theoretic measures have been proposed in the literature to measure

the uncertainty of a probability distribution since the seminal work of Shannon

(1948). Among these, one of the most important and applicable measures is pro-

posed by Renyi (1961). For a random variableX with probability density function

f(x|θ), θ ∈ Θ, the Renyi entropy is given by

Rα(X) =
1

1 − α
ln

∫

∞

−∞

fα
(x|θ)dx, α (6= 1) > 0.(1.1)

Note that we are using logarithm to base e in the expression given by (1.1). Here,

the unit of the information measure is nat. Golshani and Pasha (2010) provide

some important properties of the measure given in (1.1):

(i) The Renyi entropy can be negative,

(ii) It is invariant under location transformation, but not under scale

transformation, and

(iii) For any α1 < α2, Rα2
(X) ≤ Rα1

(X) and equality holds if and only if

X is a uniform random variable.

Using L’Hospital rule, it can be shown that (1.1) retrieves the Shannon entropy

when α tends to 1. The Renyi entropy is more or less sensitive to the shape of

the probability distributions due to the parameter α. For large values of α, the

measure given in (1.1) is more sensitive to events that occur often. Likewise,

for small values of α, it is more sensitive to the events which happen seldom.

In many instances, the Renyi entropy is seen to be more useful than the Shan-

non entropy (see Nilsson (2006), Maszczyk and Duch (2008) and Pharwaha and

Khehra (2009)). The measure given in (1.1) has found a lot of applications in

different areas of science and technology. For example, in speech recognition,

different values of α determine different concepts of noisiness. Basically, small α

values tend to emphasize the noise content of signal, while large α values tend to

emphasize the harmonic content of a signal (see Obin and Liuni (2012)). It is also

used for ultrasonic molecular imaging (see Hughes et al. (2009)). For properties

of Renyi entropy one may refer to Song (2001), Bercher (2008), De-Gregorio and

Iacus (2009), Golshani and Pasha (2010) and Renyi (2012).

Recently, the problem of estimating a common characteristic of several

independent populations has received a considerable attention. There are many
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situations where this problem arises. For example, this situation arises when the

information from several independent studies are combined or in meta-analysis.

Meta-analysis is used in clinical studies. This is also seen in many statistical

designs such as balanced incomplete block designs, panel models and regression

models. The present paper is concerned with the problem of estimating the Renyi

entropy of several exponential populations with respect to linex loss function (see

Varian (1975)). The linex loss function is given as

L(△) = p′[exp{p△} − p△− 1], △ = δ − θ, p 6= 0, p′ > 0,(1.2)

where p and p′ are shape and scale parameters, respectively. Without loss of

generality, we assume p′ = 1. Note that the loss function (1.2) reduces to the

squared error loss function when |p| tends to 0. For more properties on linex loss

function one may refer to Zellner (1986).

Let Π1, ...,Πk be k (≥ 2) exponential populations with location and scale

parameters µ = (µ1, ..., µk) and σ = (σ1, ..., σk), respectively. The probability

density function of the i-th population Πi is given by

fi(x|µi, σi) =

{

σ−1
i exp{−(x− µi)/σi}, if x > µi

0, otherwise,
(1.3)

where µi ∈ R, σi > 0 and i = 1, ..., k. The expression of the Renyi entropy of k

exponential distributions can be obtained as Rα(σ) =
∑k

i=1 lnσi − k lnα/(1−α).

Several authors attempted the problem of estimating entropy of various contin-

uous probability distributions. In this direction one may refer to Misra et al.

(2005), Kayal and Kumar (2011a, 2011b, 2013), and Kayal et al. (2015). Misra et

al. (2005) showed that the best affine equivariant estimator (BAEE) of the Shan-

non entropy of a multivariate normal distribution is inadmissible with respect

to the squared error loss function. Under linex loss function, Kayal and Kumar

(2011a) derived an estimator improving upon the BAEE of the Shannon entropy

of a shifted exponential distribution. Kayal and Kumar (2011b) considered the

problem of estimating the Shannon entropy of several exponential distributions

with respect to both squared error and linex loss functions. Generalized Bayes

estimators are showed to be admissible. Kayal and Kumar (2013) obtained im-

proved estimator upon the BAEE in estimating the Shannon entropy of several

exponential distributions with a common scale but unequal location parameters

with respect to the squared error loss function. Recently, Kayal et al. (2015)

studied the problem of estimating the Renyi entropy of several exponential dis-

tributions with a common location but unequal scale parameters with respect to

squared error loss function. They derived the uniformly minimum variance unbi-

ased estimator (UMVUE) and obtained improvements over the UMVUE and the

maximum likelihood estimator (MLE). In this communication we deal with the

problem of estimating the Renyi entropy in similar models considered by Kayal

and Kumar (2013, 2015) with respect to the linex loss function.
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The rest of the paper is organized as follows. In Section 2, the problem of

estimating the Renyi entropy of several exponential distributions with a common

scale and unknown but unequal location parameters is considered. The BAEE

is shown to be inadmissible. Further, estimators improving upon the BAEE are

obtained when the parameter space is restricted. Relative risks of the proposed

estimators are compared numerically. In Section 3, the problem of estimating the

Renyi entropy of several exponential distributions with a common location and

unequal scale parameters is considered. Inadmissibility results for the scale and

affine equivariant estimators are obtained. Further, improved estimators over

the MLE and the UMVUE are derived. Some concluding remarks have been

added in Section 4. Finally, relative risk performance of the proposed estimators

is compared numerically.

2. COMMON SCALE BUT UNEQUAL LOCATION PARAME-

TERS

As mentioned earlier, in this section, we consider k independent exponen-

tial populations with unknown and possibly unequal location parameters µ and a

common but unknown scale parameter σ. This model arises in reliability engineer-

ing where location parameters can be interpreted as minimum guarantee times of

several equipments, whereas the common scale parameter can be considered as

unknown but possibly equal failure rate of those equipments. This model is also

useful in economy where one may assume the unknown location parameters as

the income levels below which the tax filling is not required in different locations.

However, the average income levels may be same due to overall economic policies

of the country. Let (Xi1, ..., Xini
) be a random sample of size ni drawn from the

i-th (i = 1, ..., k) population with the probability density function

fi(x|µi, σ) =

{

σ−1 exp{−(x− µi)/σ}, if x > µi

0, otherwise,
(2.1)

where µi ∈ R and σ > 0. For a population with probability density function (2.1),

the Renyi entropy can be obtained as Rα(σ) = k lnσ−k lnα/(1−α). It should be

mentioned that the problem of estimating Rα(σ) with respect to the loss function

of the form L(θ, δ) = W (δ − θ) is equivalent to that of estimating Q1(σ) = lnσ.

Here, the loss function is given by

L1
(Q1(σ), δ) = exp{p(δ − lnσ)} − p(δ − lnσ) − 1, p 6= 0.(2.2)

Note that for the i-th population, (Xi(1), Yi) is a complete and sufficient statistic

of (µi, σ), where Xi(1) = min1≤j≤ni
Xij and Yi =

∑ni

j=1Xij . We denote X(1) =

(X1(1), ..., Xk(1)), T =
∑k

i=1

∑ni

j=1(Xij −Xi(1)) and n =
∑k

i=1 ni. Following the

factorization criterion (see Lehmann and Casella, 1998, pp. 35), it can be showed
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that (X(1), T ) is a complete and sufficient statistic of (µ, σ). Further, X(1) and

T are independently distributed. It is seen that Xi(1) follows an exponential

distribution with location parameter µi and scale parameter σ/ni, and 2T/σ

follows a chi-square distribution with 2(n− k) degrees of freedom. The MLE

and the UMVUE of Q1(σ) are given by δ1ML = lnT − lnn and δ1MV = lnT −

ψ(n− k), respectively, where ψ denotes digamma function and is given by ψ(x) =

d
dx(ln Γ(x)).

2.1. The best affine equivariant estimator and its improvement

In this section, we introduce invariance to the problem under study and

obtain an improvement over the BAEE. LetGa,bi
= {ga,bi

(xij) : ga,bi
(xij) = axij +

bi, a > 0, bi ∈ R}, j = 1, ..., ni, i = 1, ..., k be an affine group of transformations.

Under the transformation ga,bi
(xij) = axij + bi, the form of an affine equivariant

estimator can be obtained as

δ1c (X(1), T ) = lnT − c,(2.3)

where c is an arbitrary constant. In the following theorem we obtain the BAEE

of Q1(σ). The proof is omitted as it is straightforward.

Theorem 2.1. Under the linex loss function (2.2), the BAEE of Q1(σ) is

δ1c0(X(1), T ), where c0 = −(1/p) ln[Γ(n− k)/Γ(n− k + p)].

We consider a group of scale transformations Ga = {ga(xij) = axij , a >

0}, j = 1, ..., ni, i = 1, ..., k. Under the transformation ga(xij) = axij , the form

of a scale equivariant estimator is

δφ(W,T ) = lnT + φ(W ),(2.4)

where W = (W1, ...,Wk), Wi = Xi(1)/T and φ is a real valued measurable func-

tion. In the following theorem, we prove a general inadmissibility result for the

estimators of the form (2.4). First, define

φ0(w) =

{

lnu− 1
p ln

(

Γ(n+p)
Γ(n)

)

, if w ∈ (B1
⋂

B2)
⋃

(B3
⋂

Bc
2)

φ(w), otherwise,

(2.5)

where B1 = {w : w(1) > 0}, B2 = {w : u < exp(φ(w)+ (1/p) ln(Γ(n+ p)/Γ(n)))},

B3 = {w : w(k) < 0}, u =
∑k

i=1 niwi + 1, w(1) = min{w1, ..., wk}, w(k) =

max{w1, ..., wk} and wi = xi(1)/t, i = 1, ..., k.

Theorem 2.2. Let δφ be a scale equivariant estimator of the form (2.4)

and φ0(w) be as defined in (2.5). If there exists (µ, σ) such that P(µ,σ)(φ0(W ) 6=

φ(W )) > 0, then under linex loss function (2.2), the estimator δφ0
dominates δφ.
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Proof: The risk function of the estimators of the form (2.4) is

R(µ, σ, δφ) = EWR1(µ, σ,W, δφ),

where R1 denotes the conditional risk of δφ given W = w, and is given by

R1(µ, σ, w, δφ) = E[(exp{p(lnT + φ(W ) − lnσ)}(2.6)

−p(lnT + φ(W ) − lnσ) − 1)|W = w].

Note that the conditional risk function R1(µ, σ, w, δφ) given in (2.6) is a function

of the ratio µ/σ. Hence, without loss of generality we may assume σ to be 1.

Moreover, the conditional risk is a convex function of φ, therefore the choice of φ

minimizing R1(µ, σ, w, δφ) can be obtained as

φ̂(µ,w) = −p−1
ln(E(T p|W = w)).(2.7)

To get improvement over δφ, it is required to obtain the supremum and infimum

of φ̂(µ,w) given in (2.7). These can be derived along the arguments of the proof

of Theorem 2 of Kayal and Kumar (2013). We omit the details here.

Case (i): When all µi’s, (i = 1, ..., k) are non-negative, the respective supre-

mum and infimum of φ̂(µ,w) can be obtained as

sup
µ
φ̂(µ,w) = lnu− p−1

ln(Γ(n+ p)/Γ(n)) and inf
µ
φ̂(µ,w) = −∞.

Case (ii): Assume that µi’s are negative for i = 1, ..., k. Under this restric-

tion, it is required to take into account three possibilities on wi’s: (a) all wi’s

are non-negative, (b) all wi’s are negative and (c) some of wi’s, (i = 1, ..., k) are

non-negative and remaining are negative. In the following we consider these three

sub-cases separately and obtain supremum and infimum of φ̂(µ,w).

(a) Under the assumption that wi’s are non-negative, we obtain

φ̂(µ,w) = lnu− p−1
ln(Γ(n+ p)/Γ(n)).

(b) When wi’s are negative, note that the value of u may be positive or

negative. For u > 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = lnu− p−1

ln(Γ(n+ p)/Γ(n));

and for u < 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

(c) Let some of wi’s (i = 1, ..., k) assume non-negative values and the re-

maining wi’s assume negative values. Thus u may be positive or neg-

ative. When u > 0, then

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = lnu− p−1

ln(Γ(n+ p)/Γ(n));
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and when u < 0, then

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

Case (iii): Under the constraints that some of µi’s are non-negative and

remaining are negative, we consider the following sub-cases:

(a) For the case when w1, ..., wr, ..., wk > 0, we obtain

sup
µ
φ̂(µ,w) = lnu− p−1

ln(Γ(n+ p)/Γ(n)) and inf
µ
φ̂(µ,w) = −∞.

(b) Assume that w1, ..., wr > 0 and wr+1, ..., wk < 0. Then, for u 6= 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

(c) Let w1, ..., wr > 0 and within (k − r), some wi’s be non-negative and

remaining be negative. Then, for u 6= 0, we obtain

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

An application of the Brewster and Zidek technique (see Brewster and

Zidek (1974)) on the function R1(µ, σ, w, δφ), then completes the proof of the

theorem.

As a consequence of the Theorem 2.2, we get the following corollary which

shows that the BAEE obtained in Theorem 2.1 is inadmissible.

Corollary 2.1. The BAEE δ1c0 of Q1(σ) is dominated by the estimator

δ1IB =







ln(uT ) − p−1
ln(Γ(n+ p)/Γ(n)), if w ∈ (B1

⋂

C1)
⋃

(B3
⋂

Cc
1)

lnT + p−1
ln(Γ(n− k)/Γ(n− k + p)), otherwise,

where C1 = {w : u < exp(d)} and d = p−1
ln(Γ(n−k)Γ(n+ p)/Γ(n−k+ p)Γ(n)).

In this part of the paper we consider the problem of estimating Q1(σ) in

restricted parameter spaces. Here we consider the restriction on µi’s. However,

it is seen that it affects the improvement results for the estimation of Q(σ). First

assume that all µi’s are bounded below. This arises when the minimum guarantee

time of components is known to be more than a pre-specified constant. Without

loss of generality, we may assume that µ(1) ≥ 0, where µ(1) = min{µ1, ..., µk}. In

this case, δ1ML is the MLE of Q1(σ). Along the arguments of Case (i) of the proof
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of the Theorem 2.2, the inadmissibility of the BAEE can be established and the

improved estimator is

δ1
+

IB =







ln(uT ) − p−1
ln(Γ(n+ p)/Γ(n)), if w ∈ C1,

lnT + p−1
ln(Γ(n− k)/Γ(n− k + p)), otherwise.

We also consider the other case when the guarantee times of the components

are known to be bounded above. Without loss of generality we assume µ(k) < 0,

where µ(k) = max{µ1, ..., µk}. In this case, the MLE of Q1(σ) is δ1RM = lnT 0 −

lnn, where T 0
=
∑k

i=1(Yi − niX
0
i(1)), X

0
i(1) = min{0, Xi(1)}, i = 1, ..., k. Along

the arguments of Case (ii) of the Theorem 2.2, the inadmissibility of the BAEE

can be established. The improved estimator is given by

δ1
−

IB =











ln(uT ) − 1
p ln(

Γ(n+p)
Γ(n) ), if w ∈ B1

⋃

(B3
⋂

Cc
1)
⋃

(C2
⋂

C3
⋂

Cc
1)

lnT +
1
p ln(

Γ(n−p)
Γ(n−k+p)), otherwise,

where C2 = {w : w(r) < 0}, C3 = {w : w(r+1) > 0}.

2.2. Numerical comparisons

In this section, we present the relative risk performance of δ1IB, δ
1+
IB and δ1−IB

over the BAEE δ1c0 through graphs for the case k = 2. We assume σ = 1, as the

conditional risk in (2.6) is a function of (
µ1

σ ,
µ2

σ ). It should be mentioned that the

risk values of various estimators were calculated using Monte-Carlo simulation

based on 10, 000 samples of different combinations of (n1, n2) and different values

of (µ1, µ2) and p. However, we present few of them considering sample sizes

(5, 5), (5, 10), (10, 5), (10, 10) and p = +0.2,−0.2. It is worthwhile to remark

that we observe similar pattern of the relative risk for other values of p and

(n1, n2).

Based on the Fig. 1 we can conclude the following points:

(i) The margin and the region of the relative risk improvement (RRI) of

δ1IB over δ1c0 becomes small when we increase sample sizes (n1, n2).

(ii) We observe considerable RRI of δ1IB over δ1c0 when both µ1 and µ2

approach to origin.

(iii) For fixed (n1, n2), the RRI of δ1IB over δ1c0 is marginally better for

negative values of p than positive values of p. For example, the RRI

of δ1IB over δ1c0 is 8.59% at (µ1 = 0.18, µ2 = 0) for (n1 = 5, n2 = 5)

and p = −2, whereas for the same values of (µ1, µ2) and (n1, n2), the

RRI of δ1IB over δ1c0 is 8.24% when p = 2.
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Figure 1: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent

relative percentage risk improvement plots of δ1
IB

over δ1
c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),

(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when

(µ1, µ2) ∈ R2. The first and second components of the triplet

represent the sample sizes of the first and second population,

respectively whereas the third component represents the value

of p.

Based on the Fig. 2 we get the following observations.

(i) The region as well as the margin of the RRI of δ1+IB over δ1c0 become

smaller for larger values of (n1, n2).

(ii) When µi tends to the zero, the RRI of δ1+IB over δ1c0 first increases and

then decreases, i = 1, 2.

(iii) For fixed sample sizes (n1, n2), the RRI is marginally better for neg-

ative values of p than positive values of p. The RRI of δ1+IB over δ1c0
is 9.79% at (µ1 = 0.02, µ2 = 0.08) for (n1 = 5, n2 = 5) and p = −2,

whereas for the same values of (µ1, µ2) and (n1, n2), the RRI of δ1IB

over δ1c0 is 9.39%, when p = 2.
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Figure 2: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent

relative percentage risk improvement plots of δ1+
IB

over δ1
c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),

(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when

(µ1, µ2) ∈ R
+

2
. The first and second components of the triplet

represent the sample sizes of the first and second population,

respectively whereas the third component represents the value

of p.

Based on the Fig. 3, we notice the following points.

(i) The margin and the region of the RRI of δ1−IB over δ1c0 become small

when we increase the values of (n1, n2).

(ii) When (µ1, µ2) → (0, 0), the RRI of δ1−IB over δ1c0 increases and it at-

tains maximum at some point near origin.

(iii) For fixed (n1, n2), the RRI of δ1−IB over δ1c0 is marginally better for

negative values of p than positive values of p. For example, the RRI of

δ1−IB over δ1c0 is 18.98% at (µ1 = −0.01, µ2 = −0.01) for (n1 = 5, n2 =

5) and p = 2, whereas for the same values of (µ1, µ2) and (n1, n2),

the RRI of δ1−IB over δ1c0 is 19.20%, when p = −2.
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Figure 3: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent

relative percentage risk improvement plots of δ1−
IB

over δ1
c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),

(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when

(µ1, µ2) ∈ R
−

2
. The first and second components of the triplet

represent the sample sizes of the first and second population,

respectively whereas the third component represents the value

of p.

3. COMMON LOCATION BUT UNEQUAL SCALE PARAME-

TERS

In this section, we consider k exponential populations with a common lo-

cation parameter µ and unknown but unequal scale parameters σ. This model

arises in life testing and reliability, where the common location parameter can be

considered as minimum guarantee time of operation of several components and

scale parameters are interpreted as unknown and possibly unequal failure rates

of these components. Let the probability density function of the i-th population
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be

fi(x|µ, σi) =

{

σ−1
i exp{−(x− µ)/σi}, if x > µ

0, otherwise,
(3.1)

where µ ∈ R, σi > 0, i = 1, ..., k. Let (Xi1, ..., Xini
) be a random sample of size

ni drawn from the i-th population (i = 1, ..., k) with probability density func-

tion given in (3.1). The expression of the Renyi entropy is Rα(σ) =
∑k

i=1 lnσi −

k lnα/(1− α). It is worthwhile to mention that the problem of estimating Rα(σ)

with respect to the loss function of the form L(θ, δ) = W (δ − θ) is equivalent to

the problem of estimating Q2(σ) =
∑k

i=1 lnσi. We consider the loss function as

L2
(Q2(σ), δ) = exp

{

p
(

δ −
k
∑

i=1

lnσi

)}

− p
(

δ −
k
∑

i=1

lnσi

)

− 1, p 6= 0.(3.2)

Denote Zi = Yi − niXi(1), i = 1, ..., k. For the i-th population, (Xi(1), Zi) is a

complete and sufficient statistic for (µ, σi). Moreover, Zi and Xi(1) are indepen-

dently distributed, where 2σ−1
i Zi follows chi-square distribution with 2(ni − 1)

degrees of freedom and Xi(1) follows an exponential distribution with location pa-

rameter µ and scale parameter σi/ni. Further, define X = min{X1(1), ..., Xk(1)}

and Ti = Yi − niX. It is easy to show that (X,T ) is a joint complete and suf-

ficient statistic for (µ, σ), where T = (T1, ..., Tk). The MLE of Q2(σ) is δ2ML =
∑k

i=1 lnTi − ln(
∏k

i=1 ni). Also, X and T are independently distributed with re-

spective probability density function

fX(x) = τ exp{−τ(x− µ)}, x > µ(3.3)

and

fT (t) = Nqηlτ−1
(

k
∏

i=1

tni − 1
i

)

exp

{

−
(

k
∑

i=1

tiσ
−1
i

)}

, ti > 0,(3.4)

where η =

(

k
∏

i=1

σi

)

−ni
, τ =

k
∑

i=1

niσ
−1
i , N =

k
∑

i=1

ni(ni − 1), l =

(

k
∏

i=1

Γ(ni)

)

−1
,

q =

k
∑

i=1

t−1
i and t = (t1, ..., tk). Following steps analogous to Kayal et al. (2015),

the UMVUE of Q2(σ) can be obtained as

δ2MV =

k
∑

i=1

lnTi −
k
∑

i=1

1 − (JTi)
−1

ni − 1
−

k
∑

i=1

ψ(ni − 1),(3.5)

where J =
∑k

i=1 T
−1
i .

3.1. Affine equivariant estimator

The estimation problem under study is invariant under Ga,b, a group of

affine transformations, where Ga,b = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R}. The
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form of an affine equivariant estimator can be obtained as (see Kayal et al. (2015))

δη(X,T ) = k lnT1 + η(W1, ...,Wk−1)(3.6)

= k lnT1 + η(W ),

where W = (W1, ...,Wk−1), Wi = (Ti+1/T1), i = 1, ..., k− 1 and η is a real valued

measurable function. The following theorem provides a general inadmissibility

result for an affine equivariant estimator of the form (3.6).

Theorem 3.1. Let δη be the form of an affine equivariant estimator given

in (3.6). Further, define the estimator δ∗η by

δ∗η =







δη, if η(w) ≥ η0(w)

δη0
, if η(w) < η0(w),

where w = (w1, ..., wk−1) and η0(w) = ln[kk
(
∏k−1

i=1 wi)] −
1
p ln

(

Γ(n+kp−1)
Γ(n−1)

)

. Then

under the linex loss function (3.2), δ∗η improves δη if there exists (µ, σ) such that

Pµ,σ(η(W ) < η0(W )) > 0.

Proof: The risk function of δη can be written as

R(µ, σ, δη) = EWR1(µ, σ,W, δη),

where R1(µ, σ, w, δη) denotes the conditional risk of δη given W = w, and is given

by

R1(µ, σ, w, δη) = E
[(

exp

{

p
(

k lnT1 + η(W ) −
k
∑

i=1

lnσi

)}

−p
(

k lnT1 + η(W ) −
k
∑

i=1

lnσi

)

− 1

)
∣

∣

∣
W = w

]

.

Note that R1 is a convex function in η and minimized at

(3.7) η̂(σ,w) =
1

p
ln

(

(

k
∏

i=1

σi

)p

E(T kp
1 |W = w)

)

.

To evaluate η̂(σ,w) in (3.7), we need to derive the conditional distribution of T1

given W = w which is given by

fT1|W (t1|w) = Γ
−1

(n− 1)sn−1 tn−2
1 e−st1 , t1 > 0, wi > 0,(3.8)

where s = σ−1
1 +

k−1
∑

i=1

wiσ
−1
i+1 and n =

∑k
i=1 ni. Using (3.8) we obtain

E(T kp
1 |W = w) =

Γ(n+ kp− 1)

Γ(n− 1)

1

skp
.
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Putting E(T kp
1 |W = w) in (3.7), we get

(3.9) η̂(σ,w) = ln

(

sk
k
∏

i=1

σi

)

−
1

p
ln

(

Γ(n+ kp− 1)

Γ(n− 1)

)

.

For fixed values of w, the supremum and infimum of η̂(σ,w) over σ can be obtained

as

(3.10)

sup
σ
η̂(σ,w) = +∞,

inf
σ
η̂(σ,w) = ln

[

kk
(

k−1
∏

i=1

wi

)]

−
1

p
ln

(

Γ(n+ kp− 1)

Γ(n− 1)

)

= φ0, say.

An application of the Brewster-Zidek technique on R1, then completes the proof

the theorem.

Note that δ2ML and δ2MV belong to the class of affine equivariant estima-

tors of the form (3.6) when η(w) is equal to ln

(

T2

T1
...Tk

T1

)

− k ln(
∏k

i=1 ni) and

ln

(

T2

T1
...Tk

T1

)

−
∑k

i=1
1−(JTi)

−1

ni−1 −
∑k

i=1 ψ(ni − 1), respectively. The Theorem 3.1

then leads to the following corollaries.

Corollary 3.1. The MLE δ2ML is inadmissible and dominated by

δ2IML =























ln[(kT1)
k
(
∏k−1

i=1 wi)] −
1
p ln(

Γ(n+kp−1)
Γ(n−1) ),

if ln(kk
∏k

i=1 ni) −
1
p ln(

Γ(n+kp−1)
Γ(n−1) ) > 0

∑k
i=1 lnTi − ln(

∏k
i=1 ni), otherwise.

Corollary 3.2. The UMVUE δ2MV is inadmissible and dominated by

δ2IMV =



































ln[(kT1)
k
(
∏k−1

i=1 Wi)] −
1
p ln(

Γ(n+kp−1)
Γ(n−1) ),

if ln(kk
) − 1

p ln(
Γ(n+kp−1)

Γ(n−1) )

+
∑k

i=1 ψ(ni − 1) +
∑k

i=1
1−(JTi)

−1

ni−1 > 0

∑k
i=1 lnTi −

∑k
i=1

1−(JTi)
−1

ni−1 −
∑k

i=1 ψ(ni − 1), otherwise.
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Figure 4: Fig. (a) represents the plot of ln(kk
∏

k

i=1
ni)−

1

p
ln(

Γ(n+kp−1)

Γ(n−1)
)

for (n1 = 4, n2 = 4) when k = 2; and Fig. (b) represents the

plot of that for (n1 = 4, n2 = 8), when k = 2;

3.2. Scale equivariant estimator

In this section, we introduce invariance to the problem under the group of

scale transformations Ga = {ga(x) = ax, a > 0}. The form of a scale equivariant

estimator is obtained as

δξ(X,T ) = k lnT1 + ξ
(X

T1
,
T2

T1
,
T3

T1
, ...,

Tk

T1

)

(3.11)

= k lnT1 + ξ(V ), (say),

where V = (V1, V2, ..., Vk), V1 = X/T1, and Vi = Ti/T1, i = 2, 3, ..., k. The risk

function of δξ given in (3.11) is

R(µ, σ, δξ) = EVR1(µ, σ, V , δξ),

where R1(µ, σ, v, δξ) denotes the conditional risk of δξ given V = v, is given by

R1(µ, σ, v, δξ) = E
[(

exp

{

p
(

k lnT1 + ξ(V ) −

k
∑

i=1

lnσi

)}

−p
(

k lnT1 + ξ(V ) −
k
∑

i=1

lnσi

)

− 1

)
∣

∣

∣
V = v

]

which is minimized at

(3.12) ξ̂(µ, σ, v) =
1

p
ln

(

(

k
∏

i=1

σi

)p

E(T kp
1 |V = v)

)

.
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The joint probability density function of T1 and V is

f(t1, v) = C exp{µτ}
(

k
∏

i=2

vni−1
i

)(

1 +

k
∑

i=2

v−1
i

)

(3.13)

× exp

{

−
(

v1τ +

(

σ−1
1 +

k
∑

i=2

viσ
−1
i

))

t1

}

tn− 1
1 ,

where C = Nηl, t1 > 0, t1v1 > µ, v2 > 0, v3 > 0, ..., vk > 0. Note that to obtain

the supremum and infimum of ξ̂(µ, σ, v), it is required to derive the conditional

distribution of T1|V = v, which can be obtained through the arguments of the

cases considered in Section 3.2 of the paper by Kayal et al. (2015). Hence we omit

the details.

Case (i): Under the assumptions that µ > 0 and v1 > 0, we obtain

ξ̂(µ, σ, v) = ln

(

k
∏

i=1

σi

)

−
1

p
ln(I∗1/I1),(3.14)

where I∗1 =
∫

∞

µ/v1
exp{−At1} t

kp+n−1
1 dt1, I1 =

∫

∞

µ/v1
exp{−At1} t

n−1
1 dt1 and A =

v1τ + (σ−1
1 +

∑k
i=2 viσ

−1
i ). Using the monotone likelihood ratio property it is not

hard to show that

sup
µ,σ

ξ̂(µ, σ, v) = +∞ and inf
µ,σ

ξ̂(µ, σ, v) = −∞.

Case (ii): When µ < 0 and v1 > 0, we get

ξ̂(µ, σ, v) = ln

(

Ak
k
∏

i=1

σi

)

−
1

p
ln

(

Γ(n+ kp)

Γ(n)

)

.(3.15)

It is easy to see that supremum of ̂ξ(µ, σ, v) is +∞. The infimum of ̂ξ(µ, σ, v)

can be obtained by applying geometric mean-harmonic mean inequality to the

variables (σ1/n1v1 + 1), (σ2/n2v1 + v2), ..., (σk/nkv1 + vk) and is given by

inf
µ,σ
̂ξ(µ, σ, v) = ln

(

kk(n1v1 + 1)

k
∏

i=2

(niv1 + vi)

)

−
1

p
ln

(

Γ(n+ kp)

Γ(n)

)

.

Case (iii): Let µ < 0 and v1 < 0. Under these assumptions, we have

ξ̂(µ, σ, v) = ln

(

k
∏

i=1

σi

)

−
1

p
ln(I∗2/I2),(3.16)

where I∗2 =
∫ µ/v1

0 exp{−At1}t
kp+n−1
1 dt1 and I2 =

∫ µ/v1

0 exp{−At1}t
n−1
1 dt1. Note

that the value of A may be positive or negative. For both A > 0 and A < 0, it
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can be shown that the supremum and infimum of ξ̂(µ, σ, v) are +∞ and −∞,

respectively. As in the full sample space the supremum and infimum choices of

ξ̂(µ, σ, v) are +∞ and −∞, respectively, therefore we do not get any improve-

ment over the BAEE. But if we restrict the parameter space to µ < 0, then an

improvement over the BAEE exists, which is shown in the next theorem. Define

ξ0(v) =











ln(v∗) − 1
p ln(

Γ(n+kp)
Γ(n) ), if v1 > 0 and

v∗ > exp{ξ(v) +
1
p ln (

Γ(n+kp)
Γ(n) )}

ξ(v), otherwise,

(3.17)

where v∗ = kk(n1v1 + 1)

k
∏

i=2

(niv1 + vi).

Theorem 3.2. Let δξ be a scale equivariant estimator of the form (3.12)

and ξ0(v) be as defined in (3.17). If there exists a (µ, σ) such that P(µ,σ)(ξ0(V ) 6=

ξ(V )) > 0, then the estimator δξ0 dominates δξ, with respect to the linex loss

function, when µ < 0.

As a consequence of the Theorem 3.2, the following corollary immediately

follows.

Corollary 3.3. When µ < 0, the MLE and the UMVUE are inadmissible

and dominated by

δ2−IML =



















ln(T k
1 V

∗
) − 1

p ln(
Γ(n+kp)

Γ(n) ), if V1 > 0 and

V ∗ > exp{
∑k

i=2 lnVi − ln(
∏k

i=1 ni) +
1
p ln(

Γ(n+kp)
Γ(n) )}

∑k
i=1 lnTi − ln(

∏k
i=1 ni), otherwise

and

δ2−IMV =































ln(T k
1 V

∗
) − 1

p ln(
Γ(n+kp)

Γ(n) ), if V1 > 0

and V ∗ > exp{
∑k

i=2 lnVi −
∑k

i=1
1−(JTi)

−1

ni−1

−
∑k

i=1 ψ(ni − 1) +
1
p ln(

Γ(n+kp)
Γ(n) )}

∑k
i=1 lnTi −

∑k
i=1

1−(JTi)
−1

ni−1 −
∑k

i=1 ψ(ni − 1), otherwise,

where V ∗
= kk(n1V1 + 1)

k
∏

i=2

(niV1 + Vi) and J =
∑k

i=1 T
−1
i .
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3.3. Numerical comparisons

Here we present risk and relative risk of various estimators derived in Sec-

tion 3. As in Section 2.2, the risk values were calculated using Monte-Carlo simu-

lation based on 10, 000 samples of different combinations of sample sizes (n1, n2)

and different values of (µ, σ1, σ2) and p. We present few of them in tabular form

below. Table 1 is for the risk values of δ2MV and δ2IMV when k = 2. The RRI of

the estimators δ2−IMV , δ
2−
IML and δ2MV over δ2ML is presented in Table 2 and Table 3

for k = 2. Different combinations of (n1, n2) and different values of p, σ1, σ2 have

been chosen. We have considered sample sizes (5, 5), (5, 10), (10, 5) and (10, 10).

The values of p have been chosen as −0.5,−1,+0.5 and +1. Here, we have pre-

sented very few values, however, similar observations are made for various other

values of (n1, n2), p and µ.

Table 1: The risk values of δ2
MV

and δ2
IMV

for k = 2.

p µ (n1, n2) (σ1, σ2) δ2

MV
δ2

IMV
p µ (n1, n2) (σ1, σ2) δ2

MV
δ2

IMV

-0.75 0.2 (5,5) (0.5,0.5) 0.164190 0.157732 -2 -0.2 (10,5) (0.5,0.5) 1.157259 1.068251
(0.5,1.0) 0.159419 0.153242 (0.5,1.0) 1.135408 1.009288
(1.0,0.5) 0.169174 0.162430 (1.0,0.5) 1.227956 1.157454
(1.0,1.0) 0.164190 0.157732 (1.0,1.0) 1.157259 1.068251

-1.5 0.5 (5,10) (0.5,0.5) 0.561950 0.560949 -2.5 -0.5 (10,10) (0.5,0.5) 0.974965 0.669685
(0.5,1.0) 0.657281 0.653271 (0.5,1.0) 1.007035 0.680643
(1.0,0.5) 0.622936 0.621872 (1.0,0.5) 0.931061 0.654255
(1.0,1.0) 0.561950 0.552783 (1.0,1.0) 0.974965 0.669685

Table 2: The relative percentage risk improvement over δ2
ML

by δ2−
IMV

, δ2−
IML

and δ2
MV

for k = 2.

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2

MV
p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2

MV

-0.5 -0.2 (5,5) (0.5,0.5) 1.18 1.50 41.46 0.5 -0.2 (5,5) (0.5,0.5) 0.38 0.69 17.72
(0.5,1.0) 1.55 2.59 41.68 (0.5,1.0) 0.59 1.31 17.81
(1.0,0.5) 3.38 3.75 41.29 (1.0,0.5) 2.23 2.41 17.85
(1.0,1.0) 5.19 7.03 41.47 (1.0,1.0) 3.21 4.05 17.72

-0.5 -0.2 (5,10) (0.5,0.5) 0.15 0.23 35.57 0.5 -0.2 (5,10) (0.5,0.5) 0.12 0.16 14.02
(0.5,1.0) 0.41 0.82 37.06 (0.5,1.0) 0.23 0.47 15.64
(1.0,0.5) 0.08 0.16 33.86 (1.0,0.5) 0.02 0.07 13.02
(1.0,1.0) 0.39 1.25 35.57 (1.0,1.0) 0.42 0.53 14.02

-0.5 -0.2 (10,5) (0.5,0.5) 0.12 0.25 36.64 0.5 -0.2 (10,5) (0.5,0.5) 0.04 0.09 15.87
(0.5,1.0) 0.23 0.55 35.37 (0.5,1.0) 0.08 0.23 15.63
(1.0,0.5) 0.24 1.31 37.83 (1.0,0.5) 0.10 0.45 16.71
(1.0,1.0) 2.66 3.68 36.65 (1.0,1.0) 0.90 1.66 15.87

-0.5 -0.2 (10,10) (0.5,0.5) 0.01 0.02 27.68 0.5 -0.2 (10,10) (0.5,0.5) 0.02 0.05 13.95
(0.5,1.0) 0.23 0.34 28.20 (0.5,1.0) 0.04 0.22 14.72
(1.0,0.5) 0.42 0.48 26.89 (1.0,0.5) 0.07 0.31 14.23
(1.0,1.0) 0.77 1.42 27.68 (1.0,1.0) 0.43 0.82 13.95
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Table 3: The relative percentage risk improvement over δ2
ML

by δ2−
IMV

, δ2−
IML

and δ2
MV

for k = 2.

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2

MV
p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2

MV

-1 -0.2 (5,5) (0.5,0.5) 1.60 2.08 50.16 1 -0.2 (5,5) (0.5,0.5) 0.27 0.44 0.43
(0.5,1.0) 2.25 3.21 50.37 (0.5,1.0) 0.34 0.78 0.42
(1.0,0.5) 4.09 4.76 49.88 (1.0,0.5) 1.01 1.58 0.77
(1.0,1.0) 6.67 8.56 50.16 (1.0,1.0) 2.55 2.98 0.44

-1 -0.2 (5,10) (0.5,0.5) 0.15 0.23 43.88 1 -0.2 (5,10) (0.5,0.5) 0.10 0.11 0.98
(0.5,1.0) 0.40 1.07 45.22 (0.5,1.0) 0.21 0.37 1.03
(1.0,0.5) 0.06 0.35 42.00 (1.0,0.5) 0.02 0.05 0.76
(1.0,1.0) 0.51 1.81 43.88 (1.0,1.0) 0.29 0.42 1.20

-1 -0.2 (10,5) (0.5,0.5) 0.03 0.45 44.71 1 -0.2 (10,5) (0.5,0.5) 0.02 0.13 2.01
(0.5,1.0) 0.59 1.12 43.14 (0.5,1.0) 0.08 0.21 2.66
(1.0,0.5) 0.75 1.98 45.95 (1.0,0.5) 0.09 0.29 2.47
(1.0,1.0) 4.06 5.56 44.71 (1.0,1.0) 0.45 1.15 2.36

-1 -0.2 (10,10) (0.5,0.5) 0.12 0.16 33.43 1 -0.2 (10,10) (0.5,0.5) 0.04 0.06 5.59
(0.5,1.0) 0.18 0.27 33.84 (0.5,1.0) 0.05 0.09 6.49
(1.0,0.5) 0.16 0.30 32.81 (1.0,0.5) 0.07 0.33 4.14
(1.0,1.0) 1.24 1.73 33.43 (1.0,1.0) 0.34 0.56 5.59

The following conclusions are evident from Table 2 and Table 3:

(i) We observe marginal RRI over δ2ML by δ2−IML, δ
2−
IMV , but substantial

improvement by δ2MV .

(ii) For fixed (n1, n2) and µ, the RRIs for the estimators δ2−IMV and δ2−IML

over δ2ML are marginally better, whereas we observe substantial RRIs

for the estimator δ2MV over δ2ML for negative values of p than positive

values of p.

(iii) For fixed µ, p and (n1, n2) the RRI of δ2−IML and δ2−IMV over δML

approximately increases with (σ1, σ2), but we do not observe such

behaviour for the RRI of δ2MV over δ2ML.

4. CONCLUDING REMARKS

In this paper, the problem of estimating the Renyi entropy of several expo-

nential distributions has been investigated with respect to a linex loss function.

The concept of invariance has been used to derive improved estimators over the

standard ones such as MLE and UMVUE. We have considered two distinct mod-

els here. Both these models have various applications in real life experiments. In

the first model, the location parameters are distinct but the scale parameter is

assumed to be common. Improved estimators over the BAEE have been obtained

when parameters space is restricted as well as unrestricted. In the second model,
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the scale parameters are distinct but the location parameter is assumed to be

common. Affine and scale equivariant estimators improving over the UMVUE

and MLE are obtained under restrictions on the parameter space. Finally, mar-

gins of relative risk improvements by new estimators are determined numerically

using simulations.
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1. INTRODUCTION

In engineering practice, risk criteria and economic considerations are im-

portant parts of a project design. These criteria are crucial, for example, in the

design of an urban sewer network, the sizing of a hydraulic structure, or the con-

ception of a storage capacity system. The adequate knowledge of design events

(e.g., design flood magnitudes) is often helpful for the proper sizing of a project

to avoid the high initial investments associated with the oversizing of the project

and the large future failure costs resulting from its undersizing.

To estimate these design events, statistical frequency analysis of hydrolog-

ical data is often used; it consists of fitting a probability distribution to a set

of recorded hydrological values (e.g., annual maximum flood series) and obtain-

ing estimated results concerning the underlying population. Estimates are often

needed for such quantities as the magnitude of an extreme event (quantile) xT ,

corresponding to a return period T . Evidently, the reliability of the estimates

depends largely on the quality of the data as well as the length of the period of

record.

The aim of this paper is to discriminate between normal and Gumbel dis-

tributions. These two distributions are widely applied in engineering and often

used as a model for hydrologic data sets. Some of its recent application areas

include flood frequency analysis, network and software reliability engineering,

nuclear engineering and epidemic modeling.

There are many practical applications where Gumbel and normal distribu-

tions are similar in appearance and the two distributions cannot be distinguished

from one another. Normal and Gumbel distributions belong to the location scale

family. Discriminating between any two general probability distribution func-

tions from the location scale family was widely investigated in the literature.

See, for instance, [1], [2], [4], [5], [6], [7], [15] and [9] who studied the discrimi-

nation problem in general between the two models. Besides, [16], [19] and [22]

studied the discrimination problem between lognormal and gamma distributions.

[3] and [10] studied the discrimination problem between Weibull and gamma dis-

tributions. Recently, Gupta and Kundu considered the discrimination problem

between Weibull and generalized exponential distributions, between gamma and

generalized exponential distributions and between lognormal and generalized ex-

ponential distributions (see, [12], [13], [18]).

Among the discrimination problems, the one for Weibull and lognormal

distributions is particularly important and has received much attention; this is

because the two distributions are the most popular ones for analyzing the lifetime

of electronic products. [8] adopted the ratio of maximized likelihood (RML) in
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discriminating between the two distributions for complete data and provided the

percentile points for some sample sizes by simulation. Recently, [17] considered

the discrimination problem for complete data using the RML procedure.

In the present work, to discriminate between normal and Gumbel distri-

butions, we consider the ratio of maximized likelihood (RML) as test statistic.

Based on the result of [21], the asymptotic distribution of the logarithm of the

RML is found under both normal and Gumbel distributions, which can be used to

compute the probability of correct selection (PCS). For small sample size, maxi-

mum likelihood estimators (MLE) of Gumbel parameters are biased; henceforth,

we will use a correction for the bias introduced by [11] and [14].

The rest of the paper is organized as follows. Section 2 is dedicated to

the mathematical notations that we use in this paper. In Section 3 we describe

the logarithm of RML as test statistic, their asymptotic distributions under both

normal and Gumbel distributions are obtained. Monte Carlo simulations are

presented in Section 4 to examine how the asymptotic results work for finite

samples. Finally, we conclude the paper in Section 5.

2. NOTATION

To facilitate the analysis that follows, we use the following notations. A

normal distribution with mean µ and variance σ2
, denoted by N(µ, σ2

), has a

probability density function (pdf) given by

fN (x, µ, σ2
) =

1

σ
√

2π
exp−

(x − µ)
2

2σ2
, x ∈ R.

The maximum likelihood estimators of µ and σ2
are respectively given by

(2.1) µ̂ =
1

n

n
∑

i=1

Xi := X̄ and σ̂2
=

1

n

n
∑

i=1

(Xi − X̄)
2.

A Gumbel distribution with location parameter α and scale parameter β, denoted

by G(α, β), has a pdf given by

fG(x, α, β) =
1

β
exp

[

−
x − α

β
− exp−

x − α

β

]

, x ∈ R,

and the maximum likelihood estimators of its parameters satisfy the following

equations

β̂ = X̄ −

n
∑

i=1

Xi exp−
Xi

β̂
n
∑

i=1

exp−
Xi

β̂

and α̂ = −β̂ ln

[

1

n

n
∑

i=1

exp−
Xi

β̂

]

.(2.2)
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These estimators, obtained as numerical solutions to the above equations, are

known to be biased when the sample size is small. [11] proposed a correction for

that bias:

β̂∗

c =
β̂

1 − 0.8/n
and α̂∗

c = −β̂c ln

[

1

n

n
∑

i=1

exp−
Xi

β̂c

]

− 0.7
β̂c

n
.

Using a rather theoretical analysis, [14] made more accurate corrections leading

to the following estimators:

β̂c = β̂

(

1 +
0.7716

n

)

and α̂c = −β̂c ln

[

1

n

n
∑

i=1

exp−
Xi

β̂c

]

− 0.3698
β̂c

n
.

It is to be noted that in instances when a non-negative random variable is needed,

it is the discrimination between the lognormal and the Weibull distributions that

might be of interest, but in such a case the results of the present study remain ap-

plicable because the normal and the lognormal (also the Gumbel and the Weibull

distributions) are linked by a simple logarithmic transformation. The discrimi-

nation between lognormal and Weibull has been proposed by [17].

3. THE TEST STATISTIC AND ITS ASYMPTOTIC DISTRIBU-

TION

Assume that the random sample X1,...,Xn is known to come from either a

normal distribution, X ∼ N(µ, σ2
), or a Gumbel distribution, X ∼ G(α, β). The

log-likelihood ratio statistic, T , is defined as the logarithm of the ratio of two

maximized likelihood functions:

T = ln

(

LN (µ̂, σ̂2
)

LG(α̂, β̂)

)

where LN (µ, σ2
) and LG(α, β) the likelihood functions under a normal distribu-

tion and a Gumbel distribution, respectively. The decision rule for discriminating

between the normal and the Gumbel distributions is to choose the normal if T > 0,

and to reject the normal in favor of the Gumbel, otherwise. Because both of these

two distributions are of the location scale type, one important property of the T

statistic is that it is independent of the parameters from both distributions (see,

[8]).

Let us look at the expressions of T in terms of the corresponding MLEs.
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Note that

T = ln LN (µ̂, σ̂2
) − lnLG(α̂, β̂)

=

[

−n ln σ̂ − n ln
√

2π −
1

2σ̂2

n
∑

i=1

(Xi − µ̂)
2

]

−

[

−n ln β̂ −
n
∑

i=1

[

Xi − α̂

β̂
+ exp−

Xi − α̂

β̂

]

]

= −n ln σ̂ − n ln
√

2π −
1

2σ̂2

n
∑

i=1

(Xi − µ̂)
2
+ n ln β̂

+
1

β̂

n
∑

i=1

Xi −
nα̂

β̂
+

n
∑

i=1

exp−
Xi

β̂
exp

α̂

β̂
.(3.1)

Using (2.2), we get

(3.2) n exp
−α̂

β̂
=

n
∑

i=1

exp−
Xi

β̂
.

If we replace the MLE finding in the equations (2.1) and the last equation (3.2)

in (3.1), we obtain

T = −n ln
σ̂

β̂
+ n

µ̂ − α̂

β̂
+

n

2
(1 − ln 2π).

We denote Tc, the new test statistic which introduces a correction for bias of

maximum likelihood estimators proposed by [14]. Therefore, Tc can be written

as:

Tc = −n ln
σ̂

β̂c

+ n
µ̂ − α̂c

β̂c

+
n

2
(1 − ln 2π).

Note that T and Tc are asymptotically equivalent, then we state the following

lemma:

Lemma 3.1. The test statistics T and Tc have the same asymptotic dis-

tribution.

Proof: We have
Tc

n
= − ln

σ̂

β̂c

+
µ̂ − α̂c

β̂c

+
1

2
(1 − ln 2π) and

(3.3) − ln
σ̂

β̂c

= − ln
σ̂

β̂
+ ln

(

1 +
0.7716

n

)

= − ln
σ̂

β̂
+ o(1).

In addition, β̂c = β̂ + o(1) and α̂c = α̂ + op(1) lead to

(3.4)
µ̂ − α̂c

β̂c

=
µ̂ − α̂

β̂
+ op(1).
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From (3.3) and (3.4) we obtain
Tc

n =
T
n + op(1). Then

Tc

n and
T
n have the same

limit distribution, thus for ǫ > 0 and n sufficiently large, we have

∣

∣

∣

∣

P

[

Tc

n
<

t

n

]

− P

[

T

n
<

t

n

]
∣

∣

∣

∣

< ǫ.

Immediately |P [Tc < t] − P [T < t]| < ǫ, for ǫ > 0 and n is sufficiently large. Fi-

nally, if lim
n→+∞

P [T < t] exists, then lim
n→+∞

P [Tc < t] = lim
n→+∞

P [T < t].

3.1. Asymptotic distribution of Tc under the normal distribution

Suppose data are coming from a normal distribution N(µ, σ2
). Based on

[18], the following theorem can be stated:

Theorem 3.1. Assume that the sample X1,...,Xn follows N(µ, σ2
), then

the test statistic Tc is asymptotically normally distributed with mean EN (T ) and

variance V arN (T ).

Proof: The proof of this theorem is based on the Lemma 3.1, the following

Lemma 3.2 and the Central Limit Theorem (CLT).

Lemma 3.2. Denote T̃ = ln

(

LN (µ, σ2
)

LG(α̃, β̃)

)

, where α̃ and β̃ are given by

the following equation and may depend on µ and σ,

EN [ln fG(X, α̃, β̃)] = max
α,β

EN [ln fG(X, α, β)],

then α̂ → α̃ a.s, β̂ → β̃ a.s and T−EN (T )
√

n
is asymptotically equivalent to T̃−EN (T̃ )

√
n

.

The proof of this lemma is similar to that of Theorem 1 presented by White

in [21], then the proof of Theorem 3.1 is established by proving that
T̃−EN (T̃ )

√
n

is

asymptotically normal based on the central limit theorem. As for the needed

quantities α̃ and ˜β in Lemma 3.2, EN (T ) and variance V arN (T ) in Theorem 3.1,

they are derived by first referring to Lemma 3.2 and performing the following

calculation:

EN [ln fG(X, α, β)] = − lnβ − EN

(

X − α

β

)

− EN

(

exp

(

−
X − α

β

))

= − lnβ −
µ − α

β
− exp

(

−
µ − α

β
+

σ2

2β2

)

.
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We maximize with respect to α and β, we get α̃ = µ− σ
2 and β̃ = σ. By the second

point of Lemma 3.2, EN (T ) and V arN (T ) are calculated.

EN (T ) ≃ EN

[

ln

(

LN (µ, σ2
)

LG(α̃, β̃)

)]

= nEN [ln fN (X, µ, σ2
) − ln fG(X, α̃, ˜β)]

= nEN [ln fN (X, µ, σ2
)] − nEN [ln fG(X, α̃, ˜β)]

= nEN

[

− lnσ − ln
√

2π −
1

2

(

X − µ

σ

)2
]

−nEN

[

− ln β̃ −
X − α̃

β̃
− exp−

X − α̃

β̃

]

= n

(

− lnσ − ln
√

2π −
1

2
− (− lnσ −

3

2
)

)

= n
(

1 − ln
√

2π
)

,

for n sufficiently large, we obtain

lim
n→+∞

EN (T )

n
= 0.081016.

In addition, V arN [ln fN (X, µ, σ2
)] = V arN

[

− 1
2σ2

(

X − µ)
2
)]

=
1
2 and taking into

account that e−
1

2

∫

z2e−zφ(z)dz = 2 and e−
1

2

∫

ze−zφ(z)dz = −1 where φ(.) is the

standard normal probability density function, then we have

V arN

[

ln fG(X, α̃, ˜β)

]

= V arN

[

−
X − α̃

˜β
− exp−

X − α̃

β̃

]

= V arN

(

X − µ

σ

)

+ V arN

[

e−
1

2 exp

(

−
X − µ

σ

)]

+2e−
1

2 CovN

[

X − µ

σ
; exp−

X − µ

σ

]

= e − 2

and

CovN

[

ln fN (X, µ, σ2
), ln fG(X, α̃, β̃)

]

=
1

2
CovN

[

(

X − µ

σ

)2

,
X − µ

σ

]

+
1

2
e−

1

2 CovN

[

(

X − µ

σ

)2

, exp

(

−
X − µ

σ

)

]

=
1

2
,
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thus,

V arN (T )

n
≃ V arN [ln fN (X, µ, σ2

) + V arN [ln fG(X, α̃, β̃)]

−2CovN [ln fN (X, µ, σ2
); ln fG(X, α̃, β̃)]

≃ e −
5

2
.

Then

lim
n→+∞

V arN (T )

n
= 0.218282.

Finally, lim
n→+∞

EN (T )
n and lim

n→+∞

V arN (T )
n are independent of µ and σ, then the

asymptotic distribution of T is independent of µ and σ. Then from Theorem 3.1,

the test statistic Tc is asymptotically normally distributed with mean 0.081016×n

and variance 0.218282 × n.

3.2. Asymptotic distribution of Tc under the Gumbel distribution

Now we turn to the case where the sample comes from a Gumbel distribu-

tion G(α, β). As before, based on Kundu, Gupta, and Manglick [18], the following

theorem can be stated:

Theorem 3.2. We suppose that the sample X1,...,Xn follows G(α, β),

then the test statistic Tc is asymptotically normally distributed with mean EG(T )

and variance V arG(T ).

Once again, the proof of this theorem is straightforward from the central

limit theorem and the following lemma.

Lemma 3.3. Denote T̃
′

= ln

(

LN (µ̃, σ̃2
)

LG(α, β)

)

, where µ̃ and σ̃ are given by

the following equation and may depend on α and β:

EN [ln fG(X, µ̃, σ̃2
)] = max

µ,σ
EN [ln fG(X, µ, σ2

)]

then µ̂ → µ̃ a.s, σ̂ → σ̃ a.s and T−EG(T )
√

n
is asymptotically equivalent to T̃

′

−EG(T̃
′

)
√

n
.

It is now possible to evaluate µ̃ and σ̃ by referring to Lemma 3.3 and

performing the following calculation:

EG[ln fN (X, µ, σ2
)] = EG

[

−
1

2
ln 2π − lnσ −

(X − µ)
2

2σ2

]

.
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Since X follows G(α, β), it is immediate that EG(X) = α + βγ and V arG(X) =

π2

6
β2

, where γ ≃ 0.5772...(the Euler constant). Therefore,

EG[ln fN (X, µ, σ2
)] = −

1

2
ln 2π − lnσ −

1

2σ2
EG(X2 − 2µX + µ2

)

= −
1

2
ln 2π − lnσ

−
1

2σ2

[

π2β2

6
+ (α + βγ)

2 − 2µ(α + βγ) + µ2

]

.

Maximizing with respect to µ and σ yields µ̃ = α + βγ and σ̃ =
π
√

6
β. The quan-

tities EG(T ) and V arG(T ) can be derived using again Lemma 3.3,

EG(T ) ≃ nEG

[

ln fN (X, µ̃, σ̃2
) − ln fG(X, α, β)

]

≃ nEG

[

− ln σ̃ − ln
√

2π −
1

2

(

X − µ̃

σ̃

)2
]

+nEG

[

ln β +
X − α

β
+ exp−

X − α

β

]

≃ nEG



− ln
πβ
√

6
−

1

2
ln 2π −

1

2





X − (α + βγ)

πβ
√

6





2



+nEG

[

ln β +
X − α

β
+ exp−

X − α

β

]

≃ n

(

−
3

2
lnπ +

1

2
ln 3

)

+nEG






−

3

π2

(

X − α

β
− γ

)2

+
X − α

β
+ e

−
X − α

β







we put Z =
X − α

β
, then Z follows G(0, 1) and we obtain

EG(T ) ≃ −
3n

2
lnπ +

n

2
ln 3 + nEG

[

−
3

π2
(Z − γ)

2
+ Z + exp−Z

]

≃ −
3n

2
lnπ +

n

2
ln 3 −

3n

π2
EG[(Z − γ)

2
] + EG[Z] + EG[exp−Z]

≃ n

(

−
3

2
lnπ +

1

2
ln 3 −

3

π2

π2

6
+ γ + 1

)

for n sufficiently large, we obtain

lim
n→+∞

EG(T )

n
= −0.090573.
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Similarly,

V arG(T )

n
≃ V arG

[

ln fN (X, µ̃, σ̃2
) − ln fG(X, α, β)

]

≃ V arG

[

− ln σ̃ − ln
√

2π −
1

2

(

X − µ̃

σ̃

)2

+ lnβ +
X − α

β

+ exp−
X − α

β

]

≃ V arG

[

−
3

π2

(

X − α

β
− γ

)2

+
X − α

β
+ exp−

X − α

β

]

≃ V arG

[

−
3

π2
(Z − γ)

2
+ Z + exp−Z

]

,

then

lim
n→+∞

V arG(T )

n
= 0.283408.

Since both lim
n→+∞

EG(T )
n and lim

n→+∞

V arG(T )
n do not depend on α and β, the asymp-

totic distribution of T is independent of α and β. Then from Theorem 3.2, the

test statistic Tc is asymptotically normally distributed with mean −0.090573× n

and variance 0.283408 × n.

4. PCS AND MC SIMULATION

It is assumed that the data have been generated from one of the two dis-

tributions: N(µ, σ2
) or G(α, β). Then the discrimination procedure based on a

random sample X = X1, ..., Xn is as follows.

Choose normal distribution if Tc > 0 and Gumbel distribution if Tc < 0.

If the data were originally coming from N(µ, σ2
), the PCSN can be written as

follows: PCSN = P (Tc > 0| data follow a normal distribution). Similarly, if the

data were originally coming from G(α, β), the PCSN can be written as follows:

PCSG = P (Tc < 0| data follow Gumbel distribution). Since for normal distribu-

tion

PCSN = P [Tc > 0] ≃ Φ

(

EN (T )
√

V arN (T )

)

= Φ

(

0.081016 × n
√

0.218282 × n

)

= Φ(0.1734
√

n)
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where Φ is the distribution function of the standard normal distribution. In the

same manner, we have for Gumbel distribution

PCSG = P [Tc < 0] = 1 − P [Tc > 0]

≃ 1 − Φ

(

EG(T )
√

V arG(T )

)

= 1 − Φ

(

−0.090573 × n
√

0.283408 × n

)

= Φ

(

0.090573 × n
√

0.283408 × n

)

= Φ(0.1701
√

n).

We use Monte-Carlo simulations to examine how the asymptotic results

work for small sizes. All computations are performed using the statistical freeware

R [20]. We compute the PCS based on simulations and those based on the

asymptotic normality results. Since the distribution of Tc is independent of the

location and scale parameters, we take the location and scale parameters to be

zero and one respectively in all cases. We consider different sample sizes, namely

n = 20, 30, 40, 50, 60 and 100. First we consider the case when the data comes

from normal distribution. In this case we generate a random sample of size n

from N(0, 1), we compute Tc and check whether Tc is positive or negative. We

replicate the process 10 000 times and obtain an estimate of PCS. Similarly, we

obtain the results when the data comes from Gumbel distribution. The results

are reported in Table 1.

Table 1: PCS’s based on Monte Carlo simulations (MC) with 10 000

replications and those based on the asymptotic results (AR)

when the data come from the normal (Gumbel) distribution

respectively.

Sample size (n) MC Asymptotic results

10 0.62 (0.70) 0.71 (0.70)
20 0.75 (0.79) 0.78 (0.77)
30 0.81 (0.84) 0.84 (0.82)
40 0.86 (0.88) 0.86 (0.85)
50 0.90 (0.91) 0.89 (0.88)
60 0.91 (0.92) 0.91 (0.90)
70 0.93 (0.94) 0.93 (0.92)
80 0.94 (0.95) 0.94 (0.94)
90 0.95 (0.96) 0.95 (0.95)

100 0.96 (0.97) 0.96 (0.95)
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The comparison between the MC simulation and the asymptotic results

shows that the asymptotic approximation works quite well even for small samples.

Results also reveal that it is easy to discriminate between normal and Gumbel

distributions even for a small sample as 20. For example, the comparison of the

results of Table 1 with those of Kundu and Manglick [17] shows that the selection

between the normal and Gumbel distributions gives an asymptotic approximation

more accurate even for a small sample size when the data comes from Gumbel

distribution. Table 1 shows that the minimum sample size needed to choose

between normal and Gumbel distributions is less than 50; it is also clear that the

power of the test varies between 0.62 and 0.96 as the sample size varies between

10 and 100.

5. CONCLUSION

The normal and Gumbel distributions are often considered as competing

models when the variable of interest takes values from −∞ to +∞. In this work

we consider the statistic based on the RML and obtain asymptotic distributions

of the test statistics under null hypothesis. Using MC simulations we compare the

probability of correct selection with these asymptotic result and it is observed that

even when the sample size is as small as 20, these asymptotic results work quite

well for a wide range of the parameter space. Therefore, these asymptotic results

can be used to estimate the PCS. Our method can be used for discriminating

between any two members of the different location and scale families.
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1. INTRODUCTION

We describe first the real-life application which sets the directions and

frames the questions pursued in this work (Section 1.1). We then outline the

contributions and the structure of this work (Section 1.2).

1.1. Motivation

This work is motivated by applications to ship motions and, more specifi-

cally, their stability in irregular seas. See, for example, Lewis [25], Benford [7],

Belenky and Sevastianov [4], Neves et al. [28] for more information on this re-

search area. When it comes to ship stability, the focus is on several variables

characterizing the ship motion including roll and pitch angles, which are, respec-

tively, the rotational movements around longitudinal (stern-to-bow) and lateral

(starboard-to-port side or right-to-left side) axes, as well as vertical and lateral

accelerations in various locations on the ship. See Figure 1. The ship stability

failures are related directly to the exceedance of certain values by these vari-

ables. For example, the exceedance of a certain roll angle can lead to a cargo

shift (which then can lead to capsizing), loss or damage of cargo in containers on

deck, or down-flooding internal volumes of a ship. A large enough acceleration

can lead to serious injuries or even death of a crew and passengers, as well as

cargo damage. Such occurrences are well known not only among the researchers

working in the area but also often make it to the popular media.
1

Sway
Heave

G 

Surge

Yaw Pitch

Roll

Figure 1: The motions of the ship.

1Recent examples of accidents related to intact stability failures include: Ro/Ro Ferry Aratere
on 3rd March 2006 (Maritime New Zealand, 2007), Cruise ship Pacific Sun on 30 July 2008 (Ma-
rine Accident Investigation Branch, 2009), Ferry Ariake on 13 November, 2009 (Transportation
Safety Board, 2011), to name but a few.
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The measured variables of interest to stability are understandably affected

by the geometry and loading of the ship, the operational parameters and the

surrounding sea. The operational side includes the heading (the angle between

the vector of ship speed and predominant direction of wave propagation) and the

value of speed of the ship. The state of the sea is usually described by a spectrum

of wave elevations. Note that a wide range of conditions (the values of the above

descriptors) are possible. What can be expected under a particular condition

is often suggested from the understanding of the dynamics governing the ship

motion.

An appealing but also critical feature of the research area is the availability

of computer programs simulating ship motions, see the recent state-of-the-art

review by Reed et al. [30]. In this work, we use a fast volume-based ship motion

simulation algorithm developed in Weems and Wundrow [37]. The developed

code does not incorporate finer hydrodynamics features of ship motions such

as the influence of a ship motion on wave pressure field (i.e. wave diffraction

and radiation; cf. Large Amplitude Motion Program or LAMP, see Lin and Yue

[26]). But it is considered qualitatively representative of ship motions and their

extremes. Moreover, the code is fast enough (in fact, the only such realistic

method available) to be used in validation, where very long time histories of ship

motions are necessary (see Section 3 below).
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Figure 2: The roll and pitch angle series for 10 minutes.

Figure 2 depicts the time series of roll and pitch angles obtained by the

above referenced code for a 10 minute time window at 0.5 second measurement

intervals. The ship geometry is that of the ONR tumblehome top (Bishop et al.

[8]). The heading is at 45 degrees, the speed is 6 knots, the waves are character-

ized by significant height of 9m and mean zero-crossing period of 10.65s which

corresponds to 15s of the modal period, using Bretschneider spectrum in open

ocean (Lewis [25]).
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A basic problem is to estimate the probability of roll, pitch or other variable

of interest exceeding a critical value, as well as to provide a confidence interval.

For example, in the condition of Figure 2, one could be interested in the roll angle

exceeding 60 degrees (in either positive or negative direction). Inference would

have to be made from the roll series of, for example, 100 hours, which would

typically not contain such extreme occurrences. Again, the critical angle is often

suggested from real-life considerations.

A method suggested for the problem above (and, more specifically, the

associated confidence intervals) can be assessed through a validation procedure.

The computer code mentioned above can be used to generate millions of hours

of ship motion data which would contain exceedances of the target of interest.

The “true” exceedance probability can then be estimated directly from this long

history of the ship motion. In the validation procedure, the performance of the

suggested method could be checked against the “true” exceedance probability at

hand. See Section 3 for further details and a solution to the estimation problem.

1.2. Description of work and contributions

A natural mathematical framework to address the problem of estimating

exceedance probabilities described above is the peaks-over-threshold (POT) ap-

proach (see, for example, Embrechts et al. [18], Coles [9], Beirlant et al. [2], as well

as de Carvalho et al. [11], Ferreira and de Haan [19] for more recent related work).

According to this approach, the probability of exceeding a given target of interest

is computed as the product of the probability of exceeding a smaller threshold

and the (conditional) probability of exceeding the target above the threshold.

The former probability is estimated simply as the proportion of data above the

chosen threshold. The peaks over the threshold are modeled using the generalized

Pareto distribution (GPD), whose complementary distribution function has the

form

(1.1)

Fµ,ξ,σ(x) :=

(

1 +
ξ(x − µ)

σ

)

−1/ξ

+
:=



















(

1 +
ξ(x−µ)

σ

)

−1/ξ
, µ<x, if ξ>0,

e−
x−µ

σ , µ<x, if ξ=0,
(

1 +
ξ(x−µ)

σ

)

−1/ξ
, µ<x<µ− σ

ξ , if ξ<0,

where ξ is the shape parameter, σ is the scale parameter and µ is a threshold.

Note that the GPD has an upper bound (−σ/ξ) (above the threshold) for a

negative shape parameter ξ < 0. When ξ = 0, the GPD is the usual exponential

distribution.

We are interested here in what confidence intervals should be used for an ex-

ceedance probability. As indicated above, in the POT approach, this exceedance
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probability is the product of two probabilities, one of them being the exceedance

probability for GPD. The questions then is what confidence intervals should be

used for the exceedance probability in the GPD framework. The probability of

the GPD exceeding a fixed target c (above the threshold), and its estimator are

given by:

(1.2) pc = pc(ξ, σ) =

(

1 +
ξc

σ

)

−1/ξ
, p̂c = pc(

̂ξ, σ̂) =

(

1 +

̂ξc

σ̂

)

−1/bξ
,

where ̂ξ and σ̂ are some estimators of the shape and scale parameters, respectively.

Somewhat surprisingly, the question of confidence intervals for the exceedance

probability in (1.2) has apparently not been considered in much depth in the

literature on extreme values. The paper by Smith [33], which laid the mathe-

matical foundations for the ML estimators of the GPD, considers the problem

of estimating the exceedance probability and provides the asymptotic normality

result for the probability estimator (Section 8 of Smith [33]). This can in turn

be used for confidence intervals but the normality assumption is not particularly

appropriate (see Section 2 below).

Estimation of exceedance probabilities has also been considered by others

but with different goals in mind. For example, Smith and Shively [34] are in-

terested in trends for exceedance probabilities. Exceedance probabilities in the

spatial context appear in Draghicescu and Ignaccolo [16]. Considerable interest

in exceedance (also sometimes referred to as failure) probabilities is when working

with multivariate extremes. See, for example, de Haan and Sinha [13], de Haan

and de Ronde [12], Heffernan and Tawn [20], Drees and de Haan [17].

Much of the focus in the extreme value analysis, on the other hand, has

been on the related inverse problem of quantile estimation (see, for example,

Embrechts et al. [18], Coles [9], Beirlant et al. [2]). The quantiles have been of

greater practical interest in many applications driving the extreme value analy-

sis, including finance (VaR calculations), insurance and hydrology (1-in-T years

event). A closer look at the confidence intervals for quantiles can be found in

Hosking and Wallis [22], Tajvidi [36] and also Section 4.3.3 of Coles [9], Section

5.5 of Beirlant et al. [2].

In applications to ship motions, as indicated in Section 1.1, it is common

to look at the probabilities of exceeding a particular target rather than quantiles.

Though perhaps not surprisingly, the two perspectives are also complementary.

In fact, one of our findings is that the confidence intervals for exceedance prob-

abilities perform well if constructed from those for quantiles. Another reason to

focus on probabilities rather than quantiles is that probabilities can be aggregated

naturally into “lifetime” probabilities, when integrated over a set of conditions of

interest (as discussed, for example, in Section 1 of Belenky and Sevastianov [4]).

We study a number of ways to construct confidence intervals for the ex-
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ceedance probability of the GPD and, more generally, in the POT framework in

Section 2. We consider both direct methods, which are based on the functional

form of exceedance probability (1.2) and the sampling distribution of the under-

lying estimators ̂ξ, σ̂, and indirect (inverse) methods, which construct confidence

intervals from those for quantiles.

The application of the considered confidence intervals to ship motions can

be found in Section 3. In the validation procedure, the performance of the con-

fidence intervals is analogous to that found under the idealized GPD framework.

In particular, the methods recommended under the GPD framework also perform

well and best in the application to ship motions. It should also be noted that the

proposed solution is the first to address satisfactorily the estimation problem of

the exceedance probabilities in ship stability. Some earlier attempts include Be-

lenky and Campbell [5] who used the Weibull distribution (instead of the GPD)

to fit peaks over threshold, and McTaggart [27].

Finally, in Section 4, we discuss the issue of uncertainty (the size of confi-

dence intervals) and its reduction. Conclusions can be found in Section 5.

2. CONFIDENCE INTERVALS FOR EXCEEDANCE PROBABIL-

ITIES

2.1. Methods for GPD

We study and assess here several ways to construct confidence intervals

for the exceedance probability pc of the GPD given in (1.2). The probability is

estimated through p̂c in (1.2) where we use the ML estimators ̂ξ and σ̂ computed

from the sample y1, ..., yn of size n. The large sample asymptotics of the ML

estimators (Smith [33]) is the bivariate normal,

(2.1)
√

n
(

̂ξ − ξ0

σ̂ − σ0

)

d
→ N (0, W−1

),

where ξ0, σ0 denote the true values and

(2.2) W−1
=

(

1 + ξ0 −σ0

−σ0 2σ2
0

)

.

In practice, the limiting covariance matrix can be estimated by replacing ξ0 and

σ0 with their respective estimators ̂ξ and σ̂. Another common choice is to ap-

proximate nW through the observed information matrix

(2.3) n̂W =

(

− ∂2

∂ξ2 l(ξ, σ) − ∂2

∂ξ∂σ l(ξ, σ)

− ∂2

∂ξ∂σ l(ξ, σ) − ∂2

∂σ2 l(ξ, σ)

)

(ξ,σ)=(bξ,bσ)

,
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where l(ξ, σ) =
∑n

i=1 ln fξ,σ(yi) is the log-likelihood and fξ,σ(y) denotes the den-

sity of the GPD. Strictly speaking, the asymptotic result (2.1) holds for ξ > −1/2

only (Smith [33]). It should also be noted that other estimation methods than

the MLE are possible for ξ0 and σ0. See, for example, a review paper by de Zea

Bermudez and Kotz [14, 15] and references therein. Some of these estimators

outperform the ML estimators for small samples. For the sample sizes relevant

to our problem of interest, the ML estimators seem to perform quite well and,

in particular, to be approximately normal as stated in (2.1), and will be used

throughout this work.

The exceedance probability pc = pc(ξ, σ) in (1.2) is a function of ξ and

σ, and is estimated through (1.2) by replacing the two parameters ξ and σ by

their ML estimates. A confidence interval for pc can then naturally be obtained

through the standard delta method, using the asymptotic result (2.1). This is

the approach seemingly adopted by Smith [33], Section 8. However, we found the

delta method to perform poorly, in part because pc can be very small and the

normal approximation of p̂c may be sufficiently wide to include negative values.

We have also tried the delta method for log pc but the normal approximation

did not appear to provide a good fit to log p̂c. Consequently, we consider be-

low several, potentially more accurate ways to construct confidence intervals for

the exceedance probabilities: the normal and lognormal methods, the boundary

method, the bootstrap method, the profile likelihood method and the quantile

method. The terminology behind the normal, lognormal, boundary and quantile

methods are ours.

Normal method: The idea behind the normal method is still to use

(2.1), which as mentioned earlier provides a good approximation in practice, but

not to linearize the function pc(ξ, σ) (or log pc(ξ, σ)) as in the unsatisfactory

delta method. In fact, assuming the bivariate normal approximation for ̂ξ and σ̂

according to (2.1), we can derive the exact distribution of p̂c as follows. Observe

that the distribution function of p̂c is: for 0 ≤ z ≤ 1,

Fbpc
(z) = P

((

1 +

̂ξc

σ̂

)

−1/bξ
≤ z
)

= P
((

1 +

̂ξc

σ̂

)

−1/bξ
≤ z, 1 +

̂ξc

σ̂
> 0

)

+ P
(

1 +

̂ξc

σ̂
≤ 0

)

,

where we use the fact that p̂c = 0 if 1 + ̂ξc/σ̂ ≤ 0. This can further be expressed

as

Fbpc
(z) = P

(

σ̂ ≤
̂ξc

z−bξ − 1

, σ̂ > −̂ξc
)

+ P (σ̂ ≤ −̂ξc),

if we assume that σ̂ takes only positive values. (Note also that ̂ξ/(z−
bξ − 1) > 0

for both ̂ξ < 0 and ̂ξ > 0.) Note, however, that it is not possible to have σ̂ >
̂ξc/(z−ξ − 1) and σ̂ ≤ −̂ξc. Indeed, this is certainly not possible if ̂ξ > 0, since

then −̂ξc < 0 and ̂ξc/(z−
bξ − 1) > 0. If ̂ξ < 0, on the other hand, this is not
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possible since −̂ξc ≤ ̂ξc/(z−
bξ − 1) or, equivalently, z−

bξ < 1. Hence, we also have

(2.4) Fbpc
(z) = P

(

σ̂ ≤
̂ξc

z−bξ − 1

)

=

∫

σ≤ξc/(z−ξ−1)
gbξ,bσ(ξ, σ)dξdσ,

where gbξ,bσ(ξ, σ) denotes the bivariate normal density of the limit law (2.1) (re-

placing ξ0 and σ0 by ̂ξ and σ̂). In practice, the distribution function Fbpc
(z) is

computed numerically and the 100(1 − α)% confidence interval is set as (z1, z2)

where zj = inf{z : Fbpc
(z) ≥ αj}, j = 1, 2, where α1 = α/2 and α2 = 1− α/2. We

use the generalized inverse in the last expression since Fbpc
(z) can have a discon-

tinuity (mass) at z = 0.

Lognormal method: In the normal method above, we assumed that σ̂

does not take negative values or that, from a practical perspective, the probability

of σ̂ being negative according to (2.1) is negligible. This may not be the case for

smaller values of σ and sample sizes n. A natural way to address this is by

parameterizing the GPD through ξ and lnσ, instead of σ. The difference is that

lnσ now takes possibly negative values. The asymptotic normality result then

becomes

(2.5)
√

n
(

̂ξ − ξ0

̂lnσ − lnσ0

)

d
→ N (0, W−1

1 ),

where

(2.6) W−1
1 = diag{1, σ−1

0 }W−1
diag{1, σ−1

0 }.

Arguing as in the normal method above, we have

(2.7) Fbpc
(z) = P

(

̂lnσ ≤ ln

̂ξc

z−bξ − 1

)

=

∫

ln σ≤ln(ξc/(z−ξ−1))
gbξ,dln σ

(ξ, lnσ)dξd ln σ,

where gbξ,dln σ
(ξ, lnσ) denotes the bivariate normal density of the limit law (2.5).

The confidence interval can then be computed as in the normal method above.

We shall refer to this as the lognormal method. A nice feature of the normal

and lognormal methods is that they provide confidence intervals even in the case

when ̂ξ < 0 and the target is beyond the estimated support bound (−σ̂/̂ξ).

Boundary method: The normal and lognormal methods described above

involve a relatively intensive numerical computation of the integrals (2.4) and

(2.7). An approximate confidence interval which is fast to compute and easy to

implement, can be constructed through the following boundary method. That is,

take the confidence interval as

(2.8)

(

min
j,k=1,2

pc(ξj , σk), max
j,k=1,2

pc(ξj , σk)

)

,

where ξ1, ξ2 and σ1, σ2 are suitable critical values of the distributions of ̂ξ and

σ̂, respectively. If ̂ξ and σ̂ were asymptotically uncorrelated, it would be natural
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to consider ξj = ̂ξ ± C√
αsebξ and σk = σ̂ ± C√

αsebσ, where se stands for standard

error, Cβ denotes the 100(β/2)% quantile of the standard normal distribution and

(1 − α)% is the confidence level sought. To account for the correlation between

̂ξ and σ̂, we take

(2.9)

(

ξj

σk

)

= V

(

ξ0,j − ̂ξ
σ0,k − σ̂

)

+

(

̂ξ
σ̂

)

,

where n−1W−1
= V DV ′

with a diagonal D = diag{d1, d2} and ξ0,j = ̂ξ±C√
α

√
d1

and σ0,k = σ̂ ± C√
α

√
d2. Note that the confidence intervals obtained by the

boundary method are expected to be conservative. Indeed, the region deter-

mined by the points (ξj , σk) can be thought as the 100(1−α)% confidence region

for the parameters ξ0 and σ0. But since pc(ξ, σ) is not a one-to-one function,

there are points (ξ, σ) outside the confidence region for which the value pc(ξ, σ)

falls inside the confidence interval (2.8).

Bootstrap method: The bootstrap method is somewhat standard with

the confidence interval determined by the 100(α/2)% and 100(1−α/2)% quantiles

of the bootstrap distribution of the exceedance probability.

Profile (likelihood) method: The profile (likelihood) method refers to

another standard method to construct confidence intervals based on the profile

likelihood. This is achieved by first expressing σ as a function of ξ and the

exceedance probability pc,

σ =
ξc

p−ξ
c − 1

,

then parameterizing the likelihood in terms of ξ and pc (instead of σ), and finally

constructing the confidence interval based on the profile likelihood in a standard

way. (See Coles [9] for the same approach when estimating a return level, instead

of an exceedance probability.) Since the exceedance probability is constrained to

be nonnegative, the use of the profile likelihood may be questionable.

Quantile method: Finally, the quantile method actually refers to a set

of methods. The basic idea is the following. Exceedance probabilities p (pc

above) are associated with respective return levels (quantiles) xp (c above) of the

GPD distribution. A return level xp can be estimated with a confidence interval

x̂p ± mp. Any of the methods discussed above (normal, lognormal, boundary,

bootstrap and profile) can be adapted to construct a confidence interval for xp –

the difference being that the function (1.2) is now the return level

(2.10) xp = xp(ξ, σ) =
σ

ξ

(

p−ξ − 1

)

.

Moreover, the plot of (− ln p, x̂p) with added confidence intervals is known as

a return level plot (e.g. Coles [9]). To indicate the underlying method used to

set confidence intervals for return levels, we will refer to the quantile method as
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quantile-boundary, quantile-lognormal, etc. A natural way to set a confidence

interval for the exceedance probability pc of the level c is then

(2.11) (p1, p2),

where p1 = inf{p : x̂p + mp ≥ c} and p2 = inf{p : x̂p −mp ≥ c} (with inf{∅} = 0).

See Figure 3. For the parameter values considered below, the functions x̂p + mp

and x̂p −mp are increasing and continuous in the argument (− ln p). The quantile

approach is appealing in that it makes estimation of exceedance probabilities and

return levels consistent.

In the reliability context and for a location-scale family of distributions, the

quantile approach was studied in Hong et al. [21] (see also Section I-C therein

for earlier uses of connections between confidence intervals for quantiles and ex-

ceedance probabilities).

x̂p

x̂p + mp

x̂p − mp

− ln p

xp

c

p1 p2p̂c

Figure 3: The quantile method to set confidence intervals

for exceedance probability.

2.2. Simulation study for GPD

We examine here the confidence intervals proposed in Section 2.1 through

a simulation study. The empirical coverage frequencies of the confidence intervals

(based on 500 Monte Carlo replications) are reported in Tables 1 and 2 for the

sample sizes n = 100 and n = 50, respectively. The sample size of approximately

n = 100 is a typical value that we encounter in the application to ship motions

described in Section 3 below. The results are also presented for the smaller sample

size n = 50, since in practice, one does not expect many peaks over a threshold

for which the GPD is used as a model.
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The first four columns in the tables present the true values of the parameters

ξ0, σ0, and also the target c and the corresponding exceedance probability pc. The

values of ξ0 = ±.1 are some of the typical values encountered in our application

of interest. When ξ0 = .6, the GPD has infinite variance but finite mean. σ0 is

just a scale parameter, which we fix at 1. For the other two true parameters, we

fix the exceedance probability pc and compute the respective target c.

The other columns of the tables correspond to the methods considered.

The normal, lognormal and boundary methods use the limiting covariance matrix

W−1/n in (2.1). It is approximated by the inverse of the observed information

matrix (2.3), which we found to yield better results than using, for example, the

expression (2.2) (with ξ0, σ0 replaced by ̂ξ, σ̂). The bootstrap method is based on

500 bootstrap replications. Finally, for the quantile methods, we consider three

ways to construct confidence intervals for the return levels: lognormal, boundary

and profile.

A number of observations can be drawn from Tables 1 and 2. The nor-

mal and lognormal methods are slightly anti-conservative, with the lognormal

method preferred. The reason for the methods being anti-conservative is the es-

timation of the limiting covariance matrix W−1/n in (2.1). The intervals have

the expected coverage probability if the true covariance matrix (2.2) is taken (the

exact coverage probabilities not reported here). As claimed in Section 2.1, the

boundary method yields slightly conservative confidence intervals. The bootstrap

and profile methods do not work well, especially for the value of ξ0 close to zero

or negative. Again, we suspect that this is due to the fact that the probability

cannot be negative. Issues with bootstrap for the GPD were also reported and

studied in Tajvidi [36].

Turning to the quantile methods, the quantile-lognormal method is slightly

anti-conservative, as is the direct lognormal method. The quantile-boundary

method is, on the other hand, slightly conservative. The quantile-profile method

seems to perform best, with the coverage probabilities consistently close to the

nominal level. Note that the profile-likelihood method for return levels does not

have such pronounced limitation of the same method for exceedance probabilities

– although it is true that a return level cannot be negative, the confidence interval

would rarely reach zero. Note also that the results for n = 100 and n = 50 are

comparable. One notable difference is that the quantile methods become slightly

more anti-conservative when the sample size is reduced from n = 100 to n = 50.

In conclusion, the quantile method based on profile likelihood seems to

perform best among the methods considered. The (log)normal and boundary

methods, for both direct and indirect (quantile) approaches, can also be recom-

mended but keeping in mind their (anti)conservative nature. Finally, we also

note that the direct (log)normal and boundary methods are computationally less

intensive compared to the indirect (quantile) methods.
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Table 1: Coverage frequencies for confidence intervals when n = 100.

true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.4 90.8 96.2 68.2 76.2 92 97 95
6.84 10−5 95.2 95.6 97.6 65.6 78.8 88.8 96.6 94.6
7.49 10−6 94 94.6 96 74.6 80.8 91.2 96.8 94.2

.1 1 15.12 10−4 92.6 93.2 98 87 98.4 89.6 97 94.2
21.62 10−5 90.6 91.2 97.2 82.8 97.6 92.4 98.6 95.2
29.81 10−6 91.2 92.6 97.6 81.2 97.8 91.2 98.4 94.6

.3 1 49.5 10−4 91.8 92.4 98 89 97.2 89.4 97.4 92.2
102.08 10−5 88.8 89.2 98.4 86.6 97.6 92.2 97.8 95
206.99 10−6 93.4 94.2 99 91.8 98.6 92.6 98.4 94.4

.6 1 416.98 10−4 90.8 90.8 97.8 91 93.8 92.4 98.6 94.2
1665 10−5 92.8 93.2 98 92.6 95.6 92.6 98.4 94

6633.45 10−6 94 93.8 98.6 92 95.8 93.4 99.4 95.2

Table 2: Coverage frequencies for confidence intervals when n = 50.

true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.2 91.8 96.2 65.8 78 83.6 94 92.8
6.84 10−5 96 96 94.4 69.8 71.8 89.6 95.4 93.4
7.49 10−6 95.4 95.8 93.8 74.4 75.4 88.2 94.4 92.2

.1 1 15.12 10−4 91.4 92.2 97.6 75.6 98.4 89.9 97.4 92.6
21.62 10−5 87.6 89 96.6 67 98.2 88.4 96.8 94
29.81 10−6 90.8 92.2 96.2 70 98.2 88.8 96.4 93

.3 1 49.5 10−4 88.2 91 96 88 99 90 97.2 95.8
102.08 10−5 85.8 87.8 94.4 82.6 98.6 90.2 96.8 93.4
206.99 10−6 88.4 90 96.8 85.4 98.2 90.8 96.6 93.8

.6 1 416.98 10−4 80.4 90.6 98.2 88 96.4 89.8 98.4 93.4
1665 10−5 80.8 91.4 97 89.8 98.2 89.4 96.8 93

6633.45 10−6 83.4 90.2 97.8 89.4 98 92.6 97.4 92.8

2.3. The POT framework

Suppose now that x1, ..., xN are i.i.d. observations of a general (i.e. non-

GPD) random variable X, and that we are interested in estimating the probability

P (X > xcr) of the variable X exceeding a critical value xcr. Again, in the peaks-



550 Glotzer, Pipiras, Belenky, Campbell and Smith

over-threshold (POT) approach, the probability is written as

P (X > xcr) = P (X > u)P (X > xcr|X > u)

= P (X > u)P (X − u > xcr − u|X > u) =: Pnr · Pr,(2.12)

where u stands for an intermediate threshold, and the subscripts nr and r refer

to the non-rare and rare problems, respectively. The non-rare probability is

estimated directly from the data as the proportion of data above the threshold u,

̂Pnr =
∑N

j=1 1{xj>u}/N , with the respective confidence interval based on standard

binomial calculations. The rare probability is estimated supposing that the peaks

over threshold Y = X − u follow a GPD, and setting

̂Pr = p̂xcr−u,

where p̂c is the exceedance probability (1.2) in the GPD framework, estimated

from the data yi = xi′ − u of the peaks exceeding the threshold. The confidence

intervals for Pr = pxcr−u are constructed by one of the methods of Section 2.1.

The confidence interval for the original exceedance probability P (X > xcr) is

obtained by multiplying the respective endpoints of the confidence intervals of

Pnr and Pr.

Threshold selection has been discussed and studied by many authors (for

example, a review is given in Scarrott and MacDonald [32]) and is not the focus

here. A special feature of the application to ship motions discussed in Section 3

is that the threshold selection should be automated, but with the possibility of

closer examination if needed. The automatic selection is naturally sought in the

ship motion application because multiple records need to be analyzed for the

accuracy that is meaningful for practical applications.

In the automatic selection that we use, the threshold u is selected as the

maximum of the thresholds ush, ums, ume and urt chosen by the following four

automatic procedures. The thresholds ush, ums and ume are selected automat-

ically from the commonly used shape parameter, modified scale parameter and

mean excess plots, respectively. For example, the plot of the estimated shape pa-

rameters with confidence intervals (against thresholds) should be about constant

over the range where GPD fit is appropriate. The threshold ush is chosen as the

smallest threshold for which the horizontal line drawn from the corresponding

estimate passes through the confidence intervals of the shape parameter for all

the larger thresholds. The thresholds ums and ume are chosen similarly except

that the line in the mean excess plot does not need to be horizontal. The choice of

the three thresholds is illustrated in Figure 4, for one of the data sets considered

in Section 3 below.

The threshold urt, on the other hand, is selected following the Reiss and

Thomas [31], p. 137, automatic procedure (see also Neves and Fraga Alves [29]).

Let ξk,n be the estimates of the shape parameter ξ based on the k largest values
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Figure 4: Shape parameter, modified scale parameter and mean ex-

cess plots. The vertical dashed line indicates the thresh-

olds chosen with the corresponding (horizontal or arbi-

trary) lines passing through the confidence intervals for

the larger thresholds. The vertical solid line indicates the

threshold choice using the Reiss and Thomas method.

of yi (by using the moment estimation for computational efficiency). Choose k∗

as the value that minimizes

1

k

∑

i≤k

iβ|ξk,n − med(ξ1,n, ..., ξk,n)|,

where β = 1/2 (though other values of β < 1/2 can be considered as well) and

med denotes the median. In practice, after the suggestion of Reiss and Thomas,

the function above is slightly smoothed. The threshold urt is then chosen as the k∗

largest value of yi. It is depicted as a vertical solid line in Figure 4 and probably

better corresponds to a visually desired choice of threshold. In our experience,

the Reiss and Thomas choice most often provides the largest (most conservative)

value among the methods considered.

Table 3 presents the empirical coverage frequencies of the confidence inter-

vals constructed through the above POT approach for several non-GPDs. The

distributions considered are: the Weibull distribution with the CDF

F (x) = 1 − e−λxτ

, x > 0,

with parameters λ > 0, τ > 0; the Burr distribution with the CDF

F (x) = 1 −
( β

β + xτ

)λ
, x > 0,

with parameters λ > 0, τ > 0, β > 0; and the reverse Burr distribution with the

CDF

F (x) = 1 −
( β

β + (x+ − x)−τ

)λ
, x < x+,

with parameters λ > 0, τ > 0, β > 0. Two choices of the parameter τ are consid-

ered for the Weibull distribution, with τ = 1/2 (τ = 2, resp.) providing heavier
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(lighter, resp.) tails than exponential (but both associated with the shape param-

eter ξ = 0 in the POT framework). The Burr distribution has a power-law tail,

corresponding to the shape parameter ξ = 1/(τλ) in the POT framework. Simi-

larly, the reverse Burr distribution has a finite upper bound x+, and corresponds

to the negative shape parameter ξ = −1/(τλ) in the POT framework.

Table 3: Empirical coverage frequencies in the non-GPD context

using the POT approach.

non-GPD direct quantile

model parameters N n c pc logn bound logn bound profl

Weibull (λ, τ) = (1, 1/2) 2000 126 132.5 10−5 90.0 99.2 97.0 99.6 95.0
123 190.9 10−6 92.2 99.4 94.8 98.8 93.4

(λ, τ) = (1, 2) 2000 194 3.4 10−5 94.6 96.4 90.0 96.4 94.4
195 3.7 10−6 94.4 97.2 86.8 94.2 93.2

Burr (β, τ, λ) = (1, 2, 2) 2000 221 17.8 10−5 95.6 99.2 90.4 97.2 92.8
210 31.6 10−6 96.4 99.6 87.4 94.8 92.4

Reverse (β, x+) = (0.1, 10) 2000 156.5 9.8 10−5 96.8 93 83.4 92.4 90.8
Burr (τ, λ) = (2, 2) 150 9.9 10−6 98.2 92.2 80.4 90.2 89.0

Under the direct approach in Table 3, the coverage probabilities are re-

ported only for the lognormal and boundary methods. The quantile methods use

the proportion of data above the threshold to estimate Pnr but do not take the

estimation uncertainty of Pnr into account. Two of the columns also give the

sample size N and the average number of peaks over threshold n. As before, pc

is the exceedance probability and c is the corresponding critical target.

Our goal with Table 3 is not to provide an exhaustive study of the POT

approach in the non-GPD framework, but rather to make a few general comments.

First, note from the table that the approach works quite well. Second, note that

the performance of the considered methods is not as uniformly good as in the

GPD context. Thus, the performance of the methods for non-GPDs depends not

only on the way to produce confidence intervals above a threshold but also on

the non-GPD itself, as well as the (automatic) choice of the threshold.

3. APPLICATION TO EXTREME SHIP MOTIONS

We shall use the POT approach outlined in Section 2.3 to estimate the

probability of roll and pitch angle exceeding a critical value. Several issues need

to be addressed before we can apply the methods for constructing confidence
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intervals discussed in Section 2.3. An important and pressing issue is the presence

of temporal dependence as clearly seen from Figure 2. A related issue is also what

is meant by an exceedance probability and how it relates to time.

The issue of temporal dependence is addressed through the following enve-

lope approach. Motivated by the periodic nature of a ship motion, the maxima

and minima are first found between consecutive zero crossings of the series. These

are the positive and negative peaks in the series of interest. The absolute val-

ues of the peaks are then connected by a piecewise linear function producing

an envelope of the series. This is depicted in Figure 5. The left plot includes

the original roll series for 5 minutes, with the positive and negative envelope.

The right plot depicts the absolute values of the roll and the positive envelope

connecting linearly the absolute values of the peaks.
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Figure 5: The roll angle series with envelope for 5 minutes.

Left: original roll series. Right: roll series in abso-

lute value.

After the envelope is found for the whole roll time series (not just the 5

minutes shown), its average value is computed. Next, the maxima and minima

are found in the envelope between consecutive crossings of the average envelope

value. These are the envelope peaks above/below the envelope average. This is

illustrated in Figure 6, where the envelope average is plotted as a horizontal line

and the envelope peaks above/below the envelope average are indicated by small

black marks.

Note from Figure 6 that focusing on the envelope peaks (above the average)

deals, at least qualitatively, with temporal dependence. That is, the larger values

close in time are “clustered” and only the largest values in “clusters” are recorded

as envelope peaks. (A closer look at the decorrelation properties of the envelope

peak series can be found in a report by Belenky and Campbell [5].) In what

follows, we shall work only with the envelope peaks. It is also important to note

that the envelope approach is automated. This is particularly convenient when
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dealing with multiple conditions and many records.
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Figure 6: Envelope peaks above/below envelope average.

Left: 5 minutes. Right: 30 minutes.

Focusing on the envelope peaks also simplifies the notion of exceedance

and the associated exceedance probabilities. Note that the series of interest will

exceed a large target when an envelope peak will exceed the target. It is then

natural to think of an exceedance probability as that for the envelope peaks. This

is the perspective adopted throughout the paper.

We should also clarify what we mean by probabilities, which are now related

to the envelope peaks. Suppose a series contains 1, 000 envelope peaks of which

45 exceed a given threshold. Then, the estimated probability is 45/1000 = .045 of

exceeding the threshold. This probability is not informative without a reference

to time. Suppose the series is actually recorded over 15 minutes or 15 · 60 =

900 seconds. It is then more informative to consider the (probability) rate of

45/900 = .05 envelope peaks (over the threshold) per second. Though we will

continue referring to probabilities below, the results will be reported in terms of

(probability) rates, rather than probabilities themselves.

If x1, ..., xN are the envelope peaks of the series at hand, the exceedance

probability is then estimated with a confidence interval as explained in Section 2.3.

The performance of the confidence intervals can be assessed through a validation

procedure as follows. The computer code (discussed in Section 1) can be used

to generate significantly more series of ship motions, which contain rare events

of interest and from which exceedance probabilities can be estimated by direct

counting. More specifically, for the same condition used in Figures 2–6, the code

was used to generate 115, 000 hours of the ship motion. With the target roll

angle of xcr = 60 degrees, the probability rate of exceedance obtained by direct

counting based on rare events from the available records is 7.25 × 10
−8

envelope

peaks per second (that is, 30 envelope peaks above 60 degrees in 115, 000 hours).



Confidence Intervals for Exceedance Probabilities... 555

This“true”rate estimate can be supplemented by the confidence interval obtained

by a standard binomial argument.

A typical given series (record) to make inference from covers only 100 hours

and would not contain rare events of interest. For each record, confidence inter-

vals for exceedance probabilities can be computed as in Section 2.3. The confi-

dence intervals can then be assessed by their coverage frequencies of the “true”

exceedance probability. This could be examined graphically as in Figure 7 where

the lognormal, boundary, quantile-lognormal and quantile-profile confidence in-

tervals are presented for 100 records of the total length of 100 hours. The critical

value of interest is the roll of 60 degrees as above. Note that the vertical axis for

the probability rate is in the log scale, and that we truncated the confidence in-

tervals and the probability (rate) estimates at a practically negligible probability

rate of 10
−15

. The horizontal dashed lines indicate the confidence bounds for the

“true” probability. The small circles are the probability rate estimates.
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Figure 7: Confidence intervals for 100 records of the length of 100 hours.

Roll series for 45
◦

heading and with critical roll angle of 60
◦
.

Top left: lognormal method. Top right: boundary method.

Bottom left: quantile-lognormal method.

Bottom right: quantile-profile method.
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For the roll and pitch motion at 45 and 30 degree headings, we also report

the coverage frequencies for the methods of Section 2 in Table 4, based on the

results in 100 records. The columns under ̂ξ and n provide the average estimates of

the shape parameter and the number of peaks over threshold. The standard errors

are given in parentheses. In the parentheses under the coverage probabilities, we

provide the average of the sizes of the suggested confidence intervals above the

true value (supposing it is contained), which will be discussed further in Section 4

below.

Table 4: Headings of 30 and 45 degress. Roll: target is 60 at 45
◦

and 35 at 30
◦
. Pitch: target is 10.

series direct methods quantile methods

varble head bξ n logn bound boot profl logn bound profl

roll 45 0.19 96.06 96 97 92 100 96 97 96
(0.13) (31.76) (1.19) (1.46) (1.15) (1.52) (1.18) (1.41) (1.40)

30 0.04 105.03 84 91 76 99 84 91 89
(0.13) (46.96) (0.82) (1.13) (0.87) (1.37) (0.82) (1.12) (1.07)

pitch 45 −0.06 107.06 99 100 95 98 99 100 100
(0.11) (50.92) (0.62) (0.73) (0.57) (0.73) (0.62) (0.73) (0.74)

30 −0.08 107.63 97 98 94 96 97 98 98
(0.11) (46.61) (0.43) (0.49) (0.41) (0.51) (0.43) (0.48) (0.51)

Note from Table 4 that the performance of the confidence intervals is sim-

ilar to those in Sections 2.2 and 2.3. Target values are chosen based on available

rare events in the large set of records. The performance seems also satisfactory,

validating the approach from a practical perspective. The point of using such

validation is to show that the approach works on the ship motion data generated

by a qualitatively correct computer code, before applying the methods to real

or experimental data (where a large number of records are naturally not avail-

able). Or, put differently, had the methods not passed the validation, no applied

researcher would be confident in using them.

The approach to estimate the exceedance probabilities certainly works in

part because of the mathematical justification as outlined in Section 2.3. But

this is not the whole story! Another important component to success is related

to the length of the record and the physics of the ship motion. The 100–hour

records are typical for Naval Architecture purposes. Our results show that these

records have sufficiently enough physics to allow one to extrapolate into the tail

using the POT framework.
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4. UNCERTAINTY REDUCTION

An interesting but also practically important question is whether the un-

certainty of the estimators or, equivalently, the size of of the confidence intervals

can be reduced. For example, in Figure 7, the right (top) endpoints of the confi-

dence intervals are about one order of magnitude above the true value. One order

seems acceptable from a practical perspective. But we also encounter conditions

where the uncertainty could be as high as two or three orders of magnitude.

Can the uncertainty (or the size of confidence intervals) be reduced? It

surely depends on the approach and model used (that is, the POT approach with

the two parameter GPD above threshold), the sample size (that is, the number of

exceedances above threshold), and the efficiency of the estimation method used.

Efficiency cannot be improved considerably since the ML estimators of the GPD

parameters are used. But several directions could be explored when it comes to

the first two points.

More specifically, in Section 4.1, we study the situation where it may be

meaningful to fix a right upper bound when a negative shape parameter is ex-

pected. A substantial uncertainty reduction is achieved with this approach but

it may not be promising to search for extensions to positive shape parameters, or

ways of fixing a bound. Section 4.2 contains a short and, in our view, informative

account of several other possibilities that we tried but which did not lead to much

of the uncertainty reduction.

4.1. Fixing upper bound

When the shape parameter of a GP distribution is negative, the distribution

has a finite upper bound. One direction for uncertainty reduction is to fix this

upper bound before estimation based on some physical considerations, e.g. limit-

ing angle for roll after which ship capsizes. Fixing the bound reduces the number

of parameters from 2 to 1, so that the reduction of uncertainty is expected.

In applications to ship stability, the pitch motion typically yields a negative

shape parameter, as can already be seen from Table 4 (3rd column). There are

physical reasons for this phenomenon which, in technical terms, have to do with

the form of the stiffness of the pitch motion. Moreover, again for physical reasons,

an upper bound for the pitch motion may be expected at about 15
◦
–20

◦
, as roll

stiffness of ONR Tumblehome becomes flat and does not support any resonance

excitation. Details of the physics of the pitch motion go beyond the scope of this

paper.
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From a statistical standpoint, deriving the GPD framework with a fixed up-

per bound is straightforward. Suppose for notational simplicity that the thresh-

old µ is 0, and denote a fixed upper bound by ymax. When the shape param-

eter ξ of the GPD (1.1) is negative, the upper bound is given by (−σ/ξ). Set-

ting ymax = −σ/ξ, solving for ξ = −σ/ymax and substituting this into (1.1) when

ξ < 0, we obtain the complementary GPD function with the upper bound ymax,

(4.1) F σ(y) =

(

1 −
y

ymax

)ymax/σ
, 0 < y < ymax.

Note that the function (4.1) depends only on the scale parameter σ (with the

shape parameter of the GPD being ξ = −σ/ymax).

The parameter σ in (4.1) can be estimated using ML. Given observations

y1, ..., yn (all smaller than ymax), optimizing the log-likelihood

ℓ(σ) =

n
∑

i=1

log

(

1

σ

(

1 −
yi

ymax

)ymax/σ−1)

leads to the ML estimator

(4.2) σ̂ = −
ymax

n

n
∑

i=1

log

(

1 −
yi

ymax

)

.

The inverse of the observed information matrix can easily be checked to be

(4.3)

(

−
∂2ℓ

∂σ2

)

−1∣
∣

∣

σ=bσ =
σ̂2

n
.

A confidence interval for an exceedance probability pc = F σ0
(c) can then be given

by the boundary method as (F σ1
(c), F σ2

(c)), where σ1 = σ̂ − Cασ̂/
√

n and σ2 =

σ̂+Cασ̂/
√

n are two critical values for the distribution of σ̂ based on (4.3) (with as

before, Cα denoting the 100(α/2)% quantile of the standard normal distribution).

Figure 8 compares the confidence intervals for the exceedance probability of

the pitch motion at the 30
◦

heading (under the same condition as earlier) obtained

through the lognormal method as in Section 3, and the boundary method with the

upper bound fixed at 15
◦

as explained above. The left plot in Figure 8 corresponds

to the entry of Table 4 under “pitch”, “30” degree heading and “logn” method,

with the uncertainty measure of 0.43 in the parentheses. The same measure for

the right-plot of Figure 8 is 0.34. The reduction of uncertainty is also evident

from Figure 8 itself, with smaller variability of the estimators (red circles) and

the sizes of confidence intervals in the right plot.

It should also be noted that the results with the fixed upper bound are not

sensitive to the choice of the bound (suggested by physical considerations). For

example, fixing the bound at 17
◦

and 20
◦

leads to the same coverage frequency

of 99%, with the exception that the uncertainty measure above becomes slightly
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Figure 8: Confidence intervals for 100 records of the length of 100 hours.

Pitch 30
◦
. Left: lognormal method. Right: boundary method

with fixed upper bound at 15
◦
.

larger, 0.36 and 0.38, respectively. The conclusions are the same for the pitch

motion at the 30
◦

heading (not reported here).

Remark 4.1. Whether a similar approach can be developed for a positive

shape parameter remains an open question. One idea we entertained was to

experiment with truncated GPD models in the spirit of, for example, Aban et al.

[1], Beirlant et al. [3]. (Truncation seems natural because, for example, the roll

and pitch angles are bounded by 180 degrees.) But the truncated GPD models

did not appear to fit the data well. In Belenky et al. [6], we study extreme value

methods on mathematically tractable physical models mimicking ship motion

dynamics, and expect to gain further insight into the above issues from this

approach.

4.2. Other possibilities

We explored or thought about several other possibilities for uncertainty

reduction. One natural possibility would be to view the variables describing dif-

ferent conditions as covariates and then pool the data across different conditions

by modeling covariates to reduce uncertainty. This idea is particularly relevant in

the application of interest here since naval engineers have to take measurements

regularly across a range of conditions. The idea also has a sound statistical

footing, as developed in Davison and Smith [10] and described, for example, in

Chapter 6 of Coles [9].

Following this approach, we have modeled records across a number of head-
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ings (e.g. 15
◦
, 22.5◦, 30

◦
, 37.5◦, 45

◦
degrees). But we generally found the reduc-

tion in uncertainty small if any. Some of this is due to a small reduction of

uncertainty even under ideal situations (when the model incorporating the co-

variates is known). The uncertainty in the underlying model for the covariates

(entering the POT framework) also plays a role.

Finally, another possibility might be to use some of the more advanced

approaches in modeling dependent peaks over threshold, as in e.g. Smith et al.

[35]. The idea here is that this would seemingly allow for a larger sample size to

be considered. Even if the dependence structure is captured correctly by these

approaches, we also expect them to lead to little uncertainty reduction. As with

the covariates above, we view these approaches as serving different purposes and

used to answer different questions.

5. CONCLUSIONS

In this work, we studied the various methods to construct confidence in-

tervals for exceedance probabilities in the peaks-over-threshold approach. The

performance of the confidence intervals was assessed through several simulation

studies, pointing to the superior performance of some of the considered meth-

ods. The developed methods were applied to build confidence intervals for the

probabilities of extreme ship motions, leading to satisfactory results overall. Fi-

nally, several uncertainty reduction approaches were considered, with a promising

solution when a negative shape parameter is expected. Whether uncertainty re-

duction can be achieved in the case of a positive shape parameter remains an

open question.
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• covariate information; judgment ranking; stress-strength model.
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1. INTRODUCTION

Ranked set sampling (RSS) is a data collection technique which is advan-

tageous in settings where precise measurement is difficult (i.e. time-consuming,

expensive or destructive), but small sets of units can be accurately ranked without

actual quantification. The ranking of the units is usually done by using expert

opinion, concomitant variable, or a combination of them, and need not to be

exact.

The RSS method was introduced by McIntyre (1952) for estimating average

yields in agriculture. In this setup, precise measurement entails harvesting the

crops, and thus is expensive. An expert, however, can accurately rank the yields

in a small set of adjacent fields by visual inspection. There has been a surge of

research on RSS in the last two decades. The RSS has been applied in a variety

of areas such as forestry, environmental science and medicine. For a book-length

treatment of RSS and its applications, see Chen et al. (2004).

The RSS design can be elucidated as follows:

1. Draw m random samples, each of size m, from the target population.

2. Apply judgement ordering, by any cheap method, on the elements of

the ith (i = 1, ..., m) sample and identify the ith smallest unit.

3. Actually measure the m identified units in step 2.

4. Repeat steps 1–3, p times (cycles), if necessary, to obtain a ranked set

sample of size M = p m.

Let Xik be the ith judgement order statistic from the kth cycle. Then, the

resulting ranked set sample is denoted by {Xik : i = 1, ..., m ; k = 1, ..., p}. The

design parameter m is called set size.

A ranked set sample contains more information than a simple random sam-

ple of comparable size because it contains not only information carried by quan-

tified observations but also information provided by the judgment ranking mech-

anism. Thus, statistical procedures based on RSS tend to be superior to their

simple random sampling (SRS) analogs.

The success of RSS hinges on accuracy of the ranking process. To reduce

possible errors, the set size m should be kept small in the basic version of RSS. Al-

Saleh and Al-Kadiri (2000) suggested double RSS (DRSS) that increases efficiency

of the RSS mean estimator, given a fixed m. Al-Saleh and Al-Omari (2002)

generalized DRSS to multistage RSS (MSRSS), and showed that further gain

in efficiency can be achieved in estimating the population mean. Al-Saleh and

Samuh (2008) investigated the distribution function and the median estimation
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based on MSRSS.

The MSRSS scheme can be summarized as follows:

1. Randomly identify mr+1
units from the population of interest, where r

is the number of stages.

2. Allot the mr+1
units randomly into mr−1

sets of m2
units each.

3. For each set in step 2, apply steps 1–2 of RSS procedure explained

above, to get a (judgement) ranked set of size m. This step gives mr−1

(judgement) ranked sets, each of size m.

4. Without actual measuring of the ranked sets, apply step 3 on the mr−1

ranked set to gain mr−2
second stage (judgement) ranked sets, of size

m each.

5. Repeat step 3, without any actual measurement, until an rth stage

(judgement) ranked set of size m is acquired.

6. Actually measure the m identified units in step 5.

7. Repeat steps 1–6, p times (cycles), if necessary, to obtain an rth stage

ranked set sample of size M = p m.

Similar to our previous notation, {X
(r)
ik : i = 1, ..., m ; k = 1, ..., p} denotes the rth

stage ranked set sample. Clearly, the especial case of MSRSS with r = 1 corre-

sponds to RSS. Also, DRSS is obtained by setting r = 2.

The estimation of system reliability has drawn much attention in the sta-

tistical literature. Reliability of a component with strength X which is subjected

to stress Y is quantified by θ = P (X > Y ). This approach is known as the stress-

strength model. The estimation of θ has been extensively investigated in the

literature when X and Y are independent random variables, and belong to the

same family of distributions. A comprehensive account of this topic appear in

Kotz et al. (2003). In this article, we study reliability estimation in MSRSS setup.

In Section 2, a nonparametric estimator is proposed and its properties are

investigated in theory. Section 3 is given to a Monte Carlo analysis of the finite

sample behavior of the estimator. A sport data set is analyzed in Section 4. The

paper is concluded with a summary in Section 5.

2. ESTIMATION USING MSRSS

Let X1, ..., Xm and Y1, ..., Yn be independent random samples from two

populations with density functions f and g, respectively. The corresponding

distribution functions are denoted by F and G. The standard nonparametric



Reliability Estimation in Multistage Ranked Set Sampling 569

estimator of θ is

θ̂ =
1

mn

m
∑

i=1

n
∑

j=1

I(Xi > Yj),

where I(.) is the indicator function.

To construct an estimator under MSRSS, one needs two ranked set samples

of sizes m and n from f and g. It is assumed that the samples are drawn using

a single cycle. The results in the general setup are then easily followed. If X
(r)
i ,

i = 1, ..., m, and Y
(s)
j , j = 1, ..., n, are the two multistage ranked set samples, then

θ̂r,s =
1

mn

m
∑

i=1

n
∑

j=1

I(X
(r)
i > Y

(s)
j )

is a natural estimator of θ. The especial case of r = s = 1 was treated by Sengupta

and Mukhuti (2008).

Let f
(r)
i and F

(r)
i be the density and distribution function of X

(r)
i , respec-

tively. The notation g
(s)
j and G

(s)
j will be used for similar functions associated

with Y
(s)
j . Suppose the ith order statistic of an (r − 1)th stage ranked set sam-

ple of size m from f , say Z
(r−1)
1 , ..., Z

(r−1)
m , is denoted by Z

(r−1)
(i) . Under the

assumption of no error in judgment ranking, we have X
(r)
i

d
= Z

(r−1)
(i) .

In our mathematical development, the two identities

1

m

m
∑

i=1

f
(r)
i (x) = f(x)

and

1

n

n
∑

j=1

g
(s)
j (y) = g(y),

observed by Al-Saleh and Al-Omari (2002), are repeatedly used. The above

identities can be expressed in terms of distribution functions, as well.

It is straightforward to see that θ̂ is unbiased. The unbiasedness of θ̂r,s is

verified in the following proposition.

Proposition 2.1. θ̂r,s is an unbiased estimator of θ.
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Proof:

E

{

m
∑

i=1

n
∑

j=1

I(X
(r)
i > Y

(s)
j )

}

=

m
∑

i=1

n
∑

j=1

P (X
(r)
i > Y

(s)
j )

=

m
∑

i=1

n
∑

j=1

∫

P (X
(r)
i > y)g

(s)
j (y) dy

= n
m
∑

i=1

∫

P (X
(r)
i > y)g(y) dy

= n
m
∑

i=1

P (X
(r)
i > Y )

= n
m
∑

i=1

∫

P (x > Y )f
(r)
i (x) dx

= mn

∫

P (x > Y )f(x) dx

= mnP (X > Y ).

We now derive variance expressions of the two estimators.

Proposition 2.2. The variances of θ̂ and θ̂r,s are given by

m2n2V ar(θ̂) = m(m − 1)n(n − 1)θ2
+ nm(m − 1)E

{

F̄ (Y )

}2

+ mn(n − 1)E

{

G(X)

}2

+ mnθ − m2n2θ2,(2.1)

and

m2n2V ar(θ̂r,s) = E

{

m2
[

n
∑

j=1

F̄ (Y
(s)
j )

]2
−

m
∑

i=1

[

n
∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
}

+ mE

{

n2
[

G(X)

]2
−

n
∑

j=1

[

G
(s)
j (X)

]2
}

+ mnθ − m2n2θ2.(2.2)

Proof: It is easy to show that

m2n2E(θ̂2
) = E(A1 + A2 + A3 + A4),(2.3)
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where

E(A1) = E

{

m
∑

i6=i′=1

n
∑

j 6=j′=1

I(Xi > Yj)I(Xi′ > Yj′)

}

= m(m − 1)n(n − 1)θ2,(2.4)

E(A2) = E

{

n
∑

j=1

m
∑

i6=i′=1

I(Xi > Yj)I(Xi′ > Yj)

}

=

n
∑

j=1

m
∑

i6=i′=1

EE

{

I(Xi > Yj)I(Xi′ > Yj)

∣

∣

∣
Yj

}

=

n
∑

j=1

m
∑

i6=i′=1

E

{

F̄ (Y )

}2

= nm(m − 1)E

{

F̄ (Y )

}2

,(2.5)

E(A3) = E

{

m
∑

i=1

n
∑

j 6=j′=1

I(Xi > Yj)I(Xi > Yj′)

}

=

m
∑

i=1

n
∑

j 6=j′=1

EE

{

I(Xi > Yj)I(Xi > Yj′)

∣

∣

∣
Xi

}

=

m
∑

i=1

n
∑

j 6=j′=1

E

{

G(X)

}2

= mn(n − 1)E

{

G(X)

}2

,(2.6)

and

E(A4) = E

{

m
∑

i=1

n
∑

j=1

I(Xi > Yj)

}

= mnθ.(2.7)

From (2.3)–(2.7) and unbiasedness of θ̂, the proof of the first part is complete.

Similarly,

m2n2E(θ̂2
r,s) = E(B1 + B2 + B3),(2.8)
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where

E(B1) = E

{

m
∑

i6=i′=1

n
∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j′ )

+

n
∑

j=1

m
∑

i6=i′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

}

=

m
∑

i6=i′=1

n
∑

j 6=j′=1

EE

{

I(X
(r)
i > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

EE

{

I(X
(r)
i′ > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j′

}

+

n
∑

j=1

m
∑

i6=i′=1

EE

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

= E

{

m
∑

i6=i′=1

n
∑

j 6=j′=1

[

F̄
(r)
i (Y

(s)
j )

][

F̄
(r)
i′ (Y

(s)
j′ )

]

+

n
∑

j=1

m
∑

i6=i′=1

[

F̄
(r)
i (Y

(s)
j )

][

F̄
(r)
i′ (Y

(s)
j )

]

}

= E

{

[

m
∑

i=1

n
∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
−

m
∑

i=1

n
∑

j=1

[

F̄
(r)
i (Y

(s)
j )

]2

−
m
∑

i=1

n
∑

j 6=j′=1

[

F̄
(r)
i (Y

(s)
j )

][

F̄
(r)
i (Y

(s)
j′ )

]

}

= E

{

m2
[

n
∑

j=1

F̄ (Y
(s)
j )

]2
−

m
∑

i=1

[

n
∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
}

,(2.9)

E(B2) = E

{

m
∑

i=1

n
∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

}

= m

n
∑

j 6=j′=1

E

{

I(X > Y
(s)
j )I(X > Y

(s)
j′ )

}

= m
n
∑

j 6=j′=1

EE

{

I(X > Y
(s)
j )I(X > Y

(s)
j′ )

∣

∣

∣
X

}

= m
n
∑

j 6=j′=1

E

{

[

G
(s)
j (X)

][

G
(s)
j′ (X)

]

}

= mE

{

n2
[

G(X)

]2
−

n
∑

j=1

[

G
(s)
j (X)

]2
}

,(2.10)

and

E(B3) = E

{

m
∑

i=1

n
∑

j=1

I(X
(r)
i > Y

(s)
j )

}

= mnθ.(2.11)
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Now the second part follows from (2.8)–(2.11) and unbiasedness of θ̂r,s.

The variances of θ̂ and θ̂r,s are compared in the next proposition.

Proposition 2.3. For any m, n ≥ 2 and r, s ≥ 1, V ar(θ̂r,s) ≤ V ar(θ̂).

Proof: Using equations (2.1) and (2.2), it can be shown

m2n2
[

V ar(θ̂) − V ar(θ̂r,s)

]

= C1 + C2 + C3,

where

C1 = E

{

m
∑

i=1

[

n
∑

j=1

F̄
(r)
i (Y

(s)
j )

]2
− m

[

n
∑

j=1

F̄ (Y
(s)
j )

]2
}

= E

{

m
∑

i=1

(

n
∑

j=1

[

F̄
(r)
i (Y

(s)
j ) − F̄ (Y

(s)
j )

])2
}

,

C2 = mn(n − 1)E

{

G(X)

}2

− mE

{

n2
[

G(X)

]2
−

n
∑

j=1

[

G
(s)
j (X)

]2
}

= mE

{

n
∑

j=1

[

G
(s)
j (X)

]2
− n

[

G(X)

]2
}

= mE

{

n
∑

j=1

[

G
(s)
j (X) − G(X)

]2
}

,

and

C3 = m(m − 1)n(n − 1)θ2
+ nm(m − 1)E

{

F̄ (Y )

}2

− m(m − 1)E

{

[

n
∑

j=1

F̄ (Y
(s)
j )

]2
}

= m(m − 1)

[

(1 −
1

n
)

(

n
∑

j=1

E

{

F̄ (Y
(s)
j )

})2

−
n
∑

j 6=j′=1

E

{

F̄ (Y
(s)
j )

}

E

{

F̄ (Y
(s)
j′ )

}]

= m(m − 1)

[

n
∑

j=1

E2

{

F̄ (Y
(s)
j )

}

−
1

n

(

n
∑

j=1

E

{

F̄ (Y
(s)
j )

})2]

= m(m − 1)

n
∑

j=1

E2

{

F̄ (Y
(s)
j ) − F̄ (Y )

}

.

Clearly, Ci ≥ 0, i = 1, 2, 3, as was asserted.
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As mentioned earlier, increasing the number of stages leads to improvement

in the context of mean and distribution function estimation based on MSRSS.

So, it is natural to observe similar trend in the case of reliability estimation. The

next result attends to this problem.

Proposition 2.4. For fixed m and n, V ar(θ̂r,s) is decreasing in r and s.

Proof: It suffices to show that V ar(θ̂r,s) ≤ V ar(θ̂r−1,s) and V ar(θ̂r,s) ≤

V ar(θ̂r,s−1). From the beginning of proof for the second part of Proposition 2.2,

one can write

m2n2E(θ̂2
r,s) = E

{

m
∑

i6=i′=1

n
∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j′ )

+

m
∑

i=1

n
∑

j 6=j′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

+

n
∑

j=1

m
∑

i6=i′=1

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

+

m
∑

i=1

n
∑

j=1

I(X
(r)
i > Y

(s)
j )

}

.(2.12)

We now establish some equalities and inequalities regarding the four expectation

terms on the right-hand side of the above equation. Let W
(r−1)
(i) be the ith order

statistic of an (r − 1)th stage ranked set sample of size m from f . As to the first

term, we have

E

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j′ )

}

= EE

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

= E

[

E

{

I(X
(r)
i > Y

(s)
j )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

× E

{

I(X
(r)
i′ > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}]

= E

[

E

{

I(W
(r−1)
(i) > Y

(s)
j )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

× E

{

I(W
(r−1)
(i′) > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}]

≤ EE

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

= E

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′ )

}

,(2.13)
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where the inequality holds owing to the positive covariance between any pair of

order statistics in a sample (see Lehmann (1966)).

Similarly, it follows that

E

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

}

= EE

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i′ > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

= E

[

E

{

I(X
(r)
i > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

× E

{

I(X
(r)
i′ > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}]

= E

[

E

{

I(W
(r−1)
(i) > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

× E

{

I(W
(r−1)
(i′) > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}]

≤ EE

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

= E

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

}

.(2.14)

In addition,

E

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

}

= EE

{

I(X
(r)
i > Y

(s)
j )I(X

(r)
i > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

= EE

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′ )

∣

∣

∣
Y

(s)
j , Y

(s)
j′

}

= E

{

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′ )

}

,(2.15)

and

E

{

I(X
(r)
i > Y

(s)
j )

}

= EE

{

I(X
(r)
i > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

= EE

{

I(W
(r−1)
(i) > Y

(s)
j )

∣

∣

∣
Y

(s)
j

}

= E

{

I(W
(r−1)
(i) > Y

(s)
j )

}

.(2.16)
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Putting (2.12)–(2.16) together, we get

m2n2E(θ̂2
r,s) ≤ E

{

m
∑

i6=i′=1

n
∑

j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j′ )

+

m
∑

i=1

n
∑

j 6=j′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i) > Y

(s)
j′ )

+

n
∑

j=1

m
∑

i6=i′=1

I(W
(r−1)
(i) > Y

(s)
j )I(W

(r−1)
(i′) > Y

(s)
j )

+

m
∑

i=1

n
∑

j=1

I(W
(r−1)
(i) > Y

(s)
j )

}

= m2n2E(θ̂2
r−1,s).

This implies that V ar(θ̂r,s) ≤ V ar(θ̂r−1,s) because θ̂r,s is unbiased for any r, s ≥ 1.

A similar argument proves the second part.

The above theoretical development assumes perfect rankings. It is possible

to obtain some results in the imperfect ranking situation. Suppose the ranking

mechanism is such that

1

m

m
∑

i=1

f̃
(r)
i (x) = f(x)

and

1

n

n
∑

j=1

g̃
(s)
j (y) = g(y),

where f̃
(r)
i and g̃

(s)
j are the density functions of the multistage judgment order

statistics drawn from the two populations. Then one can simply verify that

Propositions 2.1 and 2.3 still hold. However, it may not be an easy job to prove

Proposition 2.4 in this setup. In the next section, effect of the ranking errors is

assessed using Monte Carlo simulations.

3. NUMERICAL RESULTS

This section reports results of simulation studies carried out to compare the

performances of θ̂ and θ̂r,s. It is assumed that both populations follow normal,

exponential or uniform distribution. Suppose X and Y − µ are standard normal

random variables. Then, it is simply shown that

θ = Φ

(

−µ
√

2

)

,
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where Φ(.) is the distribution function of X. Similarly, for standard exponential

random variables X and Y/α, we have

θ =
1

1 + α
.

Finally, let X and Y/β be uniformly distributed on the unit interval. Then, it

follows that

θ =

{

1 − β/2 0 < β < 1

1/(2β) β ≥ 1
.

Under each parent distribution, three values were assigned to the associated pa-

rameter so as to produce θ = 0.25, 0.5, 0.75 which are referred to as cases A,

B and C, respectively. The appropriate parameter values are given in Table 1.

Also, sample sizes (m, n) ∈ {(3, 3), (4, 4), (5, 5)} and stage numbers (r, s) ∈ {(1, 1),

(2, 2), (2, 4), (3, 3), (4, 4), (4, 6), (5, 5)} were selected.

Table 1: Parameter values corresponding to case A, B and C.

Parameter A B C

µ 0.95387 0 −0.95387
α 3 1 1/3
β 2 1 1/2

We assume that the ranking the variables of interest X and Y are done

based on concomitant variables X and Y which are related according to equations

X = ρ1

(

X − µx

σx

)

+

√

1 − ρ2
1Z1

and

Y = ρ2

(

Y − µy

σy

)

+

√

1 − ρ2
2Z2,

where ρi ∈ [0, 1] (i = 1, 2), and Z1 (Z2) is a standard normal random variable inde-

pendent from X (Y ). Moreover, Z1 and Z2 are independent. The quality of rank-

ings are controlled by the parameter ρi’s. It is easy to see that Corr(X,X ) = ρ1

and Corr(Y,Y) = ρ2. The chosen values of (ρ1, ρ2) are (1, 1) for perfect rankings

of X and Y , (1, 0.8) for perfect ranking of X and fairly accurate ranking of Y ,

and (0.8, 0.8) for fairly accurate rankings of X and Y .

For each combination of distribution, sample sizes and correlations, 5,000

pairs of samples were generated in SRS and MSRSS (with the aforesaid stage

numbers). The two estimators were computed from each pair of samples, and

their variances were determined. The relative efficiency (RE) is defined as the

ratio of ̂V ar(θ̂) to ̂V ar(θ̂r,s). The RE values larger than one indicate that θ̂r,s is

more efficient than θ̂. Tables 2–4 display the results.
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Table 2: Estimated REs for different sample sizes and stage numbers

under normal distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.719 1.860 1.737 1.613 1.546 1.408 1.425 1.402 1.262
(2,2) 2.281 2.547 2.255 1.963 1.778 1.482 1.582 1.469 1.311
(2,4) 2.623 3.284 2.599 2.127 1.906 1.460 1.654 1.563 1.284

(3,3) (3,3) 2.662 3.323 2.724 2.391 1.996 1.527 1.766 1.584 1.355
(4,4) 3.078 4.034 3.052 2.535 2.149 1.697 1.880 1.685 1.410
(4,6) 3.295 4.325 3.155 2.468 2.223 1.664 1.778 1.692 1.470
(5,5) 3.291 4.435 3.304 2.641 2.224 1.634 1.834 1.652 1.423

(1,1) 2.141 2.334 2.118 1.847 1.721 1.493 1.526 1.461 1.302
(2,2) 3.006 3.760 2.959 2.421 2.152 1.703 1.755 1.678 1.442
(2,4) 3.626 4.559 3.534 2.598 2.275 1.766 1.910 1.738 1.502

(4,4) (3,3) 3.911 5.064 3.952 2.757 2.401 1.787 1.934 1.790 1.517
(4,4) 4.440 6.059 4.389 3.125 2.669 1.948 2.046 1.818 1.596
(4,6) 4.698 6.641 4.638 3.128 2.677 1.881 2.067 1.892 1.510
(5,5) 4.625 6.685 4.666 3.259 2.793 2.038 2.019 1.877 1.594

(1,1) 2.458 2.813 2.501 2.083 1.840 1.591 1.645 1.551 1.368
(2,2) 3.904 4.994 3.948 2.674 2.325 1.879 1.860 1.749 1.530
(2,4) 4.902 6.412 4.825 3.145 2.683 1.944 2.102 1.886 1.604

(5,5) (3,3) 5.061 6.916 5.019 3.258 2.741 1.942 2.067 1.882 1.536
(4,4) 6.071 8.783 6.079 3.415 2.925 2.080 2.156 2.014 1.680
(4,6) 6.435 9.502 6.405 3.379 2.942 2.054 2.111 1.978 1.589
(5,5) 6.627 10.050 6.726 3.768 3.162 2.166 2.261 2.042 1.641

Table 3: Estimated REs for different sample sizes and stage numbers

under exponential distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.699 1.894 1.727 1.570 1.559 1.372 1.247 1.312 1.264
(2,2) 2.310 2.724 2.279 1.798 1.853 1.544 1.267 1.421 1.323
(2,4) 2.762 3.141 2.479 1.972 1.948 1.553 1.352 1.450 1.350

(3,3) (3,3) 2.733 3.420 2.667 2.067 2.120 1.643 1.313 1.504 1.379
(4,4) 3.074 3.996 3.138 2.331 2.179 1.673 1.344 1.471 1.380
(4,6) 3.418 4.262 3.191 2.296 2.214 1.667 1.428 1.548 1.394
(5,5) 3.347 4.358 3.364 2.472 2.430 1.735 1.402 1.624 1.425

(1,1) 2.145 2.322 2.065 1.806 1.733 1.434 1.326 1.385 1.267
(2,2) 3.102 3.811 3.101 2.371 2.152 1.711 1.407 1.536 1.396
(2,4) 3.973 4.597 3.494 2.644 2.485 1.750 1.471 1.661 1.442

(4,4) (3,3) 3.832 5.034 3.880 2.589 2.476 1.810 1.393 1.557 1.443
(4,4) 4.507 6.178 4.567 3.063 2.774 1.943 1.423 1.624 1.554
(4,6) 5.282 7.028 4.795 2.991 2.789 1.983 1.469 1.673 1.601
(5,5) 4.903 7.039 5.043 3.185 2.764 1.869 1.490 1.640 1.471

(1,1) 2.486 2.756 2.454 1.974 1.871 1.532 1.303 1.416 1.338
(2,2) 3.961 4.954 4.081 2.896 2.606 1.829 1.513 1.712 1.518
(2,4) 5.338 6.308 4.510 2.979 2.604 1.742 1.490 1.622 1.411

(5,5) (3,3) 5.468 7.232 5.453 3.347 2.765 1.780 1.545 1.716 1.466
(4,4) 6.069 8.652 6.104 3.604 2.848 1.881 1.600 1.722 1.520
(4,6) 7.227 9.814 6.458 3.607 3.057 1.960 1.541 1.747 1.545
(5,5) 7.156 10.408 7.145 4.048 3.162 1.996 1.645 1.811 1.570



Reliability Estimation in Multistage Ranked Set Sampling 579

Table 4: Estimated REs for different sample sizes and stage numbers

under uniform distribution.

(ρ1, ρ2) = (1, 1) (ρ1, ρ2) = (1, 0.8) (ρ1, ρ2) = (0.8, 0.8)
(m, n) (r, s)

A B C A B C A B C

(1,1) 1.718 1.813 1.684 1.638 1.665 1.429 1.401 1.489 1.371
(2,2) 2.369 2.656 2.301 2.182 2.160 1.749 1.645 1.755 1.647
(2,4) 2.973 3.210 2.529 2.117 2.344 1.914 1.592 1.846 1.725

(3,3) (3,3) 2.927 3.370 2.866 2.429 2.341 1.848 1.725 1.795 1.707
(4,4) 3.272 3.913 3.350 2.869 2.678 1.926 1.808 1.984 1.713
(4,6) 3.788 4.311 3.463 2.720 2.592 1.922 1.688 1.907 1.691
(5,5) 3.625 4.348 3.690 2.942 2.764 2.045 1.793 1.994 1.817

(1,1) 2.024 2.298 2.030 1.903 1.916 1.653 1.422 1.613 1.524
(2,2) 3.142 3.726 3.283 2.763 2.593 2.004 1.766 1.915 1.796
(2,4) 4.435 4.670 3.410 2.839 2.808 2.199 1.734 2.037 1.993

(4,4) (3,3) 4.209 5.158 4.263 3.377 2.900 2.019 1.853 2.040 1.792
(4,4) 4.832 5.916 4.810 4.204 3.368 2.216 2.068 2.209 1.906
(4,6) 5.515 6.499 5.035 3.824 3.462 2.383 1.935 2.220 2.055
(5,5) 5.351 6.774 5.462 4.097 3.378 2.281 1.958 2.240 1.959

(1,1) 2.375 2.806 2.328 2.317 2.196 1.722 1.649 1.805 1.577
(2,2) 4.166 5.092 4.147 3.350 2.908 2.052 1.874 2.072 1.840
(2,4) 6.162 6.384 4.527 3.504 3.238 2.251 1.910 2.189 1.928

(5,5) (3,3) 5.593 6.732 5.547 4.096 3.395 2.235 1.995 2.244 1.894
(4,4) 6.934 8.888 6.965 4.683 3.794 2.365 1.962 2.305 2.011
(4,6) 8.384 9.715 7.319 4.943 3.732 2.452 2.125 2.391 2.077
(5,5) 8.206 10.226 8.064 5.590 4.256 2.535 2.200 2.508 2.144

It is observed that that MSRSS based estimator outperforms its SRS con-

tender in all situations considered. Moreover, for any (m, n), the RE is increasing

in both r and s, when the other factors are fixed. For example, compare entries

for m = n = 3. In general, no comparison can be made between REs in two se-

tups that one stage number is increased, and the other one is decreased. The

efficiency gain could be substantial if the set sizes and stage numbers are large,

e.g. when m = n = r = s = 5, the parent distribution is uniform, and the rank-

ings are perfect. It is to be mentioned that when (ρ1, ρ2) = (1, 1), the REs for

cases A and C are in good agreement (and smaller than that of case B) for all

distributions and sample sizes, particularly when r = s. As expected, the REs

diminish in the presence of ranking errors. The smallest values are obtained for

(ρ1, ρ2) = (0.8, 0.8).

4. APPLICATION TO REAL DATA

The MSRSS can be very efficient if the variable of interest is highly cor-

related to a concomitant variable. In this case, if the second variable can be

measured with negligible cost, then we may use it in judgment ranking process
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(see Stokes (1977) for more details). In doing so, in step 2 of the RSS procedure,

the elements of the ith sample are ordered according to the concomitant variable,

and then study variable is actually measured for unit ranked ith smallest. The

MSRSS case is treated similarly.

In this section, we illustrate the proposed procedure using a data set col-

lected at the Australian Institute of Sport. It is made up of thirteen measured

variables on 102 male and 100 female athletes
1
. We will consider lean body mass

(LBM) and body mass index (BMI) for each athlete. The LBM is a compo-

nent of body composition, calculated by subtracting body fat weight from total

body weight. Exact measurement of the LBM is done using various technologies

such as dual energy X-ray absorptiometry (DEXA) which is costly. On the other

hand, the BMI is a well-accepted measure of obesity which is easy to calculate

and readily accessible. A BMI value is is simply weight (in kg) divided by square

of height (in m). The correlation coefficient between the two variables is 0.71.

So, the BMI can serve as a concomitant variable.

Let X and Y be the LBM variable for the male and female populations,

respectively. It is of interest to estimate θ = P (X > Y ). For m = n = 4, 50,000

samples were drawn from the two hypothetical populations based on SRS and

MSRSS (with r = s = 1, 2) designs. The sampling is done with replacement to

ensure that the measured units are independent of each other. From each sample,

the corresponding estimator was computed, and its variance was finally deter-

mined. The efficiencies of θ̂1,1 and θ̂2,2 relative to θ̂ are estimated as 1.193 and

1.275, respectively. As expected, the SRS estimator is outperformed by its RSS

and DRSS versions. It is to be noted that the RE values are not much bigger

than unity. This may root in the relatively low correlation of 0.71 between the

variable of interest and the concomitant variable.

5. CONCLUSION

The RSS design is known to be a viable alternate to the usual SRS in situa-

tions that cost-efficiency is of high importance. It employs auxiliary information

to direct attention toward the actual measurement of more representative units in

the population under study. The success of RSS largely depends on the quality of

ranking process. Since judgment ranking on large sets of units is prone to errors,

the set size is chosen small in practice. The MSRSS allows to construct more

efficient procedures by increasing the number of stages rather that the set size.

This article deals with reliability estimation for the stress-strength model

using MSRSS. A nonparametric estimator is presented, and shown to be unbiased

1The data set can be found at http://www.statsci.org/data/oz/ais.html
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with smaller variance as compared with the usual estimator in SRS. It is further

proved that the estimator becomes more efficient by increasing the number of

stages for ranked set samples drawn from the two populations. Results of simula-

tion studies support the mathematical findings. An application to a real data set

clarifies how judgment ranking can be implemented using a concomitant variable.
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Abstract:

• Receiver operating characteristic (ROC) curves are useful statistical tools for medi-

cal diagnostic testing. It has been proved its capability to assess diagnostic marker’s

ability to distinguish between healthy and diseased subjects and to compare differ-

ent diagnostic markers. In this paper we introduce non parametric ROC summary

statistics to assess a ROC curve across the entire range of FPFs ∈ (0, 1) as well as

over a restricted range of FPFs and compare them with some existing ones through a

simulation study and through some real data examples. We also show their capability

to compare two diagnostic markers.
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• receiver operating characteristic; non parametric methods; diagnostic marker.
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1. INTRODUCTION

In a diagnostic setting, the performance of any continuous diagnostic marker

is primarily assessed through the receiver operating characteristic (ROC) curve

and the area under the ROC curve (AUC). The ROC curve is a plot of the sen-

sitivity (the probability that the marker will be above a given threshold for the

diseased subjects) against 1−specificity (the specificity being the probability that

the marker will be below the threshold for the healthy subjects) or, equivalently,

of the true positive fraction (TPF ) against false positive fraction (FPF ). Using

a threshold c,

ROC(·) = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}.

The AUC is a summary measure of the sensitivity and specificity over the range

of thresholds. Because of the AUC is scale free, ranging between 0.5 and 1, this

measure provides a natural common scale for comparing the different markers

regardless of their measurement scale. The ROC curve essentially provides a

distribution-free description of the separation between the distributions of dis-

eased and healthy subjects. Therefore, each of the summary measures is, in a

sense, a summary of the distance between these two distributions. In fact, the

empirical estimator of the AUC is equivalent to the Mann-Whitney U-statistic,

thus representing the probability that a subject, randomly selected among the

diseased, shows a marker value higher than a subject randomly extracted from

the healthy. Other summary measure is the maximum vertical distance between

the ROC curve and the 45
o

line, which is an indicator of how far the curve is

from that of the uninformative test. It ranges from 0 for the uninformative test

to 1 for an ideal test. This index is closely related to Kolmogorov-Smirnov mea-

sure of distance between two distributions ([7], [5]). Other test statistics such as

Anderson-Darling, Neyman and Watson tests were studied in [16] to assess diag-

nostic markers. They conclude that Anderson-Darling test is more powerful than

Kolmogorov-Smirnov test and it is a good alternative to AUC. However, it can

not be written in terms of functionals of the empirical ROC curve and it does not

have value itself. In this paper, we propose to measure the distance between the

ROC curve and the 45
o

line through their derivatives to assess the discriminatory

ability of a biomarker. This approach is closely related to a nonparametric test

for two sample problem based on an order statistic introduced in [1]. It does not

have value itself since it is not bounded but it has a geometric interpretation in

terms of the ROC curve.

When measurements on two diagnostic markers A and B are available,

the question of interest is which marker best discriminates between healthy and

diseased subjects. Various methods have been proposed for comparing the per-

formances of two diagnostic markers. See, for example [8], [11], [19], [23] and [5].

The most commonly approach to comparing ROC curves is to test the equality
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of their respective AUCs. The nonparametric version of the area test was devel-

oped in [9] and [10] for both unpaired and paired data. The test was refined in

[6]. Two permutation tests for comparing paired ROC curves were proposed in

[2] and [4]. However, when there is no uniform dominance between the involved

curves, we can find different curves with the same AUC. Therefore, these tests

are not valid to compare the equality among the ROC curves. In [21] it was

developed a fully nonparametric test to compare two ROC curves when the data

are paired and continuous. Later, [22] extended it for continuous unpaired data.

In [16] it was suggested that the Anderson-Darling statistic can be viably used

in comparing two diagnostic markers. Recently, [12] and [13] used the analogy

between the ROC curve and the cumulative distribution function to propose a

general methodology which allows us to use the traditional k-sample tests to the

ROC curves comparison problem on unpaired and paired designs, respectively.

Therefore, we propose, following [3], the difference between the values of our

approach for each marker to compare ROC curves.

Although we focus primarily on comparing a ROC curve across the entire

range of FPFs ∈ (0, 1), in practice, one might also be interested in a part of

the ROC curve that is of primary interest. For example, in screening studies,

FPFs must be kept very low and so the ROC curve over a restricted range of

FPFs may be of interest. If FPFs in the range (0, t0) is of interest, the value of

partial ROC analysis has been recognized. [14] and [15] proposed a method for

comparing a portion of ROC curves when binomial is appropriate. [24] present

a nonparametric method for the analysis of partial ROC curves. Recently, [18]

contruct nonparametric confidence intervals for the partial AUC. However, to

our knowledge neither of the above approaches used to evaluate the whole ROC

curve based on two-sample tests, have been extended to evaluate the ROC curve

over a specific range. In order to fill this gap, we extend our summary statistic

to evaluate ROC curves over a range of FPFs of interest.

This paper is organized as follows: in Section 2 a new ROC summary statis-

tic which can be written as a nonparametric test based on spacings is provided

as well as its partial counterpart. In Section 3 its statistical power is investigated

in extensive simulations and compared with that of the standard test on AUC

and the Anderson Darling test. Furthermore, the performance of the difference

of our ROC summary statistic for each marker for comparing ROC curves is

studied across the entire as well as restricted range of FPFs. In Section 4 the

new proposed method is applied to two real data sets. Finally, in Section 5, we

make some concluding remarks.
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2. THE NEW ROC SUMMARY STATISTICS

Some ROC summary measures are based on evaluating geometrically the

distance between the ROC curve and the 45
o

line, which is an indicator of how far

the curve is from that of an uninformative marker. For example, considering the

area between them or the maximum vertical distance between them, we obtain

the well-known AUC or the Kolmogorov-Smirnov index, respectively. However,

to our knowledge, the distance between the derivatives of these two functions has

not been explored as a ROC summary statistic. Therefore, our proposal is to

take into account that the ROC of a noninformative marker verifies

dROC(t)

dt
= lim

∆t→0

ROC(t + ∆t) − ROC(t)

∆t
= 1

and to define as a summary statistic the sum of the squared differences between

an approach of the derivative of the ROC curve

ROC(t) − ROC(t − 1
N )

1
N

, for N big enough,

and the derivative of y = x, which is 1, for a number N of equidistant points

N
∑

k=1

(ROC(
k
N ) − ROC(

k−1
N )

1
N

− 1

)2
.

In particular, we propose to consider N = 1 + nD where nD is the number

of healthy subjects and to define

η =

n
D

+1
∑

k=1

((

ROC

(

k

nD + 1

)

− ROC

(

k − 1

nD + 1

))

−
1

nD + 1

)2

.

Note that the value of this summary statistic is not worthwhile by itself

but it can be used to test if a biomarker is discriminatory of healthy and diseased

individuals.

Let

{

YDi
, i = 1, ..., nD

}

be an i.i.d. sample of a continuous distribution F

representing nD measurements of healthy subjects and let
{

YDj
, j = 1, ..., nD

}

be an i.i.d. sample of a continuous distribution G representing nD measurements

of diseased subjects. It is common in the ROC methodology to assume that

diseased subjects tend to have higher measurements than healthy subjects.

The empirical estimator of the ROC curve simply applies the definition of

the ROC curve to the observed data. Thus, for each possible cut-point c, the
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empirical true and false positive fractions are calculated as follows:

T̂PF (c) =

nD
∑

i=1
I (YDi

≥ c)

nD

F̂PF (c) =

n
D

∑

j=1
I

(

YDj
≥ c

)

nD

.

The empirical ROC curve is a plot of T̂PF (c) versus F̂PF (c) for all c ∈ (−∞,∞).

Equivalently, the empirical ROC can be written as

R̂OC (t) = T̂PF
(

F̂PF
−1

(t)
)

, t ∈ (0, 1).

Let −∞ = YD(0)

≤ YD(1)

≤ YD(2)

≤ ... ≤ YD(n
D

)

≤ YD(n
D

+1)

= ∞ be the or-

der statistics constructed from

{

YDj
, j = 1, ..., nD

}

. Therefore, an estimator of

η can be obtained replacing ROC by its empirical estimator:

η̂ =

n
D

+1
∑

k=1

((

R̂OC

(

k

nD + 1

)

− R̂OC

(

k − 1

nD + 1

))

−
1

nD + 1

)2

.

Note that this index is the sum of squared errors between the jump of

the ROC curve evaluated in two equidistant points and the distance between

these two equidistant points. The value 0 means to be a noninformative test.

Furthermore, this index, η̂, is closely related to the nonparametric test for a two

sample problem based on order statistics proposed in [1]. Indeed, we see that

R̂OC

(

k

nD + 1

)

= T̂PF

(

F̂PF
−1

((

k

nD + 1

)))

so first we look for a value v such as

F̂PF (v) =
k

nD + 1

or equivalently,

n
D

+1
∑

j=1

I
(

YDj
≥ v

)

= k

so v = YD(n
D

−k+1)

. Therefore,

R̂OC

(

k

nD + 1

)

=

nD
∑

i=1
I

(

YDi
≥ YD(n

D
−k+1)

)

nD
.
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In a similar way,

R̂OC

(

k − 1

nD + 1

)

=

nD
∑

i=1
I

(

YDi
≥ YD(n

D
−k+2)

)

nD
.

Finally,

η̂ =

n
D

+1
∑

k=1









nD
∑

i=1
ξi
k

nD
−

1

nD + 1









2

where

ξi
k =

{

1, YDi
∈ ∆k

0, YDi
/∈ ∆k

for k = 1, ...., nD + 1, i = 1, ..., nD,

with ∆k =

[

YD(n
D

−k+1)

, YD(n
D

−k+2)

)

, is the test statistic proposed in [1]. They

obtained its exact distribution that can be seen in Theorem 1.

If FPFs in the range (0, t0) is of interest, the partial η̂ can be similarly

defined as

(2.1)

η̂p(t0) =

∑

1≤k≤[t0(n
D

+1)]

n
D

+1
∑

k=1

((

R̂OC

(

k

nD + 1

)

− R̂OC

(

k − 1

nD + 1

))

−
1

nD + 1

)2

where [·] denotes the integer part of ·.

In the following section we evaluate the performance of η̂ and compare it

to the ordinary nonparametric ROC test ÂUC given by

ÂUC =

∑n
D

i=1

∑nD

j=1 I(YDi
< YDj

)

nDnD

.

and the Anderson-Darling test of uniformity of the distribution of the false posi-

tive fraction, proposed in [16] (AD) to assess one diagnostic marker.

On the other hand, the test statistic

T =
ÂUCA − ÂUCB

√

var(ÂUCA) + var(ÂUCB) − 2covar(ÂUCA, ÂUCB)

,

proposed by [6] and ∆Z = ZB − ZA, for ZL = η̂, AD, where L = A, B, indicates

the value of the test statistic for biomarker A or B, are compared to assess two

biomarkers. Finally, the partial summary measure η̂p(t0) is compared to the

partial AUC, pAUC(t0), via bootstrap.
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3. SIMULATION STUDIES

Firstly, simulations are conducted to assess the performance of the new

ROC summary statistic η̂, to evaluate one marker. We have compared the power

of our statistic η̂ with ÂUC and AD.

Table 1 compares the power of η̂ obtained when the exact distribution

studied in [1] is used to obtain the critical values and when 1,000 Monte Carlo

replicates are used instead. Due to the relatively large computational time re-

quired for the implementation of the exact procedure, the comparisons presented

here are limited to small samples (nD = nD = 15). However, even with these

small samples, there is a good agreement between the exact and simulated test.

Thus, for the large sample sizes as presented in the subsequent tables, we cal-

culate only the power of the simulated test since the results for the exact test

should be essentially the same.

Table 1: Comparison of the power of η̂ obtained using the exact dis-

tribution and the one obtained via 1,000 independent Monte

Carlo simulations, for nD = n
D

= 15. Healthy subjects follow

(from left to right) a N(0, 1), Γ(1/2, 1/2) or LN(0, 1) distribu-

tion while diseased subjects are sampled from G.

G Exact MC G Exact MC G Exact MC

N(0.3, 1) 0.074 0.074 Γ(2, 1) 0.987 0.986 LN(1.275, 0.5) 0.793 0.771
N(0.3, 1.42) 0.133 0.119 Γ(4, 1) 1.000 1.000 LN(0, 3/2) 0.056 0.050
N(0.3, 0.32) 0.981 0.977 Γ(4.3, 4) 1.000 1.000 LN(0.7, 0.2) 0.894 0.894
N(0, 1.42) 0.117 0.111 Γ(1/8, 1/8) 0.844 0.830 LN(−3/2, 2) 0.576 0.540
N(0, 0.32) 0.973 0.969 Γ(4, 4) 1.000 1.000 LN(1/4, 1/2) 0.279 0.258

For 1,000 independent simulations, one-sided tests were conducted at level

α = 0.05 to compare the ÂUC, AD and η̂ tests. To determine appropriate critical

values we have carried out Monte Carlo simulation with M = 5, 000 replicates.

The type I error values are not presented as they are all around 0.05 but they

can be provided by the authors upon request. Tables 2–4 compare the proportion

of rejections (power) for different pairs of distributions for diseased and healthy

subjects. These three tables distinguish three different distributions for the mark-

ers: Normal, Gamma and Lognormal, respectively. The markers for the healthy

subjects are generated from a N(0,1), Gamma(1/2,1/2) and LN(0,1), respectively

while the markers for the diseased subjects are generated from five different alter-

natives each one. These alternatives have been considered taking into account all

the possible combinations changing the location and shape of the distribution of

the diseased subjects in relation to the healthy subjects. Some of the probability
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distribution functions and their corresponding ROC curves for Table 2 can be

seen in Figure 1.

Table 2: Power based on 1,000 independent simulations of Normal ran-

dom variables. Healthy subjects follow a N(0, 1) distribution

while diseased subjects are sampled from G.

nD = n
D

G Test
15 30 50 100

ÂUC 0.118 0.216 0.319 0.539
N(0.3, 1) bη 0.067 0.098 0.087 0.096

AD 0.097 0.145 0.270 0.489

ÂUC 0.104 0.156 0.202 0.438
N(0.3, 1.42) bη 0.057 0.098 0.156 0.347

AD 0.112 0.188 0.284 0.650

ÂUC 0.210 0.332 0.520 0.801
N(0.3, 0.32) bη 0.626 0.817 0.929 0.993

AD 0.059 0.119 0.254 0.676

ÂUC 0.057 0.068 0.053 0.058
N(0, 1.42) bη 0.049 0.060 0.108 0.220

AD 0.089 0.101 0.091 0.275

ÂUC 0.076 0.065 0.060 0.048
N(0, 0.32) bη 0.590 0.778 0.909 0.992

AD 0.036 0.113 0.208 0.622
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Figure 1: Probability distribution functions and their corresponding ROC
curves (nD = n

D
= 100) for some cases described in Table 2.

From left to right: N(0, 1) versus N(0.3, 1), N(0.3, 0.32
) and

N(0, 0.32
), respectively.
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Table 3: Power based on 1,000 independent simulations of Gamma ran-

dom variables. Healthy subjects follow a Γ(1/2, 1/2) distribu-

tion while diseased subjects are sampled from G.

nD = n
D

G Test
15 30 50 100

ÂUC 0.755 0.958 0.998 1.000
Γ(2, 1) bη 0.393 0.601 0.782 0.926

AD 0.147 0.441 0.708 0.977

ÂUC 0.999 1.000 1.000 1.000
Γ(4, 1) bη 0.885 0.989 1.000 1.000

AD 0.129 0.560 0.789 0.991

ÂUC 0.363 0.635 0.817 0.981
Γ(4.3, 4) bη 0.578 0.750 0.907 0.995

AD 0.063 0.158 0.307 0.738

ÂUC 0.522 0.796 0.953 1.000
Γ(1/8, 1/8) bη 0.416 0.753 0.943 1.000

AD 0.617 0.903 0.995 1.000

ÂUC 0.329 0.507 0.754 0.964
Γ(4, 4) bη 0.573 0.721 0.887 0.996

AD 0.049 0.129 0.319 0.742

Table 4: Power based on 1,000 independent simulations of LogNormal

random variables. Healthy subjects follow a LN(0, 1) distri-

bution while diseased subjects are sampled from G.

nD = n
D

G Test
15 30 50 100

ÂUC 0.976 1.000 1.000 1.000
LN(1.275, 0.5) bη 0.734 0.946 0.995 0.999

AD 0.133 0.424 0.744 0.985

ÂUC 0.055 0.064 0.051 0.051
LN(0, 3/2) bη 0.058 0.083 0.182 0.325

AD 0.089 0.106 0.174 0.420

ÂUC 0.706 0.922 0.999 1.000
LN(0.7, 0.2) bη 0.883 0.987 1.000 1.000

AD 0.038 0.096 0.198 0.541

ÂUC 0.668 0.941 0.995 1.000
LN(−3/2, 2) bη 0.536 0.895 0.993 1.000

AD 0.711 0.976 0.999 1.000

ÂUC 0.132 0.224 0.334 0.584
LN(1/4, 1/2) bη 0.270 0.364 0.517 0.718

AD 0.067 0.159 0.283 0.688

Every table follows the same pattern: in the first three designs the mean of

the diseased subjects is larger than the mean corresponding to the healthy ones

and in the last two designs it does not change. In the first design, the standard
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deviation of both groups of patients is the same, in the second and forth one the

standard deviation of the diseased subjects is larger, and in the third and fifth

one the standard deviation of the diseased subject is smaller.

As [16] already observed, these results reveal that the ÂUC test is more

powerful when location differences between the distributions under consideration

are primarily involved. However, in our study, although the mean increases if the

standard deviation decreases (design 3) our procedure has higher power than the

others. When scale differences are prominent, ÂUC test is incapable of discrim-

inating between these distributions. In particular, when the standard deviation

of the distribution of the healthy subjects is larger than that for the diseased

subjects, the new measure η̂ is significantly better than ÂUC and AD tests. If

the standard deviation of the distribution of the healthy subjects is smaller than

that for the diseased subjects, the AD test is preferable to the others. Therefore,

our procedure is the best when the standard deviation of the distribution of the

healthy subjects is larger than that for the diseased subjects independently that

the location of the distribution of the diseased subjects changes or not (designs 3

and 5). These two designs as can be seen in Figure 1 correspond to ROC curves

crossing the diagonal reference line. Moreover, for the other designs it is the sec-

ond best except for designs 1 and 2 in Table 2. Although ÂUC test is preferable

when location differences between the distributions under consideration are pri-

marily involved, we must not use it in the other situations. Finally, AD test has

only slight high power than our procedure in one of the five considered designs.

3.1. Assessment of two diagnostic markers

We compare the performance of our test statistic, ∆η̂, to that of [6], T , and

Anderson Darling approach, ∆AD, via simulation. In [16] it was concluded that

the DeLong test is in general more powerful than the Anderson-Darling approach

to assess two diagnostic markers, particularly when the correlation between mea-

surements is substantial. In the simulations to obtain the distributions of AD

test and our test we have used bootstrap following [3].

We perform simulations to investigate the empirical power for different un-

derlying AUCs, correlations between the markers (ρ = 0, 0.5) and different simple

sizes (nD = nD = 20, 40, 80) at level α = 0.05. In these simulations, the marker

values of the healthy subjects were generated from a standard normal distribu-

tion and those of the diseased subjects from N(µA, σ2
A = 1) and N(µB, σ2

B) for

markers A and B, respectively. The uniform alternative (where one curve is

uniformly above the other) occurs when σ2
A = σ2

B and the crossing alternative

(when the two curves cross) when 4σ2
A = σ2

B. For each considered scenario, 1000

replications were used. The different scenarios are that considered in [21].
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For equal AUCs arising from crossing ROC curves, the power of our test

is the highest as can be seen in Table 5 and the use of the T test is inappropriate.

On the other hand, highly correlated biomarkers lead to increase power. For

non-crossing ROC curves, the power of T test is the highest as can be seen in

Table 6. The power of ∆η̂ is higher than the power of ∆AD.

Table 5: Power against crossing alternatives.

T ∆bη ∆AD

AUCA AUCB nD = n
D

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.046 0.066 0.014 0.019 0.015 0.018
0.6 0.6 40 0.063 0.048 0.088 0.075 0.072 0.073

80 0.046 0.049 0.327 0.338 0.162 0.190

20 0.055 0.046 0.042 0.025 0.040 0.039
0.7 0.7 40 0.057 0.045 0.132 0.148 0.095 0.127

80 0.039 0.043 0.421 0.478 0.092 0.136

20 0.054 0.037 0.069 0.074 0.061 0.062
0.8 0.8 40 0.061 0.051 0.193 0.209 0.110 0.155

80 0.051 0.053 0.475 0.577 0.111 0.155

20 0.044 0.038 0.092 0.108 0.070 0.095
0.9 0.9 40 0.049 0.041 0.195 0.218 0.147 0.157

80 0.056 0.054 0.459 0.541 0.232 0.277

Table 6: Power against uniform alternatives.

T ∆bη ∆AD

AUCA AUCB nD = n
D

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.116 0.207 0.018 0.013 0.002 0.003
0.6 0.7 40 0.209 0.340 0.022 0.021 0.043 0.043

80 0.368 0.626 0.054 0.055 0.214 0.264

20 0.410 0.623 0.105 0.123 0.005 0.014
0.6 0.8 40 0.689 0.925 0.249 0.242 0.183 0.214

80 0.951 0.998 0.542 0.554 0.675 0.779

20 0.821 0.967 0.481 0.511 0.013 0.010
0.6 0.9 40 0.987 1.000 0.835 0.854 0.323 0.324

80 1.000 1.000 0.982 0.995 0.857 0.877

20 0.140 0.219 0.066 0.057 0.007 0.003
0.7 0.8 40 0.282 0.419 0.106 0.108 0.058 0.059

80 0.443 0.709 0.222 0.222 0.176 0.232

20 0.561 0.766 0.350 0.391 0.012 0.014
0.7 0.9 40 0.837 0.984 0.608 0.702 0.108 0.110

80 0.991 1.000 0.878 0.933 0.395 0.434

20 0.210 0.283 0.163 0.181 0.012 0.013
0.8 0.9 40 0.354 0.605 0.263 0.304 0.032 0.031

80 0.688 0.888 0.473 0.526 0.075 0.092
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In summary, the behavior of our test is the same as AD test studied in [16]

and permutation tests introduced in [21]. That is to say, they have clearly superior

power in Table 5 to T test but the power of ours is the highest. However, the

power of the permutation test proposed in [2] is close to the nominal significance

level suggesting that a rejection of the null hypothesis is unlikely to occur. On

the other hand, for non-crossing ROC curves, T test is preferable although as

sample size increases the power of ∆η̂ is closer to the power of T test. Note that

in most of the cases ∆AD test has very low power (see Table 6).

Finally, suppose one is only interested in some range of specificities. For

example, acceptable specificities are high for early cancer detection tests. A

lower specificity for a large population leads to many more falsely classified non-

diseased subjects who may have to undergo a more invasive test subsequently.

It is thus desired to compare screening markers at a higher range of specificities.

The partial AUC, which summarizes part of the ROC curve in the range of

desired specificities, uses to be a better alternative to T test. The value of partial

ROC analysis has been recognized and several methods have been developed.

See [14], [15], [20] and [17]. However, the methods for analysing partial ROC

presented in these papers use a parametric approach which assumes the data

have an underlying normal distribution.

We perform a new simulation to compare pAUC and the proposed η̂p,

defined in (2.1), for crossing ROC curves only, since in those cases T test doesn’t

work properly and pAUC is an alternative to focus on some range of interest.

We consider two different ranges (0, 0.4) and (0, 0.8) although by brevity we only

present the results for t0 = 0.4 in Table 7.

Table 7: Power of the partial measures against

crossing alternatives.

pAUC bηp

AUCA AUCB nD = n
D

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.054 0.051 0.031 0.031
0.6 0.6 40 0.140 0.175 0.071 0.078

80 0.255 0.369 0.230 0.314

20 0.042 0.029 0.038 0.051
0.7 0.7 40 0.104 0.117 0.136 0.147

80 0.219 0.296 0.389 0.470

20 0.022 0.024 0.059 0.084
0.8 0.8 40 0.072 0.086 0.207 0.244

80 0.132 0.172 0.470 0.566

20 0.007 0.002 0.071 0.085
0.9 0.9 40 0.032 0.023 0.202 0.247

80 0.069 0.063 0.445 0.555
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As can be seen in Table 7, pAUC works better that its counterpart T with

higher power in most of the cases. However, our proposed summary statistic η̂p

works much better than pAUC and similarly to its counterpart η̂. That is to say,

the new partial summary statistic seems to be a good alternative.

4. REAL DATA EXAMPLES

4.1. Pancreatic cancer biomarker study

The first dataset studied has been used by various statisticians to illustrate

statistical techniques for diagnostic tests. First published in [23], it is a case-

control study ding 90 cases with pancreatic cancer and 51 controls that did not

have cancer but who had pancreatitis. Serum samples from each patient were

assayed for CA-125, a cancer antigen, and CA-19-9, a carbohydrate antigen, both

of which are measured on a continuous positive scale. It can be assumed that

both biomarkers are independent. A natural question is to determine which of the

two markers best discriminates diseased from healthy subjects. See Figure 2 (a).
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Figure 2: (a) Empirical ROC curves and (b) Empirical ROC curves

once we have eliminated from the data those cases with the

smallest values for the second biomarker.

The ÂUC values are 0.861 and 0.706 for CA-125 (called biomarker A) and

CA-19-9 (called biomarker B), respectively. The T statistic, which is based on the

methodology described in [6] for paired data, is statistically significantly different

from 0 (p = 0.007). The two differences ∆η̂ = η̂A − η̂B and ∆AD = ADA −

ADB are also statistically significantly different from 0 (p = 0 and p = 0.015,

respectively). As [23], we have also focus our comparison on the range of FPFs

below 0.2 using the differences of the partial measures pAUC(0.2) and η̂p(0.2).
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The difference is highly significant from 0 based on the bootstrap distribution

(p = 0.002 and p = 0, respectively).

In order to illustrate the behaviour of the tests in a different scenario (cross-

ing ROC curves), we have eliminated from the data those cases with the smallest

values for the second biomarker. Therefore, now we consider 80 cases and 51 con-

trols. In this case, the two test statistics ∆η̂ = η̂A− η̂B and △AD = ADA−ADB

are also statistically significantly different from 0 (p = 0) but the statistic T leads

us to conclude that both biomarkers are not significantly different (p = 0.128).

See Figure 2 (b).

4.2. A method for early recognition of malignant melanoma

The second data set we have considered can be found in [21]. The dataset

consists of the clinical scoring scheme without a dermoscope and a dermoscope

scoring scheme on 72 suspicious lesions in order to determine whether the der-

moscope contributes diagnostic information. The p-value for T for paired data,

constructed following [6], is p = 0.882. The p-values for ∆η̂ and ∆AD are 0.717

and 0.555, respectively. We have also compared both biomarkers through the

differences of the partial measures pAUC(0.2) and η̂p(0.2) obtaining p = 0.716

and p = 0.763, respectively. Then, we can conclude that both biomarkers are

statistically significantly equal. Therefore, the dermoscope contributes no useful

information in this sense.

5. DISCUSSION

There is an interesting relationship between some summary measures for

ROC curves and two sample test statistics. Some of them, the Mann-Whitney

U-statistic and the Kolmogorov-Smirnov statistic, can be written in terms of

functionals of the empirical ROC curve. The former is the well-known AUC

(area under the ROC curve) and the later Youden index. Other test statistics

such as Anderson-Darling, Neyman and Watson tests were studied in [16] to

assess diagnostic markers. However, it can not be written in terms of functionals

of the empirical ROC curve and they do not have value themselves. In this paper,

we propose the sum of squared errors between the derivative of the ROC curve

and 1, that is the derivative of the 45
o

line, as a ROC summary statistic. This

statistic is closely related to a nonparametric test for two sample problem based

on an order statistic introduced in [1]. The exact distribution of this index is

known but the simulated version is used ought to computational time since it is

checked that the exact test should be essentially the same. For the purpose of
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assesing part of a ROC curve, we also define a new partial summary statistic

based on the same idea as above but ending the summation as close as possible

to the specific FPF of interest.

The simulations show that our ROC summary statistics exhibit much

higher power in discriminating between the diseased and healthy distributions

and are thus an attractive alternative to ROC-based methodology and indeed

constitute in many cases an improvement over AUC and pAUC, respectively.

Nevertheless, the fact that our ROC summary statistic does not have value itself

is a drawback. The same index value can be obtained for two absolutely different

curves. Therefore, after concluding that a new marker is diagnostic, we should

study in which way the diseased and healthy distributions are different.

In case of the comparison of two diagnostic markers in the whole range,

the use of the difference of our individual ROC summary statistics associated

with the two diagnostic markers has higher power than the conventional non-

parametric test in [6], the test based on AD test statistic and the permutation

test proposed in [21] for crossing ROC curves. However, if the primary interest is

to detect differences in AUCs, then the permutation tests of [2] and [4] should be

used. On the other hand, when we are interested on a specific range of specificity,

pAUC uses to be an alternative to AUC but we show that our partial summary

statistic η̂p is better to discriminate between two ROC curves that cross each

other when the biomarkers are not correlated as well as when they are correlated.
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1. INTRODUCTION

The Birnbaum–Saunders (BS) distribution has been widely studied and

applied due to its interesting properties. Some of its more relevant characteristics

are the following:

(i) it is a transformation of the normal distribution, inheriting several of

its properties;

(ii) it has two parameters, modifying its shape and scale;

(iii) it has positive skewness, doing its probability density function (PDF)

to be asymmetrical to the right, but due to its flexibility, symmetric

data can also be modeled by the BS distribution;

(iv) its PDF and failure rate (FR) are unimodal, but also other shapes

for its FR may be modeled;

(v) it belongs to the scale and closed under reciprocation families of dis-

tributions; and

(vi) its scale parameter is also its median, so that the BS distribution can

be seen as an analogue, but in an asymmetrical setting, of the normal

distribution, which has the mean as one of its parameters.

For more details of the BS distribution, see Birnbaum and Saunders (1969b),

Johnson et al. (1995, pp. 651–663), or the recent book by Leiva (2016). The

BS distribution is a direct competitor of the gamma, inverse Gaussian (IG),

lognormal and Weibull distributions; see details of these last distributions in

Johnson et al. (1994).

The BS distribution has its genesis from fatigue of materials. Then, its

natural applications have been mainly focussed on engineering and reliability.

However, today they range diverse fields including business, environment and

medicine. For some of its more recent applications, see Villegas et al. (2011),

Marchant et al. (2013, 2016a,b), Saulo et al. (2013, 2017), Leiva et al. (2014a,d,

2015a, 2016c, 2015b, 2017), Rojas et al. (2015), Wanke and Leiva (2015), Desousa

et al. (2017), Garcia-Papani et al. (2017), Leão et al. (2017a,b), Lillo et al. (2016)

and Mohammadi et al. (2017). These and other applications, as well as several

extensions and generalizations of the BS distribution, have been conducted by an

international, transdisciplinary group of researchers. The first extension of the BS

distribution is attributed to Volodin and Dzhungurova (2000), which established

that the BS distribution is the mixture equally weighted of an IG distribution

and its convolution with the chi-squared distribution with one degree of freedom.

The authors provided a physical interpretation in terms of fatigue-life models

and introduced a general family of distributions, with members such as the IG,

normal and BS distributions, as well as others used in reliability applications.

Then, Dı́az-Garćıa and Leiva (2005) introduced the generalized BS (GBS) distri-

bution; see also Azevedo et al. (2012). Owen (2006) proposed a three-parameter
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extension of the BS distribution. Vilca and Leiva (2006) derived a BS distribution

based on skew-normal models (skew-BS). Gómez et al. (2009) extended the BS

distribution from the slash-elliptic model. Guiraud et al. (2009) deducted a non-

central version of the BS distribution. Leiva et al. (2009) provided a length-biased

version of the BS distribution. Ahmed et al. (2010) analyzed a truncated version

of the BS distribution. Kotz et al. (2010) performed mixture models related to

the BS distribution. Vilca et al. (2010) and Castillo et al. (2011) developed the

epsilon-skew BS distribution. Balakrishnan et al. (2011) considered mixture BS

distributions. Cordeiro and Lemonte (2011) defined the beta-BS distribution.

Leiva et al. (2011) modeled wind energy flux using a shifted BS distribution.

Athayde et al. (2012) viewed the BS distributions as part of the Johnson system,

allowing location-scale BS distributions to be obtained. Ferreira et al. (2012) and

Leiva et al. (2016a) proposed an extreme value version of the BS distribution

and its modeling. Santos-Neto et al. (2012, 2014, 2016) and Leiva et al. (2014c)

reparameterized the BS distribution obtaining interesting properties and mod-

eling. Saulo et al. (2012) presented the Kumaraswamy-BS distribution. Fierro

et al. (2013) generated the BS distribution from a non-homogeneous Poisson

process. Lemonte (2013) studied the Marshall–Olkin-BS (MOBS) distribution.

Bourguignon et al. (2014) derived the power-series BS class of distributions. Mar-

tinez et al. (2014) introduced an alpha-power extension of the BS distribution.

Leiva et al. (2016c) derived a zero-adjusted BS distribution.

The above mentioned review about extensions and generalizations of the

BS distribution is in agreement with the important growing that the distribution

theory has had in the last decades. This is because, although the Gaussian (or

normal) distribution has dominated this theory during more than 100 years, many

real-world applications cannot be well modeled by this distribution. Then, non-

normal distributions which must be flexible in skewness and kurtosis are needed.

The interested reader can find a good collection of non-normal distributions in

Johnson et al. (1994, 1995). Several of these distributions were constructed us-

ing methods early proposed by Pearson (1895), Edgeworth (1917), Cornish and

Fisher (1937) and Johnson (1949), based on differential equations, mathematical

approximations and translation techniques; see more details in Johnson et al.

(1994, pp. 15–62). A more recent proposal on non-normal distributions is at-

tributed to Azzalini (1985). In the line of these works and motivated from fi-

nancial mathematics, where applications in the calculation of value at risk and

corrections to the Black–Scholes options need flexibility in skewness and kurto-

sis, Shaw and Buckley (2009) introduced new parametric families of distributions

based on the transmutation method. This method modifies the skewness and/or

kurtosis into symmetric and asymmetric distributions and generates a new dis-

tributional family known as transmuted (or changed in its shape) distributions.

The transmutation method proposed by Shaw and Buckley (2009) carries out a

function composition between the cumulative distribution function (CDF) of a

distribution and the quantile function (QF) of another. Aryal and Tsokos (2009)
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defined the transmuted extreme value distribution. Aryal and Tsokos (2011) and

Khan and King (2013) presented transmuted Weibull distributions. Aryal (2013)

proposed the transmuted log-logistic distribution. Ashour and Eltehiwy (2013)

analyzed the transmuted Lomax distribution. Mroz (2013a,b) studied the trans-

muted Lindley and Rayleigh distributions, whereas Sharma et al. (2014) derived

a transmuted inverse Rayleigh distribution. Khan and King (2014) considered

the transmuted inverse Weibull distribution. Merovci and Puka (2014) deduced

the transmuted Pareto distribution. Tiana et al. (2014) developed the trans-

muted linear exponential distribution. Saboor et al. (2015) created a transmuted

exponential-Weibull distribution. Louzada and Granzotto (2016) introduced the

transmuted log-logistic regression model. To our best knowledge, no transmuted

versions of the BS distribution exist. Therefore, the main objective of this pa-

per is to propose and derive the transmuted BS (TBS) distribution, as well as a

comprehensive treatment of its mathematical and statistical properties.

Section 2 presents the TBS distribution and derives some of its characteris-

tics including its PDF, CDF and QF, as well as its FR, moments and a generator

of random numbers. Section 3 provides the estimation of the TBS parameters

using the maximum likelihood (ML) method, including the corresponding score

vector and Hessian matrix for inferential and diagnostic purposes. In this sec-

tion, the performance of the ML estimators is evaluated by means of Monte Carlo

(MC) simulations. In addition, diagnostic tools are derived to detect influential

data in the ML estimation. Section 4 illustrates the potential applications of the

TBS distribution with three real-world data sets from different areas. Section 5

discusses the conclusions of this work and future research about the topic.

2. FORMULATION AND CHARACTERISTICS

In this section, we provide a background of the BS distribution, formulate

the new distribution and obtain some of its more relevant characteristics.

2.1. The BS distribution

A random variable T1 has a BS distribution with shape (α > 0) and scale

(β > 0) parameters if it can be represented by

T1 = β
(

αZ/2 +
(

(αZ/2)
2
+ 1
)1/2

)2
,

where Z∼N(0,1). In this case, the notation T1∼BS(α,β) is used. The CDF of T1 is

FBS(t; α, β) = Φ
(

(1/α) ρ(t/β)
)

, t > 0,

where ρ(y) = y1/2 − y−1/2
, for y > 0, and Φ denotes the standard normal CDF.
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The PDF of T1 is

fBS(t; α, β) = κ(α, β) t−3/2
(t + β) exp

(

−τ(t/β)/(2α2
)
)

, t > 0,

where κ(α, β) = exp(1/α2
)/(2α

√
2πβ) and τ(y) = y + 1/y, for y > 0. Note that

the inverse function of the CDF of a random variable, also known as QF, is defined

by F−1
(y) = infx∈R{F (x) ≥ y}, for y ∈ [0, 1]. Then, the QF of T1 is

t1(q; α, β) = F−1
BS (q; α, β) = β

(

αz(q)/2 +
(

(αz(q)/2)
2
+ 1
)1/2

)2
, 0 < q < 1,

where z = Φ
−1

is the inverse function of the standard normal CDF (or QF), and

F−1
BS is the inverse function of FBS. As mentioned, the BS distribution holds the

following scale and reciprocation properties:

(i) b T1 ∼ BS(α, b β), for b > 0, and

(ii) 1/T1 ∼ BS(α, 1/β), respectively.

The rth moment of T1 is

E(T r
1 ) =

βr
(

Kr+1/2(1/α2
) + Kr−1/2(1/α2

)
)

2K1/2(1/α2)
,

with Kν(u) denoting the modified Bessel function of the third kind of order ν

and argument u given by

Kν(u) =
1

2

(u

2

)ν
∫

∞

0
w−ν−1

exp

(

−w −
u2

4w

)

dw ;

see Gradshteyn and Randzhik (2000, p. 907).

2.2. The TBS distribution

The TBS distribution that we propose is motivated by the work of Shaw

and Buckley (2009). As mentioned, they introduced a class of generalized dis-

tributions based on the transmutation method, which is described next. Let F1

and F2 be the CDFs of two distributions with a common sample space and F−1
1

and F−1
2 be their inverse functions, that is, their QFs, respectively. The gen-

eral rank transmutation map as given in Shaw and Buckley (2009) is defined

by G12(u) = F2(F
−1
1 (u)) and G21(u) = F1(F

−1
2 (u)). The functions G12 and G21

both map the unit interval [0, 1] into itself. Under suitable assumptions, G12 and

G21 satisfy Gij(0) = 0 and Gij(1) = 1, for i, j = 1, 2, with i 6= j. A quadratic rank

transmutation map is defined as G12(u) = u + λ u(1− u), for |λ| ≤ 1, from which

follows that the CDF satisfies the relationship F2(x) = (1 + λ)F1(x)− λ(F1(x))
2
.

Then, by differentiation, it yields f2(x) = f1(x) (1 + λ− 2λ F1(x)), where f1 and

f2 are the corresponding PDFs associated with the CDFs F1 and F2, respectively.
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For more details about the quadratic rank transmutation map, see Shaw and

Buckley (2009). By using the BS CDF and PDF, we have the TBS CDF and

PDF, with parameters α, β and λ, given respectively by

FTBS(t; α, β, λ) = (1 + λ) Φ
(

(1/α) ρ(t/β)
)

− λ
(

Φ
(

(1/α) ρ(t/β)
)

)2
,

(2.1)

fTBS(t; α, β, λ) =

(

1 + λ − 2λ Φ
(

(1/α) ρ(t/β)
)

)

fBS(t; α, β), t > 0,

where |λ| ≤ 1 is an additional skewness parameter, whose role is to introduce

skewness and to vary the corresponding tail weights. Hereafter, a random variable

T with CDF or PDF given as in (2.1) is denoted by T ∼ TBS(α, β, λ). Note that,

at λ = 0, we have the BS distribution. It can also be shown that

lim
t→0

fTBS(t; α, β, λ) = lim
t→∞

fTBS(t; α, β, λ) = 0 .

Observe that the PDF of T can be expressed as a finite linear combination of

BS(α, β) and skew-BS(α, β, 1) PDFs; see Vilca and Leiva (2006) for details on

the skew-BS distribution and its features. Thus,

fTBS(t; α, β, λ) = (1 + λ) fBS(t; α, β) − λfskew-BS(t; α, β, 1),

where fskew-BS(t; α, β, η) = 2 Φ
(

(η/α) ρ(t/β)
)

fBS(t; α, β), for η ∈ R. In addition,

if λ = −1, then T ∼ skew-BS(α, β, 1). Figure 1 (first panel/row) displays several

shapes of the PDF given in (2.1) for some parameter values. These shapes re-

veal that the TBS distribution is very versatile and that the additional skewness

parameter λ has substantial effects on its skewness. Note that the shapes of the

TBS distribution are much more flexible than those of the BS distribution.

2.3. Characteristics of the TBS distribution

Several of the mathematical properties of the TBS distribution can be ob-

tained directly from the BS and skew-BS distributions. For example, the ordinary

moments and moment generating function of the TBS distribution follow imme-

diately from the moments of BS and skew-BS distributions. For more details

of the skew-BS distribution, see Vilca and Leiva (2006) and Saulo et al. (2013).

Some properties of the TBS distribution are as follow. If T ∼ TBS(α, β, λ), then:

(i) b T ∼ TBS(α, b β, λ), for b > 0, that is, the TBS distribution is closed

under scale transformations;

(ii) 1/T ∼ TBS(α, 1/β,−λ), that is, the TBS distribution is closed under

reciprocation;

(iii) Y = (α2/β)T ∼ TBS(α, α2, λ), that is, Y follows a two-parameter

TBS distribution.
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The FR of T ∼ TBS(α, β, λ) is

(2.2) hTBS(t; α, β, λ) =

(

1 + λ − 2λ Φ
(

(1/α) ρ(t/β)
)

)

hBS(t; α, β)

1 − λ Φ
(

(1/α) ρ(t/β)
) , t > 0,

where hBS(t) = fBS(t)/(1−FBS(t)) is the FR of the BS distribution. Figure 1 (sec-

ond panel/row) shows the FR of the TBS distribution for some parameter values.
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Figure 1: Plots of the TBS PDF (first panel/row) and FR (second panel/row)

for the indicated value of its parameters.

We can verify that the TBS FR is upside-down. From (2.2), note that:

(i) hTBS(t; α, β, λ)/hBS(t; α, β) is decreasing in t for λ ≥ 0;

(ii) hTBS(t; α, β, λ)/hBS(t; α, β) is increasing in t for λ ≤ 0;

(iii) hBS(t; α, β) ≤ hTBS(t; α, β, λ) ≤ (1 + λ) hTBS(t; α, β, λ) for λ ≥ 0;

(iv) (1 + λ) hBS(t; α, β) ≤ hTBS(t; α, β, λ) ≤ hBS(t; α, β) for λ ≤ 0; and
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(v) limt→0 hTBS(t; α, β, λ) = 0 and limt→∞ hTBS(t; α, β, λ) = 1/(2α2β),

that is, the limiting behaviors of the FRs of the TBS and BS dis-

tributions are the same.

Observe that the expression given in (2.2) may also be written as

hTBS(t; α, β, λ) = p(t) hBS(t; α, β) +
(

1 − p(t)
)

hskew-BS(t; α, β, 1),

where p(t) =
(

(1 + λ)
(

1 − Φ
(

(1/α) ρ(t/β)
)))

/
(

1 − (1 + λ)Φ
(

(1/α) ρ(t/β)
)

+

λ
(

Φ
(

(1/α) ρ(t/β)
))2)

, whereas hBS and hskew-BS are the FRs of the BS and

skew-BS distributions, respectively.

Many important features of a distribution can be obtained through its moments.

Let T1 ∼ BS(α, β) and T2 ∼ skew-BS(α, β, 1). Then, their rth moments are

E(T r
1 ) =

βrα2 r

23r−1

r
∑

k=0

k
∑

i=0

(

2 r

2 k

)(

k

i

)(

α2

4

)i−k

,(2.3)

E(T r
2 ) = βr

r
∑

k=0

k
∑

i=0

(

r

k

)(

k

i

)

2
i
(α

2

)k+1
wk+1;k−i , r = 1, 2, ... ,(2.4)

where wa,b=E
(

Za
(
√

α2Z2+4)
b
)

and Z∼ skew-normal(0, 1, 1); see Azzalini (1985).

The rth moment of T ∼ TBS(α, β, λ) can be written as E(T r
) = (1 + λ) E(T r

1 )−

λE(T r
2 ). Then, using the results presented in (2.3) and (2.4), we obtain

E(T r
) = βr





r
∑

k=0

k
∑

j=0

(

(1 + λ)

(

2 r

2 k

)(

k

j

)

α2(r−k+j)

23(r−k+j)−1

−λ

(

r

k

)(

k

j

)

2
j
(α

2

)k+1
wk+1;k−j

)



 .

Therefore, the first four moments of T ∼ TBS(α, β, λ) are

E(T ) = µ = β

(

1 +
α2

2

)(

1 + λ − λ

(

1 +
α w1,1

(2 + α2)

))

,

E(T 2
) = β2

(

1 + 2α2
+

3

2
α4

)(

1 + λ − λ

(

1 +
2 α w1,1 + α3w3,1

2 + 4α2 + 3α4

))

,

E(T 3
) = β3

(

1 +
9

2
α2

+ 9α4
+

15

2
α6

)

×

(

1 + λ − λ

(

1 +
3 α w1,1 + 4 α3w3,1 + α5w5,1

2 + 9 α2 + 18 α4 + 15 α6

))

,

E(T 4
) = β4

(

1 + 8 α2
+ 30 α4

+ 60 α6
+

105

2
α8

)

×

(

1 + λ − λ

(

1 +
4 α w1,1 + 10 α3w3,1 + 6 α5w5,1 + α7w7,1

2 + 16 α2 + 60 α4 + 120 α6 + 105 α8

))

.
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Thus, the rth moment of T ∼ TBS(α, β, λ) about its mean is

E
(

(T − µ)
r
)

= (1 + λ)

r
∑

j=0

(

r

j

)

(µ1 − µ)
r−j

E
(

(T1 − µ1)
j
)

−λ
r
∑

j=0

(

r

j

)

(µ2 − µ)
r−j

E
(

(T2 − µ2)
j
)

,

where µ1 = β
(

1 + α2/2
)

and µ2 = β
(

1 + α w1,1 + α2/2
)

. Hence, the correspond-

ing second, third and fourth moments about the mean are

E
(

(T − µ)
2
)

= Var(T ) = (1 + λ)
(

(µ1 − µ)
2
+ σ2

1

)

− λ
(

(µ2 − µ)
2
+ σ2

2

)

,

E
(

(T − µ)
3
)

= (1 + λ)

(

(µ1 − µ)
3
+ 3σ2

1 + µ
(3)
1

)

− λ
(

(µ2 − µ)
3
+ 3σ2

2 + µ
(3)
2

)

,

E
(

(T − µ)
4
)

= (1 + λ)

(

(µ1 − µ)
4
+ 6(µ1 − µ)

2σ2
1 + 6(µ1 − µ)µ

(3)
1 + µ

(4)
1

)

−λ
(

(µ2 − µ)
4
+ 6(µ2 − µ)

2σ2
2 + 6(µ1 − µ)µ

(3)
2 + µ

(4)
2

)

,

where

σ2
1 = Var(T1) = α2β2

(

1 + (5/4)α2
)

,

σ2
2 = Var(T2) = (β2/4)

(

4 α2 − α2w2
1,1 + 2 α3w3,1 − 2 α3w1,1 + 5 α4

)

,

µ
(3)
1 = β3α4

(

3 + (11/2)α2
)

,

µ
(4)
1 = β4α4

(

3 + (45/2)α2
+ (633/16)α4

)

,

µ
(3)
2 = µ

(3)
1 + (α3β3/4)

(

2 α2w5,1 + 2 w3,1 − 3 α2w3,1 − 3 α w1,1w3,1

+ w3
1,1 + 3 α w2

1,1 − 6 α2w1,1 − 6 w1,1

)

,
and

µ
(4)
2 = µ

(4)
1 + (α4β4/16)

(

24 α2w1,1w2,1 + 12 w1,1w2
3,1 − 16 α2w1,1w5,1

+ 18 α2w2
1,1 − 96 α w1,1 + 16 α w5,1 − 12 α w3

1,1 + 8 α3w7,1

− 3 w4
1,1 + 24 w2

1,1 − 16 α3w5,1 + 12 α3w3,1 − 180 α3w1,1

+ 16 α w3,1 − 16 w1,1w3,1

)

.

Figure 2 presents graphical plots of the mean (first panel/row) and variance

(second panel/row) of the TBS distribution for different values of α, β and λ.

Note that the mean and variance decrease as λ increases, but the mean and

variance, generally, increases as α and β increase. The QF of T ∼ TBS(α, β, λ)

is

tTBS(q; α, β, λ) =



















β

(

α
2 Φ

−1
(q∗) +

(

1 +
α2

4 Φ
−1

(q∗)2
)1/2

)2

, λ 6= 0;

β

(

α
2 Φ

−1
(q) +

(

1 +
α2

4 Φ
−1

(q)2
)1/2

)2

, λ = 0;

where q∗ =
(

1 + λ −
√

(1 + λ)2 − 4 λ q
)

/2λ, for q ∈ [0, 1]. Random numbers for

the TBS distribution can be generated from the TBS QF, which is detailed by

Algorithm 1.
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Figure 2: Plots of the mean (first panel/row) and variance (second panel/row)

of the TBS distribution for the indicated value of its parameters.

Algorithm 1 – Random number generator from the TBS distribution

1: Generate a random number u from U ∼ U(0, 1);

2: Set values for α, β and λ of T ∼ TBS(α, β, λ);

3: If λ 6= 0, then compute a random number

t = β

(

α

2
Φ

−1
(u∗

) +

(

1 +
α2

4
Φ

−1
(u∗

)
2

)1/2
)2

from T ∼ TBS(α, β, λ), with u∗
=
(

1 + λ −
√

(1 + λ)2 − 4λu
)

/(2λ); otherwise

t = β

(

α

2
Φ

−1
(u) +

(

1 +
α2

4
Φ

−1
(u)

2

)1/2
)2

;

4: Repeat steps 1 to 3 until the required amount of random numbers to be completed.
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From Figure 3, note that the generator of random numbers proposed in

Algorithm 1 seems to be appropriate for simulating data from a TBS distribution.

We implement this algorithm in the R statistical software (R Core Team, 2016)

and generate 10000 random numbers, considering the following values of the

parameters: α = 0.1, β = 1.0 and λ ∈ {−0.9, 0.9}. The empirical PDF (EPDF),

the empirical CDF (ECDF) and the kernel density estimate (KDE) are obtained

using these random numbers. Figure 3 (a) shows that the midpoints are consistent

with the values obtained through the TBS PDF. Figure 3 (b) allows us to compare

the ECDF and TBS CDF, which are detected to be similar.

data
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PDF
EPDF
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EPDF

λ =0.9 λ =−0.9

0
1
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Figure 3: EPDF and TBS PDF with its KDE in solid and

dashed lines (a) and ECDF and TBS CDF (b)

for simulated data.

3. PARAMETER ESTIMATION, ITS PERFORMANCE AND

DIAGNOSTICS

In this section, we use the ML method to estimate the TBS distribution pa-

rameters. In addition, by means of MC simulations, we study the performance of

the ML estimators. Furthermore, we provide diagnostic tools to detect influential

data.

3.1. ML estimation

Let T1, ..., Tn be a random sample from the TBS distribution with vector

of parameters θ = (α, β, λ)
⊤

and t1, ..., tn be their observations (data). The log-
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likelihood function for θ is

ℓ(θ) = n log
(

κ(α, β)
)

−
3

2

n
∑

i=1

log(ti) +

n
∑

i=1

log(ti + β)(3.1)

−
1

2α2

n
∑

i=1

τ(ti/β) +

n
∑

i=1

log

(

1 + λ
(

1 − 2Φ(vi)
)

)

,

where vi = (1/α) ρ(ti/β). The ML estimate ̂θ = (α̂, ̂β, ̂λ)
⊤

is obtained by solving

the likelihood equations Uα = Uβ = Uλ = 0 simultaneously, where Uα, Uβ and Uλ

are the components of the score vector U(θ) = (Uα, Uβ, Uλ)
⊤

given by

Uα = −
n

α

(

1 +
2

α2

)

+
1

α3

n
∑

i=1

(

ti
β

+
β

ti

)

+
2λ

α

n
∑

i=1

vi φ(vi)

1 + λ − 2λ Φ(vi)
,

Uβ = −
n

2β
+

n
∑

i=1

1

ti + β
+

1

2α2β

n
∑

i=1

(

ti
β

+
β

ti

)

−
2λ

αβ

n
∑

i=1

(

τ
(
√

ti/β
)

φ(vi)

1+λ−2λ Φ(vi)

)

,

Uλ =

n
∑

i=1

1 − 2 Φ(vi)

1 + λ
(

1 − 2 Φ(vi)
) ,

with φ being the standard normal PDF. The equations Uα = Uβ = Uλ = 0 cannot

be solved analytically, so that iterative techniques, such as bisection, Newton–

Raphson and secant methods, may be used; see Lange (2001) and McNamee and

Pa (2013). To obtain the ML estimates of the model parameters, we employ the

subroutine MaxBFGS of the Ox software; see Doornik (2006). This subroutine uses

the analytical derivatives to maximize ℓ(θ); see Nocedal and Wright (1999) and

Press et al. (2007). As starting values for the numerical procedure, we suggest to

consider

α̃ =
(

s/˜β + ˜β/r − 2
)1/2

, ˜β = (sr)1/2 , ˜λ = 0,

where s = (1/n)
∑n

i=1 ti and r = 1/
(

(1/n)
∑n

i=1(1/ti)
)

; see Birnbaum and Saun-

ders (1969a) and Leiva (2016, pp. 40–42).

To construct approximate confidence intervals and hypothesis tests for the

parameters, we use the normal approximation of the distribution of the ML es-

timator of θ = (α, β, λ)
⊤
. Specifically, assume that regularity conditions are ful-

filled in the interior of the parameter space but not on the boundary; see Cox

and Hinkley (1974). Then, the asymptotic distribution of
√

n(̂θ−θ) is N3(0,Σθ),

where Σθ is the asymptotic variance–covariance matrix of ̂θ, which can be ap-

proximated from the observed information matrix K(θ) = −J(θ), where J(θ) is
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the Hessian matrix J(θ) = ∂2ℓ(θ)/∂θ∂θ
⊤
, whose elements are

Jαα =
n

α2
+

6n

α4
−

4λ

α2

n
∑

i=1

vi φ(vi)

1 + λ − 2λ Φ(vi)

(

v2
i +

vi φ(vi)

1 + λ − 2λ Φ(vi)
− 2

)

−
3

4

n
∑

i=1

(

ti
β

+
β

ti

)

,

Jαβ =
2λ

α2β

n
∑

i=1

τ
(
√

ti/β
)

φ(vi)

1 + λ
(

1 − 2Φ(vi)
)

(

2λ vi φ(vi)

1 + λ
(

1 − 2Φ(vi)
) + (vi)

2 − 1

)

−
1

α3β

n
∑

i=1

(

ti
β
−

β

xi

)

,

Jαλ = −
2

α

n
∑

i=1

(

vi φ(vi)
(

1 + λ − 2λ Φ(vi)
)2

)

,

Jβλ =
2

αβ

n
∑

i=1

(

τ
(
√

ti/β
)

φ(vi)
(

1 + λ − 2λ Φ(vi)
)2

)

,

Jββ =
λ

αβ2

n
∑

i=1

φ(vi)

1 + λ − 2λ Φ(vi)

×

(

3

√

ti
β
−

√

β

ti
−

(

τ(ti/β)
)2

α

(

vi −
2λ φ(vi)

1 + λ − 2λ Φ(vi)

)

)

+
n

2β2
−

n
∑

i=1

1

(ti + β)2
−

1

α2β3

n
∑

i=1

ti ,

Jλλ = −
n
∑

i=1

(

1 − 2Φ(vi)

1 + λ
(

1 − 2Φ(vi)
)

)2

.

Thus, this trivariate normal distribution can be used to construct approximate

confidence intervals and regions for the model parameters. Note that asymptotic

100(1 − γ/2)% confidence intervals for α, β and λ are, respectively, established

as

α̂ ± z1−γ/2

(

̂Var(α̂)
)1/2

, ̂β ± z1−γ/2

(

̂Var(̂β)
)1/2

, ̂λ ± z1−γ/2

(

̂Var(̂λ)
)1/2

,

where ̂Var(̂θj) is the jth diagonal element of K
−1

(̂θ) related to each parameter

θj , for j = 1, 2, 3, with θ1 = α, θ2 = β, θ3 = λ, and zγ/2 is the 100(1 − γ/2)th

quantile of the standard normal distribution. Note that the estimated asymptotic

standard errors (SEs) of the each estimator can be obtained from the square root

of the diagonal element of K
−1

(̂θ).
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3.2. Simulation study

We present a numerical experiment to evaluate the performance of the ML

estimators α̂, ̂β and ̂λ. The simulation was performed using the Ox software.

A number of 10000 MC replications were considered, sample sizes n ∈ {25, 50,

75, 100, 200, 400, 800}, the combination of the parameters (α, β) ∈ {(0.10, 1.00),

(0.50,1.00), (1.50,1.00), (2.00,1.00)} and λ∈{−0.80,−0.50,−0.20,0.20,0.50,0.80}.

Without loss of generality, we fix β at 1.00 in all experiments, because this is a

scale parameter. Table 1 presents the empirical bias and square root of mean

squared error of the estimators of the TBS distribution parameters. From this

table, note that, generally, the bias decreases as n increases, evidencing that the

ML estimators α̂ and ̂β are asymptotically unbiased. Observe that, when varying

the values of λ, the distributions of the estimators of α and β show, in general,

symmetrical behaviors. In addition, when the parameter α increases, the bias of ̂β

increases. Note also that the estimator ̂λ is more biased than α̂ and ̂β, considering

all scenarios. Also in all of the cases, the square root of the mean square error

decreases as n increases, proving that the ML estimators of the TBS distribution

parameters have good precision, as known. It is important to mention that some

iterations did not converge during the simulations, due possibly to the complexity

of the function to be maximized or because of the difficulty to provide a good

initial value from λ.

3.3. Influence diagnostics

Local influence is based on the curvature of the plane of the log-likelihood

function; see Leiva et al. (2014b, 2016b). In the case of the TBS model given in

(2.1), let θ = (α, β, λ)
⊤

and ℓ(θ|ω) be the parameter vector and the log-likelihood

function related to this model perturbed by ω, respectively. The perturbation

vector ω belongs to a subset Ω ∈ R
n

and ω0 is an n× 1 non-perturbation vector,

such that ℓ(θ|ω0) = ℓ(θ), for all θ. The corresponding likelihood distance (LD)

is

(3.2) LD(ω) = 2
(

ℓ(̂θ) − ℓ(̂θω)
)

,

where ̂θω denotes the ML estimate of θ upon the perturbed TBS model used

to assess the influence of the perturbation on the ML estimate, whereas ℓ(̂θ)

is the usual likelihood function given in (3.1). Cook (1987) showed that the

normal curvature for θ in the direction of the vector d, with ‖d‖ = 1, is expressed

as Cd(θ) = 2 |d⊤∆⊤
J(θ)

−1∆d|, where ∆ is a 3×n perturbation matrix with

elements ∆ji = ∂2ℓ(θ|ω)/∂θj ∂ωi evaluated at θ = ̂θ and ω = ω0, for j = 1, 2, 3,

i = 1, ..., n, and J(θ) is the corresponding Hessian matrix.
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A local influence diagnostic is generally based on index plots. For example,

the index graph of the eigenvector dmax related to the maximum eigenvalue of

B(θ) = −∆⊤
J(θ)

−1∆, Cdmax
(θ) say, evaluated at θ = ̂θ, can detect those cases

that, under small perturbations, exercise a high influence on LD(ω) given in

(3.2). In addition to the direction vector of maximum normal curvature, dmax

say, another direction of interest is di = ein, which corresponds to the direction of

the case i, where ein is an n×1 vector of zeros with a value equal to one at the ith

position, that is, {ein, 1 ≤ i ≤ n} is the canonical basis of R
n
. Thus, the normal

curvature is Ci(θ) = 2|bii|, where bii is the ith diagonal element of B(θ), for

i = 1, ..., n, evaluated at θ = ̂θ. The case i is considered as potentially influential

if Ci(
̂θ) > 2C(̂θ), where C(̂θ) =

∑n
i=1 Ci(

̂θ)/n. This procedure is called total

local influence of the case i; see Liu et al. (2016).

Consider the log-likelihood function given in (3.1). We obtain the respec-

tive perturbation matrix ∆, which is already evaluated at the non-perturbation

vector ω0, under the scheme of case-weight perturbation. Then, we want to eval-

uate whether cases with different weights in the log-likelihood function affect the

ML estimate of θ. This scheme is the most used to assess local influence in a

model. The log-likelihood function of the TBS model perturbed by the case-

weight scheme is

ℓ(θ|ω) =

n
∑

i=1

ℓi(θ|ωi) =

n
∑

i=1

ωi ℓi(θ) .

Then, taking its derivative with respect to ω
⊤
, we obtain ∆ = (∆β ,∆α,∆λ)

⊤
.

After evaluating at θ = ̂θ and ω = ω0, the elements of ∆α, ∆β and ∆λ are

∆
(i)
α = −

1

α

(

1 +
2

α2

)

+
1

α3

(

ti
β

+
β

ti

)

+
2λ vi φ(vi)

α
(

1 + λ − 2λ Φ(vi)
) , i = 1, ..., n ,

∆
(i)
λ =

1 − 2Φ(vi)

1 + λ
(

1 − 2Φ(vi)
) ,

∆
(i)
β = −

1

2β
+

1

ti + β
+

1

2α2β

(

ti
β

+
β

ti

)

−
2λ

αβ

(

τ
(
√

ti/β
)

φ(vi)

1 + λ − 2λ Φ(vi)

)

.

4. APPLICATIONS TO REAL-WORLD DATA

In this section, we apply the obtained results for the new model to three

data sets, illustrating its potential applications. The results are compared to

other competing BS distributions. All the computations were done using the

Ox software. For each data set, we estimate the unknown parameters of the

associated distribution by the ML method and evaluate its goodness of fit with

suitable methods.
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4.1. Exploratory analysis

The first data set (S1) corresponds to the number of successive failures

for the air conditioning system of each member in a fleet of 13 Boeing 720 jet

airplanes (n = 188); S1 can be obtained from Proschan (1963). The second data

set (S2) is related to vinyl chloride concentration (in mg/L) obtained from clean

upgradient monitoring wells (n = 34); S2 can be obtained from Bhaumik et al.

(2009). The third data set (S3) corresponds to protein amount (in g) in the

restricted diet for adult patients in a Chilean hospital (n = 61); S3 and more

details about these data can be obtained from Leiva et al. (2014a). Table 2

provides some descriptive measures for the three data sets, which include central

tendency statistics, the standard deviation (SD) and the coefficients of variation

(CV), skewness (CS) and kurtosis (CK), among others. From these exploratory

analyses, we detect asymmetrical distributions with positive skewness in all of

the cases and different kurtosis levels. Figure 5 (first panel/row) shows the his-

tograms of S1, S2 and S3, from which it is possible to observe these features.

Table 2: Descriptives statistics for the indicated data set.

Statistic
Data set

S1 S2 S3

n 188 34 61
Minimum 1.0 0.10 17.8
Median 54.0 1.15 68.2
Mean 92.7 1.88 80.4
Maximum 603.0 8.00 210.3
SD 107.9 1.95 42.3
CS 2.1 1.53 1.2
CK 4.9 1.72 4.0
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Figure 4: Box-plots for the indicated data set.
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Figure 4 displays the usual and adjusted box-plots, where the latter is useful

in cases when the data follow a skew distribution; see Rousseeuw et al. (2016).

From Figure 4, note that potential outliers considered by the usual box-plot

are not outliers in the adjusted box-plot. This is an indication that no outliers

are present at the right tail in all of the studied data sets. Figure 5 (second

panel/row) confirms these facts by means of the influence index plots, which do

not detect atypical cases. Therefore, the TBS distribution can be a good can-

didate for modeling these data sets. We compare the TBS distribution to other

generalizations of the BS distribution, such as the three-parameter MOBS, expo-

nentiated BS (EBS) and two-parameter BS distributions with the EBS and MOBS

PDFs being: fEBS(x;α, β, a) = afBS(x;α, β)FBS(x;α, β)
a−1

, for x > 0, a > 0, and

fMOBS(x; η, α, β) = ηfBS(x;α, β)/
(

1− (1− η)(1−FBS(x;α, β))
)2

, for x > 0, η > 0.
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Figure 5: Histograms with estimated PDF (first panel/row), influence index

(second panel/row) and plots QQ plots with envelope (third panel/row)

for the TBS distribution based on the indicated data set.
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4.2. Confirmatory analysis

Table 3 lists the ML estimates of the parameters and the estimated asymp-

totic SEs in parentheses of the corresponding estimators for the four distributions

fitted to S1, S2 and S3. From this table and using the asymptotic distributions

of the ML estimators proved by the simulation study of Section 3.2, we eval-

uate whether the additional parameters of the EBS, MOBS and TBS distribu-

tions are significatively different from zero or not for each data set. Note that,

for S1, the additional parameter is always significatively different from zero at

5% for all EBS, MOBS and TBS distributions, indicating that the BS distri-

bution should model S1 poorly. This is not the case of S2 and S3, where only

the MOBS parameter is significatively different from zero at 5% in both cases.

Table 3: ML estimates (with estimated SE in parenthesis)

for the indicated parameter, distribution and data set.

Distribution
S1 S2 S3bθ1
bθ2

bθ3
bθ1

bθ2
bθ3

bθ1
bθ2

bθ3

TBS(α, β, λ)
1.7432 23.407 −0.8649 1.3435 0.7525 −0.5496 0.5207 73.138 0.1133

(0.1347) (3.4801) (0.1179) (0.2526) (0.3250) (0.5869) (0.0495) (17.662) (0.8308)

MOBS(η, α, β)
2.1975 1.5556 26.2253 1.8193 0.7451 1.2899 0.9127 0.5197 72.6927

(0.5016) (0.0923) (4.3453) (1.0968) (0.1691) (0.2793) (0.7345) (0.0471) (17.025)

EBS(α, β, a)
2.1790 13.5871 2.5381 1.6597 0.4705 2.0973 0.4290 92.414 0.5295

(0.2755) (4.4206) (0.5224) (0.5221) (0.3889) (1.3836) (0.7842) (209.16) (3.1384)

BS(α, β)
1.5147 41.3240 — 1.2745 1.0203 — 0.5199 70.857 —

(0.0783) (3.4959) — (0.1546) (0.1826) — (0.0471) (4.5565) —

To confirm these facts, we apply goodness-of-fit tests detecting what distribution

adjusts better each data set. We consider the Anderson–Darling (AD), Cramér–

von Mises (CM) and Kolmogorov–Smirnov (KS) statistics; see Barros et al.

(2014). Table 4 provides the p-values of the corresponding tests for S1, S2 and S3.

Table 4: p-value of the indicated statistic, model and data set.

Distribution
S1 S2 S3

KS CM AD KS CM AD KS CM AD

TBS 0.7919 0.5819 0.4715 0.9820 0.9332 0.9215 0.9996 0.9459 0.9202
MOBS 0.4789 0.1337 0.0903 0.9765 0.9167 0.9126 0.9995 0.9409 0.9160
EBS 0.7369 0.2015 0.1568 0.9828 0.9257 0.9212 0.9967 0.8925 0.8810
BS 0.1064 0.0501 0.0166 0.8441 0.8253 0.7129 0.9985 0.9409 0.9001
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Thus, according to these tests, the TBS distribution fits the three data sets better

than the other distributions, that is, such p-values indicate that all of the null hy-

potheses are strongly not rejected for the TBS distribution. Also, we compare the

four distributions using the Akaike (AIC) and Bayesian (BIC) information crite-

ria, as well as the Bayes factor (BF) to evaluate the magnitude of the difference

between two BIC values; see Kass and Raftery (1995). Note that the BF coincides

with the likelihood ratio test for nested models. We compute the AIC and BIC

for the four distributions, whereas the BF is obtained to compare the distribution

having a smaller BIC to the others. Decision about the best fit is made according

to the interpretation of the BF presented in Table 6 of Leiva et al. (2015b). Table 5

provides the values of AIC, BIC and BF, indicating that the TBS distribution

provides the best fit for S1 and a very competitive performance for S2 and S3.

Table 5: Value of the information criteria and BF

for indicated model and data set.

Distribution
S1 S2 S3

AIC BIC BF AIC BIC BF AIC BIC BF

TBS 1467.1000 1476.8000 — 5.0275 9.6065 2.5891 418.7600 425.1000 4.0939
MOBS 1471.6000 1481.3000 4.4000 4.9694 9.5485 2.5311 418.7700 425.1000 4.1100
EBS 1469.0000 1478.7000 1.8000 5.0111 9.5902 2.5728 418.7800 425.1100 4.1000
BS 1481.5000 1488.0000 11.2000 3.9647 7.0174 — 416.7800 421.0000 —

These good results of the TBS distribution can be supported graphically in

Figure 5, which displays the histograms with the estimated TBS PDFs (first

panel/row) and the quantile versus quantile (QQ) plot with envelope (third

panel/row). The QQ plot allows us to compare the empirical CDF and the

estimated TBS CDF. All of these results of goodness of fit allow us to con-

clude the superiority of the TBS distribution in relation to the BS, EBS and

MOBS distributions to model S1, S2 and S3. This shows the potential of the

TBS distribution and the importance of the additional parameter. In addition,

because the TBS distribution presents the best fit to the studied data sets, we an-

alyze the influence of small perturbations in the ML estimates of its parameters.

We use the scheme of case-weight perturbation. Figure 5 (second panel/row)

sketches the influence index plot based on the TBS distribution for each data set.

An inspection of these plots reveals that, as mentioned, none case appears with

outstanding influence on the ML estimates of the TBS distribution parameters.
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5. CONCLUSIONS AND FUTURE RESEARCH

We have used the transmutation method to define a new distribution that

generalizes the Birnbaum–Saunders model, named the transmuted Birnbaum–

Saunders distribution. Some relevant characteristics of the new distribution have

been derived, such as the probabilistic functions, as well moments and a gen-

erator of random numbers. We have estimated the model parameters with the

maximum likelihood method and its good performance has been evaluated by

means of Monte Carlo simulations. Score vector and Hessian matrix were de-

rived to infer about the model parameters. Diagnostic tools have been obtained

to detect locally influential data in the maximum likelihood estimates. Poten-

tial applications of the new distribution have been considered by using three

real-world data sets. Goodness-of-fit methods have demonstrated the suitable

performance of the transmuted Birnbaum–Saunders distribution to these data in

comparison to other versions of the Birnbaum–Saunders distribution. We hope

that the new proposed distribution may attract wider applications in statistics.

Modeling based on fixed, random and mixed effects, including semi-parametric

formulations and non-parametric estimation of kernel, can be conducted with this

new distribution. Multivariate versions, as well as copula methods, could also be

addressed by the new transmuted Birnbaum–Saunders distribution.
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