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Abstract:

• Using resistant and robust methods we propose the statistic Tn = (FU−M)/(M−FL)
for testing exponentiality versus generalized Pareto, where FU , FL and M are, respec-
tively, the upper and lower fourths and the median of a random sample of size n.
The statistic Tn is based on the statistic Vn = (Xn:n−M)/(M−X1:n) used by Gomes
(1982) to discriminate extremal models in a similar context but with a higher break-
down point.
The simulated power of Tn is compared with the simulated power of Un =Xn:n/M
and Vn, which can also be used to test the exponential behaviour of the sample data.
Although we observe that the power of Tn is lower than the power of Un and Vn, we
show that the performance of the first test is better than the performance of the two
other tests when compared to broadened situations and mixtures commonly used to
evaluate resistance and robustness.
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1. INTRODUCTION

Given the importance of the generalized Pareto distribution in Statistics
(e.g., analysis of POT data) we propose a test for testing exponentiality versus
generalized Pareto which, although it is not the best one among possible tests, is
however resistant to disturbing data, and robust in the sense that it is not sensitive
to some departures of the assumptions inherent to a chosen probabilistic model.

Some statistics have been proposed to test the exponential behaviour of sam-
ples from generalized Pareto populations, specially for the von Mises–Jenkinson
parametrization of the distribution, i.e.,

F
β
(x) = 1 −

(
1 + β

x

δ

)−1/β

, 1 + β
x

δ
> 0, x > 0 ,

where −∞ < β < ∞ is a shape parameter and δ > 0 a scale parameter. One test
that can be used is based on the statistic Un = Xn:n

M (Gomes and van Monfort,
1987). Another possible test is based on Vn = Xn:n−M

M−X1:n
which was used by Gomes

(1982) to discriminate extremal models in a similar context. However, since Un

and Vn are both functions of extreme order statistics, they possess a disadvantage,
a zero breakdown point, in the sense of Hampel, as defined below:

Definition 1.1. A statistic T has an α breakdown point (0≤α≤1) if
the proportion of the sample data that can be replaced by arbitrarily other data
with T remaining bounded approaches α.

As an alternative to the tests mentioned above we propose the test statistic

Tn =
FU − M

M − FL
,

where FU and FL denote the upper and lower fourths and M the median of a
random sample of size n, with a higher breakdown point (approximately equal
to 0.25).

In section 2 we obtain the sample distribution of Tn under the null hy-
pothesis β = 0 (i.e., exponential behaviour) as well as the limiting distribution.
In section 3 the power of the tests Tn, Un and Vn are compared and the perfor-
mance of each one is evaluated under broadened situations and mixtures in order
to determine their resistance and robustness qualities.
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2. SAMPLE DISTRIBUTION OF Tn UNDER THE HYPOTHESIS
OF AN EXPONENTIAL PARENT

Let (X1, ..., Xn) be a random sample from an exponential distribution with
distribution function

F0(x) =
(
1 − e

−x/δ
)

I
]0,+∞[

,

(δ > 0) and let (X1:n, ..., Xn:n) be the vector of ascending order statistics associ-
ated with the sample.

In order to preserve the ranking symmetry of the fourths from the extremes
of the sample, we use the following definition for the (100p)th sample percentile

ξp =

⎧⎨⎩X{np}:n if p < 0.5 ,

Xn−{n(1−p)}+1:n if p > 0.5 ,

where {a} denotes the number a rounded to the nearest integer in the usual way
(cf. Casella and Berger, 2002).

Therefore, when n is odd

Tn =
Xn−{n

4}+1:n − Xn+1
2

:n

Xn+1
2

:n − X{n
4}:n

,

and when n is even

Tn =
Xn−{n

4}+1:n − 1
2

(
Xn

2
:n + Xn

2
+1:n

)
1
2

(
Xn

2
:n + Xn

2
+1:n

)
− X{n

4}:n

.

The independence of the spacings of the exponential model yields the in-
dependence of the generalized spacings Xn−{n

4}+1:n−Xn+1
2

:n and Xn+1
2

:n−X{n
4}:n

when n is odd, and therefore the probability density function of Tn was obtained
using standard techniques in this case.

When n is even we no longer have independence between numerator and
denominator of Tn, and hence the expression that defines the probability den-
sity function was obtained calculating the marginal distribution of Tn from the
joint probability distribution of the random vector (X{n

4}:n, Xn/2:n −X{n
4}:n,

Xn/2+1:n−Xn/2:n, Tn).
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Consequently, if n is odd, the density function is defined by

f(t) =

(
n − {

n
4

})
!({

n
4

}− 1
)
!
(

n−1
2 − {

n
4

})
!
2

×
n−1

2 −
{

n
4

}∑
i=0

(n−1
2 −{n

4

}
i

)
(−1)i B

(
n+1

2 +
(
i+
{

n
4

})
t , n+1

2 − {
n
4

})

×
n+1

2 −
{

n
4

}∑
j=1

1

n − {
n
4

}
+ 1 − j +

(
i+
{

n
4

})
t

, t > 0 ,

where B(· , ·) represents the beta function; and, if n is even,

f(t) =

(
n − {

n
4

})
!({

n
4

}− 1
)
!
(

n
2 − {

n
4

}− 1
)
!
2

×
n
2−
{

n
4

}
−1∑

i, j=0

(n
2 −

{
n
4

}−1
i

)(n
2 −

{
n
4

}−1
j

)

× (−1)i+j 2
(
n + 2 j + 2

)
t +

(
n + 2 i − 2 j − 2 + 2

{
n
4

})
t2[

n
2 + j + 1 +

(
i+
{

n
4

})
t
]2 [

n
2 + j + 1 +

(
n
2 −j−1

)
t
]2

if 0 < t < 1, and

f(t) =

(
n − {

n
4

})
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4

}− 1
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4
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4
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(
i +
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4
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4
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+
1
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4

}−i+
(
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{

n
4

})
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⎫⎪⎪⎬⎪⎪⎭ ,

if t ≥ 1.

For larger sample sizes we can use the normal distribution as an approxi-
mation to the distribution of Tn. In order to prove that Tn has a limiting normal
distribution under the hypothesis of an exponential parent we consider the fol-
lowing lemma (cf. Chernoff et al., 1967).
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Lemma 2.1. Let Zi:n be the i th ascending order statistic of n i.i.d.
standard exponential random variables Z1, ..., Zn. Then,

P

{
τ−1
n

n∑
i=1

ai:n(Zi:n − μi:n) ≤ t

}
−−−−−→
n→+∞ Φ(t) ,

for every t, if and only if,

max
1≤j≤n

τ−1
n |bj,n| −−−−−→

n→+∞ 0 ,

where μi:n = E(Zi:n), bj,n = (n−j+1)−1
∑n

i=j ai:n and τ2
n =

∑n
i=1 b2

i,n .

Using the lemma’s notation for Xn−{n
4}+1:n−Xn+1

2
:n we have

ai:n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 , i = n+1

2 ,

1 , i = n−{n
4

}
+1 ,

0 , elsewhere ,

and

bj,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , 1 ≤ j ≤ n+1

2 ,

1
n−j+1

, n+1
2 +1 ≤ j ≤ n−{n

4

}
+1 ,

0 , n−{n
4

}
+2 ≤ j ≤ n .

Hence,

τ2
n =

n−
{

n
4

}
+1∑

j=
n+1

2 +1

1
(n − j + 1)2

=

n−1
2∑

k=
{

n
4

} 1
k2

.

Applying the lemma we get

τ−1
n

(
Xn−{n

4}+1:n − Xn+1
2

:n− λn

)
d−−−−−→

n→+∞ Z � Normal(0, 1) ,

where

λn = μn−{n
4}+1:n− μn+1

2
:n =

n−1
2∑

k=
{

n
4

} 1
k

,

and since ln(3/2)
X n+1

2 :n
−X{n

4}:n

converges in probability to 1, it follows from Slutsky’s

theorem that

ln(3/2) τ−1
n

(
Tn − λn

ln(3/2)

)
d−−−−−→

n→+∞ Z � Normal(0, 1) .
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However, simpler normalizing constants can be found. Since λn∼ ln 2 and
τ2
n ∼ 2

n we have

ln(3/2)
√

n

2

(
Tn − ln 2

ln(3/2)

)
d−−−→

n→∞ Z � Normal(0, 1) .

On the other hand, it is quite straightforward to show that

ln 2 Un− lnn
d−−−→

n→∞ Y � Gumbel(0, 1)

and

ln 2 Vn− ln(n/2) d−−−→
n→∞ Y � Gumbel(0, 1) .

3. POWER, RESISTANCE AND ROBUSTNESS COMPARISON

The choice of the appropriate statistical test for a particular situation must
be guided by a sensible criteriom. Usually, power considerations weight consid-
erably in the decision process.

For inference purposes and comparison of the power functions we register
on Table 1 the simulated critical points (based on 4999 simulations) of the sample
distributions of Tn, Un and Vn under the null hypothesis β = 0.

Table 1: Simulated critical points of Tn, Un and Vn.

α

.01 .025 .05 .1 .9 .95 .975 .99

T10 .21* .30* .40* .56* 4.90* 6.88* 9.37* 13.65*
U10 1.53 1.70 1.87 2.12 7.62 9.53 11.68 14.97
V10 .59 .79 1.00 1.29 8.00 10.38 12.99 18.07

T20 .43* .54* .66* .83* 3.89* 4.89* 5.97* 7.59*
U20 2.13 2.37 2.65 2.98 8.50 10.08 11.82 13.95
V20 1.18 1.47 1.75 2.11 8.23 10.02 11.95 14.72

T30 .50* .61* .72* .88* 3.30* 4.00* 4.74* 5.80*
U30 2.53 2.91 3.17 3.54 9.11 10.47 12.05 13.87
V30 1.62 1.96 2.25 2.66 8.57 10.10 11.64 13.57

T50 .67 .79 .89 1.03 2.86 3.31 3.80 4.50
U50 3.24 3.49 3.85 4.23 9.55 11.02 12.24 14.12
V50 2.29 2.58 2.91 3.33 8.83 10.35 11.77 13.67

T100 .87 .99 1.09 1.21 2.47 2.75 3.02 3.32
U100 4.19 4.53 4.83 5.24 10.46 11.56 12.63 14.33
V100 3.26 3.57 3.88 4.30 9.58 10.73 11.79 13.46

T250 1.12 1.20 1.28 1.36 2.17 2.31 2.44 2.57
U250 5.49 5.89 6.21 6.68 11.51 12.60 13.71 15.09
V250 4.52 4.92 5.25 5.72 10.58 11.66 12.79 14.22

(* exact critical points)
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Figures 1 and 2 show the simulated power functions (5 000 simulations)
of Tn, Un and Vn for a α = 0.05 level right one-sided and two-sided tests and
n = 10, 20, 30, 50, 100, 250.
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Figure 1: Power functions for a α = 0.05 level right one-sided test.

From Figures 1 and 2 we observe that Tn performs quite badly in detecting
departures from the exponential behaviour when compared with the other two
tests. If we had to choose based exclusively on the power of the test, we would
choose for smaller sample sizes (n ≤ 30) Un and for larger sample sizes Un or Vn.
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A comparison of the power of the three tests was also made for a α = 0.01 level
one-sided and two-sided tests, but the results are not presented here because they
reveal a similar pattern as in the case α = 0.05.
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Figure 2: Power functions for a α = 0.05 level two-sided test.

The power criteria can be pushed to a second place if we find stronger
reasons which can sustain such a decision. In fact, the lesser power of Tn will
be in a way compensated when we evaluate its performance after introducing
disturbing observations in the sample (e.g., an observation from an exponential



10 M.F. Brilhante

population with a larger scale), or when we consider the sample from a mixture
of exponentials, which is a variation (or contamination) of the “pure” exponential
model. In order to compare the resistance and robustness of the tests we will
evaluate the performance of each one in a broadened situation and mixture.

In an one broadened situation, which is the case presented here, we as-
sume that the margins of the random vector (X1 , ..., Xn−1 , X

∗) are independent,
X1 , ..., Xn−1 are standard exponentials and X∗ is an exponential variable with
distribution function

F ∗(x) =
(
1 − e−

x+K−1
K

)
I
]1−K,+∞[

.

In a mixture situation we assume that the random sample (X1 , ..., Xn)
is from a population with distribution function

F (x) =
[
(1 − θ)

(
1 − e

−(x−θ(1−K))
)

+ θ
(
1 − e−

x−θ(1−K)
K

)]
I
]θ(1−K),+∞[

,

where 0 < θ < 1 (θ is sometimes called the percentage contamination).

In robustness studies it is usual to consider K = 3, 10 and θ = 0.05, 0.1
(cf. Hoaglin et al., 1983). However, we will only show the results obtained for
K = 3, 10 and θ = 0.05, and for the classical level α = 0.05.

In Tables 2 to 5 we indicate the probability of rejecting the exponential
hypothesis, as well as the standard error of the estimates and the corresponding
95% confidence interval.

Table 2: Right one-sided test in an one broadened situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .050 .0031 [.044, .056] .116 .0045 [.107, .125] .070 .0036 [.063, .077]
20 .051 .0031 [.045, .057] .099 .0042 [.091, .107] .063 .0034 [.056, .070]
30 .048 .0030 [.042, .054] .093 .0041 [.085, .101] .067 .0035 [.060, .074]
50 .051 .0031 [.045, .057] .086 .0040 [.078, .094] .063 .0034 [.056, .070]

100 .053 .0032 [.047, .059] .077 .0038 [.070, .084] .053 .0032 [.047, .059]
250 .049 .0031 [.043, .055] .079 .0038 [.072, .086] .053 .0032 [.047, .059]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .055 .0032 [.049, .061] .248 .0061 [.236, .260] .186 .0055 [.175, .197]
20 .053 .0032 [.047, .059] .239 .0060 [.227, .251] .193 .0056 [.182, .204]
30 .050 .0031 [.044, .056] .238 .0060 [.226, .250] .203 .0057 [.192, .214]
50 .050 .0031 [.044, .056] .226 .0059 [.214, .238] .196 .0056 [.185, .207]

100 .054 .0032 [.048, .060] .215 .0058 [.204, .226] .185 .0055 [.174, .196]
250 .049 .0031 [.043, .055] .206 .0057 [.195, .217] .175 .0054 [.164, .186]
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Table 3: Two-sided test in an one broadened situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .051 .0031 [.045, .057] .085 .0039 [.077, .093] .186 .0055 [.175, .197]
20 .052 .0031 [.046, .058] .073 .0037 [.066, .080] .273 .0063 [.261, .285]
30 .050 .0031 [.044, .056] .078 .0038 [.071, .085] .339 .0067 [.326, .352]
50 .054 .0032 [.048, .060] .068 .0036 [.061, .075] .381 .0069 [.368, .394]

100 .054 .0032 [.048, .060] .070 .0036 [.063, .077] .428 .0070 [.414, .442]
250 .056 .0033 [.050, .062] .073 .0037 [.066, .080] .467 .0071 [.453, .481]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .053 .0032 [.047, .059] .205 .0057 [.194, .216] .645 .0068 [.632, .658]
20 .052 .0031 [.046, .058] .205 .0057 [.194, .216] .701 .0065 [.688, .714]
30 .050 .0031 [.044, .056] .208 .0057 [.197, .219] .711 .0064 [.698, .724]
50 .054 .0032 [.048, .060] .198 .0056 [.187, .209] .723 .0063 [.711, .735]

100 .051 .0031 [.045, .057] .203 .0057 [.192, .214] .738 .0062 [.726, .750]
250 .056 .0033 [.050, .062] .194 .0056 [.183, .205] .750 .0061 [.738, .762]

Table 4: Right one-sided test in a 5% contamination situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .055 .0032 [.049, .061] .142 .0049 [.132, .152] .086 .0040 [.078, .094]
20 .056 .0033 [.050, .062] .188 .0055 [.177, .199] .119 .0046 [.110, .128]
30 .053 .0032 [.047, .059] .217 .0058 [.206, .228] .138 .0049 [.128, .148]
50 .058 .0033 [.052, .064] .268 .0063 [.256, .280] .182 .0055 [.171, .193]

100 .062 .0034 [.055, .069] .405 .0069 [.391, .419] .285 .0064 [.272, .298]
250 .064 .0035 [.057, .071] .619 .0069 [.606, .632] .471 .0071 [.457, .485]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .062 .0034 [.055, .069] .459 .0070 [.445, .473] .231 .0060 [.219, .243]
20 .069 .0036 [.062, .076] .685 .0066 [.672, .698] .382 .0069 [.369, .395]
30 .059 .0033 [.052, .066] .816 .0055 [.805, .827] .501 .0071 [.487, .515]
50 .065 .0035 [.058, .072] .921 .0038 [.914, .928] .683 .0066 [.670, .696]

100 .074 .0037 [.067, .081] .992 .0013 [.990, .994] .887 .0045 [.878, .896]
250 .092 .0041 [.084, .100] 1.000 .0000 — .994 .0011 [.992, .996]

The analysis of the previous tables show that Tn is by far less sensitive to the
disturbing observation, even when it comes from an exponential population with a
standard deviation ten times greater than the standard deviation of the standard
exponential. In other words this means that with Tn we will be rejecting a true
null hypothesis with probability approximately equal to α = 0.05. The same can
be said when we consider that 5% of the observations are from an exponential
population with standard deviation K = 10. Therefore the results confirm that
Tn is more resistant and robust.
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Table 5: Two-sided test in a 5% contamination situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .050 .0031 [.044, .056] .106 .0044 [.097, .115] .074 .0037 [.067, .081]
20 .053 .0032 [.047, .059] .139 .0049 [.129, .149] .093 .0041 [.085, .101]
30 .051 .0031 [.045, .057] .160 .0052 [.150, .170] .112 .0045 [.103, .121]
50 .052 .0031 [.046, .058] .212 .0058 [.201, .223] .143 .0050 [.133, .153]

100 .052 .0031 [.046, .058] .333 .0067 [.320, .346] .234 .0060 [.222, .246]
250 .050 .0031 [.044, .056] .528 .0071 [.514, .542] .385 .0069 [.372, .398]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .052 .0031 [.046, .058] .545 .0070 [.531, .559] .205 .0057 [.194, .216]
20 .053 .0032 [.047, .059] .704 .0065 [.691, .717] .345 .0067 [.332, .358]
30 .051 .0031 [.045, .057] .805 .0056 [.794, .816] .462 .0071 [.448, .476]
50 .054 .0032 [.048, .060] .913 .0040 [.905, .921] .645 .0068 [.632, .658]

100 .054 .0032 [.048, .060] .989 .0015 [.986, .992] .864 .0048 [.854, .874]
250 .060 .0034 [.053, .067] 1.000 .0000 — .990 .0014 [.987, .993]

4. FINAL COMMENTS

It is important to use resistant and robust methods given the fact that: (i)
classical techniques behave poorly when the general situation departs from the
set of initial assumptions; (ii) in practice we never know the exact underlying
conditions, specially when it is not so unlikely to admit the existence of disturbing
data in the sample.

The conclusions of section 3 reinforce the general idea that resistant and
robust methods are the best compromise possible for a large set of scenarios,
although not necessarily the best ones for a very specific and limiting situation.

The analysis of the power function shows that the extreme order statistics
carry important information for the issue at hand, and therefore trimming out
25% of the sample data may be too drastic. Unfortunately, there is no rule of
thumb for an appropriate choice k in Tn(k) =

Xn−k(n)+1:n−M

M−Xk(n):n
that optimizes results

in what concerns power and resistance and robustness altogether.
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1. INTRODUCTION

A central topic in extreme-value theory which continues to receive consid-
erable attention is the estimation of the extreme-value index γ. This index is
directly related to the tail of a distribution function F with the tail function
1−F becoming more heavy as γ increases. The extreme-value index γ can be
estimated from a parametric or a semi-parametric point of view.

Parametric approaches are based on limit theorems which form the core
of the extreme-value theory. Consider X1, ..., Xn independent and identically
distributed random variables and let X1,n ≤ ... ≤ Xn,n denote the corresponding
ascending order statistics. A first possibility is based on the following result of
Fisher and Tippett (1928). If for a distribution function FX there exist sequences
of constants (an > 0)n and (bn)n such that

lim
n→∞P

(
Xn,n − bn

an
≤ x

)
= lim

n→∞Fn
X(an x + bn) = H(x)(1.1)

at all continuity points of H, with H a nondegenerate distribution, then FX is
said to belong to the domain of (maximum) attraction of H, denoted FX ∈D(H).
Moreover, it is known that if such a nondegenerate limit distribution H exists,
it should be of the form

Hγ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(
−
(

1 + γ
x−μ

σ

)− 1
γ

)
1 + γ x−μ

σ > 0, γ �= 0

exp

(
− exp

(
−x−μ

σ

))
x ∈ R, γ = 0

(1.2)

with μ ∈ R and σ > 0. This limit distribution is the so-called generalized extreme-
value distribution (GEV). Note that the extreme-value index γ appears as a shape
parameter in (1.2). Based on this result, γ can be estimated by fitting (1.2) to
sample maxima (Gumbel, 1967). A second possibility is based on the generalized
Pareto distribution (GPD) given by

Gγ(x) =

⎧⎪⎪⎨⎪⎪⎩
1 −

(
1 + γ

x

σ

)− 1
γ

γ �= 0

1 − exp
(
−x

σ

)
γ = 0

(1.3)

with σ > 0 and with x > 0 if γ ≥ 0, 0 < x < −σ/γ if γ < 0, which is fitted to
exceedances over a specified threshold u (Pickands, 1975, Smith, 1985, 1987).

Next to the above described parametric approaches, γ can also be esti-
mated semi-parametrically. Define the tail quantile function UX as UX(x) =
inf

{
y : FX(y) ≥ 1 − 1

x

}
, x > 1. For Pareto-type or heavy tailed distributions



18 Jan Beirlant and Yuri Goegebeur

(γ > 0) we have

FX ∈ D(Hγ) ⇐⇒ 1 − FX(x) = x
− 1

γ l̃(x) , x > 0(1.4)

⇐⇒ UX(x) = xγ l(x) , x > 1

with l̃, l slowly varying functions at infinity i.e. positive functions g such that

g(λx)
g(x)

→ 1 as x → ∞ ∀λ > 0 .(1.5)

The conditions given in (1.4) characterize completely the first order behavior of
FX . The Pareto quantile plot can be found in the literature as the basis for
evaluating the goodness-of-fit hypothesis of strict Pareto behavior. For the strict
Pareto distribution log U(x) = γ log(x) so the log theoretical quantiles stand in
linear relationship with log(x). Replacing the theoretical quantiles log U(n+1

j ) by
their empirical counterparts log Un(n+1

j ) = log Xn−j+1,n, the coordinates of the
points on the quantile plot are given by(

log
(

n+1
j

)
, log Xn−j+1,n

)
j = 1, ..., n .(1.6)

In case of a good fit of the strict Pareto distribution to the data, the points
on the Pareto quantile plot should show a straight line pattern. Moreover, the
slope of a line through the origin fitted to the Pareto quantile plot will estimate γ.
In case the distribution of the data is of Pareto-type, the log-tail quantile function
can be written as log U(x)=γ log x + log l(x). Since log l(x)/ log x → 0 as x→∞
we have that log U(x) ∼ γ log x as x → ∞, so the Pareto quantile plot will be
ultimately linear. Again, the slope of the linear part will approximate γ. Several
well known estimators for γ can be interpreted as estimators of the slope of the
linear part of the Pareto quantile plot. For instance, the Hill (1975) estimator
given by

Hk,n =
1
k

k∑
j=1

log Xn−j+1,n − log Xn−k,n k = 1, ..., n − 1(1.7)

clearly measures the average increase of the Pareto quantile plot to the right of
the anchor point

(
log(n+1

k+1 ), log Xn−k,n

)
. Other important estimators for γ > 0

are the so-called kernel estimators derived by Csörgő et al. (1985) and the least
squares estimators proposed by Kratz and Resnick (1996) and Schultze and
Steinebach (1996) among others.

The estimation of γ ∈ R has been studied less extensively. In this paper we
will concentrate on the approach based on the generalized quantile plot described
in Beirlant et al. (1996) and Beirlant et al. (2000). For a positive random variable
X, consider

HX(x) = E
(
log X− log UX(x) | X >UX(x)

)
x > 1 ,
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the mean residual life function of the log-transformed data, and define the adapted
mean excess function UHX as

UHX(x) = UX(x)HX(x)

= UX(x)
∫ ∞

1

(
log UX(zx) − log UX(x)

) dz

z2
x > 1 .(1.8)

In Theorem 1 of Beirlant et al. (1996) it is shown that FX ∈ D(Hγ), γ ∈ R,
implies that

log UHX(x) = γ log x + log l̆(x)(1.9)

with l̆ denoting a slowly varying function at infinity. As a consequence,
log UHX(x) ∼ γ log x for x → ∞. Consider X1, ..., Xn independent and iden-
tically distributed positive random variables. Replacing UX and HX in (1.8)
by their empirical counterparts yields

UHj,n = ÛHX

(
n

j

)
= Xn−j,n

(
1
j

j∑
i=1

log Xn−i+1,n − log Xn−j,n

)
(1.10)

as sample versions for UHX(n/j), j = 1, ..., n−1. For FX ∈ D(Hγ), the general-
ized quantile plot, defined by(

log
n

j
, log UHj,n

)
j = 1, ..., n − 1 ,(1.11)

should be ultimately linear in the smaller j-values. Further, the slope of the straight
line behind the linear part of the generalized quantile plot is the unknown γ.
Applying a Hill-type operation on UHj,n, j = 1, ..., k, results in the following
estimator for γ, called the adapted Hill estimator H∗2

k,n ,

H∗2
k,n =

1
k

k∑
j=1

log UHj,n − log UHk+1,n .(1.12)

Other well known estimators for γ ∈ R have been proposed by Pickands (1975)
and Dekkers et al. (1989).

As is clear from the above discussion, the literature on extreme-value meth-
ods for a sample of independent and identically distributed data is quite elaborate.
However, the problem of combining data from different independent data groups
is hardly studied. Nevertheless, the problem is important: consider for instance
the combination of earthquake data from different geographical regions such as
subduction zones and midocean ridge zones. Often the amount of available data
is small and hence the combination of different samples is important in order to
gain efficiency.
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Of course, regression models with dummy explanatory variables describing
the groups, can be used in combination with classical extreme-value models such
as the generalized extreme-value distribution (1.2), which is fitted to maxima,
or the generalized Pareto distribution (1.3), which is fitted to so-called peaks (or
excesses) over threshold data. This approach can be found for instance in Davison
and Smith (1990). A major difficulty when working with the GPD in a regression
setting is the selection of the threshold. Ideally, the threshold should depend on
the covariates in order to take the relative extremity of the observations into
account. This issue was also noted by Davison and Smith (1990) and Coles and
Tawn (1998). Up to now, solutions seem rather ad hoc and especially designed
for the data set at hand. Often the threshold is taken equal over the different
groups leading to inefficient use of the data if the scale in the different groups is
quite different.

In contrast, the semi-parametric approaches where only the k largest data
are used for tail estimation can overcome this problem. In this paper we consider
in section 2 the estimation problem of γ in case data on several Pareto-type
groups are available. Next, in section 3, we extend the procedure to the general
case where the extreme-value index can be positive or negative. The performance
of the proposed methods will be illustrated using small sample simulations.

2. LINEAR MODEL FORMULATION, γ > 0

2.1. Description of the model

Consider independent and identically distributed positive random vari-
ables X

(j)
1 , ..., X

(j)
nj with a common distribution function FX(j) , j =1, ..., G, where

G denotes the number of groups. Assume further that the G groups are indepen-
dent of each other and that the response distributions are of Pareto-type i.e. the
tail quantile functions UX(j) , j =1, ..., G, satisfy

UX(j)(x) = xγj lj(x) x > 1, γj > 0(2.1)

where γj and lj denote the extreme-value index respectively the slowly varying
function of group j.

In the extreme-value literature one often imposes the so-called slow varia-
tion with remainder condition (see section 3.12.1 of Bingham et al., 1987) on the
slowly varying function l in (1.4). This second order condition specifies the rate
of convergence of the ratio l(λx)/l(x) to its limit as x → ∞.
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Assumption (Rl): There exists a real constant ρ<0 and a rate function b
satisfying b(x) → 0 as x → ∞, such that for all λ ≥ 1, as x → ∞,

l(λx)
l(x)

− 1 ∼ b(x) kρ(λ)

with kρ(λ) =
∫ λ

1
vρ−1dv.

Note that assumption (Rl) is quite general and is satisfied by the Hall
(1982) class of Pareto-type distributions given by

UX(x) = a xγ
(
1 + d xρ + o(xρ)

)
x > 1; a, γ > 0; ρ < 0; d ∈ R ,(2.2)

with b(x) ∼ ρ dxρ as x → ∞.

As in a classical one-way ANOVA situation we introduce the parametriza-
tion γj = β0+βj , j =1, ..., G, with

∑G
j=1 βj = 0, so that the parameters βj denote

the difference of the extreme-value index of group j with respect to the global
average over all groups. This transformation will now be combined with the
following linear model describing the estimation problem of every γj , j =1, ..., G.

Under the slow variation with remainder condition on the lj , j = 1, ..., G,
it can be shown as in Beirlant et al. (1999) that the following regression model
holds approximately

i
(
log X

(j)
nj−i+1,nj

− log X
(j)
nj−i,nj

)
≈
(

γj + bj

(
nj + 1
k + 1

)(
i

k + 1

)−ρj
)

F
(j)
i

i = 1, ..., k ,(2.3)

with bj and ρj denoting the function b respectively the parameter ρ of group
j and the F

(j)
i , i = 1, ..., k, are independent standard exponential random vari-

ables. In Beirlant et al. (2002), the approximation error in (2.3) is shown to be
oP

(
bj(

nj+1
k+1 )

)
, j =1, ..., G. Remark that regression model (2.3) is not identifiable

when ρ = 0, for then γj and bj

(
(nj + 1)/(k + 1)

)
together make up the mean

response.

The classical way to estimate the parameters γj , j =1, ..., G, is then given
by the Hill (1975) estimates which are obtained as maximum likelihood estimates
by omitting the terms bj

(nj+1
k+1

)(
i

k+1

)−ρj in model (2.3) (these terms tend to 0
as nj →∞ and k/nj → 0) leading to a simple average of the scaled log-spacings
i
(
log X

(j)
nj−i+1,nj

− log X
(j)
nj−i,nj

)
, i=1, ..., k, as an estimator of γj , and hence

β̂0 =
1
G

G∑
j=1

H
(j)
k,nj

and β̂j = H
(j)
k,nj

− β̂0, j =1, ..., G ,(2.4)
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in which H
(j)
k,nj

denotes the Hill estimator for group j

H
(j)
k,nj

=
1
k

k∑
i=1

log X
(j)
nj−i+1,nj

− log X
(j)
nj−k,nj

.(2.5)

Introducing Λ = Block-diag
(
γ2

j Ik; j =1, ..., G
)

and the k G × G matrix

L =

⎡⎢⎢⎢⎣
1 1 · · · 0
1 0 · · · 0
...

...
...

1 −1 · · · −1

⎤⎥⎥⎥⎦
with 1 denoting a k-vector of ones, we find that the asymptotic covariance matrix
of β̂

′
= (β̂0, β̂1, ..., β̂G−1) is given by

Acov(β̂) = (L′Λ−1L)−1 .(2.6)

On the other hand the main term of the bias of the estimators (when nj →∞
and k/nj → 0) is given by

Abias(β̂0) =
1
G

G∑
j=1

bj

(
nj+1
k+1

)
1 − ρj

,(2.7)

Abias(β̂j) =
bj

(
nj+1
k+1

)
1 − ρj

− 1
G

G∑
l=1

bl

(
nl+1
k+1

)
1 − ρl

j = 1, ..., G − 1 .(2.8)

Application of the estimators defined by (2.4) and (2.5) involves the selec-
tion of the number of extreme order statistics k to be used in the estimation.
Remark that we take the tail sample fraction k equal for all groups. If k is cho-
sen too small, the resulting estimators will have a high variance. On the other
hand, for larger k values the estimators will perform quite well with respect to
variance but will be affected by a larger bias as observations are used which are
not really informative for the tail of FX(j) , j = 1, ..., G. Hence, a good k value
should represent a good bias-variance trade-off. Here we will use the trace of the
asymptotic mean squared error (AMSE) matrix as optimality criterion.

Defining the AMSE matrix Ω of β̂ as

Ω(k) = (L′Λ−1L)−1 + κ κ′ ,(2.9)

with κ denoting the G-vector containing the asymptotic bias expressions given
by (2.7) and (2.8), the optimal number of extremes to be used in the estimation,
kopt, is defined as

kopt = arg min tr Ω(k) .

Note that Ω(k) depends on the unknown γj , ρj , j =1, ..., G, and bj

(nj+1
k+1

)
,

k=1, ..., nj−1, j =1, ..., G, which implies that the optimal k has to be derived
from an estimate of Ω(k). The following algorithm is used to estimate kopt and
hence γj , j =1, ..., G, adaptively:
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1. Obtain initial estimates of γj , ρj , j = 1, ..., G, together with estimates of
bj

(nj+1
k+1

)
, k=1, ..., nj−1, j =1, ..., G,

2. for k = 2, ...,min(nj ; j =1, ..., G) − 1 :
compute tr Ω̂(k) and let

k̂opt = arg min tr Ω̂(k) ,

3. repeat step 2 but with the parameter estimates obtained from using a com-
mon k and obtain an update of the parameter estimates.

The initial estimates for the unknown parameters (cf. step 1) are obtained by
fitting model (2.3) to the k largest observations of each group using a maximum
likelihood method (see Beirlant et al., 1999).

Inference about the regression vector β can be drawn using a likelihood
ratio test statistic. For k/nj , j =1, ..., G, sufficiently small, the slowly vary-
ing nuisance part of (2.3) can be ignored and hence inference can be based
on the reduced model j(log X

(j)
nj−i+1,nj

− log X
(j)
nj−i,nj

) ≈ (β0 + βj)F
(j)
i , i=1, ..., k,

j =1, ..., G. As in a ’classical’ one-way ANOVA situation the hypothesis of main
interest is H0 : β1 = ... = βG−1 = 0.

2.2. An illustration

The procedure described above will be illustrated on a simulated dataset.
The dataset contains observations from two groups with n1 = n2 = 500. Data
were generated from Burr(η, τ, λ) distributions (Burr, 1942). The Burr(η, τ, λ)
distribution function, given by

FX(x) = 1 −
(

η

η + xτ

)λ

x > 0; η, τ, λ > 0 ,

is clearly of Pareto-type with γ = 1
λτ and ρ = − 1

λ . For the simulated data λ = 1
and η=1 for both groups and τ1 = 1, τ2 = 2 so γ1 = 1, γ2 = 0.5 and ρ1 = ρ2 = −1.
Application of the above algorithm results in k̂opt = 99, H

(1)
99,500 =1.007 and

H
(2)
99,500 = 0.560. In Figure 1 we show the Pareto quantile plot for both groups.

On each quantile plot we superimposed the fitted lines passing through the anchor
points

(
log
(

501
100

)
, log x

(j)
401,500

)
, j =1, 2, with respective slopes H

(j)
99,500, j =1, 2.

The lines fit the linear part of the Pareto quantile plot quite well. In Figure 2
we plot the trace of the AMSE-matrix (full line) and the trace of the estimated
AMSE-matrix (broken line) versus the number of extremes used in the estimation
of the regression coefficients, k. Note that around the optimal k value tr Ω(k)
is estimated quite well. The tr Ω(k) function reaches its minimum at k = 79
whereas for the estimate the minimum is reached at k = 99. For this simulated
dataset, the observed value of the likelihood ratio test statistic to assess the
validity of H0 : β1 = 0 equals 16.834, leading to a rejection of H0.
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Figure 1: Burr(1, τj , 1) simulation with n1 = n2 = 500, τ1 = 1 and τ2 = 2.

(a) Pareto quantile plot for group 1 with line through(
log(501

100 ), log x
(1)
401,500

)
and slope H

(1)
99,500 = 1.007 superimposed;

(b) Pareto quantile plot for group 2 with line through(
log(501

100 ), log x
(2)
401,500

)
and slope H

(2)
99,500 = 0.560 superimposed.
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Figure 2: tr Ω(k) (full line) and tr Ω̂(k) (broken line) vs k.

2.3. Simulation results and practical examples

2.3.1. Simulation results

We illustrate the small sample behaviour of the weighted least squares es-
timator β̂k̂opt

using a simulation study. Datasets containing observations on 2,
3 and 4 groups were generated from Burr(1, τj , λj), j = 1, ..., G, distributions.
In Tables 1 and 2 we report the sample mean, sample standard deviation, empir-
ical RMSE and the ratio (empirical RMSE under common optimal k)/(empirical
RMSE under optimal k for each group separately) for samples of respectively 200
and 500 observations per group. The blocks λ = 0.5, λ = 1 and λ = 2 of both
tables report the results in case of a common λ, and hence a common ρ, over
the groups. The last λ-block of both tables reports results for the case λj = 1/j,
j = 1, ..., G, and hence ρj = −j, j = 1, ..., G. Values for the τ -parameters were
selected such that γj = j. From the ratio results it is clear that joint estimation of
the extreme-value indices with a common k can lead to important gains in empir-
ical MSE compared with a separate analysis. For instance in case G=3 and λ=2,
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joint estimation of β2 leads to a 30% gain in RMSE. Further, inspection of the
first three λ-blocks of both tables indicates that the gains tend to increase with λ.

Table 1: Burr data, 200 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5556 – 0.5039 2.0909 – 1.0209 0.0021 2.6197 – 1.5434 – 0.5131 0.5305

λ = 0.5
sd 0.1930 0.1596 0.2281 0.2137 0.2373 0.2544 0.2443 0.2697 0.3567
RMSE 0.2007 0.1595 0.2454 0.2146 0.2371 0.2809 0.2479 0.2697 0.3577
ratio 0.9531 0.8323 1.0255 0.8837 0.8361 1.0097 0.8905 0.7855 0.8762

mean 1.6694 – 0.5386 2.2485 – 1.0960 – 0.0106 2.8057 – 1.6346 – 0.5522 0.5450

λ = 1
sd 0.2787 0.2257 0.3316 0.2706 0.3156 0.3906 0.3449 0.3778 0.4614
RMSE 0.3259 0.2288 0.4141 0.2869 0.3154 0.4957 0.3699 0.3810 0.4632
ratio 0.9936 0.8345 0.9957 0.8150 0.7776 1.0058 0.8428 0.7733 0.8475

mean 2.0410 – 0.6390 2.6862 – 1.2943 – 0.0011 3.4326 – 1.9971 – 0.6735 0.6607

λ = 2
sd 0.4398 0.3463 0.4951 0.3962 0.4137 0.5749 0.4783 0.5366 0.6491
RMSE 0.6969 0.3729 0.8459 0.4932 0.4133 1.0952 0.6895 0.5634 0.6681
ratio 0.9695 0.7929 0.9685 0.7994 0.7061 0.9729 0.8206 0.7830 0.7343

mean 1.6079 – 0.4277 2.1199 – 0.8654 – 0.0088 2.6173 – 1.3233 – 0.4795 0.4147

λj = 1/j
sd 0.2094 0.1807 0.2251 0.1931 0.2342 0.2203 0.2039 0.2548 0.3257
RMSE 0.2354 0.1944 0.2548 0.2352 0.2342 0.2494 0.2696 0.2554 0.3363
ratio 0.9840 0.8974 1.0892 1.0082 0.8329 1.1020 1.0170 0.8230 0.9015

Table 2: Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5443 – 0.5044 2.0412 – 1.0094 – 0.0043 2.5617 – 1.5185 – 0.4996 0.5020

λ = 0.5
sd 0.1380 0.1147 0.1769 0.1528 0.1868 0.1838 0.1775 0.2069 0.2613
RMSE 0.1448 0.1147 0.1815 0.1529 0.1867 0.1937 0.1783 0.2067 0.2610
ratio 1.0223 0.8638 1.1600 0.9581 0.9118 1.1233 0.9360 0.8576 0.8929

mean 1.5915 – 0.5126 2.1547 – 1.0720 0.0112 2.7099 – 1.6101 – 0.5293 0.5192

λ = 1
sd 0.2361 0.1741 0.2474 0.2115 0.2329 0.2580 0.2405 0.2891 0.3657
RMSE 0.2530 0.1744 0.2915 0.2232 0.2330 0.3324 0.2643 0.2903 0.3658
ratio 1.0454 0.8382 0.9870 0.8447 0.7551 1.0001 0.8506 0.8173 0.8216

mean 1.8470 – 0.5969 2.4778 – 1.2054 0.0009 3.1297 – 1.8401 – 0.5969 0.5744

λ = 2
sd 0.3471 0.2575 0.3909 0.3110 0.3424 0.4022 0.3442 0.3804 0.4884
RMSE 0.4905 0.2749 0.6171 0.3724 0.3421 0.7470 0.4837 0.3922 0.4936
ratio 1.0089 0.8265 0.9869 0.8235 0.7558 0.9995 0.8697 0.7440 0.7543

mean 1.5648 – 0.4519 2.0722 – 0.9158 – 0.0330 2.5736 – 1.3565 – 0.5005 0.4668

λj = 1/j
sd 0.1578 0.1391 0.1481 0.1367 0.1849 0.1523 0.1533 0.1912 0.2406
RMSE 0.1704 0.1470 0.1647 0.1604 0.1877 0.1690 0.2099 0.1910 0.2427
ratio 1.0395 0.9922 1.0576 0.9993 0.9823 1.1274 1.1048 0.8420 0.9789

Also, we performed a small sample simulation study to assess whether the
likelihood ratio test for the hypothesis of no factor effects in the reduced model
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j
(
log X

(j)
nj−i+1,nj

− log X
(j)
nj−i,nj

) ≈ (β0 + βj)F
(j)
i , i=1, ..., k, j =1, ..., G, satisfies

the proposed significance level. Datasets containing 3 groups of 500 observations
each were generated from Burr(1, τj , λj) distributions. Concerning the parameter
λj (and hence ρj), 4 cases were considered: λj = 0.5, λj = 1, λj = 2 and λj = 1/j,
j = 1, ..., G. The parameters τj , j = 1, ..., G, were selected such that all γj = 1
(simulation under H0) and the significance level was set at α = 0.05. Table 3
reports the empirical significance level for each setting of ρ for different k-values.
As can be seen, the empirical significance levels are slightly below 0.05 for the
cases with common ρ. In case the ρ parameter varies over the groups, the test
performs only well at the smaller values of k, a result that could be expected.

Table 3: Burr data, 500 observations/group, 500 simulation runs:
empirical significance levels.

k = 10 k = 50 k = 100 k = 200 k = 400

ρ = −2 0.034 0.040 0.044 0.044 0.018
ρ = −1 0.048 0.036 0.034 0.026 0.044
ρ = −0.5 0.040 0.030 0.030 0.020 0.058
ρj = −j 0.048 0.042 0.094 0.612 1.000

2.3.2. Practical example 1: fire claim data

Our first example comes from an actuarial context. The reinsurance broker
Aon Re Belgium provided claim data, generated by a fire insurance portfolio, for
three types of buildings. The sample sizes are n1 = 167, n2 = 700 and n3 = 801.
Application of the proposed procedure results in k̂opt = 50, H

(1)
50,167 = 1.027,

H
(2)
50,700 = 1.064 and H

(3)
50,801 = 1.413. The Pareto quantile plots together with the

lines passing through
(
log( nj+1

k̂opt+1
), log x

(j)

nj−k̂opt,nj

)
and slopes H

(j)

k̂opt,nj
, j =1, 2, 3,

are given in Figure 3. As is clear from this figure, the Pareto quantile plots are
almost linear in their extreme values indicating a reasonable fit of the Pareto
distribution to the tails of the conditional claim size distributions. Concerning
the γ estimate for group 3 (see also Figure 3 (c)) actuaries will find the estimate
high. Remark however that other characteristics, such as the sum insured, can
have an important influence on the tail index estimates but have been ignored
in this analysis. Given an observed value for the likelihood ratio test statistic of
3.152, the null hypothesis of no group effects cannot be rejected.
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Figure 3: Claim data: Pareto quantile plots.
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2.3.3. Practical example 2: earthquake data

As a second example we examined the earthquake data introduced in Pisa-
renko and Sornette (2001). This dataset is extracted from the Harvard catalog
and contains information about the seismic moment (in dyne-cm) of shallow
earthquakes (depth < 70 km) over the period 1977–2000. In Pisarenko and Sor-
nette (2001), the tails of the seismic moment distributions for subduction and mi-
docean ridge zones are compared by fitting the generalized Pareto distribution to
seismic moment exceedances over 1024 dyne-cm. For these data n1 = 6458 (sub-
duction zones) and n2 = 1665 (midocean ridge zones). The procedure described
above with k ≥ 20 yielded k̂opt = 97 with H

(1)
97,6458 = 1.232 and H

(2)
97,1665 = 0.821.

In Figure 4 we show the Pareto quantile plots of the seismic moments for (a) sub-
duction zones and (b) midocean ridge zones on which we superimposed the lines
through

(
log( nj+1

k̂opt+1
), log x

(j)

nj−k̂opt,nj

)
with slope H

(j)

k̂opt,nj
, j = 1, 2 (solid lines).

For the hypothesis test of no difference between the tail heaviness of the seismic
moment distribution of subduction and midocean ridge zones a likelihood ratio
statistic of 7.92 was obtained, resulting in a rejection of H0. The GPD based
approach described in Pisarenko and Sornette (2001) yielded tail index estimates
of 1.51 and 1.02 for subduction respectively midocean ridge zones, so our results
are slightly more conservative. Likewise these authors found significant differ-
ences in the tail heaviness of the seismic moment distributions. Note that the
Pareto quantile plots bend down at the largest observations indicating a weaker
behaviour of the ultimate tail of the seismic moment distribution. Nevertheless,
these largest observations form more or less a straight line pattern. So, also the
ultimate tail could be described by a Pareto-type law. This fact is further illus-
trated in Figure 5 where we plot tr Ω̂(k) as a function of log(k). Relaxation of
the constraint that k should be at least 20 results in the global optimum k̂opt =12
with γ̂1 = 0.541 and γ̂2 = 0.427. In Figure 4 the resulting optimal fits are plotted
with dotted lines. At k̂opt the null hypothesis of no difference in tail behaviour
cannot be rejected on basis of the above described likelihood ratio test statistic.
Similarily to the results presented here, Pisarenko and Sornette (2001) also found
deviations between the GPD and the ultimate tail of the seismic moment distri-
bution. For plausible explanations of this phenomenon we refer to their paper
and the references therein.
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Figure 4: Earthquake data: Pareto quantile plots of seismic moments for

(a) subduction zones and

(b) midocean ridge zones.
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Figure 5: Earthquake data: tr Ω̂(k) vs log(k).

3. LINEAR MODEL FORMULATION, γ ∈ R

3.1. Description of the model

In this section we discuss the simultaneous estimation of several extreme-
value indices in the general case γ ∈ R. Consider again a sample of independent
and identically distributed positive random variables X

(j)
1 , ..., X

(j)
nj according to

some distribution function FX(j) , j =1, ..., G, with G denoting the number of
groups. Further, assume that the G groups are independent of each other and
that FX(j) ∈ D(Hγj ) for some γj ∈ R. In Theorem 1 of Beirlant et al. (1996)
it is shown that FX(j) ∈ D(Hγj ) implies that

UHX(j)(x) = xγj l̆j(x)

with UHX(j) and l̆j denoting the UH function respectively the slowly varying
function of group j.
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Under the slow variation with remainder condition imposed on l̆j , the fol-
lowing relation holds (see Beirlant et al., 2000)

(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1

i
+

i+1
i

= γj + gj

(
nj+1
k+1

)(
i+1
k+1

)−ρ̆j

+ ε
(j)
i

i=1, ..., k, j=1, ..., G ,(3.1)

where gj is some generic notation for a function decreasing to zero for increasing
values of the argument and

UH
(j)
i,nj

= X
(j)
nj−i,nj

(
1
i

i∑
m=1

log X
(j)
nj−m+1,nj

− log X
(j)
nj−i,nj

)
.

The residuals of model (3.1) have a mean approximately equal to zero and a
covariance matrix given by

Σε(j) =
[
Cov

(
ε(j)
s , ε

(j)
t

)]
s,t

∼

⎧⎪⎨⎪⎩
γj

t
s < t

(γj − 1)2 +
1 + 2s

s2
s = t

j =1, ..., G .

After introduction of the classical one-way ANOVA parametrization de-
scribed above and deletion of the terms gj

(nj+1
k+1

)(
i+1
k+1

)−ρ̆j in model (3.1) (these
terms tend to 0 as nj → ∞ and k/nj → 0), the following estimators are obtained:

β̃0 =
1
G

G∑
j=1

γ̃j and β̃j = γ̃j − β̃0 , j = 1, ..., G ,(3.2)

with

γ̃j =
1
k

k∑
i=1

⎛⎝(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1

i
+

i+1
i

⎞⎠ .(3.3)

Using least squares computations, the asymptotic covariance matrix of β̃
′
=

(β̃0, β̃1, ..., β̃G−1) is given by:

Acov(β̃) = (L′L)−1L′ ΣL(L′L)−1(3.4)

with Σ = Block-diag(Σε(j) ; j = 1, ..., G). For the main term of the bias of the
estimators we have

Abias(β̃0) =
1
G

G∑
j=1

gj

(nj+1
k+1

)
1 − ρ̆j

,

Abias(β̃j) =
gj

(nj+1
k+1

)
1 − ρ̆j

− 1
G

G∑
l=1

gl

(
nl+1
k+1

)
1 − ρ̆l

, j = 1, ..., G−1 .
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Application of the estimators defined by (3.2) and (3.3) requires the selec-
tion of the number of UH statistics k to be used in the estimation. Again the
asymptotic variance and bias are combined in an AMSE criterion. Hence, the
optimal k-value is defined as

kopt = arg min tr
[
(L′L)−1L′ ΣL(L′L)−1 + κ̆ κ̆′

]
with κ̆ the vector containing the asymptotic bias expressions given above.

For k/nj sufficiently small, hypothesis tests about the regression coefficients
can be based on the reduced model

(i+1) log
UH

(j)
i,nj

UH
(j)
i+1,nj

− (i+1) log
i+1

i
+

i+1
i

≈ β0 + βj + ε
(j)
i ,

i = 1, ..., k, j = 1, ..., G .(3.5)

After transformation of model (3.5) by a matrix C such that Cov(Cε) = I

(see Beirlant et al., 2000), where ε′ = (ε(j)
i ; i=1, ..., k, j=1, ..., G), hypothesis

about β can be tested using a classical F -test statistic.

3.2. Simulation results and a practical example

3.2.1. Simulation results

First, we apply the above proposed estimation procedure for γj ∈ R,
j = 1, ..., G, to the simulated Burr datasets described in the previous section.
Tables 4 and 5 contain the results for samples with 200 respectively 500 observa-
tions per group. Unlike the algorithm for γj >0, j =1, ..., G, where the empirical
MSE gains obtained from using a common k tend to increase with ρ, here the
gains are quite stable with respect to the parameter ρ̆.

Next we examine the small sample properties of the proposed procedure
using datasets with γj < 0, j = 1, ..., G. Datasets containing observations on 2,
3 and 4 groups were generated from reversed Burr distributions. The reversed
Burr distribution function, given by

1 − FX(x) =
(

2
1 + (1−x)−τ

)δ

0 < x < 1; δ, τ > 0 ,

belongs to the maximum domain of attraction of the GEV for some γ < 0,
and hence the UHX function can be written as in (1.9) with γ = −1/(δτ).
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Table 4: Burr data, 200 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5256 – 0.5099 2.0626 – 1.0214 – 0.0032 2.5822 – 1.5482 – 0.5062 0.5205

λ = 0.5
sd 0.1892 0.1640 0.2035 0.2177 0.2399 0.2199 0.2427 0.2820 0.3430
RMSE 0.1907 0.1641 0.2128 0.2186 0.2397 0.2345 0.2472 0.2818 0.3433
ratio 1.0344 0.8736 1.0406 0.9479 0.8351 1.0570 0.9699 0.8559 0.8567

mean 1.6101 – 0.5434 2.1938 – 1.0937 – 0.0098 2.7627 – 1.6551 – 0.5598 0.5514

λ = 1
sd 0.2761 0.2220 0.2981 0.2765 0.3298 0.3168 0.3290 0.3654 0.4256
RMSE 0.2970 0.2260 0.3553 0.2917 0.3297 0.4113 0.3634 0.3699 0.4283
ratio 1.0450 0.8703 1.0929 0.9609 0.8416 1.1019 0.9746 0.8044 0.8383

mean 1.9493 – 0.6621 2.6153 – 1.3241 0.0035 3.3430 – 2.0366 – 0.6866 0.6582

λ = 2
sd 0.3754 0.3112 0.4224 0.3845 0.4239 0.5087 0.4792 0.4817 0.6217
RMSE 0.5853 0.3506 0.7461 0.5026 0.4235 0.9843 0.7191 0.5161 0.6409
ratio 1.0126 0.8442 1.0240 0.9237 0.7982 1.0679 0.9670 0.8137 0.7989

mean 1.5676 – 0.4476 2.0855 – 0.9109 0.0056 2.5848 – 1.3936 – 0.4717 0.4442

λj = 1/j
sd 0.2193 0.1847 0.1951 0.1872 0.2328 0.1942 0.2151 0.2328 0.3021
RMSE 0.2293 0.1918 0.2128 0.2072 0.2326 0.2118 0.2398 0.2343 0.3069
ratio 1.0134 0.8453 1.0516 0.8570 0.8256 1.0663 0.8528 0.7954 0.8536

Table 5: Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value 1.5 – 0.5 2 – 1 0 2.5 – 1.5 – 0.5 0.5

mean 1.5418 – 0.5127 2.0358 – 1.0206 0.0090 2.5558 – 1.5364 – 0.4929 0.4996

λ = 0.5
sd 0.1224 0.1080 0.1477 0.1434 0.1580 0.1559 0.1647 0.1766 0.2327
RMSE 0.1293 0.1087 0.1519 0.1447 0.1581 0.1655 0.1685 0.1765 0.2325
ratio 0.9691 0.8252 1.0148 0.8856 0.7395 1.0485 0.8854 0.7377 0.8045

mean 1.5714 – 0.5267 2.1576 – 1.1004 0.0046 2.7033 – 1.6413 – 0.5303 0.5206

λ = 1
sd 0.2143 0.1610 0.2171 0.2016 0.2072 0.2236 0.2291 0.2584 0.3106
RMSE 0.2257 0.1630 0.2681 0.2250 0.2070 0.3020 0.2689 0.2599 0.3110
ratio 1.0499 0.8362 1.0968 0.9123 0.7304 1.1378 0.9745 0.7719 0.7635

mean 1.8209 – 0.6052 2.4664 – 1.2380 0.0095 3.1143 – 1.8831 – 0.6011 0.5939

λ = 2
sd 0.2977 0.2396 0.3398 0.3064 0.2972 0.3628 0.3374 0.3519 0.4398
RMSE 0.4375 0.2615 0.5769 0.3878 0.2971 0.7132 0.5103 0.3658 0.4493
ratio 1.0465 0.8265 1.0787 0.8909 0.7386 1.1111 0.9947 0.7491 0.7358

mean 1.5557 – 0.4606 2.0663 – 0.9269 – 0.0044 2.5786 – 1.4014 – 0.4880 0.4672

λj = 1/j
sd 0.1504 0.1255 0.1336 0.1346 0.1623 0.1226 0.1346 0.1659 0.2057
RMSE 0.1603 0.1314 0.1490 0.1531 0.1622 0.1455 0.1668 0.1662 0.2081
ratio 1.0041 0.7875 1.0173 0.8254 0.7941 1.1045 0.8256 0.7483 0.8470

Also, the l̆ function associated with the UHX function satisfies the slow variation
with remainder condition with ρ̆ = −min

(
1
δ , 1

δτ

)
. In this simulation a common δ

value was used for all groups. Further, values for the τ parameters were selected
such that γj = −j, j =1, ..., G. Two cases were considered: δ = 1 and δ = 2 giving
ρ̆ = −1 and ρ̆ = −0.5. Table 6 summarizes the simulation results. As expected,
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the estimators are more biased as the ρ̆-parameter increases. The gains obtained
by using a common k-value compared to a separate analysis of each group are
quite stable with respect to ρ̆.

Table 6: Reversed Burr data, 500 observations/group, 500 simulation runs.

G = 2 G = 3 G = 4

β0 β1 β0 β1 β2 β0 β1 β2 β3

value – 1.5 0.5 – 2 1 0 – 2.5 1.5 0.5 – 0.5

mean – 1.6382 0.5689 – 2.1603 1.1005 – 0.0094 – 2.6820 1.6190 0.5077 – 0.5401

δ = 1
sd 0.1310 0.1124 0.1696 0.1510 0.1445 0.1861 0.1718 0.1832 0.2433
RMSE 0.1903 0.1317 0.2332 0.1813 0.1447 0.2602 0.2089 0.1832 0.2464
ratio 0.9650 0.9516 1.0028 1.0213 0.7320 1.0149 1.0585 0.8410 0.8030

mean – 1.8888 0.6507 – 2.4375 1.2155 – 0.0080 – 2.9633 1.7470 0.5565 – 0.5651

δ = 2
sd 0.1646 0.1301 0.2234 0.1969 0.1785 0.2716 0.2466 0.2353 0.2821
RMSE 0.4221 0.1990 0.4911 0.2918 0.1785 0.5369 0.3488 0.2418 0.2892
ratio 0.9628 0.9593 0.9294 0.9865 0.7342 0.9667 1.0708 0.7785 0.7152

Finally, the procedure was applied to datasets containing groups for
which the γj , j =1, ..., G, can have a different sign and/or be equal to zero.
Here, datasets containing observations on 2 and 3 groups were generated from
the generalized Pareto distribution with distribution function given by (1.3).
The slowly varying function l̆ of the GPD satisfies the slow variation with remain-
der condition with ρ̆ = −|γ|. In this simulation, we took σ = 1. Table 7 contains
the results for these problem sets. Also here we see that using a common optimal
k can yield important efficiency gains compared to a separate analysis of each
group, except in case β0, β1 are both negative.

Table 7: GPD data, 500 observations/group, 500 simulation runs.

G = 2 G = 2 G = 2 G = 3

β0 β1 β0 β1 β0 β1 β0 β1 β2

value – 0.25 – 0.25 0 – 0.5 0.25 – 0.25 0 – 0.5 0

mean – 0.1582 – 0.2591 0.0970 – 0.5046 0.3442 – 0.2518 0.0977 – 0.5063 – 0.0024
sd 0.0749 0.0734 0.0867 0.0800 0.1031 0.0819 0.0725 0.0789 0.0865
RMSE 0.1184 0.0739 0.1300 0.0800 0.1396 0.0819 0.1216 0.0791 0.0865
ratio 1.0551 0.9719 1.0204 0.8498 1.0317 0.8839 1.1251 0.8635 0.8507
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3.2.2. Practical example 3: US wind speed data

The wind speed database, provided by the National Institute of Standards
and Technology (NIST), contains information about 49 weather stations in the
U.S.. The data have been filed for a period of 15 to 26 years. They are the
daily fastest-mile wind speeds, measured by anemometers 10 m above ground.
For more information about these data we refer to Simiu et al. (1979) and Simiu
and Heckert (1995). We restrict our attention to three cities: Des Moines (Iowa),
Grand Rapids (Michigan) and Albuquerque (New Mexico). Boxplots of the daily
fastest wind speeds (in miles per hour) are given in Figure 6. The generalized
quantile plot for each city is given in Figure 7. These plots allow to distinguish
between the wind speed tail behavior of the different cities: the Des Moines data
(Figure 7 (a)) are heavy tailed (γ > 0), the Grand Rapids data (Figure 7 (b))
seem to be moderately tailed with γ≈0 and the Albuquerque data (Figure 7 (c))
are weakly tailed (γ < 0). The line structures in these plots are the result of
an inherent grouping of the data due to a loss of accuracy during the data col-
lection process. Consequently many wind speed levels are registered more than
once. Application of the above described procedure resulted in k̂opt = 357 with
γ̃1 = 0.144, γ̃2 = 0.053 and γ̃3 = −0.088. On each generalized quantile plot we
superimposed the line passing through the anchor point

(
log( nj

k+1), log UH
(j)
k+1,nj

)
with slope γ̃j .
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Figure 6: Wind speed data: Boxplots of the daily fastest wind speeds
in miles per hour.



Simultaneous Tail Index Estimation 37

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 1 2 3 4 5 6 7 8 9

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 1 2 3 4 5 6 7 8 9

(a)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1 2 3 4 5 6 7 8 9

(b)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1 2 3 4 5 6 7 8 9

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1 2 3 4 5 6 7 8 9

(c)

Figure 7: Wind speed data: generalized quantile plots for
(a) Des Moines, (b) Grand Rapids and (c) Albuquerque.
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4. CONCLUSION

In this paper we discussed the simultaneous estimation of tail indices when
data on several independent groups are available. The proposed methods are
based on regression models linking statistics related to the tail of the underlying
distribution function to the extreme-value index and parameters describing the
second order tail behaviour. The optimal number of extremes (in case γ > 0)
or UH statistics (in case γ ∈ R) was derived from the trace of the AMSE matrix.
It appears from the simulation results that combining data from several groups
can lead to significant improvements in the estimation of the extreme-value in-
dex. A drawback of using a common k-value is that the procedure can run into
difficulties when the design is severely unbalanced. However, this problem is eas-
ily remedied by using a common relative tail sample fraction. Future work will
concentrate on the further extension of the proposed methods towards the esti-
mation of other tail characteristics such as extreme quantiles or small exceedance
probabilities.
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– Department of Mathematical Statistics,
Chalmers University of Technology, S–412 96 Gothenburg,
Sweden (starica@math.chalmers.se)

Received: November 2003 Accepted: December 2003

Abstract:

• In this paper we propose a goodness of fit test that checks the resemblance of the
spectral density of a GARCH process to that of the log-returns. The asymptotic
behavior of the test statistics are given by a functional central limit theorem for
the integrated periodogram of the data. A simulation study investigates the small
sample behavior, the size and the power of our test. We apply our results to the
S&P500 returns and detect changes in the structure of the data related to shifts of
the unconditional variance. We show how a long range dependence type behavior in
the sample ACF of absolute returns might be induced by these changes.

Key-Words:

• integrated periodogram; spectral distribution; functional central limit theorem; Kiefer–
Müller process; Brownian bridge; sample autocorrelation; change point; GARCH
process; long range dependence; IGARCH; non-stationarity.

AMS Subject Classification:

• Primary: 62P20; Secondary: 60G10 60F17 60B12 60G15 62M15.

∗This research supported in part by a grant of the Dutch Science Foundation (NWO), by
DYNSTOCH, a research training network under the programme Improving Human Potential
financed by The 5th Framework Programme of the European Commission, the Danish Research
Council Grant No 21-01-0546, and MaPhySto, the Danish Network for Mathematical Physics
and Stochastics, funded by The Danish National Research Foundation.



42 Thomas Mikosch and Cătălin Stărică
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1. INTRODUCTION

In this paper we introduce a goodness of fit test for the GARCH process.
In its simplest form this model is given by{

Xt = σt Zt ,

σ2
t = α0 + β1σ

2
t−1 + α1X

2
t−1 ,

t ∈ Z ,(1.1)

where (Zt)t∈Z is a sequence of iid random variables with EZ1 = 0, EZ2
1 = 1.

The parameters α1 and β1 are non-negative and α0 is necessarily positive.

Our test decides if the data at hand is a white noise whose squares have
a covariance structure which is in agreement with the second order structure of
the hypothesized squared GARCH process. The test is related to the classical
Grenander–Rosenblatt or Bartlett goodness of fit tests for the spectral distribu-
tion of a time series; see for example Priestley [38]. Such tests are analogues
to the Kolmogorov–Smirnov test for the distribution of a sample. Other testing
procedures exist in the literature. Among them we mention the approach that
uses the sequential empirical process for the residuals of an ARCH process; see
Horváth et al. [26]. Besides being restricted to the ARCH case, these asymp-
totic tests present another drawback. The limit distribution of the test statistic
depends in general on the distribution of the noise Zt and the parameters of
the model. An advantage of the test proposed in this paper is that the limit
distribution of the test statistic is distribution free and, as in the Kolmogorov-
Smirnov test, is a function of the Brownian bridge. Moreover, we prove that the
limit distribution of our test statistics are insensitive to the replacement of the
parameters by their estimators under the null hypothesis.

Although attractive as a model, there is copious empirical evidence in the
econometrics literature, coming especially from the analysis of long series of log-
returns, that argues against the GARCH(1, 1) model. For example, although
the squares of a GARCH(1, 1) process follow the dynamics of an ARMA process
(in particular the ACF goes to zero exponentially fast), the sample ACFs of the
absolute values and their squares tend to stabilize around a positive value for
larger lags (the so-called long range dependence in absolute returns or in volatil-
ity). For longer samples the estimated parameters α1 and β1 sum up to values
close to 1 (Engle and Bollerslev [19], Mikosch and Stărică [35]). This fact, known
as the integrated GARCH finding, implies infinite variance (see Bollerslev [8])
for the returns, a conclusion in strong disagreement with the accepted results of
semi-parametric tail analysis that find at least a finite third moment (Embrechts
et al. [17]).

The second contribution of the paper is the analysis based on our goodness
of fit procedure of a long portion of the S&P500 log-return series (January 1953
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to December 1990) which could provide an answer to these critics. For the data
under investigation we detect structural changes related to movements of the
unconditional variance and show how a long range dependence type behavior
in the sample ACF of absolute returns might be induced by these shifts. Our
procedure identifies most of the recessions of this period as being structurally
different. The major structural change is detected between 1973 and 1975 and
seems to correspond to the oil crises. Our analysis seems to indicate that one
simple GARCH(1,1) process (which models the first ten years of the data quite
well) cannot describe the complicated dynamics of longer, possibly non-stationary
log-return time series.

Our paper is organized as follows. In Section 2 we formulate our main the-
oretical result, a functional central limit theorem for the integrated periodogram
of the GARCH process. Then we indicate how this result can be used to build
an asymptotic goodness of fit test for the spectral distribution of the GARCH
process. We also discuss the behavior of the test statistics under the alternative
hypothesis of a different GARCH process. The proofs are rather technical and
therefore postponed to Appendix A1. In Section 3 we investigate by means of
simulations the small sample properties, the size and the power of our test statis-
tic while in Section 4 we apply our method to the study of a long portion of the
S&P log-return series. Some concluding remarks are given in Section 5.

2. LIMIT THEORY FOR THE TWO-PARAMETER
INTEGRATED PERIODOGRAM

In fields as diverse as time series analysis and extreme value theory it is
generally assumed that the observations or a suitable transformation of them
constitute a stationary sequence of random variables. In the context of this
section, stationarity is always understood as strict stationarity. One of the aims
of this paper is to provide a procedure for testing how good the fit of a stationary
GARCH(p, q) model to data is. This section provides the limit theory for a certain
two-parameter process which is the basis for the statistical procedure we propose
in Section 2.2. This theory is slightly more general than needed for the purposes
of this paper. However, the theory for the corresponding one-parameter process
(which will be used intensively in the rest of the paper) is essentially the same
as for the case of two parameters. The latter case can be used for change point
detection in the spectral domain while the former one yields goodness of fit tests.
As already mentioned, in the context of this paper, we are mainly interested
in test statistics for the goodness of fit of GARCH processes. The statistical
procedure will allow us to single out the parts of the data which are not well
described by the hypothesized model.
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To be precise, we assume that the data come from a stationary general-
ized autoregressive conditionally heteroscedastic process of order (p, q), for short
GARCH(p, q):

Xt = σt Zt, σ2
t = α0 +

p∑
i=1

αi X
2
t−i +

q∑
j=1

βj σ2
t−i , t ∈ Z ,(2.1)

where (Zt) is an iid symmetric sequence with EZ2 = 1, non-negative parameters
αi and βj , and the stochastic volatility σt is independent of Zt for every fixed t.
We also assume that Z1 has a Lebesgue density on the real line. This ensures
that (Xt) is α-mixing with geometric rate; see Boussama [11]. In what follows,
we write σ for a generic random variable with the distribution of σ1, X for a
generic random variable with the distribution of X1, etc.

This kind of model is most popular in the econometrics literature for mod-
eling the log-returns of stock indices, share prices, exchange rates, etc., and has
found its way into the practice of forecasting financial time series. See for example
Engle [18] for a collection of papers on ARCH. We assume that, for a particular
choice of parameters αi and βi, the sequence ((Xt, σt)) is stationary. Assump-
tions for stationarity of a GARCH process can be found in Bougerol and Picard
[10] for the general GARCH(p, q) case and in Nelson [36] for the GARCH(1, 1)
case. For a recent overview on the mathematics of GARCH processes, we refer
to Mikosch [32].

Our analysis is based on the spectral properties of the underlying time
series. Consider the classical estimator of the spectral density, the periodogram,
given by

In,X(λ) =

∣∣∣∣∣ 1√
n

n∑
t=1

e−iλtXt

∣∣∣∣∣
2

, λ ∈ [0, π] .

Under general conditions, the integrated periodogram or empirical spectral dis-
tribution function

1
2π

Jn,X(λ) =
1
2π

∫ λ

0
In,X(x) dx , λ ∈ [0, π] ,(2.2)

is a consistent estimator of the spectral distribution function given by

FX(λ) =
∫ λ

0
fX(x) dx , λ ∈ [0, π] ,

provided the spectral density fX is well defined.
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2.1. Main results

As a motivation for our main result, we start by considering the two-
parameter process Jn,X(x, λ) related to (2.2) (see also Appendix A1):

Jn,X(x, λ) =
∫ λ

0

(
γn,[nx],X(0) + 2

[nx]−1∑
h=1

γn,[nx],X(h) cos(yh)

)
dy

(2.3)

= λ γn,[nx],X(0) + 2
[nx]−1∑
h=1

γn,[nx],X(h)
sin(λh)

h
,

where

γn,[nx],X(h) =
1
n

[nx]−h∑
t=1

Xt Xt+h , h = 0, 1, 2, ..., [nx]−1, x ∈ [0, 1] .

Clearly,

γn,X(h) := γn,n,X(h)

denotes a version of the sample autocovariance at lag h; the standard version of
the sample autocovariance is defined for the centered random variables Xt −Xn,
where Xn is the sample mean. We also write

γX(h) = cov(X0, Xh) and vX(h) = var(X0Xh) = E(X0Xh)2 , h ∈ Z .

The processes γn,[n·],X(h) satisfy a fairly general functional central limit
theorem (FCLT). Recall that D ([0, 1], Rm) is the Skorokhod space of R

m-valued
cadlag functions on [0, 1] (continuous from the right in [0, 1), limits exist from the
left in (0, 1]) endowed with the J1-topology and the corresponding Borel σ-field;
see for example Jacod and Shiryaev [27] or Bickel and Wichura [6].

Lemma 2.1. Consider the GARCH(p, q) process (Xt) given by (2.1).
Assume that

(2.4) E|X|4+δ < ∞ for some δ > 0 .

Then for every m ≥ 1, as n → ∞

(2.5)
√

n
(
γn,[nx],X(h), h=1, ..., m

)
x∈[0,1]

d−→
(
v

1/2
X (h) Wh(x), h=1, ..., m

)
x∈[0,1]

,

in D ([0, 1], Rm), where Wh(·), h = 1, ..., m, are iid standard Brownian motions

on [0, 1].
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The proof of the lemma is given in Appendix A1. A naive argument, based
on Lemma 2.1 and the decomposition (2.3), suggests that

√
n
(
Jn,X(x, λ) − λ γn,[nx],X(0)

)
x∈[0,1], λ∈[0,π]

d−→

d−→ 2

( ∞∑
h=1

v
1/2
X (h) Wh(x)

sin(λh)
h

)
x∈[0,1], λ∈[0,π]

,

in D
(
[0, 1]×[0, π]

)
. This result can be shown to be true; one can follow the lines

of the proof of Theorem 2.1 below. However, the two-parameter Gaussian limit
field has a distribution that explicitly depends on the covariance structure of
(X2

t ), which is not a very desirable property. Indeed, since we are interested in
using functionals of the limit process for a goodness of fit procedure, we would
like that the asymptotic distribution of those functionals is independent of the
null hypothesis we test. In other words, we want a “standard” Gaussian process
in the limit since otherwise we would have to evaluate the distributions of its
functionals by Monte–Carlo simulations for every choice of parameters of the
GARCH(p, q) we consider in the null hypothesis.

A glance at the right-hand side of (2.3) suggests another approach.
The dependence of the limiting Gaussian field on the covariance structure of
(X2

t ) comes in through the FCLT of Lemma 2.1. However, it is intuitively clear
that, if we replaced in (2.3) the processes γn,[n·],X(h) by

γ̃n,[n·],X(h) =
γn,[n·],X(h)

v
1/2
X (h)

,

the limit process would become independent of the covariance structure of (X2
t ).

Therefore we introduce the following two-parameter process which is a
straightforward modification of Jn,X(x, λ):

Cn,X(x, λ) =
[nx]−1∑
h=1

γ̃n,[nx],X(h)
sin(λh)

h
, x ∈ [0, 1], λ ∈ [0, π] .

Our main result is a FCLT for Cn,X .

Theorem 2.1. Let (Xt) be a stationary GARCH(p, q) process given by

(2.1). Assume that (2.4) holds. Then

√
n
(
Cn,X(x, λ)

)
x∈[0,1], λ∈[0,π]

d−→

d−→ (
K(x, λ)

)
x∈[0,1], λ∈[0,π]

=

( ∞∑
h=1

Wh(x)
sin(λh)

h

)
x∈[0,1], λ∈[0,π]

,(2.6)
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in D
(
[0, 1]×[0, π]

)
where (Wh(·))h=1,... is a sequence of iid standard Brownian

motions on [0, 1]. The infinite series on the right-hand side converges with prob-

ability 1 and represents a Kiefer–Müller process, i.e., a two-parameter Gaussian

field with covariance structure

E
(
K(x1, λ1)K(x2, λ2)

)
= min(x1, x2)

∞∑
t=1

sin(λ1t) sin(λ2t)
t2

(2.7)

= 2−1 π2 min(x1, x2)
(

min
(

λ1

π
,
λ2

π

)
− λ1

π

λ2

π

)
.

The proof of the theorem is given in Appendix A1.

The series representation of the Kiefer–Müller process can be found in
Klüppelberg and Mikosch [29]. This process is known in empirical process theory
as the limiting Gaussian field for the sequential empirical process; see Shorack
and Wellner [41].

Remark 2.1. The statement of Theorem 2.1 remains valid for wider
classes of stationary sequences. In particular the result holds if the conditions
in Remark 1.1 are satisfied and in addition, (Xt) is symmetric and (|Xt|) and
(sign(Xt)) are independent. The latter conditions are satisfied by any stochastic
volatility model of the form Xt = σt Zt, where (Zt) is a sequence of iid symmet-
ric random variables and the random variables σt are adapted to the filtration
σ(Zt−1, Zt−2, ...), or alternatively, (σt) and (Zt) are independent.

Immediate consequences of Theorem 2.1 and the continuous mapping the-
orem are limit theorems for continuous functionals of the process Cn,X which
can be used for the construction of goodness of fit tests and tests for detecting
changes in the spectrum of the time series.

Corollary 2.1. Under the assumptions of Theorem 2.1,

√
n sup

x∈[0,1], λ∈[0,π]

∣∣Cn,X(x, λ)
∣∣ d−→ sup

x∈[0,1],λ∈[0,π]

∣∣K(x, λ)
∣∣ ,

n

∫ 1

0

∫ π

0
C2

n,X(x, λ) dx dλ
d−→

∫ 1

0

∫ π

0
K2(x, λ) dx dλ .

For x = 1, convergence in (2.6) yields

√
n C̃n,X(·) :=

√
n

n−1∑
h=1

γn,X(h)

v
1/2
X (h)

sin(·h)
h

d−→ B(·) :=
∞∑

h=1

Wh(1)
sin(·h)

h
,(2.8)

in C [0, π]. The series on the right-hand side is the so-called Paley–Wiener rep-
resentation of a Brownian bridge on [0, π]; see (2.7) with x=1 (see for example
Hida [25]).
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The one-parameter process C̃n,X will be our basic process for testing the
goodness of fit of the sample X1, ..., Xn to a GARCH process. The convergence
of the following functionals can be used for constructing Kolmogorov–Smirnov
and Cramér–vonMises type goodness of fit tests for a GARCH(p, q) process.

Corollary 2.2. Under the assumptions of Theorem 2.1,

S̃n :=
√

n sup
λ∈[0,π]

∣∣C̃n,X(λ)
∣∣ d−→ sup

λ∈[0,π]
|B(λ)| ,(2.9)

n

∫ π

0
C̃2

n,X(λ) dλ
d−→

∫ π

0
B2(λ) dλ .

2.2. The goodness of fit test

Inwhat follows, we focus on the GARCH(1, 1) case but a similar theory can be
developed for the general GARCH(p, q) case. The quantities vX(h) are continuous
functions of the GARCH parameters and the fourth moments of the iid noise Zt.
We refer to Appendix A2 where vX is explicitly given for the GARCH(1, 1) case.
For an application of the results above it is natural to replace the unknown quan-
tities vX(h) in the definition of γ̃n,k,X(h) by their sample versions v̂X(h), i.e., the
parameters αi and β1 are replaced by some estimators α̂i and β̂1 and EZ4 is re-
placed by the sample mean of the 4th powers of the residuals ÊZ4 = n−1

∑n
i=1 Ẑ4

t ,
where Ẑt = Xt/σ̂t and σ̂2

t = α̂0 + α̂1X
2
t−1 + β̂1σ̂

2
t−1 and σ̂2

0 and X2
0 are arbitrarily

chosen, but fixed. Denoting by

γ̂n,[n·],X(h) =
γn,[n·],X(h)

v̂
1/2
X (h)

,

we produce the straightforward modification of Cn,X(x, λ):

Ĉn,X(x, λ) =
[nx]−1∑
h=1

γ̂n,[nx],X(h)
sin(λh)

h
, x ∈ [0, 1], λ ∈ [0, π] ,

and that of S̃n:

Sn :=
√

n sup
λ∈[0,π]

∣∣Ĉn,X(λ)
∣∣ .(2.10)

The following result states that the theory developed in this section remains
valid if vX is replaced by its sample analogue.
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Theorem 2.2. Assume that the parameter estimators α̂1 and β̂1 based

on X1, ..., Xn are independent of (sign(Xt)) and consistent, i.e., α̂1
P→ α1 and

β̂1
P→ β1. Then Theorem 2.1 and its corollaries remain valid for a GARCH(1, 1)

process if vX is replaced by its sample analogue v̂X . In particular

Sn
d−→ sup

λ∈[0,π]
|B(λ)| .(2.11)

Remark 2.2. The Whittle parameter estimators of a GARCH process
are consistent if EX4 <∞, and so are the Gaussian quasi maximum likelihood
estimators; see Giraitis and Robinson [22] and Mikosch and Straumann [33]
for the former case and Berkes et al. [5] for the latter case. Moreover, by their
definitions they are calculated from the X2

t ’s and σ2
t ’s only and therefore they

are independent of (sign(Xt)).

The results we presented so far are sufficient for providing a theoretical un-
derstanding of the behavior of tests based on functionals of Ĉn,X (for example Sn).
These are tests of the null hypothesis that the sample X1, ..., Xn comes from a
GARCH(1, 1) model with given parameters αi and βi against the alternative
of another GARCH(1, 1) model with parameters αa

i , i = 0, 1, and βa
1 . They

reject the null hypothesis if the functional is in a certain region. The rejection
region giving the test the right size is constructed based on the quantiles of the
appropriate functional of the limit process in Theorem 2.2 (i.e. the supremum of
a Brownian bridge in the case of the statistic Sn). As for the power of the test,
similar arguments as for the proof of Theorem 2.2 yield under the alternative the
following result.

Theorem 2.3. Assume that (Xt) and (Yt) are two stationary GARCH(1,1)
processes (2.1) with coefficients αi, i = 0, 1, β1, and αa

i , i = 0, 1, βa
1 respectively.

Assume that the parameter estimators α̂1 and β̂1 (based on the sample X1, ..., Xn)

are independent of (sign(Xt)) and consistent, i.e., α̂1
P→ α1 and β̂1

P→ β1. Define

γ̂a
n,[n·](h) =

γn,[n·],Y (h)

v̂
1/2
X (h)

,

Ĉa
n,X,Y (x, λ) =

[nx]−1∑
h=1

γ̂a
n,[nx](h)

sin(λh)
h

, x ∈ [0, 1], λ ∈ [0, π] .

Then

(2.12)
√

n
(
Ĉa

n,X,Y (x, λ)
)
x∈[0,1], λ∈[0,π]

d−→
( ∞∑

h=1

v
a 1/2
X (h)

v
1/2
X (h)

Wh(x)
sin(λh)

h

)
x∈[0,1], λ∈[0,π]

,

in D
(
[0, 1]×[0, π]

)
where (Wh(·)) is a sequence of iid standard Brownian motions

on [0, 1] while va
X(h) = E(Y0Yh)2.
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This result yields a theoretical description of the power of tests based on
functionals of Ĉn,X . It individuates the functional of the Gaussian process on
the right hand side of equation (2.12) as an asymptotic equivalent of the desired
functional of Ĉa

n,X,Y . Note that the distributions of the functionals of the limit
processes depend on the parameters of the alternative hypothesis in a rather
complicated way. This makes the direct use of the Theorem 2.3 in applications
rather difficult. For this reason we will rely on Monte–Carlo based calculations
of the distribution of Ĉa

n,X,Y . See Section 3 for a simulation study on the size
and the power of a test based on the statistics Sn.

Results similar to Theorem 2.3 can be derived for the alternative hypothesis
that the sample X1, ..., Xn consists of subsamples from different GARCH(p, q)
processes. Clearly, the asymptotic distribution will be even more complex and
the Monte–Carlo approach again inevitable.

3. A SIZE AND POWER MONTE CARLO STUDY

The aim of this section is to investigate the size and the power of a test
based on the statistic Sn in (2.10). The set up is relevant to the real data analysis
performed in Section 4. There we check the goodness of fit of a GARCH(1, 1)
process with parameters estimated on the first 3 years of data (750 observations)

(3.1) α0 = 8.58 × 10−6, α1 = 0.072, β1 = 0.759, ν = 5.24 ,

to various segments of the data set. Here ν is the number of degrees of freedom
of the t-distributed noise sequence (Zt). The corresponding value of the fourth
moment of the estimated residuals of the model 3.1 is EZ4 = 7.82.

The first choice we need to make when applying our test on data is precisely
that of the size of the window that guarantees a correct behavior of the statistic Sn.
Theoretically, the correct size of the test will be guaranteed by a choice of the re-
jection region based on the asymptotic behavior of Sn described by Theorem 2.2.
These results are only asymptotic and provide the right size if the data window
used to calculate the Sn statistic is large. For reasons that are explained in
Section 4, we want to keep the length of the window as small as possible. It is
by means of simulations that we find the right balance between these oppos-
ing requirements on the window size. As a byproduct of the simulation study,
we will understand how to adjust the interval provided by Theorem 2.2 in order
to maintain the correct size.

The top graph in Figure 1 displays the QQ-plot of 1000 simulated values
of S̃125 (the quantiles on the x-axis), calculated on samples of 125 observations
from a GARCH process with Student-t innovations and parameters (3.1) against
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Figure 1: Top: QQ-plot of 1000 values of S̃125 (x-axis) against the quantiles
of the supremum of a Brownian bridge (y-axis).
Bottom: The difference between the sample cdf of 1000 simulated
values of S̃125 and the theoretical cdf of the supremum of a Brownian
bridge with the Kolmogorov-Smirnov 95% confidence bands.

the quantiles of the supremum of a Brownian bridge (on the y-axis). The bottom
graph in the same figure together with the graphs in Figure 2 shows the goodness
of fit of the distribution of the supremum of a Brownian bridge to samples of 1000
simulations of S̃125 (Figure 1), S̃500 and S̃1000 (Figure 2) respectively. The statistic
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Figure 2: The difference between the sample cdf of the 1000 simulated values
of S̃500 (Top) and of S̃1000 (Bottom) and the theoretical cdf of the
supremum of a Brownian bridge with the Kolmogorov-Smirnov 95%
confidence bands.

S̃ is calculated using the parameters (3.1). The goodness of fit is based on the
Kolmogorov–Smirnov test. The solid line in these graphs represents the difference
between the sample cdf and the theoretical cdf of a Brownian bridge while the
dotted lines are the 95% confidence intervals stipulated by the Kolmogorov–
Smirnov test. This test seems to indicate that the asymptotic behavior fully
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works for sample sizes of the order 1000 while the qualitative differences between
sample sizes of order 125 and 500 are not too big. This observation together with
the good fit showed by the QQ-plot in Figure 1 motivate our choice of a window
size of 125 data points (or half a business year).

A next issue that we need to clarify is the behavior of S125. Recall that
Theorem 2.2 stipulates that the asymptotic behaviors of Sn and S̃n are the same.
A verification of this statement is provided in Figure 3 which displays the
QQ-plot of 2500 simulated values of S125 against 2500 simulated values of S̃125.
In all cases the data generating process is a GARCH model with Student-t in-
novations and parameters (3.1). To obtain one value of S̃125, 125 simulated data
and the true parameters (3.1) are used, while in the case of S125, 875 data points
are simulated, the parameters are estimated on the first 750 data points and the
last 125 observations together with the estimated parameters are used to produce
the statistic. The two distributions seem indeed very close to each other.
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Figure 3: QQ-plot of 2500 values of S125 (x-axis) against
2500 values of S̃125 (y-axis).

This part of the simulation study serves also to define the rejection regions
of the test based on the statistic S125. The rejection intervals for a 95% size one-
sided, respectively two-sided test for the S125 statistic are (0, 1.01) and (3.32,∞),
and (0, 0.92) ∪ (3.8,∞) respectively. The interval that gives a size of 99% to our
two-sided test (and that will be used for the data analysis in the next section)
is (0, 0.785) ∪ (4.9,∞).
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The alternatives we consider in our study are those of GARCH processes
with parameters different from those in (3.1). Although Theorem 2.3 gives the
theoretical power of our test against various GARCH alternatives, its complicated
form renders it of little practical help. For understanding the behavior of the Sn

statistic under various GARCH alternatives we again have to turn to a Monte
Carlo analysis.

The results are displayed in Figures 4–7. The tests have size 95% and are
based on the choice of intervals given by our simulation study as discussed above.
In Figures 4 and 5 the parameters α0 and EZ4 are kept constant while the other
two parameters α1 and β1 are made to vary between 0.04 and 0.14 and 0.6 and
0.92 respectively. In Figures 6 and 7 the parameters α1 and β1 are kept constant
while the other two parameters α0 and EZ4 are made to vary between 1.5×10−6

and 4.05 × 10−5 and 3 and 9 respectively. For every alternative, 500 simulations
were produced. The top and center graphs in Figures 4 and 6 display the power
of the one-sided tests (for the top graph, the rejection interval is (0, 1.01), for the
center graph (3.32,∞)) while the graphs on the bottom row display the difference
between the standard deviation of the alternative models and that of the model
with parameters (3.1). The top graphs in Figures 5 and 7 show the power of
the two-sided test (rejection region (0, 0.785)∪ (4.9,∞)) while the bottom graphs
in the two pictures display the absolute value of the difference between the log
of the standard deviation of the alternative models and that of the model with
parameters (3.1).

The graphs in Figures 4 and 6 shed light on the relationship between the
difference of the unconditional variances and the distribution of the S125 statistic
under the alternative. They show that the sampling distribution of the statistic
S125 (calculated with the parameters of the null hypothesis) for GARCH models
with lower (higher) unconditional variance is dominated (dominates) the sam-
pling distribution for the null model. Hence rejecting for small (high) values of
the statistic S125 gives power against alternative models with smaller (larger)
unconditional variance. The graphs in Figures 5 and 7 show a strong connec-
tion between the power of the test and the absolute value of the difference of
the log unconditional variances of the two models. The higher the size of the
difference, the higher the power. Even more, Figures 6 and 7 show that the test
has equal power against alternatives of equal variance. Note that the variance of
the alternative GARCH(1, 1) processes does not depend on the EZ4 parameter.

As a conclusion, the study motivates the interpretation of the rejection of
the null hypothesis not only as signaling the need for another GARCH model but
also as a clear sign of a change in the unconditional variance of the time series.
More concretely, a rejection on the upper (lower) end of the rejection region also
signals an increase (a decrease, respectively) in the unconditional variance of the
time series.
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Figure 4: Top and Center: Power against GARCH alternatives of a test based
on S125 and the rejection interval (0, 1.01) (Top) and (3.32,∞) (Center).
The parameters αa

0 and νa are kept constant and equal to the values in
(3.1), i.e., 8.58× 10−6 and 5.24 respectively. The x- and y-axes show the
βa

1 - and αa
1-values of the alternatives.

Bottom: The difference between the standard deviations of the alterna-
tive models and that of the model with parameters (3.1).
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Figure 5: Top: Power against GARCH alternatives of a test based on
S125 and the two-sided rejection region (0, 0.785)∪(4.9,∞).
The parameters αa

0 and νa are kept constant and equal to
the values in (3.1), i.e., 8.58 × 10−6 and 5.24, respectively.
The x- and y-axes show the βa

1 - and αa
1-values of the alter-

natives.
Bottom: The absolute value of the differences between the
log of the standard deviations of the alternative models and
that of the model with parameters (3.1).
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Figure 6: Top and Center: Power against GARCH alternatives of a test based
on S125 and the one-sided rejection intervals (0, 1.01) (Top) and
(3.32,∞) (Center). The parameters αa

1 and βa
1 are kept constant

to the values in (3.1), i.e., 0.072 and 0.759, respectively. The x- and
y-axes show the αa

0- and νa-values of the alternatives.
Bottom: The difference between the standard deviations of the
alternative models and that of the model with parameters (3.1).
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Figure 7: Top: Power against GARCH alternatives of a test based on
S125 and the two-sided rejection interval (0, 0.785)∪(4.9,∞)
and (3.32,∞). The parameters αa

1 and βa
1 are kept constant

to the values in (3.1), i.e., 0.072 and 0.759, respectively. The
x- and y-axes show the αa

0- and νa-values of the alterna-
tives.
Bottom: The absolute value of the difference between the
log of the standard deviations of the alternative models and
that of the model with parameters (3.1).
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4. A STUDY OF THE STANDARD & POOR’S 500 SERIES

We now proceed to analyze a time series that has been previously used to
exemplify the presence of LRD in financial log-return series: the Standard 90 and
Standard and Poor’s 500 composite stock index. This series, covering the period
between January 3, 1928, to August 30, 1991, was used in Ding et al. [15], Granger
et al. [23], Ding and Granger [14] for an analysis of its autocorrelation structure.
It led the authors to the conclusion that the powers of the absolute values of
the log-returns are positively correlated over more than 2500 lags, i.e., 10 years.
It is hard to believe that this time series is likely to be stationary. It covers
the Great Depression, a world war together with the most recent period, marked
by major structural changes in the world’s economy. In addition, there was a
compositional change in the S&P composite index that happened in January 1953
when the Standard 90 was replaced by the broader Standard and Poor’s 500
index. Despite all these, Ding et al. [15] conclude the section which describes
the data as follows (page 85): “During the Great Depression of 1929 and early
1930s, volatilities are much higher than any other period. There is a sudden drop
in prices on Black Monday’s stock market crash of 1987, but unlike the Great
Depression, the high market volatility did not last very long. Otherwise, the

market is relatively stable.” Bollerslev and Mikkelsen [9] used the daily returns
on the Standard and Poor’s 500 composite stock index from January 2, 1953, to
December 31, 1990 (a total of 9559 observations) to fit a FIGARCH model under
the assumptions of stationarity and LRD. (It is unknown whether the FIGARCH
has a stationary version, and if it existed, it had infinite variance marginals, thus
the definition of LRD via the ACF would break down. See Giraitis et al. [21] and
Mikosch and Stărică [34] for some discussions.)

In the sequel we perform a detailed analysis of the same data set covering
the time span from January 2, 1953, to December 31, 1990; see Figure 8. The
first goal of the analysis is to check the goodness of fit of a GARCH process with
parameters estimated on the first 3 years of data, the period from the beginning
in 1953 until the beginning of 1956 (750 observations)

(4.1) α0 = 8.58 × 10−6, α1 = 0.072, β1 = 0.759, ν = 5.24 ,

to various segments of the data set. Here ν is the number of degrees of freedom
of the t-distributed noise sequence (Zt). The corresponding value of the fourth
moment of the estimated residuals of the model (4.1) is EZ4 =7.82. The analysis
verifies if this GARCH(1, 1) model which provides a good description to the
beginning of the sample can be used to model later periods. In the case of
a negative answer we are interested in understanding the type of changes that
occurred and, if possible, to pin them to new economic conditions. In other words,
the second goal of the analysis is the timing of possible changes in the structure of
the data. We try to achieve this goal by evaluating the statistic Sn on a window
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that moves sequentially through the data. We will chose the window as small as
possible to make sure the statistic reacts promptly to possible structural changes.
In the end of the section we document the effect which changes in the variance
have on the sample ACF. We find that the shape of the sample ACF changes
drastically after episodes of increased variance that cannot be properly described
by the estimated model.
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Figure 8: Plot of 9558 S&P500 daily log-returns.
The year marks indicate the beginning of the calendar year.

The top graph in Figure 9 shows the results of calculating the statistic
Sn (see (2.10)) on a weekly basis (i.e., every 5th instant of time) with blocks of
n=125 past observations, corresponding to approximately 6 months of previous
observations. The horizontal lines correspond to the ends of the rejection region
of a goodness of fit test of size 99% based on S125 statistic as obtained from
the simulation study in Section 3. The dotted vertical lines mark the start and
the end of economic recessions as determined by the US National Bureau of
Economic Research. This graph shows that one simple GARCH(1, 1) process
(which, according to the S125 statistic, models the first ten years of data or so
quite well cannot describe the complicated dynamics of longer, possibly non-
stationary log-return time series. More precisely, the graph shows that most of
the more pronounced violations of the confidence interval are on the upper side.
It also shows that most of the recessions of the period under study (apart the
one in the beginning of the 60s) are associated with larger than acceptable values
of the S125 statistic. Recalling the simulation results of Section 3, these two
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findings also seem to imply that the unconditional variance of the log-returns
changes through time and that most of the recessions of the period under study
are characterized by higher unconditional variance than the periods of normal
economic activity.
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Figure 9: Top: The goodness of fit test statistic S125 for the S&P500 data.
The horizontal lines are the limits of the 99% confidence interval of
S125 as obtained from the simulation study in Section 3. The dotted
vertical vertical lines mark the start and the end of economic recessions
as determined by the National Bureau of Economic Research.
Bottom: The implied GARCH(1, 1) unconditional variance of the
S&P500 data. A GARCH(1, 1) model is estimated every 2 months
using the previous 2 years of data (i.e., 508 observations). The graph
displays the variances σ2

X = α0/(1−α1−β1); see (A2.1).
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A closer look at the S&P 500 plot in Figure 8 together with the top graph
in Figure 9 reveals an almost one-to-one correspondence between the periods of
larger absolute log-returns (larger volatility) and the periods when the goodness
of fit test statistic S125 falls outside and above the confidence region.

If the unconditional variance changes through time, as our analysis seems
to indicate, no GARCH(1, 1) model could be a good model for the whole period.
It is then interesting to verify whether a periodically updated GARCH(1, 1) model
could account for the more pronounced volatility periods that cannot be explained
by the GARCH(1, 1) model (4.1). One way to do this is to calculate the implied
unconditional GARCH(1, 1) variance of a periodically re-estimated GARCH(1, 1)
model, i.e., one calculates the variance

σ2
X = α0

/(
1 − (α1 + β1)

)
based on the periodically re-estimated parameters α1 and β1; see (A2.1).

More concretely, we re-estimated a GARCH(1, 1) model every 2 months,
i.e., every 42 days, on a moving window of 508 past observations, equivalent to
roughly two business years of daily log-returns. We then plotted the implied
variance σ2

X . The results of this procedure are displayed in the bottom graph
of Figure 9. One notices that the pattern of increased implied unconditional
variance is quite similar to the pattern of the excursions of the statistic S125

above the 99% quantile threshold. This similarity seems to imply that one can
capture the changing patterns of volatility present in the data by periodically
updating the GARCH(1, 1) model. However a more in-depth study would be
needed to substantiate such a statement.

Let us now analyze the impact which these periods of different structural
behavior detected by the goodness of fit test statistic S125 have on the sample
ACF of the time series. The top graph in Figure 9 identifies the period beginning
in 1973 and lasting for almost 4 years as the longest and most significant devi-
ation from the hypothesized model. This period is centered around the longest
economic recession in the analyzed data. Figure 10 displays the sample ACF
of the absolute values |Xt| up to the moment when the change is detected, i.e.,
beginning of 1973, next to the sample ACF including the 4-year period that fol-
lowed. The impact of the change in the structure of the time series between 1973
and 1977 on the sample ACF is extremely severe as one sees from the second
graph of Figure 10. The graph clearly displays the LRD effect as explained in
[34, 35]: exponential decay at small lags followed by almost constant plateau for
larger lags together with strictly positive correlations.

Contrary to the belief that the LRD characteristic carries meaningful in-
formation about the price generating process, these graphs show that the LRD
behavior could be just an artifact due to very plausible structural changes in the
log-return data: variations of the unconditional variance due to the business cycle.
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Figure 10: The sample ACF for the absolute log-returns of the first 20 and
24 years (top and bottom) of the S&P500 data.
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5. CONCLUDING REMARKS

In this paper we have argued that long financial time series display com-
plicated volatility structures for which the simplifying assumption of constant
unconditional variance and constant other moments is too rigid. Modeling the
changing unconditional variance (possibly together or instead of the changing con-
ditional one) is an important component of the modelization of long log-returns
time series.

A1. APPENDIX

Proof of Lemma 2.1: We have to show the convergence of the finite-
dimensional distributions and the tightness in D ([0, 1], Rm). Notice first that for
every fixed h,

√
n
(
γn,[nx],X(h)

)
x∈[0,1]

d−→
(
v

1/2
X (h) Wh(x)

)
x∈[0,1]

.(A1.1)

in D [0, 1]; see Oodaira and Yoshihara [37]; cf. Doukhan [16], Theorem 1 on p. 46.
In the latter theorem one has to ensure that E|X0Xh|2+ε < ∞ for some ε > 0
(this follows from (2.4)) and that the sequence (XtXt+h) is α-mixing with a suffi-
ciently fast rate for the mixing coefficients; see (A1.2). However, the GARCH(p, q)
is strongly mixing with geometric rate since we assume that Z has a Lebesgue
density on R (see Boussama [11]), and so the mixing coefficients converge to
zero at an exponential rate, which implies the conditions in the aforementioned
theorem.

Thus each of the processes
√

nγn,[n·],X(h) is tight in D [0, 1]. Using a gen-
eralization of the argument for Lemma 4.4 in Resnick [39], one obtains that the
map from (D [0, 1])m into D ([0, 1], Rm) defined by(

x1, ..., xm

)
−→

(
x1(t), ..., xm(t)

)
t∈[0,1]

is continuous at (x1, ..., xm) in (C [0, 1])m. This and the sample path continuity
of the limit process ensure that the processes on the left-hand side of (2.5) are
tight in D ([0, 1], Rm).

Notice that the multivariate CLT

1√
n

[nx]∑
t=1

(
Xt Xt+1, ..., Xt Xt+h

)
d−→

(
v

1/2
X (1)W1(x), ..., v

1/2
X (h)Wh(x)

)
holds for every fixed x. This is again a consequence of the aforementioned CLT
for α-mixing sequences in combination with the Cramér–Wold device. A similar
argument for a finite number of x-values yields the convergence of the finite-
dimensional distributions. This proves the lemma.
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Remark 1.1. It follows from the argument in the proof of Lemma 2.1
that (2.5) remains valid for stationary strongly mixing sequences (Xt) with
EX = 0, E|X|4+δ < ∞ for some δ > 0 and such that EX0Xh = 0 for h ≥ 1,
cov(X0Xh, X0Xl) = 0 for all h �= l ≥ 1, and with α-mixing coefficients α̃i satis-
fying

∞∑
i=1

α̃
δ/(2+δ)
i < ∞ .(A1.2)

The latter conditions are needed for the validity of the FCLT in (A1.1); see
Oodaira and Yoshihara [37].

Proof of Theorem 2.1: We proceed analogously to Klüppelberg and
Mikosch [29]. It follows from Lemma 2.1 and the continuous mapping theorem
that, for every fixed m ≥ 1, in D

(
[0, 1]×[0, π]

)
m∑

h=1

√
n γ̃n,[nx],X(h)

sin(λh)
h

d−→
m∑

h=1

Wh(x)
sin(λh)

h
.(A1.3)

According to Theorem 4.2 in Billingsley [7], it remains to show that for every
ε > 0,

(A1.4)

lim
m→∞ lim sup

n→∞
P

⎛⎝ sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γ̃n,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ = 0 .

Since Z is symmetric the sequences (rt) = (sign(Xt)) and (|Xt|) are independent.
Conditionally on (|Xt|),

k∑
h=m+1

√
n γ̃n,k,X(h)

sin(·h)
h

, k = m+1, ..., n−1 ,

is a sequence of quadratic forms in the iid Rademacher random variables rt and
with values in the Banach space C [0, π] endowed with the sup-norm. Now condi-
tion on (|Xt|). Use first a decoupling inequality for Rademacher quadratic forms
(e.g. de la Peña and Montgomery–Smith [13], Theorem 1) then the Lévy maximal
inequality for sums of iid symmetric random variables, then again the decoupling
inequality in reverse order, and finally take expectations with respect to (|Xt|).
Then we obtain the inequality

P

⎛⎝ sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]∑

h=m+1

√
n γ̃n,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ ≤

≤ c1 P

(
c2 sup

0≤λ≤π

∣∣∣∣∣
n−1∑

h=m+1

√
n γ̃nX(h)

sin(λh)
h

∣∣∣∣∣ > ε

)
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for certain positive constants c1, c2. The right-hand probability can be treated
in the same way as the derivation of (6.3) in [28], pp. 1873–1876. Instead of
Theorem 3.1 in Rosiński and Woyczyński [40] one can simply use the Cauchy–
Schwarz inequality in the first display on p. 1876 in [28] with μ = 2. Then all the
calculations for (6.3) remain valid, implying that (A1.4) holds. This concludes
the proof of the theorem.

Remark 1.2. The condition of symmetry of Z is needed only for the
application of the Lévy maximal inequality for sums of independent random
variables. Alternatively, one can proceed as in the proof of Theorem 3.1 in
Klüppelberg and Mikosch [29], p. 980, last display, where instead of the Lévy
maximal inequality Doob’s 2nd moment maximal inequality for submartingales
was used. Then one can follow the lines of the proof of Theorem 1 in Grenander
and Rosenblatt [24], Chapter 6.4.

Proof of Theorem 2.2: We start by showing that ÊZ4 P→ EZ4. Indeed,
consistency of the estimators α̂i and β̂1 implies consistency of ÊZ4. We have by
induction, using the definitions of σ2

t and σ̂2
t ,

ÊZ4 − n−1
n∑

i=1

Z4
t =

= n−1
n∑

i=1

X4
t

σ̂4
t

− n−1
n∑

i=1

X4
t

σ4
t

= n−1
n∑

i=1

X4
t

σ4
t − σ̂4

t

σ4
t σ̂4

t

= n−1
n∑

i=1

X4
t

(σ2
t − σ̂2

t ) (σ2
t + σ̂2

t )
σ4

t σ̂4
t

= n−1
n∑

i=1

X4
t

[
(α0−α̂0) + (α1−α̂1)X2

t−1 + (β1−β̂1)σ2
t−1 + β̂1(σ2

t−1−σ̂2
t−1)

]
×

× σ2
t + σ̂2

t

σ4
t σ̂4

t

= (α0 − α̂0) n−1
n∑

i=1

X4
t

(
1 + β̂1 + β̂2

1 + · · · + β̂t
1

) σ2
t + σ̂2

t

σ4
t σ̂4

t

+ (α1 − α̂1) n−1
n∑

i=1

X4
t

(
X2

t−1 + β̂1X
2
t−2 + · · · + β̂t

1X
2
0

) σ2
t + σ̂2

t

σ4
t σ̂4

t

+ (β1 − β̂1) n−1
n∑

i=1

X4
t

(
σ2

t−1 + β̂1σ
2
t−2 + · · · + β̂t

1σ
2
0

) σ2
t + σ̂2

t

σ4
t σ̂4

t

+ (σ2
0 − σ̂2

0) n−1
n∑

i=1

X4
t β̂t

1

σ2
t + σ̂2

t

σ4
t σ̂4

t

= (α0−α̂0) I1 + (α1−α̂1) I2 + (β1−β̂1) I3 + (σ2
0−σ̂2

0) I4 .
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Notice that, by consistency of the parameter estimators and since (Z4
t σ2

t ) is
ergodic,

I1 ≤ (1−β̂1)−1 n−1
n∑

i=1

Z4
t

σ2
t + σ̂2

t

σ̂4
t

≤ (1−β̂1)−1 n−1
n∑

i=1

Z4
t

[
σ2

t α̂−2
0 + α̂−1

0

]
a.s.−→ (1−β1)−1 EZ4

[
E σ2 α−2

0 + α−1
0

]
.

By similar arguments, for any δ > 0 and ε > 0 such that β1 + ε < 1,

P
(
I2 > δ

)
≤

≤ P

(
n−1

n∑
i=1

X4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · · + (β1+ε)tX2

0

) σ2
t +σ̂2

t

σ4
t σ̂4

t

> δ

)
+ P

(
β̂1 > β1+ε

)
≤ P

(
n−1

n∑
i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · · + (β1+ε)tX2

0

) (
σ2

t α̂−2
0 + α̂−1

0

)
> δ

)
+ o(1) .

It is not difficult to see, by an application of the Cauchy–Schwarz inequality, that
the first moments of

n−1
n∑

i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · · + (β1+ε)t X2

0

)
σ2

t

and

n−1
n∑

i=1

Z4
t

(
X2

t−1 + (β1+ε)X2
t−2 + · · · + (β1+ε)t X2

0

)
,

are bounded, uniformly for n. Therefore I2 is stochastically bounded, and a
similar argument applies to I3. Finally,

P
(
n I4 > δ

)
≤ P

(
n∑

i=1

Z4
t (β1+ε)t

(
σ2

t α̂2
0 + α̂−1

0

)
> δ

)
+ P

(
β̂1 > β1 + ε

)
.

The second probability vanishes by consistency of β̂1. Moreover,

n∑
i=1

Z4
t (β1+ε)t σ2

t and
n∑

i=1

Z4
t (β1+ε)t ,

have bounded first moments. This implies that I4 is stochastically bounded,
and n−1I4

P→ 0. Collecting the bounds for all Ij , we conclude by the law of large

numbers that ÊZ4 P→ EZ4.
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For the remaining proof we follow the lines of the proof of Theorem 2.1.
Write v̂X(h) for the sample version of vX(h). By consistency of ÊZ4, α̂i, β̂1 and
the form of vX(h), see (A2.2), we have v̂X(h) P→ vX(h) for every h. This fact and
the continuous mapping theorem immediately yield that (A1.3) remains valid
with vX(h) replaced by v̂X(h). So it remains to show

lim
m→∞ lim sup

n→∞
P

⎛⎝ sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n

γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ = 0 .

Notice that for every h ≥ 1,

v̂X(h)−1/2 ≤ σ̂−4
X = α̂−4

0

(
1 − ϕ̂1

)−4
.

See Appendix A2. By the assumptions, the estimators α̂i, β̂1 are independent of
(sign(Xt)), and so is ÊZ4 by construction of the residuals. Thus, conditionally
on (|Xt|),

[nx]−1∑
h=m+1

√
n

γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

is a random quadratic form in the variables sign(Xt), which, by symmetry of (Zt)
are independent of the coefficients of the quadratic form which only depend on
the sequence (|Xt|). An application of the contraction principle for Rademacher
quadratic forms (cf. Kwapień and Woyczyński [31]) implies that for some con-
stants c1, c2 > 0

P

⎛⎝ sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n

γn,[nx],X(h)

v̂
1/2
X

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ ≤

≤ c1 P

⎛⎝c2 max
h

v̂
−1/2
X sup

0≤x≤1
sup

0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠
≤ c1 P

⎛⎝c2 α̂−4
0

(
1−ϕ̂1

)−4 sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ .

Thus it remains to show that

lim
m→∞ lim sup

n→∞
P

⎛⎝ sup
0≤x≤1

sup
0≤λ≤π

∣∣∣∣∣
[nx]−1∑
h=m+1

√
n γn,[nx],X(h)

sin(λh)
h

∣∣∣∣∣ > ε

⎞⎠ = 0 ,

which follows along the lines of the proof of Theorem 2.1.
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A2. APPENDIX

Consider a GARCH(1, 1) process (Xt) with parameters α0, α1, β1. We write
ϕ1 = α1 + β1 and assume EX4 <∞. From the calculations below it follows that
the condition

1 −
(
α2

1 EZ4 + β2
1 + 2α1 β1

)
> 0

must be satisfied. The squared GARCH(1, 1) process can be rewritten as an
ARMA(1, 1) process by using the defining equation (2.1):

X2
t − ϕ1 X2

t−1 = α0 + νt − β1 νt−1 ,

where (νt) = (X2
t −σ2

t ) is a white noise sequence. Thus, the covariance structure
of

Ut = X2
t − EX2 , t ∈ Z ,

is that of a mean-zero ARMA(1, 1) process. The values of γU (h) are given on
p. 87 in Brockwell and Davis [12]:

γU (0) = σ2
ν

[
1 +

(ϕ1 − β1)2

1 − ϕ2
1

]
,

γU (1) = σ2
ν

[
ϕ1 − β1 +

(ϕ1 − β1)2 ϕ1

1 − ϕ2
1

]
,

γU (h) = ϕh−1
1 γU (1) , h ≥ 2 .

Straightforward calculation yields

σ2
ν = (EZ4 − 1) Eσ4

1 =
1 + ϕ1

1 − ϕ1

α2
0(EZ4 − 1)

1 −
(
ϕ2

1 + α2
1(EZ4 − 1)

) ,

(A2.1)

σ2
X =

α0

1 − ϕ1
.

Thus we can calculate the quantities

vX(h) = E(X2
0X2

h) = γU (h) + σ4
X , h ≥ 1 ,

which occur in the definition of the change point statistics and goodness of fit
test statistics of Section 2. We obtain:

vX(h) = σ4
X

⎛⎝(EZ4−1) α1

(
1 − ϕ2

1 + α1 ϕ1

)
1 −

(
ϕ2

1 + α2
1(EZ4−1)

) ϕh−1
1 + 1

⎞⎠ , h ≥ 1 .(A2.2)
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1. INTRODUCTION

Let X1, ..., Xn be independent nonnegative random variables, identically
distributed with distribution function F . The exact shape of F is generally
unknown, but we assume that F is absolutely continuous with density f and
nondegenerate right tail of the Pareto type satisfying

(1.1) lim
x→∞

− log
(
1 − F (x)

)
m log x

= 1

for some m > 0. Then, by the von Mises condition (see Embrechts et al. [4]),

(1.2) 1 − F (x) = x−mL(x)

where L(x) is a function, slowly varying at ∞, and hence F belongs to the
domain of attraction of the Fréchet distribution with the distribution function
Φm(x) = exp {−x−m} , x > 0.

Among the estimators of the Pareto index m or its reciprocal γ = 1
m ,

proposed in the literature, the Hill [9], Pickands [15] and moment estimators
[3] are the most well-known. Either of these estimators is based only on the frac-
tion of the observations, namely on kn largest ones, where kn → ∞ and kn/n → 0
as n → ∞. The consistency and asymptotic normality of these estimators was
proved under various regularity conditions on kn and on F, some of them not easy
to verify. The problem of the estimating was considered by many other authors,
e.g. Smith [16], Beirlant et al. [2], Feuerverger et al. [8], Gomes and Martins [7].

We propose another estimator of the Pareto index m, that competes well
with the above estimators; the regularity conditions, required for its strong con-
sistency and asymptotic normality, are apparently more transparent and less
restrictive. The proposed estimator uses all observations, unlike the estimators
mentioned above. The idea of the estimator is based on the tail behavior of the
sample mean X̄n, that has a simple structure under heavy-tailed F, satisfying
(1.1). The estimator is strongly consistent and asymptotically normal and it was
also discussed by the same authors in [5, 6].

The tail behavior of the sample mean is described is Section 2. The es-
timator is defined in Section 3, along with the formulation of its consistency
and asymptotic normality. Its behavior is illustrated in a simulation study in
Section 4. The proofs of the main results are postponed to Section 5. In Sec-
tion 6 we propose a test of a one-sided hypothesis on m, that can be used as a
preliminary test before the estimation.
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2. TAIL-BEHAVIOR OF THE SAMPLE MEAN

Let X1, ..., Xn be a random sample from a distribution with an abso-
lutely continuous distribution function F and density f, positive on interval
(Kf ,∞), Kf ≥0. Let X̄n = 1

n

∑n
i=1 Xi.

For a heavy-tailed F , symmetric around 0, Jurečková [10] showed that the
tail behavior of X̄n coincides with that of F . The following lemma demonstrates
a similar behavior of the sample mean also for heavy-tailed F concentrated only
on the positive half-axis.

Lemma 2.1. Let X1, ..., Xn be a random sample from the distribution

with absolutely continuous d.f. F and density f such that

(i) f(x) = 0 for x < 0 and 0 < f(x) < ∞ for x ≥ Kf ≥ 0.

(ii) F satisfies (1.1) for some m, 0 < m < ∞.

Then, for any fixed n,

(2.1) lim
a→∞

− log Pm(X̄n > a)
− log

(
1 − F (a)

) =
− log

(
1 − FX̄n

(a)
)

− log
(
1 − F (a)

) = 1 .

Proof: Let 0 ≤ Xn:1 ≤ ... ≤ Xn:n be the order statistics corresponding
to X1, ..., Xn. Then

P(X̄n > a) = P

(
n∑

i=1

Xi > na

)
≥ P(Xn:n > na) ≥ 1 − F (na)

and

P(X̄n > a) ≤ P(Xn:n > a) = 1 − (
F (a)

)n ≤ n
(
1 − F (a)

)
,

hence

lim
a→∞

− log P(X̄n > a)
− log

(
1 − F (a)

) ≥ lim
a→∞

− log
(
n(1 − F (a)

)
− log

(
1 − F (a)

) = 1

and

lim
a→∞

− log P(X̄n > a)
− log

(
1 − F (a)

) ≤ lim
a→∞

− log
(
1 − F (na)

)
− log

(
1 − F (a)

) = 1 ,

what implies (2.1).
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Notice that (2.1) and (1.1) imply

(2.2) lim
a→∞

− log Pm(X̄n > a)
m log a

= 1 ,

hence

(2.3) m = lim
a→∞mn(a) ,

where

(2.4) mn(a) =
− log Pm(X̄n > a)

log a
=

− log
(
1 − FX̄n

(a)
)

log a

with FX̄n
being the distribution function of X̄n. There are two possibilities how

to estimate m with the aid of formula (2.4): First, we can estimate the unknown
FX̄n

in (2.4) by the empirical distribution function, based on N realizations of X̄n

(nonparametric approach). Second, the distribution function can be modelled by
the by some parametric model whose parameters are then estimated. The “per-
turbed Pareto distribution”, considered recently by Feuerverger and Hall [8], is a
possible parametric model. Both approaches lead to the asymptotically normal
estimators, that are generally biased, unless the distribution has exactly Pareto
tails. The parametric model enables to reduce the bias, provided it is correct,
e.g. using efficient estimators of its parameters. The bias in the nonparametric
approach is expressed by means on the unknown slowly varying function; it can
be still reduced if the slowly varying function can be further parametrized.

In the present paper, we shall develop the nonparametric approach, replac-
ing FX̄n

by the empirical distribution function. In this way we obtain a consistent
estimator of m under N → ∞, while n remains fixed. Because we need to esti-
mate the limit of (2.4) as a → ∞, the argument aN of the empirical distribution
function should be sufficiently large, but some observations should be still greater
than aN .

The estimator and its properties are described in the next section.

3. ESTIMATOR OF THE TAIL INDEX BASED ON SAMPLE
MEANS

Let us partition the set of observations into N non-overlapping samples of
the same sizes n (a modification to different sample sizes is possible), denoted
as (X(1)

1 , ..., X
(1)
n ), ..., (X(N)

1 , ..., X
(N)
n ). Then the vector (X̄(1)

n , ..., X̄
(N)
n ) of the

corresponding sample means is a random sample from a distribution with distri-
bution function FX̄n

(x) = P(X̄n ≤ x) (unknown).
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Denote F̂
(N)

X̄n
(x) = 1

N

∑N
j=1 I[X̄(j)

n ≤x] the empirical distribution function,

based on (X̄(1)
n , ..., X̄

(N)
n ).

The argument aN of the empirical distribution function should be suffi-
ciently large, but such that there are still some observations behind aN . If we
know that F is not lighter than the Pareto distribution with index m0 for some
fixed m0, 0 < m0 < ∞, hence we know that 0 < m ≤ m0, then a possible choice
of aN is as in (3.1) below. This situation is considered in the present paper.
We can either have such information from the experience or from the character
of the experiment.

Remark 3.1. Another possibility would be a preliminary test estima-
tion, when we first apply a preliminary test of the hypothesis H: 0 < m ≤ m0.
In Section 5 we shall briefly describe one possible test of H based on the sample
means. Other tests of H were recently proposed and numerically illustrated by
Picek and Jurečková [14], Jurečková and Picek [12]; the test on the tail of errors
in linear model was proposed by Jurečková [11]. A preliminary test estimator
will be a subject of the next study.

Choose the sequence {aN}∞N=1, aN → ∞ as N → ∞, in the following way:

(3.1) aN = N
1−δ
m0 , with a fixed δ ∈ (0, 1)

and consider the sequence of random functions

(3.2) m̂N (a) = m̃N (a) I
[
0<F̂

(N)

X̄n
(a)<1

]
+ m0 I

[
F̂

(N)

X̄n
(a)=0 or 1

]
, a>0 ,

where

(3.3) m̃N (a) =
− log

(
1 − F̂

(N)

X̄n
(a)
)

log a
, a > 0 .

We propose m̂N =m̂N (aN ) as an estimator of the parameter m; more precisely,

(3.4) m̂N = m̃N (aN ) I
[
0<F̂

(N)

X̄n
(aN )<1

]
+ m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
with m̃N (a) defined in (3.3) and aN defined in (3.1) with a fixed choice of δ,
0 < δ < 1.

We must first show that the estimator m̂N is well defined. It follows from
the following lemma:
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Lemma 3.1. Let F satisfy the conditions of Lemma 2.1 with 0<m≤m0,

m0 >0 fixed. Let {aN} be the sequence defined in (3.1). Then aN → ∞ and

(3.5) Pm

(
0 < F̂

(N)

X̄n
(am) < 1

)
→ 1 as N → ∞ .

Proof: If F is heavy-tailed with Pareto index m, satisfying (1.1), then, by
Lemma 2.1,

(3.6) lim
a→∞

1 − F (a)
m log a

= lim
a→∞

1 − FX̄n
(a)

m log a
= 1

and both F and FX̄n
belong to the domain of attraction of the Fréchet distribution

Φm with the distribution function Φm(x) = exp {−x−m}, x > 0. Let X̄ (N)
n =

max1≤j≤N X̄
(j)
n denote the maximum of X̄

(1)
n , ..., X̄

(N)
n . Then

(3.7) Pm

( X̄ (N)
n

ξN
≤ x

)
→ Φm(x) as N → ∞

with ξN satisfying N
[
1−FX̄n

(ξN )
]

= 1, N =1, 2, ...; then we conclude from (3.10)
that ξN = N

1
m L∗

2(N) with some slowly varying function L∗
2 and, by (3.7),

(3.8) Pm

(
X̄ (N)

n ≤ aN

)
= Pm

( X̄ (N)
n

ξN
≤ aN

ξN

)
→ 0 as N → ∞ .

It means that at least one X̄
(j)
n lies above aN with probability tending to 1, and

thus

lim
N→∞

Pm

(
F̂

(N)

X̄n
(aN ) < 1

)
= 1 .

On the other hand, we obtain from (3.10),

Pm

(
min

1≤j≤N
X̄(j)

n ≥ aN

)
=
(
1 − FX̄n

(aN )
)N

= a−mN
N

(
L∗(aN )

)N
= N

−m(1−δ)
m0

N(
L∗(aN )

)N → 0 as N → ∞ ,

and hence there is at least one X̄
(j)
n below aN with probability tending to one.

This completes the proof of (3.5).

The first main property of estimator m̂N is its strong consistency with
respect to the asymptotics N → ∞ :
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Theorem 3.1. Let {X1, X2, ...} be a sequence of random variables, iden-

tically distributed according to distribution function F of the Pareto type (1.1),

satisfying the conditions (i) and (ii) of Lemma 2.1 with 0 < m ≤ m0 < ∞. Let

m̂N be the estimator of m defined in (3.4). Then

(3.9) m̂N → m with probability 1, as N → ∞ .

The second main result is the asymptotic normality of m̂N . The problem
of estimating m is semiparametric in its nature, involving an unknown slowly
varying function. If distribution function F is of the type (1.1) with index m,
then Lemma 2.1 implies that FX̄n

also satisfies (1.1) with the same m; hence, by
the von Mises condition, it has the form

(3.10) 1 − FX̄n
(x) = x−mL∗(x) ,

where L∗(x) is a function, slowly varying at ∞. The presence of L∗ can cause a
bias in the asymptotic distribution of m̂N , generally not asymptotically negligible,
unless we impose some more restrictive condition on F . We shall see (Lemma 5.1)
that (m̂N − mn(aN )), with mn(·) defined in (2.4), is asymptotically normal and
unbiased, while the bias of (m̂N − m) is due to the term (mn(aN ) − m), that
tends to 0, but generally not fast enough to eliminate function L∗.

Theorem 3.2. Under the conditions of Theorem 3.1, the sequence

(3.11) N
1
2 log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2
(

m̂N − m +
log L∗(aN )

log aN

)
is asymptotically normally distributed as N → ∞, where L∗ is the function,

defined in (3.10).

Remark 3.2. The order of the coefficient by
(
m̂N (aN ) − m + log L∗(aN )

log aN

)
in (3.11) can be alternatively expressed as

N
1
2 log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2

∼ 1−δ
m0

(
L∗(aN )

) 1
2 · N 1

2

(
1− m

m0
(1−δ)

)
log N

≥ 1−δ
m0

(
L∗(aN )

) 1
2 · N δm

2m0

(
→ ∞ as N →∞

)
,(3.12)

where bN ∼ cN means that limN→∞ bN
cN

→ 1.
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4. NUMERICAL ILLUSTRATION

The performance of the estimation procedure for different choices of m

and δ is illustrated on the simulated random samples: The replications (N = 200
and N = 2000) of samples of sizes n=5 were simulated 1000 times from the
following distributions:

Pareto F (x) = 1 −
(

1
1 + x

)m

, x ≥ 0 ;

Burr F (x) = 1 −
(

1
1 + xm

)α

, x ≥ 0 ;

Generalized
Pareto F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
(
1+

x

mβ

)−m

if x≥0, 0<m<∞, β>0,

1 −
(
1+

x

mβ

)−m

if 0≤x≤−mβ, m<0, β>0,

1 − e−x/β if m=∞, β>0,

0 otherwise ;

Inverse
normal F (x) =

⎧⎪⎨⎪⎩ 2
(

1 − Φ
(

1√
x

))
x > 0,

0 x ≤ 0 .

For each distribution we proceeded as follows:

(1) we generated the independent observations X1, ..., Xn, Xn+1, ..., X2n,
..., XNn;

(2) computed sample means X
(1)
n , ...,X

(N)
n

(3) and found the empirical distribution function based on X
(1)
n , ...,X

(N)
n ;

(4) for aN = N
1−δ
m0 we calculated

m̂N = m̃N (aN ) I
[
0<F̂

(N)

X̄n
(aN )<1

]
+ m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
;

(5) Step (4) was repeated for various values m0, δ ;



84 A. Fialová, J. Jurečková and J. Picek

(6) For a comparison, the Hill estimator

H(k) =
1
k

k∑
i=1

log X(Nn−i+1:Nn) − log X(Nn−k:Nn) ,

the Pickands estimator

P (k) =
1

log 2
log

(
XNn−k+1:Nn − XNn−2k+1:Nn

XNn−2k+1:Nn − XNn−4k+1:Nn

)
,

the moment estimator

M(k) = 1 + M(k)(1) +
1
2

((
M(k)(1)

)2
M(k)(2)

− 1

)−1

,

where

M(k)(j) =
1
k

k∑
i=1

(
log X(Nn−i+1:Nn) − log X(Nn−k:Nn)

)j
,

and Gomes and Martins [7] estimator

GM(k) =
1
k

k∑
i=1

Ui −
(

1
k

k∑
i=1

i Ui

) k∑
i=1

(2 i − k − 1)Ui

k∑
i=1

i (2 i − k − 1)Ui

,

where

Ui = i

[
log

XNn−i+1:Nn

XNn−i:Nn

]
,

were computed for k = 1, ..., Nn − 1.

(7) steps (1)–(6) were repeated 1 000 times.

(8) Selected sample quantiles of estimates
(
m̂1

N , ..., m̂1000
N

)
and selected sample

statistics of pertaining estimates were computed and tabulated.

Selected sample quantiles for different distributions of the errors are summarized
in Table 1 and Table 2. Fig. 1 and 2 show the behaviour of the tail index estimator
with regard to δ and m0 in 1000 simulated samples (N = 2000) of Pareto with
m = 1.

For a comparison, the Hill, Pickands, moment and Gomes and Martins [7] esti-
mators were computed. The question is the choice of k, respectively δ for our
procedures. To compare we followed the standard approach of minimizing the
mean squared error (MSE); the Table 3 give the selected sample statistics of
estimators of m for various distribution shapes of errors.
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Table 1: Sample quantiles of the estimation of Pareto index under different
distributions for some values m0 and δ (N =200).

sample m0 δ min 5% 25% 50% 75% 95% max
distr. quantile

Pareto 0.75 0.1 0.279 0.321 0.354 0.379 0.397 0.443 0.580
m = 0.5 0.5 0.205 0.242 0.263 0.278 0.297 0.327 0.355

2 0.1 0.141 0.165 0.187 0.200 0.214 0.239 0.274
0.5 0.043 0.063 0.080 0.092 0.105 0.123 0.164

Pareto 1.5 0.1 0.694 0.815 0.885 0.942 1.013 1.160 1.449
m = 1 0.5 0.548 0.663 0.721 0.763 0.808 0.884 1.038

3 0.1 0.489 0.617 0.670 0.707 0.747 0.824 0.938
0.5 0.253 0.311 0.356 0.388 0.428 0.479 0.551

Pareto 3.5 0.1 3.083 3.380 3.500 3.500 3.889 3.889 3.889
m = 3 0.5 3.042 3.422 3.717 3.958 4.253 4.874 6.084

5 0.1 3.252 3.677 4.102 4.404 4.829 5.556 5.556
0.5 2.272 2.774 2.991 3.185 3.344 3.711 4.254

Burr 0.75 0.1 0.283 0.327 0.354 0.379 0.407 0.443 0.615
α = 1 0.5 0.220 0.267 0.293 0.310 0.327 0.360 0.416
m = 0.5 2 0.1 0.200 0.232 0.258 0.274 0.295 0.321 0.359

0.5 0.164 0.202 0.238 0.259 0.280 0.314 0.373

Burr 1.5 0.1 0.694 0.837 0.912 0.975 1.055 1.164 1.667
α = 1 0.5 0.654 0.752 0.820 0.870 0.926 1.020 1.250
m = 1 3 0.1 0.617 0.737 0.812 0.860 0.911 0.983 1.173

0.5 0.541 0.667 0.741 0.796 0.843 0.930 1.066

Burr 3.5 0.1 3.083 3.500 3.500 3.500 3.889 3.889 3.889
α = 1 0.5 3.500 3.958 4.429 4.633 5.168 6.084 7.000
m = 3 5 0.1 3.375 3.868 4.404 4.829 5.000 5.556 5.556

0.5 3.290 3.847 4.166 4.443 4.767 5.310 6.327

General. 0.75 0.1 0.315 0.370 0.407 0.430 0.456 0.527 0.661
Pareto 0.5 0.270 0.323 0.355 0.376 0.398 0.435 0.528
m = 0.5 2 0.1 0.243 0.287 0.317 0.330 0.354 0.390 0.434
β=1 0.5 0.192 0.232 0.264 0.291 0.314 0.349 0.418

General. 1.5 0.1 0.694 0.837 0.912 0.975 1.055 1.164 1.667
Pareto 0.5 0.617 0.737 0.812 0.860 0.911 0.983 1.173
m = 1 3 0.1 0.654 0.752 0.820 0.870 0.926 1.020 1.250
β = 1 0.5 0.541 0.667 0.741 0.796 0.843 0.930 1.066

General. 3.5 0.1 1.901 2.129 2.363 2.574 2.708 3.083 3.889
Pareto 0.5 1.798 2.025 2.180 2.314 2.468 2.716 3.252
m = 3 5 0.1 1.635 1.971 2.126 2.266 2.421 2.646 3.042
β = 1 0.5 1.753 2.007 2.151 2.304 2.437 2.655 3.038

Inverse 0.75 0.1 0.304 0.354 0.388 0.407 0.443 0.488 0.661
normal 0.5 0.207 0.243 0.270 0.287 0.308 0.335 0.390

2 0.1 0.242 0.297 0.323 0.341 0.365 0.398 0.456
0.5 0.132 0.168 0.192 0.217 0.238 0.269 0.337
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Table 2: Sample quantiles of the estimation of Pareto index under different
distributions for some values m0 and δ (N =2000).

sample m0 δ min 5% 25% 50% 75% 95% max
distr. quantile

Pareto 0.75 0.1 0.361 0.388 0.402 0.411 0.424 0.440 0.476
m = 0.5 0.5 0.313 0.327 0.336 0.342 0.349 0.358 0.374

2 0.1 0.249 0.261 0.269 0.274 0.279 0.288 0.302
0.5 0.137 0.146 0.151 0.156 0.161 0.168 0.179

Pareto 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
m = 1 0.5 0.825 0.857 0.880 0.899 0.915 0.942 0.978

3 0.1 0.786 0.826 0.848 0.865 0.881 0.907 0.933
0.5 0.540 0.562 0.577 0.590 0.604 0.623 0.649

Pareto 3.5 0.1 3.180 3.500 3.500 3.500 3.889 3.889 3.889
m = 3 0.5 3.899 4.112 4.288 4.447 4.570 4.879 5.350

5 0.1 3.739 4.036 4.379 4.542 4.753 5.556 5.556
0.5 3.648 3.780 3.877 3.968 4.051 4.202 4.488

Burr 0.75 0.1 0.361 0.390 0.402 0.411 0.424 0.440 0.480
α = 1 0.5 0.322 0.336 0.345 0.351 0.358 0.368 0.383
m = 0.5 2 0.1 0.276 0.293 0.301 0.307 0.313 0.322 0.338

0.5 0.237 0.248 0.257 0.263 0.270 0.279 0.294

Burr 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
α = 1 0.5 0.843 0.891 0.915 0.933 0.953 0.980 1.028
m = 1 3 0.1 0.833 0.873 0.898 0.917 0.933 0.960 0.990

0.5 0.735 0.783 0.805 0.820 0.838 0.863 0.897

Burr 3.5 0.1 3.180 3.500 3.500 3.500 3.889 3.889 3.889
α = 1 0.5 4.112 4.391 4.570 4.712 4.976 5.208 6.362
m = 3 5 0.1 3.873 4.133 4.542 4.753 5.049 5.556 5.556

0.5 4.171 4.391 4.528 4.635 4.752 4.907 5.285

General. 0.75 0.1 0.394 0.424 0.437 0.450 0.464 0.485 0.529
Pareto 0.5 0.373 0.392 0.402 0.410 0.418 0.429 0.444
m = 0.5 2 0.1 0.335 0.356 0.366 0.373 0.380 0.391 0.409
β=1 0.5 0.285 0.298 0.307 0.314 0.322 0.333 0.353

General. 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
Pareto 0.5 0.833 0.873 0.898 0.917 0.933 0.960 0.990
m = 1 3 0.1 0.843 0.891 0.915 0.933 0.953 0.980 1.028
β = 1 0.5 0.735 0.783 0.805 0.820 0.838 0.863 0.897

General. 3.5 0.1 2.410 2.539 2.662 2.765 2.893 3.065 3.889
Pareto 0.5 2.267 2.390 2.471 2.527 2.588 2.696 2.878
m = 3 5 0.1 2.178 2.270 2.326 2.379 2.430 2.510 2.671
β = 1 0.5 2.028 2.161 2.216 2.260 2.301 2.363 2.466

Inverse 0.75 0.1 0.377 0.411 0.426 0.437 0.450 0.468 0.523
normal 0.5 0.306 0.323 0.332 0.338 0.345 0.355 0.377

2 0.1 0.354 0.369 0.380 0.386 0.394 0.406 0.420
0.5 0.230 0.242 0.251 0.257 0.264 0.272 0.288
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Figure 1: Dependence of tail index estimator in 1000 simulated samples of
Pareto (m = 1) on the parameter δ for m0 = 1.5.
Plotted are the median and the 1, 25, 75 and 99 percentiles.
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Figure 2: Dependance of tail index estimator in 1000 simulated samples of
Pareto (m = 1) on the value m0 for δ = 0.1.
Plotted are the median and the 1, 25, 75 and 99 percentiles.
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The Table 3 shows that the estimator based on the sample means (FJP) can
be considered as comparable with the most popular estimators of the tail index.
The regularity conditions, required for its strong consistency and asymptotic
normality, are apparently more transparent and less restrictive.

Table 3: Sample statistics of the estimates of the Pareto index under differ-
ent distributions for minimal MSE and N = 200 and n = 5

sample method fraction MSE mean median var MAD

Pareto Hill k = 998 0.0010 1.0003 0.9984 0.0010 0.0321
m = 1 Moment k = 998 0.0023 1.0053 1.0033 0.0022 0.0454

Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349
Gomes k = 997 0.0044 1.0016 0.9968 0.0044 0.0655
FJP δ = 0.15 0.0123 0.9542 0.9371 0.0102 0.0900

Burr Hill k = 112 0.0098 0.9517 0.9489 0.0075 0.0885
α = 1 Moment k = 257 0.0101 0.9478 0.9383 0.0074 0.0802
m = 1 Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349

Gomes k = 998 0.0012 1.0007 0.9989 0.0012 0.0345
FJP δ = 0.22 0.0111 0.9574 0.9402 0.0093 0.0981

General. Hill k = 310 0.0010 0.4847 0.4841 0.0007 0.0261
Pareto Moment k = 367 0.0010 0.4880 0.4863 0.0009 0.0283
m = 0.5 Pickands k = 993 0.0020 0.5030 0.4997 0.0020 0.0429
β=1 Gomes k = 482 0.0025 0.5227 0.5210 0.0020 0.0440

FJP δ = 0.01 0.0084 0.4177 0.4123 0.0016 0.0395

General. Hill k = 112 0.0098 0.9517 0.9489 0.0075 0.0885
Pareto Moment k = 257 0.0101 0.9478 0.9383 0.0074 0.0802
m = 1 Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349
β = 1 Gomes k = 998 0.0012 1.0007 0.9989 0.0012 0.0345

FJP δ = 0.22 0.0111 0.9574 0.9402 0.0093 0.0981

General. Hill k = 23 0.5527 2.4329 2.3598 0.2314 0.4397
Pareto Moment k = 257 0.5037 2.5140 2.4248 0.2678 0.4368
m = 3 Pickands k = 890 16.1112 3.6237 3.0364 15.7379 1.1255
β = 1 Gomes k = 102 0.4795 2.4276 2.4020 0.1520 0.3966

FJP δ = 0.01 0.2869 2.5618 2.5565 0.0949 0.2841

Inverse Hill k = 360 0.0008 0.4894 0.4888 0.0007 0.0250
normal Moment k = 472 0.0008 0.4889 0.4881 0.0007 0.0258

Pickands k = 893 0.0026 0.5142 0.5111 0.0024 0.0467
Gomes k = 588 0.0021 0.5202 0.5184 0.0017 0.0407
FJP δ = 0.01 0.0127 0.3937 0.3890 0.0014 0.0347
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5. PROOFS OF THEOREMS 3.1 AND 3.2

5.1. Asymptotic normality

We shall start with the asymptotic normality of m̂N ; and first prove that
the sequence

N
1
2 log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̂N − mn(aN )
)

,

with mn(·) given in (2.4), has asymptotically standard normal distribution:

Lemma 5.1. Let {X1, X2, ...} be a sequence of independent random

variables, identically distributed with distribution function F of the Pareto type

satisfying the conditions (i) and (ii) of Lemma 2.1 with 0 < m ≤ m0 < ∞. Put

aN = N
1−δ
m0 , 0 < δ < 1 and

m̂N = m̃N (aN ) I
[
0<F̂

(N)

X̄n
(aN )<1

]
+ m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
,

(5.1)

m̃N (a) =
− log

(
1 − F̂

(N)

X̄n
(a)
)

log a
, a > 0 .

Then the sequence

(5.2) N
1
2 log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̂N − mn(aN )
)

with mn(x) defined in (2.4), is asymptotically normally distributed N (0, 1),
as N → ∞ and for any fixed n.

Proof: By the Hungarian embedding theorems (see, e.g., [13]), there exists
a sequence of Brownian bridges {BN}, BN dependent on X̄

(1)
n , ..., X̄

(N)
n , such that

(5.3) sup
a∈R

∣∣∣∣√N
[
1−F̂

(N)

X̄n
(a)−(1−FX̄n

(a)
)]

+ BN

(
FX̄n

(a)
)∣∣∣∣ = O

(
N− 1

2 log N
)

a.s.

as N →∞.

Because BN (FX̄n
(a)) is normally distributed N (

0, FX̄n
(a)(1 − FX̄n

(a))
)
,

then

Pm

(
BN

(
FX̄n

(a)
)

> C
[
FX̄n

(a)
(
1 − FX̄n

(a)
)] 1

2

)
= 1 − Φ(C) ,
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holds for all a ∈ R and all C > 0, where Φ is the standard normal distribution
function; hence ∀ ε > 0 ∃C > 0 such that, for all a ∈ R,

(5.4) Pm

(
BN

(
FX̄n

(a)
)

> C
[
FX̄n

(a)
(
1 − FX̄n

(a)
)] 1

2

)
< ε .

Let us first consider the first term of m̂N , i.e.

m̃N (aN ) I
[
0<F̂

(N)

X̄n
(aN )<1

]
=

− log
(
1 − F̂

(N)

X̄n
(aN )

)
log aN

I
[
0<F̂

(N)

X̄n
(aN )<1

]
.

We can write

(5.5)

√
N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̃N (aN ) − mn(aN )
)

I
[
0<F̂

(N)

X̄n
(aN )<1

]
=

=
√

N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2

·

⎡⎢⎢⎣− log
(
1 − F̂

(N)

X̄n
(aN )

)
log aN

−
− log

(
1 − FX̄n

(aN )
)

log aN

⎤⎥⎥⎦ I
[
0<F̂

(N)

X̄n
(aN )<1

]

=
√

N

(
1 − FX̄n

(aN )
FX̄n

(aN )

) 1
2

·
⎛⎝− log

⎡⎣1 − F̂
(N)

X̄n
(aN )

1 − FX̄n
(aN )

− 1 + 1

⎤⎦⎞⎠ I
[
0<F̂

(N)

X̄n
(aN )<1

]
.

An expansion of log(1 + x) or log(1 − x), x > 0, gives

(5.6)

− log

⎡⎣1 − F̂
(N)

X̄n
(aN )

1 − FX̄n
(aN )

− 1 + 1

⎤⎦ =

= 1 −
1 − F̂

(N)

X̄n
(aN )

1 − FX̄n
(aN )

+ O
⎛⎝⎡⎣1 −

1 − F̂
(N)

X̄n
(aN )

1 − FX̄n
(aN )

⎤⎦2⎞⎠ ;

further we obtain from (5.3)

(5.7)

√
N

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2

⎡⎣1 −
1 − F̂

(N)

X̄n
(aN )

1 − FX̄n
(aN )

⎤⎦ =

=
BN

(
FX̄n

(aN )
)[

FX̄n
(aN )

(
1 − FX̄n

(aN )
)] 1

2

(
1 + op(1)

)
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and

(5.8)

√
N

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2

⎡⎣1 −
1 − F̂

(N)

X̄n
(aN )

1 − FX̄n
(aN )

⎤⎦2

=

= N
− 1

2

(
1− m

m0

)
− δm

2m0 (L∗(aN ))−
1
2

(
BN

(
FX̄n

(aN )
))2

FX̄n
(aN )

(
1 − FX̄n

(aN )
)

= op

(
N−δ/2

)
.

It follows from (5.6), (5.7), (5.8) that

√
N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̃N (aN ) − mn(aN )
)

I
[
0<F̂

(N)

X̄n
(aN )<1

]
=

=

⎧⎪⎨⎪⎩ BN

(
FX̄n

(aN )
)(

var BN

(
FX̄n

(aN )
)) 1

2

(
1 + op(1)

)
+ Op

(
N−δ/2

)⎫⎪⎬⎪⎭ I
[
0<F̂

(N)

X̄n
(aN )<1

]
,

hence

lim
N→∞

Pm

(√
N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̃N (aN ) − mn(aN )
)
≤ y

)
=

= lim
N→∞

Pm

(√
N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̃N (aN ) − mn(aN )
)
≤ y ,

0 < F̂
(N)

X̄n
(aN ) < 1

)
= Φ(y) .

(5.9)

Proof of Theorem 3.2: By (3.10), 1 − FX̄n
(x) = x−mL∗(x) where L∗ is

slowly varying at ∞. Moreover, m̂N − m = (m̂N − mn(aN )) + (mn(aN ) − m),
while

√
N log aN

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 (

m̂N − mn(aN )
)

has asymptotically the standard normal distribution by Lemma 5.1. By (2.2),
mn(aN )−m → 0 as N → ∞; more precisely,

lim
N→∞

(
mn(aN ) − m

)
= lim

N→∞

⎡⎣− log
(
1 − FX̄n

(aN )
)

log aN
− m

⎤⎦
= lim

N→∞

[
m log aN − log

(
L∗(aN )

)
log aN

− m

]
(5.10)

= lim
N→∞

− log
(
L∗(aN )

)
log aN

= 0 ,
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but the term
√

N

(
1 − FX̄n

(aN )
FX̄n

(aN )

)1
2 ∣∣log

(
L∗(aN )

)∣∣
converges to 0 in only special cases and hence will create a bias; this, together
with Lemma 5.1, implies the theorem.

5.2. Strong consistency

We shall prove Theorem 3.1 with the aid of the following lemma.

Lemma 5.2. Under the assumptions of Theorem 3.1,

(5.11)
(
m̃N (aN ) − m

)
I
[
0<F̂

(N)

X̄n
(x)<1

]
→ 0

with probability 1, as N → ∞.

Proof: Because m̃N (aN ) − m = [m̃N (aN ) − mn(aN )] + [mn(aN ) − m]
and because of (2.4), it suffices to prove that

(5.12)
(
m̃N (aN ) − mn(aN )

)
I
[
0<F̂

(N)

X̄n
(x)<1

]
→ 0

with probability 1, as N → ∞. Using (5.5) and (5.6), we obtain

(5.13)

(
m̃N (aN ) − mn(aN )

)
I
[
0<F̂

(N)

X̄n
(aN )<1

]
=

= (log aN )−1

⎧⎨⎩
[
1 −

1−F̂
(N)

X̄n
(aN )

1−FX̄n
(aN )

]
+ O

⎛⎝[1 −
1−F̂

(N)

X̄n
(aN )

1−FX̄n
(aN )

]2
⎞⎠⎫⎬⎭

= A
(1)
N + A

(2)
N

and, using again the strong embedding of empirical processes,

A
(1)
N = (log aN )−1

(
1 − FX̄n

(aN )
)−1

·
[
N− 1

2 BN

(
FX̄n

(aN )
)

+ Oa.s.

(
N−1 log N

)]
(5.14)

= (log aN )−1N
1
2

(
m

m0
−1
)
− mδ

2m0

(
L∗(aN )

)− 1
2

BN

(
FX̄n

(aN )
)(

FX̄n
(aN )

(
1 − FX̄n

(aN )
)) 1

2

+ N
m

m0
−1−δ m

m0

(
L∗(aN )

)−1 Oa.s.(1) .
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The second term on the right-hand side of (5.14) converges to 0 almost surely as
N → ∞. The first term is normally distributed, hence, because m ≤ m0, it holds
for any ε > 0,

∞∑
N=1

Pm

⎛⎜⎝(log aN )−1N
1
2

(
m

m0
−1
)
− mδ

2m0

(
L∗(aN )

)− 1
2

∣∣BN

(
FX̄n

(aN )
)∣∣(

FX̄n
(aN )

(
1−FX̄n

(aN )
))1

2

>ε

⎞⎟⎠ ≤

≤ 2
∞∑

N=1

[
1 − Φ

(
ε

1−δ

m0
N

mδ
2m0 log N

(
L∗

1(N)
) 1

2

)]
.(5.15)

Using the inequality 1 − Φ(x) ≤ 1
x
√

2π
e−

x2

2 , x>0 in (5.15), we obtain

∞∑
N=1

1

N
mδ
2m0 log N

exp

{
−ε2

2

(
1−δ

m0

)2

(log N)2 N
mδ
m0 L∗

1(N)

}
≤

≤ K1

∞∑
N=1

exp
{−K2 Nκ

}
< ∞

where K1, K2, κ > 0 are constants, and by the Borel–Cantelli lemma we conclude
that the first term on the right-hand side of (5.14) also converges to 0 almost
surely as N →∞. Similarly we prove that A

(2)
N = o(1) a.s. as N →∞. This

proves (5.12) and, in turn, (5.11).

Proof of Theorem 3.1: For any ε > 0, it holds
∞∑

N=1

Pm

(∣∣m̂N (aN ) − m
∣∣ > ε

)
≤

≤
∞∑

N=1

Pm

(∣∣m̃N (aN ) − m
∣∣ I[0<F̂

(N)

X̄n
(aN )<1

]
>

ε

2

)
(5.16)

+
∞∑

N=1

Pm

(
(m0 − m) I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
>

ε

2

)
.

The convergence of the first series on the right-hand side of (5.16) follows from
Lemma 5.2. The sum of the second series is bounded from above by

∞∑
N=1

Pm

(
(m0 − m) I

[
F̂

(N)

X̄n
(aN )=0

]
>

ε

4

)
+

+
∞∑

N=1

Pm

(
(m0 − m) I

[
F̂

(N)

X̄n
(aN )=1

]
>

ε

4

)
≤

(5.17)

≤
∞∑

N=1

(
1 − FX̄n

(aN )
)N

+
∞∑

N=1

(
FX̄n

(aN )
)N

=
∞∑

N=1

(
a−m

N L∗(aN )
)N +

∞∑
N=1

(
1 − a−m

N L∗(aN )
)N

.
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Because a−η
N <L∗(aN )<aη

N for N >Nη and ∀ η>0, we conclude

(5.18)
(
a−m

N L∗(aN )
)N

<
(
a−m+η

N

)N ≤
(

1

N
1−δ
m0

(m−η)

)N

hence the first series on the right-hand side of (5.17) converges for sufficiently
small η. Similarly,(

1 − a−m
N L∗(aN )

)N
<
(
1 − a−m−η

N

)N

≤
(

1 − 1

N
1−δ
m0

(m+η)

)N

(5.19)

≤
[
exp

{
−(N 1−δ

m0
(m+η))−1

}]N

,

what implies the convergence of the second series on the right-hand side of (5.17).

6. TEST ON THE PARETO INDEX

We shall now briefly describe one possible test of the hypothesis on the
Pareto index, based on the sample means. For other tests we refer to [12] and
[14].

Because the problem is of semiparametric nature, we should first think
over a proper formulation of the hypothesis. Following [12], we shall consider the
hypothesis

(6.1) Hm0 : xm0

(
1 − F (x)

)
≥ 1 ∀x > x0

with a hypothetical m0 >0 and with some x0≥0. Such hypothesis and hence the
test are nonparametric; the test is based on splitting the set of observations into
N subsamples of sizes n and on the empirical distribution function of the means
of the subsamples; the asymptotics is for N →∞ and fixed n (eventually small),
and the asymptotic null distribution of the test criterion is normal. The proposed
test is consistent against exponentially tailed alternatives, as well as against heavy
tailed alternatives with index m > m0. The test is asymptotically unbiased for
the broad family of distributions represented by Hm0 and its alternative. Such
test may be used as a supplement to the usual tests of the Gumbel hypothesis
m = ∞ against m < ∞, namely in the situation that the latter tests reject the
hypothesis of exponentiality.
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Similarly as in the estimation, we partition the set of observations into N

non-overlapping samples of the same sizes n, denoted as

(6.2)
(
X

(1)
1 , ..., X(1)

n

)
, ...,

(
X

(N)
1 , ..., X(N)

n

)
and denote X̄

(1)
n , ..., X̄

(N)
n the respective sample means. Let FX̄n

(x)=Pm(X̄n≤x)
be the common distribution function of the sample means and let F̂

(N)

X̄n
(x) =

1
N

∑N
j=1 I[X̄(j)

n ≤x] be the corresponding empirical distribution function. Let

(6.3) aN = N (1−δ)/m0 , 0 < δ < 1 .

We propose the test rejecting Hm0 if

either F̂
(N)

X̄n
(an) = 1

or F̂
(N)

X̄n
(an) < 1 and simultaneously

N δ/2
[
− log

(
1−F̂

(N)

X̄n
(an)

)
− (1−δ) log N

]
≥ Φ−1(1−α)(6.4)

where Φ is the standard normal distribution function. If F satisfies (6.1) as an
equality, as the Pareto distribution, then α is the asymptotic probability of the
error of the first kind; for any other distribution satisfying (6.1), the asymptotic
probability of the error of the first kind it is ≤ α.

The asymptotic null distribution of the test is described in the following
theorem:

Theorem 6.1. Let X1, X2, ... be independent observations, identically dis-

tributed according to absolutely continuous distribution functionF satisfying (6.1).

Let F̂
(N)

X̄n
be the empirical distribution function of the means of samples (6.2).

Then

(6.5) lim
N→∞

Pm0

(
F̂

(N)

X̄n
(aN )<1

)
= 1

with aN defined in (6.3), and

(6.6)

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂

(N)

X̄n
(aN )

)
− (1−δ) log N

]
≥τα , F̂

(N)

X̄n
(aN )<1

}
≤ α ,

where τα = Φ−1(1−α), 0<α<1, and Φ is the standard normal distribution

function.
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Moreover, if there exists x0 such that

(6.7) xm0

(
1 − F (x)

)
= 1 for x > x0 ,

then

(6.8)

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂

(N)

X̄n
(aN )

)
− (1−δ) log N

]
≥τα , F̂

(N)

X̄n
(aN )<1

}
= α .

Proof: First, (6.5) follows from Lemma 3.1. Further, (6.8) follows from the
proof of Lemma 5.1, namely from (5.9), where we insert the pertinent expressions
for mn(a) and aN according to (2.4), (5.1) and (6.3), respectively.

If F satisfies (6.1), then the right tail of 1−F̂
(N)

X̄n
is ultimately not smaller

stochastically than that of F satisfying (6.7); this implies (6.6).

The following Corollary shows the set of alternatives against which is the
test asymptotically unbiased:

Corollary 6.1.

(i) Under the conditions of Theorem 6.1, the test with the critical region (6.4)

is asymptotically unbiased for the hypothesis Hm0 against the alternative

(6.9) xm0

(
1 − F (x)

)
< 1 for x > x0 .

(ii) The test attains the asymptotic power 1 against the alternative that F is of

type (1.1) with index m > m0, including m = ∞.

Proof: Under Hm0 , (6.6) holds by Theorem 6.1, hence the asymptotic size
of the test is equal to α for the whole hypothesis Hm0 .

Under (6.9), 1−F̂
(N)

X̄n
is ultimately stochastically smaller than under Pareto

with index m0, hence

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂

(N)

X̄n
(aN )

)
− (1−δ) log N

]
≥τα , F̂

(N)

X̄n
(aN )<1

}
≥ α .

This proves the asymptotic unbiasedness.

Let now F satisfy (1.1) with index m > m0. Then FX̄n
also satisfies (1.1)

and it implies that, given ε > 0, there exists N0 such that, for N >N0,

N
− m

m0
(1+ε)(1−δ) = a

−m(1+ε)
N ≤ 1 − FX̄n

(aN ) ≤ a
−m(1−ε)
N = N

− m
m0

(1−ε)(1−δ)
.
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If 1−F̂
(N)

X̄n
(aN ) = 0, we reject Hm0 . If 1−F̂

(N)

X̄n
(aN ) > 0, then

Pm0

{
N δ/2

[
− log

(
1−F̂

(N)

X̄n
(aN )

)
− (1−δ) log N

]
≥τα

}
=(6.10)

= Pm

⎧⎨⎩N δ/2

[
− log

(
1−F̂

(N)

X̄n
(aN )

1−FX̄n
(aN )

)
− log

(
1−FX̄n

(aN )
)
− (1−δ) log N

]
≥ τα

⎫⎬⎭
→ 1 as N → ∞ ,

because the first term of the argument on the right-hand side of (6.10) is stochas-
tically bounded under index m (cf. the proof of Lemma 3.1), while the second
term tends to infinity for m > m0. Hence, we reject Hm0 with probability tending
to 1. The case m = ∞ corresponds to the exponential tail.

The performance of the test procedure for different choices of m0 is illus-
trated again on the simulated random samples. The replications (N = 200) of
samples of sizes n = 5 were simulated 1000 times. Fig. 3–5 show the number of
rejection of the null hypothesis Hm0 as a function of m0 for Pareto (m = 1), Burr
(m = 2) and generalized Pareto (m = 0.5) distributions with δ = 0.1, 0.5 on the
level α = 0.01, 0.05.
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Figure 3: The number of rejection of Hm0 as a function of m0

for Pareto distribution with m = 1.
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Figure 4: The number of rejection of Hm0 as a function of m0

for Burr distribution with m = 2.
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Figure 5: The number of rejection of Hm0 as a function of m0

for Generalized Pareto distribution with m = 0.5.
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[6] Fialová, A.; Jurečková, J. and Picek, J. (2002). New type of estimator of
Pareto index, Preprint #28, Dept. of Statistics, Charles University, Prague.

[7] Gomes, M.I. and Martins, M.J. (2002). Asymptotically unbiased estimators
of the tail index based on external estimation of the second order parameter,
Extremes, 5(1), 5–31.

[8] Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modelling
departure from a Pareto distribution, Ann. Statist., 27, 760–781.

[9] Hill, B.M. (1975). A simple general approach to inference about the tail of a
distribution, Ann. Statist., 3, 1163–1174.
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[11] Jurečková, J. (2000). Tests of tails based on extreme regression quantiles,
Statist. & Probab. Letters 49, 53–61.
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