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FOREWORD

This special issue of Revstat — Statistical Journal presents selected papers
on Risk Analysis, discussing recent developments, challenges and applications in
several areas. For the development of Risk Analysis the year 1983 deserves a spe-
cial notation as it was published that particular year the (i) British Royal Society
Risk Assessment: Report of a Royal Society Study Group, Royal Society, London,
and (ii) National Research Council, Risk assessment in the Federal Government:
Managing the Process, National Academy Press, Washington, DC. At the first
stage of Risk Assessment development, it was the typical way to work and study
mainly human cancer risk (see Edler L., Kitsos, C.P (2005) for more than 1000 ref-
erences listed mainly for Human Risk on Cancer). Still there are some particular
differences between the Risk Assessment as it is developed in the European Union
and the way United States defines it. The U.S Environmental Protection Agency
(E.P.A) has published a number of valuable Guidelines for Carcinogen Risk Asses-
sment since 1985. From that time until currently, the topic of Risk Analysis has
been assisting an increasing popularity, offering many challenges in prudent Risk
Assessment. The management of Risks to Human Health is based on two principles:

1. A Risk is accepted if it is sufficiently small to be considered in some way
null or negligible known as the “de minimis principle”.

2. The Risk benefit balance principle: which implies that a Risk is accepted
if the obtained benefit largely justifies its acceptance.

The terms Risk and Hazard need to be clarified, sometimes, before their
use. Certainly are different and are adopted for different qualitative methods.
Needless to say, Risk Analysis comprises a number of Life Sciences, as well as
Chemistry (and therefore Environmental and Food Science Problems, and In-
dustry). Recently Globalization is based to the rapid development of economics
and communication. Therefore Management and Economics need a particular
approach through Risk Analysis. But, it is clear to us that, all lines of though
under Risk Analysis need a strong Statistical background. We tried to serve this
line of thought in this special issue of Revstat — Statistical Journal entitled“Risk

Analysis: Challenges and Applications” and we hope it will stimulate and pro-
vide a huge interaction between researchers in several fields, once is clear that
providing for minimizing risks is of general utmost importance.

In the first chapter, the Michaelis–Menten model (MM) is explored and this
model is very well known for playing a very important role in pharmacokinetics.
An analytical method for the nonlinear least squares estimation of the MM is intro-
duced and it is proved that the MM model has not a unique parameter estimation,
there is not a unique optimal experimental design and it might not have a unique
D-optimal design. In chapter two, the authors study the impact of skewness on
risk analysis by considering the product of two normally distributed variables.
The moment generating function was obtained and several simulations were per-
formed using software R. The paper focus an interesting topic that may have
significant applications in several areas. Due to its prevalence and mortality,



a cancer diagnosis is one of the main fears of the general public. The discrimina-
tion of tissue for mammary cancer is an important topic, so the recent advances in
this area are given in chapter three. The authors discuss statistical distributions
of fractal dimensions for both mammary cancer and mastopathy and they conduct
a multifractal analysis on the basis of a wavelet based approach. An interesting
discussion was also provided with focus on alternative cancer therapy and cancer
prevention. Credit scoring and credit risk are very important tools of financial
risk management. In chapter four, the authors consider three different techniques
applicable in the context of credit scoring when the event under study is rare and
therefore we have to cope with unbalanced data. Practical application to balance
sheets indicators of small and medium-sized enterprises and their legal status is
given. Risk is a basic slogan of insurance and there is high importance to know
how insurer can/may price a risk for which there is no history. In chapter five, the
authors show which main mechanisms are needed to capture the tariff model of a
related insurance minimizing the risk involved. Car insurance industry applica-
tions are presented. Ecological modelling and in particular water and hydrometric
extremes are very important applications of statistical extremes theory. In chap-
ter six authors present a readable survey on several tests and parameter estima-
tion procedures available in recent literature. The application of these methods
is provided to daily mean flow discharge rate values in the hydrometric station of
Fragas da Torre in the river Paiva. The generalised extreme value (GEV) distri-
bution is currently used to fit to environmental time series of extreme values, such
as annual maxima and minima of temperatures. In the last, chapter seven, the
authors present GEV distribution on a case study of temperature extremes in a
mountainous area of Greece, emphasizing that searching through alternative dis-
tributions also adds an extra layer of uncertainty to the model selection procedure.

As it is testified by the articles in this special issue, the Applications are
driving force for considering Risk Analysis as an integrated discipline in prac-
tically every scientific field. The particular Statistical background, covering the
Risk Analysis approach, is that we try to improve in this volume.

We thank the Revstat that gave us such an opportunity, to collect selected
papers in the Risk Analysis field and publish to an excellent journal. Our special
thanks are addressed to Professor Ivette Gomes, editor-in-chief of Revstat —

Statistical Journal, for her support.

Finally, on behalf of the Editorial Board we would like to thank the authors
and the anonymous reviewers for their precious contribution to this special issue.
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Abstract:

• This paper studies the Michaelis–Menten model (MM), which plays an important role
in pharmacokinetics, from a theoretical as well as a computational point of view. An
analytical method for the nonlinear least squares estimation of the MM is introduced.
It is proved that the MM model has not a unique parameter estimation (through
the nonlinear least squares), and there is not a unique optimal experimental design
and might not have a unique D-optimal design. An iterative process, based on the
Sequential approach, is also introduced and tested on various data sets for the MM
model. A different approach is also discussed which provides an initial estimate that
increases the convergence rate of the Fully Sequential approach. Several examples
demonstrate the provided methods.
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1. INTRODUCTION

A general theory for enzyme kinetics was firstly developed by Michaelis

and Menten [17] in their pioneering work, where the metabolism of an agent

is described by a reaction rate. The basic toxicokinetic model of metabolism

is a Michaelis–Menten (MM) model. Briefly, when an enzyme E is combined

reversibly with a substrate S to form an enzyme-substrate complex ES, which

can be dissociate or proceed to the product P , the following enzyme-substrate

reaction scheme

(1.1) E + S
k2↼−−−−−−−−⇁
k1

ES
k3−−−−→ E + P ,

is assumed, with k1, k2 and k3 being the associated rate constants. We let

KM := (k2 + k3)/k1, known as the MM constant, and Vmax := k3CT, where CT is

the total enzyme concentration. Then, a plot of the initial velocity of reaction V

against the concentration of substrate CS, will provide the MM rectangular hy-

perbola of the form

(1.2) V = V (CS) = V (CS; θ) :=
Vmax CS

KM + CS

,

where the parameters’ vector θ := (Vmax, KM) ∈ Θ ⊆ R
2, and Θ being the pa-

rameter space which is assumed compact when sequential approaches are applied.

It is understood that the appropriate estimate of θ is very essential to eliminate

the Risk on the enzyme-substrate reaction scheme as in (1.1). The hidden Risk is

strongly related to the appropriate real estimate, as it is proved bellow, a number

of estimates might exist, even not real. Therefore the estimate θ clarifies the

Risk Analysis for the toxicokinetic model of metabolism under investigation, so

essential in pharmacokinetics.

In practice, we have n readings for the reaction’s initial velocity Vi :=

V (CS,i; θ) corresponding to n substrate concentration values CS,i, i = 1, 2, ..., n.

That is, only the stochastic model of the form yi := Vi + ei, i = 1, 2, ..., n is ob-

tained, as the readings Vi are associated with noise; see Kitsos [14, 13]. In prin-

ciple, CS > 0 and hence KM > 0, while usually the reaction velocity V (CS) > 0.

Different linear transformations have been suggested, [4, 1], to estimate

(with a linear regression fit) the involved parameters, Vmax and KM, as the in-

put variable CS and the response V are curvilinearly related. The usual lin-

ear transformations are: the Eadie–Hofstee (EH), the Hanes–Wolf (HW), the

Lineweaver–Burk or “double reciprocal” (LB), and the “inverse” Eadie–Hofstee

(iEH) linearizations, which are formulated by

V = Vmax − KM
V

CS

, (EH)(1.3a)

CS

V
=

KM

Vmax
+

1

Vmax
CS , (HW)(1.3b)
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1

V
=

1

Vmax
+

KM

Vmax

1

CS

, (LB)(1.3c)

CS = −KM + Vmax
CS

V
, (iEH)(1.3d)

respectively, with the double reciprocal being the most popular. The Hanes–Wolf

linearization has been shown in a very early work by Dowd and Riggs [4], as the

most efficient. Endvenyi and Chan [6] and Currie [3] discussed the heteroscedas-

ticity in the MM model. Endvenyi and Chan [6] assumed that the error variance is

proportional to the mean. To avoid heteroscedasticity problems in the“linearized”

models (1.3a)–(1.3d) we should suggest to solve the model’s Normal Equations

and get the least square estimators when n readings of V and CS are given, i.e.

to solve

(1.4)
n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

∇θV (CS,i; θ) = 0 ,

with V as in (1.2), while

(1.5) ∇θV =

(

∂V

∂Vmax
,

∂V

∂KM

)T

=

(

CS

KM + CS

, −
VmaxKMCS

(KM + CS)2

)T

.

Hence,

∂S

∂Vmax
=

n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

CS,i

KM + CS,i

= 0 ,(1.6)

∂S

∂KM

=

n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

VmaxCS,i

(KM + CS,i)2
= 0 .(1.7)

Then, the two Normal Equations can be easily obtained and solved numerically

so that the estimates θ̂ = (V̂max, K̂M) are obtained. For a single observation

the Fisher’s information matrix is (∇V )T(∇V ). Therefore, the average-per-

observation information matrix M(θ, ξ) is evaluated as

(1.8) σ−2 nM(θ, ξ) =

n
∑

i=1

(

C2
S,i τ

2
i −VmaxC2

S,i τ
3
i

−VmaxC2
S,i τ

3
i VmaxC2

S,i τ
4
i

)

,

with τi = 1/(KM +CS,i), i = 1, 2, ..., n. Thus, the 2×2 variance-covariance matrix

is approximately equal to

(1.9) C = C(θ̂, ξ) =
(

nM(θ̂, ξ)
)−1

.

Hence, we can derive asymptotic approximate confidence intervals for the involved

parameters, and we can work for optimally criteria, with the D-optimal design

being the most applicable; see [13] for details. Notice that, due to the fact that

the MM model is partially nonlinear,[9], the D-optimal design depends only on

the KM parameter; see [14] for details.
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2. NONLINEAR LEAST SQUARES FOR THE MM MODEL

In this Section an analytical method for the Nonlinear Least Square (NLLS)

estimation of the MM model is introduced and discussed. In particular, the

following Theorem provides a compact analytic methodology for the “actual”

NLLS estimation of the MM model’s parameters.

Recall that the Sum of Squares of Errors sse is given by sse = sse(θ) :=
∑n

i=1[Vi − V (CS,i; θ)]2, n > 2, where θ is a vector of the MM model parameters

(Vmax, KM), while (CS,i), (Vi) ∈ R
n are the data vectors for the substrate con-

centration and the reaction’s velocity respectively. The estimated parameters

θ̂1 = V̂max and θ̂2 = K̂M, from the estimated vector θ̂ = (θ̂1, θ̂2), are obtained

when sse(θ̂) = min
{

sse(θ)
}

θ∈Θ
, Θ ∈ R

2 compact, i.e. when ∇S = 0, or equiva-

lently, when the normal equations (1.4) are satisfied. Recall also that the mean

absolute relative error mare = mare(θ̂) := E
(∣

∣{Vi − V (CS,i; θ̂)}/Vi

∣

∣

)

, is also eval-

uated, see Example 2.1 below, while, due to [10], there is always a solution of the

normal equations.

The following Theorem as it is stated and proved, provides evidence that

the MM model has not unique Least Square Estimates. As we already mentioned

in the introduction this creates a further investigation for the Risk Analysis un-

der study, as the appropriate, among a number of estimates, has to be chosen.

We discuss the proposed strategy in the sequence of this paper.

Theorem 2.1. The NLLS estimators V̂max and K̂M of the MM model are

the ones among the K ≤ 4n − 5 possible estimates’ vectors θ̂k = (V̂max;k, K̂M;k),

k = 1, 2, ..., K, with sse(V̂max, K̂M) := min
{

sse(V̂max;k, KM;k)
}

k=1,2,...,K
, where

(2.1) V̂max;k =

(

n
∑

i=1

ViCS,i

K̂M;k +CS,i

)





n
∑

i=1

(

CS,i

K̂M;k +CS,i

)2




−1

, k = 1, 2, ..., K ,

while the estimated K̂M;k values are the K ≤ 4n − 5 real roots of the following

(4n − 5)-degree polynomial of ϑ2:

(2.2) P (ϑ2) :=
n
∑

i,j=1
(i6=j)

ViCS,iCS,j(CS,j −CS,i)(ϑ2 +CS,i)
2(ϑ2 +CS,j)

n
∏

(i,j 6=)k=1

(ϑ2 +CS,k)
4 .

Proof: Solving the first normal equation (1.6) with respect to Vmax and

substituting to the second one (1.6) we obtain
(

n
∑

i=1

Vixi

(KM + xi)2

)

n
∑

i=1

(

xi

KM + xi

)2

=

(

n
∑

i=1

Vixi

KM + xi

)(

n
∑

i=1

x2
i

(KM + xi)3

)

,
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where xi := CS,i, i = 1, 2, ..., n. Thus,
[

n
∑

i=1

uixiQi(2)

][

n
∑

j=1

x2
j Qj(2)

]

=

[

n
∑

i=1

uixiQi(1)

][

n
∑

j=1

x2
j Qj(3)

]

,

where Qi(d) :=
∏n

(i6=)m=1(KM + CS,m)d, i = 1, 2, ..., n, d = 1, 2, 3. With some al-

gebra, the above relation can be written as

(2.3)
n
∑

i,j=1
(i6=j)

uixix
2
j







s2
i s2

j





n
∏

(i,j 6=)m=1

s4
m



− s3
i sj





n
∏

(i,j 6=)m=1

s4
m











= 0 ,

where sm := KM + CS,m, m = 1, 2, ..., n. Finally, the solution with respect to KM

of the above equation corresponds to the roots of the polynomial P of ϑ2 := KM,

as in (2.2), as then the requested KM (= ϑ2) values would satisfy the normal

equations (1.6) and (1.7). For each of the K ≤ 4n − 5 real-valued root of (2.2),

i.e. for each possible estimate K̂M;k, the corresponding V̂max;k, k = 1, 2, ..., K,

estimate is then obtained through (2.1), which is the solution of the (1.6) with

respect to Vmax.

The solutions of the normal equations (1.6) and (1.7), through the roots of

the polynomial (2.2), provide 4n−5 possible estimates of θ. As this number is odd

there is always at least one real root of (2.2). Therefore, at least one real critical

point of the least square objective function S exists, which may yield at least one

estimate θ̂ = (ϑ̂1, ϑ̂2) := (V̂max, K̂M) for the MM model. For a working example

see [18]. However, when all data points are collinear, the nonlinear least squares

estimate cannot exist, see [11] or [8]. Therefore, various different NLLS estimates

may exist (among the K real-valued θ̂k = (V̂max;k, K̂M;k), k = 1, 2, ..., K) which

(locally) minimizes the sum of squares S = sse(θ̂). The problem the experimenter

has then to face is which of the real roots ϑ (= K̂M) of P = P (ϑ), as in (2.2), can

be chosen as the MM model’s NLLS estimate K̂M. Among the K real-valued (of

the total 4n− 5) candidate estimates, the experimenter can always choose the

one which provides the minimum sum of squares, i.e.

(2.4) sse(θ̂NLLS) := sse(V̂max, K̂M) = min
{

sse(θ̂k)
}

k=1,2,...,K
,

as the NLLS estimates’ vector θ̂NLLS would then be a global minimum for the

MM model’s sum of squares.

As the degree (4n−5) of the polynomial P (ϑ2) in Theorem 2.1 is odd, there

is always at least one (real-valued) estimates’ vector θ̂ for the MM model. Thus,

as more than one estimates’s vectors can exist, then more than one corresponding

average-per-observation information matrices are possible. Therefore, the design

might not be considered as unique, as Biebler in [2] has been noticed. See also

[16]. The criterion we suggest (the minimum sse) actually offers the design with

the minimum variance, i.e. it corresponds to the D-optimal one.
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The following Example provides a comparative presentation of the linear

and the “actual” nonlinear estimation for the MM model.

Example 2.1. The treated case of the Puromicin data set was adopted,

as in Bates and Watts [1, Table A1.3], for the comparison of the Linear Least

Squares (LLS) estimations, through the linearizations as in (1.3a)–(1.3d), and

the analytic NLLS estimation of Theorem 2.1. Table 1 provides the evaluated

LLS estimates V̂max and K̂M (obtained by linear regression), which correspond

to the Eadie–Hofstee (EH), Hanes–Wolf (HW), Lineweaver–Burk (LB), and the

“inverse” Eadie–Hofstee (iEH) linearization methods, together with the NLLS

estimates that provide the minimum sum of squares (among all the possible pairs

of NLLS estimates obtained through Theorem 2.1). Their R2 coefficient as well as

their corresponding sse and mare (%) errors are also presented. All the involved

calculations in Table 1 as well as the corresponding Figure 1 were done by using

MATLAB as a programming tool.

Table 1: Comparison between the LLS and the analytic NLLS estimation.

Est. Method V̂max K̂M R2 sse mare (%)

LLS (EH) 193.867711 0.043524 0.9282 184.69 10.74
LLS (HW) 216.216899 0.067915 0.9603 102.05 6.94
LLS (LB) 195.802709 0.048407 0.9378 160.05 9.19
LLS (iEH) 215.773203 0.067068 0.9606 101.45 6.99

NLLS 212.683743 0.064121 0.9613 99.62 6.99

Figure 1: Visual comparison between the predicted NLLS model V̂NLLS

against the four predicted LLS models.

It is clear that the NLLS estimation provides a “better” estimate than the LLS

ones, in terms of the corresponding R2 coefficients, the sum of squared errors
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sse and the mean absolute relative errors mare. Notice that, the estimation

through the iEH linearization approximates better the analytic NLLS estimation,

as adopts the least sum of squared error sse, and almost identical mare error

among the other three LLS estimation.

Figure 1 provides a graphic comparison between the linear and the nonlinear least

squares estimation for the MM model (using the Puromicin data set), by depicting

the estimated NLLS model V̂NLLS := V (CS; θ̂NLLS) against with the four LSS

estimated models V̂EH := V (CS; θ̂EH), V̂HW := V (CS; θ̂HW), V̂LB := V (CS; θ̂LB)

and V̂iEH := V (CS; θ̂iEH). The estimates’ vectors θ̂NLLS, θ̂EH, θ̂HW, θ̂LB and

θ̂iEH are provided by the corresponding vectors (V̂max, K̂M) of Table 1. Note

that the iEH and the HW linearizations provide almost similar LLS models (the

dotted V̂HW curve is very close to the thin solid V̂iEH curve), both very close to

the ‘actual’ NLLS model.

3. SEQUENTIAL GAUSS–NEWTON ESTIMATION

The Fully Sequential (FS) method has been discussed by Ford et al. in [7]

and Kitsos in [15, 12] for the nonlinear experimental design problem. Expanding

the FS method, in this Section we introduce and investigate the general case of

the Batch Sequential (BS) iterative scheme, for the MM model estimation.

For the estimation of the parameter θ ∈ Θ, Θ ⊆ R
q compact, of any model

η = η(x; θ) in general, recall the known definition of sum of squares sse = sse(θ),

(3.1) sse(θ) = sse(θ;x) :=
∥

∥η − η(x; θ)
∥

∥

2
=

n
∑

i=1

[

ηi − η(xi; θ)
]2

,

where x := (xi)∈R
n, η := (ηi)∈R

n, and ‖·‖ denotes the usual L 2-norm. The es-

timated parameters’ vector θ̂ = (ϑ̂1, ϑ̂2) is obtained when sse(θ̂) = min{sse(θ)}θ∈Θ,

i.e. when ∇S = 0.

Recall also the iterative GN method, for the parameter estimation of the

general nonlinear model described by η = η(x; θ); see also [5]. In the GN iterative

procedure a series of estimates θ̂N ∈ Θ is produced where the next estimates’

vector θ̂N+1 is derived from the previous one θ̂N . When the sequence converges

to a vector, then this vector is a possible NLLS estimates’ vector, say θ̂NLLS ∈ Θ,

of the model η, i.e. ∇sse(θ̂NLLS) = 0. The GN iterative scheme is described in a

compact form, by

(3.2) θ̂N+1 = θ̂N − H−1
S (θ̂N )∇sse(θ̂N ) , N ∈ N

∗ :=N\{0} ,

for a given initial estimates’ vector θ̂0 = (ϑ̂0
1, ϑ̂

0
2) ∈ Θ, where H−1

S (θ̂N ) is the in-

verse of the Hessian matrix of the sum of squares function sse(θ̂N ) as in (3.1).
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The k-Batch Sequential approach (k-BS), k ∈ N
∗, presented here, is based

on the GN method, and it consists of Nk steps in total. On the N -th step of

the k-BS method, a number of GN iterations are performed on the chunk of Nk

observations (from the total n), which always starts form the first and ends to

the Nk-th observation. In particular, the total number of iterations Nk is given

by

(3.3) Nk :=











n/k , when n/k ∈ N
∗, and k 6= 1 ,

[n/k] + 1 , when n/k /∈ N
∗, and k 6= 1 ,

n − 1 , when k = 1 ,

where [ · ] denotes the integer part of a real number and n is the number of

observations. Note that, for the application of the BS iterative process, the data

pairs {(xi, ηi)}i=1,2,...,n are “entered” sequentially into the BS process. Therefore,

instead of the usual sum of squares S, as in (3.1), the k-BS approach utilizes a

partial sum of squares (p.s.s.) SN (used for the corresponding GN iterations on

every step N of the k-BS method), which is the sum of squares calculated only

for the specific chunk of Nk observations on the N -th step of the method. Thus,

the SN is defined as

(3.4) SN (θ̂) :=
kN
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

, N = 1, 2, ..., Nk = n/k ,

provided that n/k ∈ N, with k 6= 1. For the case of n/k /∈ N
∗ (and k 6= 1), the

p.s.s. SN is defined as in (3.4) for N = 1, 2, ..., [n/k], while for the last step Nk =

[n/k] + 1, the SN=Nk
is defined by

(3.5) SN (θ̂) :=
n
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

.

For the special case of the 1-BS method, the p.s.s. SN is defined by

(3.6) SN (θ̂) :=
N+1
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

, N = 1, 2, ..., N1 = n−1 .

Finally, the GN iterative procedures at each step N (of the total Nk steps) of the

k-BS method, either converge or can be stopped (after a given maximum number

of GN iterations) to some estimated parameters’ vector, say θ̂N . This θ̂N is then

considered as the initial vector for the GN iterations of the next step N +1 of the

k-BS method. Hence, an initial parameters’ vector θ̂0 is then needed in order to

begin the GN iterations of first step N = 1 of the k-BS method.

Notice that, for a set of n = mk, m∈N
∗, observations, the p.s.s. SN (for

the GN iterations on the N -th step of the k-BS scheme, k 6= 1) is calculated

through the summation of successively k, 2k, 3k, ..., mk = n terms. For a set

of odd number of observations, say n = mk + q with N
∗ ∋ q < m, the p.s.s. SN
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is calculated through the summation of successively k, 2k, 3k, ..., mk, n terms.

For the 1-BS case, the corresponding p.s.s. SN summation is performed with

successively 2, 3, ..., n terms. Notice also that the 2-BS scheme coincides with the

FS scheme, as the p.s.s. SN summation uses 2, 4, 6, ..., n terms.

The above description of the k-BS iterative method can be formulated into

the following algorithm.

Algorithm 3.1. Consider an initial vector θ̂0 for the estimation of the

model η = η(x; θ) = η(x; ϑ1, ϑ2). On every step N = 1, 2, ..., Nk of the k-BS

method, a GN iterative process is applied, using the p.s.s. SN for a given max-

imum number of iterations, say J . Then, a series of vectors is produced, say

θ̂N,1, θ̂N,2, ..., θ̂N,J . The next estimate θ̂N+1 is then considered to be the last

current estimate

θ̂N+1 = θ̂N,J , N = 0, 1, 2, ..., Nk ,

where the vectors θ̂N,j , j = 1, 2, ..., J , are described by the GN iterative scheme

(3.7) θ̂N,j+1 = θ̂N,j −H−1
SN

(θ̂N,j)∇SN (θ̂N,j) , j=0,1, ..., JN ≤J , with θ̂0,0 := θ̂0 .

For every step N , the index JN ≤ J is the one for which the GN process converges

(when it does), i.e. when the convergence error, say eN , of the estimate θ̂N,JN
=

(ϑ̂1
N,JN

, ϑ̂2
N,JN

) is smaller or equal than a given threshold error e, i.e.

(3.8) eN := max
{

∣

∣ϑ̂1
N,JN

− ϑ̂1
N,JN−1

∣

∣,
∣

∣ϑ̂2
N,JN

− ϑ̂2
N,JN−1

∣

∣

}

≤ e , N =1,2, ...,Nk .

Otherwise, when the convergence fails, the GN process stops at the J-th GN

iteration (i.e. when j = J). For the next N +1 step, as an initial vector θ̂N+1,0 for

the new GN iteration, we consider the last estimate of the previous GN process,

i.e. θ̂N+1,0 = θ̂N,JN
, N = 1, 2, ..., Nk.

The following Example applies the FS iterative scheme, i.e. the 2-BS iter-

ative scheme as in Algorithm 3.1.

Example 3.1. The Puromycin-treated data set, as in Example 2.1, con-

sists of n = 12 observations where the CS,i, i = 1, 2, ..., 6, readings are repeated.

For this Example we consider the subset of the n = 6 non-replicated observations

of the Puromycin data set. Let e = 10−4 be the convergence error threshold of

the 2-BS method, while as initial estimates’ vector guess we adopt θ̂0 = (100, 0).

The first sub-Table of the Table 2 provides the last JN -th GN convergent esti-

mates’ vector θ̂N,JN
, for each of the (total three) steps N = 1, 2, 3 of the 2-BS

method. Recall that the total number of steps of the 2-BS algorithm for this

data set is Nk=2 := n/k = 6/2 = 3. Notice that 0 + 7 + 7 + 5 = 19 GN iteration

are needed, in total, to obtain θ̂NLLS with accuracy <10−5. Moreover, the GN

processes, for every step N of the 2-BS scheme, do not have to converge at a
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given error convergence e. For example, reducing the maximum number of the

GN iterations to be, say J = 5, we obtain also θ̂NLLS with the same accuracy

<10−5, but this time 0 + 5 + 5 + 5 = 15 GN iteration are needed in total, see the

middle sub-Table of Table 2.

Table 2: Convergence of various 2-BS processes, for the MM model estimation.

N JN V̂max K̂M eN εN R2 mare (%)

• Maximum # of GN iterations: J = 10

0 0 100. 0. — 2.5e+5 −1.6531 17.34
1 7 112.549618 0.009618 3.89e−8 0. 1. 0.
2 7 172.241997 0.034754 5.36e−10 7.64e−11 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

• Maximum # of GN iterations: J = 5

0 0 100. 0. — 2.5e+5 −1.6531 17.34
1 5 112.548698 0.009618 0.143 2.18 1. 0.00043
2 5 172.241882 0.034754 0.0539 0.218 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

• θ̂0 = (Vmax, KM), J = 10

0 0 112.549618 0.009618 — 0. 1. 0.
1 1 112.549618 0.009618 0. 0. 1. 0.
2 7 172.241997 0.034754 5.36e−10 7.64e−11 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

The initial estimate guess the experimenter provides, plays a crucial role for the

convergence of the general BS methodology. In order to address this issue, the

2-BS scheme can be applied adopting as initial parameters’ vector θ̂0 the solution

vector (Vmax, KM) of the two MM model relations Vi = V (CS,i;Vmax,KM), i=1,2.

These relations can be solved analytically in the form of (Vmax, KM) = (V1 + dV1,

dCS,2), d := CS,2(V2 − V1)/(V1CS,2 − V2CS,1). As a result, the first GN process

(for the step N = 1 of the 2-BS approach) will always converge at its first GN

iteration j = 1 = J1. This is due to the fact that the initial GN iteration process

(where only the first two observations are involved) will surely converges to the

only solution (Vmax, KM), as above, which is now provided by the suggested initial

vector θ̂0. This suggested θ̂0 it turns to be the convergent estimate θ̂1,J1
of the

first (and only) GN iteration for first step N = 1, of the 2-BS process. Therefore,

with the above proposed θ̂0 there is no need for guessing an initial vector, to feed

the 2-BS process, that might not converge. This is true at least at the first step

of the 2-BS approach. The last sub-Table of Table 2 provides the last JN -th GN

convergent estimates θ̂N,JN
for every step N =1,2,3 of the 2-BS process, adopting

as θ̂0 the proposed solution (Vmax, KM) as discussed above. Table 2 also presents

the convergence error eN , the solution error distance εN := ‖∇sse(θ̂N )‖ as well

as the R2 coefficient for each estimated model V̂N := V (CS; θ̂N,JN
). The digits in

bold represents the accurate digits of the NLLS estimates.
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From our experience, due to the sequential nature of the BS methodol-

ogy, the behaviour of the BS approach it might depend on the order in which

the data entered into the sequential process. As the MM model is a strictly

monotonous function, it is generally preferred that the CS,i readings of the data

set {(CS,i, Vi)}i=1,2,...,n are maintain this strictly monotonic pattern as they en-

tered sequentially into the BS algorithm. However, the problem might arises

when the BS process is applied on a “replicated” data set, i.e. a data set showing

multiple values (two or more) of Vi for each CS,i value. Such data set is the

Puromycin-treated data set which consisted of two Vi’s readings for every (out

of six) CS,i value. In particular, the problem is occurred when we adopt the MM

solution vector (Vmax, KM) to play the role of the initial estimates’ vector θ̂0, as

we suggested earlier. Unfortunately, the solution vector (Vmax, KM) of the two

MM relations Vi = V (CS,i; Vmax, KM), i = 1, 2, does not exist (as CS,1 = CS,2 in

this data set). To avoid this problem we can apply a “higher order” BS process,

as the 4-BS.

The following Example demonstrates the above discussion.

Example 3.2. The 4-BS iterative process is applied for the Puromycin

data set as well as for the Enzyme Velocity (EV) data set in [11, pg. 242], which are

both having replicated (double) values of CS readings. Let e = 10−4 be the thresh-

old for the convergence error. For an initial guess θ̂0 we obtain firstly all the so-

lutions (Vmax, KM) between the two MM model relations Vi = V (CS,i; Vmax, KM)

and Vj = V (CS,j ; Vmax, KM), for all i 6= j, i, j = 1, 2, ..., n. Then we adopt as θ̂0

that specific solution vector (Vmax, KM) which provides the minimum sum of

squares for the corresponding MM model, i.e.

sse(θ̂0) = min
{

sse(θ) : θ is the solution of Vk =V (CS,k; θ), k∈{i,j}
}

i,j∈{1,2,3,4}
,

or equivalently

(3.9) sse(θ̂0) = min
{

sse(ϑ1,ϑ2) : ϑ1 =Vi(1+ dij), ϑ2 =CS,idij

}

i,j∈{1,2,3,4}
,

where dij := CS,j(Vj −Vi)/(ViCS,j −VjCS,i), i, j = 1, 2, 3, 4. As the initial estimate

θ̂0 is used for the application of the 4-BS process, it should to be obtained by

using the first 4 observations (recall that the GN process at the first step of the

4-BS method is performed using the first four observations), and thus θ̂0 should

satisfy (3.9) where n := 4.

Table 3 presents the results of the 4-BS approach for the Puromycin and the

EV data sets, where the presented estimates θ̂N,JN
= (V̂max, K̂M) are calculated

with only J = 5 maximum number of GN iterations on every step N = 1, 2, 3 (of

the 4-BS algorithm). Notice the remarkable accuracies, of less than 10−7 < e

(achieved in total 0 + 5 + 5 + 5 = 15 GN iterations) for the requested θ̂NLLS, for
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the Puromycin data set, and of less than 10−5 < e for the EV data set (achieved

in total 0 + 8 + 8 + 5 = 21 GN iterations). The digits in bold represents the

accurate digits of the NLLS estimates.

Table 3: Convergence of the 4-BS processes, for the MM model estimation.

N JN V̂max K̂M eN εN R2 mare (%)

• Puromycin-treated data set, J = 5

0 0 134.413223 0.015372 — 1.53e+5 0.5542 18.
1 5 152.072336 0.029454 0.114 0.343 0.7771 14.94
2 5 184.624253 0.044340 8.13e−6 6.97e−9 0.9330 9.198
3 5 212.683743 0.064121 3.09e−8 5.09e−11 0.9613 7.

• EV data set, J = 8

0 0 0.001957 −0.169663 — 0.0176 −0.8679 24.79
1 8 0.028507 0.301639 0.144 3.01e−5 0.0422 29.16
2 8 0.085433 1.314163 0.00445 3.76e−9 0.4085 27.51
3 5 0.105643 1.702690 1.05e−6 6.08e−15 0.9379 21.71

If the 2-BS (or in general the k-BS) process fails to converge for data sets

with replicated observations we then propose a practical way, which is demon-

strated in the following, for the computational improvement of the 2-BS process

when it is applied on such data sets.

Any data set showing replications can be re-arranged in order to help the

k-BS method to converge. With this re-arrangement of the Puromycin data set

(which contains two Vi readings for each CS,i value), the 2-BS (or the 1-BS)

process can now be applied adopting as initial vector θ̂0 the MM solution vector

(using the first two observations) as we did in Example 3.1. Recall that this θ̂0

cannot be calculated in the case of the original (non-modified) Puromycin data

set. The suggestion for helping the performance of the calculations is that we first

split the Puromycin data set (and any data set that contains two readings for the

depending variable for each value of the independent variable), say P , into two

subsets, say P1 and P2. Each set contains the two “non-replicated” parts of the

original data set and sorted in an increasing order of the CS values, i.e.

(3.10) P1 :=
{

(CS,i, Vi)
}

i=1,3,5,...,11
and P2 :=

{

(CS,i, Vi)
}

i=2,4,6,...,12
.

Note that CS,i+2 > CS,i for i = 1, 3, ..., 9 and i = 2, 4, ..., 10. In order to re-join

them back into a single data set (of 12 observations), with a “smooth” transition

from the (increasing) CS,i values of P1 data set to the (also increasing) CS,i values

of P2, we adopt the P1 data set as is, and then the observations of P2 are put

in the reversed (decreasing) order, i.e.

(3.11) P =
{

(CS,i, Vi)
}

i=1,3,5,...,11,12,10,8,...,2
.



114 Thomas L. Toulias and Christos P. Kitsos

The 2-BS process can then be applied, with convergence error threshold e = 10−4,

while we adopt the MM solution (Vmax, KM), as in Example 3.1, as the initial

estimates’ vector θ̂0. The first sub-Table of Table 4 provides the GN convergent

JN -th estimates θ̂N,JN
, that calculated with maximum number of GN iterations

being only J = 3 (at every step N = 1, 2, ..., 6 of the 2-BS process). The resulted

accuracy of the obtained NLLS estimate (V̂max, K̂M) is less than 10−5 < e. Sim-

ilarly, for the “replicated” EV data set, the accuracy for the NLLS estimates is

less than 10−6 < e; see the corresponding calculation on the second sub-Table of

Table 4. The digits in bold represents again the accurate digits of the NLLS

estimates.

Table 4: Convergence of the 2-BS processes for the MM model
estimation of the re-arranged P and EV data sets.

N JN V̂max K̂M eN εN R2 mare (%)

• Puromycin-treated data set, J = 3

0 0 112.549618 0.009618 — 0. 1. 0.
1 1 112.549618 0.009618 0. 0. 1. 0.
2 3 170.999898 0.033674 5.76 2.07e+3 0.8736 10.56
3 3 210.839180 0.062539 0.7 75.7 0.9360 9.345
4 3 214.144962 0.064599 1.46e−5 4.73e−8 0.9480 7.739
5 3 212.825859 0.064726 7.6e−6 1.64e−8 0.9389 7.22
6 3 212.683743 0.064121 1.28e−6 7.47e−10 0.9613 7.

• EV data set, J = 3

0 0 0.005853 −0.065438 — 2.33e−17 1. 0.
1 1 0.005853 −0.065438 2.6e−18 1.3e−18 1. 4.e−14
2 3 0.017440 0.158092 0.102 0.000647 0.6203 14.26
3 3 0.078120 1.285978 0.458 0.00152 0.9553 19.51
4 3 0.126137 2.411911 0.325 9.89e−6 0.9655 14.05
5 3 0.104970 1.694986 0.272 0.000761 0.9419 21.76
6 3 0.105643 1.702690 2.93e−7 2.52e−16 0.9379 21.71

The re-arrangement, as in (3.11), of the data set (which affects the order

in which the observations are sequentially inserted into the BS process) can also

improve the performance of the BS process even for initial guesses θ̂0 for which

the 2-BS, or even the 1-BS, process normally could not converge. The following

Example demonstrates this improvement.

Example 3.3. Considering the initial estimates’ guess θ̂0 = (80, 0) and

letting e = 10−4 to be the convergence error threshold, the 2-BS (as well as the

1-BS process) fails to converge, when it is applied on the original Puromycin

data set. However, the 2-BS process converges, to the requested NLLS estimate,

when the data set is re-arranged, as described in (3.11), even with few (J = 3)

allowed GN iterations at every step of 2-BS, or 1-BS, process. Table 5 presents the

performance of the 2-BS approach (first sub-Table) as well as of the 1-BS approach
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(second sub-Table). The accuracy of the obtained NLLS estimates derived from

the 2-BS process is less than 10−5 < e, while the 1-BS process results an accuracy

less than 10−4 < e. The digits in bold represents also here the accurate digits of

the NLLS estimates.

Table 5: Convergence of the 1-BS and the 2-BS processes,
applied on the re-arranged Puromycin data set.

N JN V̂max K̂M eN εN R2 mare (%)

• 2-BS process, J = 3

0 0 80. 0. — 1.33e+4 −0.3832 11.39
1 3 112.410518 0.009554 2.04 275. 1. 0.062
2 3 170.980951 0.033657 5.8 2.1e+3 0.8736 10.56
3 3 210.839081 0.062538 0.702 76.2 0.9360 9.345
4 3 214.144962 0.064599 1.46e−5 4.74e−8 0.9480 7.739
5 3 212.825859 0.064726 7.6e−6 1.64e−8 0.9389 7.22
6 3 212.683743 0.064121 1.28e−6 7.47e−10 0.9613 7.

• 1-BS process, J = 3

0 0 80. 0. — 1.33e+4 −0.3832 11.39
1 3 112.410518 0.009554 2.04 275. 1. 0.062
2 3 136.051800 0.017418 0.563 25.3 0.8983 5.843
3 3 172.114585 0.034640 1.93 221. 0.8739 10.62
4 3 199.818136 0.053452 0.398 13.1 0.9129 10.46
5 3 210.857217 0.062575 0.00718 0.0089 0.9360 9.341
6 3 211.078437 0.062765 9.91e−10 8.75e−12 0.9471 8.015
7 3 214.144962 0.064599 9.91e−06 2.13e−8 0.9480 7.739
8 3 213.560104 0.067269 0.00066 0.000118 0.9397 7.37
9 3 212.825859 0.064726 0.000225 1.56e−5 0.9389 7.22
10 3 212.086616 0.062938 5.28e−5 1.07e−6 0.9440 6.93
11 3 212.683743 0.064121 1.02e−5 4.46e−8 0.9613 7.

4. DISCUSSION

Certain aspects of the MM model, so essential in Risk Analysis as far as to

form an enzyme-substrate complex especially to pharmacokinetics studies, were

discussed in this paper, either theoretical (see Theorem 2.1) or computational (see

the provided examples in Section 3). As far as the optimal design is concerned,

recall Kitsos [14] and (1.8), the design depends on the nonlinear term KM. When

the D-optimal design problem was viewed from the MM model perspective it can

be formed into the following compact form:

If CS ∈ (0, CU] the locally D-optimal design at KM = K0 which allocates

the half of the observations V with optimum concentration

(4.1) Copt
S =

K0CU

2K0 + U
,
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with CU being the maximum allowable substrate concentration. If CU ≫K0 the

locally D-optimal design ξ is

(4.2) ξ∗ =

(

CU K0

0.5 0.5

)

.

The corresponding value of the determinant of the D-optimal design is

(4.3) d =
V 2

maxC
6
U

16K2
0 (K0 + CU)6

.

See also Endrenyi and Chan [6]. If CS ∈ [CL, CU] then the optimum CS, through

(4.1), is given by

(4.4) Copt
S =

K0CU

2K0 + (CU −CL)
, K0 > 0, 0 < CL < CU .

From the above relations and the average-per-observation information matrix

as in (1.8) it is clear, due to Theorem 2.1, that there might be more than one

NLLS estimates. This is a new point of view of the design and actually a crucial

one. One could choose as “best” among the D-optimal designs the one which

provides minimum value of the corresponding (4.3) evaluation, which is a common

situation. Therefore, there might be (locally) D-optimal designs corresponding to

the analytical real-valued NLLS estimates. The final adopted D-optimal design

can be chosen in principle, as noted also above, to be the one that provides

minimum det
(

M(θ̂, ξ)
)

. It is clear from relations (4.3) and (4.4) that the right

choice of the existent different values for the parameter θ is essential for the Risk

Analysis study under investigation. It is why we provide static or sequential

design approach to reach the appropriate selected real value for θ. It is therefore

crucial what we prove: there is always one real value, and thus the Risk Analysis

can always proceeded. How we proceed on Risk Analysis were more than one

real value for θ exists, has been extensively discussed, see Theorem 2.1 and the

Examples.

An analytic methodology for the nonlinear least squares estimation (NLLS)

was also introduced and compared against the four known linearization technics.

The analytic formulation of this method indicated that the NLLS estimation of

the MM model was, in general, not unique. Moreover, an iterative scheme for the

NLLS estimation was also introduced, called the Batch Sequential (BS) process,

and tested in various cases of data sets which showing readings replication or not.

Despite that the BS is an iterative process, meaning that an initial estimates’

guess is needed, a different approach was discussed and tested which provides an

initial estimate that increases the convergence performance of the BS algorithm.

Finally, certain examples demonstrate all the proposed methods.
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as an indicator on risk assessment. It is well known that negative skewed distributions
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distributed variables. In fact, modelling this product using a normal distribution is
not a correct approach once skewness in many cases is different from zero. By ignoring
this, the researcher will obtain a model understating the risk of highly skewed variables
and moreover, for too skewed variables most of common tests in parametric inference
cannot be used. In practice, the behaviour of the skewness considering the product of
two normal variables is explored as a function of the distributions parameters: mean,
variance and inverse of the coefficient variation. Using a measurement error model,
the consequences of skewness presence on risk analysis are evaluated by considering
several simulations and visualization tools using R software ([10]).
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1. INTRODUCTION

Consequences for the presence of skewness are very important, especially

in risk analysis. When distribution of the expected value is skewed produces dis-

tortions on the decisions of the risk-neutral decision maker. In Mumpower and

McClelland ([9]) authors analyse the consequences on a model of random measure-

ment error. Another example, in valuation risk of assets, the risk-averse investors

prefer positive skewness Krans and Litzenberg ([8], Harvey and Siddique [6])

and the effect of skewness on the R2 of the model has influenced over the pre-

dictability of the model of assets Cochran ([4]).

Our objective in this paper is to study the relation between skewness of

the distribution of a product of two normal variables and the parameters of these

normal distributions. Our work has two focus: from a theoretical point of view

using the moment-generating function, and through several simulations, using

Monte-Carlo methods we estimate the skewness of the product of two variables.

Distribution of the product of normal variables is an open problem in statis-

tics. First work has been undertaken by Craig ([3]), in his early paper, who was

actually the first to determinate the algebraic form of the moment-generating

function of the product. In Aroian and Taneja ([2]) proved the approximation

of the product using the standardized Pearson type III distribution. But nowa-

days, the problem is not closed; although the product of two normal variables

is not, in general, normally distributed; however, under some conditions, it is

showed that the distribution of the product can be approximated by means of

a Normal distribution Aroian and Taneja ([2]). The presence of the product of

normal variables is well-known in Risk analysis Hayya and Ferrara ([7]), where

functional relationships concerning two normally distributed variables (correlated

or non-correlated) are encountered.

There are several test to estimate the normality of a sample, but for large

size sample results are not always correct Deb and Sefton ([5]). The most accurate

test for large size is skewness test. In this paper, we use the moment-generating

function for analysing the value of skewness for a product of two normally dis-

tributed variables. We considered the influence of three parameters from the two

distributions: mean, variance and correlation. Using the formula for skewness,

we can calculate the value of the skewness for the product as a function of two set

of parameters: First, where the mean, the variance and correlation between the

two distributions are used for calculations. The second one is formed the inverse

of the coefficient of variation for each distribution and the correlation.

At section 2, the moment-generating function for a product of two nor-

mally distributed variables is introduced. The formulas for three parameters of

the product: mean, variance (standard deviation) and skewness are studied and
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the evolution of skewness for the product of two normal variables is analysed in

Section 3. Several cases are considered: taking into account first, the presence

of correlation between both variables is assumed; second, the two normally dis-

tributed variables are uncorrelated. The influence of the parameters, mean and

standard deviation of the two variables is analysed. The graphical visualization of

the results is incorporated. In Section 4, an analysis of the effect of skewness for

a model of random measurement error is introduced. Finally, Section 5 contains

conclusions of the paper.

2. MOMENTS OF THE PRODUCT OF TWO NORMAL VARI-

ABLES

Let X and Y be two normal probability functions, with means µx and µy

and standard deviations σx and σy, respectively, r the coefficient of correlation

and the inverses of the coefficient of variation, for the two variables, are: ρx = µx

σx

and ρy =
µy

σy
.

Craig ([3]) determined the moments, seminvariants, and the moment gen-

erating function of z = xy
σx σy

. The moment generating function of z, Mz(t) is:

(2.1) Mz(t) =
exp

(ρ2
x+ρ2

y−2rρxρy)t2 +2ρxρy t

2(1−(1+r)t) (1+(1−r)t)
√

(

1 − (1+r)t
) (

1 + (1−r)t
)

,

where t is the order of the moment.

Let µz and σz be the mean and the standard deviation of z. Values of mean

and standard deviation and skewness of z are calculated as (see ([3]) and ([1]):

µz = ρxρy + r ,(2.2)

σz =
√

ρ2
x + ρ2

y + 2rρxρy + 1 + r2 ,(2.3)

α3 =
2
(

3ρxρy + r3 + 3ρxρy r2 + 3 r
(

ρ2
x + ρ2

y + 1
)

)

(

ρ2
x + ρ2

y + r2 + 2ρxρy r + 1
)3/2

.(2.4)

An alternative approach, without using the inverse of the coefficient of

variation, can be obtained.

Proposition 2.1. Let x ∼ N(µx, σ2
x ) and y ∼ N(µy, σ

2
y ) be two normal

variables with correlation r . Defining x = x0 + z1 and y = x0 + z2, where

(2.5)





x0

z1

z2



 ∼ N









0
µx

µy









rσxσy 0 0
0 σ2

x − rσxσy 0
0 0 σ2

y − rσxσy







 ,
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the two variables x and y are decomposed into independent summands, one of

which is shared between them. Then, the moment-generating function of z =

xy = (x0 + z1)(x0 + z2) is

(2.6) Mz[t] =
exp

t(tµ2
y σ2

x + tµ2
xσ2

y − 2µxµy(−1+ trσxσy))
2+2 tσxσy(−2r+ t(−1+ r2) σxσy)

√

1 + tσxσy

(

−2r + t(−1 + r2)σxσy

)

.

Proof: The moment-generating function of z = xy is the same that z =

(x0 + z1)(x0 + z2), that is the product of two independent variables, then we know

that

Mz[t] =

∫ ∞

−∞
etzf(z) dz .(2.7)

The join probability density function (pdf) f(z) could be written as the product

of the independent three marginal pdf of the variables,

(2.8) f(z) = fx0
(x0)fz1

(z1)fz2
(z2) =

exp

(

−
x2

0

2rσxσy
− (z1−µx)

2

2(σ2
x−rσxσy)

− (z2−µx)
2

2(σ2
y −rσxσy)

)

2
√

2 π3/2√rσxσy

√

σ2
x −rσxσy

√

σ2
y −rσxσy

.

Then,

Mz[t] =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
etzfx0

(x0)fz1
(z1)fz2

(z2) dx0 dz1 dz2

=
1

2
√

2 π3/2√rσxσy

√

σ2
x −rσxσy

√

σ2
y −rσxσy

(2.9)

·

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e
t(x0+z1)(x0+z2)−

x
2
0

2rσxσy
−

(z1−µx)
2

2(σ2
x−rσxσy)

−
(z2−µy)

2

2(σ2
y −rσxσy) dx0 dz1 dz2

where we have the following assumptions: t ∈ Z non negative, σx > 0, σy > 0,

σx, σy, µx, µy all of then real numbers and −1 ≤ r ≤ 1. Solving the integral (2.9)

results for theses assumptions,

(2.10)
√

σy

(

−(rσx−σy)
)√

−rσy(rσy−σx) exp

(

t(µ2
xσ2

y t−2µxµy(rσxσy t−1)+mu2
y σ2

x t)
2((r−1)σxσy t−1)((r+1)σxσy t−1)

)

√

σy(σy −rσx)
√

rσy(σx−rσy)
√

(r2−1)σ2
x σ2

y t2 − 2rσxσy t + 1
.

Then, simplifying this expression in (2.10) results (2.6), as the expression of the

moment-generating function of the product z = xy.

Derivatives of order i of (2.6) provides moments of order i, for i = 1, 2, ....

The moments of the distribution of the product of two normal variables are

calculated:
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1. Mean: First derivative of the moment generating (2.6) function respect t

for t = 0:

(2.11) E[z] = µz = µxµy + rσxσy ;

2. Variance: Difference between second moment and first moment up to 2

(2.12) Var[z] = σ2
z = µ2

yσ2
x + 2µxµy rσxσy +

(

µ2
x + (1 + r2)σ2

x

)

σ2
y ;

3. Skewness: Quotient between the third central moment and the second

central moment up to the 3/2.

(2.13) α3[z] =

(

6µ2
y rσ3

x σy + 6µxµy(1+r2)σ2
x σ2

y + 2r
(

3µ2
x + (3+r2)σ3

x σy

)

σ2
y

)

(

µ2
y σ2

x + 2µxµy rσxσy +
(

µ2
x + (1+r2)σ2

x

)

σ2
y

)3/2
.

Attention will be paid to the evolution of skewness. Skewness for a nor-

mal distributed variable would be zero. For a product of two normal variables,

skewness zero would be a proof of normality, other values should be carefully

analysed.

3. EVOLUTION OF SKEWNESS OF THE PRODUCT OF TWO

NORMAL VARIABLES

In the previous section the formula for skewness of the product of two

normally distributed variables was introduced (see equation 2.13). Obviously,

there are five factors that have a certain influence into the value of skewness: mean

and standard deviation of each of the variables into product and the correlation

between them.

3.1. Product of two correlated normally distributed variables

According Proposition 1, we can formulated several specific cases for the

product of two normally distributed variables, and study evolution of the skew-

ness.

Corollary 3.1. For the product of two correlated normally distributed

variables, three cases are considered:

a) Product of two standard normal distributions N(0, 1) with r = 1. This

a very special case, the product of this two variables follows a Chi-

Square with one degree of freedom. In this case, skewness of product

is 2
√

2 than is bigger than zero and equals the theoretical value of

skewness for the Chi-Square distribution with 1 degree of freedom (
√

8).
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b) Two normal variables with same mean µx = µy = µ and same unit

standard deviation σx = σy = 1. In this case we considered different

values for correlation r:

(3.1) α3[z] =
2
(

3µ2 r + 3µ2(1+r2) + r(3 + 3µ2 + r2)
)

(

1 + 2µ2 + 2µ2 r + r2
)3/2

.

In Figure 1, evolution of the skewness is represented for two factors:

mean and correlation. When the mean of two variables is zero, skewness

is a increasing function of the correlation. When µ = 0 and r = 1 we

have the Chi-Square case.When r tends to zero, then α3[z] tends 0

when ratio (inverse of the coefficient of variation) µ
σ

= 0, but as the

ratio increases the skewness rises rapidly, until it is at its maximum

when the inverse of the coefficient of variation is one, then µ = σ = 1.

Figure 1: Skewness for product two normal variables same mean
and standard deviation equals to 1.

c) Two normal variables with the same mean µx = µy = µ and the same

standard deviation σx = σy = σ. Considering two distribution with the

same parameters (mean and standard deviation). In general, skewness

tends to zero as ratio tends to infinity. The closer |r| is to one the

slower the approach of skewness to zero. When r = 1 then we have

skewness of a Chi-Square Distribution (2
√

2) (see Figure 2).
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Figure 2: Skewness for product two normal variables r = 1.

When considering different mean or different standard deviation, the evo-

lution of skewness presents more variability as a function of the values of the

parameters, but in a rough inspection of the graphics we are identify several

aspects:

1. If we consider the same standard deviation and different values for the

mean, skewness zero is very common when σ tends to zero and the

means are different.

2. When standard deviation increases the skewness increases for the same

values of correlation and mean.

3. If we consider the same mean, skewness is very common, and only when

the standard deviation are lower, skewness zero exists.

4. In general, the presence of correlation has effect on the presence of

skewness, skewness zero or lower is more common when r tends to

zero.

Now, we are going to study the skewness of uncorrelated distributions (r = 0).

3.2. Product of two uncorrelated normal distributions

Two uncorrelated normal variables (r = 0) are now considered. When the

two variables are uncorrelated r = 0 and the value of skewness is a function of



Skewness into the Product of Two Normally Distributed Variables 127

only 4 parameters (means and variances), then:

(3.2) α3[z] =
6µxµy σ2

x σ2
y

(

µ2
y σ2

x + (µ2
x + σ2

x )σ2
y

)3/2
.

3.2.1. Influence of inverse of the coefficient of variation

For the moment-generating function of the product of these two variables

equation (2.6) is used, considering the inverse of the coefficient of variation ρx =
µx

σx
and ρy =

µy

σy
. Now, skewness of the product of variables z = xy will be:

(3.3) α3[z] =
6ρxρy

(

ρ2
y + ρ2

x + 1
)3/2

.

Skewness depends on ratios ρx and ρy. In Figure 3, the skewness as a function of

this ratios is illustrated.

Figure 3: Skewness as a function of ratios ρx and ρy.

When ρx → 0 and ρy → 0 then α3[z] → 0, that is true too, when one of them

tends to zero and the other doesn’t tend to infinity. The approach to the normal

distribution for the product of two variables will be influenced by the existence
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of large ρx, ρy values. Obviously, as the skewness decreases the approximation to

normal distribution improves. Differentiating α3[z] with respect to two variables,

ρx and ρy, equals zero and solving we find the extreme points of skewness:

(3.4)

(

∂α3[z]

∂ρx

,
∂α3[z]

∂ρy

)

=

(

6ρy

(

1 − 2ρ2
x + ρ2

y

)

(

1 + ρ2
x + ρ2

y

)5/2
,
6ρx

(

1 − 2ρ2
y + ρ2

x

)

(

1 + ρ2
x + ρ2

y

)5/2

)

.

There are five points: (0, 0), (1, 1), (−1, 1), (1,−1), (−1,−1). Looking for the

extreme values we are considering the Hessian matrix H(ρx, ρy) say equals to:

(3.5)














18ρxρy

(

2ρ2
x−3(1+ρ2

y)
)

(1 + ρ2
x + ρ2

y)
7/2

−
6
(

1−2ρ4
x+ρ2

y +2ρ4
y +ρ2

x(1−11ρ2
y)
)

(1+ρ2
x+ρ2

y)
7/2

−
6
(

1−2ρ4
x+ρ2

y +2ρ4
y +ρ2

x(1−11ρ2
y)
)

(1+ρ2
x+ρ2

y)
7/2

−
18ρxρy

(

3+ρxρy(3+3ρ2
x−2ρ2

y)
)

(1+ρ2
x+ρ2

y)
7/2















.

Then, we have: in H(0, 0) there is a saddle point; in H(1, 1) and (H−1,−1)

there are maxima with value 2√
3

and in H(−1, 1) and H(1,−1) there minima

with value − 2√
3
. Thus, the skewness of z is largest when |µx| = σx and |µy| = σy.

If x and y have equal standard deviation (σ), the skewness of the product will

be largest when µx = µy = σ. Figure 4 represents different values of skewness for

combination of points for ρx and ρy from −5 until 5, these values are represented

at “x”-axe. (At the center of graph are values with ρx = ρy = 0).

Figure 4: Skewness combination ρx and ρy in [−5, 5].



Skewness into the Product of Two Normally Distributed Variables 129

Table 1 resumes values of skewness for several products of two normal vari-

ables. The theoretical value, according to (3.3) and value for a simulation using

Monte-Carlo Simulation for the product of two normal variables with 1.000.000

points is presented:

Table 1: Skewness for product of two normal variables.

Parameters Theoretical Skewness Skewness

µx =1, µy = 0.5, σ=1 0.88889 0.883946

µx = 5, µy = 0.5, σ=1 0.111531 0.109204

µ =1, σx =1, σy = 0.5 0.816497 0.811504

µ =1, σx =1, σy = 5 0.411847 0.404888

The effect of the inverse of the coefficient of variation is correct for the two

first rows in Table 1. In the first row we have two distributions with ρx =1, ρy =0.5

and skewness is high (0.88); in the second one the ratios for two distributions are

higher (ρx = 5, ρy = 0.5) and skewness is lower (0.11). But this tendency is not

correct when we consider examples in row 3 and 4 in Table 1. In row 3, we have

ρx = 1, ρy = 2, these values are higher than ρx = 1, ρy = 0.2, values in row 4,

but the evolution of skewness is inverse. Then, there is a inverse dependency

between ρ and skewness but influence of µ is very important and may change the

tendency.

A previous analysis of the influence of the value of mean and variance and

their effect over skewness was considered. In next section, a more exhaustive

study of this influence is explored.

Graph evolution of skewness as a function of mean and standard deviation

is represented in Figure 5. In the first graph, we consider µx = 1, µy, σy = 1

and we depict skewness vs. σx, for three different values of µy = 0.5, 1, 5. When

σx increase, skewness increase until a point where decrease, higher values of µy

produce faster decreasing for skewness. In this cases, there is a direct relation

between skewness and ratio µ
σ
. At the second one, we consider µy = 1, σx = 1,

σy and we depict skewness vs. µx, for three different values of σy = 0.2, 1, 2. The

effect is very similar to the latter, but now: when σ is lower the decreasing of

skewness is smaller than for higher values of σ, that is, the inverse effect between

skewness and ratio inverse of the coefficient of variation µ
σ
.
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Figure 5: Skewness.

3.2.2. Influence of parameters: mean and variance

Skewness for the product of two normal functions is a function of the values

of parameters of the distributions. In the previous section it was show that the

influence of the ratio (inverse of the coefficient of variation) was direct, so that

the higher the value of it, there was a lower value of skewness, but this influence
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appeared nuanced if we considered the particular values for the parameters of

the distribution. There is a strong dependence on the value of the standard

deviation, so that the higher the value faster the skewness approaches zero, which

contradicts, in part, that a greater ratio lower value of skewness. On the other

hand also the average value had influence that the higher the average value also

decreases the value of skewness.

From the moment-generating function as in (2.6), skewness (Sk) of a prod-

uct of two normally distributed variables x ∼ N(µx, σx) and y ∼ N(µy, σy) is a

function of the parameters of the two uncorrelated distributions:

(3.6) Sk =
6µxµy σ2

x σ2
y

(

µ2
y σ2

x + (σ2
x + µ2

x) σ2
y

)3/2
.

When this value is zero, then skewness is zero, as a normal distribution. In the

following cases, skewness of the product of two normal variables is zero, Sk = 0:

µxµy σx 6= 0 and σy = 0 ;(3.7)

µxµy 6= 0 , σy 6= 0 and σx = 0 ;(3.8)

−2σx

√

µ2
y + σ2

y = 0 , µ2
y σx + σxσ2

y 6= 0 and µx = 0 ;(3.9)

µx 6= 0 , µ2
xσy + σ2

x σy 6= 0 and µy = 0 .(3.10)

Equations (3.8) and (3.9) represent Y and X as constants, then both cases

are not normal variables. For the other two cases, we can use the normal dis-

tribution as an approach of the product. For another situations, the product of

two normal variables is skewed and normal distribution doesn’t represent a good

approach for the product.

The evolution of Sk (3.6) follows the evolution of the equation (3.3). There

are three saddle point at (σx = 0), (σy = 0) and (µx = µy = 0), two minima at

(µx =σx, µy =−σy) and (µx =−σx, µy =σy), and two maxima at (µx =σx, µy =σy)

and (µx =−σx, µy =−σy). Range for skewness is in
[

− 2√
3
, 2√

3

]

.

Figure 6 represents values of skewness for several combinations of values of

parameters, the central part of the graph corresponds to values of µ near zero for

both distributions

The same effect appears in Figure 7. The product of two normal variables,

where µ ∈ [−2, 2] and σ ∈ [0.1, 5] was considered here. Upper figure represents

values from µx and µy, down figure represents values from σx and σy. Skewness

tends to zero when both means (µx, µy) are lower or when at least one of the

variances is small.
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Figure 6: Skewness (Sk) for the product of two normal variables
with µ ∈ {−2,−1, 0, 1, 2} and σ ∈ {0.1, 1.1, 2.1, 3.1, 4.1}.

In Figure 8, different values of parameters are considered and evolution

of skewness is represented: we observe the existence of a tendency, when

parameters are high values (> 1), the skewness tends to zero. Values for dis-

tribution represented in this figures are: σx ∈ {0.25, 1, 1.75, 2.5}, µx ∈ [0, 2],

µy ∈ [0, 2], σy ∈ {0.25, 1.25, 2.25}. In columns is represented evolution of σx and

σy in rows.

So far, the evolution of the skewness from a theoretical point of view ac-

cording to the formula obtained through the moment generating function was

analysed. In this last part, a number of real examples calculated using the Monte-

Carlo method to simulate two uncorrelated normal distributions was considered.

A total of 1,000,000 points were generated for each and their respective products

were obtained. With the data thus generated, were calculated: the mean, vari-

ance and skewness of the product distribution. The results are shown in Figure 9.

The distributions used in the simulation had the following characteristics:

X ∼ (µx, σx) with values for µx = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5}

and σx = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25} and Y ∼ (µy, σy) for the same

values for the parameters that variable X. In the Figure 9, evolution of the

graph represent the evolution of the parameters, at first cases we have small val-

ues for the four parameters and then, they grow following the sequence: σy, µy, σx

and µx.
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Figure 7: Skewness product of two normal variables.
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Figure 8: Evolution of skewness for the product of two normal variables.
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Figure 9: Evolution of skewness for the product of two normal variables
— Monte-Carlo simulation.

Skewness distribution is slightly different from the expected distribution,

and there are only few products where the value is zero or less than 0.1. It appears

to be a tendency that the value of skewness is small when all parameters of

the distributions are small and when there exists some high values for some

parameter. However, when all the parameters are big, skewness grow up.

4. SKEWNESS. CONSEQUENCES ON RISK

As it is referred in Mumpower and McClelland ([9]) skewed distributions

of risk estimates amplify the “winner’s curse” so that the estimated risk premium

for low-probability events is likely to be lower than the normative value. An ap-

plication of this, is the Probabilistic risk analysis (PRA), where the probability of

an event is based on frequency data, physical measurement or expert judgement.

In such situation the existence of some type of error is obvious. A simple decision

analysis situation could be a lottery of the form pay-off V ′ with probability p′,

otherwise 0 with probability (1 − p′). Assume that the decision-maker is an un-

biased, valid estimator of p and V ; however, those estimates are not perfectly

reliable, there is an associate noise or random error. Then we define:

(4.1) p = p′ + ep , V = V ′ + eV ,

where eV represents the error of the variable.

So thus, p and V are the observed values for decision-maker, if the error

term is symmetrically distributed so that, both variables could follow a normal

distribution with mean V ′ and variance S2
V and p′ and S2

p , respectively.
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At this situation, the decision-maker has two branches into the tree: one is

the lottery with expected value: EV = pV and the other is a constant value C.

Let C = EV .

We consider an example Mumpower and McClelland ([9]) involving a deci-

sion point with two options. The first consists of a simple lottery of the payoff

V ∼ N(4, 1) with probability p ∼ N(0.4, 0.01); the second one consists of a cer-

tainty C = 1.6. We define EV = p ∗ V , as a product of two uncorrelated normal

distributions. Applying the formulas for the moments we have:

1. Mean: E[EV ] = 0.44 = 1.6 = C ;

2. Variance: V (EV ) = 0.33;

3. Skewness: α3(EV ) = 0.506.

Then, the distribution of the product is positively skewed and as a conse-

quence, even though the expected value of EV and the value of C are the same,

it is more likely that any randomly drawn single estimate, EV will be lower

in value than C. At this situation, a risk-neutral decision-making who bases the

choice by comparing both values, will select C with a probability greater than 0.5

since p(C >EV ) > 0.5. In our example, this value is exactly p(C >EV ) = 0.5339.

Value of the median of the EV distribution is 1.55122 < 1.6, lower that its ex-

pectation value.

Skewness is determined by the inverse of the coefficient of variation of the

two variables V and p. When the inverse of the coefficient de variation is reduced

then skewness will be high, and increasing the inverse of the coefficient of variation

a lower value for skewness is obtained. Then, decreasing the level of measurement

error this will not necessarily reduce the level of skewness.

From (3.3), value of skewness as a function of the inverse of the coefficient

of variation is

(4.2) α3(ρp, ρV ) =
6 ρp ρV

(

ρ2
p + ρ2

V + 1
)3/2

.

For our example, value of ρV = 4
1

= 4 that is equal to ρp = 0.4
0.1

= 4.

Considering ρV = 4 as constant, varying ρp and using first derivative of (4.2)

we obtain:

(4.3)
∂α3

∂ρp

=
24.

(

ρ2
p + 17.

)3/2
−

72. ρ2
p

(

ρ2
p + 17.

)5/2
.

Skewness (4.2) has two maxima at ρp = 2.91548 and ρp = −2.91548, then

is an increasing function in (0, 2.91548) and then it decreases. Thus if the ρp

increases, skewness could be increased.

For ρV conclusions are the same for the symmetry of the expression (3.3)

with respect to both values of the inverse of the coefficient of variation.
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These results are in the following proposition.

Proposition 4.1. Let V ∼N(µV , σV ) and p ∼N(µp, σp) be two normal

uncorrelated distributions. We consider the variable product EV = pV , the skew-

ness of EV is a increasing function for ρp and for ρV , where ρp =
µp

σp
and ρV = µV

σV

are the inverse of the coefficient of variation.

Skewness in the product of normal distributions has several implications on

the risk analysis:

• The mean value is not the mode of the distribution.

• Risk-neutral decision-making choice using the median value of the prod-

uct distribution and then, the probability of choice C as greater than 0.5.

• Decreasing the level of measurement error will not necessarily reduce

the level of skewness.

• For the product of two uncorrelated normal variables there exists a

maximum value for skewness
(∣

∣

∣

2√
3

∣

∣

∣

)

.

5. CONCLUSIONS

The product of two normally distributed variables is an open question.

This product could be considered a normally distributed variable in specific cir-

cumstances. Craig ([3]) and other authors later calculate the moment-generating

function for the product and consider that the product is normally distributed

when the inverse of coefficient of variation is high-valued.

In this paper we calculate the moment-generating function and we have

used it in order to estimate the skewness of product distribution. When the

value of the mean of at least one variable is high (> 1) then skewness is low, and

when the value of mean is low, skewness is high. This relation lead to several

questions that we have shown.

When the variables are correlated skewness is very common and normality

of the product is not hold. When the variables are uncorrelated, the existence

of skewness is a function of mean and variance of the two distributions. When

the inverse of the coefficient of variation is high, skewness is low, but only when

the variance is not low; the existence of a variable with a low value for variance

produces the existence of skewness into the product of variables.

Skewed distributions of joint probability estimates and expected value

estimates can affect the risk and consequently the choices of decision-makers.

We have shown the effects in a particular probability risk analysis model.
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1. INTRODUCTION

When we consider fractal based cancer diagnostic, many times a statistical

procedure to assess the fractal dimension is needed. We shall look for some ana-

lytical tools to discriminate between cancer and healthy ranges of fractal dimen-

sions of tissues (see [3, 19]). Fractal dimension may also help for early diagnosis of

breast cancer, which is the key for breast cancer survival. Breast cancer, hereafter

described as mammary cancer, is the most common cancer in women. The alge-

braic and topologic properties of cancer growth are available via appropriate set

structure, e.g. bornology (see [20, 21]) or topology (see [28]). Here we illustrate

some issues on discrimination between mammary cancer (mamca) and masto-

pathic (masto) tissues, which is follow-up of study of [13]. The data contains 391

histological images of mammary (n = 192) and mastopathic (n = 199) tissue,

which were used to compute the box-counting dimension by means of ImageJ

software [1]. We refer to [12] or [13] for more details how the fractal dimension

was obtained. A modelling procedure for mammary cancer and mastopathy on

the basis of randomized fractals has been introduced in [12], showing that this

flexible model can reconstruct the development of the tissue of both, cancer and

mastopathy. This approach allows to measure the fractal dimension with the aid

of box-counting dimension, in order to observe the development of the tissue over

time as well as to discriminate between these two groups.

Mammogram or sonogram examinations have been used as a first step in

cases of breast cancer suspicion. Since biopsy, which is an invasive surgical oper-

ation imposing psychological and physiological stress for patients, has to be used

to confirm the disease to date, other diagnostic tools with accurate diagnostic

rates are of interest to be developed. Recently, computer aided diagnosis systems

(CAD) are frequently investigated by researchers, see [4] among others, however,

we discriminate between mastopathy and cancer on the basis of statistical differ-

ences (e.g. in terms of underlying distributions) in the fractal dimension of the

two groups.

2. SIMPLE DISCRIMINATION BETWEEN MASTOPATHY AND

MAMMARY CANCER BASED ON THE BOX-COUNTING

DIMENSION

We consider boxplots in Figure 1 in order to have a graphical comparison

between the two groups. Therein, the box-counting dimensions seem to be on

average lower for mammary cancer tissue in addition that some candidates for

outliers are apparent in the lower boundaries.
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Figure 1: Boxplot of the groups mastopathy (left) and mammary cancer (right).

If we will follow the simple concept that higher dimension is more risky,

the issue is that we will arrive with this dataset to some sort of contradiction.

When we make a simple clustering based on ordering the box-counting dimen-

sion and decide to tell that more risky tissue has a box-counting dimension bigger

than the median (1.5972) and non-risky tissue is below, then we only classified

135 of mamca and 60 of masto below. Recall that 199 observations contain the

characteristic mastopathy and 192 observations mammary cancer. Even using

the arithmetic mean of 1.587391 decreases the number of classified tissues to 128

for mamca and 56 for masto. Based on this simple example we can conclude

that we need a more sophisticated procedure based on the box-counting dimen-

sion to discriminate between the two groups and we should take more detailed

characteristics of the tissue into account. In extremal case there is no possibility

to develop automatic clustering based on box-counting dimension, which could

avoid histological expert examination.

Figure 2 indicates that using the only single box-counting dimension estab-

lishes inverse problems, which are ill posed. Loosely saying we need a continuous

dimension spectrum, e.g. multi-fractal dimension spectra. It has already been

used in breast cancer discrimination by [6, 10, 22]. A multifractal system is a

generalization of a fractal system in which a single exponent (the fractal dimen-

sion) is not enough to describe its dynamics; instead, a continuous spectrum of

exponents (the so-called singularity spectrum) is needed. This also relates to

Tweedie exponential dispersion models, which, as a special case, contain both

normal and gamma distributions. This is further justification for these two sim-

ple distributional families: in the case of our empirical data we have found a

strong deviation from normality for mastopathy, and therefore we used gamma

G(α, β) and Weibull W (k, λ) distribution. In contrast to that mammary cancer

data is also tested for normal distribution in the following.
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The distribution of the ordered observations of the different groups is high-

lighted in Figure 2. Apparently, mammary cancer tissue have on average lower

dimensions (dashed line) compared to mastopathological tissue (solid line). These

conclusions were already recognizable due to the comparison of the mean as well

as the interquartile-distance within the boxplots.
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Figure 2: Plot of the dimensions discriminated between the groups
mastopathy and mammary cancer.

3. TESTING FOR DISTRIBUTIONS OF THE GROUPS

Separating the data and testing for distributional fit of the groups may

lead to further information on group discrimination. Therefore, maximum likeli-

hood procedures have been conducted in order to estimate fitting parameters for

gamma and Weibull distribution for fractal dimension of the mastopathy. Esti-

mation for gamma distribution yields a shape equal to 162.58 and scale equal to

98.85, which results in a p-value of 0.15 by usage of Kolmogorov–Smirnov-test

(KS-test). For Weibull distribution the two distribution forming parameters were

estimated as 16.20 and 1.70. Testing with those parameters gives a p-value of 0.96.

Fitting the distributions with estimated parameters in addition to the histogram

is plotted on the left part of Figure 3. A better fit of the mammary cancer data

with normal distribution has been seen in previous calculations. ML-estimations

are computed in order to continue the testing procedure with gamma (α̂ = 129.50

and β̂ = 84.76 results in p = 0.43) and Weibull (k̂ = 13.23 and λ̂ = 1.59 gives

p = 0.20) distributions. In addition to that mean (1.53) and variance (0.017)

are computed to fit normal distribution (p = 0.66). These p-values show that
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gamma, Weibull, and normal distribution may not be rejected to fit mammary

cancer box-counting dimensions. The right plot of Figure 3 shows the fit for the

fractal dimension of mammary cancer data with the parameter estimates given

above. Therein, gamma distribution is presented as solid line, Weibull distribu-

tion as dotted line and normal distribution is visualized with a dash-dotted line.
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Figure 3: Fit of mastopathy (left) and mammary cancer (right) groups separately.

Table 1 provides the shape and scale parameters for both gamma and Weibull

for the complete data as well as both groups separately. Note that parameters

for normal distribution are not provided due to lack of comparability, since only

for mammary cancer data this distribution was not rejected.

Table 1: Computation of p-values for gamma and Weibull distribution
with shape and scale parameter for both, complete data and
separated by groups mastopathy and mammary cancer.

Distribution Group shape scale p-value

Gamma
All 120.84 76.12 0.22
Masto 162.58 98.85 0.15
Mamca 129.50 84.76 0.43

Weibull
All 13.25 1.65 0.39
Masto 16.20 1.7 0.96
Mamca 13.23 1.59 0.20

Note that for the total data we received estimator of shape estimator 120.84

and a scale estimator of 76.12 for gamma distribution. KS-test of this set of pa-

rameters results in 0.22. Moreover, ML estimation for Weibull distribution gives

the estimators 13.25 and 1.65 with a corresponding p-value of 0.39. Therefore,
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one can see that discriminating between the groups yields differences in terms

of underlying distribution parameters. Adjusting the data for outliers results in

negligible differences in the estimates.

In the following we will apply that the sum of squared independent standard

normal distributed random variables follows Chi-Squared distribution. We will

assume:

• The differences between the curves are standard normal distributed.

Therefore, Shapiro–Wilk-test can be used. On the given dataset it re-

sults in a rejection of the null-hypothesis of standard normal distribu-

tion. Hence, there is another possibility to justify the condition in order

that usage of Chi-Squared distribution is allowed.

• The squared differences are Chi-Square distributed with one degree of

freedom.

Computing the sum of the squared differences delivers a value equal to

5.38. A Chi-Square-test was accomplished to test whether we can distinguish

between two groups within the data. The p-value of the distribution function of

the Chi-Squared distribution with 199 degrees of freedom is approximately one.

This p-value is another proof that the two groups are different. Furthermore, we

made a standardization (by subtracting the mean and dividing by the standard

error) of the previously calculated differences. The distribution function at the

sum of standardized squared differences of 198 and 199 degrees of freedom is

0.49331. Hence, this p-value does not yield enough support to reject the null

hypothesis of differences between the groups. However, the property of the data

(only positive values) as well as high flexibility of gamma distribution leads us to

hypothesis for gamma distribution. We simulated in order to maximize p-values

with changes in shape and scale parameters of gamma distribution. By reducing

the shape parameter and in contrast to that increasing the rate (reducing the

scale parameter), Table 2 shows a convergence to higher p-values.

Table 2: Simulation of p-values with given shape and scale parameter.

shape scale p-value

0.45491680 1

0.45729929
8.354 ·10−5

0.48 1

0.4573
3.7 ·10−12

0.44 1

0.4673
1.65 ·10−11

0.425 1

0.48
1 ·10−9

0.42 1

0.48
0.0049

0.425 1

0.48
0.0449

0.43 1

0.48
0.0097

0.42 1

0.485
0.1272

0.415 1

0.485
0.0996
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We can see with the aid of KS-test that we will find a rather good fit for

specific values of the parameters. Thereby, the shape parameter of 0.415 and a

scale parameter of 1/0.485 delivered an accurate p-value of 0.0996. The test with

a shape parameter of 0.42 delivered an even better p-value of 0.1272. Therefore,

it can be assumed that the standardized differences are gamma distributed with a

shape parameter lying in between the range [0.415, 0.42] and the scale parameter

close to 2.06 ( 1
0.485

). Therefore, we compare the standardized differences with

generated random variables of a gamma distribution, with a shape parameter of

0.415 and a scale parameter of 2.062 in Figure 4.
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Figure 4: Comparison of standardized differences with
random variables of a gamma distribution.

Shapiro–Wilk tests deliver a p-value for mammary cancer tissue of 0.0452

and a value smaller than 0.001 was obtained for mastopathic tissue. Hence, for

a significance level of 95% both p-values are too small to state that the box-

counting dimension of mammary cancer tissue or mathopathic tissue is normal

distributed. QQ-Plots in Figure 5 are another indication, that mastopathy is not

normal distributed, but normal distribution of the dimensions of mammary cancer

should not be rejected without further analysis. Indeed, the lower quantiles differ

significantly from the comparative line in the range of −3 to about −1.5 of the

theoretical quantiles. Therefore, outlier detection for mammary cancer data with

usage of box-plot rule has been performed. These computations are performed

with q0.25 − 1.5 · IQR and q0.75 + 1.5 · IQR, where IQR is the interquantile range

as q0.75−q0.25 and qα is the α-quantile. Four candidates for outliers from the lower

end of the data were obtained and removed in order to yield useful information

on the distributional behavior of mammary cancer tissue. The according p-value

has significantly increased up to 0.5716 and therefore, it can be assumed that

the modified data is normal distributed. Another indication for normality of
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this group are histogram and QQ-Plot of the modified data in the second row of

Figure 5. Both of the plots suggest that the modified box counting dimension of

mammary cancer tissue is normal distributed.
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Figure 5: Top row: QQ-Plot of the groups mastopathy (left) and mam-
mary cancer (right). Bottom row: Histogram and QQ-Plot
of mammary cancer data without outliers (n = 188).

Robust normality testing procedures have been applied to both groups.

Therefore, data has been truncated in the lower boundaries, such that only tissue

higher than threshold ε has been taken into account. Shapiro–Wilk tests have

been used to compute p-values for the fit of normal distribution. The develop-

ment of p-values can be found in Figure 6, where especially modified box-counting
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dimensions of mammary cancer tissue can be seen as normally distributed in con-

trast to mastopathic tissue box-counting dimensions. This test approach unfolds

the different behaviour of the box-counting dimension with respect to normality.
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Figure 6: Test for normal distribution with truncated data for both groups.

Therefore, truncation of the data from the lower boundaries reveals mammary

cancer box-counting dimension is more robust with respect to normality than

mastopathic tissue.

4. MULTIFRACTAL ANALYSIS OF MAMMOGRAPHY:

A WAVELET BASED APPROACH

Multifractal analysis is concerned with describing the local singular behav-

ior of measures or functions in a Geometrical and Statistical fashion. It was first

introduced by Mandelbrot in the context of turbulence (see [17, 18]) even if the

term “multifractal”, was successively proposed by [9].

Multifractal structures have been found in various contexts. Most promi-

nently in studies of turbulence, stock market exchange rates, geophysics and

recently also in traffic, introducing fruitful and novel aspects to the mentioned

fields. The basic concept of multifractal analysis is to assess fractal dimensions

of self-similar structures with varying regularities and to produce the distribu-

tion of indices of regularity, which constitutes the multifractal spectrum (MFS).

The multifractal formalism relates the MFS to the partition function measur-

ing high-order dependencies in the data. In the following we will describe the

wavelet-based multifractal spectrum (WMFS) proposed by [11, 23, 24] and we

will apply it to a sample of mammographic images. The advantages of using the

wavelet-based MFS are availability of fast algorithms for wavelet transform, the
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locality of wavelet representations in both time and scale, and intrinsic dyadic

self-similarity of basis functions. The multifractal formalism is based on the con-

cepts of the partition function which can be defined in terms of wavelet coefficients

as

(4.1) T (q) = lim
j→−∞

log2 E |dj,k|
q ,

where dj,k is the wavelet coefficient at level j and location k, and q is the order of

moments. We emphasize that q is a real number within a certain range covering

the negative numbers as well [11]. Even though (4.1) is very informative, the sin-

gularity measure is not explicit. It was proposed in [11] that the local singularity

strength could be measured in terms of wavelet coefficients as:

(4.2) α(t) = lim
k2j→t

1

j
log2 |dj,k| ,

where dj,k is the normalized wavelet coefficient at scale j and location k. The

local singularity strength measure (4.2) converges to the local Hölder index of

the process at time t. Small values of α(t) reflect more irregular behavior at

time t. Any inhomogeneous process has a collection of local singularity strength

measures and their distribution f(α) forms the MFS. A useful tool to estimate

the MFS is through the Legendre as follows

(4.3) fL(α) = inf
q

{

qα − T (q)
}

.

It can be shown that fL(α) converges to the true MFS by using the theory of

large deviations [8]. If we rearrange (4.1), it becomes

(4.4) E |dj,k|
q ∼ 2jT (q) as j → −∞ .

A standard linear regression can be used to estimate the partition function

T (q) since the values E|dj,k|
q could be easily obtained by the moment-matching

method.

Let Ŝj(q) = 1
2j

∑N2−j

k=1 |dj,k|
q be the empirical qth moment of the wavelet

coefficients (N is the length of the time series). By applying the Central Limit

Theorem, ̂Sj(q) → E|dj,k|
q as N →∞. Then, using the scaling property of the

wavelet coefficients given by dj,k = 2jHd0,k, we have that ̂Sj(q) is asymptotically

normal with mean 2jT (q)E |d0,0|
q and variance σ2

j,q =
22jT (q) Var |d0,0|q

2−jN
(see, [11]).

Considering the logarithm transformation of Ŝj(q) we can write

(4.5) log2 Ŝj(q) = j T (q) + εj ,

where the error term εj is introduced from the moment matching method when

replacing the true moments with the empirical ones. Using approximation the-

orems (see, [26]) one can prove that the log2 Ŝj(q) is asymptotical normal with
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mean and variance described by [11]. The ordinary least square (OLS) estimator

gives the estimation of the partition function,

(4.6) ̂T (q) :=

j2
∑

j=j1

aj log2
̂Sj(q) ,

where the regression weights aj must verify the two conditions
∑

j aj = 0 and
∑

j j aj = 1 (see [2] and [5]). Thus, we can estimate f(α) through a local slope

of ̂T (q) at values

α̂(ql) =
[

̂T (ql+1) − ̂T (ql)
]

/q0 , ql = lq0 ,

as
̂f
(

α(ql)
)

= ql α(ql) − ̂T (ql) .

Multifractal spectra can even be found for monofractal processes, where

the spectra generated from such processes are ramp-like with a dominant (modal)

irregularity corresponding to the theoretical Hurst exponent (see [23]). The MFS

can be easily generalized to higher dimensions (see [6, 22]).

4.1. Multifractal descriptors

The multifractal spectrum can be approximately described by three canon-

ical descriptors, which are:

(1) Spectral Mode (Hurst exponent, SM);

(2) left slope (LS) or left tangent (LT );

(3) width spread (Broadness, B) or right slope (LS) or right tangent (RT ).

A typical multifractal spectrum can be quantitatively described as shown in Fig-

ure 7. In particular, SM represents the apex of spectrum or most common Hölder

regularity index α found within the signal, and LS (or LT ) represents the slope

of the distribution produced by the collection of Hölder regularity index α with

smaller values of the mode (SM). However, broadness (B) is a more intricate

descriptor of the multifractal spectrum. Broadness (B) is believed to be more

meaningful than right slope (RS) or right tangent (RT ), because it is a com-

pound measure representing the overall nature of the multifractal spectra, taking

into account the overall variability among the Hölder regularity index α. In ad-

dition, broadness (B) partially accounts for right slope (RS) or right tangent

(RT ) in calculation, as the resulting value of B is based on the relative values

of RS and LS. Both slopes (or both tangents) can be easily obtained using the

interpolation technique, while it is not straightforward to define the broadness

(B) automatically. There are many ways to define the broadness (B). In this

work, we select the method proposed by [27]. The overall multifractal descriptors

are also graphically presented in Figure 7.
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Figure 7: Illustration of geometric descriptors of multifractal spectra.
Note that the horizontal axis represents values of Hölder regu-
larity index α(q), while the vertical axis represents values pro-
portional to the relative frequency of these indices, f(α(q)).

4.2. Application to mammographic tissue images

In this section, we apply the wavelet-based multifractal spectra to two

digital mammogram images (shown in Figure 8) of size 512 × 512 representing

mastopathic and cancerous tissues. We refer to the paper of [12] for a detailed

description of the images.
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Figure 8: (a) Mastopathic tissue;
(b) Mammary cancer (invasive ductal mammary carcinoma).
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First, we perform the 2D discrete complex wavelet transform for each image

of size 512× 512 by using complex Daubechies 6-tap filter (see [12, 15]), then we

evaluate the wavelet multifractal spectra by extending (4.1) and (4.3) to 2D.

Figure 9 compares the multifractal spectrum of the mastopathic tissue with the

cancerous mammogram image. Although they seem to have a similar behavior it

is evident that the Hurst exponents representing the local regularity are different

for the two images.

Figure 9: Wavelet multifractal spectrum for the mastopathic tissue (solid
line) and cancerous tissue (dashed line). The filled dot and the
asterisk on the horizontal axis represent the spectral mode for
the mastopathic and cancerous tissue, respectively.

The different fractality is also confirmed by the calculation of the multi-

fractal descriptors shown in Table 3. The mastopathic tissue seems to be more

regular than the cancerous one (the regularity is represented by the SM or Hurst

exponent) and the range (or broadness) of the local Hölder index is larger than

for the cancerous tissue.

Table 3: Wavelet multifractal descriptors.

Tissue H L1 L2 R1 R2 B

masto 0.26 2.2 −1.2 0.89 −0.70 0.51
mamca 0.13 2.8 −1.2 1.15 −0.76 0.43

Hence, we conclude that the multifractal spectrum and its descriptors could

be used in classification algorithms for discriminating between mastopathic and

cancerous tissue. This could provide an automatic tool to support medical deci-

sions.
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5. DISCUSSION AND CONCLUSION

Due to its prevalence and mortality a cancer diagnosis is one of the main

fears of the general public. Certainly due to modern diagnostic tools as well as

improvements in therapy, cancer can be seen as a chronic disease, where some

of the patients will be living for several years after diagnosis. Earlier studies

have proven that a positive attitude will lead to a significant increase in life

expectancy of cancer patients. The risk of suicide or a burn-out is rapidly in-

creasing within the first weeks after cancer diagnosis due to the very stressful

first period. Utilizing psycho-oncologic care gives assistance in these situations.

However, this option is quite unknown to most patients such that only 1% uses

this support [25]. All these facts support the necessity to find quick, semi or full-

automated methods for tissue discrimination. The discrimination between the

groups in terms of distributional fit allows the interpretation that more abnor-

mal tissue follows normal distribution. Moreover, it has been shown that gamma

as well as Weibull distributions are proper distributions for fitting mammary as

well as mastopathic box-counting dimensions. Combining several instruments

for cancer testing is of major importance, because e.g. deciding for mammary

cancer or mastopathy just on the basis of box-counting dimension may lead to

many miss-specifications. Medical staff can be supported in the decision process

by these fractal measures, nevertheless, other supporting tools as shape analysis

of the cancer (see [14] among others) or alternative cancer therapies in cases of

high risks for cancer (see [25]) are desired to have the highest possible medical

attendance for patients. Additionally the impact of environmental factors on

developing cancer or as preventive strategy have to be taken into account.

Criticism on the use of screening mammography due to over-diagnosis led

some researchers to show that one in three breast cancers identified by mammog-

raphy would not cause symptoms in a patient’s lifetime (see [16]). Therefore, al-

ternative and accurate screening technologies must be developed. The functional

and technical background of dynamic infrared (IR) imaging has the potential

for early detection of breast cancer and treatment response evaluation if opti-

mal diagnostic algorithms are developed. We have shown that the wavelet-based

multifractal analysis of dynamic IR thermograms is able to discriminate between

cancerous breasts with monofractal (cumulative) temperature temporal fluctua-

tions characterized by a unique singularity exponent (h = c1), and healthy breasts

with multifractal temperature fluctuations requiring a wide range of singularity

exponents as quantified by the intermittency coefficient c2 ≫ 0.
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[19] Mrkvička, T. and Mattfeldt, T. (2011). Testing histological images of mam-
mary tissues on compatibility with the boolean model of random sets, Image Anal.

Stereol., 30, 11–18.

[20] Paseka, J.; Solovyov, S.A. and Stehĺık, M. (2015). Lattice-valued
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1. INTRODUCTION

In recent years, mainly because of the economic crisis that involves several

European countries, the measurement of credit risk plays an important role; it

simply concerns classifying out-of-sample units into two categories, bad and good,

but it is crucial for its implications. The different classes of risk such as Probabil-

ity of Default, Loss Given Default, Exposure at Default, Expected or Unexpected

Loss are subjects of special attention from financial institutions which are making

more and more frequently use of quantitative tools in decision-making. Credit

quality is in fact crucial to the profitability and stability of banking systems.

An approach to estimate the probability of default is represented by statis-

tical models, known as credit scoring techniques, and logistic regression is widely

used in this context (Stanghellini, 2009). Frequently we have data where one of

the two events is rare, so even in the case of all categorical explanatory variables,

contingency tables will have very low or zero frequencies in the cells related to

this event. Things get more extreme when there is at least one continuous vari-

able in the set of the explanatory variables. In this situation, estimation of the

logistic regression model may lead to high classification errors of rare units (King

and Zeng, 2001). The aim of this paper is to compare different techniques which

allow accurate estimation under these conditions.

The study is carried out on data selected from the AIDA database, concern-

ing balance sheet indicators of companies in the Tuscany region of Italy which

contains a large number of small and medium-sized enterprises. The event of

interest is the opening of insolvency proceedings for bankruptcy which, luckily

from an economic point of view, can be considered rare.

In order to face this problem we applied logistic regression to a retrospec-

tive data collection, using different sampling techniques: case-control sampling,

balanced random sampling and random oversampling (ROSE method). From

the full dataset we built a training and a hold-out sample: the first one forms

the basis of data for the implementation of the different methodologies, and the

second is used to compare the three classification methods on the basis of the Re-

ceiver Operating Characteristic (ROC) Curve (Fawcett, 2006). The theoretical

illustration of the three methodologies (Section 2, 3 and 4) is followed by a brief

description of the data (Section 5) and their application. The three models are

then compared, based on the area underlying the ROC Curve.
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2. THE LOGISTIC MODEL WITH BALANCED DATA

A prospective study often involves a long follow-up period and a large

sample and therefore many investigations relay on a retrospective technique.

The default status is regarded as a fixed variable, while variables specifying risk

factors are viewed as random conditional on the default status. A retrospective

study draws separate samples of cases (the bankruptcy event occurred) and con-

trols (good firms) and therefore a smaller total sample size is usually required

in comparison to a prospective study. Mantel and Haenszel (1959) and Man-

tel (1973) provide discussions of retrospective studies and their relationship with

prospective ones. The logistic model is widely used in the analysis of retrospec-

tive studies, but it is necessary to ensure that the retrospective sample includes

a representative sample of cases and controls from the population.

Let Y be the Bernoulli random variable taking value 1 when the event

occurs (bankruptcy) and 0 otherwise (good firm). Let x′ = (x1, x2, ..., xp) be a

covariate vector representing risk factors thought to be related to event under

study. Assume the suitability of the retrospective sample and that P (y |x) is

represented by the logistic model

(2.1) P
(

Y =1 |x
)

=
eα+β

′

x

1 + eα+β
′

x

,

where α is an unknown scalar parameter and β′ = (β1, β2, ..., βp) is an unknown

vector of coefficients. Now consider the hypothetical population to which (2.1)

refers and let the marginal distribution of the covariates be denoted by P (x).

We draw a random retrospective sample of size n, with n1 cases (Y = 1) and

n0 controls (Y = 0), in such a way that the marginal distribution of Y in the

retrospective sample has M good cases for each bad one.

Let Z be a binary variable which takes the value 1 if a unit is included in the

sample and 0 otherwise; moreover define K1 = P (Z =1 |Y = 1) the probability to

extract a default unit and K0 = P (Z =1 |Y = 0) the complementary probability,

both independent of the p dimensional vector of x covariates.

Let P (· |x, Z =1) = P ∗(· |x) represent the distribution which is conditional

on being observed in the retrospective sample. The probability distribution of Y

given x, conditional on being observed, is the following:

(2.2) P ∗
(

Y =1 |x
)

=
K1P

(

Y =1 |x
)

K1P
(

Y =1 |x
)

+ K0P
(

Y = 0 |x
) ,

log
P ∗

(

Y =1 |x
)

P ∗
(

Y = 0 |x
) = log

K1

K0
+ log

P
(

Y =1 |x
)

P
(

Y = 0 |x
) ,
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and substituting in the second term the logistic model expression, we have:

(2.3) log
P ∗

(

Y =1 |x
)

P ∗
(

Y = 0 |x
) = log

K1

K0
+ α + β1x1 + ··· + βp xp ,

where α and βj , j = 1, 2, 3, ..., p, are the unknown parameters. It then follows

that the logistic model for the retrospective balanced data has different intercepts

but equal slopes and inference about α would require knowledge of K1

K0
.

If α⋆ denotes the intercept in the logistic model in the population with

Z = 1, it follows that:

α = α⋆ − log
K1

K0
.

We indicate with the distribution P (x |y) the conditional distribution of the

covariates given the response and with P ∗(x |y) the same distribution conditional

on being in the sample. As the sampling is independent of the covariates, the two

distributions should be the same. The likelihood function for the retrospective

sample can then be written:

(2.4)
n

∏

i=1

P
(

xi |yi

)

.

Let P ∗(yi |xi) be the conditional distribution of the response given that the co-

variates in a unit i are observed in the sample. Furthermore, let P ∗(y) denote

the distribution of y and P ∗(x) represents the distribution of x conditional on

being in the sample. Then from Bayes’s rule (2.4) can be written as:

(2.5)
n

∏

i=1

P ∗
(

yi |xi

)

P ∗(xi)

P ∗(yi)
.

By the sampling scheme we know P ∗(Y =1) and P ∗(Y = 0) are respectively equal

to n1

n
and n0

n
. For maximum likelihood inference (V.T. Farewell, 1979) we maxi-

mize (2.5) subject to the constraint

(2.6)
∑

x

P ∗
(

Y =1 |x
)

P ∗(x) =
n1

n
,

where we have assumed that x is discrete. Anderson (1972) shows that the con-

strained maximum likelihood estimates of α∗ and β are algebraically equivalent

to the unconstrained estimates which maximize

(2.7)
n

∏

i=1

P ∗
(

yi |xi

)

,

while R.L. Prentice and R. Pyke (1979) show that the constrained estimation of

(2.5) is a reparametrization of a likelihood based on the population model, where

the constraints are defined in terms of the population value of P (Y =1) .
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3. THE LOGISTIC MODEL FOR MATCHED CASE-CONTROL

STUDIES

The logistic regression model for matched case-control studies, developed

and widely used in epidemiology, may be considered as a refinement of the logistic

modelling for balanced data. This method stratifies subjects on the basis of

variables believed to be associated with the outcome. Again, we assume that the

population model is logistic, as in (2.1). Within each stratum, samples of cases

(Y =1) and controls (Y = 0) are chosen, according to a 1−1 design or 1−M design,

where M is usually no more than five (Hosmer, Lemenshow and Sturdivant, 2013,

p. 243). Let K be the number of strata, n1k and n0k respectively the cases and

the controls within the k-th stratum, where k = 1, 2, ..., K. The stratum-specific

logistic regression model for a unit in the sample, is

(3.1) P
(

Y =1 |x, K = k) = πk(x) =
eαk+β

′

x

1 + eαk+β
′

x

,

where αk represents the contribution of all constant terms within the k stra-

tum (i.e. stratification variable or variables) and β the vector of the p coefficients

β′ = (β1, β2, ..., βp). From (2.3), it follows that the relationship between α and the

stratum-specific parameters αk varies among strata. Therefore, αk are nuisance

terms and should be eliminated from the set of parameters on which we want to

make inference. The conditional likelihood method gives consistent and asymp-

totically normally distributed estimates of the βj slope coefficients (Prentice and

Pyke, 1979). The conditional likelihood for the k-th stratum is the probability

that the observed case and control configuration is verified, conditioned on the

stratum total and total number of observed case. Denoting nk = n1k+n0k as the

number of subjects, the conditional likelihood for each stratum gives the proba-

bility to observe the data, conditioned on all possible assignment of cases n1k and

controls n0k. The number of possible assignments of case status to n1k among

the nk subjects is given by:

ck =

(

nk

n1k

)

=
nk!

n1k! (nk −n1k)!
.

Let the subscript j denote any one of these ck assignments; moreover let subjects

from 1 to n1k correspond to the cases and subjects n1k + 1 to nk to the controls.

Any assignment is indexed by i for the observed data and by ij for the j th possible

assignment. The conditional likelihood for the k-stratum is

(3.2) lk(β) =

n1k
∏

i=1

P
(

xi |Yi =1
)

nk
∏

i=n1k+1

P
(

xi |Yi = 0
)

ck
∑

j=1







n1k
∏

ij=1

P
(

xjij
|Yij =1

)

nk
∏

ij=n1k+1

P
(

xjij
|Yij = 0

)
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and the full conditional likelihood over the K strata would be given by the prod-

uct:

(3.3) L(β) =
K
∏

k=1

lk(β) .

Assuming (3.1) is true and applying Bayes’s rule to each P (x |y) term, we can

write equation (3.2) as follows:

(3.4)

lk(β) =

n1k
∏

i=1

[

P
(

Yi =1 |xi

)

P (xi)

P
(

Yi =1
)

]

nk
∏

i=n1k+1

[

P
(

Yi = 0 |xi

)

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1







n1k
∏

ij=1

[

P
(

Yij =1 |xjij

)

P (xjij
)

P
(

Yij =1
)

]

nk
∏

ij=n1k+1

[

P
(

Yij = 0 |xjij

)

P (xjij
)

P
(

Yij = 0
)

]







.

Remembering that P (Yi =1 |xi) = π(xi) and P (Yi = 0 |xi) = 1− π(xi) we can

write:

lk(β) =

n1k
∏

i=1

[

π(xi)P (xi)

P
(

Yi =1
)

]

nk
∏

i=n1k+1

[

[

1−π(xi)
]

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1







n1k
∏

ij=1

[

π(xjij
)P (xjij

)

P
(

Yij =1
)

]

nk
∏

ij=n1k+1

[
[

1−π(xjij )
]

P (xjij
)

P
(

Yij = 0
)

]







and also

(3.5)

lk(β) =

n1k
∏

i=1





eαk+β
′

xi

1+eαk+β′
xi

P (xi)

P
(

Yi =1
)





nk
∏

i=n1k+1

[ 1

1+eαk+β′
xi

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1















n1k
∏

ij=1









e
αk+β

′

xjij

1+e
αk+β′

xjij

P (xjij
)

P
(

Yij =1
)









nk
∏

ij=n1k+1





1

1+e
αk+β′

xjij

P (xjij
)

P
(

Yij = 0
)



















.

Moreover, collecting common terms of the form

1

1 + eαk+β
′

x

we can write (3.5) as:

(3.6) lk(β) =

n1k
∏

i=1

[

eαk+β′

xi

]

n
∏

i=1

[

1

1 + eαk+β′

xi

] nk
∏

i=1

[

P (xi)

P (Yi)

]

ck
∑

j=1







n1k
∏

ij=1

[

eak+β′

xjij

]

n
∏

ij=1

[

1

1 + eαk+β′

xjij

] nk
∏

ij=1

[

P (xjij
)

P (Yij )

]







.
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Further algebraic simplification leads to the following:

(3.7) lk(β) =

n1k
∏

i=1

eβ
′

xi

ck
∑

j=1

n1k
∏

ij=1

eβ
′

xjij

,

where β is the only unknown parameter.

In a 1−1 matched design each case is matched to a single control. Let x1k

and x0k respectively denote the data vector for the case and the control in the

k-th stratum, the conditional likelihood for the k-th stratum is

(3.8) lk(β) =
eβ

′

x1k

eβ
′

x1k + eβ
′

x0k

given specific value for β, x1k and x0k, equation (3.8) is the probability that

the unit identified as the case is in fact the case. If data for case and control

are identical, x1k= x0k, it follows from equation (3.8) that lk(β) = 0.5 for every

value of β and the stratum will be considered as uninformative meaning that the

covariates do not discriminate cases from controls.

In a 1−1 matched data design with a binary explanatory variable X, the

conditional maximum likelihood estimator is the log of the ratio of discordant

pairs (see Breslow and Day, 1980). It follows that it is advisable to classify

(in a 2×2 table) cases versus controls for each dichotomous variable to verify the

presence of discordant pairs: the absence of both types of pairs (x1k = 1, x0k = 0)

and (x1k = 0, x0k = 1) gives rise to an undefined estimator.

In a 1−M matched design each case is matched to M controls, so there

are M + 1 units in each stratum. Letting M = 4 and denoting by xk1 the case

and by xk2, xk3, x4k, x5k the controls in the kth stratum, the contribution to the

likelihood for this stratum of matched subjects from equation (3.7) is

(3.9) lk(β) =
eβ′

xk1

eβ
′

xk1 + eβ
′

xk2 + eβ
′

xk3 + eβ
′

xk4 + eβ
′

xk5

.

Given the coefficients’ values (3.9) gives the probability that the unit with the

observed data xk1 is the case relative to four controls with data xk2, xk3, xk4,

and xk5. If the four covariates have the same value, then lk(β) = 0.20 for each β

value. Hence, for each covariate at least one control should have a value different

from the case, otherwise the stratum would be considered uninformative.
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4. THE LOGISTIC MODEL FOR “ROSE” DATA

Random OverSampling Examples (Lunardon, Menardi and Torelli, 2014)

is a new procedure developed in the R language (R Development Core Team,

2015), based on the generation of new artificial data according to a smoothed

bootstrap approach (Efron and Tibshirani, 1993). Let P (x) = f(x) be the prob-

ability density function on X. Let nj < n be the size of Yj , j = 0, 1. A new

sample is generated by the following three steps:

1. select y = Yj , j ∈ {0, 1}, with probability 1
2
;

2. select (xi, yi) in the sample such that yi = y with probability pi = 1
nj

;

3. sample the vector of covariates x from the kernel probability distribu-

tion KHj
( · ,xi), centered on xi and depending on the matrix of smooth-

ing parameters Hj .

According to the ROSE method, in the training sample you extract a unit be-

longing to one of the two classes with the same probability. Then a new sample

is generated in its neighborhood of width determined by Hj . Generally KHj
, is

chosen as symmetric and unimodal. Therefore the generation of new samples for

the class Yi according to ROSE corresponds to the generation of data from the

kernel density estimate of f(x, Yj), with matrix of smoothing parameters Hj :

(4.1) f̂
(

x |y =Yj

)

=

nj
∑

i=1

pi P
(

x |xi

)

=

nj
∑

i=1

1

nj

P
(

x |xi

)

=

nj
∑

i=1

1

nj

KHj
(x− xi) ,

see Menardi and Torelli (2014).

5. DATA ANALYSIS

Data are drawn from the AIDA database 1, one of the most important

Italian databases containing historical balance sheets as well as financial, com-

mercial and demographic information on more than one million Italian firms.

We selected all the firms in the Tuscany region having positive revenues of sales

in the year 2006 and for these we extracted revenues, profits, fixed assets, financial

indicators, indexes of resultant profits and current management. On May 2010,

we verified their legal status: the database provides the legal status of each firm,

which is periodically updated without indicating the reference date; therefore, we

do not know the exact time at which a firm was declared bankrupt. The selected

time interval of four years is due to the delay between the bankruptcy event and

the availability of the company balance sheet. The distribution according to the

legal status is shown in Table 1.

1The database is distributed by Bureau Van Dijk s.p.a.; https://aida.bvdinfo.com/



166 Francesca Pierri, Elena Stanghellini and Nicoló Bistoni

Table 1: Companies’ distribution by state law in May 2010.

Legal status Frequency Percentage

Active 33798 89.23
Bankruptcy 537 1.42
Liquidation 2800 7.39
Not active 744 1.96

Due to the lack of information on the causes of inactivity and liquidation,

we included in the analysis only the firms that are active (33798) and bankrupt

(537). Data clearly shows the rareness of the default event (1.56%) and there-

fore the inadequacy of a logistic regression model due to the unbalanced data.

We built a training sample, to implement the methods, and a randomly selected

hold-out sample consisting of 10% of the whole sample. Since the aim of the

study is to compare three different methodologies, from among the balance sheet

indicators we selected those that were found to be most informative in a previous

case-control study (Pierri, 2013) on the same data.

Logistic regression is estimated on three different data sets: a balanced

sample with 2505 observations where the frequencies of Y0 and Y1 are respectively

501 and 2004; a stratified sample (2440 observations) with strata formed on Legal

Form and the first two numbers of the ATECO code (industry sector) jointly

considered, where the frequencies of Y0 and Y1 are 488 and 1952, respectively;

and a ROSE data set of 68000 observations where the frequencies of Y0 and

Y1 are respectively 33671 and 34329. We used the ROSE routine included in

R software to generate data based on the ROSE method.

In the multivariable logistic model we considered as explanatory variables

Net Profit (NP), Asset Coverage Index (AC), Liabilities index (L), Quick Ratio

(QR), Debt Ratio (DR), Asset Turnover (AT) and EBITDA value. The linearity

in the odds of these variables was checked following the methodology proposed by

Hosmer, Lemenshow and Sturdivant (2013, Ch. 4): transformation of variables,

applied where necessary, led to a final model including two quadratic forms.

For a detailed implementation, see also Pierri, Burchi and Stanghellini (2013).

We refer to Table 2 for a summary of our main results. The logistic model on

the balanced sample indicates that for Asset Turnover the quadratic form is not

statistically significant. The same holds for the ROSE sample where Net Profit

is also not significant. The same table also displays the estimated coefficients

for the models considering only the significant (p < 0.05) covariates (Balanced2

and ROSE2). Balanced and case-control methods produce close estimates, while

ROSE method gives smaller values. This may due to the use of artificial data.

The economic interpretation of the model is also consistent with the expected

results: Tuscany region is characterized by small and medium-sized enterprises

as the 98% of the Italian firms. In this context the financial structure plays an
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important role, because they are often under-capitalized. From data in Table 2 we

can notice that the forms of debt that a company chooses is of great importance

in determining the probability of default: the negative value of the Debt Ratio

combined with a positive Asset Coverage Index, show that the probability of

having a healthy company increases if you prefer forms of internal financing.

Moreover companies with a positive Quick Ratio and a negative Liabilities Index

are less exposed to the risk of default as more able to obtain long-term funding,

while short-term debt may compromise the health of a company.

Table 2: Estimates of the coefficients applying the three different methods.

Explanatory
Balanced Balanced2 ROSE ROSE2

Case

Variables Control

NP 0.00063 0.00064 2.22e−07* — 0.00241
AC 0.12323 0.12541 0.05821 0.05813 0.10371
AC2

−0.01069 −0.01082 −0.00636 −0.00636 −0.01176
L −1.05589 −0.98879 −0.61510 −0.61631 −0.88630
QR 0.59219 0.60493 0.44750 0.44740 0.72559
DR −0.00583 −0.00590 −0.00174 −0.00174 −0.00472
AT 0.47878 0.3058 0.26130 0.26927 1.02132
AT2

−0.05038* — −0.00289* — −0.17471
EBITDAV 0.01522 0.01520 0.00747 0.00747 0.00574

(* p-value > 0.1)

We compared the predictive and discriminatory ability of the three methods

looking at the ROC curves built with the hold-out sample. In Figure 1 we notice

that the logistic model on balanced data (AUC = 0.7955) has the greatest capa-

bility to discriminate between good and bad firms while ROSE (AUC =0.7645)

Figure 1: Estimated ROC curve in the three models using hold-out
sample: Balanced (AUC = 0.7955); ROSE (AUC = 0.7645);
Case Control (AUC = 0.7686).
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and Case-Control (AUC = 0.7686) methods exhibit very similar results to each

other. Testing the difference between their AUC, we find a significant difference

(p-value < 0.05) only between Balanced and both Case Control and ROSE areas.

We achieve similar results if we consider ROC curves built for Balance2 (AUC =

0.7911) and ROSE2 (AUC = 0.7685) models.

6. DISCUSSION

Three different methodologies have been compared. On the basis of the

data and the model applied, the oversampling (ROSE) and case-control studies

methods seem to give very similar results, on the other hand logistic regression

on balanced data show the best predictive capabilities. We underline some par-

ticularities: ROSE allows only for continuous covariates; in case-control studies,

confidence intervals are generally narrower than in standard logistic regression,

but does not produce the predicted probability of bankruptcy; standard logistic

regression, applied over a random balanced sample, is very easy and quick to

implement. Future developments of this study will test whether stepwise model

selection procedures applied to the different datasets will lead to different models.
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1. INTRODUCTION

An insurance company bases its production model in the value of a com-

modity with unknown cost by the time of production. Furthermore, the company

“purchase” claims and “sell” safety, if a company buys the claims at a low price

then it makes money; if it buys the claims at an expensive price then it loses

money. In the value chain, a company can rely on the law of large numbers that

mitigates volatility and market uncertainty — provides security on average.

The bottom line of a company is then how to evaluate the purchase price

of claim: What is the cost of a risk (pure premium)? Usually an insurer has

historical data that allow to estimate this value: based on the behavior of their

customers it is reasonable to offer a premium, that is identical to the liabilities as-

sumed (adding administrative costs, distribution and shareholder remuneration).

But how should an insurer do to price a risk, for which there is no history? Should

a company to “pay to view” — risking prices and their future sustainability?

What should an insurer do if both — market and risk — are unknown?

From a practical point of view these questions are extremely important

once the market has a strong barrier to overcome — the knowledge of the cost

of raw materials. However there are solutions available in the literature. Some

companies:

• Hire experienced technicians that heuristically define a charging table.

Many investors are attracted to base their decisions on the information

“currently available in their minds”see (Nocetti [5] and [6]). Thus, many

times even when company has some historical data, experts opinions can

be more plausible than the detailed analysis.

• Adopt reinsurance for (almost) 100% of the costs, transferring the risk

for more experienced companies (which will draw a tariff) and that have

financial muscle (to support higher risks).

In both cases (hiring experienced technicians or reinsurance) there is risk,

and/or potential revenue loss. Are the companies locked to this reality? In any

case, the insurer will always bear the costs of administration and distribution.

The challenge assumes more interesting contours since it is known that

the player who first entered the market, or which has a higher market, has a

strong competitive advantage: its historical references provide knowledge, which

in this industry means the ability to determine more accurately the cost of the

raw material. The player with no experience, only will get an interesting share

if he gets a similar competitive advantage over the incumbent.

The aim of this work is thus to present a minimization method of pricing risk

by capturing the tariff model, enabling a comparative advantage in the market to
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smaller players (in terms of market share), with no relevant history and without

financial padding to buy knowledge in a significantly way that is assuming risk.

This capture method is based on the assumption that the smallest company can

access a reasonable number of simulations with surgically chosen risk profiles.

This collection can be performed, for example, by a mystery shopper or using

their own mediators.

The methodological approach for answering to this challenge, follows the

classic process of experimental design:

• Step 1: Identify the factors that define the product;

• Step 2: Identify levels that define the product;

• Step 3: Optimal Design;

• Step 4: Gathering information;

• Step 5: Analysis.

Considering the particular case of motor insurance an application will be

performed in the sequence.

This work is organized in the following chapters:

• General Linear Models. In chapter 2 attention is given to changing

pricing methodologies, particularly with regard to the GLM model as-

sociated to Tweedie distribution.

• Experimental design in context of a Tweedie population. The purpose

of chapter 3 is to build a sample design which minimizes the field of

endeavor, by using an Optimal Design and Box–Cox transformation.

This is a practical solution once considering Tweedie populations, the

variation component is not easily determined in an experimental design.

• Optimal Design. In chapter 4 the orthogonality concept is presented in

order to gather information and allows discussing their suitability to the

main objectives of the project: reducing the volume of information to be

collected in order to obtain a manageable model and efficient estimates

to facilitate the risk modeling. In this chapter special emphasis will

be given to Seemingly Unrelated Regression — SUR — in order to

maximize the predictability capacity.

• Applications. The methodologies explored in previous chapters are

applied in chapter 6. We are working on a confidential real database,

considering motor insurance data from a Portuguese insurance company

in 2011.

• Conclusion and remarks. In the last chapter 7 emphasis should be given

to the widespread conditions.
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2. GLM — GENERALIZED LINEAR MODELS

How does a company know that it is expensive or cheap to pay for a policy?

Going to market a company subscribes a policy and accept risks for which the

real cost is unknown.

The well known expression of what usually is known as pure premium,

which supports the rational of an insurance rate construction is:

(2.1) PurePremium = sinister frequency × averageclaimcost (+error) .

Usually an insurer apply statistical models to estimate the frequency of an acci-

dent and their average claim cost. This problem can be seen isolated (frequency

and average claim cost) or estimated jointly (Pure Premium). The concept of

regression tackles this problem successfully, whatever its formulation. It should

be noted that in a generalized regression model there are two components:

i) A random vector Y = (Y1, ..., Yn)′ is following a distribution with

unknown parameters vector µ = (µ1, ..., µn)′;

ii) A function relation between µ and the involved parameters’ vector

β = (β1, ..., βk)
′, such that µ = f(β), considering f(·) a continuous and

univocal function.

Following the terminology of Jørgensen ([15]), these two components are

referred respectively as the random component and the systematic component

of the model. The random vector Y is designated as the response, while the

random component can assume any stochastic process, including errors mea-

surement. The function f(·) is designated as the regression function and the

β parameters represent the regression parameters. This whole system of vectors

and distributions is defined though the average for each Yi on the conditions of µ,

E(Yi |µ). The variation associated with E(Yi |µ) provide a measure of the adjust-

ment quality.

An important class of regression models can be expressed as:

g(µi) = ηi , i = 1, ..., n ;

ηi =

k
∑

j=1

xij βj , i = 1, ..., n .

The function g(·) is continuous and unequivocal and is designated as link function.

The matrix X = {xij} is the design matrix model and xij are the covariates or

explanatory variables. A model of this form is said to be linear.

When g(·) is an identity function and Y distribution is homoscedastic or

even normal, the simple linear regression model is considered. Usually in this
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simple case parameters are estimated by the least squares error minimization or

by the maximum likelihood.

In some cases it is possible to question the type of function g(·) assumes

as well as the distribution associated with Y , which is a very convenient way to

determine the heterogeneity of the data. It is typical to assume that Y distribu-

tion is defined by a Poisson probability function and that Gamma distribution

is used to compute the average cost. When a claim frequency is the goal, to

establish the terms in (2.1) together, the most traditional mechanism is through

GLM composite models. In this case, a very convenient way to determine the

heterogeneity of the data is assuming that the Y distribution is defined by an

exponential distribution model (ED):

p(y, θ, λ) = α(λ, y) e[λ{yθ−k(θ)}] , with y ∈ R .

Note that α(·) and k(·) represent functions, and λ > 0 and θ belongs to a real

domain.

Thus, let Y ∼ED(µ, σ2) where µ = k′(θ) represent the expected value of Y

and σ2 = 1
λ

represent the variance where ED refers to the family of exponential

distributions and in Jørgensen ([15]) there is a particular case of this family

distributions, characterized by V (Y ) = σ2 = φ V (µ).

The particular cases of V (Y ) = σ2 = φ µp, to diverse p assume an important

class usually associated to the Tweedie distribution model. This class can be:

• a normal data generator when p = 0;

• a Poisson data generator when p = 1;

• a Gamma data generator when p = 2;

• an Inverse Gaussian when p = 3.

Considering 1 < p < 2 the Tweedie exponential distribution assumes the

expression:

p(y, θ, λ) =
∞

∑

n=1

{

(λω)1−α kα

(

− 1
y

)

}n

Γ(−nα) n! y
e[λ{yθ−kα(θ)}] , to y > 0 .

Let P (Y =0) = e{λωkα(θ0)} where kα(θ) = α−1
α

(

θ
α−1

)α
, θ0 = θλ

1

(1−α) , and ω repre-

sents the weight associated to the observation exposition. As we can observe, for

the Tweedie distribution the density function depends on the parameter p which

relates to the variance V (Y ) = σ2 = φ µp. This parameter p is thus defined ex-

ogenously before the estimation process, usually due to the analyst experience.

These GLM models are widely recognized in the industry. Anderson et al. ([1])

presents it as the standard method to define motor and other lines of commer-

cial branches tariffs. It is also indicate that these models are used by companies
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in the UK, Ireland, France, Italy, the Netherlands, Scandinavia, Spain, Portugal,

Belgium, Switzerland, South Africa, Israel and Australia. The referred paper also

states that this model has gained popularity in Canada, Japan, Korea, Brazil,

Singapore, Malaysia and Eastern European countries. More details on this dis-

tribution applied to the actuarial context can be obtained in Jørgensen and de

Souza ([17]).

The type of function g(·) follows some rationals, as the context of analysis

and distribution of Y .

3. EXPERIMENTAL DESIGN CONSIDERING TWEEDIE

POPULATIONS

It has been noted that insurance companies are usually using a way of

charging based on GLM that combine Poisson|Gamma model or on a composite

model (known as Tweedie model). For the sample design in Tweedie regression,

see Jørgensen and de Souza ([17]), it should be noted the following approaches,

which are well known in the literature:

(i) Sequential design: The sequential design for binary responses has

a rich history, which dates back to the 1940s, see Wald ([23]), on try-

ing to find designs which results lead to asymptotic properties, see

also Haines et al. ([12]), Ivanova and Wang ([14]) and Karvanen et al.

([18]). These authors concentrate their work on one factor designs

and the challenge in our work is to extend this research to multifac-

torial designs. In Woods et al. ([24]) and Dror and Steinberg ([8]),

solutions to this multifactoriality problematic are presented. How-

ever, such solutions are computationally complex, and the associated

methodology is based on “ebb and flow” and trial and error, making

the process complex and nonintuitive.

(ii) Design based on clusters: The Tweedie regression is based on the

estimation of three parameters vectors: ϕ, θ and p, where p conditions

affects the other two parameters computation. The design by clusters

seek to find homogeneous groups of observations in order to determine

p in an exogenously way. This idea is conceptually interesting, and is

computationally easy to perform.

In Dror and Steinberg ([7]) is suggested an approach based on K-means

cluster — since this process allows rapid exploration of various designs

outperform the existing alternatives. The authors mention “given the

set of location D-optimal designs, the core of the proposed method

is to combine them into the set of vectors location and use K-means

clustering to derive a robust design”.
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The possibility of finding an optimum location with this method has,

however, a serious problem with respect to the other model coeffi-

cients: how to evaluate the estimated degree of accuracy? The ques-

tion arises once the clusters were defined exogenously and a sample

experimental design is always reduced to allow“good”experiences per-

formance. As an avenue for improvement one can explore the use of

computational simulations to ensure the best model based on different

levels of p. Algorithms based on random forest may be an important

issue to consider. However this is not the main goal of this project.

3.1. Experimental design 1: A pragmatic solution in Tweedie popula-

tions

As the GLM models Tweedie are not easily applicable in the experimental

context it is necessary to find a pragmatic solution. The main problem is to have

an experimental model analysis under heterocedasticity conditions or dispersion

models, where Tweedie distribution fits well.

Trying to stabilize the variance, see Box and Cox ([4]), the usual method is

to determine empirically or theoretically the ratio between the variance and the

mean. The empirical relationship can be found by the logarithm and the average

graph, or to make a transformation in the dependent variable.

For positive expected value, the well-known Box–Cox Transformation is

frequently used:

(3.1) y(λ) =











xλ − 1

λ
to λ 6= 0 ,

log(x) to λ = 0 .

The choice of λ however, in our days, is usually done automatically, while

Osborne ([20]) and Harrison and McCabe ([13]) propose the following algorithm:

1. Splitting the key variable in 10 (or more) intervals;

2. Calculate the mean and standard deviation for each interval;

3. Design a graphic with log(σ) vs. log(µ) for each of the regions;

4. Estimate the average slope of the graphic, and use the 1 − λ as initial

value of λ.

It is important to refer that this algorithm is not an unanimous choice for

researchers and usually, as in Ripley et al. ([22]) it is assumed that the best way

to estimate λ is the one that guarantees the maximum likelihood. Drawing the

evolution of the maximum likelihood function can be useful in this case.
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However this method is not prudent, since any |λ| too high will reduce the

variability of the variable goal. Therefore when you re-build the target variable

of y(λ) to y the result may be an estimated variable without any variability. Some

software and statistical packages (MASS in R, STATA) maintain this approach,

but impose limits to y(λ), usually in y(λ) < 1, y(λ) < 2.

Finally, another alternative is to look for a λ value that makes sense to the

analyst. A careful reading of Box and Cox ([4]) points in that direction. So it

is noteworthy that the way loglin⇐⇒λ = 0 is theoretically the one that makes

more sense to use for the premium model, and is easier to interpret:

1. The distribution of total/pure premium costs (i.e. Tweedie with reliable

parameters) is visually close to a log normal or gamma;

2. The log-lin model has the advantage that the coefficients represent elas-

ticities; a very meaningful concept in terms of premiums.

A very simple way to find and test the data transformation — at least

between the linear form and log — is presented in Mackinnon and Davidson ([19]).

Although the estimation process may seem a little complex, the test logic is very

simple: if the linear model is in fact correct, the formula e(log( ̂y
based on log model

))

will be related to the model under evaluation (so, it will be enough to use the

regression and a t-test).

In short, to determine the tariff model competition in experimental design

context, the Box–Cox methodology is preferable to the Tweedie regression. In

addition, after the analysis of the best functional form, subsequently a Tweedie

regression may be applied but using Box–Cox, for a rough indication of what

value p may assume (i.e. the shape of the Tweedie), so that to overcome the

already mentioned difficulties. That is why we propose this strategy to overcome

the existing computational difficulties.

3.2. Experimental design 2: Box–Cox regression correction

The key variable to estimate in this case is y = commercial premium and

not y(λ). When the estimation process is integrated there is the need to decompose

the Box–Cox formulation in the correct formulation:

(3.2) ŷ =







̂y(λ)λ + 1 to λ 6= 0 ,

e(dy(λ)) to λ = 0 .

However, this formulation is not the most statistically efficient. In fact

the application of Box–Cox expression underestimates the y expected value.
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The mass point of the linear Box–Cox regression (the average of x and y on

average) is not identical in both equations, in order to ̂y(λ) and in order to y.

In Wooldridge ([25]) is presented a solution for the case λ = 0, which can be gen-

eralized to any variant of Box–Cox regression. It is possible to obtain a corrected

model by regressing y to ŷ without the constant component. The coefficient asso-

ciated to ŷ gives the correction factor of the mass points. So, taking into account

the correction, the final prediction for two stages estimation is:

(3.3) ̂ŷ = ŷ × correction coefficient .

4. EXPERIMENTAL DESIGN: IDENTIFICATION OF FACTORS

AND LEVELS TO COLLECT

Regarding the determination of the factors, the experimental work is easy:

Each customer must fill out a quotation document so that a quote can be issued.

Usually, there are no data to work beyond the required (although it is known that

some insurers in bancassurance partnerships use the bank behavior data, and in

other countries it is known that the profile on social networks can be used). The

work on validation factors in brainstorming sessions and interviews with different

experts, see Barker ([2]), is dispensed as companies in the quotation indicate

which factors are supposed to be investigated.

In the case of motor insurance, the factors usually considered are:

1. Characteristics of the insured

• Gender: The rational of this variable is associated mainly to a differ-

ent frequency of accidents according to gender. It should be noted,

however, that in March 1, 2011 the European Court of Justice ruled

that insurance companies which use gender as a risk factor were to

disregard EU equality laws. However, in Portugal, in February 2015

(Law No. 9/2015), it became amicable to have same gender discrim-

ination if premiums and benefits “are proportionate and justified by

a risk assessment based on actuarial and statistically relevant and

accurate data”. The possibility of using this variable from 2015 thus

became a reality.

• Age: The rational of this variable is to measure the inexperience

and risk trend of the insured. It is a variable impacting the accident

frequency and, depending on the coverage, the average cost.

• Claims History: The claim record can be consulted by the Por-

tuguese insurers in SegurNet (a managed platform for the sector’s

association with the claim record).
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• Age when the driver got driver license: When combined with age,

it attain an instrumental variable of the driver’s experience.

• Status: Rarely used in Portugal, although there is some sensitivity

to point to the fact that married drivers have fewer accidents than

the rest of the population.

• Usual path: Variable indicating the accident frequency — the greater

the distance house-work, the greater the likelihood of an accident.

• Payment: The payment method reveals the financial pressure that

the driver is subject; is a factor that correlates with the driving

profile — frequency. In addition, the payment method is correlated

with the insurer capital consumption and therefore to effect on the

commercial premium via the administrative burdens and profit load-

ing.

2. Features of insurance risks

• Vehicle rating: The power to weight ratio increases the sinister

frequency.

• Brand and classification of vehicle: There are brands whose parts

cost more than others, so this variable has an impact on the

average cost. The type of construction, security features also has its

influence on the average cost.

• Using the insured object: If the object is essential for day-to-day, or

for professional use, accident frequency increases while the frequency

per unit of exposure (measured in km driving) decreases. Thus,

having a profession and any instrumental variable of the insured

object use is relevant.

3. Regional and general contexts

• Weather: The loss context has been the least considered issue in

the construction of a tariff. For example, if it rains, there are more

accidents, but companies have rates for a given country in which

implicitly rainfall rates do not vary. If there is a crisis, people use

less the car, so there are fewer accidents. These context variables

are linked to the evolution of times and this issue should be carefully

analyzed.

• Region: Regional variables are often neglected since everything is

placed in large commercial areas and not with sufficient granularity.

• Sector: For professional cases in certain sectors, for example trans-

port and distribution, there is a greater exposure.

4. Company

• To the mentioned factors another one should de added: the company.

Presumably this factor has strong impact on the relationship among

all the others: each company defines their particular pricing model.
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This information should be used to determine the true market risk,

since in theory all companies are measuring the same risk: frequency

and average cost. Otherwise, since there is no exchange of tariff

models between insurance companies, there will be as many models

as the number of companies: the model is statistically different from

company to company and that it is not controlled with a simple

randomization. The inclusion of this information in the estimation

process will be detailed in the next section. A mathematized way,

and considering that x has the usual reading of exogenous variables,

the model assumes the form:

(4.1) yi = fcompanyj
(xi)

and not

(4.2) yi = f(company i, xi) .

Regarding the levels the question is different since the collection is

performed continuously on some key variables. More, there may be

some ratios and values derived (the calculation of the power weight

is perhaps the most obvious case). It should be noted, however, that

the choice of levels must be such as to minimize the information or

the variance, leading to an efficient and feasible project. At this point

it must be assumed that using a panel of experts, see Barker ([2]),

it is possible to minimize/aggregate the number of levels, where it

is emphasized that is best to arrange an experiment as a team effort

and use the brainstorming technique to scope the entire problem.

5. OPTIMAL DESIGNS

The Completely Randomized Design (CRD) is the simplest form of statis-

tical experimental design. In a CRD the treatments are randomly assigned and

the model is linear. It is necessary to check a set of hypotheses, often called clas-

sical hypotheses and to estimate the generating process of tariffs by maximum

likelihood, in order to obtain a centered model. With classic conditions (linear-

ity in the parameters, random sample, absence of perfect multicollinearity) it is

possible to ensure the centering of the maximum likelihood estimators. Thus, in

a random sample, as is customary in regression work context, there is a random

mechanism which selects the sample within all possible samples.

In experimental design context, adopting the usual notation, as in Gray-

bill ([9]), it is possible to interpret the problem differently. If there is a data

generating process (and not a random selection mechanism of samples), the data
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structure remains the same, the estimator formula will be the same and centering

is guaranteed (strict conditions).

It is thus possible to collect any data to ensure the ̂β estimator centering.

But centering is not the only prerequisite. Under this assumption of data gener-

ating mechanism it is also possible to go further in terms of variance test.

The second condition for a good sample design is to maximize the power of

the tests. To ensure that the process is efficient, i.e. that the standard deviation

associated with each of the estimates of the betas is minimal, there is the need to

examine the beta estimator formulation (to see its derivation see, e.g., Gujarati

([11])):

(5.1) ̂β = (X′X)−1 X′y .

The ̂β variance is given by:

(5.2) Var(̂β) = σ2(X′X)−1 .

For an efficient estimator there is the need to have enough number of cases in

order to estimate regression and that each of the elements in the diagonal of

matrix (X′X)−1 is minimum (assuming no interaction effects). The best way is

to guarantee that the matrix (X′X)−1 is only filled in the diagonal — there is no

correlation between the different x, (cf. Cramer Rao, see [3]). In such case the

matrix (X′X)−1 is orthogonal. So, we have:

(5.3) ̂β = IX′y .

In such case the estimator values are easily obtained and will have minimum

variance. Note that if (X′X)−1 6= I there will be confounding and it will not be

possible to estimate without an high error associated to the estimated coefficients.

5.1. Optimal Design — functional adjustments

When the sample design and the data analysis are performed, it is possible

to obtain a simple linear regression model to determine the importance of factors

(through a t-test) and the degree of criticality of their levels (again with t-test,

assuming levels as dummy variables), possibly setting the best functional form.

But it is worth exploring the meaning of (4.2) and the need to have a

function for company seen in the previous section. Relation (4.2) indicates that

the option is to collect and model data for a single company, assuming that

each company should have autonomous pricing models. If one considers only two
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companies, the model can be described as:

(5.4)

[

y1

y2

]

=

[

X1 0
0 X2

] [

β1

β2

]

+

[

e1

e2

]

, or moreover y = Xβ + e ,

where
[

e1

e2

]

= e ∼ N

[[

0
0

] [

σ1IT 0
0 σ2 IT

]

= W

]

, e ∼ N(0,W) .

Another issue arises: Companies are operating in the same market, is it all

the information available to capture the tariff model on the market being used?

Or even more directly: “The tariff models are autonomous, but are they indepen-

dent?” In a more mathematized form (applying the same rational Griffiths et al.

([10])): And if the mistakes of the different equations, e1 and e2, are correlated?

Thus, consider

(5.5)

[

e1

e2

]

= e ∼ N

[[

0
0

] [

σ11IT σ12 IT

σ21IT σ22 IT

]]

.

The idea is that we can estimate the (4.2) per blocks in order to take differ-

ent functional forms, and perhaps different explanatory variables; but considering

(5.5) we can have greater accuracy in forecasting and more power in the tests.

The demonstration of these statements follows below, considering just the case of

two companies, although the generalization is directly (and it can be confirmed

in the Annex to Sec. 17, see Griffiths et al. ([10]).

Considering maximum likelihood, it follows that:

̂β = (X′W−1X)−1X′y

=

[

[

X1 0
0 X2

]′ [
σ11IT σ12 IT

σ21IT σ22 IT

]−1 [

X1 0
0 X2

]

]−1
[

X1 0
0 X2

]′ [

y1

y2

]

.

E(ee′) 6= σ I, the usual case does not apply, so: E(ee′) = W and Cov(̂β) =

(X′ W−1X)−1.

However, this estimator is not likely to be calculated, since the matrix W is

not known; then it must be estimated. In other words, it is necessary to establish

the following relationship: σ̂ = ê ê′. Thus:

̂

̂β = (X′
̂W−1X)−1X′y

=

[

[

X1 0
0 X2

]′ [
σ̂11IT σ̂12 IT

σ̂21IT σ̂22 IT

]−1 [

X1 0
0 X2

]

]−1
[

X1 0
0 X2

]′ [

y1

y2

]

=(5.6)
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=

[

[

X1 0
0 X2

]
′

[

̂e′1ê1IT
̂e′2 ê1IT

̂e′1ê2 IT
̂e′2 ê2IT

]−1
[

X1 0
0 X2

]

]−1
[

X1 0
0 X2

]′ [

y1

y2

]

,

with Cov(
̂

̂β) = (X′
̂W−1X)−1.

Since without other companies the model is not homoscedastic (i.e., E(e e′)

6= σ I), the different ̂β estimators are not centered with minimum efficiency.

However
̂

̂β is homoscedastic in case of good parametrization. The analysis of

t and F tests will be more precise and the experimental design gains more con-

sistency. And in this way it can be captured which are the mechanisms that

generate pure data/premiums from different companies.

Evidently the SUR adjustment should be applied before the deconstruction

of objective variable and accordingly the correction of the mass point determined

already indicated.

6. APPLICATIONS

To better understand the application of this concept, a database that por-

trays the conditions of the insurance market in 2011 for the Portuguese aggregate

car liability coverage and travel assistance was studied. On the computation pro-

cedures R software ([21]) was used. The data presented were slightly retouched

in order to guarantee the anonymity of the companies under review. The variable

“form of payment” was excluded from the analysis in order to create one more

element of non-identification of the insurers, impairing pure orthogonality.

The following subsections accompany the classic stages of experimental

design.

Stage 1: Identify the factors and levels that define the product

The variables considered were not defined within this article nor by its

authors. The discussion of these variables is indicated in Table 1. Each broker

must deliver a quotation under a specific scenario for the minimum legal capital

requirement plus a minimum coverage for travel assistance.

Stage 2: Optimal Design

The sample was drawn by mystery shopping imposing a minimum number

of observations: A standard case was set up for the main factors, and variable

levels were changed in five subsamples. Therefore, orthogonality was not guar-

anteed. The estimated model is well centered, but is not necessarily statistically

efficient.
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Table 1: Description of factors and levels.

Variables Number of Levels Identification of levels

Gender 2
Male

Female

Age 7

19
23
28
35
45
57
67

Claims history 21

0 injury/10 years/15 years
0 injury/15 years/15 years
0 injury/ 2 years/ 2 years
0 injury/ 4 years/ 4 years
0 injury/ 5 years/10 years
0 injury/ 5 years/12 years
0 injury/ 5 years/ 5 years
0 injury/ 5 years/ 6 years
0 injury/ 5 years/ 7 years
0 injury/ 5 years/ 8 years
0 injury/ 7 years/ 9 years
1 injury/ 0 years/ 1 years
1 injury/ 0 years/ 2 years
1 injury/ 0 years/ 3 years
1 injury/ 0 years/ 4 years
1 injury/ 0 years/ 5 years
1 injury/ 1 years/ 5 years
1 injury/ 2 years/ 9 years
1 injury/ 3 years/ 9 years
1 injury/ 4 years/10 years

no experience

motor classification 6

Picup truck
Light vehicle

Commercial vehicle
Multi-purpose vehicle

Pickup
Off-road vehicle

Automobile age 13 {0,1,...,10}; 15 and 20

Region 58 58 Municipalities

Companies 7 Confidential

Stage 3: Collection of information

This database was collected at the beginning of the decade for a specific

consulting project. A detailed technical specifications could allow customer iden-

tification, project objectives and market conditions. Thus, all data were carefully

calibrated so as not to allow companies to determine the target or operating

results.
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It should be noted that for the realization of information collection resorted

in non-exclusive agents. These brokers collected quotations, according to a sce-

nario/profile structured to be simulated beforehand and subsequent recording of

information on observation grids.

Care was taken to ensure that the brokers were gathering in municipalities

belonging to the working regions.

Stage 4: Analysis

First of all, it should be noted that the model to estimate will run with the

following steps:

1. Building a model for insurance and calculation of λ;

2. Estimation of the model by SUR;

3. Mass point correction;

4. Obtaining the best β estimator;

5. Critical analysis of the results and, optionally, repetition of the cycle.

S4.1. Building a model for insurance and calculation of λ

As discussed, the model should include all the variables collected for each

company.

For choosing λ it was decided initially to obtain a graphic with the evo-

lution of the likelihood function between −10 and 1, and the limits around zero

and in order to include the maximum of each of the functions. The results can

be observed in Figure 1 and indicate that the λ which maximize the objective

functions are: −3.504, −1.723, −4.055, −3.469, −1.380, −3.276 and −3.024.

Figure 1:Evolution of the likelihood functions for each of the companies and obtaining λ.
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All optimal points move away from intervals with easy interpretation. It should

also be noted that apparently the companies use different tariff models reinforcing

the idea of estimating each model separately, according to equation (4.2).

When using these lambda values, and estimates the data generating process

by ordinary regression and reconstructs the variable ultimate goal, the result is

bleak. The choice as accurate lambda ultimately eliminate all variability in the

model. It’s worth mention in Figure 2 the results with λ <∼−3.2 the result is a

parallel to the x-axis. The model is therefore estimated using λ = 0.

Figure 2: Function of ŷ with Box–Cox that maximizes the likelihood function.

S4.2. Estimation with model SUR

The model estimated by SUR, even with the transformation Box–Cox,

shows a strong correlation matrix (qualitative assessment) between models of

different companies. Indeed, the correlation between the estimated rates varies

between 49% and 93%.

Table 2: Estimated models per enterprise — the error correlation matrix.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

eq1 1.00 0.28 0.40 0.53 0.64 0.51 0.34

eq2 0.28 1.00 0.60 0.52 0.40 0.32 0.56

eq3 0.40 0.60 1.00 0.56 0.48 0.54 0.38

eq4 0.53 0.52 0.56 1.00 0.52 0.29 0.58

eq5 0.64 0.40 0.48 0.52 1.00 0.49 0.24

eq6 0.51 0.32 0.54 0.29 0.40 1.00 0.01

eq7 0.34 0.56 0.38 0.58 0.24 0.01 1.00
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S4.3. Mass point correction

Correction of the mass point has different impacts: in some cases is almost

negligible, in others may require a correction of > 4%. In fact, per company it is

possible to find the following correction factors: 1.0427, 1.0202, 1.0053, 1.0177,

1.0263, 1.0398 and 1.0079 .

S4.4. Critical analysis of the results and, optionally, repetition of the cycle

In this work only the R2 between the final estimated variable and the

variable goal is analyzed — indeed to the general objective of this work the main

interest is in evaluating the predictive power of the models. So we have the

following coefficients R2: 0.88021, 0.81354, 0.91175, 0.87484, 0.89378, 0.90491,

and 0.8674 — very high values indicating excellent adjustment capacity.

The remaining quality indicators usually calculated on a regression analysis

may also be applied. In any case it is interesting to compare the estimated model

with the observed pattern. As can be observed in Figure 3, the largest deviation

holds mainly thanks to the existence of outliers that were not treated/corrected.

Therefore the determination of the final model will be made using the matrix W .

Figure 3: Comparison of SUR model with original data.
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7. CONCLUSIONS AND FUTURE RESEARCH

The main purpose of this work was to present a method for collecting and

capturing the tariff model for an insurance company and this goal was achieved.

An approach to sample design based on the principles of orthogonality was pre-

sented as well as the linear regression model, with Box–Cox transformation and

point correction for a first analysis. We presented a methodology to integrate

information from more than one company and therefore increasing the efficiency

of the estimators through a SUR model.

For a future work is the possibility of designing a more complex experimen-

tal design model with GLM — Tweedie. This would potential provide a greater

adherence to data , specially if one can indicate how to get a rough estimate

for the dispersion factor p. It will be interesting to investigate how the Box–Cox

model may contribute for an efficient estimation of Tweedie on the determination

of p. It will be also interesting to assess the prevalence of the SUR approach in

the case of GLM.
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1. INTRODUCTION

Extreme value theory (EVT) is concerned with the stochastic behaviour

of extremes values. In EVT we need to deal with events that are more extreme

than any that have already been observed. The question is how to make inference

beyond the sample data. Obviously, statistical inference can be deduced only from

those observations which are extreme in some sense.

There are a few parameters whose estimation is of major importance. The

extreme value index (EVI), which is directly related with the heaviness of the

right tail of the underlying distribution of the data, is a crucial parameter.

It influences the estimation of other parameters of extreme values, such as, high

quantiles of probability 1− p, with p “small”, i.e., the high levels usually designed

by the return levels associated with the return periods, 1/p, i.e. the expected

waiting time between independent exceedances of a specific high level.

In all areas of application it is of major importance to use adequate and

accurate statistical methods. The R software (R Development Core Team, [55])

is an open source environment that incorporates in its base a huge amount of

statistical packages built and made freely available by the scientific community.

Penalva et al. ([52], [53]) have illustrated the application of some procedures

of modelling and estimating in EVT, under a parametric framework. Some R

packages were explained and some data sets were considered. The Block Maxima

(BM), the Peaks Over Threshold (POT) and the k Largest Observations (k-LO)

methods were described and applied. Different methodologies for parameter es-

timation were also considered. In Neves et al. ([50]) R procedures for the semi-

parametric estimation in EVT have been presented and discussed. A real data

set of daily mean flow discharge rate values from the hydrometric station of Fra-

gas da Torre in the river Paiva during the years from 1946/47 to 1996/97 was

considered.

In this paper parametric and semi-parametric frameworks are briefly re-

viewed. In both cases EVT theory relies on certain assumptions that should be

validated when dealing with an application. Regardless the framework followed

statistical inference will be improved if one makes the choice of the most adequate

tail previously. A brief overview of some testing procedures for the so-called

extreme value condition and for the statistical choice of the tail will be given.

An application to a larger data set than the one mentioned above will be per-

formed, now considering the years from 1946/47 to 2005/06.

Section 2 provides a brief review on the basic notions in EVT. In Section 3

parametric and semi-parametric statistical approaches in EVT are summarized

and the main statistical methods for the estimation of parameters are described.
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Section 4 and 5 are dedicated to a brief reference to testing issues and finally

Section 6 presents a case study and the application of some of the methods

described in the previous sections, still giving some attention to the main packages

available in R software for the extreme value analysis.

2. PRELIMINARIES IN EVT LIMITING LAWS

Classic theory of extremes is concerned with the limiting behaviour of the

maximum Mn := max
(

X1, ..., Xn

)

or the minimum mn := min
(

X1, ..., Xn

)

, as

n → ∞, of a sample (X1, ..., Xn) of independent and identically distributed (i.i.d.)

or possibly stationary, weakly dependent, random variables with unknown distri-

bution function (d.f.) F . It is well known that in those conditions the distribution

of the maximum Mn is Fn(·), and also for the minimum mn, i.e., 1− [1− F (·)]n.

However the d.f. Fn is of little help in practice since F is itself unknown and

should F be misspecified, this can lead to large errors in the distribution of the

maximum.

First results in EVT date back to Fréchet ([27]), Fisher and Tippet ([22]),

Gumbel ([39]) and von Mises ([60]), but Gnedenko ([30]) and de Haan ([41]) have

solved the problems related with the asymptotic behaviour of statistical extremes,

giving conditions for the existence of sequences {an} ∈ R
+ and {bn} ∈ R such that

(2.1) lim
n→∞

P

(

Mn− bn

an

≤ x

)

= lim
n→∞

Fn(anx + bn) = EVξ(x) ∀x ∈ R ,

where EVξ is a nondegenerate distribution function.

This function, known as the Extreme Value d.f., is usually denoted by EVξ

and is given by

(2.2) EVξ(x) =

{

exp
{

−[1 + ξx]−1/ξ
}

, 1 + ξx > 0 , if ξ 6= 0 ,

exp
{

− exp[−x]
}

, x ∈ R , if ξ = 0 ,

where ξ ∈ R is the shape parameter.

Definition 2.1. We say that F is in the domain of attraction (for maxima)

of EVξ and write F ∈ DM(EVξ), whenever (2.1) holds.

As a consequence of the existence of that limit, when n → ∞ we may con-

sider the approximation, P [Mn≤ x] = Fn(x) ≈ EVξ

(

(x− bn)/an

)

.

The EVξ incorporates the three (Fisher–Tippett) families: the Gumbel

family, that is the limit for exponential tailed distributions, Λ(x) = EV0(x) =
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exp
(

− exp(−x)
)

, x ∈ R, ξ = 0; the Fréchet family, that is the limit for heavy

tailed distributions, Φα(x) = EV1/α

(

α(x−1)
)

= exp(−x−α), x > 0, ξ = 1/α > 0

and the Weibull family, that is the limit for short tailed distributions, Ψα(x) =

EV−1/α

(

α(x+1)
)

= exp
(

−(−x)α
)

, x < 0, ξ = −1/α < 0.

The shape parameter, ξ, is the so-called extreme value index (EVI), it is

the primary parameter in EVT and it measures the heaviness of the right-tail,

F := 1 − F . If ξ = 0, the right tail is of an exponential type; if ξ > 0, the right

tail is heavy, it is of a negative polynomial type and if ξ < 0, the right tail is short

and F has a finite right endpoint.

The limit distribution family, EVξ in (2.2), seems to present some difficulties

due to the normalizing constants, {an} and {bn} be unknown. However that limit

can be interpreted, for sufficiently large n, as

(2.3) P

(

Mn− bn

an

≤ x

)

≈ EVξ(x) ⇐⇒ P
(

Mn≤ x
)

≈ EVξ

(

x− bn

an

)

.

We can further consider location and scale parameters, λ ∈ R and δ ∈ R
+, re-

spectively, in the EVξ d.f., denoting it by EVξ(x; λ, δ) ≡ EVξ

(

(x−λ)/δ
)

, so the

constants in (2.3) can incorporate this location/scale version.

Instead of just considering the maximum value of a sample as an extreme

value, we may consider all the observations, Xi, above a high level or threshold, u,

established previously, as extremes. The differences Xi−u, are called exceedances

over that threshold. Balkema and de Haan ([1]) and Pickands ([54]) proved that if

F ∈ DM(EVξ), see Definition (2.1), then for large enough u, Y =
(

(X−u) |X > u
)

is approximately the generalized Pareto (GP ) d.f.,

(2.4) Hξ(y) = 1 −
(

1 + ξy/˜δ
)−1/ξ

, for y > 0 and
(

1 + ξy/˜δ
)

> 0 ,

where ξ is the shape parameter, equal to that of the corresponding EV distribu-

tion, and the scale parameter ˜δ = δ + ξ(u− λ), where λ is the location parameter

in the EV d.f.. The reciprocal of the stated above is also true.

We can also consider the joint distribution of the k top order statistics.

More specifically, if X is a random variable with d.f. F belonging to the domain

of attraction of an EV d.f. then, for fixed k, the limiting distribution, as n → ∞,

of the k-dimensional random vector, suitably normalized by constants {an} ∈ R
+

and {bn} ∈ R ,
(

M
(1)

n −bn

an
, ..., M

(k)

n −bn

an

)

, where M
(k)
n ≡ Xn−k+1:n := k largest of

{X1, ..., Xn} and the joint probability density function is given by

(2.5) g(w1, ..., wk) = EVξ(wk)

k
∏

i=1

evξ(wi)

EVξ(wi)
, w1 > ···> wk ,

with EVξ(w) defined in (2.2) and where evξ(w) =
∂EVξ(w)

∂w
is the probability den-

sity function of the EV model. This model is known as the Multivariate-EVξ

model, also known as the extremal process, Dwass ([20] ).
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3. MODELLING AND ESTIMATING IN EVT

Statistical inference in EVT is based on extreme observations, however

there are different ways of defining such observations leading to the application

of different models. Classical parametric approaches for modelling and estimation

were the first to appear, based on limiting distributions defined in the previous

section. In the late seventies, estimation procedures in EVT began to be per-

formed on a semi-parametric approach based on probabilistic asymptotic results

in the tail of the unknown distribution.

3.1. Parametric statistical approaches and estimation

The first approach for modelling extremes is the so-called Block Maxima

(BM), Annual Maxima or Gumbel’s approach, Gumbel ([40]). In this approach

the n-sized sample is splitted into m sub-samples (usually m corresponds to the

number of the observed years) of size l (n = m×l for a sufficiently large l). EVξ

or one of the models, Gumbel, Fréchet or Weibull, with unknown ξ ∈ R, λ ∈ R

or δ ∈ R
+ are then fitted to the m maxima values of the m sub-samples.

However, in many applications there is no natural way of defining blocks of

observations. Besides it may occur that the maximum within a block has a lower

value than some values in another block. Thus, some extreme values contained

in a block may not be included in data for the analysis. So, BM methodology

may not be the best method for studying the behaviour of extreme values.

Another methodology consists of setting a high level or threshold, u, and

defining as extremes all the observations above that value. The idea is then

to fit the model referred to in (2.4) to the excesses over such a high level, u.

This method, known as Peaks Over Thresholds (POT) method, uses relevant

information that can be lost by the BM method. Details of this procedure can

be seen in Davison ([15]), Davison and Smith ([16]) and Smith ([57]).

Another approach, in some sense parallel to the previous one, consists of

considering the k top order statistics of the sample. In this methodology, usually

denoted as the k-Largest Observations (k-LO), inference can be done when the

size n of the sample is large and k fixed, based on the multivariate structure of

the k top order statistics, referred to in (2.5). This model was developed and

studied by Weissman ([61]) and Gomes ([31]).

Note that the use of POT method needs the choice of a suitable threshold,

u, what is equivalent to the choice of the number, k, of upper order statistics to

be taken on the k-LO approach.
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We can also think of combining the BM and the k-LO approaches. In each

of the m sub-samples, we can collect a few top order statistics and, in this case,

inference is based on the m random k-dimensional vectors. These m random

k-dimensional vectors, after being suitably normalized by constants {an} ∈ R
+

and {bn} ∈ R , are well modelled by the Multivariate-EVξ defined in (2.5). This

methodology is known as Multidimensional-EVξ approach.

For estimating extreme value parameters several procedures have been pro-

posed: (i) graphical methods; (ii) moment-based methods and (iii) likelihood

methods. All these procedures have been extensively studied and applied in clas-

sical parametric modelling. In this work we will review parameter estimation

using the maximum likelihood (ML) method , the profile likelihood (PL) method

and the probability weighted moments (PWM) method.

Difficulties that arose with the “regularity conditions” for the maximum

likelihood estimation were solved by Smith ([58]), who showed that the usual

property of asymptotic normality holds provided the extreme value parameter ξ

is larger than −0.5. Recently, Zhou ([62], [63]) showed that the ML estimators

verify the property of asymptotic normality for ξ > −1. This condition, that is

not verified for very light tailed distributions, is satisfied for most environmental

applications.

The asymptotic normality, that would allow to obtain confidence intervals,

is not very accurate because the normal approximation to the true sampling

distribution of the estimator is rather poor. An alternative, and usually more

accurate method of estimation is based on the profile likelihood function. Given

a parameter vector θ the profile log-likelihood function of the component θi is

defined as log Lp(θi) := maxθ
−i

log L(θi, θ−i) where θ−i denotes a vector with all

components of vector θ excluding θi. For each value of θi, the profile log-likelihood

is defined as the maximized log-likelihood with respect to the other components

of the parameter vector θ.

So, for example, for the estimation of ξ in the EV model,

log Lp(ξ) := max
λ,δ |ξ

log L(λ, δ, ξ) .

Under suitable regularity conditions, see Beirlant et al. ([3]), for large n, the

deviance function is:

Dp(ξ) := 2
{

log L(̂λ, ̂δ, ̂ξ) − log Lp(ξ)
}

.
∼ χ2

(1) ,

where ̂λ, ̂δ and ̂ξ are the maximum likelihood estimators of λ, δ and ξ, respectively.

This property is used to obtain the (1−α)×100% confidence interval for the

parameters of the underlying distribution. Particularly, for a singular compo-

nent, for example ξ, the (1−α)×100% confidence interval is
{

ξ : Dp(ξ)≤ q1−α

}

=
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{

ξ : log Lp(ξ) ≥ log L(̂λ, ̂δ, ̂ξ) − q1−α

2

}

, where q1−α is the (1−α) quantile of χ2
(1)

.

Therefore the profile log-likelihood ratio statistic

−2 log Λ = −2 log

{

Lp(ξ0)

Lp(̂ξ)

}

= 2
{

log Lp(̂ξ) − log Lp(ξ0)
}

,

to test H0 : ξ = ξ0 versus H1 : ξ 6= ξ0 has, under the hypothesis H0, asymptotic

distribution χ2
(1)

, when n → ∞. H0 is rejected at a level of significance α if

−2 log Λ > q1−α, see Coles ([13]) and Beirlant et al. ([3]) for more details.

The probability-weighted moments (PWM) (Greenwood et al., [38]) of a

random variable X, with d.f. F are defined as

Mp,r,s := E
{

Xp
[

F (X)
]r [

1−F (X)
]s
}

, p, r, s ∈ R .

For the EV d.f., these moments were extensively studied by Hosking et al. ([44]).

Considering a random sample (X1, ..., Xm) from a EV population, the PWM

estimator, (̂λ, ̂δ) , when ξ = 0, is the solution of the system of equations:

{

̂M1,0,0 = λ + δ Γ′(1)

2̂M1,1,0 − ̂M1,0,0 = log 2δ
where ̂M1,r,0 =

1

m

m
∑

i=1

(

r
∏

l=1

i− l

m− l

)

Xi:m ,

with X1:m ≤X2:m ≤ ··· ≤Xm:m the ascending order statistics associated with the

random sample (X1, X2, ..., Xm).

For 0 < ξ < 1, we can obtain the PWM estimator, (̂λ, ̂δ, ̂ξ) solving the equa-

tions system,






































̂M1,0,0 = λ −
δ

ξ

(

1 − ξ(1−ξ)
)

2̂M1,1,0 − ̂M1,0,0 =
δ

ξ
ξ(1−ξ) (2ξ−1)

3̂M1,2,0 − ̂M1,0,0

2̂M1,1,0 − ̂M1,0,0

=
3ξ−1

2ξ−1

.

Also in this method the asymptotic normality for the PWM estimator

(λ, δ, ξ) holds provided that ξ < 0.5 and m → ∞ (see Beirlant et al., [3]).

3.2. Semi-parametric statistical framework and EVI estimation

In the late seventies estimation in EVT began to be performed in a semi-

parametric approach. Here it is not necessary to fit a specific parametric model,

dependent upon a location, scale and shape parameters, but only assume that the

underlying distribution function F belongs to DM(EVξ), for an appropriate value

of ξ in specific sub-domain of DM(EVξ), being ξ the primordial parameter to be
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estimated. Estimates are based on the k top order statistics in the sample, or on

the excesses over a high random threshold, u. For the consistence of the estimators

we need to work with an intermediate sequence k ≡ kn, i.e., k ≡ kn → ∞ and

k/n → 0 as n → ∞.

In this framework several EVI estimators have been proposed. We will refer

to the classical ones, such as, the Hill estimator ([43]), the Moment estimator,

Dekkers et al. ([17]), the Generalized Hill estimator, introduced in Beirlant et

al. ([4]) and studied later in Beirlant et al. ([2]), the Mixed Moment estimator,

Fraga Alves et al. ([26]) and also a recent estimator of reduced bias and minimum

variance, (MVRB), Caeiro et al. ([10]). A family of estimators based on the

logarithm of the mean of order p (MOP) of Xn−i−1:n/Xn−k:n, 1 ≤ i ≤ k < n,

has been very recently proposed by Brilhante et al. ([7]). See also other related

estimators such as the harmonic mean estimator introduced in Beran et al. ([5])

and a family of estimators introduced in Paulauskas and Vaiciulis ([51]).

Let X1:n ≤X2:n ≤ ··· ≤Xn:n the ascending order statistics associated with

the random sample (X1, X2, ..., Xn), and for r ≥ 1 let us define

(3.1) L
(r)

k,n :=
1

k

k
∑

i=1

[

1−
Xn−k:n

Xn−i+1:n

]r

and M
(r)

k,n :=
1

k

k
∑

i=1

[

ln
Xn−i+1:n

Xn−k:n

]r

.

Among the aforementioned estimators we will consider:

The Hill estimator (ξ > 0)

(3.2) ̂ξH
k,n := M

(1)

k,n , k = 1, 2, ..., n−1 ;

The Moments estimator (ξ ∈ R)

(3.3) ̂ξM
k,n := M

(1)

k,n + 1 −
1

2



1 −

(

M
(1)

k,n

)2

M
(2)

k,n





−1

, k = 1, 2, ..., n−1 ;

The Generalized Hill estimator (ξ ∈ R)

(3.4) ̂ξGH
k,n := M

(1)

k,n +
1

k

k
∑

i=1



ln
M

(1)
i,n

M
(1)

k,n



 , k = 1, 2, ..., n−1 ;

The Mixed Moment estimator (ξ ∈ R)

̂ξMM
k,n :=

ϕ̂k,n − 1

1 + 2 min(ϕ̂k,n−1, 0)
, k = 1, 2, ..., n−1 ,(3.5)

ϕ̂k,n :=
M

(1)

k,n − L
(1)

k,n
(

L
(1)

k,n

)2
.
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The MVRB estimators, Caeiro et al. ([10]) have revealed a better performance

than the classical estimators in the context of heavy tails (ξ > 0). This class of

estimators has the functional form

(3.6) ̂ξH
k,n(̂β, ρ̂) := ̂ξH

k,n

(

1 − ̂β(n/k)bρ/(1− ρ̂)
)

,

with ̂ξH
k,n the Hill estimator and (̂β, ρ̂) consistent estimators of second order pa-

rameters (β, ρ) ∈ (R, R−). About reduced bias estimation, we may also refer to

Gomes et al. ([36]), Gomes et al. ([33]) and Caeiro et al. ([9]), among others.

For the estimation of ρ we consider a particular member of a class of estima-

tors introduced in Fraga Alves et al. ([24]). This class, parametrized in a control

parameter τ ∈ R, which here we will take as τ = 0, see Gomes et al. ([37]), is

defined as: ρ̂(k) ≡ ρ̂0(k) := min
(

0,
3(T (0)

n (k)−1)
T

(0)

n (k)−3

)

, being T
(0)
n (k) defined as

T (0)
n (k) :=

[

ln
(

M
(1)

k,n

)

−
1

2
ln
(

M
(2)

k,n/2
)

]/[

1

2
ln
(

M
(2)

k,n/2
)

−
1

3
ln
(

M
(3)

k,n/6
)

]

,

with M
(j)

k,n(k), j = 1, 2, 3, defined above.

For the estimation of the second order scale parameter, β, we will consider

̂βbρ(k) :=

(

k

n

)bρ
[

dbρ(k)D0(k) − Dbρ(k)
]/[

dbρ(k)Dbρ(k) − D2bρ(k)
]

,

with ρ̂ = ρ̂0(k), dα(k) := 1
k

∑k
i=1

(

i
k

)−α
and Dα(k) := 1

k

∑k
i=1

(

i
k

)−α
Ui, for α ≤ 0,

with Ui := i
[

ln(Xn−i+1:n/Xn−i:n)
]

, 1 ≤ i ≤ k.

In order not to have an increase in the variance of the estimator ̂ξH
k,n, esti-

mators ρ̂0(k) and ̂βbρ(k) must be calculated at k = k1, with k1 =
⌊

n1−ǫ
⌋

, ǫ = 0.001,

see Gomes and Martins ([35]), Gomes et al. ([33] ) and Caeiro et al. ([9]), for more

details. Alternative estimators for β can be seen in Caeiro and Gomes ([8]) and

Gomes et al. ([34]).

4. TESTING EXTREME VALUE CONDITIONS

In any of the aforementioned procedures it is assumed that the underlying

d.f. F belongs to DM(EVξ), for an appropriate value of ξ, or it is in a specific

sub-domain of DM(EVξ). This condition is called the extreme value condition

and is not always fulfilled. So, before performing an application, it is important

to check whether the extreme value condition is reasonable for a data set or not.

So, we must test the hypothesis:

H0 : F ∈ DM(EVξ) for some ξ ∈ R .
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Dietrich et al. ([18]) proposed the E, PE tests (if we assume ξ ≥ 0) and Drees et

al. ([19]) proposed the T test (assuming ξ > −1/2).

Let X1, X2, ..., Xn be independent random variables with d.f. F and suppose

that some additional second order conditions hold, then for η > 0 the correspond-

ing test statistics are:

En := k

∫ 1

0

(

log Xn−⌊kt⌋,n − log Xn−k,n

̂ξ+

−
t−

bξ
− −1

̂ξ−

(

1− ̂ξ−
)

)2

tη dt ,(4.1)

PEn := k

∫ 1

0

(

log Xn−⌊kt⌋,n − log Xn−k,n

̂ξ+

+ log t

)2

tη dt ,(4.2)

Tn := k

∫ 1

0

(

n

k
Fn

(

ân/k

x−bξ −1

̂ξ
+̂bn/k

)

− x

)2

xη−2 dx ,(4.3)

where the estimates for ξ+ and ξ− are obtained through the moment estimators in

Dekkers et al. ([17]), and k is again an intermediate sequence, k = kn→∞, k/n→ 0

and k1/2A(n/k) → 0 as n → ∞. A is related to the second order condition. Hüsler

and Li ([45]) present an algorithm for testing H0 using the test statistic En in

(4.1). They have carried out an extensive simulation study with guidelines for

obtaining the value of η and have provided tables of critical values. See also Neves

and Fraga Alves ([48]) for a description of those tests.

5. STATISTICAL CHOICE OF EXTREME DOMAINS OF AT-

TRACTION — SEMI-PARAMETRIC APPROACH

In a semi-parametric framework, ξ is the primordial parameter since deter-

mines the shape of the tail of the underlying distribution function F . A negative

value for ξ is associated to the Weibull domain of attraction in which all the

d.f.’s are short tailed with finite right endpoint. If ξ > 0 we have the Fréchet

domain of attraction to which the heavy tailed d.f.’s with polynomially decaying

tail belong. The case of ξ = 0 is particularly important, due to the simplicity

of inference, within the Gumbel domain which contains a great variety of d.f.’s

with an exponential tail having finite right end point or not. Whenever we intend

to perform a statistical inference in extreme values we should look for the most

adequate procedures according to the domain of attraction selected. Therefore,

it is of great benefit to test the Gumbel domain against the Fréchet or Weibull

domains. The hypothesis to test is:

(5.1) H0 : F ∈ DM(EV0) vs. H1 : F ∈ DM(EVξ)ξ 6=0 ;

or versus the one-sided alternatives F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0.
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Several tests have been proposed in the literature, among which we can

mention Galambos ([28]), Castilho et al. ([12]), Hasofer and Wang ([42]), Falk

([21]), Fraga Alves and Gomes ([23]) and Correia and Neves ([14]), that have pro-

posed a slight modification of the Hasofer and Wang statistic, Marohn ([46, 47]),

Fraga Alves ([25]) and Segers and Teugels ([56]). More recently Brilhante ([6])

derived a resistant and robust test for the exponential versus the generalized

Pareto, Neves and Fraga Alves ([48]) introduced three tests statistics based on

the reformulation of the Hasofer and Wang statistic. Those tests were later stud-

ied in Neves and Fraga Alves ([49]). Castillo et al. ([11]) provided a test based

on the properties of the coefficient of variation.

In this work the tests introduced in Neves and Fraga Alves ([48]) will be

considered. The statistics for testing (5.1) are based on the k excesses over the

(n−k)-th ascending intermediate order statistic Xn−k:n, Thus, under the null

hypothesis of Gumbel domain of attraction and further assuming: (i) second order

conditions on the upper tail of F and (ii) the intermediate sequence k ≡ kn, such

that k1/2A(n/k) → 0 as n → ∞ where A is related to the second order condition,

Neves and Fraga Alves ([48]) have defined the following tests:

The ratio-test

(5.2) R∗
n :=

Xn:n − Xn−k:n

1

k

k
∑

i=1

(

Xn−i+1:n − Xn−k:n

)

− log k
d

−−−→
n→∞

Λ ;

The GT-test

Gn(k) :=

1

k

∑

i=1

(

Xn−i+1:n − Xn−k:n

)2

(

1

k

k
∑

i=1

Xn−i+1:n − Xn−k:n

)2
,

G∗
n(k) =

√

k/4
(

Gn(k) − 2
) d

−−−→
n→∞

N (0, 1) ;

(5.3)

The HW-test

Wn(k) :=
1

k

[

1 −
Gn(k) − 2

1 +
(

Gn(k) − 2
)

]

,

W ∗
n (k) =

√

k/4
(

k Wn(k) − 1
) d

−−−→
n→∞

N (0, 1) ,

(5.4)

where Λ is a Gumbel random variable.

The null hypothesis in (5.1) is rejected if T ∗
n < χα/2 or T ∗

n > χ1−α/2, where

T ∗ has to be replaced by R∗, G∗ or W ∗ and χp is the p probability quantile of

the corresponding distribution.
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If we are interested in the one-sided tests, and being χp the p probability

quantile of the corresponding distribution, the critical regions for:

Gumbel vs Weibull domain of attraction are:

(5.5) R∗
n(k) < χα , G∗

n(k) < χα , W ∗
n(k) > χ1−α ;

Gumbel vs Fréchet domain of attraction are:

(5.6) R∗
n(k) > χ1−α , G∗

n(k) > χ1−α , W ∗
n(k) < χα .

As an illustration of the methodologies reviewed in the previous sections and also

for showing some functions available in the R software, a real data set will be

studied in the next section.

6. A CASE STUDY: DAILY MEAN FLOW DISCHARGE RATE

Here we will focus our attention on the estimation of the EVI. Packages

and/or functions available in the R environment will be used and mentioned.

R software contains already a large number of packages with several functions for

modelling extreme data, such as evd, ismev, evir, POT, fExtremes, evdbayes,

copula, SpatialExtremes, among others. Gilleland et al. ([29]) give an excellent

software review for extreme value analysis. They describe and compare packages

available in R with other software.

6.1. A preliminary data analysis

Our data set consists of daily mean flow discharge rate in the hydrometric

station of Fragas da Torre in the river Paiva. The source of this river is in the

Serra de Leomil, in the north of Portugal, it is an effluent of the river Douro,

with a watershed area of approximately 700 Km. More precisely the data set

studied is the daily mean flow discharge rate values (m3/s) from 1 October 1946 to

30 September 2006, collected from the “SNIRH: Sistema Nacional de Informação

dos Recursos Hı́dricos” and the interest is to analyse the extreme values.

After some previous graphical analyses on the empirical tail behaviour of

the different months showing the occurrence of the maximum values, advices of

hydrologists and taking into account a previous work that considered a few initial

years of these data, Gomes ([32]), only the months from November until April

were used in each year. We had then a total of 10860 daily mean flow discharge

rate values. The results of a preliminary graphical and descriptive analysis are

shown in Figure 1 and Table 1.
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Figure 1: Histogram (left); chronogram (center) and boxplot (right).

Table 1: Basic descriptive statistics for the data.

n Min 1st Quart. Median Mean 3rd Quart. Max St Dev. Skew. Kurt.

10860 0 9.20 17.30 34.83 38.00 920.00 50.92 4.15 27.31

The stationarity was also studied by the Augmented Dickey–Fuller Test

through the function adf.test(), available in the package tseries. The boxplot,

the histogram and the descriptives statistics, in particular the skewness = 4.15

and the kurtosis = 27.31 indicate a tail heavier than the normal one.

6.2. Testing extreme value conditions

Following the brief introduction given in section 4, we will use here the test E,

Dietrich et al. ([18]) and Hüsler and Li ([45]). The function MTestEVC1d() in the

package TestEVC1d gave the results shown in Figure 2. We observe that the values
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Figure 2: Sample path of E statistic.



Extreme Value Analysis — A Brief Overview with an Application 207

of the test statistic E are smaller than the corresponding asymptotic 0.95-quantile

for a large range of k-values. So, since the sample path of the test statistic is

almost always outside the rejection region, except for a small range of k, we find

no evidence to reject the null hypothesis.

6.3. Parametric framework

The BM methodology

In this framework, we have considered the years as blocks of observations

and have picked the maximum values up in each block. So, we will use the

maximum values of each of 60 years — these are all the years available in SNIRH:

“Sistema Nacional de Informação dos Recursos Hı́dricos” for the hydrometric

station of Fragas da Torre in river Paiva.

We have now obtained the skewness = 0.998 and the kurtosis = 2.265.

Graphical analyses are shown in Figure 3.
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Figure 3: Chronogram (top left); ACF (top right); boxplot (bottom left)
and histogram (bottom right).

The histogram, the boxplot and the skewness indicate a moderate positive

asymmetry. From the autocorrelation partial function (ACF), it seems reasonable

to assume that these data are not correlated. So an EVξ was fitted to the maxima

in each year.
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The ML fitting for the EV distribution for all the parameters can be obtained

through the package evd and the function fgev(), see Table 2. The parameter

estimates by the PWM method can be obtained using the package fExtreme and

running gevFit( ,type="pwm")1. See results in Table 2.

Table 2: Parameters estimates (standard errors in parenthesis) and
the profile Log-Likelihood (pLog-L) 95% confidence intervals.bλ bδ bξ

ML 210.08 (18.77) 129.81 (13.62) −0.03 (0.09)
PWM 213.65 137.37 −0.09

λ δ ξ

pLog-L (174.15; 248.23) (106.41; 160.79) (−0.16; 0.19)

Using the same package, Wald confidence intervals of level 1−α, can be ob-

tained through confint(fgvev(), level=1−α). Greater accuracy for the con-

fidence intervals is usual attained by the profile log-likelihood. Plots for the profile

log-likelihood for all parameters can be obtained by plot(profile(fgev()),ci

= c(0.95, 0.99)). The confidence interval limits can be obtained through

confint(profile(fgvev()),level=1− α) and are given in Table 2.

Notice that the confidence intervals for ξ include zero, so lead to not reject

the null hypothesis, ξ = 0.

The POT methodology

The POT method is based on fitting the statistical model in (2.4) to the

excesses over a given threshold u. A challenge here is the choice of u. Choosing a

value too high can lead to a very small number of observations in the tail resulting

in estimators with high variance, but a small threshold may lead to the violation

on the Pickands Theorem.

The most traditional methods for the choice of u are graphical procedures.

A graph widely used is the mean residual life (mrl) plot, based on the mean value

of the GP distribution, which is a linear function of u. If the GP model is valid for

the excesses above u0 then will also be valid for all u > u0. So, this graph should

show a linear behaviour above a suitable choice of the threshold u. Another

graphical method is based on the threshold choice (tc) plot, which represents the

estimated values of the GP model over a set of thresholds. The threshold u will

be a “good‘” choice if the parameter estimates appear approximately constant

1
gevFit() function can also determine the maximum likelihood estimates, setting type=“mle”.
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above u. The function mrlplot() in the package evd plots the mean excess plot,

and the function tcplot() plots two graphs for both parameters, see Figure 4.
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Figure 4: The mean residual life plot (left) and the tc plots (centre and right).

A threshold around 200 is suggested. We have chosen u = 180, correspond-

ing to a number of 254 exceedances. Figure 5 shows those exceedances, no cor-

relation of the exceedances and the asymmetry of the data. Using the function

gpd() in package evir, we got similar results to those by the BM method, see

Table 3.
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Figure 5: Chronogram (left) with u=180, partial autocorrelation
function (center) and boxplot (right).

Table 3: Parameters Estimates (standards errors in parenthesis) and
the profile Log-Likelihood (pLog-L) 95% Confidence Intervals.beδ bξ

ML 94.69 (7.83) −0.02 (0.05)
PWM 95.47(9.47) −0.03 (0.07)

δ ξ

pLog-L (80.01;110.80) (−0.10;0.11)

Note again that the results obtained indicate a value for ξ close to zero.
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6.4. Semi-parametric framework

In this approach ξ is the primordial parameter to be estimated. As we

referred to in section 3.2, estimates are based on the k top order statistics in the

sample, with k an intermediate sequence, assuming that the underlying distribu-

tion function F belongs to DM(EVξ), for an appropriate value of ξ. Since, there

are specific estimation procedures according to the signal of ξ, we should start

this framework by testing the Gumbel max-domain against Fréchet or Weibull

max-domains.

The choice of the tail

To test H0 : F ∈ DM(EV0) vs. H1 : F ∈ DM(EVξ)ξ 6=0 or against the one-

sided alternatives F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0 we will consider the

Ratio-test, the Gt-test and the HW-test, mentioned in section 5. Figure 6 presents

the sample paths of G∗, R∗ and W ∗ for several values of k. As we can see in

Figure 6, for a large range of k-values, the three tests statistics present values

that belong to the corresponding region of no rejection. So we find no evidence

to reject the null hypothesis, F ∈ DM (EV0).
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Figure 6: Sample paths of G∗, R∗ and W ∗ statistics.

Some semi-parametric estimates

As specified in Section 3.2, we will consider here the Hill estimator, the

Moment estimator, the Generalized Hill estimator, the Mixed Moment estimator

and the MVRB estimator. Although having been led above to the non rejection

of the Gumbel domain of attraction we present here the results of application of

all those estimators.
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Figure 7 shows the sample paths of the estimates obtained for each k.

It is worthwhile to mention that the Hill estimator and the MVRB estimator,

specifically built for ξ > 0 show results that are far from those previously obtained

(notice that the MVRB estimates show a very stable path, but around positive

values of ̂ξ). The other estimators present sample paths near ξ = 0.
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Figure 7: Sample paths of ξ estimates.

7. A FEW OVERALL COMMENTS

Testing whether F ∈ DM(EVξ), for a certain ξ, is a crucial topic when an

application of extreme values procedures is needed to be considered. This subject

has been dealt in several articles mentioned along this paper. However, several

times a real problem in the area of EVT is studied without that previous analysis.

With the study of this application we intended to motivate the discussion

regarding the need of a previous analysis on the choice of the tail before applying

the well theoretically studied estimators. The influence of the estimate of the tail

index parameter in the estimation of high quantiles, parameters of major interest

for preventing catastrophes that can occur in this domain of application, is also

another important issue, however out of the scope of this study.
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(J. Häusler and R.-D. Reiss, Eds.), Springer, Berlin-Heidelberg, 51, 181–190.

[13] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values,
Springer-Verlag, London.

[14] Correia, A.L. and Neves, M. (1996). Escolha estat́ıstica em modelos extremais

— testes de ajustamento. In “Bom Senso e Sensibilidade” (J. Branco, P. Gomes
e J. Prata, Eds.), Actas do III Congresso Anual da Sociedade Portuguesa de
Estat́ıstica, Edições Salamandra, 223–236.

[15] Davison, A.C. (1984). Modelling excesses over high threshold, with an appli-

cation. In “Statistical Extremes and Applications” (J. Tiago de Oliveira, Ed.),
Reidel, Dordrecht, 389–410.

[16] Davison, A.C. and Smith, R.L. (1990). Models for exceedances over high
thresholds (with discussions), J. Royal Statistical Society, 52(3), 393–442.



Extreme Value Analysis — A Brief Overview with an Application 213

[17] Dekkers, A.L.M.; Einmahl, J.H.J. and de Haan, L. (1989). A moment
estimator for the index of an extreme-value distribution, Annals of Statistics,
17(4), 1833–1855.
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Polon. Math. (Cracovie), 6, 93–116.

[28] Galambos, J. (1982). A statistical test for extreme value distributions. In “Non-
parametric Statistical Inference” (B.V. Gnedenko et al., Ed.), North Holland,
Amsterdam, 221–230.

[29] Gilleland, E.; Ribatet, M. and Stephenson, A.G. (2012). A software re-
view for extreme value analysis, Springer (Springerlink.com). Published online:

20 July 2012), DOI 10.1007/s10687-012-0155-0.

[30] Gnedenko, B.V. (1943). Sur la distribution limite d’une série aléatoire, Annals
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1. INTRODUCTION

The study of extreme values in climatological time series is an area of intense

scientific activity. Examples of this type of data are series of annual or monthly

maxima of precipitation or temperature. This is the block maximum approach

to defining the extremes of time series; the alternative peaks-over-threshold ap-

proach will not be considered in this paper (Beirlant et al., [1]; Chavez-Demoulin

and Davison, [2]; Gomes and Guillou, [9]; Scarrott and Macdonald, [22]). An early

method of analysis that subsequently became well-established was to fit the Gen-

eralised Extreme Value distribution, assuming a series of independently and iden-

tically distributed values over time (Jenkinson, [11]). However, it has become

increasingly clear that many series do not possess this property of stationarity,

because of natural climate variability or anthropogenic climate change (Jain and

Lall, [10]; Milly et al., [18]; Serinaldi and Kilsby, [23]). Consequently, it becomes

necessary to move from stationary to non-stationary models.

Introducing non-stationarity within the framework of standard statistical

distributions requires extended models with covariate-dependent changes in one

or more of a distribution’s parameters (Coles, [4]). For example, a trend towards

higher temperatures could be represented by the time-dependence of the param-

eter that represents the distribution’s mean, or increased variability in a rainfall

series by time-dependence of the parameter that is associated with the distribu-

tion’s variance. Spatial trends and dependence on any other available covariates

can be represented in a similar way.

2. STATISTICAL MODELLING

2.1. Generalised extreme value (GEV) distribution

The GEV distribution is widely employed in the environmental sciences

and elsewhere for modelling extremes (Reiss and Thomas, [20]). It depends on

three parameters: location µ, scale σ and shape ξ. In the non-stationary GEV

distribution (El Adlouni et al., [7]; Leclerc and Ouarda, [14]), these parameters are

expressed as a function of time t and possibly other covariates (Coles, [4]). If, as is

usually done, we allow non-stationarity of the location and scale parameters but

not of the shape parameter, this non-stationary GEV(µ(t), σ(t), ξ) distribution

has distribution function

F
(

y; µ(t), σ(t), ξ
)

= exp

{

−

[

1 + ξ
y − µ(t)

σ(t)

]−1/ξ
}

.(2.1)
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In the simplest case, the following regression structures could be considered for

the location and scale parameters

µ(t) = µ0 + µ1t + µ2 t2 + µ3 t3 ,
(2.2)

σ(t) = exp
(

σ0 + σ1t + σ2 t2 + σ3 t3
)

,

allowing up to cubic dependence on time t. We denote by GEVjk the model

with time dependence of order j in the location parameter and order k in the

scale parameter. A convenient tool for fitting either stationary or non-stationary

GEV distributions is the gev.fit function in the R package ‘ismev’ (available from

http://cran.r-project.org/package=ismev), which employs the maximum likeli-

hood method. Other relevant R packages are listed by Gomes and Guillou ([9]).

Bayesian and other estimation methods are discussed by, for example, Beirlant et

al. ([1]), Chavez-Demoulin and Davison ([2]), and Gomes and Guillou ([9]). The

estimation of the shape parameter ξ may sometimes cause difficulty, as observed

by Coles and Dixon ([5]) who proposed using a penalized likelihood function to

avoid this problem. Similarly, Martins and Stedinger ([17]) proposed restricting

the estimate of ξ to fall within the range [−0.5, +0.5] by using a suitable prior

distribution. However, we have not encountered any difficulty in the estimation

of ξ in the practical problems that we have investigated.

2.2. GAMLSS

Generalised additive models for location, scale and shape (GAMLSS; Rigby

and Stasinopoulos, [21]) represent a very wide class of non-stationary distribu-

tions. GAMLSS provide a highly flexible framework for modelling, because as

many as four parameters of a distribution chosen from an extensive family are

allowed to depend on covariates. The first applications of GAMLSS to meteoro-

logical data appear to have been by Villarini and colleagues, who examined the

fit of Gumbel, Weibull, Gamma, Lognormal and Logistic distributions to data

on rainfall and temperature in Rome (Villarini et al., [25]), and the first four of

these to flood peaks in the United States (Villarini et al., [26]). Further exam-

ples of its application are now quite common; recent examples include Lopez and

Frances ([15]), who fitted the Gumbel, Lognormal, Weibull, Gamma and Gener-

alized Gamma distributions, Garcia Galiano et al. ([8]) (fitting the Lognormal,

Weibull and Gamma distributions) and Machado et al. ([16]) (Lognormal, GEV

and two-component extreme value distributions).

The general format of the model for parameter θk is

gk(θk) = Xk βk +

Jk
∑

j=1

Zjk γjk ,(2.3)
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where gk is a link function, Xk is a design matrix containing the values of Jk

covariates for each of n independent observations, βk is a parameter vector of

length Jk, Zjk is another known design matrix of dimension n× qjk and γjk is a

qjk-dimensional random vector. In the absence of random effects, the first term on

the left-hand side of (2.3) gives a parametric linear model; in this case, the advan-

tages of GAMLSS over generalised linear models or generalised additive models

are its not being restricted to exponential family distributions and its ability to

model several parameters of the distribution, not just the mean. Furthermore,

Rigby and Stasinopoulos ([21]) and Stasinopoulos and Rigby ([24]) demonstrate

how the second term of (2.3) can be used to construct a wide variety of models,

although this generality will not be required in the present paper.

GAMLSS modelling is implemented in the R package ‘gamlss’ (http://cran.

r-project.org/package=gamlss; Stasinopoulos and Rigby, [24]), which makes it

easy to include features such as random effects or non-polynomial dependence

on covariates by means of splines. The method of fitting is penalized maximum

likelihood. A recent extension to ‘gamlss.spatial’ (http://cran.r-project.org/

package=gamlss.spatial) offers a facility for spatial modelling by including Markov

Random Field additive terms.

2.3. Model selection

When searching for the best fitting model among many alternatives, it is

important to have objective procedures for making the selection from the various

candidates. The likelihood ratio test can be used if the models are hierarchically

nested. The Akaike information criterion (AIC) and the Bayesian information

criterion (BIC) are also widely employed for model selection. If ℓ̂ is the maximized

value of the likelihood from a model that contains p parameters, and n is the

sample size, these criteria are defined as

AICC = −2 ℓ̂ + 2p +
2p(p + 1)

n− p− 1
(2.4)

(this is the corrected AIC — the third term is a small-sample adjustment) and

BIC = −2 ℓ̂ + p lnn .(2.5)

The preferred model minimizes the chosen criterion although alternative

models with values close to the minimum should not be ignored. More details of

model selection procedures can be found in Claeskens and Hjort ([3]), for example.

Panagoulia et al. ([19]) carried out a simulation study in order to evaluate

empirically the performance of the AICc and BIC in identifying the true model

among the set of models GEVjk (j = 0, 1, 2, 3; k = 0, 1, 2, 3), for samples of sizes

n = 20,50 or 100. Both criteria had high success rates in detecting non-stationarity.
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The BIC was the more successful in identifying the correct model: over 80% of the

time for n = 50 and over 90% for n = 100, although these percentages obviously

depend on the parameter values selected for the study. AICc was better for

n = 20, although this is a small sample in relation to the number of parameters

in some of these models and neither selection criterion performed very well.

2.4. Uncertainty

Apart from obtaining a description of the phenomenon, one of the major

objectives of fitting a distribution to climate data is to obtain estimates of its

quantiles, especially those related to the return periods of extreme events: for

example, the upper 1% point of the distribution of annual maxima corresponds

to a 1/.01 = 100-year return period. Good estimation of the uncertainty in ex-

treme levels can be as important as the estimate of the level itself (Coles, [4];

Khaliq et al., [12]). Parametric confidence intervals based on a normal distribu-

tion approximation cannot be expected to be accurate for extreme quantiles; that

is, their actual coverage probabilities will not be close to the nominal values. As a

result, confidence interval construction by bootstrap methods has been examined

for GEV models, first by Kysely ([13]) in the stationary case and subsequently

by Panagoulia et al. ([19]) in the non-stationary case. Amongst several methods

compared, the best was found to be the parametric bootstrap with confidence in-

tervals constructed by the bias corrected and accelerated (BCa) technique. Seri-

naldi and Kilsby ([23]) expressed a preference for percentile parametric bootstrap

confidence intervals, although this appears to be based on general considerations

rather than detailed studies. However, they warned that the estimation of ex-

treme quantiles is inherently so uncertain that the discrepancy between different

types of confidence intervals is not of major relevance.

Uncertainty in predictions also stems from model selection. The above con-

fidence intervals are based on the assumption that the correct model has been

selected and take no account of the alternatives that were considered. Model aver-

aging procedures exist and are used in many contexts to overcome this objection,

especially in the Bayesian framework, but will not be considered here.

3. CASE STUDY

3.1. Data

Our analysis concerns time series of meteorological data from one catchment

area in the mountains of Central Greece. Further description of this location can

be found in Panagoulia et al. ([19]), where analyses of annual maxima of rainfall
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over the whole catchment area are carried out for historical data and for data sim-

ulated under climate change scenaria. In the present paper, analyses are carried

out for annual maxima and minima of temperature over the period 1972–1992,

over the whole area and in nine zones corresponding to a partition of the area by

elevation.

3.2. GEV modelling

The series of minima can be analysed by GEV modelling after taking the

negative of its values and fitting the same models as to the series of maxima

(Chavez-Demoulin and Davison, [2]). The series of annual extremes for the entire

area do not appear to be stationary, as the GEV10 model offers significantly

improved fit over the GEV00 model (comparing minus twice the change in log-

likelihood to the chi-squared distribution with one degree of freedom, p = 0.05

for maximum temperatures, p = 0.01 for minima). The smooth curves fitted to

the annual minima in Figure 1 and annual maxima in Figure 2 demonstrate a

decreasing and an increasing trend, respectively. The suggestion in Figure 1 of

greater variance of the minima in the later years is not borne out by statistical
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Figure 1: Annual minimum temperatures in ◦C over the whole study area,
with trend fitted by locally weighted scatterplot smoothing.

tests for a linear trend in the scale parameter (p = 0.40 for GEV11 versus GEV10 ;

p = 0.91 for the corresponding test for the maxima). In contrast to the results

of the analysis of rainfall data in Panagoulia et al. ([19]), the GEV model for
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temperatures did not reduce to the Gumbel (ξ = 0) as the former had much

better fit than the latter (AIC 96.8 compared to 102.1).
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Figure 2: Annual maximum temperatures in ◦C over the whole study area,
with trend fitted by locally weighted scatterplot smoothing.

Parameter estimates obtained from fitting the stationary GEV00 model to

the data from each zone separately are shown in Table 1. There appear to be

trends with zone, that is, with altitude. In particular, as would be expected,

Table 1: Fitting stationary GEV to annual maximum and minimum temperatures
in each zone separately: estimates of location µ, scale σ and shape ξ.

Maxima Minima
Zone

µ σ ξ µ σ ξ

1 25.2 2.05 −0.23 2.16 1.96 −0.310
2 24.4 2.05 −0.19 2.63 1.91 −0.230
3 23.9 2.08 −0.18 3.15 1.78 −0.080
4 23.5 2.12 −0.17 3.97 1.58 0.080
5 23.0 2.22 −0.17 5.07 1.43 0.210
6 22.8 2.49 −0.19 6.24 1.56 0.170
7 22.5 2.73 −0.11 7.70 1.85 0.090
8 22.3 2.85 −0.02 8.76 2.05 0.040
9 22.0 3.06 0.06 10.24 2.28 0.002

Standard
0.53 0.35 0.11 0.46 0.34 0.18

error:

median
(0.48–0.75) (0.32–0.56) (0.10–0.16) (0.36–0.57) (0.29–0.41) (0.17–0.20)

(range)
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the location parameter appears to decline as the altitude increases from Zone 1

to Zone 9 for the maxima and also — apparently to a much greater degree —

for minus the minima. Furthermore, the relationship with zone is very close to

linear. Also, fitting the GEV10 model separately in each zone (results not shown)

suggests time dependence of the scale in many zones, as was noted above in the

analysis of the entire area. The next step was to fit models to the annual maxima

and minima by year and zone, allowing various forms of dependence on both of

these covariates.

The best fitting model for annual maxima, selected using likelihood ratio

tests and the AICc and BIC criteria, included linear dependence of µ on zone

and year, and log-linear dependence of σ on zone. The shape parameter ξ did

not depend on either covariate, despite the indication of a trend in Table 1 which

may have been due to correlations between the estimates of the three parameters.

The fitted model was:

µ̂ = 25.00 − 0.285Zone + 0.118 (Year − 1982) ,

(0.36) (0.073) (0.030)

ln σ̂ = 0.554 + 0.068Zone ,

(0.109) (0.021)

ξ̂ = −0.142

(0.045) .

(Standard errors are shown in parentheses below the parameter estimates to which

they refer.) We note that the estimate of ξ is clearly significantly different from

zero, meaning that the Gumbel distribution is not suitable here. This is different

from the finding for rainfall over the same catchment area in Panagoulia et al.

([19]), although that analysis was for the total area not broken down by zone.

The corresponding analysis for (minus) the annual minima, produced a slightly

different model, with σ depending on year instead of zone. The fitted model was:

µ̂ = 0.438 + 1.043Zone + 0.121 (Year − 1982) ,

(0.314) (0.060) (0.024)

ln σ̂ = 0.579 + 0.026 (Year − 1982) ,

(0.063) (0.011)

ξ̂ = 0.004

(0.063) .

In this case, the estimate of ξ is clearly not significantly different from zero,

implying that the Gumbel distribution could be employed. Comparing the two

sets of equations, it is noticeable that annual maxima are increasing and annual

minima are decreasing, meaning that the temperature range is increasing. In fact,



226 Chrys Caroni and Dionysia Panagoulia

the coefficients representing the time dependence of the location µ are almost

equal: annual maxima are increasing at the same rate as annual minima are

decreasing. However, the coefficient of the dependence of µ on altitude is much

bigger for minima than for maxima. This gives an expected result, that minimum

temperatures fall more steeply than maximum temperatures with altitude. The

results for scale show increasing variability of minima with time — which is what

Figure 1 indicated, but did not emerge from the analysis for the entire area

aggregated across zones. The variability of maxima increases at higher altitude

but is not changing with time.

3.3. GAMLSS modelling

There is no theory to guide the choice of which distribution to fit from

among the many available in GAMLSS. We carried out the modelling using the

Inverse Gaussian, Gamma and Lognormal distributions, allowing non-stationarity

in the form of polynomial dependence of the parameters on year and zone just

as we did for the GEV distribution. The preferred models coincided with those

chosen for the GEV. We found that the fits of these non-stationary distribu-

tions were almost identical. For maxima, AIC values were 911.2 for the Inverse

Gaussian distribution, 910.6 for the Lognormal and 912.0 for the Gamma distri-

bution. Graphs demonstrating goodness-of-fit are not presented because the lines

showing each distribution are virtually indistinguishable. Furthermore, estimated

percentiles were very close.

Close similarity of fits between different models is probably a usual feature

of modelling data of this kind. For example, Villarini et al. ([26]) analysed annual

flood peaks from many stations using GAMLSS and found (see their Table 7) that

the Lognormal distribution provided the best fit in 16 sets of data, the Gamma

in seven, the Gumbel in 5 and the Weibull in one. In the absence of theory to

guide the choice, the preference for one or the other may well just be a matter of

sampling variability.

4. CONCLUSION AND COMMENTS

When the underlying distribution is stationary, the choice of the GEV dis-

tribution for modelling extremes is well supported on theoretical grounds, pre-

cisely because it is an extreme value distribution. That is, it is a form that

necessarily arises in the limit to describe the distribution of the maxima of a se-

ries of independent and identically distributed random variables (Cox et al., [6];

Gomes and Guillou, [9]). In the non-stationary case, however, the original se-
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quence does not consist of identically distributed variables. We are not aware

that any limiting form necessarily arises in this case. This suggests that there

is no compelling reason to use the non-stationary GEV in preference to many

other distributions that are available. The choice of distribution then becomes

entirely empirical. This is the approach that seems to have been taken in the

various papers that have appeared in the literature so far on the application

of GAMLSS to meteorological and related data. These papers tend to demon-

strate the possibilities that this flexible approach to modelling offers but not to

go on to draw conclusions about which models are the most appropriate on gen-

eral grounds. Searching through alternative distributions — which the GAMLSS

framework tends to encourage — also adds an extra layer of uncertainty to the

model selection procedure which ought to be accounted for in predictions.
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