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FOREWORD

The One-day Workshop on Spatial-temporal Models in Epidemiology and

Health was held in Lisbon, Portugal, on June 20th, 2014. It was organized by the

Centro de Estat́ıstica e Aplicações da Universidade de Lisboa (CEAUL), under

the ambit of the FCT research projects: PTDC/MAT/118335/2010 and PEst-

OE/MAT/UI0006/2014. The workshop aimed (i) to bring together researchers

who work in epidemiology and health sciences; (ii) to promote a fruitful discus-

sion on the role of statistical methods, such as time series analysis and spatial

statistics.

Due to the proliferation of several studies involving data sets that are both

spatially and temporally indexed, spatial-temporal modeling has received an in-

creasing attention in the last few years. Spatial-temporal data are usually related

to applied areas, such as epidemiology and health sciences. Six invited speakers

presented their methodological advancements in those areas with a heavy em-

phasis on applications, whereas a poster session with contributed papers comple-

mented the scientific program of the workshop.

This special issue of REVSTAT — Statistical Journal consists of peer-

refereed papers generated from the research work presented at the workshop. This

collection of papers reflects the stimulating research in the area of Epidemiology

and Health Statistics, covering a wide range of topics, such as Spatio-temporal

detection of influenza outbreaks, Assessing the evolution of territorial dispari-

ties in health, Space-time disease mapping, Bayesian projections, Longitudinal

dynamic models and Estimating the long-term health effects of air pollution.

We would like to to thank all authors for their contributions and all the

anonymous reviewers who helped to prepare this special issue. Furthermore,

we are grateful to the Editor-in-Chief of REVSTAT — Statistical Journal for

agreeing to publish this special issue, as well as to all members of the scientific

and organizing committees who worked to make the workshop a very interesting

event for discussing Spatial-temporal Models in Epidemiology and Health.

Giovani Loiola da Silva Maria Antónia Amaral Turkman

CEAUL & Dep. Mathematics-IST CEAUL & Faculdade de Ciências
Universidade de Lisboa Universidade de Lisboa
giovani.silva@tecnico.ulisboa.pt maturkman@fc.ul.pt
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Abstract:

• The paper investigates spatio-temporal trends in health disparities through an empir-
ical example. We deal with geographical health pattern in Italy from 1991 to 2010,
starting from infant mortality data available at the provincial level and assessing
the existent disparity among macro-regions (the conventional Northern, Central and
Southern macro-regions). After a discussion concerning suitable inequality indices and
their decompositions when dealing with small area data, we propose a model-based
approach that allows to properly tackle sampling variability. Results give evidences
of persisting spatial disparity in infant mortality along time.
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1. INTRODUCTION

In this note, we investigate spatio-temporal trends in health disparities,

expressed by infant mortality, through an empirical example. We deal with geo-

graphical health pattern in Italy from 1991 to 2010, starting from data available

at the provincial level and assessing the existent disparity among macro-regions

(the conventional Northern, Central and Southern macro-regions). The evalu-

ation of the temporal evolution of inequality requires the adoption of suitable

indicators that, along with their decomposition, help in answering a couple of

main questions: is inequality between small geographical units decreasing dur-

ing the study period? Which is the trend of the inequality share explained by

grouping the smaller geographical units in macro-regions? As in recent years

spatial disparities are being investigated in depth, the above research questions

are more and more crucial. Answers to such questions are critical to improve and

implement better public policies.

As a matter of fact, persistent health inequalities in modern welfare states

represent a great disappointment in public health, with widening disparities re-

ported in many Western European countries (Mackenbach, 2012). Since health

inequality could persist within the same country among different regions, ap-

propriate statistical methods to describe the spatio-temporal evolution of this

phenomenon are desirable. In this study, we propose suitable decompositions of

inequality indices equipped with uncertainty measures as the mean to evaluate

the temporal evolution of health inequality in Italy along a twenty-years period.

In particular, we focus on infant mortality, that is one of the main indicators to

measure the general health level. Health disparities can be described by means

of a variety of statistical measures, such as dispersions measures or inequality

indices (Wagstaff et al., 1991). In order to assess the presence of geographic dis-

parities in morbidity and mortality, various authors suggested measuring health

inequality by means of the Generalized Entropy and Gini indices.

In the Italian case, despite a general declining trend, some studies found

high dispersion in Infant Mortality Rates (IMRs) at provincial level, revealing

evident and persisting geographical disparity in infant mortality. This persisting

disparity was mainly related to differences in socio-economic and health care

standards among Northern, Central and Southern Italian macro-regions (Fantini

et al., 2005; Lauria and De Stavola, 2003).

When studying provincial-level infant mortality, IMRs show large random

fluctuations giving rise to relevant methodological issues concerning the evalu-

ation and decomposition of health disparities: more precisely, because of the

low birth counts observed in the provinces and because of the rarity of infant

deaths, Italian provinces have to be considered as small areas and direct esti-

mates (i.e. IMRs) are subject to high sampling variability that we will tackle
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by means of a model-based approach. The consequences of sampling variabil-

ity on the measurement and decomposition of appropriate inequality measures

constitute the main methodological focus of the paper. Literature concerning

sampling variability of Gini index and Generalised Entropy measures are centred

on the classical case where available data constitute a sample from a larger pop-

ulation, but individual values of the study variable are considered as measured

without error. Instead, due to the peculiarities of the motivating example, we

address the situation where the whole population has been observed (i.e. data

concerning birth and death counts are available for each province), but individual

values of the study variable need to be estimated. In this situation, the sampling

properties of inequality indices estimators depend on the sampling properties

of individual-level estimators. According to our knowledge, this topic has been

neglected in the literature concerning health inequalities. Proper smoothing tech-

niques need to be used in order to limit potential biases due to sample variability

(Congdon et al., 2001; Congdon, 2010). Adopting a popular approach to spatio-

temporal disease mapping (Kim and Lim, 2010; Knorr-Held, 2000; Blangiardo

et al., 2013), we estimate a Bayesian smoothing model exploiting spatial associ-

ation of provincial IMRs and temporal correlation. The model allows reciprocal

borrowing strength for area-level data, with the least reliable rates (based on the

smallest birth counts) being mostly smoothed. Model fitting is performed via

Integrated Nested Laplace Approximations (INLA, Rue and Martino, 2009).

The outline of this paper is as follows. Section 2 provides a brief description

of the data concerning Italian infant mortality. Section 3 introduces inequality

measures and their decomposition. A simulation study is discussed for high-

lighting some relevant features of inequality estimators. Section 4 describes the

Bayesian spatio-temporal model adopted for smoothing mortality rates: compu-

tational details are provided. In Section 5, model-based inequality decomposition

is presented. In the concluding section, evidences of persisting disparity in in-

fant mortality are briefly discussed, illustrating the contribution of the differences

among macro-regions.

2. MOTIVATING EXAMPLE

Yearly data about infant mortality, in our study referred to 95 provinces

along 20 years (1991–2010), are published by the Italian Institute of Statistics

(ISTAT). At each year t = 1, ..., T , province s = 1, ..., S, and macro-region k =

1, ...,K, infant death counts yskt and birth counts Pskt are available. For each

year, province and macro-region, the Infant Mortality Rate (IMR):

(2.1) θ̂skt =
yskt
Pskt

, s = 1, ..., S, k = 1, ...,K, t = 1, ..., T ,
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is a quick measure of the infant mortality intensity. In particular, θ̂skt is the

maximum likelihood estimator of the true mortality rate θskt according to the

model

(2.2) yskt|θskt ∼ Poisson(θsktPskt) , s = 1, ..., S, k = 1, ...,K, t = 1, ..., T .

Estimator (2.1) is unbiased and its sampling variance is inversely propor-

tional to the birth count Pskt, in fact V (θ̂skt|θskt) = θskt/Pskt. It turns out that

estimates referred to provinces with low birth counts are affected by huge sam-

pling variability, while estimates based on high birth counts are more stable.

This well-known feature of mortality rates gave rise to an extensive literature

concerning spatial and spatio-temporal disease mapping, aiming at smoothing

observed rates (Kim and Lim, 2010; Knorr-Held, 2000; Blangiardo et al., 2013).

The consequences of sampling variability on the measurement and decomposi-

tion of appropriate inequality measures are discussed in the following section and

constitute the main methodological focus of the paper.

Figure 1 plots the IMRs series of all Italian provinces during the study

period (reported in gray). Black lines refer to IMRs observed in the Northern,

Central and Southern macro-regions. A general decline of the mortality level is

observed along the study period in all the macro-regions, reflecting the general

trend at the provincial level. At the national level, IMR declines from 0.008 to

0.003, but a general decline in the mortality intensity does not imply a decline in

territorial inequalities.

1995 2000 2005 2010

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

North

Center

South

Provinces

Figure 1: Temporal trend of IMRs at provincial and macro-region level.
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Figure 2 reports the spatial distribution of IMRs classifying each province

according to the octiles identified for the selected years 1991, 1994, 1998, 2002,

2006 and 2010. A persistent spatial trend occurs since southern provinces system-

atically register higher infant mortality with respect to northern provinces. In the

following of this paper, we discuss how this territorial disparity can be evaluated

focusing on both the overall inequality and the share of inequality explained by

grouping provinces in macro-regions.

1991 1994 1998

2002 2006 2010

1st 2nd 3rd 4th 5th 6th 7th 8th

Figure 2: Octiles of the IMRs spatial distribution in selected years.

3. INEQUALITY MEASURES AND THEIR DECOMPOSITION

The theory concerning the measurement of inequalities has a long history

and has been developed essentially in the framework of income distribution (Dal-

ton, 1920; Atkinson, 1970; Dreher and Gaston, 2008). The same theory has

been subsequently turned to the study of health inequalities at several spatial

and temporal levels of aggregation. A popular approach defines health inequal-

ity as the uneven distribution of health across all units in a population and in

population subgroups (see e.g., Gakidou and King, 2002; Pradhan et al., 2003).

In this section, following this approach, we consider a framework where population
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units are constituted by small geographical areas grouped in macro-regions and

discuss some crucial statistical properties of inequality measures estimators when

small area rates are involved. In particular, we focus on two popular inequality

indicators: the Generalised Entropy class of indicators and the Gini coefficient.

For simplifying notation, we drop the temporal subscript in what follows.

Given a population of S areas organised in K groups, the number of ar-

eas belonging to the k-th group is denoted as Sk, such that
∑K

k=1
Sk = S. Let

θk = (θ1k, ..., θsk, ..., θSkk) and Pk = (P1k, ..., Psk, ..., PSkk) denote respectively the

“true”mortality rates and the number of births referred to group k. Group-specific

rates are weighted averages of area-specific rates denoted as θ̄k =
∑Sk

s=1
Pskθsk/Pk,

where Pk =
∑Sk

s=1
Psk.

The Generalised Entropy is defined as:

(3.1) GE(θ;α) =
1

α(α− 1)

K∑

k=1

Sk∑

s=1

Psk
P

((
θsk
θ̄

)α

− 1

)
, α 6= 0, 1 ,

where α controls the weight assigned to the distance between mortality rates at

different parts of the rates distribution: for negative/positive values of α, GE is

more sensitive to changes in the lower/upper tail of the distribution. The GE

class of inequality measures includes as special cases, among others, the Theil

index (α = 0) and the Coefficient of Variation (α = 2, where the GE is equivalent

to half times the squared coefficient of variation, or relative variance). The GE

class of inequality measures is easily decomposable in the between and within

group components. Namely, the between component is expressed as:

GEB(θ;α) =
1

α(α− 1)

K∑

k=1

Pk
P

((
θ̄k
θ̄

)α

− 1

)
,

a weighted average of the distances between the group means and the overall

mean. The within component is expressed as a linear combination of the GEs in

each sub-group

GEW (θ;α) =
K∑

k=1

Pk
P

(
θ̄k
θ̄

)α

GEWk ,

where GEWk is the GE in the k-th group:

GEWk = GE(θk;α) =
1

α(α− 1)

Sk∑

s=1

Psk
Pk

((
θsk
θ̄k

)α

− 1

)
.

Eventually, GE is decomposed in the between and within components as:

GE(θ;α) = GEB(θ;α) +GEW (θ;α)

and the contribution of grouping to the global inequality can be evaluated as the

ratio:

(3.2) GEB(θ;α)/GE(θ;α) .
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As pointed out in Dagum (1997), the decomposition of GE-type inequality

measures is essentially based on the hypotheses underlying one-way analysis of

variance, neglecting differences in variances and asymmetry characterising sub-

groups, and delivering the between component from comparisons between group

means. A nicer and more detailed picture of inequality decomposition can be

obtained starting from the Gini index defined as:

(3.3) G(θ) =
1

2θ̄

K∑

h=1

K∑

k=1

Sh∑

s=1

Sk∑

v=1

Psh
P

Pvk
P

|θsh − θvk|

according to the proposal of Dagum (1997). This decomposition considers three

components measuring respectively within-group inequality, net between-group

inequality and transvariation (i.e. overlapping) between groups. The component

due to transvariation represents one strong peculiarity of Gini’s index with re-

spect to the GE decomposition. For simplifying notation, it is assumed that the

group means are ordered as θ̄1 ≤ ... ≤ θ̄k ≤ ... ≤ θ̄K . The decomposition starts

by defining the Gini index between the couple of groups h and k as:

(3.4) Ghk =
1

θ̄h + θ̄k

Sh∑

s=1

Sk∑

v=1

Psh
Ph

Pvk
Pk

|θsh − θvk| .

For h = k, expression (3.4) corresponds to the Gini index of the k-th group.

It immediately turns out that (3.3) can be written as a function of (3.4) as:

(3.5) G(θ) =
K∑

h=1

K∑

k=1

Ph
P

(
Pkθ̄k
P θ̄

)
Ghk =

K∑

h=1

K∑

k=1

qhrkGhk ,

where qh = Ph/P is the population share of the h-th group and rk = (Pkθ̄k)/(P θ̄)

can be interpreted as the share of expected death counts in the k-th group. Since∑K
h=1

∑K
k=1

qhrk = 1, the Gini index can be expressed as a weighted average of

the between groups Gini indices Ghk; on the contrary, it is not possible to express

GE-based decompositions as weighted averages, since the weights do not sum up

to one. Coefficients Ghk, properly combined with weights qh and rk, allow to

decompose the Gini index in three components. The first one is

(3.6) GW (θ) =
K∑

k=1

qkrkGkk ,

which measures the contribution of within group inequality. The following ex-

pression of the between component is due to Costa (2009):

(3.7) GB(θ) =
K−1∑

h=1

K∑

k=h+1

r∗hk − q∗hk
r∗hkq

∗

kh + r∗khq
∗

hk

(qhrk + qkrh) ,

where r∗hk = rh/(rh+rk) and r∗hk = qh/(qh+qk). The component due to transvari-

ation, denoted in what follows as GT (θ), can be obtained by difference. The
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between component of the Gini index has the merit to take into account pairwise

differences between individuals instead of being entirely based on comparisons

among group means: for this reasons it should be preferred to GE-like indices.

Eventually, the decomposition

(3.8) G(θ) = GW (θ) +GB(θ) +GT (θ)

is obtained.

For the purpose of this work, we consider G(θ), GB(θ), GW (θ), GT (θ),

GE(θ;α), GEB(θ;α) and GEW (θ;α) as target population parameters to be es-

timated.

3.1. The use of direct estimates

Direct estimates θ̂sk plugged in the expression of population quantities are

a popular way for estimating inequality indices. Figures 3 and 4 report estimates

Ĝ(θ), ĜB(θ), ĜW (θ), ĜT (θ), ĜE(θ;α), ĜEB(θ;α) and ĜEW (θ;α) of these

inequality measures for each year in the interval 1991–2010 concerning Italian

infant mortality, obtained by simply plugging-in direct estimates of the mortality

intensity. As an example, at each year, Ĝ(θ) is obtained as:

(3.9) Ĝ(θ) =
1

2ˆ̄θ

K∑

h=1

K∑

k=1

Sh∑

s=1

Sk∑

v=1

Psh
P

Pvk
P

|θ̂sh − θ̂vk|

employing the direct estimates (2.1).

1995 2005

0
.0

1
0
.0

3
0
.0

5
0
.0

7

GE

GEB

1995 2005

0
.0

2
0
.0

3
0
.0

4
0
.0

5

GEW

1995 2005

0
.2

5
0
.3

5
0

.4
5

0
.5

5

GEB GE

Figure 3: Plug-in estimates. Generalised Entropy and Between Generalised
Entropy (left panel). Within Generalised Entropy (middle panel).
Effect due to the between component (right panel).

Estimates of inequality indicators show a noisy temporal trend that sug-

gests an increasing weight of the within components (see middle panels of the

following Figures 3 and 4) and a decreasing weight of the between component
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(see Figure 3 right panel and Figure 4 lower left panel). In particular, according

to the GE index, the between component accounts for 55% of total inequality in

1991, decreases to 25% in year 2008 and then shows a further increase to 36%

in 2010. The between component of the Gini index accounts for 70% of total

inequality in 1991, decreases to 49% in year 2008 and then shows a further in-

crease to 60% in 2010. Our purpose is to show that these estimates should not be

considered as reliable pictures of territorial disparity in Italian infant mortality,

since they are heavily affected by the sampling variability of direct estimates.

1995 2005

0
.0

8
0
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2
0

.1
6

0
.2

0
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GB

1995 2005

0
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0
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1995 2005
0
.0

1
0

0
.0

2
0

0
.0

3
0

0
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4
0
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1995 2005

0
.5

0
0
.6

0
0
.7

0
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1995 2005

0
.2
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0
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.2
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0
.3

0
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1995 2005

0
.0

5
0
.1

0
0
.1

5
0
.2

0

GT G

Figure 4: Plug-in estimates. Gini index and its between component
(upper left panel). Within component (upper middle panel).
Transvariation component (upper right panel). Lower panels
report the contribution of each component to the total.

Literature concerning sampling variability of Gini index and Generalised

Entropy measures focuses on the classical case where available data constitute

a sample from a larger population, but individual values of the study variable

are considered as measured without error (see for example Langel and Tillé,

2013). Instead, due to the peculiarities of the motivating example, we address

the situation where the whole population has been observed (i.e. data concerning

birth and death counts are available for each province), but the individual values

of study variable (i.e. mortality intensity θsk) need to be estimated. In this

situation, the sampling properties of inequality indices estimators depend on the

sampling properties of individual-level estimators. According to our knowledge,

this topic has been neglected in the literature concerning health inequalities. In

Subsection 3.2 the effect of estimating inequality measures by simply plugging-in

direct estimates θ̂sk is discussed.
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3.2. The effect of sampling variability on decomposition

In order to discuss the consequences of direct estimates sampling variability

on the estimation of inequality measures decomposition, we design a simulation

study that considers a population partitioned in K = 3 groups, where the whole

inequality is explained by the between-group component, while equality within

groups is postulated. We set θ̄1 = 0.6 θ̄, θ̄2 = θ̄ and θ̄3 = 1.4 θ̄. Moreover, we set

θsk = θ̄k ∀s, k, such that the within component of any inequality measure equals

0, i.e. GW (θ) = GEW (θ;α) = 0. In order to investigate the effect of mortality

intensity, we let θ̄ vary between .002 and .009, similarly to the national mortality

levels observed between 1991 and 2010 in Italian infant mortality. For the sake of

simplicity, from now on, we set α = 1.5 when dealing with the GE index. With

this setting, for any θ̄, we obtain G(θ) = GB(θ) = 0.196 and, fixing α = 1.5,

GE(θ; 1.5) = GEB(θ; 1.5) = 0.069. For each value of θ̄, and for each s and k,

M = 50, 000 death counts {ymsk}m=1,...,M are generated from the model:

ysk|θ̄k ∼ Poisson(θ̄kPsk) , k = 1, ...,K, s = 1, ..., Sk ,

where Psk is set at the number of births observed in the Italian provinces in 2010,

in order to obtain simulation results relevant for highlighting the peculiarities of

our case-study. For each simulated count ymsk, direct estimates θ̂msk = ymsk/Psk are

used to obtain plug-in estimates of the inequality measures and their components.

Averaging over all simulated values, we obtain the expected value of the plug-in

estimators, as an example:

E(Ĝ(θ)|θ) =
1

M

M∑

i=m

Ĝm(θ) .

Simulation results are reported in Figures 5 and 6, with θ̄ values in abscissa.

In all panels, true population values are reported as horizontal thin lines. The left

panel of Figure 5 and the upper left panel of Figure 6 show that estimators Ĝ(θ)

and ĜE(θ;α) of the global inequality are positively biased while both estimators

of the between components, whose expected value is reported as a dashed line

in the same panels, are approximately unbiased. Unbiasedness of the between-

component estimators is not surprising and can be ascribed to the stability of the

group-specific sample means ˆ̄θk as estimators of the population parameters θ̄k,

based on greater population sizes with respect to area-level estimates θ̂sk. It turns

out that the bias of the global estimators is essentially due to overestimation of the

within component, as can be seen from the central panels of the figures. Moreover,

the bias of the global measures decreases when θ̄ increases: the relative bias of

ĜE(θ; 1.5) ranges from 63% (when θ̄ = .002) to 14% (when θ̄ = .009), while the

relative bias of Ĝ(θ) ranges from 34% (when θ̄ = .002) to 13% (when θ̄ = .009).
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panels). Expected values of the contribution of each compo-
nent to the total (lower panels). In abscissa θ̄ values.

This is a very relevant feature to bear in mind in our case study: since

the average mortality intensity decreases along the study period (see Figure 1),

it is very likely that overestimation of the within component is more severe at

the end of the study period itself. In other words, inequality measures computed

at the beginning and at the end of the period (reported in Figures 3 and 4) are

not directly comparable since they are affected in a different way by sampling

variability. An interesting feature of the Dagum’s decomposition of the Gini

index is its ability to capture (and to be affected by) transvariation: for low θ̄

values, simulated rates θ̂msk are more likely overlapping between groups than for

high θ̄ values: this intuitive behaviour induces the trend of E(ĜT (θ)|θ) plotted

in the right panels of Figure 6. As a consequence of the overestimation of within
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variability, the contribution of the between components to the global inequality

turns out to be heavily underestimated (see Figure 5, right panel and Figure 6,

lower left panel): E(ĜEB(θ; 1.5)/ĜE(θ; 1.5)|θ) ranges from 0.62 to 0.88 as a

function of θ̄, while E(ĜB(θ)/Ĝ(θ)|θ) ranges from 0.75 to 0.89.

The dangers of a quick exploitation of direct estimates have been high-

lighted by the simulation study just described. A model-based approach where

small area estimates are improved by a borrowing strength process is therefore

needed. The Bayesian framework is particularly suitable to this aim and to easily

obtain uncertainty measures concerning inequality decomposition.

4. SPATIO-TEMPORAL SMOOTHING

Spatio-temporal disease mapping models can be adopted as useful tools

for attenuating the effects of sampling variability of individual-level estimates

on inequality measures and their decomposition. Several spatio-temporal disease

mapping models have been proposed including parametric or non-parametric time

trend and different types of spatio-temporal interaction (see e.g. Blangiardo et al.,

2013; Schrödle and Held, 2011; Ugarte et al., 2014). In this work, we adopt

the well-known smoothing model proposed in Knorr-Held (2000), that is briefly

sketched in what follows. Since our aim is limited to obtain smoothed mortality

rates, we do not include group-specific parameters: between-group variation will

be evaluated on the basis of the posterior distribution of the smoothed rates.

According to the approach proposed in Knorr-Held (2000), the spatio-temporal

trend is non-parametrically modelled: this delivers a very flexible model that

can capture complex non-linear behaviours. Smoothing is achieved by borrowing

strength along both space and time under the fairly reasonable hypothesis that

rates variation is smooth along these dimensions. The model is hierarchically

specified and is particularly suitable to be managed in a Bayesian framework.

At the first level of the hierarchy, conditionally on model parameters involved in

higher levels, mortality counts yskt are assumed to follow independent Poisson

distributions:

(4.1) yskt|θskt ∼ Poisson(θsktPskt), s = 1, ..., S, k = 1, ...,K, t = 1, ..., T .

In its most general formulation, the model includes both spatial and tem-

poral structured and unstructured random effects and a spatio-temporal interac-

tion term. All random effects are modelled as Gaussian Markov Random Fields

(GMRF): the Markov property of GMRF models implies sparseness of the pre-

cision matrix, which allows fast computations. The linear predictor is specified

as:

(4.2) log(θskt) = µ+ φt + νt + ψsk + usk + δskt,
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where µ captures the average log-rate; ν = (ν1, ..., νt, ..., νT ) and u = (u11, ...,

uS11, ..., u1K , ..., uSKK) are unstructured temporal and spatial random effects

distributed as independent zero-mean Gaussian variables, i.e. u ∼ N(0, τuIS)

and ν ∼ N(0, τνIT ). Intrinsic GMRF (IGMRF) are adopted for random effects

φ = (φ1, ..., φt, ..., φT ) and ψ = (ψ11, ..., ψS11, ..., ψ1K , ..., ψSKK), namely φ ∼

N(0, τφKT (φ)) and ψ ∼ N(0, τψKS(ψ)), where KT (φ)) is structured in order

to obtain a Random Walk 1 prior and KS(ψ)) depends on the neighbouring

structure of the map, delivering the well-known Intrinsic Conditional AutoRe-

gressive (ICAR) model. With regard to the spatio-temporal interaction random

effects δ = (δ111, ..., δskt, ..., δSKT ), four types of interaction can be postulated by

specifying the structure matrix as the Kronecker product of the corresponding

structure matrices of the main effects. Namely, δ ∼ N(0, τδKST (δ)) where:

– Type I interaction: KST (δ) = IT ⊗ IS ;

– Type II interaction: KST (δ) = IT ⊗ KS(ψ) ;

– Type III interaction: KST (δ) = KT (φ) ⊗ IS ;

– Type IV interaction: KST (δ) = KT (φ) ⊗ KS(ψ) .

To ensure model identifiability, appropriate linear constraints are needed

for the random effects: with regard to IGMRFs, the number of required linear

constraints equals the rank-deficiency of the precision matrix. As pointed out

in Schrödle and Held (2011), identifiability can be ensured by computing the

null space of the structure matrices and using the obtained eigenvectors as linear

constraints: this is the strategy we adopt for model estimation. Unstructured

random effects are constrained to zero sum in order to allow identification of the

intercept term µ. Model hierarchy is completed by specifying a diffuse Gaus-

sian distribution as a prior µ, while Gamma priors are specified for precision

parameters τφ, τu, τν , τψ and τδ.

4.1. Computations

Coherently with the Bayesian framework, we aim at evaluating and de-

composing inequality measures (3.1) and (3.3) on the basis of their posterior

distribution p(G(θt)|y) and p(GE(θt;α)|y): this allows to easily obtain both

point estimates and their associated uncertainty. When dealing with complex

hierarchical Bayesian models, the joint posterior distribution is not available in

closed form and needs to be approximated. Two alternative strategies are cur-

rently very popular for approximating the joint posterior distribution: Markov

Chain Monte Carlo (MCMC) sampling and INLA (see Rue and Martino, 2009).

The latter is particularly suitable for latent GMRF models and provides very

accurate approximations of the posterior distribution. Moreover, INLA outper-
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forms MCMC approaches in terms of computational time and accuracy. INLA

has been made easily implementable by the R package INLA (Rue et al., 2013),

that we used for model estimation.

It is worth noting that inequality measures are non-linear combinations of

model parameters: the R package INLA allows to approximate the posterior dis-

tribution of linear combinations of the model parameters, but does not allow to

obtain approximations of non-linear combinations: as a consequence, posterior

inference concerning inequality measures can only be performed by sampling from

the joint posterior distribution, a task that is naturally addressed in an MCMC

framework. Fortunately, the adoption of an MCMC algorithm can be avoided in

our case study, since an experimental function implemented in the INLA pack-

age, inla.posterior.sample, allows to draw samples from the joint posterior

distribution. We checked the coherence between the results obtained by the INLA

experimental function and the posterior samples obtained by means of an MCMC

algorithm, finding agreement between results for the estimated models, with an

impressively lower computational time demanded by the INLA-based procedure.

Once posterior samples from the joint posterior distribution are available, as is the

case where MCMC sampling is performed, posterior distributions of any functions

of the model parameters can be obtained on the basis of these samples. Given

L samples {θlt}l=1,...,L from the joint posterior distribution θt|y, l = 1, ..., l, ..., L,

t = 1, ..., t, ..., T , for each l, inequality measures and their decompositions can be

computed, delivering an L-dimensional sample from their posterior distribution:

as a byproduct, both posterior point estimates and credibility intervals can be

easily obtained.

5. RESULTS

Model selection is performed by means of the Deviance Information Crite-

rion (DIC, Spiegelhalter el at., 2002) according to the results of Table 1. Models

without unstructured terms are preferred in terms of fitting, as the first column

of results shows; the selected model includes a Type II interaction term.

Table 1: Model comparison: Deviance Information Criterion.

Interaction Without ν and u With ν and u

Type I 11185.09 11224.34
Type II 11136.75 11196.59
Type III 11245.67 11356.31
Type IV 11236.46 11286.92
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On the basis of the selected model, we obtain posterior estimates of in-

equality measures and their decomposition of Figures 7 and 8, where posterior

means are reported along with 90% credibility intervals.
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These figures should be compared with their counterparts based on direct

estimates, already reported in Figures 3 and 4; all the comparisons discussed in

what follows are coherent with the results of the simulation study reported in

Figures 5 and 6, and should be interpreted in light of them. As a first difference,
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smoothing of direct estimates turns out in smoothing of the temporal trend of

inequality measures, delivering a clearer picture of the evolution of territorial dis-

parities in Italian infant mortality. Secondly, posterior estimates of the overall

level of inequality (see Figure 7 left panel and Figure 8 upper left panel) are

sensibly lower than estimates obtained by means of plug-in estimators. The ratio

E(GE(θt)|y)/ĜE(θt), that can be interpreted as a quick measure of the effect

due to the shrinkage of mortality rates estimates, ranges from 0.9 at the begin-

ning of the study period, when mortality intensity is higher, to 0.45 at the end

of the study period, characterised by lower mortality intensity. The same ratio

referred to the Gini index ranges from about 0.9 at the beginning of the study

period to about 0.7 in last years, witnessing a lower sensitivity of the Gini in-

dex to sampling variability of direct estimates. The difference between plug-in

estimates and model-based posterior estimates is almost entirely due to the re-

duction of the within components (central panels of Figures 7 and 8) and, with

regard to the Gini decomposition, to the reduction of the component measur-

ing transvariation (Figure 8, right panel). Estimates of the between components

remain basically unchanged for both indicators: as a result, the contribution of

the between group variability is higher when considering model-based estimates.

Despite some evidence of a decreasing trend, inequality between macro-regions

explains a considerable share of global inequality: according to the Gini decom-

position, which better captured the between-group component in the simulation

study, such share ranges from 76% in 1991 to 72% in 2010. The same shares are

reduced respectively to 66% and 57% when considering the Generalised Entropy

decomposition.

6. CONCLUSIONS

In this paper, we studied the time trend of health disparity in Italy adopting

a small area geographical scale. The analysis ranged over a number of method-

ological and empirical issues that emerge when combining traditional inequal-

ity indices, methods for their decomposition and Bayesian hierarchical models.

We assumed provinces as units of analysis by grouping them in three main macro-

regions: Northern, Central and Southern areas of Italy.

In order to evaluate the temporal evolution of health inequality in Italy, we

focused on IMRs, since they are commonly considered as good proxies of health, en-

vironmental and socio-economic conditions. After defining, for the sake of brevity,

health inequality as the uneven distribution of health across all units of a popu-

lation, we took into account two popular classes of inequality indicators such as

the Generalized Entropy and the Gini coefficient. We also measured the share of

global inequality due to disparities among macro-regions, decomposing the total

index in its basic components related to the within- and between-group inequality.
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However, we preliminary showed that, when dealing with small area data,

inequality measures based on direct IMRs tend to be severely affected by random

fluctuations. In order to reduce the effect of sample variability and smooth direct

IMRs, we estimated a Bayesian model that takes into account spatial, temporal

and spatio-temporal interaction effects. Bayesian inference was carried out by

means of INLA. Inequality measures based on posterior estimates come out to

be less affected by random variations. The model-based Generalized Entropy

and Gini coefficient appear stable over the study period, revealing a persistent

inequality in infant mortality. In addition, it also comes out that the proportion of

global inequality due to disparities among macro-regions tends to be higher when

model based estimates are taken into account. We concluded that the persistent

health disparity at provincial level is not due to small areas random variability,

but is more evidently connected to relevant differences among macro-regions.

Since neonatal care given to mothers and newborns represents one of the

main infant mortality causes (Scioscia et al., 2007; Parazzini et al., 1992), it

is possible to ascribe the observed infant mortality disparity to different levels

of health services (Bonati and Campi, 2005; Mazzucco et al., 2011). In these

terms, the persistent disparity in infant mortality between provinces may reflect

the long-term socioeconomic inequalities between Northern and Southern Italy

(Golini, 2014).
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1. INTRODUCTION

Prediction of future events has always been a challenge in modern societies,

and statistical methods are valuable tools to forecast outcomes in many fields

of daily life. For example, in economy, we are constantly receiving predictions

about employment, rate of growth, income, expenses and many other quantities.

In medicine, it is common to make predictions about the evolution of a disease,

the spread of an epidemic, the outbreak of influenza, or the number of new

HIV cases. The main reason why governments, institutions or private companies

demand predictions is that advance knowledge about the future allows to make

plans, to think about business strategies and management, or to allocate resources

efficiently.

Future information about cancer incidence or mortality is essential for Pub-

lic Health Agencies since this illness brings huge expenses in developed coun-

tries involving diagnosis, treatment, research, loss of productivity because of sick

leaves, or pensions due to premature deaths in a family. These figures are also im-

portant to efficiently organize cancer screening programs and to prioritize preven-

tion activities. A cancer situation assessment requires an appraisal of the problem

in terms of the number of incidence or mortality cases. This should be done based

on an updated collection of cancer figures provided by population-based cancer

registries or censuses. Regarding the official figures, these are available with a

delay of approximately three or four years due to the complexity of updating

cancer registries. Hence, Health Agencies substitute this lack of information with

projections of cancer cases based on statistical models. Most of these agencies

use models at country level, and hence, they are essentially temporal models.

To show some examples, Lee et al. (2011) provide a comparison of the different

methods using Canadian cancer mortality data for twelve cancer sites. The au-

thors compare a temporal Poisson log-linear model used by the Public Health

Agency of Canada; age-period-cohort models considered by the Association of

the Nordic Cancer Registries; autoregressive with time trends models used by

the American Cancer Society, or state-space models used by the National Cancer

Institute. Joint point regression models implemented in the Jointpoint Regres-

sion Programme by the National Cancer Institute are also studied. According to

these authors, no model can be used for all cancer sites, and the performance also

depends on the number of observed cases. Moreover, the same models can show

different behavior in different countries. For example, for testis, thyroid and ovary

cancers, different performance is observed with Canadian and American data.

There has been additional academic research on predicting cancer mortality

cases mainly based on time models. For example, Chen et al. (2012) and Zhu

et al. (2012) evaluate different models to provide 4-year-ahead cancer counts

projections in USA. Tiwari et al. (2004) consider state-space methods to improve
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current projection methods used by the American Cancer Society. Ghosh and

Tiwari (2007) proposed a local linear model for short term projections and a

quadratic local model for longer prediction periods. Ghosh et al. (2008) develop

a projection method based on state-space models combining the best features

of a local quadratic model and an autoregressive model with fixed trend. Some

more work on temporal models includes Dyba and Hakulinen (2000) or Malvezzi

et al. (2012, 2013) to cite some of them. These models consider the calendar

year as the relevant time axis. However, for some cancer sites, the relevant time

axis is not the calendar year but the cohort of birth, and consequently age-period-

cohort models could be used. Research about cancer projections using age-period-

cohort models without spatial correlation can be found in Knorr-Held and Rainer

(2001), Clements et al. (2005), Riebler and Held (2010) or Riebler et al. (2012).

On the other hand, Schmid and Held (2004) provide stomach cancer mortality

projections using age-period-cohort models including spatial correlation. Very

recently Ugarte et al. (2012a) consider a three-dimensional P-spline model to

project prostate cancer mortality counts in fifty Spanish provinces. The authors

conclude that the P-spline model, that takes into account spatial dependencies,

is preferable to individual P-spline temporal models fitted separately in each

province. Etxeberria et al. (2014) compare different conditional autoregressive

models (CAR), P-spline models, and a combination of both in terms of their

predictive performance using cancer mortality data. Results reveal that models

combining CAR random effects for space and P-splines for time perform slightly

worse than models based only on P-splines or CAR models. The key point of

these papers is that the authors provide a unified framework of smoothing and

predicting under the mixed model theory using the mixed model representation

of P-spline models. In a different context, Currie et al. (2004) use P-splines to

smooth and forecast mortality rates for the pension industry, but they do not

use the mixed model reformulation. In an economic setting, Ugarte et al. (2009)

forecast dwelling prices in different neighbourhoods of Vitoria, a Spanish city.

The goal of this paper is to provide guidelines on how to extend an ANOVA-

type P-spline model to predict cancer mortality counts. Recently, Ugarte et

al. (2012b) used this model to smooth prostate cancer mortality risks in Spain.

One interesting feature of this model is that it allows to split the relative risk

into a smooth trend common to all regions, a smooth spatial surface constant

along the time period, and a smooth interaction term representing the region-

specific temporal evolution of the risk. Projections can be then decomposed into

the same components. This is of great interest from an epidemiological point

of view, since the decomposition of the predicted risks into these components

allows to assess if the increase/decrease of those risks is mainly attributable to a

common temporal behavior of all the regions or is due to an area-specific behavior

during the oncoming years. This information could lead to a better organization

of cancer prevention programs, open up new research lines to investigate the

differences among the areas, or just help to speculate about new risk factors.
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The ANOVA-type P-spline model can also be reformulated as a generalized linear

mixed model where the strategy to avoid identifiability problems is very simple.

In this paper, predictions of future mortality counts derived from this model are

provided under the mixed model framework such that smoothing, predicting and

assessing variability are jointly accomplished. The methodology will be illustrated

using Spanish prostate cancer mortality data during the period 1975–2008. This

will allow us to make comparisons with alternative models previously used in the

literature.

The rest of the paper is laid out as follows. Section 2 describes the exten-

sion of the ANOVA-type P-spline model and how predictions are obtained. The

technique is illustrated in Section 3. A validation study is presented in Section

4. Finally, the paper ends with a discussion.

2. TIME EXTENDED ANOVA-TYPE P-SPLINE MODEL

ANOVA decompositions of smooth functions have been already considered

in the literature. See for example Gu (2002) and Belitz and Lang (2005). Re-

cently, Wood et al. (2013) propose new penalties that allow ANOVA models to

be fitted using existing mixed model software. In this section, a spatio-temporal

ANOVA-type P-spline model with B-spline bases is considered to estimate and

predict cancer mortality figures. This model was initially used by Lee and Dur-

bán (2011) to estimate ozone levels in Europe and by Ugarte et al. (2012b) to

smooth risk in space-time disease mapping. Different approaches using B-splines

have also been considered in the disease mapping literature (see for example Mac-

Nab and Dean, 2001; MacNab and Gustafson, 2007; Silva et al., 2008). In this

paper we focus on extending the ANOVA-type model to estimate and predict

risks jointly using a mixed model reformulation. Suppose we have a big area (e.g.

a country) divided into smaller regions (e.g. provinces), for which mortality (or

incidence) counts in different time points are available. Denoting the province by

the subindex s = 1, ..., S, the time period for observed data by t = 1, ..., T , and

conditional on the unknown relative risk rst, the number of deaths Cst is assumed

to be Poisson distributed with mean µst = estrst, where est is the expected num-

ber of deaths calculated on the basis that the s-th province in time t behaves as

the whole country in the studied period. Then

(2.1) Cst|rst ∼ Poisson(µst = estrst) , log µst = log est + log rst .

In this work, our interest lies in estimating and predicting risks and counts

for each province. An extension of an ANOVA-type P-spline model will be con-

sidered. The model includes additive terms for space (longitude and latitude),

time, and space-time interactions, and hence the log-risk (log rst) is modeled as
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the sum of an intercept, a smooth term for the spatial surface, a temporal smooth

trend, and a smooth term for the space-time interaction.

Let us define the extended time period encompassing observed and future

values. This is denoted by t∗ = 1, ..., T, T +1, T +2, ..., T + p, where p is the num-

ber of years to predict. Log-risks for observed and predicted values are modeled

as

(2.2) u∗

st = log r∗st = δ + fs(x1, x2) + ft(t
∗) + fst(x1, x2, t

∗) = B∗θ∗ .

The term δ is an intercept, fs(x1, x2) represents the smooth spatial effect

constant along the period, ft(t
∗) is an extended temporal trend common to all

areas, and fst(x1, x2, t
∗) is the extended interaction term that can be interpreted

as the specific temporal trend for each area. In these expressions x1 and x2

are the coordinates of the centroid of the ith small area (longitude and latitude

respectively), t∗ is the time (for observed and predicted values), and fi, i = s, t, st

are smooth functions to be estimated using P-splines with B-spline bases. B∗ is

the extended B-spline basis and θ∗ is a vector of coefficients. The matrix B∗ is

explicitly defined as

(2.3) B∗ = [1∗

st : 1∗

t ⊗ Bs : B∗

t ⊗ 1s : B∗

t ⊗ Bs] ,

where 1∗

st, 1∗

t , and 1s are column vectors of ones of length S × (T + p), T + p,

and S respectively. Bs = Bs2
2Bs1

is the spatial B-spline basis defined by the

row-wise (2) Kronecker product (Eilers et al., 2006) of the marginal basis for

longitude (Bs1
) and latitude (Bs2

). B∗

t represents the extended marginal basis

for time and it is a lower block-triangular partitioned matrix given by

(2.4) B∗

t =

(
Bt 0

Bt1 Bt2

)
.

In this expression, Bt is the time marginal basis corresponding to the observed

period (t = 1, ..., T ), and Bt1 and Bt2 are the rows corresponding to the extended

data.

To ensure that fi, i = s, t, st are smooth functions, the P-spline approach

places penalties on the coefficients θ∗. The extended penalty matrix P∗ is

given by a block-diagonal matrix whose components are penalties for the two-

dimensional spatial component, the one dimensional time component and the

three-dimensional component (space-time interactions). More precisely, P∗ =

diag (0,Ps,P
∗

t ,P
∗

st), where

(2.5)

Ps = λs1
Im2

⊗ Ps1
+ λs2

Ps2
⊗ Im1

,

P∗

t = λtPt∗ ,

P∗

st = τs1
I∗m3

⊗ Im2
⊗ Ps1

+ τs2
I∗m3

⊗ Ps2
⊗ Im1

+ τtPt∗ ⊗ Im2
⊗ Im1

.
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In these expressions, Imj
, j = 1, 2, 3 are identity matrices of dimension mj × mj ,

where mj is the number of columns of Bj , j = s1, s2, t, and I∗m3
=

(
Im3

0

0 0

)
.

Ps1
and Ps2

are penalty matrices for longitude and latitude respectively de-

fined by Psj
= D′

sj
Dsj

, j = 1, 2 where Dsj
are second order difference matrices

to achieve smoothness over adjacent marginal coefficients (see Eilers and Marx,

1996). Matrix Pt∗ is defined using the extended difference matrix D∗

t for the time

component given by the next expression

(2.6) D∗

t =

(
Dt 0

Et Lt

)
, Pt∗ = D∗

t
′

D∗

t =

(
Pt + E′

tEt E′

tLt

L′

tEt L′

tLt

)
.

Dt and Pt are the difference matrix and the penalty matrix for the observed

time period, Et and Lt are the rows used to obtain the penalty for the oncoming

years, and λs1
, λs2

, λt, τs1
, τs2

and τt are different smoothing parameters corre-

sponding to space, time, and interaction components respectively. The extended

B-spline basis for time in Equation (2.4) and the extended difference and penalty

matrices in Equation (2.6) are equal to those obtained in a three-dimensional

P-spline model by Ugarte et al. (2012a). However, the extended transformation

matrix is different. The next step is to reformulate the P-spline model (2.2) as

a generalized linear mixed model. To do this, a matrix T∗ is used to transform

B∗ into [X∗ : Z∗] and θ∗ into (β′, α∗
′

)′. In this paper we provide the definition

of this transformation matrix T∗ which is based on matrices of eigenvectors cor-

responding to non-zero and zero eigenvalues respectively obtained from the eigen

decomposition of the matrices Pi, i = s1, s2, t. The key point in this process is

to choose an extended transformation matrix preserving the original transforma-

tion matrix T used to fit the data. Based on the transformation matrix T, the

following extended transformation matrix is considered

T∗ =




1
Ts

T∗

t

T∗

st


 ,

where T∗

t and T∗

st are defined by

T∗

t =

(
Tt 0

0 L−1
t

)
, T∗

st =

(
Tst 0

0 L−1
t ⊗ Im2

⊗ Im1

)
,

and

Ts = [1 ⊗ [u2n ⊗ 11 : 12 ⊗ u1n : u2n ⊗ u1n] : Rs] ,

Tt = [u3n ⊗ 1 : Rt] ,

Tst = [u3n ⊗ [u2n ⊗ 11 : 12 ⊗ u1n : u2n ⊗ u1n] : Rst] .
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The matrices Rs, Rt, and Rst are given by

Rs = [1 ⊗ [U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s]] ,

Rt = [U3s ⊗ 1] ,

Rst = [u3n ⊗ [U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s] :

U3s ⊗ [12 ⊗ u1n : u2n ⊗ 11 : u2n ⊗ u1n : U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s]] .

Note that Ts, Tt and Tst represent the components of the original transformation

matrix corresponding to the observed data. Uin = [1i : uin] and Uis, i = 1, 2, 3,

are matrices of eigenvectors corresponding to zero and non-zero eigenvalues ob-

tained from the eigen-decomposition of the penalty matrix Pj , j = s1, s2, t. Using

this transformation, the generalized mixed model reformulation of the extended

ANOVA-type P-spline model (2.2) can be obtained. More precisely, the fixed and

random effect matrices of the extended generalized linear mixed model are given

by

B∗T∗ = [1∗

st : (1∗

t ⊗ Bs)Ts : (B∗

t ⊗ 1s)T
∗

t : (B∗

t ⊗ Bs)T
∗

st] ,

and the extended model is expressed as

(2.7)

(
uo

up

)
= δ +

[
Xs Zs

](
βs

αs

)
+

[
Xo

t Zo
t 0

X
p
t Z

p
t1

Z
p
t2

] 


βt

αt

α
p
t




+

[
Xo

st Zo
st 0

X
p
st Z

p
st1

Z
p
st2

] 


βst

αst

α
p
st


 ,

where detailed expressions for each of the components are given in Appendix A.

Super-indexes o and p refer to matrices for observed and predicted values respec-

tively. Note that repeated columns have been removed to avoid identifiability

problems. Here up are the log-risks to be predicted; βs, βt, βst are the fixed

effects; αs, αt and αst are the random effects for space, time and space-time in-

teraction respectively, corresponding to the observed data, and α
p
t and α

p
st denote

random effects corresponding to predicted values.

To predict these random effects, some results on forecasting using mixed

models are required, but first the covariance matrix of the random effects corre-

sponding to the observed and predicted random effects are needed. The covari-

ance matrix is given by C = diag (C1,C2,C3) where

C1 = Cov(αs) = R′

sPsRs =




F−1

1

F−1

2

F−1

3


 ,
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C2 = Cov(αt, α
p
t ) = R′∗

t P∗

tR
∗

t =




F−1

4
−F−1

4
R′

tE
′

t

−EtRtF
−1

4
Ir + IrEtRtF

−1

4
R′

tE
′

tIr


 ,

C3 = Cov(αst, α
p
st) = R′∗

stP
∗

stR
∗

st

=




F−1 −F−1R′

st(E
′

t ⊗ Is)

−(Et ⊗ Is)RstF
−1 I∗ + I∗(Et ⊗ Is)RstF

−1R′

st(E
′

t ⊗ Is)I
∗


 ,

Here, R∗

t and R∗

st are part of the transformation matrix T∗ and they are given

by

R∗

t =

(
Rt 0

0 L−1
t

)
, R∗

st =

(
Rst 0

0 L−1
t ⊗ Im2

⊗ Im1

)
.

Expressions for F1, F2, F3 and F4, and F are left out in Appendix B. Then,

using these covariance matrices and the results provided by Gilmour et al. (2004)

about prediction in mixed models, estimators for α
p
t and α

p
st are given by

α̂
p
t = −EtRtF

−1

4
F4α̂t = −EtRtα̂t ,

(2.8)
α̂

p
st = −(Et ⊗ Is)RstF

−1Fα̂st = −(Et ⊗ Is)Rstα̂st .

To estimate model parameters, penalized quasi-likelihood (Breslow and

Clayton, 1993) is used. The smoothing parameters become variance components,

and here, the vector of variance components is λ = (λs1
, λs2

, λt, τs1
, τs2

, τt)
′.

Finally, using Equation (2.8), the estimated (corresponding to observed values)

and the predicted (corresponding to future values) log-relative risks are given by

(2.9)

(
ûo

ûp

)
= δ̂ +

[
Xs Zs

] (
β̂s

α̂s

)
+

[
Xo

t Zo
t

X
p

t Z
p

t1
− Z

p

t2
EtRt

](
β̂t

α̂t

)

+

[
Xo

st Zo
st

X
p

st Z
p

st1
− Z

p

st2
(Et ⊗ Is)Rst

] (
β̂st

α̂st

)
.

3. ILLUSTRATION

To illustrate results, Spanish prostate cancer mortality data from 1975 to

2008 are considered. This data set has been described elsewhere (see Ugarte

et al., 2012a, 2012b; Etxeberria et al., 2014) to study different disease mapping

models in terms of smoothing and prediction. We use this data set here to make

comparisons with the ANOVA-type P-spline model presented in this paper. In

brief, a total of 150,616 prostate cancer deaths were registered in Spain during

the study period. The number of observed cases ranges from 6 to 651 depending

on the province, while the number of expected cases varies from 13.76 to 794.14.
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Figure 1 shows the different components of the ANOVA-type P-spline model

for some Spanish provinces. Risk projections for 2009–2011 are also provided

after fitting the model for the observed data using penalized quasi-likelihood.

The smooth thick solid line is used for the total risk estimates and predictions,

the dashed line corresponds to the temporal trend common to all areas, and the

dashed-dotted line represents the area specific temporal trend. Finally, the non

smooth line corresponds to the SMR’s and the thin solid horizontal line is the

spatial effect constant along the period. The common temporal trend is below

one, and hence it contributes to decrease the mortality risk. The specific temporal

trend (dashed-dotted line) can be above or below one increasing or decreasing the

risk. For example, in Lugo, it is above one producing an increase in risk, even

though it starts to decrease at the end of the period. It is interesting to look at

Malaga or Valladolid, where the specific trend contributes to increase the risk in

future years, but this is compensated for the global trend which makes the risk

decrease.
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Figure 1: Risks temporal evolution of the different terms of the ANOVA-
type P-spline model and predictions for the years 2009, 2010,
and 2011. The smooth thick solid line corresponds to the total
risk estimates and predictions, the dashed line represents the
temporal trend common to all areas, and the dashed-dotted
line is used for the area specific temporal trend. The non
smooth line represents the SMR’s, and finally the thin solid
horizontal line is the spatial effect constant along the period.
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Table 1: Observed counts in 2008; risks predictions for 2011 and their cor-
responding 95% prediction intervals; expected counts in 2011;
counts predictions for 2011 and their corresponding 95% predic-
tion intervals.

Province Counts Risks 95% C.I. Expected Counts 95% C.I.

2008 2011 Risks 2011 2011 2011 Counts 2011

Coruña 161.00 0.76 [0.62, 0.93] 224.63 170.39 [123.85, 216.94]

Lleida 71.00 0.72 [0.59, 0.87] 86.24 61.73 [41.04, 82.41]

Ourense 91.00 0.76 [0.63, 0.92] 96.26 72.98 [49.72, 96.24]

Pontevedra 130.00 0.83 [0.68, 1.01] 163.42 135.11 [98.10, 172.12]

Oviedo 196.00 0.82 [0.68, 0.99] 226.20 185.59 [138.76, 232.43]

Santander 69.00 0.83 [0.69, 1.00] 107.40 89.58 [63.54, 115.62]

Lugo 53.00 0.71 [0.60, 0.86] 101.68 72.69 [49.80, 95.58]

Álava 39.00 0.73 [0.61, 0.87] 52.96 38.62 [23.97, 53.27]

Guipúzcoa 112.00 0.70 [0.58, 0.84] 125.16 87.48 [60.92, 114.05]

Vizcaya 162.00 0.78 [0.65, 0.94] 215.64 168.24 [124.91, 211.57]

Navarra 83.00 0.71 [0.60, 0.86] 112.94 80.64 [55.98, 105.29]

Huesca 54.00 0.73 [0.61, 0.88] 55.59 40.82 [25.50, 56.14]

Zaragoza 147.00 0.75 [0.62, 0.90] 183.76 137.45 [100.39, 174.51]

Teruel 31.00 0.65 [0.54, 0.78] 40.76 26.52 [14.72, 38.32]

Burgos 69.00 0.74 [0.62, 0.89] 84.56 62.84 [42.49, 83.18]

Palencia 32.00 0.79 [0.66, 0.95] 41.38 32.81 [19.68, 45.94]

León 95.00 0.76 [0.64, 0.91] 127.74 97.28 [69.36, 125.21]

Zamora 45.00 0.80 [0.66, 0.97] 60.62 48.72 [31.60, 65.84]

Valladolid 57.00 0.83 [0.69, 1.00] 98.57 81.50 [57.12, 105.88]

Soria 21.00 0.67 [0.55, 0.81] 26.60 17.72 [8.50, 26.95]

Salamanca 56.00 0.73 [0.61, 0.89] 88.01 64.57 [43.22, 85.93]

Ávila 29.00 0.70 [0.58, 0.84] 47.07 33.03 [19.59, 46.46]

Segovia 28.00 0.70 [0.59, 0.84] 38.86 27.34 [15.61, 39.06]

Logroño 62.00 0.66 [0.55, 0.79] 61.95 40.85 [25.23, 56.46]

Girona 88.00 0.72 [0.59, 0.87] 117.73 84.59 [58.33, 110.84]

Barcelona 524.00 0.64 [0.54, 0.76] 863.63 553.89 [426.37, 681.41]

Tarragona 70.00 0.66 [0.55, 0.80] 129.64 86.18 [59.70, 112.66]

Castellón 74.00 0.74 [0.62, 0.89] 94.70 69.97 [47.80, 92.14]

Valencia 253.00 0.73 [0.61, 0.87] 382.96 279.33 [213.30, 345.36]

Alicante 181.00 0.74 [0.62, 0.89] 288.08 213.82 [159.92, 267.73]

Murcia 172.00 0.73 [0.61, 0.88] 193.45 141.63 [103.02, 180.25]

Baleares 115.00 0.68 [0.55, 0.84] 145.72 99.38 [67.62 , 131.13]

Madrid 544.00 0.61 [0.52, 0.73] 871.18 533.29 [408.12, 658.47]

Cáceres 63.00 0.73 [0.60, 0.88] 85.99 62.48 [41.43, 83.53]

Badajoz 92.00 0.82 [0.68, 1.00] 119.86 98.79 [69.84, 127.74]

Guadalajara 36.00 0.57 [0.48, 0.69] 43.32 24.84 [13.41, 36.28]

Toledo 106.00 0.65 [0.55, 0.78] 121.00 78.83 [54.31, 103.34]

Cuenca 45.00 0.61 [0.51, 0.73] 54.43 33.15 [19.49, 46.81]

Ciudad Real 71.00 0.71 [0.59, 0.86] 101.42 72.14 [48.95, 95.34]

Albacete 65.00 0.77 [0.64, 0.93] 73.63 56.88 [37.86, 75.91]

Huelva 63.00 0.91 [0.74, 1.13] 71.24 65.15 [43.75, 86.54]

Sevilla 201.00 0.84 [0.69, 1.01] 240.17 201.03 [151.42, 250.63]

Cádiz 114.00 0.85 [0.70, 1.04] 149.34 126.89 [91.66, 162.12]

Córdoba 89.00 0.66 [0.55, 0.80] 130.23 86.48 [59.36, 113.60]

Málaga 147.00 0.82 [0.68, 1.00] 210.21 172.95 [128.03, 217.88]

Jaén 95.00 0.66 [0.55, 0.79] 115.29 75.98 [51.57, 100.39]

Granada 75.00 0.66 [0.54, 0.80] 138.34 91.21 [62.45, 119.97]

Almeŕıa 52.00 0.69 [0.56, 0.84] 81.31 55.83 [35.71, 75.95]

Las Palmas 113.00 0.80 [0.64, 1.01] 119.57 96.25 [65.44, 127.05]

Tenerife 110.00 0.75 [0.60, 0.94] 134.76 101.48 [68.43, 134.53]
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For illustration purposes, Table 1 displays the observed counts in 2008 (the

last year of the study period), risk predictions for 2011 (three year ahead pre-

dictions) together with their 95% prediction intervals; the number of expected

cases for 2011 (obtained from projections of population provided by the Span-

ish Statistical Office), and count predictions for 2011 with their corresponding

95% prediction intervals. Confidence intervals for risks and counts are based on

an appropriate estimator of the mean squared error (MSE). Traditionally, the

variability associated to the estimation of the variance components have been

ignored in empirical Bayes disease mapping and hence, the MSE was underes-

timated. This can be particularly relevant for the ANOVA-type P-spline model

considered here as six smoothing parameters (variance components) are involved.

The MSE for the log-risks corresponding to observed data has been derived in a

spatial context by Ugarte et al. (2008), Escaramı́s et al. (2008) and Goicoa et al.

(2012), and in a spatio-temporal context by Ugarte et al. (2010) and Ugarte et

al. (2012b) when considering CAR, P-splines and ANOVA-type P-spline models.

The MSE for predicted log-risks has also been obtained for an interaction P-spline

model (Ugarte et al., 2012a), and for CAR and mixtures of CAR and P-spline

models (Etxeberria et al., 2014). Using similar tools, the MSE estimator for pro-

jections of log-risks derived from the ANOVA-type P-spline model is computed

here. The empirical coverage of confidence intervals based on this estimator re-

veals a good performance. To facilitate the reading of the paper technical details

are given in Appendix C.

4. VALIDATION

To assess the predicted ability of the model, a validation study is conducted.

We consider the period 1995–2008 to compare the observed with the predicted

counts. In brief, data from 1975–1992 are used to fit the model and to predict

counts for 1995. Using data till 1993, we forecast counts for 1996 and so on.

Three year ahead predictions are considered as this is normally the delay in the

registers. Hence, observed counts and three-year ahead predictions from 1995 till

2008 are compared. In this validation period, predictions for 2006 and 2007 were

excluded due to computational instabilities in the variance component estimates.

Additionally, the models described in Etxeberria et al. (2014) are taken into ac-

count for comparison purposes. Namely, an additive model with a CAR structure

for space and a random walk of order 2 (RW2) for time; two models with the

same structure for space and time and structured and unstructured interactions

(Knorr-Held, 2000); an additive model with a CAR structure for space and a P-

spline for time; the same additive models with space-time interactions; a model

with a common P-spline for time and specific P-splines to describe the temporal

evolution of each region, and finally a pure interaction P-spline model. To make

the comparison with the ANOVA-type P-spline model fair, predictions for 2006

and 2007 have been also excluded in the previous models.
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Table 2 displays empirical coverage rates for prediction intervals corre-

sponding to three, two and one year ahead predictions at nominal values 95%,

and 99%. The ANOVA-type P-spline model achieves the nominal values for three

year-ahead predictions, the most interesting case from a practical point of view

as it is the usual delay in mortality registers. For two and one year ahead predic-

tions, the last three models in the table (all based on P-splines) seem to attain

empirical coverage rates closer to the nominal ones. The ANOVA-type P-spline

model offers great flexibility and it allows to explicitly split the predictions into

components representing region-specific features and characteristics common to

the whole country.

Table 2: A comparison of empirical coverage probabilities in the period
1995–2008 (excluding 2006–2007).

Three year-ahead Two year-ahead One year-ahead
predictions predictions predictions

95% 99% 95% 99% 95% 99%

Additive CAR RW2 87.67 95.00 85.00 95.00 86.50 95.50

Interaction CAR RW2 (struc.) 94.33 98.83 93.00 97.50 91.17 96.83

Interaction CAR RW2(unstruc.) 93.83 99.17 92.83 97.50 90.67 97.00

CAR(s)+Pspline(t) 85.83 94.67 87.50 94.00 88.33 95.00

CAR(s)+Pspline(t) + Int 85.50 93.67 89.33 95.50 91.33 97.50

Pspline(t) + Pspline Int 94.83 98.17 93.17 97.67 93.33 98.17

Pure interaction Pspline 93.33 99.17 93.00 98.17 91.00 97.00

ANOVA-type Pspline 95.33 99.00 92.33 97.66 91.83 97.33

5. DISCUSSION

Statistical methods represent a valid scientific tool to make predictions

about future events taking into account past information. These statistical meth-

ods gain importance in an epidemiological context since official cancer death fig-

ures are available after approximately three years from current date due to the

delay in administrative procedures of data collection and registration.

Some models including CAR, P-splines and combinations of both have been

studied in the literature (see for example Etxeberria et al., 2014) to provide pre-

dictions of mortality or incidence counts. In this paper, an ANOVA-type P-spline

model is studied to complete the P-spline alternatives within a generalized linear

mixed model framework. An extended transformation matrix, including the spa-

tial and temporal additive terms, and the spatio-temporal interaction is derived

in order to express risks related to observed and future time periods in a single

mixed model. The MSE of the predicted log-risks is also provided accounting
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for all sources of variability, including the one coming from the estimation of the

smoothing parameters, and is used in turn to calculate the count prediction er-

ror. The model has good empirical coverage rates for three year ahead predictions

and in addition, it is very attractive as it explicitly considers one smooth term

for space, another one for time, and a final interaction term, each one with its

own smoothing parameters. This allows to split the predicted risk into a spatial

component constant along the time period, a smooth temporal term common to

all regions and an area specific term representing the specificity of a region. This

is of practical interest as the area specific term indicates whether the region con-

tributes to increase or decrease its own risk, and hence it helps to plan prevention

or intervention measures and epidemiological policies in general.
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A. APPENDIX

To understand how the extended mixed model (2.7) is obtained, detailed

expressions for the different matrices are provided in this section. Using the

transformation matrix T∗, the fixed and random effect matrices of the extended

generalized linear mixed model are given by

B∗T∗ = [1∗

st : (1∗

t ⊗ Bs)Ts : (B∗

t ⊗ 1s)T
∗

t : (B∗

t ⊗ Bs)T
∗

st] ,

where

(1∗

t
⊗ Bs)Ts = 1∗

t
⊗ [xs : [Z22X1 : X22Z1 : Z22Z1]] = 1∗

t
⊗ [xs : Za]

= [(1∗

t
⊗ xs) : (1∗

t
⊗ Za)] = [Xs : Zs],
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Here, Zs = (1∗

t ⊗ Za), Za = [Z22X1 : X22Z1 : Z22Z1], Xs = (1∗

t ⊗ xs),

xs = [1n2x1 : x221n : x22x1], X1 = [1 : x1], X2 = [1 : x2], Z1 = Bs1
U1s, Z2 =

Bs2
U2s and Z3 = BtU3s. Finally, x1 and x2 are column vectors of longitude and

latitude respectively, and xo
t and x

p
t are column vector of time corresponding to

observed and prediction period respectively. Using these results, the extended

model is (2.7) is attained.
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B. APPENDIX

In this section, and to make the reading easier, expressions for matrices

F1, F2, F3, F4, and F = blockdiag(F5,F6,F7,F8,F9,F10,F11) are given. These

matrices are different blocks of the covariance matrix of the random effects coming

from the mixed model representation of the ANOVA-type P-spline model. Note

that Fi, i = 1, ..., 8 are exactly the same as those in Ugarte et al. (2012b). F9,

F10, F11 are not the same because in this paper we have considered B∗

t ⊗Bs, the

last term in the extended basis (2.3), instead of the other way around Bs ⊗ B∗

t .

This has been done because it is more natural and convenient when extending

the time basis to make predictions. Expressions for these matrices are given by

F1 = λ2Σ̃2 ⊗ I2, F2 = λ1I2 ⊗ Σ̃1, F3 = λ1Im2−2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Im1−2,

F4 = λtΣ̃3, F5 = τ2Σ̃2 ⊗ I2, F6 = τ1I2 ⊗ Σ̃1,

F7 = τ1Im2−2 ⊗ Σ̃1 + τ2Σ̃2 ⊗ Im1−2, F8 = τtI3 ⊗ Σ̃3,

F9 = τ2Im3−2 ⊗ Σ̃2 ⊗ I2 + τtΣ̃3 ⊗ Im2−2 ⊗ I2,

F10 = τ1Im3−2 ⊗ I2 ⊗ Σ̃1 + τtΣ̃3 ⊗ I2 ⊗ Im1−2,

F11 = τ1Im3−2 ⊗ Im2−2 ⊗ Σ̃1 + τ2Im3−2 ⊗ Σ̃2 ⊗ Im1−2 + τtΣ̃3 ⊗ Im2−2 ⊗ Im1−2.

where Σ̃i, i = 1, 2, 3 are diagonal matrices of non zero eigenvalues coming from

the eigen-decomposition of the marginal penalties Ps1
, Ps2

and Pt respectively.

F−1 = blockdiag(F−1

5
,F−1

6
,F−1

7
,F−1

8
,F−1

9
,F−1

10
,F−1

11
), Is = Im2

⊗ Im1
, I∗ = Ir ⊗

Is, and Ir is the identity matrix of dimension r × r where r is the number of

columns of Lt.
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C. APPENDIX

The MSE for predicted log-risk has already been proposed for a three-

dimensional P-spline model (Ugarte et al., 2012a). Here we reproduce the expres-

sions and make explicit the specific formula for the M matrix in the ANOVA-type

P-spline model. An estimator for the MSE of the predicted log-risk is given by

M̂SE[ûp
st] = g∗1st(λ̂) + g∗2st(λ̂) + 2g∗3st(λ̂) .

where

g∗1st(λ) = z
p
st(C − MZo′V−1ZoM′)zp

st
′

,

g∗2st(λ) = (xp
st − z

p
stMZo′V−1Xo)(Xo′V−1Xo)−1(xp

st − z
p
stMZo′V−1Xo)′ ,

g∗3st(λ) = tr[S∗VS∗′I−1] .

Here V and I−1 are the covariance matrix of the working vector and the

asymptotic covariance matrix of the variance components estimators arising

from the PQL algorithm. Vectors z
p
st and x

p
st are the st row of the matrices

Zp = [Zs : Zp
t1

: Zp
t2

: Zp
st1

: Zp
st2

] and Xp = [Xs : Xp
t : Xp

st] respectively, and finally,

Zo = [Zs : Zt : Zst] and Xo = [Xs : Xo
t : Xo

st]. An explicit expression for M is

given by

M =




C1 


F−1

4

−EtRtF
−1

4







F−1

−(Et ⊗ Is)RstF
−1







.

If λj denotes the jth entry of the vector of variance components λ =

(λs1
, λs2

, λt, τs1
, τs2

, τt)
′, the matrix S∗ is given by

S∗

j = z∗st

(
∂M

∂λj
Z′V−1 + MZ′

∂V−1

∂λj

)
, j = 1, 2, 3, 4, 5, 6 .

Finally, the variance for predicted counts is calculated as

Var[Cp
st] = E[Var[Cp

st|r
p
st]] + Var[E[Cp

st|r
p
st]] = ep

stE[rp
st] + ep2

st Var[rp
st] ,

where ep
st are projections of the number of expected cases for future years. Var[rp

st]

is easily estimated from M̂SE[ûp
st] using the delta method.
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1. INTRODUCTION

Influenza is an infectious disease that affects the upper and/or lower parts

of the respiratory tract and is caused by the influenza virus. Influenza spreads

around the world in seasonal epidemics, resulting in severe infections and the

deaths of hundreds of thousands worldwide annually, and millions in pandemic

years (good descriptions about its impact can be found in Simonsen et al. [52],

Fleming et al. [16], and Monto [36]). This propensity for causing large scale

seasonal epidemics and pandemics has clearly turned influenza surveillance into

a challenging issue in public health practice.

Prospective local and national influenza surveillance systems can provide

important and timely information to health service providers on the circulation

of the influenza virus in a population. The emergence of the A-H1N1 influenza

virus in 2009 and its subsequent rapid global spread was a clear and real example

of the need of having good surveillance infrastructures available. But at the same

time it has also focused attention on surveillance capabilities worldwide (Lipsitch

et al., [31]). In particular, it has shown the need for sentinel surveillance systems

that could strengthen a country’s capacity for seasonal, novel, and pandemic

influenza detection and prevention (Ortiz et al. [44]).

There are several surveillance information sources that make it possible

to track influenza virus activity such as real-time internet surveys [58], queries

[14], microblogging [30], over the counter sales [33], prescription pharmaceutical

sales [45], absenteeism registers [13], syndromic/sentinel surveillance [21], labo-

ratory test isolations [43], emergency room visit rates [10], hospital admissions

[8], pneumonia and influenza mortality rates [48], etc. Nevertheless, there is no

such thing as the“best” surveillance information source. As Cheng et al. [5] state,

“each method only captures a portion of infections within the community with

different timeliness and specificity”. On one hand, laboratory test results are

highly specific, but take days or even weeks and only capture a small fraction of

the infected population. In contrary, data may be collected instantly from the

internet, typically from searching engines or social networks, as Broniatowski et

al. [2], Gesualdo et al. [18], Li and Cardie [30] or Grover and Aujla [22] do with

Twitter data, or Google Flutrends does with Google queries (Ginsbert et al. [19]).

A discussion about the role of internet data sources in disease surveillance can

be found in Milinovich et al. [35]. However, these sources of information provide

just indirect measures of the influenza incidence levels in the population so their

accuracy may be sometimes poor. Nevertheless, the high amount and the imme-

diate availability of the data from this non-conventional sources make its analysis

particularly interesting.

No matter what kind of data the surveillance system uses, there is always

the need for an algorithm that, applied to the data, could quickly detect meaning-

ful increases in reported influenza incidence. This would make it possible health
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services to get prepared for the incipient outbreak, which could have a great im-

pact on the number of lives saved, outbreak management and the effective setting

of prevention measures. This has made the statistical literature to pay consider-

able attention to early detection methods for influenza, or infectious diseases in

general.

Methods based on historical limit are the most widely used for detecting

the onset of influenza epidemics and with longer tradition in the epidemiologic

literature. These methods are based on the model of Shewhart [50], where a

warning is triggered when the difference between the current observation and

a theoretical mean of the process surpasses a determined threshold, usually set

using the estimated standard error. One way to determine this theoretical mean

and threshold is to consider a window of observations of times t−m, ..., t− 1 from

the present year and/or t − m, ..., t + m times from previous years and compute

some central estimator and standard error for the observations in these windows,

as Stroup et al. [55] or Farrington et al. [15] do. Another option would be using

all non epidemic data as training, fitting a regression model which includes time

trend and Fourier periodical terms as proposed by Serfling’s method [49], the

approach used for influenza surveillance by the Center for Disease Control and

Prevention (CDC) of the United States (Muscatello et al. [38]). This approach or

modifications are also used in other works like Costagliola et al. [11], Simonsen

et al. [52] and Boyle et al. [1].

These approaches have some drawbacks in practice (Rath et al. [47]). Firstly,

a predefinition of epidemic and non-epidemic periods is needed for most of them

in order to characterize the observations of the non-epidemic phase, when that

division is precisely the final outcome that we want to draw. Secondly, time obser-

vations are treated as completely independent values, when we would expect that

their temporal arrangement could induce some kind of dependence. Thirdly, the

baseline (non-epidemic) period is often estimated with national data that maybe

does not properly fit if we are mostly interested in a local influenza surveillance

system. Finally, Goddard et al. [20] also point out as a fourth drawback that the

use of temporally fixed threshold values to describe the levels of influenza activity

can be misleading due to time trends in consultations for influenza. Specifically,

they pointed out a decline in the number of influenza-related consultations in

recent years that could reduce the sensitivity of these methods.

Le Strat and Carrat [28] pioneered the use of hidden Markov models to

segment time series of influenza indicators into epidemic and non-epidemic phases.

Hidden Markov models are a particular case of Markov switching models, which

are stochastic models that consider a set of non observed variables Zt (hidden

states, usually Zt = 0 for the non epidemic state and Zt = 1 for the epidemic

state) and a set of observed values yt (observations), one for each time unit

t ∈ {1, ..., T}, so that {Zt} is a Markov chain

(1.1) P (Zt|Z1, ..., Zt−1, pij) = P (Zt|Zt−1, pij)
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where pij are the transition probabilities, and the observations yt are dependent

on previous observations, usually through an autoregressive process. The present

state Zt affects both the present observation yt through the transition probabil-

ities p(yt|yt−1). The conditional relationships in a Markov switching model are

represented in Figure 1.

yt−1 yt yt+1

Zt−1 Zt Zt+1

Figure 1: Diagrams of the conditional dependencies
in a Markov switching model.

Hidden Markov models are usually formulated with an added restriction,

so that the value of the observed variable at each time yt is only dependent on

the hidden state for that time, given the past observations and the present and

past states

P (yt|Z1, ..., Zt, y1, ..., yt−1, θ) = P (yt|Zt, θ)

where θ are the remaining parameters of the model.

Le Strat and Carrat’s approach has two advantages, the first being that the

method can be applied to historical data without the need to previously distin-

guish between epidemic and non-epidemic periods in the data. The second one is

considering observations as dependent on the past observations and states or, at

least, on the last epidemic state, whereas Serfling’s method assumes marginal in-

dependence of the data [47]. In subsequent papers, Rath et al. [47], Madigan [32]

and Sun and Cai [56] further developed that modeling. Nevertheless, we find also

convenient to mention some other contributions beyond Markov Switching mod-

els such Cowling et al. [12], Griffin et al. [21] and Boyle et al. [1] who use models

based on statistical quality control and time series methods like CUSUM, EWMA

or auto-regressive processes, Frisen et al. [17] who search for change points on the

monotony of the process, Shmueli [51] who uses wavelet-based methods or Nuño

and Pagano who adjust one or several Gaussian peaks in different locations for

each year [42]. Three comprehensive reviews of statistical algorithms for the de-

tection of infectious disease outbreaks can be found in Le Strat [27], Burkom [3]

and Unkel et al. [57].

Bayesian methodology provides a unified theory for handling uncertainty

in very different areas such as statistical inference, forecasting, decision-making
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under uncertainty, analysis of expert systems, etc. This ability to deal with un-

certainties is what makes Bayesian analysis a very advisable tool for many issues

that arise in the decision-making process of a surveillance system. Specifically,

Bayesian analyses enable to quantify whatever feature of interest of any variable

in the model by means of its posterior distribution. In our setting, this makes the

Bayesian methodology to be perfectly suited for quantifying the probability of

being in an epidemic phase at any given moment. Bayesian studies are not new

in surveillance literature, but in recent years there has been increasing interest

in them (see for example Mugglin et al. [37], Cooper et al. [9], Sebastiani et al.

[48], Niemi et al. [40], Zhou and Lawson [61], Charland et al. [4] and Neill and

Cooper [39]).

Our main goal in this paper is to review two alternative approaches to

influenza surveillance that avoid some of the above-mentioned disadvantages

and take advantage of the ability to quantify epidemic probabilities of Bayesian

methodology. The first proposal is to use a Markov switching model in order to

determine the epidemic and non-epidemic periods from influenza surveillance data

(Martinez-Beneito et al. [34]). This approach differs from those hidden Markov

models previously mentioned in the sense that it models the series of differenced

incidence rates rather than the series of incidence rates. The new differenced

series is detrended, allowing us to take advantage of autoregressive (stationary)

modeling to analyze the data. In particular, depending on whether the system is

in an epidemic or a non-epidemic phase, the differenced series are, respectively,

modeled either with a first-order autoregressive process or with a Gaussian white

noise process. The transition between the phases of the disease is considered

to follow a Markovian process. The Bayesian paradigm is used to estimate the

probability of being in an epidemic phase at any given moment, which is the key

to detecting influenza epidemics at their onset.

Two features of this model have proved to be very convenient in the in-

fluenza surveillance context. The first one is the use of Markov switching models

to segment the time series of influenza into epidemic and non-epidemic phases.

The second is the use of the variability of data as main tool to distinguish be-

tween both epidemic and non-epidemic phases. Thus, the underlying hypothesis

of this model is that non-epidemic dynamics are characterized by small, time-

independent random changes (since, supposedly, there is no underlying active

process) meanwhile, in epidemic dynamics, changes are greater and possibly cor-

related.

Nevertheless, although the variability of data may enable to distinguish

both dynamics, incorporating the magnitude of the incidence rates and not just

their differences could also be very advantageous because this magnitude would

also inform on the state of the illness (low incidence clearly meaning a non-

epidemic phase). This could increase the capability of the method to distinguish

between both epidemic and non-epidemic phases and so it could be easier to
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determine the onset of epidemics. As a result, we also review here an enhanced

version of that modeling (Conesa et al. [7]) that also incorporates the magnitude of

the incidence rates. Moreover, this proposal directly models the weekly observed

counts as a Poisson distribution depending on the incidence rates, thus these

incidence rates are not considered deterministic quantities but, on the contrary,

(random) variables in a Bayesian model. As a consequence, this proposal also

takes into account the uncertainty in the available incidence rates.

The remainder of this paper is organized as follows. In Sections 2 and 3

we present, respectively, the model based on the differenced rates and on the

observed cases. In Section 4 we describe the results obtained when applying the

proposed methodologies in a particular setting related to sentinel surveillance

data. That section also includes a validation of the performance of both models

compared with other existing methodologies. Section 5 describes fludetweb, a

web-based implementation of the first methodology for obtaining the posterior

probability of being in an epidemic phase. Finally, in Section 6 we present some

concluding remarks and some lines of development of the current methodology.

2. MODELING OF THE DIFFERENCED INCIDENCE RATES

We first review the modeling introduced by Martinez-Beneito et al. [34].

This model performs a segmentation of the differenced incidence rates series into

epidemic and non-epidemic phases by using a Markov switching model. Specifi-

cally, let Y = {Yi,j , i = 1, ..., I; j = 1, ..., J} denote the set of differences between

the rates of weeks i + 1 and i in year j. We consider a set of retrospective years

so that the system has previous information about epidemic periods before ob-

serving it in the current year. The underlying idea of Markov switching models is

to associate each Yi,j with a random variable Zi,j that determines the conditional

distribution of Yi,j given Zi,j . In this case, each Zi,j is an unobserved random vari-

able that indicates which phase the system is in (1, epidemic; 0, non-epidemic).

The unobserved sequence of Zi,j follows a first order two-state Markov chain with

transition probabilities:

P(Zi+1,j = l|Zi,j = k) = Pk,l

where k, l ∈ {0, 1}, i ∈ {1, ..., I − 1} and j ∈ {1, ..., J}. This Markovian feature

enables epidemic, respectively non-epidemic, weeks to be followed by epidemic,

respectively non-epidemic, weeks with a high probability if the data required

it. This performance could not be achieved with an independent modeling of the

Zi,j ’s and it makes the epidemic/non-epidemic state to be more robust to sudden,

although slight, changes in the differenced series.

The next step is to model the behavior of the differenced series for both

epidemic and non-epidemic periods. It seems reasonable to assume no underlying
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process beyond Gaussian noise for the non-epidemic period since, supposedly, no

underlying mechanism should be inducing dependence among the observations.

On the other hand, the epidemic phase should show greater variability, and pos-

sibly dependent observations. Therefore, the conditional distribution of Yi,j is

modeled either as a Gaussian white noise process or as an autoregressive process

of order 1, depending on whether the system is in, respectively, non-epidemic or

epidemic phase, i.e.

Y1,j |(Z1,j = 0) ∼ N(0, σ2
0,j)

Y1,j |(Z1,j = 1) ∼ N(0, σ2
1,j)

Yi,j |(Zi,j = 0) ∼ N(0, σ2
0,j) i ∈ {2, ..., I}, j ∈ {1, ..., J},(2.1)

Yi,j |(Zi,j = 1) ∼ N(ρYi−1,j , σ
2
1,j) i ∈ {2, ..., I}, j ∈ {1, ..., J},

where the first subindex of the variance σ2
k,j represents whether the system is

in the epidemic phase (k = 1) or not (k = 0). This model assumes a different

variance for each season in order to reflect that the variability in any of the phases

is not necessarily the same in different years, as a consequence of differences in

the shape of the corresponding epidemic waves. Note also that the conditional

distribution of the first difference of rates cannot be modeled as an autoregressive

process as there is no previous value to condition on.

Once the model is determined, the following step is to estimate its param-

eters. Martinez-Beneito et al. [34] propose using the following prior distributions

for the parameters involved in the model:

ρ ∼ Unif(−1, 1) θlow = λ[1]

P1,1 ∼ Beta(0.5, 0.5) θmid1 = λ[2]

P0,0 ∼ Beta(0.5, 0.5) θmid2 = λ[3](2.2)

σ0,j ∼ Unif(θlow, θmid1) θsup = λ[4]

σ1,j ∼ Unif(θmid2, θsup)

where {λ[1], λ[2], λ[3], λ[4]} corresponds to the ordered sequence of the variables

{λ1, λ2, λ3, λ4} which follow as prior distribution:

(2.3) λj ∼ Unif(a, b) j = 1, ..., 4 ,

where a and b are hyperparameters to be fixed by the modeler, typically express-

ing vague prior knowledge.

Expressions (2.1) and (2.2) contain all the knowledge about the system but

they do not yield analytical estimates. Therefore, Markov Chain Monte Carlo

(MCMC) methods are necessary, WinBUGS [54] being an option for carrying out

the inference. See Martinez-Beneito et al. [34] for more details on the specific

implementation of this model.
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3. DIRECT MODELING OF THE OBSERVED COUNTS

The key for developing a method that could be adapted to most kinds

of surveillance data is to use a common feature to all of them. This feature is

that most surveillance system are usually feed of counting incidence data. In

fact, most of the available surveillance data consist of time series of daily/weekly

rates directly obtained by transforming time series of observed cases (such as

the number of daily/weekly deaths due to influenza, the number of daily/weekly

hospital admissions, etc.). Attending to this comment, Conesa et al. [7], model

the weekly observed cases, which are subjected to sampling variation that should

be taken into account in our proposal, instead of directly modeling the rates. In

particular, if Oi,j denotes the number of observed cases of influenza during week i

in season j, they model Oi,j by means of a Poisson distribution whose parameter

is a function of the incidence rate ri,j of the week i in season j via the following

hierarchical structure:

Oi,j ∼ Poisson(νi,j)

νi,j = f(ri,j)(3.1)

ri,j ∼ N (Ri,j(Zi,j), σ
2
j (Zi,j)) .

The function in the second line in (3.1) depends on the type of data we are

working with. For instance, when working with sentinel data in which data are

formed by the weekly percentage of patients with influenza, the function in the

second line in (3.1) will be:

(3.2) f(ri,j) =
Ni,j · ri,j

100
,

where Ni,j represents the total number of patients seen in the corresponding week.

The rates now are modeled again as a Normal distribution with both mean

and variance depending on Zi,j , an unobserved random variable that indicates

which phase the system is in (1, epidemic; 0, non-epidemic). As in the previous

model, this is the idea of a Markov switching model in which the unobserved

sequence of Zi,j follows a two-state Markov chain of first order with transition

probabilities:

(3.3) P (Zi+1,j = l|Zi,j = k) = Pk,l k, l ∈ {0, 1} ,

with P0,1 = 1 − P0,0 and P1,0 = 1 − P1,1 for suitable probabilities P0,0 and P1,1.

The model assumes constant but different variances for each phase of each

season: {σ2
j (0), σ2

j (1) : j = 1, ..., J}. Moreover, the variance of the epidemic phase

will be assumed higher than that in the non-epidemic phase. As already men-

tioned, non-epidemic dynamics are characterized by small random changes while
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in epidemic dynamics the changes are greater. This will help once again to sep-

arate the series in 2 different periods. Different variances are assumed for each

season in order to reflect the different features of the different epidemic seasons

since, for example, some years have higher and steeper incidence peaks in contrast

to other years with flatter epidemic waves.

The next step is to model the mean of the rates in both states. Note that

Ri,j(0) and Ri,j(1) represent the level of magnitude of the incidence in case of

being, respectively, at non-epidemic or epidemic phase. The model at every week

decides which of them (jointly with the corresponding variance) fits better to the

new observed data. The first and easiest way to model both means is to consider

them as independent but constant. This modeling can be denoted as AR0-AR0,

i.e. two order 0 (independent) autoregressive processes, these terms representing

respectively the non-epidemic and epidemic phases. A second option would be

to consider the mean of the rates as temporally dependent processes. In this

setting, it could be convenient to model the mean of the rates as a first order

autoregressive process. As a result, three more modelings could be considered

combining the AR0 and AR1 proposals, that is: AR0-AR1, AR1-AR0 and AR1-

AR1. In a similar way, we could think that the rates are related to rates from two

or more previous weeks. Then a suitable option would clearly be to consider the

mean of the rates as an autoregressive process of higher order. When dealing with

second order autoregressive processes, five more modelings could be considered,

that is AR2-AR0, AR2-AR1, AR2-AR2, AR1-AR2 and AR0-AR2. For simplicity,

here we just present the AR1-AR1 model, with both means (those corresponding

to non-epidemic and epidemic settings) being first order autoregressive processes,

i.e.:

Ri,j(0)|r1,j , ..., r(i−1),j = µ0 + ρ0 · (ri−1,j − µ0)
(3.4)

Ri,j(1)|r1,j , ..., r(i−1),j = µ1 + ρ1 · (ri−1,j − µ1)

with µ0 < µ1 in order to set the epidemic period as that having a higher expected

rate.

The specification proposed by Conesa et al. [7] for the prior distributions

of each of the parameters involved in this model is the following:

P0,0 ∼ Beta(0.5, 0.5) θlow = λ[1]

P1,1 ∼ Beta(0.5, 0.5) θmid1 = λ[2]

σj(0) ∼ Unif(θlow, θmid1) θmid2 = λ[3]

σj(1) ∼ Unif(θmid2, θsup) θsup = λ[4]

where {λ[1], λ[2], λ[3], λ[4]} corresponds to the ordered sequence of the variables

{λ1, λ2, λ3, λ4} which follow the non-informative prior distribution:

(3.5) λj ∼ Unif(0, c) j = 1, ..., 4 ,
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where c is usually high enough so that it does not condition the posterior distri-

bution of λ1, ..., λ4.

With respect to the parameters involved in the modeling of the mean of

the rates, that is, µ0 and µ1, they propose a slightly different structure than the

one used for the variance:

(3.6) µ0 = θ[1] , µ1 = θ[2] ,

where {θ[1], θ[2]} corresponds to the ordered sequence of the variables {θ1, θ2}

which follow the non-informative prior distribution:

(3.7) θj ∼ Unif(0, d) , j = 1, 2 ,

where d is again a hyperparameter chosen in a way that makes vague the former

distribution.

Finally, they also propose considering flat prior distributions for any of

the parameters of the autoregressive processes. Specifically, they choose uniform

distributions in the region where the processes are stationary. As an example,

the selection in the AR1-AR1 modeling would be:

(3.8) ρ0, ρ1 ∼ Unif(−1, 1) .

Again, expressions from (3.1) to (3.8) contain all the knowledge of the

system but these expressions do not yield analytical expressions for the posterior

distribution of the parameters. MCMC methods and WinBUGS are again a good

option for carrying out the inference. See Conesa et al. [7] for more details on

the specific implementation of this model.

4. COMPARING METHODOLOGIES ON SENTINEL SURVEIL-

LANCE DATA

One of the most popular kinds of influenza surveillance data comes from

sentinel systems. In spite of their limitations, these data have proved to be very

useful to follow up influenza during the last decade, rapid information transmis-

sion being one of their main advantages. Basically, sentinel systems are formed

by volunteer practitioners that, depending on the system, report in a weekly ba-

sis the percentage of patients with Influenza-like illness (ILI), usually defined as

fever plus acute respiratory symptoms such as cough and/or sore throat, from the

total number of patients seen, or just the number of consultations with patients

reporting ILI symptoms. Data are collected at least during the periods of non-

negligible influenza activity. Thus in Western countries in the temperate climate
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zone, data are typically collected in seasons (lasting around 30–35 weeks) that

extend over two consecutive years (as the epidemic activity usually extends across

both of them), while in other places data are collected throughout the year.

In what follows we review a case study presented in Conesa et al. [7] in

order to check how these two methodologies can be applied in real settings. In

particular data analyzed in this example are retrieved from the North Carolina

Influenza Sentinel Surveillance Program. The dataset is formed by the weekly

percentage of ILI patients from the total number of seen patients. Information

about this system can be found in its website [41], which allows to export raw

data in standard format. In this system, sentinels also collect representative

samples for virus strain identification. As we mention later, this laboratory data

on influenza isolates can be very useful as a gold standard for validating the

performance of a method.

It is worth noting that the methodology introduced in Section 3 requires

the selection of the model that fits each phase better from the different options

introduced in the previous section. As a result, the first step must be to use a

model selection criterion. One option is to use DIC, a Bayesian model comparison

criterion introduced by Spiegelhalter et al. [53], based on the trade-off between

the fit of the data and the corresponding complexity of the model. In our expe-

rience, models with different structures in both phases tend to give more weight

to the phase with more structure. As a result we usually consider just models

with both phases having the same structure, in order to avoid decompensation

between phases. In this case, we have only analyzed those three options with the

same structure in both phases (AR0-AR0, AR1-AR1 and AR2-AR2). For this

data, results indicate that models AR1-AR1 and AR2-AR2 outperform (as they

have lower DIC, 2097.6 and 2095.9 respectively) the AR0-AR0 model (with DIC

2125.8). As a result the AR0-AR0 model can be discarded, the next step being

to choose between the remaining two models.

The assessment of models can be done using the measures proposed by

Cowling et al. [12] and Kleinman and Abrams [25]. These measures summarize

the information on sensitivity, specificity and timeliness for a detection method

and a particular data set in a unique value between 0 and 1, achieving 1 for a per-

fect performance. In particular, the measures used here are AUWROC1 and VUTROS1,

which weigh the information given by the ROC curve by the timeliness achieved

for each method, building a 3D ROC curve which height is a function of the time-

liness of detection and measuring the area left behind this curve, and VUTROS3

and VUTROCS, which construct several reference ROC curves restricted by different

maximum delay of detection and integrate the information from them all.

In order to perform this comparison we need to know approximately the real

epidemic periods in all the seasons. The approach used here to obtain the gold-

standard is that presented in Cowling et al. [12]. In particular, using laboratory
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data on influenza isolates from the North Carolina Sentinel Network, the period

between the first and last week in which the proportion of positive isolations for

influenza surpassed 30% of the maximum seasonal level has been taken as the

gold standard epidemic phase.

This criteria may also be used beyond the comparison of the AR1-AR1

and AR2-AR2 models to compare these proposals with alternative models in the

literature. In particular, here we present the results of applying those metrics to

the on-line results obtained with both models and those obtained using four alter-

native methods for the automatic detection of influenza, again using information

only from past weeks. The first approach is the widely-used method proposed

by Serfling [49], while the second one uses the depmix package [59] of R [46] to

reproduce Le Strat and Carrat’s [28] hidden Markov model. The third approach

is a simple regression method which is a slight modification of Stroup et al. [55]

and the last one is the model based on the differences of the rates (MBDR from

now on) presented in Section 2.

It is worth noting that this validation has been done using an on-line version

of all the models instead of the results obtained by applying them to the whole

data set. That is, by applying all models sequentially, starting from the fourth

season (in order to use at least three seasons as training data) and then predicting,

for each week, the probability of being in an epidemic phase by only taking into

account the information from past weeks (within the current season and all the

weeks from previous seasons). The reason for this is that the on-line version

reproduces the sequential arrival of data that is habitual in real situations.

Table 1 shows the values of the metrics AUWROC1, VUTROS1, VUTROS3 and

VUTROCS obtained when applying the selected models (AR1-AR1 and AR2-AR2)

and the four alternative methods to the North Carolina data set. As can be

appreciated, results indicate that both models perform better than the other

alternative methods, since the values of the four metrics are greater and closer

to 1. Moreover, the AR2-AR2 behaves substantially better and so it will be our

selection from now on for analyzing the North Carolina data set.

Table 1: Comparison of metrics AUWROC1, VUTROS1, VUTROS3
and VUTROCS when applying different early warning systems
(higher being better) to the North Carolina data set.

AUWROC1 VUTROS1 VUTROS3 VUTROCS

Serfling 0.612 0.553 0.349 0.698
depmix 0.608 0.556 0.341 0.682
Stroup 0.540 0.517 0.404 0.807
MBDR 0.601 0.544 0.356 0.713

AR1-AR1 0.676 0.595 0.412 0.824
AR2-AR2 0.726 0.649 0.420 0.840
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The results of applying the on-line version of the AR2-AR2 model can be

seen in Figure 2, which shows the weekly ILI incidence rates, the white, grey

and black dots indicating those weeks where the posterior probability of being

in an epidemic phase exceeds the values 0.25, 0.5 and 0.75, respectively. As

mentioned above, these probabilities have been sequentially obtained, starting

from the fourth season and only taking into account the information from past

weeks (within the current season and the all weeks from previous seasons). This

is the kind of graph that Health Authorities could use to raise the alarm at those

precise moments in which there is a high probability of being in an epidemic

phase. In particular, values exceeding 0.5 indicate that we are observing for

that week a higher probability of being in an epidemic phase than of being in a

non-epidemic one, and so an alarm could be triggered if considered convenient.
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Figure 2: On-line weekly results for the North Carolina data set from seasons 4 to 8.
Graphs show the influenza incidence rates in which the white, grey and
black dots indicate those weeks where the posterior probability of being in
an epidemic phase exceeds the values 0.25, 0.5 and 0.75 respectively.

5. FLUDETWEB

The complexity of disease surveillance methods has been progressively in-

creasing. In fact, most of the methods mentioned in the Introduction are not easy

to implement. On the contrary, most of them and, in general, the most advanced

surveillance systems require skilled personnel to implement, fine-tune and main-

tain them. These requirements have kept these new developments from common

usage. In order to resolve this issue, there has been a recent interest in enhancing

existing disease surveillance methodologies by using tools for presenting data and

information to users. Hauenstein et al. [23] describe in detail the processes and

tools (such as system architecture, web-based applications, etc.) needed to do so.

In this section, we review fludetweb (Conesa et al. [6]), an enhanced web

implementation of the MBDR, the surveillance methodology described in Sec-

tion 2. This implementation is available on-line at: http://www.geeitema.org/

meviepi/fludetweb/.
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Fludetweb’s implementation has been done using a thin client application

design for ease of user interaction with the program, that is through a web appli-

cation that could be accessed by any network-enabled device (PC’s, tablets, cell

phones, etc.) with a web browser. But moreover, the computational requirements

of the detection algorithm, which could need several minutes to return the results,

also motivated the use of a master-slave intranet architecture to take advantage

of other secondary available computers.

Figure 3 shows the internal architecture of the server and its connections

with the slaves and clients. The system has been implemented as a three-tier

architecture by separating its functions into three separate layers. The top tier

corresponds to the presentation layer and is responsible for interaction between

the user and the system through data and personal information querying, visual-

ization of results, etc. The second tier is the business logic tier, which is the core

of the system as it controls the running of the influenza surveillance algorithm.

The final layer is the data tier and it is responsible for data storage, not only

of the influenza rates but also of the user’s personal information, the availability

and state of slaves, IP addresses, assigned tasks, etc.

Figure 3: Internal architecture of the fludetweb implementation,
including its internal connections with slaves and clients.

In practice, users can introduce and edit their own data consisting of a

series of weekly influenza incidence rates. Users may also obtain estimates of
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the probability of being in an epidemic phase for the weeks of interest. The

estimation process is not immediate, so the system has been designed to respond

to requests from a multi-user environment on a first-come, first-served basis.

After completion of the process, the system returns the probability of being in

an epidemic phase jointly with a forecast of the probability of an increase in the

incidence rate during the following week. Fludetweb also provides two further

graphs. The first one shows the weekly rates of the last two seasons, indicating

whether the posterior probability of being in an epidemic phase in the analyzed

week is greater than 0.5 or not. The second graph shows all the weekly rates with

flags only for requested weeks. In particular, flags indicate whether the posterior

probability of being in an epidemic phase is greater than 0.5 or not. Its ease

of use and on-line availability should make fludetweb a valuable tool for public

health practitioners.

6. FURTHER LINES OF DEVELOPMENT

Our interest in this paper has been to review two possible methodologies for

detecting influenza epidemics at the very moment of their onset. Both modelings

can be used for any kind of surveillance data that show either epidemic periods,

describing an increase and a decrease of the epidemic curve, or non-epidemic

periods, where the data follows a random noise process. Both methodologies

provide the posterior probability of being in an epidemic phase, and so they can

be very useful for health authorities who could use them to raise the alarm at those

precise moments in which there is a high probability of being in, or even better

starting, an epidemic phase. We have also reviewed a web-based implementation

of the first methodology for obtaining the posterior probability of being in an

epidemic phase.

With respect to possible extensions of these proposals, a first improvement

could be to include a spatial component that would help us to raise geographically-

referenced alarms. Now, we would have as many time series as areal units in the

region of study and the goal would be to induce spatial dependence on these

series in order to take advantage of the information of neighboring series. As an

example Zou et al. [62] and Heaton et al. [24] propose to use, for the epidemic

phase, spatio-temporally correlated random effects, with every random effect be-

ing conditional dependent to its temporal and spatial neighbors. On the other

hand, they consider either a white noise or a spatially correlated process for the

non-epidemic phase. Finally, the transition probability between states for every

region is considered to depend on the number of neighbors in epidemic state.

Knorr-Held and Richardson [26], Watkins et al. [60], Li et al. [29] or Li and

Cardie [30] are just some other examples of studies addressing the incorporation

of a spatial component in outbreak detection studies.
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Spatio-temporal models improve traditional temporal outbreak detection

models by using a second source of information, that provided by neighboring

regions. A second alternative would be to incorporate complementary informa-

tion sources, not necessarily linked to other geographical locations. Thus, Nunes

et al. [43] consider a bivariate information source (for every week) instead of the

traditional univariate rates for distinguishing between epidemic and non-epidemic

periods. Thus, on one hand, they use for each week the number of laboratory-

confirmed cases of the previous week and, on the other hand, the number of re-

ported ILI cases of the current week. That is, we have two information sources in

this system one of higher quality (confirmed cases in the previous week) and a sec-

ond one corresponding to more recent data. This kind of analysis would be more

sensible than traditional univariate studies as they are based on a larger amount

of information in order to decide the current epidemic/non-epidemic state.

A particular case of multivariate data use is that of Twitter. Twitter is a

microblogging social network in which users publicly post short messages of less

than 140 characters that may also be geolocated. Several words or sets of words

related to influenza can be used to predict the onset, spread and decay of the

epidemic. Works like those of Li and Cardie [30] or Grover and Aujla [22] deal

with the necessary preprocessing of the raw data and the use of Markov chains

to model several phases like rising, stationarity and declining of the epidemic.

Flexibility is one of the main advantages of Bayesian hierarchical models.

These models can be easily adapted to any specific feature of any dataset, what

has made them particularly common in outbreak detection studies. Nevertheless,

the main drawback of Bayesian hierarchical models is that they usually resort

to (frequently slow) MCMC simulation to carry inference out. Although Win-

BUGS usually makes relatively easy the inference process, once a new weekly

observation arrives, we are forced to repeat the whole simulation with the new

(and all the previous) observation(s). This makes simulations to become progres-

sively slower as new observations are incorporated into the system. Sequential

MCMC methods, such as particle filters, would be a solution to this, avoiding to

run again the model each week with all historical and, obviously, the new data.

The incorporation of this kind of inference tools to influenza outbreak detection

problems could be very advantageous for a problem where the computing time is

a limitation if results want to be used for on-line epidemiological surveillance.

Finally, we would like to mention a general drawback of this kind of models.

Model selection is a delicate issue in outbreak detection studies. Most model se-

lection criteria are based on fit or predictive properties of models. Nevertheless,

in our particular case we would be mostly interested in some other particular

criteria such as sensitivity, specificity or timeliness in the detection of outbreaks.

As mentioned in this paper, several measures have been proposed in the litera-

ture (Cowling et al. [12] and Kleinman and Abrams [25]) paying specific atten-

tion to these aspects and, therefore, particularly suited for outbreak detection.
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Regretfully these methods depend on the availability of a gold standard, that

make it possible to assess the goodness of any particular method. Acceptable

gold standards are not generally available excepting maybe for very few publicly

accessible datasets. This makes model selection in this area a particularly cum-

bersome issue where more research (or more publicly accessible datasets for this

purpose) would be very welcome.
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[17] Frisén, M.; Andersson, E. and Schiöler, L. (2009). Robust outbreak surveil-
lance of epidemics in Sweden, Statistics in Medicine, 28, 3, 476–493.

[18] Gesualdo, F.; Stilo, G.; Agricola, E.; Gonfiantini, M.V.; Pandolfi,

E.; Velardi, P. and Tozzi, A.E. (2013). Influenza-like illness surveillance on
Twitter through automated learning of näıve language, PloS ONE, 8, 12, e82489.
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1. INTRODUCTION

Oncological diseases are the second highest cause of death in Portugal,

and they have a big social impact in patients and their families [12]. In Europe

breast cancer is the tumor with highest incidence in women [1]. In Portugal there

are not many published studies on breast cancer. However, Pinheiro et al. (2003)

([12]) refer that, since 1995, mortality due to breast cancer has been decreasing in

Portugal. They argue that this improvement is a consequence of earlier diagnostic

and better quality of treatment.

According to results presented by the European Cancer Observatory [5], the

estimated incidence for Breast Cancer in Portuguese women in 2012 is 85.6% and

the estimated mortality rate due to this type of cancer is 18.4%, both values are

quite lower than the European average (94.2% and 23.1% respectively). At the

moment, the existing recommendations and guidelines from the National Health

Service are mainly based on European studies. However, it is not clear that the

behavior of the disease is similar among European countries. Therefore, it is of

great importance the continuous investment on statistical and epidemiological

studies in oncological diseases for understanding the progression of the disease in

Portugal.

This study aims to answer at least some of the questions on a specific Por-

tuguese population, particularly the population of the Senology Unit of Braga’s

Hospital, located in the north of Portugal, that were diagnosed with malignant

breast cancer.

The tumor marker Carcinoembryonic antigen (CEA) is usually used for

therapy monitoring in advanced disease ([6]), although recent reports, e.g. Fiorella

et al. (2001) ([6]), discourage its routine use because of low sensitivity. The

authors conclude that its use should be considered as an inefficient method of

follow-up evaluation for breast cancer patients, and it provides no additional

value when used in combination with another tumor marker Carcinoma Antigen

15-3 (CA 15-3). Nevertheless, as Sturgeon et al. ([16]) point out, on occasion, it

can be informative when levels of CA 15-3 remain below the cutoff point.

Since it is a usual medical procedure to be alert for possible tumor re-

currence in the case of detecting a rise in levels of this marker above a certain

reference value, our main purpose is to describe the progression of this tumor

marker, on patients who were followed and treated in this Unit, as a function of

possible risk factors. We intend to estimate on average the time to the increase

of this tumor marker, and to characterize the degree of heterogeneity between

patients.
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2. METHODOLOGY

2.1. Motivation and data set

Data were collected directly from the medical records of each patient, listed

in the computer system of Braga’s Hospital — Glintt HS. We therefore have

access to baseline and clinical history of each patient (a roll of information such

as diagnosis; pre-surgery, post-surgery, group meetings; follow-up and medical

exams). The authorization to collect and use of senology data was approved by

the Ethical Committee of Hospital de Braga.

From the information gathered in the medical reports we were able to collect

more than 50 variables that can be grouped into two categories: (i) explanatory

variables at individual level, which are a group of demographic characteristics

that include a set of prognostic factors reported by Rodrigues (2011) ([14]), for

example: age, menopause, age at first full term pregnancy; (ii) explanatory vari-

ables at tumor level, that include characteristics of the tumor, some of them

important prognostic factors which were already reported in the literature and

resumed by Fitzgibbons et al. (2000) ([7]) and Cianfrocca and Goldstein (2004)

([3]), such as TNM stage, histological type of tumor, hormonal receptors or vas-

cular or lymphatic invasion, among others.

We collected data from 577 female patients diagnosed with a malignant

tumor in the period of 2008 until 2012 (or before, but alive at 2008 and all

patients at follow up on group meetings at 2008). Patients at follow up on group

meetings were diagnosed as late as 1998. Patients’ age at the time of diagnosis

varies between 20 and 89 years. However patients with no information regarding

tumor markers CEA were excluded for the present analysis, as well patients with

no follow up information. We handled all missing values as missing completely

at random ([10]).

For the longitudinal analysis of the tumor marker CEA, we considered

data of 532 patients. Since 19 patients had bilateral breast cancer, and bilateral

breast cancer is treated as independent case in this study, it translates into a total

number of 551 cases analyzed. The total number of deaths from breast cancer

is 54. There were 4166 measurements of tumor marker CEA, with a number of

observations per patient varying between 1 and 23 measurements, as shown in

Figure 1. The median number of measurements per person is 7.

It is an unbalanced study for the tumor marker, since patients measure-

ments were not made at the same moment.
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Figure 1: Histogram for the number of measurements per patients
for tumor marker CEA.

2.2. Statistical methodology

The response variable, value of CEA, was analyzed making use of longitu-

dinal models as defined in Diggle et al (2002) ([4]), where different correlation

structures were tested.

The same covariates used in the survival model, previous adjusted in an

earlier study ([2]), were tested in the longitudinal model fitted. The reference

time used was time, in years, since diagnose of breast cancer. We have used the

reference value of 5,0 ng/mL ([14]) for the response variable. According to the

usual medical procedures, physicians stay alert to a possible recurrence of breast

cancer for patients that present values of CEA above this reference value.

In general, we denote each patient in this analysis by the subscript i =

1, ..., n. Repeated tumor marker measurements for each patient i, at correspond-

ing time tij , are denoted by Yij , where j = 1, ..., mi. Note that for this particular

study, measurement times are not common to all subjects (unbalanced study).

Let N =
∑n

i mi, be the total number of measurements in the data set.

For the analysis, we began with an exploratory analysis and point estima-
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tion by modeling a saturated ordinary least square (OLS) ([4]) model with the

variables that had shown significant effect on patients’ survival, given by:

(2.1) Yij = µij + εij ,

where E[Yij ] = µij and εij are N independent and identically distributed (i.i.d.)

realizations of N(0, ξ2).

Since the OLS model assumes independence between any two measure-

ments, from the same or different subject, it is important to consider different

models in the context of longitudinal analysis, that take into account the corre-

lation that usually exists in the measurements of the same subject.

A longitudinal model was also fitted only to the subset of patients that

died, using the reference time, in years, from blood tests until date of death.

To model the correlation structure for each model we analyzed the empirical

variogram of OLS residuals from the saturated model for the mean response

([4]). These patterns suggested the existence of variability between subjects (as

random effects), and a possible variability within subjects (serial correlation).

Hence, maintaining the same mean structure we compared two nested models

with different covariance structures with three components, such as: (i) random

effects, exponential serial correlation and measurement error; (ii) random effects,

Gaussian serial correlation and measurement error.

In many medical studies it is important to consider not only random effects

but also a possible variability within subjects as it may have important medical

implications. In fact, Liang and Zeger (1986) ([9]) alert that treating the correla-

tion as a nuisance may be less appropriate when the time course of the outcome

for each subject is of primary interest or when the correlation itself has scientific

relevance.

Both longitudinal models are given by:

(2.2) Yij = µij + Ui + Wi(tij) + Zij ,

where Ui are n i.i.d. realizations of N(0, ν2), representing the random effects at

individual level, Wi(tij) is a continuous time Gaussian Process with E[Wi(tij)] = 0

and Var(Wi(tij)) = σ2 and, Zij are N i.i.d. realizations of N(0, τ2), representing

the measurement error (variability non specified).

To model the fixed term of the longitudinal model, µij , we have tested for

a changing point δ on the effect of time on the tumor markers. In practice, the

changing point is the moment where there is an alteration on the slope of the

linear marker’s progression, on average. Considering δ the changing point, we
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have E[Yij ] = µij with:

(2.3) µij =





Xijβ + α1tij , if tij < δ ,

Xijβ + α2(tij − δ) , if tij ≥ δ ,

where Xij represents the vector of covariates, β the vector of unknown regression

coefficients, α1 and α2 the coefficients representing the slope before and after the

changing point, respectively.

For parameter estimation we use the maximum likelihood method, whose

associated likelihood function is given by:

(2.4) L(θ; Y ) =
n∏

i=1

mi∏

j=1

1

2π|Vij |
exp

{
−

(
1

2

)
(yij − µij)V

−1

ij (yij − µij)
T

}
,

where Vij is the variance/covariance positions on the variance/covariance matrix

of all data.

We then conducted a backward elimination to delete variables not signifi-

cant, until the mean structure was well defined with only significant covariates.

What distinguishes these two longitudinal models is how two different real-

izations of Wi are correlated in time. That is, if we consider the correlation among

Wi(tij), let say between W (t) and W (t − u), determined by the autocorrelation

function ρ(u), we will have for the REE model ρ(u) = exp(− 1

φ
.|u|), and for the

REG model ρ(u) = exp(− 1

φ
.u2), where ρ is the range parameter that specifies the

rate at which the correlation stables.

The validation of the correlation structure was made by graphical com-

parison between the empirical variogram and the theoretical fitted ones, and

comparing their maximized log likelihood values.

The variogram ([4]) of a stochastic process Y (t) is given by:

(2.5) V (u) =
1

2
Var

{
Y (t) − Y (t − u)

}
, u ≥ 0 .

For a stationary process, the autocorrelation function, ρ(u), and the vari-

ance of Y (t), σ2, are related by:

(2.6) γ(u) = σ2{1 − ρ(u)} .

The estimation of the empirical variogram is based on the calculation of

the observed half-squared-differences between pair of residuals, νij = 1

2
(rij −rik)

2,

and the corresponding time-differences, uijk = tij − tik, where rij = Yij −µij , and

j < k = 1, ..., mi.



70 A. Borges, I. Sousa and L. Castro

The autocorrelation function at any lag u is estimated from the sample

variogram by:

(2.7) ρ̂(u) = 1 −
γ̂(u)

σ̂2
,

where γ̂(u) is the average of all the νij corresponding to that particular value of

u, and σ̂2 is the estimated process variance.

The entire analysis was performed using R software ([15]), in particular

making use of both nlme ([11]) and JoineR ([13]) packages.

3. RESULTS

Since the normality assumption of the response variable failed, we used

a log-transformation of the tumor marker CEA values. It is, in fact, a usual

transformation in biological markers. The spaghetti plot (Figure 2) presents the

progression of the CEA values for each patient, against the reference, and the non

parametric smooth spline line, indicating the average trend of progression. The

smooth spline suggests that, on average, the marker progression stays below the

reference value with a non accentuated slope in its increase. However, it is possible

to see that there are individuals with values above the reference value of log (5.0)

ng/mL. Nevertheless a linear modeling approach appears to be reasonable. Also,

it does not point out to the existence of a changing point in its progression in

time.
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Figure 2: Spaghetti plot for tumor marker CEA values.
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In fact, after fitting several saturated parametric models considering various

changing points’ values, its existence was not significant in the mean time trend

of the tumor progression.

Table 1 presents the estimated parameters of the fitted longitudinal model

that best represent the tumor marker progression in time, and compares the

estimates to those obtained by fitting the simple OLS model and the respective

log Likelihood values.

Table 1: Estimated parameters values for General Linear Model
and Longitudinal Model.

OLS Model REE Model

Estimate p-value Estimate p-value

Intercept 0.0689 0.7170 0.7355 0.0405

Time −0.1304 <0.0001 −0.1049 0.0038

Tumor stage (III or IV) 0.2132 <0.0001 0.2655 0.0038

Primary tumor size

(Tx orT1 orT2 orT3 orTis) −0.2063 0.2660 −1.0383 0.0023

Age at diagnosis 0.0095 <0.0001 0.0117 <0.0001

Venous vascular

invasion (Yes) *Time 0.1355 <0.0001 0.0967 0.0175

Tumor degree (G3) *Time 0.1281 <0.0001 0.1179 <0.0001

Estrogen receptor

expression (positive) *Time 0.1548 <0.0001 0.1455 <0.0001

ν̂2 0.2849

σ̂2 0.3295

φ̂ 2.1912

τ̂2 0.0239

ξ̂2 0.6770

Log Likelihood −3792.429 −1853.366

The fixed part of the longitudinal model, which describes the mean pro-

gression of the marker, is composed by the following significant covariates on the

intercept component of the model: tumor stage (0/I/II versus III/IV), primary

tumor size (Tx/T1/T2/T3/Tis versus T4), and age at diagnosis. The intercept

component of the model, in this particular case, means that a patient with a tu-

mor stage of 0, I or II, a T4 primary tumor size at an earlier age of diagnosis will

start the progression of the tumor marker with a value of 0.7355, on a logarithmic

scale.

A patient with a tumor on stage III or IV implicates an increasing of the

log value of the tumor marker by an increment of 0.2655, comparing to those
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with a tumor on stage 0, I or II. Also, a tumor that presented a primary tumor

size different from the classification T4 has a decrease in the starting point of the

marker value by an increment of −1.0383. The age at diagnosis affects the log

value of the marker at a rate of 0.0117 per year of age at diagnosis.

The covariates that affect the slope (−0.1049) of the linear progression of

the tumor are: images of vascular invasion (Yes versus No), Bloom-Richardson

degree of differentiation (Gx/G1/G2 versus G3) and estrogen receptors expression

(Positive versus Negative).

According to the estimated values, cases that present a venous vascular

invasion of the tumor, a tumor degree G3 and a positive estrogen receptor ex-

pression increase the progression slope at a rate of, respectively, 0.0967, 0.1179

and 0.1455.
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Figure 3: Superposition of empirial variogram and theoretical variogram.

The correlation structure that best represents the variability of the data

is, in fact, the one that incorporates random effects at individual level with ν̂2 ≈

0.2849, an exponential correlation structure to describe the variability within

patients with ρ(u) = exp( −1

2.1912
.|u|) and σ̂2 ≈ 0.3295, and a measurement error

with variance τ̂2 ≈ 0.0239. That fact can be easily accessed by the superposition

of the theoretical fitted variogram of both exponential and Gaussian correlation

structures with the empirical variogram (Figure 3).
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When fitting the saturated general linear model for the subset of patients

who died from breast cancer, we detected a changing point at 2 years before

death. The smooth spline of the spaghetti plot (Figure 4) is consistent with

that result and informs a transposition of the reference value nearly after that

changing point.
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Figure 4: Spaghetti plot for tumor marker CEA values of patients
who died from breast cancer.

Note that, as we are analyzing the marker values from date of blood tests

until death, we are dealing with duration at a negative scale.

Table 2 summarizes and compares the estimated parameters for the longi-

tudinal model which best fitted the data with those of the general linear model

(OLS Model). As expected, the presence of venous vascular invasion has an in-

creasing effect on the average CEA linear progression in time, as it is related to

a worst prognostic case in the previous survival analysis ([2]).

Contradictory results are the decreasing effect of a bilateral type of tumor

and the presence of lymphatic invasion and the increasing effect of a positive

estrogen and HER-2neu expression. The mentioned covariates have a statistical

significant effect on the intercept component of the model (1.4622). Bilateral

cancer cases have a decrease of 0.5981 on the intercept component, and a case

with lymphatic invasion a decrease of 0.7322 compared to those with no lymphatic

invasion. A case that presents images of vascular invasion increases of the start

value of the tumor marker by an increment of 0.7322, comparing to those that do
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not present any image. A positive estrogen receptor expression has an increasing

effect on the intercept component by 1.2177, compared to those with a negative

expression. A positive expression of HER-2neu has an increment of 0.4882.

Table 2: Estimated parameters values for General Linear Model
and Longitudinal Model, for the patients who died from
breast cancer.

OLS Model REG Model

Estimate p-value Estimate p-value

Intercept 2.0376 <0.0001 1.8507 <0.0001

Time before changing point

(2 years before death) 0.2540 <0.0001 0.2128 <0.0001

Time after changing point

(2 years before death) 0.9453 <0.0001 0.8815 <0.0001

Bilateral (Yes) −0.9290 <0.0001 −0.5981 0.0471

Lymphatic invasion (Yes) −0.8821 <0.0001 0.7769 <0.0001

Venous vascular

invasion (Yes) 1.0350 <0.0001 0.7769 0.0266

Estrogen receptor

expression (positive) 1.5675 <0.0001 1.2177 <0.0001

ν̂2 0.2404

σ̂2 0.8239

φ̂ 0.3762

τ̂2 0.0415

ξ̂2 1.2499

Log Likelihood −1089.503 −621.695

For this subset, the correlation structure that best represent the variability

of the data is the structure that incorporates random effects at individual level

with ν̂2 ≈ 0.2404, a Gaussian correlation structure to describe the variability

within patients with ρ(u) = exp( −1

0.3762.
u2) and σ̂2 ≈ 0.8239, and a measurement

error with variance τ̂2 ≈ 0.0415. The superposition of the theoretical variogram

of both exponential and Gaussian correlation structures with the empirical vari-

ogram (Figure 5) validates the choice of an exponential correlation structure.

Both REE and REG models were compared with a longitudinal model

only with an intercept random effect component Ui, and the serial correlation

component Wi(tij) shown to be significant in the models. This result reinforces

the need to take into account correlation within subject measurements.
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Figure 5: Superposition of empirial variogram and theoretical variogram,
for patients who died from breast cancer.

4. DISCUSSION

An abrupt rise in values of CEA tumor marker, over a reference value, is

an alert sign to a possible recurrence of breast cancer.

When analyzing all patients that were diagnosed with breast cancer, in our

study, the only variables that have a statistically significant effect on the linear

progression of the tumor marker are: tumor stage (III/IV versus 0/I/II), primary

tumor size (Tx/T1/T2/T3/Tis versus T4), age at diagnosis, venous vascular

invasion (Yes versus No), tumor degree (Gx/G1/G2 versus G3) and estrogen

receptor expression (positive versus negative). As expected, a III or IV tumor

stage, a T4 type of tumor, a G3 type of tumor, the presence of venous vascular

invasion and age at diagnosis have an increasing effect on the average tumor

marker progression in time, as they are related to a worst prognostic case ([2]).

One unexpected result was the fact that a positive expression of the estrogen

receptor has an increasing effect on that progression, contradicting the results

from a previous survival analysis ([2]), where the same patients’ cases of positive

estrogen receptor shown a lower probability of dying from breast cancer than

those who presented a negative expression.
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It was detected a changing point on the linear progression of the tumor

marker for the subset of patients that died from breast cancer two years before

the death. This means that, at that point, there is an abrupt rise on the rate of

its progression.

The risk factors for the progression of the marker, for that subset of pa-

tients are: bilateral (Yes versus No), lymphatic invasion (Yes versus No), venous

vascular invasion (Yes versus No), estrogen receptor expression (positive versus

negative) and HER-2neu expression (positive versus negative). As expected, the

presence of venous vascular invasion has an increasing effect on the average CEA

linear progression in time, as it is related to a worst prognostic case in the previous

survival analysis ([2]). A bilateral type of tumor and the presence of lymphatic

invasion have a decreasing effect. A positive estrogen and HER-2neu expres-

sion has an increasing effect. These two last results contradict the results from

the previous survival analyses ([2]) since bilateral cases and lymphatic invasion

are related to lower survival probability and, a positive estrogen and Her-2neu

expression are both related to a higher probability of survival.

For both models fitted, the fact that the estimated variance of the measure-

ment error is quite lower that the estimated variance of the OLS model, means

that the fitted REE longitudinal model explains the variability of the data mainly

by means of variability between patients and within patients assigning a very low

value for measurement error (or white noise as usually mentioned in literature).

The fact that, when comparing the REE and the REG models to a lon-

gitudinal model with only an intercept random effect, the component the serial

correlation was significant, stresses the importance incorporating a variability

component that translates within subject measurements correlation, in this type

of biological data.

The presented longitudinal analysis of this tumor marker, in combination

with the previous survival analysis is going to be proceeded, in future work, with

a joint modeling of the longitudinal and survival process of the present data.
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1. INTRODUCTION

The availability of disease data in sets of non-overlapping and contiguous

spatial areal units has increased over the last few decades. Concepts such as small

area estimation (SAE), disease mapping (DM) and ecological-spatial regression

(ESR) are linked and are used in the context of the analysis of this type of data.

The purpose of this work is two-fold; first we clarify those concepts, and

second, after focusing on DM, we apply several models to Portuguese alcohol

abuse disorder (AAD) data, collected by the World Mental Health Survey Initia-

tive (WMHSI), as specified in [39]. Harmful use of alcohol was considered by the

World Health Organization (WHO) as one of the world’s leading risk factors for

disease and disability ([38]).

The goal of DM is to estimate the spatial pattern in disease risk over a

geographical region, so that small areas with elevated risk can be identified. This

term was first used in [5]. It uses the spatial setting and assumes positive spatial

correlation between observations, essentially ‘borrowing’ more information from

neighboring areas than from areas far away, smoothing local rates toward local

neighboring values ([37]).

The remainder of this paper is organized as follows. Section 2 introduces

the Portuguese data, as well as some background information on AAD. Section

3 provides the DM definition highlighting the differences and common aspects

among DM, SAE and ESR. Section 4 deals with the most common and widely

used models for DM, providing some basic information on those, as well as some

challenges and recent methodological advances. Section 5 contains the results

of the models, reviewed in Section 4, applied to the data defined in Section 2.

Finally, Section 6 contains a concluding discussion and areas of future work.

2. DATA

The WMHSI was administered at the households of a nationally represen-

tative sample of respondents, between October 2008 and December 2009. The

target population for the survey was defined as the resident, non-institutionalized,

Portuguese-speaking population of the Portuguese mainland, aged 18 or above,

residing in permanent private dwellings. Details regarding the design, target

population, sampling, tools, measures, fieldwork organization, procedures, and

weighting are reported in detail elsewhere ([39]). This is a cross-sectional study,

meaning that both disease cases and possible risk factors are collected at the same

time. As reported in [36] that restricts the conclusions that can be drawn from
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the models. It is not possible to establish causal relationships between disease

cases and possible covariates.

Data collected by cross-sectional studies may have several types of biases.

In the present case the possibility of selection bias is particularly evident, as

only the non-institutionalized population and the population above 18 years of

age was selected, and accordingly to the WHO ([38]) the alcohol consumption

is rising between adolescents (13–18 years of age) and young adults. Therefore

inferences can only be made on the study population and not on the global Por-

tuguese population. Another possible common bias is the misclassification bias,

i.e., the incorrect assignment of a disease to the study participants. This type

of bias may occur in studies like this one, because there is no intervention of

a medical doctor during the questionnaire’s self-administration. This problem

seems to have been solved in France, Italy, Spain and United States of America,

as [14] and [10] provide evidence that the diagnoses of substance abuse disorders

identified by the questionnaire used in this initiative, the CIDI 3.0 (Composite

International Diagnoses Interview) have generally good concordance with diag-

noses based on blinded clinical reappraisal interviews. Unfortunately those tests

have not been conducted in Portugal. Although the alcohol consumption and

related disorders are very much connected with cultural aspects ([28]), we think

that the performance while identifying the actual presence of disease has not been

seriously affected.

According to the WHO ([38]) approximately 5.1% of the global burden of

disease, and 5.9% of all deaths worldwide are attributable to alcohol consumption.

Furthermore, harmful use of alcohol inflicts significant social and economic losses

on individuals and society at large.

In accordance with the DSM-IV ([8]) criteria there are two possible diag-

noses of alcohol disorders, the alcohol abuse disorder and the alcohol dependence

disorder. In the six European countries ([1]) covered by the ESEMeD project1,

5.2% of the respondents report a lifetime history of alcohol abuse and/or depen-

dence disorders. In the WMHSI, lifetime and 12-month alcohol disorder diagnoses

are provided. From the data collected in Portugal the prevalence rate of a life-

time history of alcohol abuse and/or dependence disorders is 10.0%, while the

last 12-month prevalence rate is 1.6%; the lifetime prevalence rate of alcohol

dependence disorder is 1.3%, while the last 12-month prevalence rate is 0.26%;

the lifetime prevalence rate of alcohol abuse disorder is 8.7%, whereas the last

12-month prevalence rate is 1.3%. The high prevalence of alcohol abuse disorder

found in Portugal reiterates the need to maintain alcohol abuse as a public health

priority in the country, and therefore more detailed studies are needed.

1The ESEMeD Project was created to fully study the results of the WMHSI on the following
countries: Belgium, France, Germany, Italy, the Netherlands and Spain. As Portugal joined the
WMHSI later than others, most of the publications, including the [1], do not include Portuguese
results.



Alcohol Abuse Disorder Prevalence. A Disease Mapping Approach 83

The study region is mainland Portugal partitioned into 28 units called

NUTS 32, corresponding to the 3rd level territorial units aggregation. There

are 30 NUTS 3 in Portugal, from which 28 are in mainland Portugal and 2 are

in the Islands. The response variable is the number of lifetime AAD cases per

NUTS 3. Differences in the size and demographic structure of the population

living in each NUTS 3 are accounted for by computing the expected number of

AAD cases using indirect internal standardization, based on age specific AAD

rates for the whole study region.

The age standardization process, as defined in [36], can be direct or indirect.

The choice between direct and indirect standardization is usually defined by the

type of data available. Age-specific rates for the disease at each NUTS 3 are not

available and therefore the indirect method is used, by applying the age-specific

disease rate for the global population to the NUTS 3 age-specific population,

provided by the Portuguese Statistics organization for the year of 2008. As this

standardization is done using the age-specific disease rate for the global popu-

lation, as it was collected by the survey itself, the standardization is internal

(external standardization only occurs when standard tables of age-specific rates

for the disease are available). As mentioned in [2] internal standardization is

‘cheating’ in some sense, since ‘a degree of freedom is lost’ by estimating the

age-specific disease rate from the current data.

Accordingly, the following notations and/or definitions are introduced:

a) Yk the random variable representing the number of observed cases (yk)

in each k age group;

b) nk representing the number of people at risk in each k age group;

c) rk = yk
nk

representing the observed prevalence proportion for each k age

group;

d) nik representing the number of people at risk in each k age group in

the ith NUTS 3;

e) Eik and yik representing the expected and observed number of cases

for the k age group in the ith NUTS 3, respectively, where Eik = rknik;

f) Ei =
∑

k rknik and y⋆i =
∑

k yik representing the total number of ex-

pected and observed cases in the ith NUTS 3, respectively;

g) SMRi =
Y ⋆
i

Ei
, the standardized morbidity ratio, representing the risk of

each ith NUTS 3. A value of SMR greater (less) than one indicates

that the area i has a higher (lower) than average disease risk. If the

SMRi = 1.15, it can be said that area i has a 15% increased risk of

the disease.

2Nomenclatura Comum das Unidades Territoriais Estat́ısticas, in Portuguese language as
defined by Eurostat, the European statistical organization.
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Figure 1 shows the raw SMR values for the 28 NUTS 3.

Figure 1: AAD Raw SMRs per NUTS 3. The four regions, which had
originally missing values, are shown already with the imputed
mean values resulting from the GLM (see Section 5).

Our illustrative example also considers two ecological covariates that are

widely known as being associated with the AAD ([13, 18, 27, 33]), which are (a)

proportion of population aged 18 to 34, (b) proportion of males. AAD is more

prevalent in younger men. These data are only available per NUTS 3, for the

year of 2011, as provided by the latest census conducted in Portugal, which we

find to be temporally misaligned with WMHSI data used in this work. However

as population age and gender structures do not significantly change in 3 years,

no corrective measures have been implemented.

3. SMALL AREA ESTIMATION, DISEASE MAPPING AND

ECOLOGICAL-SPATIAL REGRESSION

DM joins together three different disciplines: statistics/biostatistics, epi-

demiology and geography. DM focuses on the challenge of obtaining reliable

statistical estimates (statistics/biostatistics) of local disease risk based on counts

of observed cases (epidemiology) within small administrative districts or regions

(geography) coupled with potentially relevant background information. DM goals

are twofold: obtain statistically precise local estimates of disease risk for each re-

gion and maintain the regions ‘small’ in order to keep the geographic resolution.
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The areas are not only small in size (relative to the area of the full spatial do-

main of interest), but are also small in terms of local sample size, resulting in

deteriorated local statistical precision. To solve this problem the classical design-

based solutions are often infeasible since the local sample sizes within each region,

required for the desired level of statistical precision, are often unavailable or

unattainable. The model-based approaches can help overcome this problem by the

mechanism of ‘borrowing strength’ across small areas to improve local estimates.

3.1. DM as a special case of SAE

Nowadays sample survey data are extensively used to provide reliable di-

rect estimates of parameters of interest for the whole population. When it comes

to getting the same estimates for domains of that population, and due to the

small sample sizes in those domains, direct survey estimates are likely to yield

unacceptably large standard errors. This makes it necessary to combine survey

data collected from the small areas with auxiliary information from sources ex-

ternal to the survey. In this context, named as SAE, several indirect estimators

have been extensively used. Some of the most common are the traditional indi-

rect estimators based on implicit models, which include synthetic and composite

estimators, and the Empirical Best Linear Unbiased Prediction approach. Most

of these approaches also consider a contiguity matrix that describes the neigh-

borhood structure between small areas ‘borrowing strength’ from related areas

to find more accurate estimates for a given area. The works [29] and [6] provide

respectively an overview of the foundations of SAE and a comparison between

several traditional estimators and some proposed estimators using a Monte Carlo

simulation.

DM is a special case of SAE, since the goal is to find reliable statistical

estimates of local disease risk. As mentioned by [37] DM refers to a collection

of methods extending SAE to directly utilize the spatial setting and assumed

positive spatial correlation between observations. The data used are aggregated or

averaged values at the small area level, representing disease incidence, prevalence

or mortality rates, frequently not coming from surveys but coming from counts of

disease cases from hospital admissions ([21, 24]), counts of cancer cases or cancer

deaths ([3, 16, 34]), and mortality data ([7, 24, 25]). In the present work we use

counts of disease cases from a survey.

3.2. DM and ESR apply the same methodologies to reach different goals

By combining data from administrative registries and/or surveys with aux-

iliary data, DM goal is to predict area-level outcome summaries, to identify areas
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of elevated risk. ESR uses the same type of data and the same methodologies but

its objective is the estimation of associations between covariates and the disease

cases.

Therefore, two common problems found in ESR are not of a concern in DM:

(a) ecological bias and (b) the inclusion of spatially correlated errors changing

the association between disease cases and fixed effects.

Ecological bias is the difference between estimated associations on ecological-

and individual-level data ([35]). Data used in DM and ESR, both for the number

of cases and for the covariates are found rarely at individual-level, mainly due

to confidentiality reasons, and therefore the association found at the aggregated

level might not be the same if we would have used individual-level data. Aggre-

gated data is usually designated as areal data ([2]). The objective of DM is not

to estimate the associations between the cases and the covariates or to improve

predictions, and therefore ecological bias is not a concern (for more details on the

subject see [35]).

The inclusion of spatially correlated errors, changing the association be-

tween disease cases and fixed effects, has been studied by [34] and [12]. Often the

study of ESR has provided estimates of the fixed-effect coefficients substantially

different from those of ecological regressions. ESR is an ecological regression aug-

mented with the inclusion of random effects modeled by a globally smooth condi-

tional autoregressive model. If the covariates are also globally smooth, collinearity

problems might change dramatically the coefficients of the fixed-effects. As be-

fore, the coefficients of association are not of direct interest in DM, and therefore

this aspect is not a concern.

4. DISEASE MAPPING MODELS

DM methodologies are explained in [37] and [2]. DM methodologies for

areal data are usually divided in frequentist methods and hierarchical Bayesian

models [2]. To provide a wide comparison of methods, [15] presents some prelim-

inary results concerning the goodness-of-fit of a variety of DM models applied to

simulated disease incidence data. These simulated models cover simple risk gradi-

ents and more complex true risk structures, including spatial correlation. Authors

conclude that full Bayesian hierarchical models are the most robust across a range

of diverse models. A number of hierarchical Bayesian models have been proposed

in the literature, including the following two, which have been widely used: a)

the model developed by Besag, York and Mollié ([3]), from now on designated as

BYM model and b) the model developed by Leroux, Lei and Breslow ([22]), from

now on designated as LLB model. These two models will be used in Section 5.
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Authors of [4] review the main classes of Bayesian models, among which the

BYM model is included (but not the LLB model) and conclude that the BYM

model has good properties for modeling a single disease and ‘appears to be the

only fully Bayesian spatial model to have been used in published applications

of disease mapping outside of the statistical literature’ (page 57). Recently, [24]

and [16] published comparisons between hierarchical Bayesian models and both

conclude that the LLB model is the best overall, because it produces consistently

good results across a range of spatial correlation scenarios, is more parsimonious

on parameters, and has less undesirable features (this subject will be further

developed in Subsection 4.1).

One of the challenges posed at the DM level arises from its basic goal, the

smoothing of local rates toward local neighboring values. When real disconti-

nuities exist between neighboring areas, the models will lead to oversmoothing

blurring the edges, which may not be appropriate. If the goal is to identify bound-

aries or regions of rapid change, the methods of boundary analysis or wombling

need to be applied. For more detail see the recent works of [19] and [20].

A general formulation for the first level of the hierarchical Bayesian models

used in DM is given by

Yi|Ei, Ri ∼ Poisson(EiRi) for i = 1, ..., n ,

(4.1) ln(Ri) = µ+ xT
i β + φi .

If Ei is not too large (as it is the case of rare diseases) or the regions i

are sufficiently small, the usual model for the Yi is a Poisson model ([2]). In the

model, Ri denotes the risk of disease in area i, which is modeled by an intercept

term µ, a set of p covariates xT
i = (xi1, ..., xip) and a random effect φi. The ran-

dom effects are included to model any overdispersion and/or spatial correlation

that might remain in the data after have being accounted for by the included

covariate information. Most studies of this type show overdispersion, meaning

that V ar[Yi] > E[Yi], which has several possible causes: subject heterogeneity;

correlation between individual responses; omitted unobserved variables; and/or

excess zero counts. Inference for this type of model is based on Markov chain

Monte-Carlo (MCMC) simulation, using a combination of Gibbs sampling and

Metropolis-Hastings steps and more recently using Integrated nested Laplace ap-

proximations ([31]).

The random effects φ = (φ1, ..., φn) are usually modeled by the class ([2]) of

conditional autoregressive (CAR) prior distributions, which are a type of Markov

random field model ([11]). Instead of a specification of a single multivariate distri-

bution f(φ), the above models are specified by a set of univariate full conditional

distributions f(φi|φ−i), where φ
−i = (φ1, ..., φi−1, φi+1, ..., φn). To determine the

spatial correlation between the random effects, we use the neighborhood matrix
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W, which is a binary n× n matrix, with elements wji:

wji =

{
1, if j ∼ i ,

0, otherwise ,

where j ∼ i represents contiguous areas, and therefore j and i are considered

neighbors. Other adjacency-based weights are available but are much less widely

applied ([37]). If two areas are neighbors we believe their random effects are

correlated, while non-neighboring areas are modeled as being conditionally inde-

pendent given the remaining elements of φ.

4.1. BYM model

The BYM model combines the intrinsic CAR (ICAR) with an additional

set of independent random effects.

The full conditional distributions of ICAR, as proposed by [3] are given by

(4.2) ui|u−i, σ
2 ∼ N


 1

ni

∑

j∼i

uj ,
σ2

ni


 .

The conditional expectation of ui is equal to the mean of the random effects

in neighborhood areas, while the conditional variance is inversely proportional to

the number of neighbors ni. The variance parameter σ2 controls the amount of

variation between the random effects. The ICAR model has three main draw-

backs:

1) Its simplicity turns it into a very restrictive prior. Its single parameter

does not determine the strength of the spatial correlation (for example

multiplying each ui by 10, will only increase σ2 leaving the spatial

correlation unchanged). If data are weakly correlated, the ICAR is not

the most appropriate model ([16]).

2) The joint distribution for f(u) corresponding to (4.2) is improper (it

does not determine a legitimate probability distribution, one that inte-

grates to 1). Nevertheless, this is easily solved by enforcing a constrain

such as,
∑n

j=1
uj = 0, which can be numerically imposed by recenter-

ing each sampled u vector around its own mean following each Gibbs

iteration ([2]).

3) According to [24] the ICAR has an undesirable global (i.e. large-scale)

property of tending to a negative pair-wise risk dependence as the ‘spa-

tial proximity’ of the two regions is further apart.
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The BYM model defines φ in (4.1) by

(4.3) φi = θi + ψi ,

θi|σ
2
θ ∼ N(0, σ2

θ) ,

ψ = (ψ1, ..., ψn)|W , σ2
ψ ∼ ICAR(W, σ2

ψ) ,

where W is defined in Section 4). More details on the BYM model are provided

by [21] and [3].

The set of random effects θ = (θ1, ..., θn) is independent between areas.

Different strengths of spatial correlation can be represented by varying the relative

sizes of the two components (θ,ψ). In practice, it will often be the case that either

θ or ψ dominates the other depending upon the strength of the spatial structure

and the relative sizes of σ2
θ and the σ2

ψ. This flexibility is also a disadvantage, as

each data point is represented by two random effects while only their sum (θi+ψi)

is identifiable. In order to attain model identification and achieve convergence

when MCMC is used, at least one considerably informative hyper prior has to

be assumed either for σ2
θ or σ2

ψ. Several authors have studied this aspect ([37,

2]), and ([24]) implemented a model that can ‘attain model identifiability, allow

the data to inform risk decomposition, and facilitate principled attribution of

the relative risk variability to spatially varying clustering effects and randomly

varying heterogeneity effects based on the given data’ (page 66), hereafter called

Modified BYM (MBYM). This model replaces (4.3) by

(4.4) φ =
√
λψ +

√
1 − λθ , ψ ⊥ θ, λ ∈ (0, 1) .

One interpretation of the above is that it represents a re-parameterized BYM prior

with σ2
ψ = λσ2 and σ2

θ = (1−λ)σ2. The new prior interpolates between the ICAR

prior and the Gaussian prior for θ. λ serves as a spatial smoothing parameter

and determines the proportion of the spatially structured risk variability over the

total risk variability.

4.2. LLB model

The LLB model is based on a single set of random effects φ = (φ1, ..., φn),

represented by a multivariate Gaussian distribution

(4.5) φ|W, σ2, ρ,µ ∼ N(µ, σ2[ρW∗ + (1 − ρ)In]
−1) .

The prior above has a constant non-zero mean µ = (µ, ..., µ), avoiding the

use of the intercept term in (4.1). In the matrix, σ2[ρW∗ + (1− ρ)In]
−1, In is an
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n× n identity matrix and the elements of W∗ are equal to

w∗

ji =





ni, if j = i ,

−1, if j ∼ i ,

0, otherwise .

The precision matrix is a weighted average of the spatially dependent cor-

relation structures, represented by the matrix W∗, the independent correlation

structures, represented by the identity matrix, and the weight represented by

the parameter ρ. When ρ = 0 the model becomes a simple independent random

effects model and when ρ = 1 the model becomes the ICAR as in (4.1). When

0 6 ρ < 1 the joint distribution (4.5) is proper. The full conditional distributions

corresponding to (4.5) are given by

(4.6) φi|φ−i,W, σ2, ρ, µ ∼ N

(
ρ

∑
j∼i φj + (1 − ρ)µ

niρ+ 1 − ρ
,

σ2

niρ+ 1 − ρ

)
.

The conditional expectation is the weighted average of the random effects

in the neighboring areas and the overall mean µ. The conditional variance, in

the presence of strong spatial correlation is approximately σ2/ni, the same as the

ICAR, but if the random effects are independent then it is a constant (σ2).

4.3. Localized conditional autoregressive model

All three models defined above use CAR priors that are globally smooth.

The random effects are forced to exhibit a single global level of spatial smoothness

determined only by geographical adjacency. With real data such a uniform level

of smoothness for the entire region is unrealistic. It is more realistic to think

that sub-areas of spatial autocorrelation co-exist with areas of discontinuity. As

an example, areas of wealth and poverty, sharing boundaries, are very common

in the biggest cities of the world, showing different patterns in the disease risk.

A possible solution to this problem is presented by [21], and is called Bayesian

localized conditional autoregressive model, LCAR from now on. This model

was initially applied to a ESR, but as explained in Subsection 3.2 the same

methodology can be applied in the DM field.

The LCAR treats the elements in the neighborhood matrix, representing

contiguous areas, as a set of binary random quantities and not as fixed values.

The elements of this new neighborhood matrix, W̃ , continue to be set to zero

for non adjacent areas but adjacency is no longer the only reason for those ele-

ments to be set to one. When all adjacencies are kept, the model simplifies to the

ICAR, while if all adjacencies are removed the random effects are independent.
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The model defines φ in (4.2) as φ̃ = (φ, φ⊛) where φ⊛ is a global random effect

that is potentially common to all areas and prevents any unit from having no in-

formation to ‘borrow strength’ from. Based on the extended matrix, the proposal

is to model φ̃ as φ̃ ∼ N(0, σ2Q(W̃, ǫ)−1), with the precision matrix given by

(4.7) Q(W̃ , ǫ) = diag(W̃ I) − W̃ + ǫI ,

The component diag(W̃ I) − W̃ corresponds to the ICAR model applied

to the extended random effects vector φ̃ and the component ǫ ensures that the

matrix is diagonally invertible. This restriction is now needed because Q ˜(W ) is

no longer fixed. The parameter ǫ is recommended to be set as ǫ = 0.001. The full

conditional distributions corresponding to the LCAR model are given by

(4.8) φj |φ−j ∼ N

(∑n
i=1

wijφi + wi⊛φ⊛∑n
i=1

wij + wi⊛ + ǫ
,

σ2

∑n
i=1

wij + wi⊛ + ǫ

)
, j = 1, ..., n ,

φ⊛|φ−⊛ ∼ N

( ∑n
i=1

wi⊛φ⊛∑n
i=1

wi⊛ + ǫ
,

σ2

∑n
i=1

wi⊛ + ǫ

)
.

In (4.8) the conditional expectation is a weighted average of the global

random effect φ⊛ and the random effects in the neighboring areas, with the

binary weights depending on the current value of W̃. The conditional variance

is approximately (due to ǫ) inversely proportional to the number of neighbors

remaining in the model, including the global random effect φ⊛.

The matrix W̃ is treated by the LCAR model as a single random quantity,

which avoids several problems identified by other authors (for more details see

[21], Subsection 3.2). The authors propose eliciting the set of candidate values

of W̃ from data having a similar spatial structure as the response variable.

The increased flexibility provided by the LCAR model inevitably means

that it is more computationally demanding than the common BYM model.

5. ALCOHOL ABUSE DISORDER DISTRIBUTION ACROSS

PORTUGAL

The number of lifetime AAD cases vary between 2679 (16A – Cova da

Beira) and 136789 (171 – Grande Lisboa). There are four NUTS 3 (164 – Pinhal

Interior Norte, 166 – Pinhal Interior Sul, 169 – Beira Interior Sul and 181 –

Alentejo Litoral) where no cases were identified. The national nature of the

survey sampling design creates situations where very small or even zero samples

at the NUTS 3 level occur. In this situation it might happen that no cases are

estimated, which does not mean that no disease diagnoses exist. Therefore, these
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areas are treated as having missing values and not as having a null number of

cases. The first level of the Bayesian hierarchical model, as seen in (4.1), involves

complex calculations, very difficult to run on such numbers, therefore numbers of

cases per 100 inhabitants, as well as expected number of cases per 100 inhabitants

are used (this change does not eliminate the need of using the expected number of

cases because only the size of the population is accounted for, not the structure).

The R software (version 3.1.1), with the package CARBayes ([17]) is used

to fit the hierarchical models. The main advantages of this package are: (1) the

spatial adjacency information is easy to specify as a binary neighborhood matrix;

(2) given the neighborhood matrix the models can be implemented by a single

function call in R; (3) maps with the disease risk estimates can easily be produced.

The package has predefined the following models that will be used: BYM, LLB

and LCAR. By running the same model on R and on the BUGS software ([23]) the

package’s author shows that there is good agreement between the two sets of point

estimates, as we confirm in the present work. One disadvantage of the package is

that it cannot handle missing values at the response variable level. To overcome

this, a Generalized Linear model (GLM), Poisson (quasi-likelihood) model ([26]),

is fitted using as response variable the number of lifetime observed cases per NUTS

3 and as covariates the ecological variables defined before, namely the proportion

of men and the proportion of population aged 18 to 34. The mean estimated

number of lifetime observed cases achieved for the four areas with missing data are

incorporated in the response variable vector Y. This methodology is debatable

and more work needs to be done, in order to evaluate all possible consequences

of this approach.

The MBYM model is fitted using the OpenBUGS software ([23]). Even

though the Bayesian methodology could handle the missing values, for comparison

purposes the missing values are also replaced by the mean estimated values.

As mentioned in Subsection 4.3, the authors of LCAR propose that, for the

elicitation of W̃ , data having a similar spatial structure as the response variable

should be used. In their case, the prior elicitation was based on response vari-

able data from previous years. Our decision was to use the number of cases of

four other related mental disorders, chosen as follows. Disorders considered in

the Portuguese version of the WMHSI include a comprehensive range of mental

disorders, and a GLM is fitted (Binomial model) to understand which mental dis-

orders are most commonly present with AAD. The response variable is two-level

categorical, taking value one if the individual suffers from AAD and taking value

zero otherwise, and the covariates are of the same type, for all other disorders.

At a lower than 5% significance level, the following disorders have an Odds Ratio

larger than one: Alcohol Dependence, Oppositional Defiant Disorder, Hypoma-

nia, and Intermittent Explosive Disorder. In the cases where values are missing

the procedure followed is the one defined before, using as covariates the remaining

disorders. For example, for alcohol dependence disorder as response variable, the
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covariates are: alcohol abuse disorder, oppositional defiant disorder, hypomania

and intermittent explosive disorder. The mean estimated number of cases are

imputed in the response variable vectors. There are two reasons to use a different

approach in the present case. First, in Portugal, data on ADD from previous

surveys is not available. Second, this work is on DM and not on ESR, therefore

the decision is to use data from related mental disorders.

5.1. Hyperpriors

Table 1 shows the prior distributions implemented in the four models. In

the LCAR model, on top of the already mentioned information for the W̃ matrix,

the parameter ǫ is set to 0.001.

Table 1: Prior distributions for the models.

Model Parameter Prior Distribution Mean/Shape Variance/Scale

BYM β = (β1, β2) Gaussian 0 1000
µ Gaussian 0 1000

σ2

θ and σ2

ψ Inverse-Gamma 0.001 0.001

MBYM β = (β1, β2) Gaussian 0 100000
µ Flat - -
σ2 Inverse-Gamma 0.001 0.001
λ Uniform [0,1) 0.5 0.5

LLB β = (β1, β2) Gaussian 0 1000
σ2 Inverse-Gamma 0.001 0.001
ρ Uniform [0,1) 0.5 0.5

LCAR β = (β1, β2) Gaussian 0 1000
σ2 Uniform [0,1000) 500 500

5.2. Inference

Posterior inference for all models is based on Markov Chain Monte-Carlo

simulation, using a combination of Gibbs sampling and Metropolis-Hastings algo-

rithms. Posterior inference is based on 8000 MCMC samples, which are obtained

by running one chain for 100000 samples, by which convergence is assumed to

have occurred. We ignore the first 20000 samples as burn-in, and use the re-

maining 80000 subsequent samples to obtain the posterior distributions of the

parameters of interest (a thin of 10 is used to reduce the autocorrelation).
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Pilot runs are carried out to establish appropriate burn-in using the Geweke’s

diagnostic ([9]). Convergence is assessed by visually monitoring the trace and the

posterior density plot for each of the parameters.

5.3. Results

Each model is assessed by the resulting Deviance Information Criterion

(DIC) ([32]), where a smaller value represents a better fitting model. Table 2

shows the results of the four models.

Table 2: DIC results, which include the effective number of parameters
in the model (p.D.).

BYM MBYM LLB LCAR

DIC 155.3 145.0 159.2 158.0
p.D. 14.3 5.8 18.5 19.5

Table 2 shows that, according to DIC, the MBYM model exhibits the best

fit. BYM model is the second best. Following [24], λ = 1 represents spatial/local

smoothing and λ = 0 represents non-spatial/local smoothing, based on the disease

mapping data at hand. In the MBYM the posterior mean value of λ = 0.58,

shows that the data has an higher spatially structured variance than unstructured

variance. As already proved by [16], the BYM model shows more robust results

in the presence of strong spatial correlation structures, as it seems to be the case

here.

Figure 2 shows the posterior median SMR values for the 28 NUTS 3, pro-

duced by the MBYM model. Table 3 shows summary measures of the marginal

posterior of the parameters of interest obtained by the MBYM model.

Figure 3 displays histograms of the (a) raw SMR and the (b to d) smooth

posterior median SMR values for the 28 NUTS 3, produced by the models. The

concentration around the interval [0.5, 1.5] on the latter can clearly be seen. Map-

ping the raw SMRs gives a misleading picture of the risk pattern, whereas any of

the four models (plus LLB, which is not presented, but shows the same overall

results) give posterior median relative risks less dispersed. This ability of the

Bayesian models to “clean” adequately the SMRs from the false patterns created

by the Poisson noise had been already referred by [30].
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Figure 2: MBYM AAD posterior median SMRs per NUTS 3.

Table 3: MBYM model parameters summary.

Para- Prior Prior Prior MCMC 2.5% Me- 97.5%

meter distribution mean std Posterior dian

mean (std)

β0 Flat 0 −0.11 (0.10) −0.32 −0.11 0.08
β1 N(0, 100000) 0 100000 −0.23 (0.14) −0.52 −0.22 0.06
β2 N(0, 100000) 0 100000 −0.8 (0.13) −0.34 −0.07 0.18
λ U[0,1) 0.5 0.5 0.58 (0.25) 0.07 0.61 0.97
σ2 IG(0.001, 0.001) 1 10 0.61 (0.17) 0.35 0.59 1

The LCAR model is the only one that does not have a single global level of

smoothness and therefore any existing discontinuities in the risk pattern can only

be concluded from this model. There are 122 neighborhoods (or connections)

between the 28 NUTS 3. When applying the LCAR model, the 95% credibility

interval of the number of removed connections is [2, 54]. This fact provides evi-

dence that there is information in the data to estimate the number of connections

to be removed. Results confirm the known deep cultural roots in the country on

the differences between the coast- and the country-side NUTS 3. This is the

case of Peńınsula de Setúbal and Algarve, two coast-side NUTS 3 sharing physi-
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Figure 3: Histograms of the (a) raw SMRs and posterior medians of the
(b,c,d) SMRs, for all areas derived by each of the three models,
(b) BYM, (c) MBYM and (d) LCAR.

cal borders with the country-side NUTS 3 Alentejo, which are no longer present

when data is used to estimate connections.

As mentioned in Subsection 3.2 the goal of DM is not the estimation of as-

sociations between covariates and the disease cases, but is to estimate the pattern

of disease risk over a geographical region. Nevertheless, due to the fact that the

two coefficients (β1 and β2) did not show to be significantly different from zero

(contrary to expectations mentioned in Section 2), one must remember that this

is an ecological study design, and the results must not be interpreted in terms of

individual level cause and effect. One possible explanation is ecological bias as

the prevalence rate of AAD is higher in younger men. Another possible explana-

tion is that both the random and the covariate effects are confounded, because

both are globally smooth in the MBYM model.

6. DISCUSSION

In the past years hierarchical Bayesian models have been developed and

refined to achieve statistically precise local estimates of disease risk for each small

region. In this study four of those models are assessed and used to estimate the

disease risk of AAD at the NUTS 3 level, in Portugal.
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In terms of DIC, the MBYM model achieves the best results. The MBYM

model derives from the BYM model in an attempt to overcome the known de-

ficiency of the latter, the lack of identifiability. The MBYM is identifiable and

facilitates hierarchical modeling of the additive effects of unobserved covariates

that might be spatially and randomly varying ([24]). In the present case its su-

perior performance is likely to result from the BYM (and MBYM) model ability

of achieving the best results in cases when the spatial correlation structure is

strong, as seems to be this case.

The LLB model has consistently shown good results across a variety of cases

but in this study, in terms of DIC, it proves to be the most poorly performing.

While other authors show that the LLB model is the one achieving the best

results ([16, 24]), our study shows otherwise. The performance of each model

will depend on the type of data at hand, and none can be defined as the ‘gold

standard’ over others.

The LCAR model is the only model that does not take the neighborhoods

as fixed but those emerge from real data, as a random quantity. By doing that,

in this example, the known cultural differences (between country- and coast-side)

in the country are confirmed.

This study has some particularities when compared with the majority of

the published applications:

a) The data use emerged from a survey, which was not plan to have local

(at NUTS 3 level) samples with the proper size to allow designed-based

estimation, and therefore presents some missing values. To overcome

this a frequentist model is used.

b) The complex computations of the first level of the hierarchical Bayesian

models do not allow the direct use of the survey estimates. To overcome

this the number of lifetime cases of AAD per 100 inhabitants is used.

c) The LCAR model is used as a DM and not as a ESR, and therefore the

type of data used for the elicitation of the W̃ matrix is not previous

periods data for the same disease but data from correlated disorders.

The epidemiological study presented in this paper shows substantial evi-

dence of some ‘hot spots’ in the Center and South of the country allowing the

authorities to focus interventions on these ‘excess risk’ areas.

There are still many opportunities for future work in this area. First the

global ICAR’s property of tending to negative pair-wise risk dependence as the

‘spatial proximity’ between two regions is further apart and its potential impact

on posterior inference has not been yet sufficiently explored and understood.
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Second [7] showed that region effects can be greater (smaller) for specific age

groups. We know that AAD is more prevalent in young adult men ([13, 27]).

Further research on the region effects on this age-gender group is needed. Third

the four models used in this work were GLMM (Generalized linear mixed models),

but the linear assumption on the covariate effects might be too restrictive, the

usage of a GAMM (generalized additive mixed model) should be explored as it

can eventually reveal non-linear relationships.
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de-Almeida, J. (2013). Implementing the World Mental Health Survey Initiative
in Portugal - rationale, design and fieldwork procedures, International Journal of

Mental Health Systems, 7, 1, 19.





REVSTAT – STATISTICAL JOURNAL

Background

Statistical Institute of Portugal (INE, I.P.), well aware of how vital a statis-
tical culture is in understanding most phenomena in the present-day world, and
of its responsibility in disseminating statistical knowledge, started the publication
of the scientific statistical journal Revista de Estat́ıstica, in Portuguese, publish-
ing three times a year papers containing original research results, and application
studies, namely in the economic, social and demographic fields.

In 1998 it was decided to publish papers also in English. This step has
been taken to achieve a larger diffusion, and to encourage foreign contributors to
submit their work.

At the time, the Editorial Board was mainly composed by Portuguese uni-
versity professors, being now composed by national and international university
professors, and this has been the first step aimed at changing the character of
Revista de Estat́ıstica from a national to an international scientific journal.

In 2001, the Revista de Estat́ıstica published three volumes special issue
containing extended abstracts of the invited contributed papers presented at the
23rd European Meeting of Statisticians.

The name of the Journal has been changed to REVSTAT – STATISTICAL
JOURNAL, published in English, with a prestigious international editorial board,
hoping to become one more place where scientists may feel proud of publishing
their research results.

— The editorial policy will focus on publishing research articles at the highest
level in the domains of Probability and Statistics with emphasis on the
originality and importance of the research.

— All research articles will be refereed by at least two persons, one from the
Editorial Board and another, external.

— The only working language allowed will be English.

— Three volumes are scheduled for publication, one in April, one in June and
the other in November.

— On average, four articles will be published per issue.



Aims and Scope

The aim of REVSTAT is to publish articles of high scientific content,
in English, developing innovative statistical scientific methods and introducing
original research, grounded in substantive problems.

REVSTAT covers all branches of Probability and Statistics. Surveys of
important areas of research in the field are also welcome.

Abstract/indexed in

REVSTAT is expected to be abstracted/indexed at least in Current

Index to Statistics, Statistical Theory and Method Abstracts and Zentralblatt für

Mathematik.

Instructions to Authors, special-issue editors and publishers

Papers may be submitted in two different ways:

— By sending a paper copy to the Executive Editor and one copy to one of
the two Editors or Associate Editors whose opinion the author(s) would
like to be taken into account, together with a postscript or a PDF file of
the paper to the e-mail: revstat@fc.ul.pt.

— By sending a paper copy to the Executive Editor, together with a postscript
or a PDF file of the paper to the e-mail: revstat@fc.ul.pt.

Submission of a paper means that it contains original work that has not
been nor is about to be published elsewhere in any form.

Submitted manuscripts (text, tables and figures) should be typed only
in black, on one side, in double spacing, with a left margin of at least 3 cm and
not have more than 30 pages.

The first page should include the name, affiliation and address of the au-
thor(s) and a short abstract with the maximum of 100 words, followed by the key
words up to the limit of 6, and the AMS 2000 subject classification.

Authors are obliged to write the final version of accepted papers using
LaTeX, in the REVSTAT style.

This style (REVSTAT.sty), and examples file (REVSTAT.tex), which may
be download to PC Windows System (Zip format), Mackintosh, Linux and So-

laris Systems (StuffIt format), and Mackintosh System (BinHex Format), are
available in the REVSTAT link of the National Statistical Institute’s Website:
http://www.ine.pt/revstat/inicio.html

Additional information for the authors may be obtained in the above link.



Accepted papers

Authors of accepted papers are requested to provide the LaTeX files and
also a postscript (PS) or an acrobat (PDF) file of the paper to the Secretary of
REVSTAT: liliana.martins@ine.pt.

Such e-mail message should include the author(s)’s name, mentioning that
it has been accepted by REVSTAT.

The authors should also mention if encapsulated postscript figure files were
included, and submit electronics figures separately in .tiff, .gif, .eps or .ps format.
Figures must be a minimum of 300 dpi.

Also send always the final paper version to:

Maria José Carrilho
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