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and Michelli Barros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

The k Nearest Neighbors Estimation of the Conditional Hazard

Function for Functional Data

Mohammed Kadi Attouch and Fatima Zohra Belabed . . . . . . . . . . . . . . . . 273

PORT-Estimation of a Shape Second-Order Parameter
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Abstract:

• In Kamps [7] generalized order statistics (gos) have been introduced as a unifying

theme for several models of ascendingly ordered random variables (rv’s). The main

aim of this paper is to study the limit joint distribution function (df) of any two

statistics in a wide subclass of the gos model known as m-gos. This subclass contains

many important practical models of gos such as ordinary order statistics (oos), order

statistics with non-integer sample size, and sequential order statistics (sos). The

limit df’s of lower-lower extreme, upper-upper extreme, lower-upper extreme, central-

central and lower-lower intermediate m-gos are obtained. It is revealed that the

convergence of the marginals m-gos implies the convergence of the joint df. Moreover,

the conditions, under which the asymptotic independence between the two marginals

occurs, are derived.

Key-Words:

• generalized order statistics; generalized extreme order statistics; generalized central

order statistics; generalized intermediate order statistics.
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1. INTRODUCTION

Generalized order statistics have been introduced as a unified distribu-

tion theoretical set-up which contains a variety of models of ordered rv’s. Since

Kamps [7] had introduced the concept of gos as a unification of several models of

ascendingly ordered rv’s, the use of such concept has been steadily growing along

the years. This is due to the fact that such concept includes important well-known

concepts that have been separately treated in statistical literature. Theoretically,

many of the models of ordered rv’s contained in the gos model, such as oos, or-

der statistics with non-integral sample size, sos, record values, Pfeifer’s record

model and progressive type II censored order statistics (pos). These models can

be applied in reliability theory. For instance, the sos model is an extension of

the oos model and serves as a model describing certain dependencies or interac-

tions among the system components caused by failures of components and the

pos model is an important method of obtaining data in lifetime tests. Live units

removed early on can be readily used in other tests, thereby saving cost to the

experimenter. The concept of gos enables a common approach to structural simi-

larities and analogies. Known results in submodels can be subsumed, generalized,

and integrated within a general framework. Kamps [7] defined gos by first defin-

ing what he called uniform gos and then using the quantile transformation to

obtain the general gos X(r, n, m̃, k), r = 1, 2, ..., n, based on a df F , which are

defined by their probability density function (pdf)

f
(m̃,k)
1,2,...,n:n(x1, x2, ..., xn) =

=





n
∏

j=1

γj









n−1
∏

j=1

(

1−F (xj)
)γj−γj+1−1

f(xj)





(

1−F (xn)
)γn−1

f(xn) ,

where F
−1

(0) ≤ x1 ≤ ... ≤ xn ≤ F−1
(1), γn = k > 0, γr = k + n− r +

∑n−1
j=r mj ,

r = 1, 2, ..., n− 1, and m̃ = (m1, m2, ...,mn−1) ∈ R
n−1

. Particular choices of the

parameters γ1,γ2, ...,γn lead to differentmodels, e.g., m-gos (γr= k+(n−r)(m+1),

r = 1, 2, ..., n− 1), oos (k = 1, γr = n− r + 1, r = 1, 2, ..., n− 1) and sos (k = αn,

γr = (n− r + 1)αr, r = 1, 2, ..., n− 1)
1
.

Nasri-Roudsari [10] (see also Barakat [2]) has derived the marginal df of

the rth m-gos, m 6= −1, in the form Φ
(m,k)
r:n (x) = IGm(x)(r,N − r + 1), where

Gm(x) = 1− (1− F (x))
m+1

= 1− F̄m+1
(x), Ix(a, b) =

1
β(a,b)

∫ x
o t

a−1
(1− t)b−1

dt

denotes the incomplete beta ratio function and N =
k

m+1 + n− 1. By using the

well-known relation Ix(a, b) = 1−Ix̄x(b, a), where x̄ = 1−x, the marginal df of the

(n− r+ 1)th m-gos, m 6= −1, is given by Φ
(m,k)
n−r+1:n(x) = IGm(x)(N −Rr + 1, Rr),

where Rr =
k

m+1 + r − 1. Moreover, by using the results of Kamps [7], we can

write explicitly the joint pdf of the rth and sth m-gos m 6= −1, 1 ≤ r < s ≤ n,

1See, for instance, Kamps ([7]).
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as:

f
(m,k)
r,s:n (x, y) =

Cs−1,n

Γ(r) Γ(s− r) F̄
m

(x) g
r−1
m (F (x))

×
(

gm(F (y))− gm(F (x))
)s−r−1

F̄
γs−1

(y) f(x) f(y) ,(1.1)

−∞ < x < y <∞ ,

where Cs−1,n =
∏s
j=1 γj . In the present paper we develop the limit theory for

gos, by revealing the asymptotic dependence structural between the members

of gos, with fixed and variable ranks. Namely, the limit joint df of the m-gos

X(r, n,m, k) and X(s, n,m, k), when m 6= −1, is derived in the following three

cases:

(1) Lower extremes, where r, s are fixed w.r.t. n and upper extremes,

where r̀ = n− r + 1, s̀ = n− s+ 1, where r, s are fixed w.r.t. n.

(2) Central case, where r, s→∞ and
r
N → λ1,

s
N → λ2, where 0 < λ1 <

λ2 < 1, asN →∞ (or equivalently, as n→∞). A remarkable example

of the central oos the pth sample quantile, where rn = [np], 0 < p < 1,

and [x] denotes the largest integer not exceeding x.

(3) Intermediate case, where r, s→∞ and
r
N ,

s
N → 0, as N →∞ (or

equivalently, as n→∞). The intermediate oos have many appli-

cations, e.g., in the theory of statistics, they can be used to esti-

mate probabilities of future extreme observations and to estimate

tail quantiles of the underlying distribution that are extreme relative

to the available sample size, see Pickands [12]. Many authors, e.g.,

Teugels [14] and Mason [9] have also found estimates that are based,

in part, on intermediate order statistics.

Everywhere in what follows the symbols (−→n ) and (
w−→n ) stand for con-

vergence, as n→∞ and the weak convergence, as n→∞.

2. THE JOINT df OF EXTREME m-gos

The following two lemmas, which are originally derived by Nasri-Roudsari

[10] and Nasri-Roudsari and Cramer [11] (see also Barakat [2]), extend the well-

known results concerning the asymptotic theory of extreme oos to the extreme

m-gos. These lemmas can be easily proved by applying the following asymptotic

relations, due to Smirnov [13]:

Γr(nAn)− δ1n ≤ IAn(r, n− r + 1) ≤ Γr(nAn)− δ2n ,

if nAn ∼ A <∞, as n→∞, and

1− Γr(nĀn)− δ2n ≤ IAn(n− r + 1, r) ≤ 1− Γr(nĀn)− δ1n ,
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if nĀn ∼ Ā <∞, as n→∞, where Γr(x) =
1

Γ(r)

∫ x
0 t

r−1
e
−t
dt is the incomplete

gamma function (Gamma df with parameter r), δin > 0, δin−→n 0, i = 1, 2, and

0 < An < 1.

Lemma 2.1. Let m > −1 and r ∈ {1, 2, ..., n}. Then, there exist normal-

izing constants cn > 0 and dn, for which

(2.1) Φ
(m,k)
r:n (cnx+ dn) = IGm(cnx+dn)(r,N − r + 1)

w−→n Φ
(m,k)
r (x) ,

where Φ
(m,k)
r (x) is nondegenerate df if, and only if, there exist normalizing con-

stants αn > 0 and βn, for which Φ
(0,1)
r:n (αnx+ βn)

w−→n Γr(Vj,β(x)), β > 0. In this

case Φ
(m,k)
r (x) = Γr(Vj,β(x)), j ∈ {1, 2, 3}, where V1(x) = V1;β(x) = e

x, ∀ x;

V2;β(x) =

{

(−x)−β , x ≤ 0 ,

∞, x > 0 ;
V3;β(x) =

{

0, x ≤ 0 ,

x
β
, x > 0 .

Moreover, cn and dn may be chosen such that cn = αψ(n) and dn = βψ(n), where

ψ(n) = n(m+ 1). Finally, (2.1) holds if, and only if, NGm(cnx+ dn)−→n Vj,β(x)
(note that N ∼ n, as n→∞).

Lemma 2.2. Let m > −1 and r ∈ {1, 2, ..., n}. Then, there exist normal-

izing constants an > 0 and bn, for which

(2.2) Φ
(m,k)
n−r+1:n(anx+ bn) = IGm(anx+bn)(N −Rr + 1, Rr)

w−→n Φ̂
(m,k)
r (x) ,

where Φ̂
(m,k)
r (x) is nondegenerate df if, and only if, there exist normalizing con-

stants α̂n > 0 and β̂n, for which Φ
(0,1)
n−r+1:n(α̂nx+ β̂n)

w−→n 1− Γr(Ui,α(x)), α > 0.

In this case Φ̂
(m,k)
r (x) = 1−ΓRr(Um+1

i,α (x)), i ∈ {1, 2, 3}, where U1(x) = U1;α(x) =

e
−x
, ∀ x;

U2;α(x) =

{

∞, x ≤ 0 ,

x
−α
, x > 0 ;

U3;α(x) =

{

(−x)α, x ≤ 0 ,

0, x > 0 .

Moreover, an and bn may be chosen such that an = α̂φ(n) and bn = β̂φ(n), where

φ(n) = n
1

m+1 . Finally, (2.2) holds if, and only if, NḠm(anx+ bn)−→n Um+1
i,α (x).

We need the following three lemmas proved in the Appendix and individu-

ally express interesting and practically useful facts. These lemmas provide us with

the asymptotic lower and upper bounds for the joint df’s of extreme gos. There-

fore, they can be applied to estimate the error committed by the replacement of

the exact joint df’s of extreme gos by their limiting (see Remark 2.1). Through-

out Lemma 2.3, we assume that 1 ≤ r < s ≤ n, while we assume 1 ≤ s < r ≤ n
and 1 ≤ r, s ≤ n, s̀ = n− s+ 1 in Lemma 2.4 and Lemma 2.5, respectively.
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Lemma 2.3. Let cn > 0 and dn be suitable normalizing constants, for

which the limit relations Φ
(m,k)
r:n (xn)

w−→n Γr(Vj,β(x)) and Φ
(m,k)
s:n (yn)

w−→n Γs(Vj,β(y)),
j ∈ {1, 2, 3}, hold, where xn = cnx+ dn and yn = cny+ dn. Then the normalized

joint df Φ
(m,k)
r,s:n (xn, yn) of the rth and sth m-gos, m 6= −1, satisfies the relations

(1− σN )

(r − 1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

u
r−1

e
−u
du ≤

≤ Φ
(m,k)
r,s:n (xn, yn)(2.3)

≤ (1 + ρN )

(r − 1)!

∫ NGm(xn)

0
Γs−r(NGm(yn)− u)ur−1

e
−u
du , ∀x ≤ y ,

where ρN , σN −→n 0.

Lemma 2.4. Let an > 0 and bn be suitable normalizing constants, for

which the limit relations Φ
(m,k)
r̀:n (xn)

w−→n 1−ΓRr(Um+1
i,α (x)) and Φ

(m,k)
s̀:n (yn)

w−→n 1−
ΓRs(Um+1

i,α (y)), i ∈ {1, 2, 3}, hold, where xn = anx+ bn, yn = any + bn and r̀ =

n− r + 1 < n− s+ 1 = s̀. Then the joint df of the r̀th and s̀th m-gos, m 6= −1,

satisfies the relation

C̀n

(N +Rs)
Rr

∫ (N+Rs)

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

e
−φ
θ
Rs−1 ×

×
(

1 +
θ

N +Rs

)−Rr

(φ− θ)Rr−Rs−1
dθ dφ ≤(2.4)

≤ Φ
(m,k)
r̀,s̀:n (xn, yn)

≤ 1− ΓRr

(

NḠm(xn)
)

− 1

Γ(Rr)

∫ N

NḠm(xn)
INḠm(yn)

t

(Rs, Rr−Rs) tRr−1
e
−t
dt ,

where C̀n =
Γ(N+1)

Γ(N−Rr+1) Γ(Rr−Rs) Γ(Rs)
.

Lemma 2.5. Let an, cn > 0 and bn, dn be suitable normalizing constants,

for which the limit relations Φ
(m,k)
r:n (xn)

w−→n Φ
(m,k)
r (x) = Γr(Vj,β(x)), j ∈ {1, 2, 3},

and Φ
(m,k)
s̀:n (yn)

w−→n Φ̂
(m,k)
s (y) = 1−ΓRs(Um+1

i,α (y)), i ∈ {1, 2, 3}, hold, where xn=

cnx+ dn and yn = any + bn. Then, for all large n and for all x and y, for which

Vj,β(x) <∞, i.e., Φ
(m,k)
r (x) < 1 and Ui,α(y) <∞, i.e., Φ̂

(m,k)
s (y) > 0, respectively,

the joint df of the rth and s̀th m-gos, m 6= −1, satisfies the relation

Φ
(m,k)
r:n (xn)Φ

(m,k)
s̀:n (yn) ≤ Φ

(m,k)
r,s̀:n (xn, yn)

(2.5) ≤ Γr

(

NGm(xn)
)

(

ΓRs(N)− ΓRs

(

NḠm(yn)
)

)

.

The first inequality of (2.5) holds for all x, y.
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Theorem 2.1. Under the conditions of Lemma 2.3, 2.4 and 2.5, we get

respectively

(2.6) Φ
(m,k)
r,s:n (xn, yn)

w−→n











Γs

(

Vj,β(y)
)

, x ≥ y ,
1

(r−1)!

∫ Vj,β(x)

0
Γs−r

(

Vj,β(y)− u
)

u
r−1

e
−u
du , x ≤ y ,

(2.7)

Φ
(m,k)
r̀,s̀:n (xn, yn)

w−→n























1− ΓRs

(

Um+1
i,α (y)

)

, x ≥ y ,

1− ΓRr

(

Um+1
i,α (x)

)

− 1

Γ(Rr)
×

×
∫∞
Um+1

i,α (x) IUm+1
i,α

(y)

t

(Rs, Rr−Rs) tRr−1
e
−t
dt , x ≤ y ,

and

(2.8) Φ
(m,k)
r,s̀:n (xn, yn)

w−→n Φ
(m,k)
r (x) Φ̂

(m,k)
s (y) = Γr

(

Vj,β(x)
)

[

1−ΓRs

(

Um+1
i,α (y)

)

]

.

Proof: By noting that Φ
(m,k)
r,s:n (xn,yn)=Φ

(m,k)
s:n (yn), if y≤x, the relation (2.6)

follows by applying Lemmas 2.1 and 2.3. In view of (2.2), (1.1) and the condition

of Lemma 2.4, the relation (2.7) follows in the case of y ≤ x. On the other hand,

since both of the lower and upper bounds of (2.4) are equivalent to (as n→∞)

1−ΓRr(NḠm(xn))− 1
Γ(Rr)

∫ N
NḠm(xn)INḠm(yn)

t

(Rs, Rr−Rs) tRr−1
e
−t
dt, then the re-

lation (2.7) in the case x ≤ y, follows by applying Lemmas 2.2 and 2.4. Finally,

by combining Lemmas 2.1, 2.2 and 2.5, the relation (2.8) follows immediately.

Remark 2.1. One of the referees of the paper suggests a dexterous short

proof of Theorem 2.1 based on the result of Cramer [5]. Namely, we get with

the notations of Cramer [5] for two lower gos Xt = X(t, n,m, k), t = r, s, r < s

(Zj are iid standard exponential rv’s; u(x) = − log(1−F (x)); and γj,n= k+(m+1)

(n−j))

P
(

Xr≤xn, Xs≤yn
)

= P

(

r
∑

j=1

Zj

γj,n
≤ u(xn) ,

s
∑

j=1

Zj

γj,n
≤ u(yn)

)

= P

(

Λr,n≤n(m+1)u(xn) , Λr,n+∆r,s,n≤n(m+1)u(yn)

)

,

where Λr,n = n(m+ 1)

r
∑

j=1

Zj

γj,n
converges to a Gamma distribution with param-

eter r and ∆r,s,n converges to a Gamma distribution with parameter s− r + 1.

Moreover, Λr,n and ∆r,s,n are independent for any n. Provided that F is in the

domain of attraction of a minimum-stable distribution we get that n(m+1)u(xn)

(n(m+ 1)u(yn)) converges appropriately to some function V(x) (V(y)). Hence,

the limit df is of the type P (Λr≤V(x), Λr+∆s−r+1≤V(y)), where Λr and ∆s−r+1
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are independent gamma distributed rv’s with parameters given above, respec-

tively. This proves the result in (2.6). Similar arguments can be used in proving

(2.7) and (2.8). Although, this short method directly results the limit joint df’s,

but our lengthy method provides more informative results (Lemmas 2.3–2.5),

which enable us to estimate the error committed by the replacement of the exact

joint df’s of extreme gos by their limiting. Actually, in view of the slow rate of

convergence of oos (and consequently the gos) (cf. Arnold et al. [1], Page 216),

Lemmas 2.3–2.5 are of a remarkable practically importance.

Example 2.1 (The limit df’s of the generalized range and midrange).

Under the conditions of Lemma 2.5 the left and the right extremem-gos, is asymp-

totically independent. Therefore, if there exist normalizing constants an, cn > 0

and bn, dn, for which an/cn −→n c > 0 and the limit relations Φ
(m,k)
r̀:n (anx+ bn)

w−→n
1−ΓRr(Um+1

i,α (x)), i∈{1, 2, 3}, and Φ
(m,k)
r:n (cnx+ dn)

w−→n Γr(Vj,β(x)), j∈{1, 2, 3},
hold, then in view of Lemma 2.9.1 in Galambos [6], the generalized quasi-ranges

R(r, n,m, k) = X(r̀, n,m, k)−X(r, n,m, k) and the generalized quasi-midranges

M(r, n,m, k) =
1
2

(

X(r̀, n,m, k) +X(r, n,m, k)
)

, r=1, 2, ..., satisfy the relations

P
(

R(r, n,m, k) ≤ anx+bn−dn
) w−→n

[

1− ΓRr(Um+1
i,α (x))

]

⋆
[

1− Γr(Vj,β(−cx))
]

and

P
(

2M(r, n,m, k) ≤ anx+bn+dn)
w−→n
[

1− ΓRr(Um+1
i,α (x))

]

⋆
[

Γr(Vj,β(cx))
]

,

respectively, where the symbol ⋆ denotes the convolution operation.

3. LIMIT df’s OF THE JOINT CENTRAL m-gos

Consider a variable rank sequence r = rn
−→n ∞ and

√
n
(

r
n − λ

)−→n 0,

where 0 < λ < 1. Smirnov [13] showed that if there exist normalizing constants

αn > 0 and βn such that

(3.1) Φ
(0,1)
r:n (αnx+ βn) = IF (αnx+βn)(r, n−r+1)

w−→n Φ
(0,1)

(x;λ) ,

where Φ
(0,1)

(x;λ) is some nondegenerate df, then Φ
(0,1)

(x;λ) must have one and

only one of the types N (Wi;β(x)), i = 1, 2, 3, 4, where N (·) denotes the standard

normal df,

W1;β(x) =

{

−∞ , x ≤ 0 ,

cx
β
, x > 0 ,

W2;β(x) =

{

−c |x|β , x ≤ 0 ,

∞ , x > 0 ,

W3;β(x) =

{

−c1|x|β , x ≤ 0 ,

c2x
β
, x > 0 ,

W4;β(x) = W4(x) =











−∞ , x ≤ −1 ,

0 , −1 < x ≤ 1 ,

∞ , x > 1 ,



Generalized Order Statistics 207

and β, c, c1, c2 > 0. In this case we say that F belongs to the λ-normal domain

of attraction of the limit df Φ
(0,1)

(x;λ), written F ∈ Dλ(Φ(0,1)
(x;λ)). Moreover,

(3.1) is satisfied with Φ
(0,1)

(x;λ) = N (Wi;β(x)), for some i ∈ {1, 2, 3, 4} if, and

only if,

√
n
F (αnx+ βn)− λ

Cλ

−→n Wi,β(x) ,

where Cλ =
√

λ(1− λ). It is worth to mention that the condition
√
n
(

r
n − λ

)

−→n 0 is necessary to have a unique limit law for any two ranks r, r
′
, for which

lim
n→∞

r
n = lim

n→∞
r′

n (see Smirnov [13]).

Barakat [2], in Theorem 2.2, characterized the possible limit laws of the

df Φ
(m,k)
n−r+1:n(x). The following corresponding lemma characterizes the possible

limit laws of the df Φ
(m,k)
r:n (x). The proof of this lemma follows by using the same

argument which is applied in the proof of Theorem 2.2 of Barakat [2].

Lemma 3.1. Let r = rn be such that
√
n
(

r
n−λ

)−→n 0, where 0 < λ < 1.

Furthermore, let m1 = m2 = ... = mn−1 = m > −1. Then, there exist normaliz-

ing constants an > 0 and bn for which

(3.2) Φ
(m,k)
r:n (anx+ bn)

w−→n Φ
(m,k)

(x;λ) ,

where Φ
(m,k)

(x;λ) is a nondegenerate df if, and only if,

√
n
Gm(anx+ bn)− λ

Cλ

−→n W (x) ,

where Φ
(m,k)

(x;λ)=N (W (x)). Moreover, (3.2) is satisfied for some nondegener-

ate df Φ
(m,k)

(x;λ) if, and only if, F ∈ Dλ(m)(N (Wi;β(x))), for some i ∈ {1, 2, 3, 4},
where λ(m) = 1− λ̄

1
m+1

and λ̄ = 1−λ. In this case we have W (x) =
C⋆

λ(m)

C⋆
λ

(m+1) ·
·Wi;β(x), where C⋆λ =

Cλ

λ̄
(note that, when m = 0, we get W (x) = Wi;β(x)).

We assume that in this section in all time that r = rn, s = sn −→n ∞ and√
n(

r
n − λ1),

√
n(

s
n − λ2)−→n 0, where 0 < λ1 < λ2 < 1. Moreover, we assume

that there are suitable normalizing constants an, cn > 0 and bn, dn, for which

Φ
(m,k)
r:n (anx+ bn)

w−→n Φ
(m,k)

(x;λ1) and Φ
(m,k)
s:n (cny + dn)

w−→n Φ
(m,k)

(y;λ2), where

Φ
(m,k)

(x;λ1) and Φ
(m,k)

(y;λ2) are nondegenerate df’s. Let Φ
(m,k)
r,s:n (x, y) be the

joint df’s of rth and sth m-gos, m 6= −1, in view of (1.1) we get Φ
(m,k)
r,s:n (x, y) =

Φ
(m,k)
s:n (y), y ≤ x, and

Φ
(m,k)
r,s:n (x, y) = C

⋆
n

∫ F (x)

0

∫ F (y)

ξ
ξ̄
m
η̄
γs−1

(

1− ξ̄m+1
)r−1

(3.3)

×
(

ξ̄
m+1 − η̄m+1

)s−r−1
dη dξ , x ≤ y ,

where C
⋆
n =

(m+1)2 Γ(N+1)
Γ(N−s+1) (r−1)! (s−r−1)! . The following lemma proved in the Appendix

is an essential tool in studying the limit df of the joint central m-gos.
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Lemma 3.2. Let λi =
i

N+1 , νi = 1− λi, τi =

√

λiνi

N+1 , i = r, s, 0 < Rrs =
√

λr(1−λs)
λs(1−λr) < 1, U

(1)
n (x) =

Gm(xn)−λr

τr
, U

(2)
n (y) =

Gm(yn)−λs

τs
, xn = anx+ bn and

yn = cny + dn. Then
∣

∣

∣

∣

∣

Φ
(m,k)
r,s:n (xn, yn)−

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

−→n 0

uniformly with respect to x and y, where Wr,s(ξ, η) =
1

2π
√

1−R2
rs

e
− (ξ2+η2−2ξηRrs)

2(1−R2
rs) .

Lemma 3.2 directly yields the following interesting theorem.

Theorem 3.1. The convergence of the two marginals Φ
(m,k)
r:n (xn) and

Φ
(m,k)
s:n (yn) to nondegenerate df’s Φ

(m,k)
(x;λ1) = N (W (x)) and Φ

(m,k)
(y;λ2) =

N (W̃ (y)), respectively, are necessary and sufficient condition for the convergence

of the joint df Φ
(m,k)
r,s:n (xn, yn) to the nondegenerate limit

Φ
(m,k)

(x, y;λ1, λ2) =
1

2π
√

1−R2

∫ W (x)

−∞

∫ W̃ (y)

−∞
e
− (ξ2+η2−2ξηR)

2(1−R2) dξ dη ,

where R =

√

λ1(1−λ2)
λ2(1−λ1) . Moreover, in view of Lemma 3.1, we deduce that the

convergence of the joint df Φ
(m,k)
r,s:n (xn, yn), as well as the convergence of the two

marginals Φ
(m,k)
r:n (xn) and Φ

(m,k)
s:n (yn), occurs if, and only if, with the same nor-

malizing constants, we have F ∈ Dλ1(m)(N (Wi;β)) and F ∈ Dλ2(m)(N (Wj;β′)), for

some i, j ∈ {1, 2, 3, 4}, where λt(m) = 1− λ̄
1

m+1

t and λ̄t = 1− λt, t = 1, 2. In this

case we have W (x) =
C⋆

λ1(m)

C⋆
λ1

(m+ 1)Wi;β(x) and W̃ (y) =
C⋆

λ2(m)

C⋆
λ2

(m+ 1)Wj;β′(y),

where C⋆λt
=

Cλt

λ̄
, t = 1, 2.

4. LIMIT df’s OF THE JOINT INTERMEDIATE m-gos

Chibisov [4] studied a wide class of intermediate oos, where r = rn =

ℓ
2
n
α
(1 + ◦(1)), 0 < α < 1, and he showed that if there are normalizing constants

αn > 0 and βn such that

(4.1) Φ
(0,1)
r:n (αnx+ βn) = IF (αnx+βn)(r, n− r + 1)

w−→n Φ
(0,1)

(x) ,

where Φ
(0,1)

(x) is a nondegenerate df, then Φ
(0,1)

(x) must have one and only one

of the types N (Vi(x)), i = 1, 2, 3, where V1(x) = x, ∀x, and

(4.2) V2(x) =

{

−β ln |x| , x ≤ 0 ,

∞ , x > 0 ,
V3(x) =

{

−∞ , x ≤ 0 ,

β ln |x| , x > 0 ,
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where β is some positive constant. In this case F belongs to the domain of at-

traction of the df Φ
(0,1)

(x), written F ∈ D(Φ
(0,1)

(x)). Moreover, (4.1) is satisfied

with Φ
(0,1)

(x) = N (Vi(x)), for some i ∈ {1, 2, 3} if, and only if,

(4.3)
nF (αnx+ βn)− rn√

rn

−→n Vi(x) .

Wu [15] generalized the Chibisov result for any nondecreasing intermediate rank

sequence and proved that the only possible types for the limit df of the interme-

diate oos are those defined in (4.2).

Barakat [2], in Lemma 2.2 and Theorem 2.3, characterized the possible

limit laws of the df of the upper intermediate m-gos. The following corresponding

lemma characterizes the possible limit laws of the df of the lower intermediate

m-gos. The proof of this lemma follows by using the same argument which is

applied in the proof of Lemma 2.2 and Theorem 2.3 of Barakat [2].

Lemma 4.1. Let m1 = m2 = ... = mn−1 = m > −1, and let rn be a non-

decreasing intermediate rank sequence. Then, there exist normalizing constants

an > 0 and bn such that

(4.4) Φ
(m,k)
rn :n (anx+ bn)

w−→n Φ
(m,k)

(x) ,

where Φ
(m,k)

(x) is a nondegenerate df if, and only if,
NGm(anx+bn)−r

N√
r
N

−→n V (x),

where Φ
(m,k)

(x) = N (V (x)). Furthermore, let r⋆
n

be a variable rank sequence de-

fined by r⋆
n

= r
θ−1(N)

, where θ(n) = (m+ 1)N (remember that N =
k

m+1 +n− 1,

then θ(n) = n, if m = 0, k = 1, i.e., in the case of oos). Then, there exist normal-

izing constants an > 0 and bn for which (4.4) is satisfied for some nondegenerate

df Φ
(m,k)

(x) if, and only if, there are normalizing constants αn > 0 and βn for

which Φ
(0,1)
r⋆
n
:n(αnx+ βn)

w−→n Φ
(0,1)

(x), where Φ
(0,1)

(x) is some nondegenerate df,

or equivalently
nF (αnx+βn)−r⋆

n√
r⋆
n

−→n Vi(x), i ∈ {1, 2, 3}, and Φ
(0,1)

(x) = N (Vi(x)).

In this case, we can take an = αθ(n) and bn = βθ(n). Moreover, Φ
(m,k)

(x) must

has the form N (Vi(x)), i.e., V (x) = Vi(x).

In this section we consider the limit df of the two intermediate m-gos ηr=
X(r,n,m,k)−bn

an
and ζs=

X(s,n,m,k)−dn

cn
, where

r
nα1
−→n l

2
1,

s
nα2
−→n l

2
2, 0<α1, α2<1,

l1, l2 > 0, and an, cn > 0, bn, dn are suitable normalizing constants. The main

aim of this section is to:

1 – Prove that the weak convergence of the df’s of ηr and ζs implies the

convergence of the joint df of ηr and ζs;

2 – Obtain the limit joint df of ηr and ζs and derive the condition under

which the two statistics ηr and ζs are asymptotically independent.
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We can distinguish the following distinct and exhausted two cases:

A) s− r −→n c, 0 ≤ c <∞ , and B) s− r −→n ∞ .

Remark 4.1. Under the condition A), we clearly have l1= l2, α1=α2 =α.

Moreover
r
s
−→n 1. Finally, under the condition B) we have the following three

distinct and exhausted cases:

B1) α2 > α1, which implies
r
s
−→n 0.

B2) α2 = α1 = α, l2 > l1, which implies
r
s
−→n

l21
l22

.

B3) α2 = α1 = α, l2 = l1, which implies
r
s
−→n 1.

The following, corresponding lemma (proved in theAppendix) to Lemma3.2,

characterizes the possible limit laws of the joint intermediate m-gos.

Lemma 4.2. Let Φ
(m,k)
r,s:n (xn, yn)=P (ηr<x, ζs<y), 0<Rrs=

√

λr(1−λs)
λs(1−λr)<1,

r
s
−→n R, Rrs−→n

√
R, 0≤R<1, xn= anx+ bn, yn= cny+dn, U

(1)
n (x)=

Gm(xn)−λr

τr
,

U
(2)
n (y) =

Gm(yn)−λs

τs
, λi =

i
N+1 , τi =

√

λiνi

N+1 and νi = 1− λi, i = r, s. Then

∣

∣

∣

∣

∣

Φ
(m,k)
r,s:n (xn, yn)−

1

2π
√

1−R2
rs

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
e
− (ξ2+η2−2ξηRrs)

2(1−R2
rs) dξ dη

∣

∣

∣

∣

∣

converges to zero uniformly with respect to x and y.

Lemma 4.2 leads to the following theorem.

Theorem 4.1. Let xn= anx+ bn, yn= cny+dn,
r
n ,

s
n
−→n 0, rs −→n R, and

Rrs −→n
√
R, 0 ≤ R < 1. Then the convergence of the two marginals Φ

(m,k)
r:n (xn)

and Φ
(m,k)
s:n (yn) to nondegenerate limit df’s Φ

(m,k)
(x) = N (V (x)) and Φ

(m,k)
(y) =

N (Ṽ (y)), respectively, are necessary and sufficient condition for the convergence

of the joint df Φ
(m,k)
r,s:n (xn, yn) to the nondegenerate limit

Φ
(m,k)
r,s:n (xn, yn)

w−→n
1

2π
√

1−R

∫ V (x)

−∞

∫ Ṽ (y)

−∞
e
− (ξ2+η2−2ξη

√
R)

2(1−R) dξ dη .

Moreover, in view of Lemma 4.1, we deduce that the convergence of the joint df

Φ
(m,k)
r,s:n (xn, yn), as well as the convergence of the two marginals Φ

(m,k)
r:n (xn) and

Φ
(m,k)
s:n (yn), occurs if, and only if, there are normalizing constants αn, γn > 0 and

βn, δn for which Φ
(0,1)
r⋆
n
:n(αnx+ βn)

w−→n Φ
(0,1)

(x) = N (Vi(x)) and Φ
(0,1)
s⋆
n
:n(γny+ δn)

w−→n Φ
(0,1)

(y)=N (Vj(y)), for some i, j ∈{1, 2, 3}, where r⋆
n
= r

θ−1(N)
, s⋆

n
= s

θ−1(N)

and θ(n) = (m+1)N . In this case, we can take an=αθ(n), cn= γθ(n), bn=βθ(n)

and dn = δθ(n). Moreover, V (x) = Vi(x) and Ṽ (y) = Vj(y). Finally, the two

marginals are asymptotically independent if, and only if, r
s
−→n 0, i.e., R = 0.
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APPENDIX

Proof of Lemma 2.3: In (1.1), consider the transformation ξ = F (u),

η = F (v), we get

Φ
(m,k)
r,s:n (xn, yn) =

(A.1)

= C
⋆
n

∫ F (xn)

0

∫ F (yn)

ξ
ξ̄
m
η̄
γs−1

(1− ξ̄m+1
)
r−1

(ξ̄
m+1− η̄m+1

)
s−r−1

dη dξ ,

where η̄ = 1− η, ξ̄ = 1− ξ and C
⋆
n =

Cs−1,n

(m+1)s−2 (r−1)! (s−r−1)!
. Again, by using the

transformation 1− ξ̄m+1
= z, 1− η̄m+1

= w, we get

(A.2) Φ
(m,k)
r,s:n (xn, yn) = C

⋆⋆
n

∫ Gm(xn)

0

∫ Gm(yn)

z
(1−w)

γs−m−1
m+1 z

r−1
(w− z)s−r−1

dw dz ,

where C
⋆⋆
n =

C⋆
n

(m+1)2
. On the other hand, we have

γs−m−1
m+1 = N−s and

(r−1)! (s−r−1)!C
⋆⋆
n

(N−s)s =

∏s
j=1 γj

(N−s)s (m+1)s
=

∏s
j=1(N−j+1)

(N−s)s =

=

∏s
j=1(1− j−1

N )

(1− s
N )s

=

(

1 +
s
2

N

(

1+ o(1)
)

)

(

1−
s
∑

j=2

j−1

N

(

1+ o(1)
)

)

=

= 1+
s
2

N
− 1

N

(

s
2− s
2

)

(

1+ o(1)
)

= 1+ ρN ,

where 0 < ρN =
1

2N (s
2
+s)(1+o(1))−→N 0. Therefore, by using the transforma-

tion w=
θ

N−s , z=
φ

N−s and the inequality (1−z)n≤e−nz, ∀ 0≤ z≤ 1 (cf. Lemma

1.3.1 in Galambos [6]), we get

Φ
(m,k)
r,s:n (xn, yn) =

=
C
⋆⋆
n

(N−s)s
∫ (N−s)Gm(xn)

0

∫ (N−s)Gm(yn)

φ

(

1− θ

N−s

)N−s
φ
r−1

(θ−φ)
s−r−1

dθ dφ

≤ (1+ρN )

(r−1)! (s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
e
−θ
φ
r−1

(θ−φ)
s−r−1

dθ dφ

=
(1+ρN )

(r−1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

u
r−1

e
−u
du .

On the other hand, by using the transformation
w

1−w =
θ

N+r ,
z

1−z =
φ

N+r in

(A.2), and noting that
(r−1)! (s−r−1)!C⋆⋆

n

(N+r)s =

Qs
j=1(1−

j−1
N

)

(1+ r
N

)s =
(

1− rs
N (1 + o(1))

)(

1−
∑s

j=2
j−1
N (1+o(1))

)

= 1−
(

rs
N +

∑s
j=2

j−1
N

)(

1+o(1)
)

= 1− 1
N

(

rs+
s2−s

2

)(

1+o(1)
)

=
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1− σ⋆N , we get, by using the inequality e
−nz ≤ (1 + z)

−n
, ∀ 0 ≤ z ≤ 1,

Φ
(m,k)
r,s:n (xn, yn) =

=
C
⋆⋆
n

(N+r)s

∫ (N+r)Gm(xn)/Ḡm(xn)

0

∫ (N+r)Gm(yn)/Ḡm(yn)

φ
(θ − φ)

s−r−1

× φ
r−1

(

1 +
θ

N+r

)−(N+r)(

1 +
θ

N+r

)2r−1(

1 +
φ

N+r

)−s
dθ dφ

≥ (1−σ⋆N )F̄
(m+1)s

(xn)

(r−1)!(s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
(θ−φ)

s−r−1
φ
r−1

(

1+
θ

N+r

)−(N+r)

dθ dφ

≥ (1−σN )

(r−1)! (s−r−1)!

∫ NGm(xn)

0

∫ NGm(yn)

φ
(θ−φ)

s−r−1
φ
r−1

e
−θ
dθ dφ

=
(1−σN )

(r−1)!

∫ NGm(xn)

0
Γs−r

(

NGm(yn)− u
)

u
r−1

e
−u
du ,

where σN = 1− (1− σ⋆N ) F̄
(m+1)s

(xn)−→N 0 (note that F̄
(m+1)s

(xn) ∼ 1).

The lemma is proved.

Proof of Lemma 2.4: We begin with the relation (A.1), after replacing

r and s by r̀ and s̀, respectively. By using the transformation ξ̄
m+1

= z, η̄
m+1

=w

and noting that n− r = N−Rr, n−s = N−Rs, γn−s+1 = (m+1)Rs and Cs̀−1,n=

CN−Rs,n = (m+ 1)
N−Rs+1

∏N−Rs+1
j=1 (N − j+ 1) = (m+ 1)

N−Rs+1 Γ(N+1)
Γ(Rs)

, we get

(A.3) Φ
(m,k)
r̀,s̀:n (xn, yn) = C̀n

∫ 1

Ḡm(xn)

∫ z

Ḡm(yn)
w
Rs−1

(1−z)N−Rr(z−w)
Rr−Rs−1

dw dz ,

where C̀n =
Γ(N+1)

Γ(N−Rr+1)Γ(Rr−Rs) Γ(Rs)
. Again by using the transformation w=

θ
N−Rr

, z =
φ

N−Rr
and the inequality (1− z)n ≤ e−nz, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) ≤

≤ C̀n

(N−Rr)Rr

∫ (N−Rr)

(N−Rr)Ḡm(xn)

∫ φ

(N−Rr)Ḡm(yn)
e
−φ
θ
Rs−1

(φ−θ)Rr−Rs−1
dθ dφ .

Now, by using Stirling’s formula (cf. Lebedev [8]), we have
Γ(Rr−Rs) Γ(Rs) C̀n

(N−Rr)Rr
∼

e
−Rr(1−Rr

N )
−(N+ 1

2
) ∼ 1, as N→∞ (i.e., as n→∞), and noting that (N−Rr) ·

·Ḡm(xn) ∼ NḠm(xn), (N−Rr)Ḡm(yn) ∼ NḠm(yn), as N →∞, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) ≤

1

Γ(Rr−Rs) Γ(Rs)

∫ N

NḠm(xn)

∫ φ

NḠm(yn)
e
−φ
θ
Rs−1

(φ−θ)Rr−Rs−1
dθ dφ

=
1

Γ(Rr)

∫ N

NḠm(xn)
φ
Rr−1

e
−φ
(

1− INḠm(yn)
φ

(Rs, Rr−Rs)
)

dφ

= 1− ΓRr

(

NḠm(xn)
)

− 1

Γ(Rr)

∫ N

NḠm(xn)
INḠm(yn)

t

(Rs, Rr−Rs) tRr−1
e
−t
dt .
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On the other hand, by using the transformation
w

1−w =
θ

N+Rs
,

z
1−z =

φ
N+Rs

in

(A.3) and the inequality e
−nz ≤ (1 + z)

−n
, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r̀,s̀:n (xn, yn) =

C̀n

(N+Rs)
Rr

∫ ∞

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

θ
Rs−1

×
(

1+
φ

N+Rs

)−(N+Rs)+2Rs−1(

1+
θ

N+Rs

)−Rr

(φ−θ)Rr−Rs−1
dθ dφ

≥ C̀n

(N+Rs)
Rr

∫ (N+Rs)

(N+Rs)
Ḡm(xn)
Gm(xn)

∫ φ

(N+Rs)
Ḡm(yn)
Gm(yn)

e
−φ
θ
Rs−1

×
(

1 +
θ

N+Rs

)−Rr

(φ−θ)Rr−Rs−1
dθ dφ .

The lemma is proved.

Proof of Lemma 2.5: The proof of the lower bound follows from the fact

that the gos are positively quadrant dependent (see Barakat [3]). To prove the

upper bound, in view of (1.1), we have

Φ
(m,k)
r,s̀:n (xn, yn) =

(A.4)

= Dn

∫ F (xn)

0

∫ F (yn)

ξ
ξ̄
m
η̄
γn−s+1−1

(1− ξ̄m+1
)
r−1

(ξ̄
m+1− η̄m+1

)
n−s−r

dη dξ ,

∀xn ≤ yn, whereDn =
Cn−s,n

(m+1)n−s−1 (r−1)! (n−s−r)! . Now, in view of the conditions of

the lemma, it is easy to show that ∀(x, y), for which Vj,β(x),Ui,α(y) <∞, we have

yn −→n ω(F ) = sup{x : F (x) < 1} > inf{x : F (x) > 0} = α(F )←−n xn. Therefore,

for all large n, the relation (A.4) holds, ∀x, y, for which Vj,β(x),Ui,α(y) <∞. Now,

by using the transformation 1− ξ̄m+1
=v, η̄

m+1
=u and noting that

γn−s+1−m−1
m+1 =

Rs−1, we get

Φ
(m,k)
r,s̀:n (xn, yn) =

Dn

(m+1)2

∫ Gm(xn)

0

∫ 1−v

Ḡm(yn)
u
Rs−1

v
r−1

(1−u−v)n−s−r du dv .

Therefore, by using the transformation u=
w

N−Rs−r , v=
z

N−Rs−r and the inequal-

ity (1−z)n ≤ e−nz, ∀ 0 ≤ z ≤ 1, we get

Φ
(m,k)
r,s̀:n (xn, yn) ≤ C̃n

∫ NGm(xn)

0

∫ N

(N−Rs−r)Ḡm(yn)
w
Rs−1

z
r−1

e
−(w+z)

dw dz ,

where C̃n =
Dn

(m+1)2 (N−Rs−r)Rs+r . On the other hand, by using Stirling’s formula,

we get

Γ(r) C̃n =
CN−Rs,n

(m+1)N−Rs+1 (N−Rs−r)Rs+r Γ(N−Rs−r+1)

=
Γ(N+1)

Γ(N−Rs−r+1) (N−Rs−r)Rs+r Γ(Rs)
∼ 1

Γ(Rs)
.

Therefore, since (N−Rs−r)Ḡm(yn) ∼ NḠm(yn), we get the upper bound of (2.5).

The lemma is proved.
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Proof of Lemma 3.2: For given ǫ > 0, choose T large enough to satisfy

the inequalities
1
T 2 < ǫ and N (−T ) < ǫ. If U

(1)
n (x) ≤ −T . Thus, for sufficiently

large n, we get 1− F̄m+1
(xn) ≤ λr − τrT < 1. Therefore, after routine calcula-

tions, we can show that

Φ
(m,k)
r:n (xn) =

1

β(r,N−r+1)

∫ 1−Fm+1
(xn)

0
ξ
r−1

(1−ξ)N−r
dξ

≤ 1

β(r,N−r+1)

∫ λr−τrT

0
ξ
r−1

(1−ξ)N−r
dξ

≤ 1

β(r,N−r+1)

∫ 1

0

(ξ−λr)2
τ2
r T

2
ξ
r−1

(1−ξ)N−r
dξ

=
N+1

(N+2)T 2
<

1

T 2
< ǫ .

Since Φ
(m,k)
r,s:n (xn, yn) ≤ Φ

(m,k)
r:n (xn), then Φ

(m,k)
r,s:n (xn, yn) < ǫ. Similarly, if U

(2)
n (y) ≤

−T , we can prove that Φ
(m,k)
r,s:n (xn, yn) ≤ Φ

(m,k)
s:n (yn) < ǫ. On the other hand, we

have

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη ≤ min

(

N
(

U
(1)
n (x)

)

, N
(

U
(2)
n (y)

)

)

< ǫ .

Therefore, if U
(1)
n (x) ≤ −T or U

(2)
n (y) ≤ −T , we get

∣

∣

∣

∣

∣

Φ
(m,k)
r,s:n (xn, yn) −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

≤ 2 ǫ .

Now, if U
(1)
n (x) ≥ T , then 1− F̄m+1

(xn) ≥ λr + τrT . Therefore, after routine

calculations, we get

1− Φ
(m,k)
r:n (xn) ≤

1

β(r,N−r+1)

∫ 1

λr+τrT
ξ
r−1

(1−ξ)N−r
dξ

≤ 1

β(r,N−r+1)

∫ 1

0

(ξ−λr)2
τ2
r T

2
ξ
r−1

(1−ξ)N−r
dξ

=
N+1

(N+2)T 2
<

1

T 2
< ǫ .

Thus, we also get

(A.5) Φ
(m,k)
s:n (yn)− Φ

(m,k)
r,s:n (xn, yn) ≤ 1− Φ

(m,k)
r:n (xn) < ǫ .

On the other hand, in view of our assumptions and Lemma 3.1, we get

N
(

U
(2)
n (y)

)

−
∫ U

(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη =

=

∫ ∞

U
(1)
n (x)

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη(A.6)

≤ 1√
2π

∫ ∞

U
(1)
n (x)

e
−ξ2

2 dξ ≤ 1√
2π

∫ ∞

T
e

−ξ2

2 dξ < ǫ ,
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for sufficiently large n, and

(A.7)

∣

∣

∣Φ
(m,k)
s:n (yn)−N

(

U
(2)
n (y)

)

∣

∣

∣ < ǫ ,

for sufficiently large n. The relations (A.5), (A.6) and (A.7) show that when

U
(1)
n (x) ≥ T , we have |Φ(m,k)

r,s:n (xn, yn)−
∫ U

(1)
n (x)

−∞
∫ U

(2)
n (y)

−∞ Wr,s(ξ, η) dξ dη| < 3 ǫ. Sim-

ilarly, we can show that the last inequality holds for sufficiently large n, if

U
(2)
n (y) ≥ T . In order to complete the proof of the lemma, we have to con-

sider the case |U (1)
n (x)|, |U (2)

n (y)| < T . First, we note that, since Gm(xn)−→n λ1 <

λ2←−n Gm(yn), we have xn ≤ yn, for sufficiently large n. Therefore, for suffi-

ciently large n, Φ
(m,k)
r,s:n (xn, yn) is given by (3.3). Moreover, in this case we have

1− F̄m+1
(xn) > λr − τrT ≥ 0 and 1− F̄m+1

(yn) > λs − τsT ≥ 0. Thus,

Φ
(m,k)
r,s:n (xn, yn) =

∫ 1−F̄m+1(xn)

0

∫ 1−F̄m+1(yn)

z
ϕ

(m,k)
r,s:n (w, z) dw dz

=

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ

(m,k)
r,s:n (w, z) dw dz

(A.8)

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w, z) dw dz

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ

(m,k)
r,s:n (w, z) dw dz ,

where ϕ
(m,k)
r,s:n (w, z) =

C⋆
n

(m+1)2
z
r−1

(1− w)
N−s

(w − z)s−r−1
. We shall separately

consider, each of the integrals in the summation (A.8):

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ

(m,k)
r,s:n (w, z) dw dz ≤

≤
∫ λr−τrT

0

∫ 1

z
ϕ

(m,k)
r,s:n (w, z) dw dz

(A.9)

=
C
⋆
n

(m+1)2

∫ λr−τrT

0

∫ 1

z
z
r−1

(1−w)
N−s

(w−z)s−r−1
dw dz

=
Γ(N+1)

Γ(N−r+1)Γ(r)

∫ λr−τrT

0
z
r−1

(1−z)N−r
dz <

1

T 2
< ǫ ,

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w, z) dw dz ≤

≤
∫ λs−τsT

0

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w, z) dw dz(A.10)

=
Γ(N+1)

Γ(N−s+1) (s−1)!

∫ λs−τsT

0
w
s−1

(1−w)
N−s

dw <
1

T 2
< ǫ ,

and by using the transformation z = λr + ξ τr, w = λs + ητs, the third integral
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takes the form

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ

(m,k)
r,s:n (w, z) dw dz =

= Ar,s:n

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
gr,s:n(ξ, η) dη dξ ,

where

Ar,s:n =
Γ(N+1) τr τs λ

r−1
r ν

N−s
s (λs−λr)s−r−1

Γ(N−s+1) (r−1)! (s−r−1)!

and

gr,s:n(ξ, η) =

(

1 +
ξ τr

λr

)r−1(

1 +
ητs− ξ τr
λs−λr

)s−r−1(

1− ητs

νs

)N−s
.

On the other hand, by using Stirling’s formula Γ(M+1) = e
−M√

2πM ·
·MM

(1+ ◦(1)), as M →∞, we get

Ar,s:n =
(N+1)

2
Γ(N+1) τr τs λ

r
r ν

N−s
s (λs−λr)s−r

Γ(N−s+1) r! (s−r)!

=
1+ ◦(1)

2π

√

(N+1) (s−r)
s(N−r+1)

=
1+ ◦(1)

2π
√

1−R2
rs

.

Also, it is easy to show that

gr,s:n(ξ, η) =

(

1+
ξτr

λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s

×
[

(

1+
ξτr

λr

)−1(

1+
ητs− ξτr
λs−λr

)−1
]

=

(

1+
ξτr

λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s
(A.11)

×
[

(

1− ξτr
λr

(

1 + o(1)
)

)(

1− ητs− ξτr
λs−λr

(

1 + ◦(1)
)

)

]

=

(

1+
ξτr

λr

)r(

1+
ητs− ξτr
λs−λr

)s−r(

1− ητs
νs

)N−s
(

1+ ρn(ξ, η)
)

,

where ρn(ξ,η)−→n 0, uniformly in any finite interval (−T,T ) of the value ξ and η.

Furthermore, we have

r ln

(

1 +
ξτr

λr

)

= r

(

ξτr

λr
− ξ

2
τ

2
r

2λ2
r

+
ξ
3
τ

3
r

3λ3
r

+ ···
)

(A.12)

= ξ τr(N+1)− ξ
2
νr

2
+ ◦
(

T
3

√
r

)

,
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(s−r) ln

(

1 +
ητs− ξτr
λs−λr

)

=

(A.13)

= (ητs − ξτr) (N+1)− 1

2

(ητs− ξτr)2
λs−λr

(N+1) + ◦
(

T
3

√
s

)

and

(A.14) (N−s) ln

(

1− ητs

νs

)

= −ητs(N+1)− 1

2
η

2
λs + ◦

(

λ

3
2
s T

3

√
N

)

.

Therefore, by combining (A.11)–(A.14), as n→∞ (or equivalently as N →∞),

we get

ln gr,s:n(ξ, η) = r ln

(

1+
ξτr

λr

)

+ (s−r) ln

(

1+
ητs − ξτr
λs−λr

)

+ (N−s) ln

(

1− ητs
νs

)

∼ −ξ
2
νr

2
− η

2
τ

2
s − 2 ξη τrτs + ξ

2
τ

2
r

2(λs−λr)
(N+1)− 1

2
η

2
λs

= −ξ
2
νr

2

(

1+
λr

λs−λr

)

− 1

2
η

2
λs

(

1+
νs

λs−λr

)

− 1

2

(

−2 ξη
τr τs

λs−λr

)

= −1

2

λs(1−λr)
λs−λr

(

ξ
2
+ η

2 − 2 ξη

√

λr(1−λs)
λs(1−λr)

)

,

which implies gr,s:n(ξ, η) = e
−(ξ2+η2−2ξηRrs)

2(1−R2
rs)

(

1 + ◦(1)
)

. Therefore, for sufficiently

large n (or equivalently for large N), we get

∣

∣

∣

∣

∣

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ

(m,k)
r,s:n (w,z) dw dz −

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

< ǫ .

Since,

∫ −T

−∞

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη +

∫ U
(1)
n (x)

−∞

∫ −T

−∞
Wr,s(ξ, η) dξ dη < 2N (−T ) < 2 ǫ

and

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη =

=

∫ U
(1)
n (x)

−∞

∫ −T

−∞
Wr,s(ξ, η) dξ dη +

∫ −T

−∞

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη

+

∫ U
(1)
n (x)

−T

∫ U
(2)
n (y)

−T
Wr,s(ξ, η) dξ dη ,

then

∣

∣

∣

∣

∣

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ

(m,k)
r,s:n (w,z) dw dz −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ,η) dξ dη

∣

∣

∣

∣

∣

< 3 ǫ .
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By combining the last inequalitywith (A.9) and (A.10) we get, for sufficient large n,

the inequality

∣

∣

∣

∣

∣

Φ
(m,k)
r,s:n (xn, yn) −

∫ U
(1)
n (x)

−∞

∫ U
(2)
n (y)

−∞
Wr,s(ξ, η) dξ dη

∣

∣

∣

∣

∣

< 5 ǫ ,

which proves the lemma in the case
∣

∣U
(1)
n (x)

∣

∣,
∣

∣U
(2)
n (y)

∣

∣ < T . This completes the

proof.

Proof of Lemma 4.2: Under the condition of the lemma (0 ≤ R < 1),

we consider only the cases B1) and B2). On the other hand, the proof is very

close to the proof of Lemma 3.2. Therefore, we only show the necessary changes

in the proof of Lemma 3.2. For given ǫ > 0, we choose T , large enough to

satisfy both of the inequalities
1
T 2 < ǫ, and N (−T ) < ǫ. In this case it is easy

to see that the proof of the two lemmas coincides in the cases U
(t)
n (·) ≤ −T

and U
(t)
n (·) ≥ T, t = 1, 2. Therefore, we only prove the lemma under the case

|U (1)
n (x)|< T and |U (2)

n (y)|< T . In this case we have 1− F̄m+1
(xn) > λr− τrT ≥ 0

and 1− F̄m+1
(yn) > λs − τsT ≥ 0. Thus, we get

Φ
(m,k)
r,s:n (xn, yn) =

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ

(m,k)
r,s:n (w,z) dw dz

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w,z) dw dz(A.15)

+

∫ 1−F̄m+1(xn)

λr−τrT

∫ 1−F̄m+1(yn)

λs−τsT
ϕ

(m,k)
r,s:n (w,z) dw dz ,

where ϕ
(m,k)
r,s:n (w, z) =

C⋆
n

(m+1)2
z
r−1

(1−w)
N−s

(w−z)s−r−1
. We shall separately con-

sider, each of the integrals in the summation (A.15).

∫ λr−τrT

0

∫ 1−F̄m+1(yn)

z
ϕ

(m,k)
r,s:n (w,z) dw dz ≤

∫ λr−τrT

0

∫ 1

z
ϕ

(m,k)
r,s:n (w,z) dw dz =

=
Γ(N+1)

Γ(N−r+1) (r−1)!

∫ λr−τrT

0
z
r−1

(1−z)N−r
dz <

1

T 2
< ǫ .

Since |U (1)
n (x)| < T , for large N , we get

(A.16) 1− F̄m+1
(xn) < λr + τrT .

On the other hand, we have

(A.17)
λr + τrT

λs − τsT
−→n











0 , in the case B1) ,

l
2
l

l22

, in the case B2) .



Generalized Order Statistics 219

Therefore, for large N , the relations (A.16) and (A.17) imply the inequality

1− F̄m+1
(xn) < λs − τsT , which in turn leads to the following estimate for the

2nd integral in (A.15):

∫ 1−F̄m+1(x)

λr−τrT

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w,z) dw dz ≤

≤
∫ λs−τsT

0

∫ λs−τsT

z
ϕ

(m,k)
r,s:n (w,z) dw dz

=

∫ λs−τsT

0

∫ w

0
ϕ

(m,k)
r,s:n (w,z) dz dw

=
Γ(N+1)

Γ(N−s+1) (s−1)!

∫ λs−τsT

0
w
s−1

(1−w)
N−s

dw <
1

T 2
< ǫ .

It is easy to show that, under the cases B1) and B2), the mathematical treatments

of the third integral of the summation, as well as the remaining part of the proof,

is exactly the same as in the proof of Lemma 3.2. This completes the proof.
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Abstract:

• Misleading signals (MS) are valid alarms which correspond to the misinterpretation

of a shift in the process mean (resp. variance) as a shift in the process variance (resp.

mean), when we deal with simultaneous schemes for these two parameters. MS can

be fairly frequent, as reported by some authors, and occur for instance when:

– the individual chart for the mean triggers a signal before the one for the variance,

even though the process mean is on-target and the variance is off-target; or

– the individual chart for the variance triggers a signal before the one for the mean,

although the variance is in-control and the process mean is out-of-control.

This paper illustrates how (un)reliable are the traditional simultaneous Shewhart- and

EWMA-type schemes in identifying which parameter has changed, under the false

assumption of independence, namely when the output process within each sample

follows AR(1), AR(2) or ARMA (1,1) models. This is done by means of Monte Carlo

simulation and the estimation of the probability of a misleading signal (PMS).

Finally, we go on to compare these estimates of PMS with the values of the PMS of

simultaneous Shewhart- and EWMA-type residual schemes whose control statistics

take into account the autocorrelation structure of the output process.
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1. THE PHENOMENON OF MISLEADING SIGNALS

In most monitoring applications, we assume that the quality characteristic

is an absolutely continuous random variable with a normal distribution with

mean µ and variance σ
2
. Quality control charts are graphical SPC tools whose

main purpose is to detect (removable) special or assignable causes responsible for

changes in µ and σ
2
. Standard practice is to run two individual charts at the

same time, one for µ and another one for σ
2
. The resulting scheme is known as

a simultaneous scheme and it provides a way to satisfy Shewhart’s dictum that

proper process control implies monitoring both location and dispersion.

When we use a simultaneous scheme, the quality characteristic is deemed

to be out-of-control whenever a signal is triggered by either individual chart: a

signal suggests a potential change in µ, in σ
2

or in both µ and σ
2
. Moreover, it

is expected that the chart for the mean will help us detect increases or decreases

in µ from a target value µ0 and that the chart for the variance will assist us in

the detection of increases in σ
2

from an in-control value σ
2
0. However, it has been

pointed out by some authors (e.g. [21], [10] and [18]) that the misidentification of

the parameter that has changed can occur frequently, which means that a shift

in µ can be misinterpreted as a shift in σ
2

and vice-versa. [21] termed these two

events as misleading signals (MS) and [10] systematized them and only considered

MS of types III and IV:

• the individual chart for µ triggers a signal before the one for σ
2
, although

the process mean is on-target and the variance is off-target; and

• the individual chart for σ
2

triggers a signal before the one for µ, even

though the process variance is on-target and the mean is off-target.

Now, note that special or assignable causes on the chart for µ can differ from

those on the chart for σ
2
: for instance, cyclic patterns in X̄-charts may result from

systematic changes in temperature or regular rotation of operators/machines,

whereas S
2
-charts reveal cycles because of maintenance schedules or tool wear ([9,

pp. 189–190]). Furthermore, the diagnostic and correction procedures that follow

a signal can differ depending on which chart triggers the alarm, as mentioned

by [11] and [8]. Therefore, the occurrence of a MS can lead to an inappropriate

diagnose and to unnecessary correction measures and hence to an increase in

production and inspection costs.

2. EXISTING WORK

The main question regarding misleading signals should not be whether they

happen or not, but rather how frequently they occur, as pointed out by [11].
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Unsurprisingly, the probability of a misleading signal (PMS) should be considered

as an additional performance measure of simultaneous schemes for µ and σ
2
.

The behavior of the PMS of types III and IV has been addressed for i.i.d.

and Gaussian output by a few authors ([10], [18], [12], [19] and [11]). For example,

the numerical results in [12] and [11] suggest that simultaneous Shewhart-type

schemes compare unfavorably to their EWMA counterparts and that the values

of both PMS are far from negligible, specially for small and moderate shifts in µ

and σ
2
.

The study of the phenomenon of MS has been extended by [2], [8], [14]

and [15] to the following change point model, proposed by [7] and [6] and dealing

with autocorrelated output. Let us denote by {Yi,j} the target process, where

i represents the sample number and j the number of the observation within

the sample. Samples have fixed size n, are independent and represented by

(Yi,1, ..., Yi,n). However, we shall assume that {Yi,1, ..., Yi,n} follows a (weakly)

stationary Gaussian process with known mean µ0 and known autocovariance func-

tion {γ0, γ1, ..., γn−1}, for every i. The observed process, {Xi,j}, is related to the

target process as follows:

(2.1) Xi,j = µ0 + δ γ0 + θ (Yi,j − µ0) , i = 1, 2, ... ,

where δ = [E(Xi,j)− µ0]/
√

γ0 (resp. θ =
√

V (Xi,j)/γ0 ) represents the magnitude

of the shift in the process mean (resp. standard deviation). As put by [8], the

assumption of independent samples but autocorrelated output within each sample

is rather reasonable in SPC because the intervals between successive samples are

significantly large when compared to the time required to take a sample, resulting

in negligible correlation between samples and considerable correlation within each

sample.

There are essentially three approaches to monitor shifts in the mean and

variance of the observed process and they play a major role in the performance

of the simultaneous schemes and, obviously, on the PMS. We could plot the sam-

ple mean and variance of each of the original data in a traditional simultaneous

scheme, however, with readjusted control limits to account for the autocorrela-

tion; the resulting scheme is called a modified simultaneous scheme ([7] and [6]).

Alternatively, we could plot the sample mean and variance of the residuals in-

stead of the original data, in a traditional simultaneous scheme, i.e., use what is

called a simultaneous residual scheme ([7], [6] and [8]). Lastly, we could ignore

the autocorrelation structure and assume the output is i.i.d. within each sample

and use the traditional simultaneous schemes.

Results by [8], [2], [14] and [15] suggest that the presence of autocorrelation

can have a significant impact in the PMS of simultaneous Shewhart and EWMA

residual schemes for the process mean and variance of stationary processes.
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[8] and [2] showed that the PMS of Type III is not affected by the autoregres-

sive parameter and larger nonnegative values of this parameter are associated to

more frequent MS of Type IV, when dealing with simultaneous Shewhart- and

EWMA-type residual schemes for the mean and the variance of AR(1) output.

[14] used stochastic ordering to prove that the PMS of Type IV of simultaneous

Shewhart (resp. EWMA) residual schemes for the process mean and variance of

stationary AR(1) output increases with the autoregressive parameter in the inter-

val (−1, 1) (resp. (0,1)). [15] is an obvious extension of [14] to general stationary

Gaussian processes, such as AR(2) and ARMA(1,1) models, and it also identified

regions where the PMS of Type IV is a monotonous function of the parameters

of these models. In addition to this, [8] showed how unreliable are the traditional

simultaneous Shewhart and EWMA schemes in identifying which parameter has

changed under the false assumption of i.i.d. output, when we are in fact dealing

with stationary AR(1) output.

In the present paper, we recall some of these results for AR(1) output and

we extend these investigations to AR(2) and ARMA(1,1) processes with a few

unexpected results. All the estimates of PMS were obtained via an extensive

Monte Carlo simulation study and we go on to compare them to the PMS values

associated with simultaneous residual schemes. But before proceeding to this

study of the impact of falsely assuming i.i.d. output on the PMS, we shall briefly

describe simultaneous residual schemes for autocorrelated output in the next

section.

3. SIMULTANEOUS RESIDUAL SCHEMES AND PMS

Residual charts ([1]) can prevent the process mean and variance of auto-

correlated output from wandering too far from their targets. Besides that, these

charts are theoretically very appealing because their control statistics take the

autocorrelation explicitly into account, and reduce the monitoring problem to the

well-known case of detecting shift in the mean and variance of i.i.d. output ([23,

p. 63]). Moreover, since control charts are ultimately used by non-statisticians, we

favor “one fits all” procedures, such as residual charts, that are easily understood

and can be applied to most industrial processes.

The control statistics of the individual residuals charts for the process mean

and variance of a stationary Gaussian process may be defined in terms of stan-

dardized residuals ([8]), such as the following ones

ε̂i,j =
Xi,j − X̂i,j

√

Vδ=0,θ=1(Xi,j − X̂i,j)
(3.1)

= θ ǫ̂i,j + δ
√

γ0 bj ,
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where: Vδ=0,θ=1(Xi,j − X̂i,j) represents the in-control variance of the residuals

of the output process; ǫ̂i,j ∼i.i.d. N (0, 1) are the standardized residuals of the

target process; b = (b1, ..., bn) is the vector of the bj s, which are functions of

γ0, γ1, ..., γn−1 that can be recursively obtained by using the Durbin–Levinson

algorithm ([3, p. 169]). If the (fitted) model is valid, the standardized residuals

are independent normal r.v. and the sample mean and variance of these residuals,

¯̂εi =
1

n

n
∑

j=1

ε̂i,j ,(3.2)

Ŝ
2
i =

1

n−1

n
∑

j=1

(ε̂i,j − ¯̂εi)
2

,(3.3)

are independent r.v. such that

¯̂εi ∼i.i.d. N
(

δ
√

γ0

n

n
∑

j=1

bj ,
θ
2

n

)

,(3.4)

(n−1)Ŝ
2
i

θ2
∼i.i.d. χ

2
n−1,ν ,(3.5)

where χ
2
n−1,ν denotes the noncentral χ

2
-distribution with n−1 degrees of freedom

and noncentrality parameter equal to

(3.6) ν =

(

δ

θ

)2

γ0

(

n
∑

j=1

b
2
j − nb

2

)

.

The control limits of the individual charts for µ and σ
2

that constitute

the simultaneous residual scheme do not depend on the underlying in-control

observed process — be it i.i.d. or autocorrelated —, coincide with the ones of

traditional individual charts for the mean and variance of i.i.d. processes, and are

listed in Table 1 for convenience and were previously adopted by [8].

By capitalizing on the distributional properties of ¯̂ǫi and Ŝ
2
i we can con-

clude that the run lengths of the individual Shewhart-type residual charts for

µ and σ
2
, RLS−µ(δ, θ,b) and RLS−σ(δ, θ,b), and the run length of the simul-

taneous Shewhart residual scheme, RLS−µ,σ(δ, θ,b), have geometric distribu-

tions with parameters say ξS−µ(δ, θ,b), ξS−σ(δ, θ,b) and ξS−µ,σ(δ, θ,b), where

ξS−µ,σ(δ, θ,b) = ξS−µ(δ, θ,b)+ξS−σ(δ, θ,b) −ξS−µ(δ, θ,b)×ξS−σ(δ, θ,b) because

a simultaneous residual scheme triggers a signal as soon as a signal is observed

on either constituent charts. The Markov chain approach ([4]) provides appro-

ximations to the distributions of the run lengths RLE−µ(δ, θ,b), RLE−σ(δ, θ,b)

and RLE−µ,σ(δ, θ,b). As a consequence we can provide exact expressions (resp.

approximate values) for the average run length (ARL) or any other RL related

performance measure, such as the PMS of simultaneous Shewhart (resp. EWMA)
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Table 1: Control statistics and limits of the individual Shewhart- (S−µ, S−σ)

and EWMA-type (E−µ,E−σ) residual charts for µ and σ
2
.

Control statistics Control limits

¯̂εi
LCLS−µ = −

γS−µ√
n

UCLS−µ = −LCLS−µ

Ŝ2
i

LCLS−σ = 0

UCLS−σ = 1 + γS−σ

q
2

n−1

Z¯̂ε,i =

(
E(¯̂ε) = 0 , i = 0 ,

(1−λµ) Z¯̂ε,i−1 + λµ
¯̂εi , i = 1 , ...

LCLE−µ = −γE−µ

q
λµ

n(2−λµ)

UCLE−µ = −LCLE−µ

ZŜ2,i =

(
E(Ŝ2) = 1 , i = 0 ,

(1−λσ) ZŜ2,i−1 + λσ Ŝ2
i , i = 1 , ...

LCLE−σ = 0

UCLE−σ = 1 + γE−σ

q
2 λσ

(n−1) (2−λσ)

residual schemes. In fact, if we focus on the detection of downward and upward

shifts in µ and upward shifts in σ
2
, then the two PMS can be simply written as

PMSIII(θ,b) = P
[

RLµ(0, θ,b)< RLσ(0, θ,b)
]

(3.7)

=

+∞
∑

i=1

P
[

RLµ(0, θ,b)= i
]

× P
[

RLσ(0, θ,b)> i
]

, θ > 1 ,

PMSIV(δ,b) = P
[

RLσ(δ, 1,b)< RLµ(δ, 1,b)
]

(3.8)

=

+∞
∑

i=1

P
[

RLσ(δ, 1,b)= i
]

× P
[

RLµ(δ, 1,b)>i] , δ 6= 0 ,

where RLµ and RLσ denote the RL of the individual Shewhart or EWMA-type

charts for µ and σ
2
, respectively. We ought to mention that a relative error of 10

−6

is considered in the truncation of the series defining PMSIII(θ,b) and PMSIV(δ,b),

whenever we need to calculate approximate values of these two performance mea-

sures. For more details on the exact and approximate distributions of these RL

and on the exact and approximate values of the PMS, please refer to [8].

4. THE IMPACT OF FALSELY ASSUMING INDEPENDENCE

ON THE PMS

In this section, we shall ignore the autocorrelation structure, assume that

the output is i.i.d. within each sample and use traditional individual charts to

detect shifts in µ and upward shifts in σ
2
. The control limits of these charts

coincide with the ones of the individual residual charts (see Table 2). However,
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the control statistics depend on the sample mean and variance of the standardized

output,

X̄
∗
i =

1

n

n
∑

j=1

Xi,j − µ0√
γ0

,(4.1)

(S
∗
i )

2
=

1

n − 1

n
∑

j=1

(Xi,j − X̄i)
2

γ0
,(4.2)

not on the sample mean and variance of the standardized residuals. Suffice to

say that X̄
∗
i and (S

∗
i )

2
are the control statistics of the traditional Shewhart-type

charts for µ and σ
2

(S
∗ − µ and S

∗ − σ). As for the traditional EWMA-type

charts (E
∗ − µ and E

∗ − σ), they make use of the statistics

ZX̄∗,i =

{

0 , i = 0 ,

(1−λµ)ZX̄∗,i−1 + λµ X̄
∗
i , i = 1, ... ,

(4.3)

Z(S∗)2,i =

{

1 , i = 0 ,

(1−λσ)Z(S∗)2,i−1 + λσ (S
∗
i )

2
, i = 1, ... .

(4.4)

Should the output be i.i.d. or simultaneous residual schemes for the mean

and variance of autocorrelated output are at use, we would be able to provide

exact expressions (resp. approximations) for the PMS in the Shewhart (resp.

EWMA) case, as seen in the previous section. Be that as it may, in the presence

of autocorrelation, the statistics X̄
∗
i and (S

∗
i )

2
are no longer independent r.v.,

and therefore we have to rely on Monte Carlo simulation to obtain estimates of

the PMS, when the output process within each sample, follows an AR(1), AR(2)

or an ARMA(1,1) model.

For illustration purposes, we considered the target process, (Yi,1, ..., Yi,n)

for each i (i = 1, ..., rep), drawn from a Gaussian stationary process with zero

mean (µ0 = 0) and unit variance (γ0 = 1), where the number of replications is

equal to rep = 10
6

for each set of parameter values. Furthermore, we simulated

samples of size n = 5 of this in-control process, obtained the out-of-control process

and the observed values of the control statistics, compared the latter with the

control limits and counted the number of misleading signals and the number of

signals triggered by the simultaneous schemes and estimated the corresponding

PMS. In addition to that, we have taken: λµ = λσ = λ = 1, 0.05 (allowing the

comparison between Shewhart- and EWMA-type schemes); θ = 1.02, 1.10, 1.20

(PMS of Type III); δ = 0.05, 0.50, 1.00 (PMS of Type IV). Moreover, the critical

values γS−µ, γS−σ, γE−µ and γE−σ were calculated in such way that the in-

control average run length (ARL) of both the individual traditional charts for µ

and σ are approximately the same, i.e. ARLµ(0, 1,b) = ARLσ(0, 1,b), and the

ARL of the simultaneous scheme is approximately equal to 500 samples, that

is ARLµ,σ(0, 1,b) = 500; the resulting critical values and the corresponding in-

control ARL are summarized in Table 2 and coincide with the ones in [8]. Please

bear in mind that, when dealing with Markov approximations, we considered 101

transient states to determine these critical values and all the RL related measures.
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Table 2: Critical values for the individual Shewhart (λ = 1)

and EWMA charts.

γµ γσ ARLµ(0, 1,b) ARLµ(0, 1,b) ARLµ,σ(0, 1,b) λ

3.2904 5.1144 999.550 999.495 500.011 1
2.8817 2.9103 986.202 986.162 499.641 0.05

4.1. AR(1) model

The AR(1) model is usually reported as the most frequently encountered

in practice ([23, p. 10]). The process {Yi,j} follows a stationary Gaussian AR(1)

model with mean µ0, variance γ0 = σ
2
0 and autoregressive parameter φ, for each

i, if

(4.5) Yi,j = µ0 + φ(Yi,j−1 − µ0) + εi,j ,

where: φ is a constant satisfying −1 < φ < 1; and {εi,j} is a sequence of distur-

bances such that εi,j ∼i.i.d. N (0, σ
2
ε), with σ

2
ε = (1 − φ

2
) × σ

2
0.

If we use simultaneous Shewhart- and EWMA-type residual schemes then

we can provide exact and approximate values of PMS of Type III (resp. IV); these

results can be found in Table 3 (resp. in the center of Table 4). As previously

noted by [8] and illustrated by Table 3, the PMS of Type III does not depend on

φ. In fact, a close inspection of the noncentrality parameter ν, the probabilities

ξS−µ(δ, θ,b), ξS−σ(δ, θ,b), etc. leads to the conclusion that these parameters

do not depend on b — when δ = 0 —, thus PMSIII(θ,b) := PMSIII(θ) for any

Gaussian stationary model. Table 3 (resp. 4) also shows that PMSIII(θ) (resp.

PMSIV(δ, φ)) can be larger than 0.47 (resp. 0.49), for very small shifts in σ
2

(resp. µ), while at the same time reinforcing that the simultaneous Shewhart

residual scheme seems to have larger PMS of Type III (resp. Type IV) than its

EWMA analog. It should also be noted that PMSIV(δ, φ) appears to increase

with φ ∈ (0, 1), as already referred by [8].

Now, we investigate what happens to both PMS if the autocorrelation struc-

ture is not recognized or ignored and traditional control charts are used when

φ ∈ (−1, 1). A reasonably large set of estimates of the PMS of types III and IV

when autocorrelation is disregarded can be found in Table 4, along with values of

PMSIV(δ, φ) when adequate simultaneous Shewhart and EWMA residual schemes

were used instead of the traditional ones. Even though the values in Table 4

refer to ±φ = 0, 0.3, 0.5, 0.7, 0.9, 0.95, figures 1 through 4 were drawn consider-

ing ±φ = 0(0.05)0.95(0.01)0.99; these estimates will be made available to those

who are interested and request them from the authors. As in [8], we obtained
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estimates of PMS of types III and IV that are close to the corresponding values

of PMS when simultaneous residual schemes are at use, for φ = 0, as illustrated

by Table 4 and by the grey and black lines intersecting at φ = 0 in figures 1–4.

Table 3: PMS of Type III of simultaneous Shewhart (λ =1)

and EWMA residual schemes.

θ PMSIII(θ) λ

1.02
0.475786 1
0.343880 0.05

1.10
0.397714 1
0.100265 0.05

1.20
0.331373 1
0.042865 0.05
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Figure 1: AR(1) model, Shewhart — PMSIII(θ) (simultaneous residual scheme,

grey line) and estimates of PMS of Type III (traditional simultaneous

scheme, black line).
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Figure 2: AR(1) model, EWMA — PMSIII(θ) (simultaneous residual scheme,

grey line) and estimates of PMS of Type III (traditional simultaneous

scheme, black line).
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Table 4: AR(1) model — estimates of PMS of Type III of traditional simultaneous

scheme; PMSIV(δ, φ) of simultaneous residual scheme; estimates of PMS

of Type IV of traditional simultaneous scheme.

φ ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000000 0.000000 0.000110 0.007510 0.475890 0.939740 0.987590 0.999240 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000250 0.009400 0.344270 0.986560 0.999830 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000170 0.011470 0.396250 0.895130 0.975500 0.997660 1.000000 1.000000 1
0.000000 0.000000 0.000010 0.000230 0.004680 0.098620 0.780360 0.995280 0.999970 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000580 0.016570 0.332010 0.827120 0.951150 0.994980 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000140 0.002480 0.041700 0.366390 0.909000 0.999800 1.000000 1.000000 0.05

δ

0.05
0.245605 0.331756 0.429811 0.457404 0.470828 0.481977 0.488703 0.492034 0.494900 0.497702 0.498534 1
0.021403 0.040098 0.109687 0.169903 0.221933 0.288653 0.346313 0.381892 0.417014 0.455573 0.467676 0.05

0.50
0.000411 0.003322 0.009211 0.017601 0.030661 0.061967 0.113516 0.165244 0.240161 0.363509 0.414297 1
0.004417 0.002008 0.000750 0.000930 0.001422 0.002907 0.006195 0.010799 0.020925 0.055933 0.085086 0.05

1.00
0.000000 0.000000 0.000620 0.001398 0.002359 0.005825 0.016431 0.035020 0.081256 0.229454 0.323318 1
0.002409 0.012133 0.000422 0.000158 0.000141 0.000262 0.000794 0.002010 0.006279 0.032854 0.064217 0.05

δ

0.05
1.000000 1.000000 1.000000 0.999940 0.992360 0.483350 0.050420 0.009680 0.000500 0.000000 0.000000 1
1.000000 1.000000 0.999770 0.992400 0.919140 0.288740 0.003400 0.000050 0.000010 0.000000 0.000000 0.05

0.50
0.999960 0.999980 0.998590 0.953870 0.577890 0.061520 0.011340 0.003560 0.000350 0.000000 0.000000 1
0.180890 0.158220 0.090350 0.043940 0.017100 0.003350 0.000370 0.000010 0.000000 0.000000 0.000000 0.05

1.00
0.788930 0.745620 0.419080 0.137540 0.036130 0.005740 0.002070 0.000840 0.000120 0.000000 0.000000 1
0.061330 0.049940 0.021770 0.007360 0.002170 0.000310 0.000040 0.000010 0.000000 0.000000 0.000000 0.05
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Figure 3: AR(1) model, Shewhart — PMSIV(δ, φ) (simultaneous residual scheme,

grey line) and estimates of PMS of Type IV (traditional simultaneous

scheme, black line).
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Figure 4: AR(1) model, EWMA — PMSIV(δ, φ) (simultaneous residual

scheme, grey line) and estimates of PMS of Type IV (tradi-

tional simultaneous scheme, black line).
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When we neglect the autocorrelation structure, the estimates of the PMS

of Type III increase from 0 to 1 with φ, even though PMSIII(θ) does not exceed

0.5 or depend on φ when simultaneous residual schemes are at use, as figures

1 and 2 portray quite vividly. Besides that, it is apparent from figures 3 and

4 that the estimates of PMS of Type IV seem to decrease with φ, whereas for

simultaneous residual schemes PMSIV(δ, φ) tends to increase with φ (see Table 4).

Additionally, the PMS of types III and IV are very sensitive to autocorrelation,

for instance, we got for the simultaneous EWMA scheme:

• PMSIII(1.02) = 0.343880, still the corresponding estimates are 0.000110

and 0.987590, for φ = −0.5 and φ = 0.5;

• PMSIV(0.05,−0.5) = 0.169903 and PMSIV(0.05, 0.5) = 0.381892, while

the estimated values are 0.992400 and 0.000050.

It should be also added that the values in tables 3 and 4 and the graphs

in figures 1–4 suggest that replacing the traditional Shewhart with traditional

EWMA charts only offers improvement with regard to MS of Type IV (for all

values of φ), even though both PMSIII(θ) and PMSIV(δ, φ) seem to decrease

when a simultaneous EWMA residual scheme takes the place of a simultaneous

Shewhart residual scheme.

4.2. AR(2) model

The AR(2) process was originally used by G.U. Yule in 1927 to describe the

behavior of a simple pendulum and since then it has been widely used to describe

a variety of phenomena, namely occurring in engineering and other related fields

([22]) such as industry. Let us recall that the process {Yi,j} follows a stationary

AR(2) model with mean µ0, variance γ0 = σ
2
0 and parameters φ1 and φ2, for each

i, if

(4.6) Yi,j = µ0 + φ1(Yi,j−1 − µ0) + φ2(Yj,i−2 − µ0) + εi,j ,

where: the parameters φ1 and φ2 lie in a triangular region restricted by −1<φ2<1,

φ1 +φ2 < 1 and φ2 −φ1 < 1; and the innovations satisfy εi,j ∼i.i.d. N (0, σ
2
ε), with

σ
2
ε =

(1+φ2) [(1−φ2)2−φ2
1]

1−φ2
× σ

2
0.

The investigations on the impact of falsely assuming i.i.d. output — instead

of an AR(2) model — in the PMS of types III and IV led to some interesting

results.

Firstly, note that the graphs in Figure 5 (resp. 6) were restricted to the

EWMA scheme and to θ = 1.02 (resp. δ = 0.05) because similar ones were ob-

tained for the Shewhart scheme or most of the other values of θ (resp. δ) and
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φ1 and φ2; however, tables 5 and 6 provide results for a wider constellation of

parameters. Moreover, since the family of AR(2) processes includes the i.i.d. pro-

cess and the sub-family of AR(1) processes: when φ1 = φ2 = 0, the estimates of

the PMS of Type III (resp. Type IV) in tables 5 and 6 are close to the values of

PMSIII(θ) (resp. the corresponding values of PMSIV(δ, φ1, φ2)) in Table 3 (resp.

tables 5 and 6); when φ2 = 0, the values of PMSIV(δ, φ1, φ2) in Table 5 obviously

coincide with the ones of PMSIV(δ, φ); finally, when φ2 = 0, the estimated results

of the PMS of types III and IV in Table 5 are comparable to the ones we obtained

for the AR(1) model in Table 4.
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Figure 5: AR(2) model, EWMA — PMSIII(θ) (simultaneous residual scheme,

grey line) and estimates of PMS of Type III (traditional simulta-

neous scheme, black line), for φ1 ∈ (φ2 − 1, 1 − φ2) [top] and φ2 ∈
(−1,min{1 − φ1, 1 + φ1}) [bottom].

Secondly, when φ2 takes a fixed value in (−1, 1) such as φ2 = −0.5, 0, 0.5,

the estimates of the PMS of Type III (resp. Type IV) increase (resp. decrease)

with φ1 ∈ (φ2 − 1, 1 − φ2) instead of being constant (resp. increasing), as shown

by Figure 5 (resp. 6); analogously, when φ1 = −0.5, 0, 0.5, the estimates of the

PMS of Type III (resp. Type IV) also increase (resp. tend to decrease) with

φ2 ∈ (−1,min{1−φ1, 1+φ1}) when they should not vary (resp. should increase).

Curiously enough when φ2 = −0.5 (resp. φ1 = −0.5) and φ1 ∈ (φ2 − 1, 0] (resp.

φ2 ∈ (−1,min{1 − φ1, 1 + φ1})) the estimates of the PMS of Type III are all
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very close to zero, as Figure 5 and Table 5 suggest, i.e., the individual EWMA

chart for the process variance tends to signal earlier than the one for the process

mean most of the time, when there is a small upward shift in σ
2
. A comparable

result was obtained for the estimates of the PMS of Type IV: when φ2 = −0.5

(resp. φ1 = −0.5) and φ1 ∈ (φ2−1, 0] (resp. φ2 ∈ (−1, min{1−φ1, 1+φ1})), these

estimates are very close to 1 (see Figure 6 or tables 5 and 6), certainly because

the individual EWMA chart for σ
2

tends to trigger alarms sooner than the one

for µ most of the time, when there is a small shift in the process mean.
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Figure 6: AR(2) model, EWMA — PMSIV(δ, φ1, φ2) (simultaneous residual

scheme, grey line) and estimates of PMS of Type IV (traditional

simultaneous scheme, black line), for φ1 ∈ (φ2 − 1, 1 − φ2) [top]

and φ2 ∈ (−1,min{1 − φ1, 1 + φ1}) [bottom].

Thirdly, we ought to refer that the discrepancies between the estimates of

both PMS and their corresponding values are all too apparent not only in figures

5 and 6, but also in tables 5 and 6. In fact, if we (un)conscientiously disre-

gard the autocorrelation structure of the output and adopt traditional simultane-

ous schemes for the process mean and variance instead of simultaneous residual

schemes, we are bound to overestimate or underestimate the PMS depending

on the values of the parameters φ1 and φ2. For example, for the simultaneous

Shewhart residual scheme, we got:



On the Impact of Falsely Assuming I.I.D. Output in the PMS 235

Table 5: AR(2) model, φ2 = −0.5, 0, 0.5 — estimates of PMS of Type III

of traditional simultaneous scheme; PMSIV(δ, φ1, φ2) of simultane-

ous residual scheme; estimates of PMS of Type IV of traditional

simultaneous scheme.

φ2 = −0.5, φ1 ∈ (φ2 − 1, 1 − φ2)

−1.45 −1.40 −0.90 −0.50 −0.30 0 0.30 0.50 0.90 1.40 1.45 λ

θ

1.02
0.000000 0.000000 0.000000 0.000000 0.000010 0.000720 0.011150 0.071770 0.842410 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000020 0.000080 0.001620 0.016380 0.104460 0.988900 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000010 0.000110 0.001220 0.015700 0.085110 0.793730 0.999990 1.000000 1
0.000000 0.000000 0.000000 0.000010 0.000030 0.001010 0.008140 0.044860 0.884560 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000020 0.000260 0.002620 0.024310 0.098430 0.738910 0.999950 1.000000 1
0.000000 0.000000 0.000000 0.000010 0.000050 0.000540 0.004940 0.024110 0.564330 1.000000 1.000000 0.05

δ

0.05
0.138986 0.197873 0.393962 0.437392 0.450454 0.464818 0.475377 0.481078 0.490475 0.500429 0.501417 1
0.013758 0.017160 0.070914 0.121760 0.149613 0.194614 0.243968 0.279727 0.360091 0.483677 0.496673 0.05

0.50
0.000000 0.000001 0.007995 0.012968 0.017160 0.027299 0.045670 0.066361 0.154214 0.556766 0.630473 1
0.131107 0.084971 0.001655 0.001145 0.001214 0.001594 0.002504 0.003731 0.011401 0.271185 0.510216 0.05

1.00
0.000000 0.000000 0.000139 0.001325 0.001960 0.003169 0.005704 0.009563 0.041267 0.666765 0.811956 1
0.000000 0.000000 0.002232 0.000810 0.000516 0.000404 0.000503 0.000768 0.004035 0.450430 0.775576 0.05

δ

0.05
1.000000 1.000000 1.000000 1.000000 0.999950 0.999360 0.988830 0.922900 0.139220 0.000000 0.000000 1
1.000000 1.000000 0.999980 0.998540 0.994410 0.976350 0.891690 0.650750 0.004600 0.000000 0.000000 0.05

0.50
1.000000 1.000000 0.999990 0.990560 0.959620 0.848090 0.600330 0.349410 0.033800 0.000000 0.000000 1
0.871920 0.675190 0.034890 0.036680 0.031800 0.028900 0.023530 0.017040 0.000930 0.000000 0.000000 0.05

1.00
0.943180 0.952440 0.518420 0.159430 0.104840 0.072870 0.051150 0.035160 0.006500 0.000000 0.000000 1
0.418460 0.223430 0.005860 0.004660 0.004220 0.004350 0.003760 0.003240 0.000320 0.000000 0.000000 0.05

φ2 = 0, φ1 ∈ (φ2 − 1, 1 − φ2)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000000 0.000000 0.000030 0.007440 0.475730 0.937650 0.987950 0.999320 1.000000 1.000000 1
0.000000 0.000000 0.000010 0.000240 0.009180 0.344010 0.986890 0.999840 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000190 0.011080 0.398280 0.894630 0.976030 0.997670 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000190 0.004460 0.099910 0.777120 0.995430 0.999990 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000680 0.017310 0.330990 0.827600 0.951130 0.993990 1.000000 1.000000 1
0.000000 0.000000 0.000010 0.000110 0.002510 0.043050 0.367860 0.907220 0.999770 1.000000 1.000000 0.05

δ

0.05
0.245605 0.331756 0.429811 0.457404 0.470828 0.481977 0.488703 0.492034 0.494900 0.497702 0.498534 1
0.021403 0.040098 0.109687 0.169903 0.221933 0.288653 0.346313 0.381892 0.417014 0.455573 0.467676 0.05

0.50
0.000411 0.003322 0.009211 0.017601 0.030661 0.061967 0.113516 0.165244 0.240161 0.363509 0.414297 1
0.004417 0.002008 0.000750 0.000930 0.001422 0.002907 0.006195 0.010799 0.020925 0.055933 0.085086 0.05

1.00
0.000000 0.000000 0.000620 0.001398 0.002359 0.005824 0.016431 0.035020 0.081256 0.229454 0.323318 1
0.002409 0.012133 0.000422 0.000158 0.000141 0.000262 0.000794 0.002010 0.006279 0.032854 0.064217 0.05

δ

0.05
1.000000 1.000000 1.000000 0.999930 0.992470 0.482494 0.048980 0.009800 0.000680 0.000000 0.000000 1
1.000000 1.000000 0.999830 0.992790 0.920050 0.287590 0.003720 0.000020 0.000000 0.000000 0.000000 0.05

0.50
0.999980 0.999960 0.998730 0.955350 0.580780 0.059860 0.011580 0.003230 0.000270 0.000000 0.000000 1
0.179330 0.160950 0.090900 0.043180 0.017730 0.003100 0.000300 0.000020 0.000000 0.000000 0.000000 0.05

1.00
0.789070 0.744350 0.413940 0.134390 0.036730 0.005790 0.002280 0.000990 0.000050 0.000000 0.000000 1
0.061170 0.050720 0.021960 0.006970 0.002150 0.000270 0.000020 0.000010 0.000000 0.000000 0.000000 0.05

φ2 = 0.5, φ1 ∈ (φ2 − 1, 1 − φ2)

−0.45 −0.40 −0.30 −0.20 −0.10 0 0.10 0.20 0.30 0.40 0.45 λ

θ

1.02
0.000000 0.000010 0.002740 0.077290 0.454160 0.866230 0.984990 0.999460 1.000000 1.000000 1.000000 1
0.000000 0.000140 0.014690 0.150070 0.632900 0.973230 0.999810 1.000000 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000020 0.006050 0.096260 0.438920 0.819820 0.971280 0.997940 0.999980 1.000000 1.000000 1
0.000000 0.000140 0.009360 0.071180 0.297150 0.774640 0.992040 0.999980 1.000000 1.000000 1.000000 0.05

1.20
0.000000 0.000030 0.011040 0.121060 0.422070 0.761270 0.942220 0.993600 0.999860 1.000000 1.000000 1
0.000000 0.000190 0.006330 0.039050 0.143380 0.419480 0.873390 0.999000 1.000000 1.000000 1.000000 0.05

δ

0.05
0.425908 0.455393 0.474771 0.482647 0.487085 0.490010 0.492133 0.493786 0.495153 0.496379 0.497022 1
0.103984 0.163775 0.241873 0.292843 0.329739 0.358237 0.381300 0.400664 0.417437 0.432431 0.439677 0.05

0.50
0.008753 0.016719 0.039676 0.068293 0.100647 0.135836 0.1735485 0.214001 0.258226 0.309794 0.343080 1
0.000772 0.000920 0.001907 0.003438 0.005566 0.008450 0.012366 0.017820 0.025858 0.039377 0.051647 0.05

1.00
0.000549 0.001379 0.003606 0.007808 0.014985 0.026349 0.043585 0.069296 0.108180 0.171820 0.225618 1
0.000500 0.000181 0.000221 0.000428 0.000858 0.001675 0.003188 0.006037 0.011775 0.025701 0.043189 0.05

δ

0.05
1.000000 0.999990 0.996360 0.919740 0.528740 0.116840 0.011320 0.000460 0.000000 0.000000 0.000000 1
0.999520 0.993190 0.907280 0.612750 0.171630 0.009410 0.000100 0.000000 0.000000 0.000000 0.000000 0.05

0.50
0.999360 0.989080 0.814290 0.413890 0.135410 0.030830 0.003830 0.000210 0.000000 0.000000 0.000000 1
0.073170 0.069410 0.050980 0.025950 0.008120 0.001250 0.000100 0.000000 0.000000 0.000000 0.000000 0.05

1.00
0.494000 0.286850 0.121670 0.054140 0.021170 0.005860 0.001270 0.000100 0.000000 0.000000 0.000000 1
0.025000 0.021770 0.014870 0.006890 0.002250 0.000370 0.000010 0.000000 0.000000 0.000000 0.000000 0.05
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Table 6: AR(2) model, φ1 = −0.5, 0, 0.5 — estimates of PMS of Type III

of traditional simultaneous scheme; PMSIV(δ, φ1, φ2) of simultane-

ous residual scheme; estimates of PMS of Type IV of traditional

simultaneous scheme.

φ1 = −0.5, φ2 ∈ (−1, min{1 − φ1, 1 + φ1})

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.10 0.20 0.30 0.40 0.45 λ

θ

1.02
0.000000 0.000000 0.000000 0.000000 0.000010 0.000100 0.000040 0.000030 0.000000 0.000000 0.000000 1
0.000000 0.000000 0.000000 0.000000 0.000040 0.000280 0.000330 0.000230 0.000050 0.000000 0.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000000 0.000020 0.000170 0.000160 0.000040 0.000010 0.000000 0.000000 1
0.000000 0.000000 0.000000 0.000010 0.000040 0.000180 0.000290 0.000190 0.000080 0.000020 0.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000020 0.000140 0.000530 0.000590 0.000300 0.000040 0.000000 0.000000 1
0.000000 0.000000 0.000000 0.000000 0.000040 0.000130 0.000190 0.000120 0.000080 0.000000 0.000000 0.05

δ

0.05
0.265973 0.331442 0.412628 0.437392 0.449385 0.457404 0.457915 0.456777 0.452369 0.437529 0.412047 1
0.028191 0.041403 0.087209 0.121760 0.147475 0.169903 0.171484 0.167913 0.155284 0.122515 0.087187 0.05

0.50
0.001453 0.012770 0.012890 0.012968 0.014656 0.017601 0.017971 0.017452 0.015354 0.010649 0.007313 1
0.087440 0.032186 0.002498 0.001145 0.000918 0.000930 0.000947 0.000942 0.000887 0.000765 0.000832 0.05

1.00
0.000000 0.000000 0.000784 0.001325 0.001320 0.001398 0.001437 0.001430 0.001289 0.000815 0.000293 1
0.002662 0.238867 0.004256 0.000810 0.000272 0.000158 0.000160 0.000173 0.000204 0.000327 0.000685 0.05

δ

0.05
1.000000 1.000000 1.000000 1.000000 0.999960 0.999960 0.999990 1.000000 1.000000 1.000000 1.000000 1
0.999970 0.999980 0.999700 0.998780 0.996370 0.993010 0.992950 0.994340 0.996680 0.999220 0.999960 0.05

0.50
0.999850 0.999730 0.998040 0.990070 0.969240 0.954960 0.962810 0.976340 0.988620 0.998010 0.999780 1
0.064170 0.061210 0.045270 0.035980 0.030520 0.045120 0.055290 0.071140 0.085320 0.090880 0.087500 0.05

1.00
0.522970 0.457320 0.270600 0.161080 0.108920 0.137290 0.170260 0.219500 0.293710 0.422840 0.568690 1
0.013980 0.013680 0.008090 0.004810 0.003540 0.007430 0.011440 0.017860 0.024520 0.029830 0.028010 0.05

φ1 = 0, φ2 ∈ (−1, min{1 − φ1, 1 + φ1})

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000000 0.000010 0.000580 0.021740 0.475280 0.829100 0.867240 0.874730 0.874670 0.875560 1
0.000000 0.000000 0.000050 0.001520 0.020380 0.344220 0.907420 0.975770 0.986270 0.987750 0.987190 0.05

1.10
0.000000 0.000000 0.000010 0.001230 0.028860 0.398150 0.762310 0.820770 0.837850 0.844030 0.842710 1
0.000000 0.000000 0.000050 0.001080 0.009290 0.099020 0.484720 0.777010 0.902690 0.940200 0.945050 0.05

1.20
0.000000 0.000000 0.000050 0.002830 0.034870 0.330540 0.679990 0.763560 0.793910 0.803910 0.804720 1
0.000000 0.000000 0.000020 0.000550 0.004910 0.041310 0.197860 0.415300 0.653040 0.794970 0.818310 0.05

δ

0.05
0.325587 0.384272 0.446882 0.464818 0.473945 0.481977 0.487213 0.49001 0.492604 0.495445 0.496394 1
0.040491 0.064109 0.139835 0.194614 0.237379 0.288653 0.331564 0.358237 0.385490 0.418047 0.429451 0.05

0.50
0.015391 0.022880 0.021202 0.027299 0.037796 0.061967 0.099469 0.135836 0.188234 0.278600 0.319136 1
0.072186 0.016166 0.002189 0.001594 0.001818 0.002907 0.005309 0.008450 0.014691 0.032342 0.044485 0.05

1.00
0.000000 0.000113 0.003602 0.003169 0.003391 0.005824 0.013624 0.026349 0.055378 0.141787 0.197402 1
0.326726 0.062125 0.002158 0.000404 0.000212 0.000262 0.000693 0.001675 0.004892 0.021400 0.037551 0.05

δ

0.05
1.000000 1.000000 0.999990 0.999160 0.975660 0.483339 0.147560 0.116520 0.108380 0.108150 0.108120 1
1.000000 0.999960 0.998380 0.977150 0.856280 0.290070 0.027930 0.009950 0.006680 0.007060 0.007340 0.05

0.50
0.999900 0.999640 0.987880 0.847910 0.412620 0.061730 0.027550 0.030070 0.036960 0.045330 0.047820 1
0.097810 0.089420 0.053190 0.030550 0.012830 0.002850 0.001220 0.001230 0.001760 0.003140 0.003420 0.05

1.00
0.554140 0.467040 0.197720 0.073030 0.024560 0.005800 0.004050 0.006100 0.008850 0.012780 0.013620 1
0.022550 0.018790 0.009510 0.004170 0.001590 0.000290 0.000220 0.000340 0.000730 0.001490 0.001790 0.05

φ1 = 0.5, φ2 ∈ (−1, min{1 − φ1, 1 + φ1})

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.10 0.20 0.30 0.40 0.45 λ

θ

1.02
0.000000 0.000000 0.000270 0.073120 0.633280 0.988150 0.997440 0.999790 0.999980 1.000000 1.000000 1
0.000000 0.000000 0.001210 0.103060 0.768940 0.999810 1.000000 1.000000 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000760 0.086300 0.576680 0.975240 0.994340 0.999220 0.999970 1.000000 1.000000 1
0.000000 0.000000 0.000990 0.043900 0.359030 0.994990 0.999880 1.000000 1.000000 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.001740 0.097770 0.515500 0.951820 0.985120 0.997400 0.999900 1.000000 1.000000 1
0.000000 0.000000 0.000700 0.023350 0.158150 0.907670 1.000000 1.000000 1.000000 1.000000 1.000000 0.05

δ

0.05
0.379857 0.426024 0.469467 0.481078 0.486905 0.492034 0.493287 0.494409 0.495447 0.496467 0.497046 1
0.061691 0.101246 0.211369 0.279727 0.328298 0.381892 0.396572 0.410115 0.422683 0.434450 0.440385 0.05

0.50
0.035274 0.034565 0.043821 0.066361 0.098203 0.165244 0.193828 0.226430 0.264326 0.311321 0.343262 1
0.041673 0.011949 0.003422 0.003731 0.005337 0.010799 0.014136 0.018945 0.026321 0.039280 0.051442 0.05

1.00
0.000045 0.005096 0.009032 0.009563 0.014028 0.035020 0.049987 0.072778 0.108633 0.170302 0.224296 1
0.209786 0.038736 0.002032 0.000768 0.000771 0.002010 0.003244 0.005635 0.010750 0.024221 0.042037 0.05

δ

0.05
1.000000 1.000000 0.999740 0.923440 0.340790 0.009680 0.001720 0.000120 0.000000 0.000000 0.000000 1
1.000000 1.000000 0.979870 0.653430 0.084830 0.000100 0.000000 0.000000 0.000000 0.000000 0.000000 0.05

0.50
1.000000 1.000000 0.921130 0.352000 0.070190 0.003450 0.000840 0.000080 0.000000 0.000000 0.000000 1
0.078310 0.072090 0.042240 0.016830 0.003880 0.000060 0.000000 0.000000 0.000000 0.000000 0.000000 0.05

1.00
0.995080 0.821420 0.127650 0.035080 0.010130 0.000970 0.000150 0.000000 0.000000 0.000000 0.000000 1
0.017940 0.016050 0.007670 0.002640 0.000800 0.000060 0.000000 0.000000 0.000000 0.000000 0.000000 0.05



On the Impact of Falsely Assuming I.I.D. Output in the PMS 237

• PMSIII(1.1) = 0.397714, while the estimates can take values from

0.000000 (φ1 = −0.9, φ2 = −0.5) to 1.000000 (φ1 = 0.5, φ2 = 0.45), but

also values in between, such as 0.438920 (φ1 = −0.1, φ2 = 0.5) and

0.011080 (φ1 = −0.3, φ2 = 0);

• PMSIV(0.5,−0.5,−0.5) = 0.012968, PMSIV(0.5, 1.45,−0.5) = 0.630473,

PMSIV(0.5,−0.1, 0.5) = 0.100647 and PMSIV(0.5, 0, 0.5) = 0.135836, ne-

vertheless, the estimated PMS are equal to 0.990070, 0.000000, 0.135410

and 0.030070, respectively.

To sum up, these results and the ones in tables 5 and 6 are in accordance to

the ones we reported in the previous subsection for the AR(1) model — when we

fail to recognize an AR(2) process and mistakenly design a simultaneous scheme

assuming i.i.d. output, the estimates of the PMS of Type III (resp. Type IV) tend

to increase (resp. decrease) with parameters φ1 and φ2. As a consequence, only

simultaneous residual schemes will give protection to both types of MS.

4.3. ARMA(1,1) model

Autocorrelated output from stable (continuous) processes frequently follow

ARMA models of low order ([13, p. 2]), such as ARMA(1,1). The process {Yi,j}
follows a stationary and invertible ARMA(1,1) model with mean µ0, variance

σ
2
0 = γ0, autoregressive parameter φ and moving average parameter α, for every i,

if

(4.7) Yi,j = µ0 + φ(Yi,j−1 − µ0) + εi,j − α εi,j−1 ,

where −1 < φ, α < 1 and εi,j ∼i.i.d. N (0, σ
2
ε), with σ

2
ε =

1−φ2

1+α2−2φα
× σ

2
0.

Now it is time to investigate the impact of falsely assuming i.i.d. output —

rather than recognizing the ARMA(1,1) nature of the output — in the PMS of

both types III and IV.

Once again we restricted ourselves to the EWMA scheme, θ = 1.02 and

δ = 0.05 when it comes to graphical illustrations because the graphs we obtained

for the Shewhart scheme or most of the other values of θ, δ, φ and α are similar

to the ones in figures 7 and 8; tables 7 and 8 provide complementary results.

In addition to this, we should remind the reader that the sub-family of AR(1)

processes and the i.i.d. process are particular cases of the ARMA(1,1) processes.

As a consequence we were able to check the values we got for PMSIV(δ, φ, α) in

Table 7 (resp. Table 8) when α = 0 (resp. φ = α = 0), with the ones in Table 4.

Unsurprisingly, the estimates of the PMS of Type III (resp. Type IV) in tables 7

and 8 are close to the values of PMSIII(θ) (resp. PMSIV(δ, φ, α)) in Table 3 (resp.

tables 7 and 8); moreover, when α = 0, the estimates of the PMS of types III and

IV in Table 7 are comparable to the ones we obtained for the AR(1) model in

Table 4.
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Tables 7 and 8 and Figure 8 lead us to state that PMSIV(δ, φ, α) seems to:

decrease with α, for varying or fixed φ, unlike PMSIV(δ, φ) and PMSIV(δ, φ1, φ2)

that tend to increase with the model parameter(s); increase with the autoregres-

sive parameter φ like in the two previous models. Once again the adoption of a

simultaneous EWMA residual scheme in place of a simultaneous Shewhart resi-

dual scheme yields a decrease of the PMSIV(δ, φ, α), for most values of δ, φ and

α of this specific output process.
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Figure 7: ARMA(1,1) model, EWMA — PMSIII(θ) (simultaneous residual

scheme, grey line) and estimates of PMS of Type III (traditional

simultaneous scheme, black line), for φ ∈ (−1, 1) [top] and α ∈
(−1, 1) [bottom].

When we ignore that the output follows an ARMA(1, 1) model, the esti-

mates of the PMS of Type III increase (resp. decrease) from 0 to 1 with φ (resp.

α), although PMSIII(θ) is constant when we adopt simultaneous residual schemes,

as depicted by figures 7 and 8; curiously, when φ = −0.5 the estimates of the PMS

of Type III estimates are in general smaller than PMS(θ) in the EWMA case for

θ = 1.02, as shown in Figure 7, but also for the Shewhart case and θ = 1.1, 1.2.

Furthermore, Figure 8 suggests that the estimates of PMS of Type IV decrease

(resp. increase) with φ (resp. α); however, the values of PMSIV(δ, φ, α) tend to

increase (resp. tend to decrease) with φ (resp. α) for fixed α (resp. φ), as por-

trayed by Table 7 (resp. 8). It goes without saying that correlation has quite
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an impact on the PMS of types III and IV. For example, for the simultaneous

EWMA residual scheme, we got:

• PMSIII(1.2) = 0.042865, whereas the estimates take values from 0.000000

(φ = −0.5, α = 0.5) to 1.000000 (φ = 0.9, α = 0.5) and values in the

interval (0, 1), such as 0.371910 φ = 0, α = −0.5) and 0.992420 (φ =

0.5, α = −0.3);

• PMSIV(1.0,−0.5, 0.6) = 0.045997, PMSIV(1.0, 0.9, 0.5) = 0.0121289,

PMSIV(1.0, 0,−0.6) = 0.002448 and PMSIV(1.0, 0.5,−0.3) = 0.007234,

however, the estimated PMS are equal to 0.013120, 0.000000, 0.000180

and 0.000000, respectively.
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Figure 8: ARMA(1,1) model, EWMA — PMSIV(δ, φ, α) (simultaneous residual

scheme, grey line) and estimates of PMS of Type IV (traditional

simultaneous scheme, black line), for φ ∈ (−1, 1) [top] and α ∈ (−1, 1)

[bottom].

Once again, the numerical results in tables 7 and 8 revealed that substi-

tuting the traditional Shewhart by a traditional EWMA chart can be frequently

followed by an increase of the estimates of the PMS of types III and IV, even

though both PMSIII(θ) and PMSIV(δ, φ, α) decrease (in general) when a simulta-

neous EWMA residual scheme replaces a simultaneous Shewhart residual scheme.
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Table 7: ARMA(1,1) model, α = −0.5, 0, 0.5 — estimates of PMS of Type III

of traditional simultaneous scheme; PMSIV(δ, φ, α) of simultaneous

residual scheme; estimates of PMS of Type IV of traditional simulta-

neous scheme.

α = −0.5, φ ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000020 0.014870 0.237770 0.663090 0.897370 0.975290 0.994530 0.999690 1.000000 1.000000 1
0.000000 0.000060 0.005400 0.073120 0.462260 0.976270 0.999600 0.999990 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000090 0.021090 0.218110 0.578860 0.846470 0.956710 0.988500 0.999110 1.000000 1.000000 1
0.000000 0.000090 0.003500 0.033410 0.165390 0.749910 0.993510 0.999860 1.000000 1.000000 1.000000 0.05

1.20
0.000000 0.000250 0.030950 0.206270 0.490990 0.777930 0.926250 0.976410 0.997130 1.000000 1.000000 1
0.000000 0.000010 0.002650 0.018190 0.077920 0.371910 0.911080 0.996570 0.999960 1.000000 1.000000 0.05

δ

0.05
0.461709 0.470959 0.481183 0.484953 0.487537 0.490736 0.493693 0.495669 0.497736 0.500100 0.500867 1
0.181982 0.221266 0.282392 0.311712 0.334569 0.366417 0.399620 0.423733 0.450097 0.479688 0.488022 0.05

0.50
0.028599 0.035284 0.059992 0.080718 0.102717 0.145310 0.211128 0.278578 0.378206 0.532869 0.588638 1
0.002089 0.001917 0.002903 0.004068 0.005543 0.009165 0.017346 0.030600 0.066607 0.223590 0.346540 0.05

1.00
0.004555 0.003995 0.006088 0.009456 0.014463 0.028959 0.066950 0.131011 0.281473 0.614743 0.731917 1
0.001019 0.000378 0.000313 0.000464 0.000743 0.001773 0.005713 0.016133 0.062199 0.362196 0.581421 0.05

δ

0.05
1.000000 0.999870 0.984940 0.742730 0.299680 0.085390 0.019830 0.004300 0.000260 0.000000 0.000000 1
0.999830 0.999230 0.980050 0.807800 0.266820 0.006970 0.000160 0.000030 0.000000 0.000000 0.000000 0.05

0.50
0.995940 0.978720 0.702140 0.190550 0.054190 0.020570 0.006460 0.001870 0.000120 0.000000 0.000000 1
0.317100 0.337220 0.151560 0.028600 0.005020 0.000720 0.000090 0.000000 0.000000 0.000000 0.000000 0.05

1.00
0.517520 0.399720 0.116810 0.021890 0.007260 0.003600 0.001280 0.000500 0.000020 0.000000 0.000000 1
0.109900 0.105250 0.027830 0.003170 0.000570 0.000210 0.000050 0.000000 0.000000 0.000000 0.000000 0.05

α = 0, φ ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000000 0.000000 0.000070 0.007220 0.474190 0.938290 0.988060 0.999320 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000210 0.009000 0.344310 0.987430 0.999840 1.000000 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000210 0.011400 0.398590 0.895530 0.975530 0.997850 1.000000 1.000000 1
0.000000 0.000000 0.000000 0.000210 0.004680 0.100180 0.779820 0.995310 1.000000 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000630 0.016890 0.331170 0.828060 0.950540 0.994370 0.999990 1.000000 1
0.000000 0.000000 0.000000 0.000070 0.002620 0.041820 0.366710 0.909390 0.999690 1.000000 1.000000 0.05

δ

0.05
0.245605 0.331756 0.429811 0.457404 0.470828 0.481977 0.488703 0.492034 0.494900 0.497702 0.498534 1
0.021403 0.040098 0.109687 0.169903 0.221933 0.288653 0.346313 0.381892 0.417014 0.455573 0.467676 0.05

0.50
0.000411 0.003322 0.009211 0.017601 0.030661 0.061967 0.113516 0.165244 0.240161 0.363509 0.414297 1
0.004417 0.002008 0.000750 0.000930 0.001422 0.002907 0.006195 0.010799 0.020925 0.055933 0.085086 0.05

1.00
0.000000 0.000000 0.000620 0.001398 0.002359 0.005824 0.016431 0.035020 0.081256 0.229454 0.323318 1
0.002409 0.012133 0.000422 0.000158 0.000141 0.000262 0.000794 0.002010 0.006279 0.032854 0.064217 0.05

δ

0.05
1.000000 1.000000 1.000000 0.999960 0.991760 0.484249 0.051580 0.009020 0.000510 0.000000 0.000000 1
1.000000 1.000000 0.999770 0.992870 0.918780 0.286200 0.003850 0.000050 0.000000 0.000000 0.000000 0.05

0.50
1.000000 0.999970 0.998620 0.954720 0.578830 0.062320 0.010940 0.003100 0.000200 0.000000 0.000000 1
0.178620 0.159300 0.091340 0.043710 0.017720 0.003220 0.000380 0.000040 0.000000 0.000000 0.000000 0.05

1.00
0.789230 0.746060 0.414820 0.134970 0.036230 0.005680 0.001970 0.000800 0.000110 0.000000 0.000000 1
0.061530 0.048890 0.021810 0.007440 0.002110 0.000300 0.000130 0.000000 0.000000 0.000000 0.000000 0.05

α = 0.5, φ ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.047350 0.695910 0.983310 0.999980 1.000000 1
0.000000 0.000000 0.000000 0.000000 0.000000 0.000040 0.019940 0.326950 0.986850 1.000000 1.000000 0.05

1.10
0.000000 0.000000 0.000000 0.000000 0.000000 0.000070 0.051120 0.599140 0.965840 0.999960 1.000000 1
0.000000 0.000000 0.000000 0.000000 0.000000 0.000060 0.009000 0.130160 0.847100 1.000000 1.000000 0.05

1.20
0.000000 0.000000 0.000000 0.000000 0.000000 0.000120 0.056460 0.506320 0.928280 0.999870 1.000000 1
0.000000 0.000000 0.000000 0.000000 0.000000 0.000010 0.005150 0.065750 0.531280 1.000000 1.000000 0.05

δ

0.05
0.179105 0.215087 0.322009 0.382990 0.421192 0.456249 0.476720 0.485569 0.491830 0.496163 0.496981 1
0.021150 0.021172 0.038021 0.063325 0.097070 0.165267 0.252675 0.316783 0.379364 0.433895 0.445274 0.05

0.50
0.000000 0.000017 0.007394 0.010726 0.012774 0.021023 0.046081 0.085810 0.161890 0.287884 0.325411 1
0.381255 0.220021 0.015474 0.003924 0.001904 0.001426 0.002305 0.004426 0.010519 0.030728 0.041320 0.05

1.00
0.000000 0.000000 0.000000 0.000077 0.001070 0.002618 0.004777 0.010706 0.034000 0.126378 0.172331 1
0.000000 0.000000 0.126200 0.009655 0.002860 0.000553 0.000314 0.000545 0.001976 0.012129 0.019974 0.05

δ

0.05
1.000000 1.000000 1.000000 1.000000 1.000000 0.999990 0.948060 0.266680 0.010810 0.000000 0.000000 1
1.000000 1.000000 1.000000 1.000000 0.999980 0.997240 0.896750 0.440600 0.004400 0.000000 0.000000 0.05

0.50
1.000000 1.000000 1.000000 1.000000 0.999980 0.973430 0.327820 0.053930 0.005320 0.000000 0.000000 1
0.162440 0.137210 0.083930 0.062050 0.046100 0.031970 0.020810 0.009870 0.000580 0.000000 0.000000 0.05

1.00
0.850880 0.877470 0.892810 0.772690 0.476960 0.114260 0.022080 0.008290 0.001590 0.000000 0.000000 1
0.054780 0.044580 0.022150 0.012550 0.007630 0.003710 0.001600 0.000880 0.000090 0.000000 0.000000 0.05
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Table 8: ARMA(1,1) model, φ = −0.5, 0, 0.5 — estimates of PMS of Type III

of traditional simultaneous scheme; PMSIV(δ, φ, α) of simultaneous

residual scheme; estimates of PMS of Type IV of traditional simulta-

neous scheme.

φ = −0.5, α ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.457660 0.452470 0.400090 0.238130 0.039670 0.000050 0.000000 0.000000 0.000000 0.000000 0.000000 1
0.149230 0.146220 0.122350 0.071460 0.021110 0.000270 0.000000 0.000000 0.000000 0.000000 0.000000 0.05

1.10
0.408010 0.406120 0.357100 0.216580 0.046720 0.000220 0.000000 0.000000 0.000000 0.000000 0.000000 1
0.071460 0.072440 0.058790 0.034090 0.010020 0.000250 0.000000 0.000000 0.000000 0.000000 0.000000 0.05

1.20
0.359950 0.358600 0.318480 0.200150 0.055320 0.000480 0.000000 0.000000 0.000000 0.000000 0.000000 1
0.042440 0.041090 0.032110 0.018770 0.005870 0.000190 0.000000 0.000000 0.000000 0.000000 0.000000 0.05

δ

0.05
0.480395 0.484236 0.486991 0.484953 0.479980 0.457404 0.425647 0.382990 0.333826 0.300133 0.295870 1
0.275450 0.305104 0.329699 0.311712 0.273922 0.169903 0.103053 0.063325 0.041691 0.033141 0.032201 0.05

0.50
0.061584 0.078360 0.096743 0.080718 0.055258 0.017601 0.012169 0.010726 0.009900 0.006023 0.005301 1
0.003321 0.004088 0.005077 0.004068 0.002669 0.000930 0.001503 0.003924 0.016522 0.036310 0.036225 0.05

1.00
0.008038 0.009944 0.012695 0.009456 0.005499 0.001398 0.001089 0.000077 0.000000 0.000000 0.000000 1
0.000588 0.000564 0.000622 0.000464 0.000294 0.000158 0.001836 0.009655 0.138196 0.128850 0.106785 0.05

δ

0.05
0.511620 0.516940 0.573440 0.745730 0.958320 0.999910 1.000000 1.000000 1.000000 1.000000 1.000000 1
0.722820 0.722860 0.745010 0.805760 0.902680 0.992200 1.000000 1.000000 1.000000 1.000000 1.000000 0.05

0.50
0.140790 0.138420 0.144850 0.189830 0.416760 0.955190 0.999800 1.000000 1.000000 1.000000 1.000000 1
0.033610 0.035080 0.030420 0.028340 0.030000 0.044150 0.058530 0.060210 0.063270 0.063950 0.065000 0.05

1.00
0.022700 0.021930 0.020800 0.021210 0.036800 0.137390 0.487070 0.772930 0.905330 0.941310 0.943090 1
0.004240 0.004660 0.003900 0.002900 0.003760 0.007430 0.011170 0.013190 0.014090 0.014060 0.013580 0.05

φ = 0, α ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.908920 0.910160 0.906110 0.898620 0.868240 0.473770 0.003420 0.000020 0.000000 0.000000 0.000000 1
0.987130 0.986940 0.984640 0.976120 0.935300 0.345880 0.004750 0.000040 0.000000 0.000000 0.000000 0.05

1.10
0.864100 0.864520 0.859050 0.846670 0.801580 0.398260 0.006000 0.000040 0.000000 0.000000 0.000000 1
0.849400 0.847540 0.825910 0.752340 0.548550 0.100580 0.002220 0.000000 0.000000 0.000000 0.000000 0.05

1.20
0.801860 0.802200 0.799270 0.775030 0.712870 0.333620 0.010280 0.000130 0.000000 0.000000 0.000000 1
0.499590 0.495990 0.463250 0.371320 0.224130 0.042200 0.001450 0.000040 0.000000 0.000000 0.000000 0.05

δ

0.05
0.494277 0.493794 0.492182 0.490736 0.488951 0.481977 0.472243 0.456249 0.430660 0.397957 0.389504 1
0.399002 0.395418 0.381231 0.366417 0.348203 0.288653 0.228148 0.165267 0.109878 0.073722 0.067526 0.05

0.50
0.253890 0.232569 0.176869 0.145310 0.118661 0.061967 0.035647 0.021023 0.015768 0.014755 0.014389 1
0.029515 0.023790 0.013012 0.009165 0.006755 0.002907 0.001799 0.001426 0.002150 0.004869 0.005802 0.05

1.00
0.130325 0.101906 0.047069 0.028959 0.018979 0.005824 0.003498 0.002618 0.001933 0.000368 0.000175 1
0.024256 0.015134 0.003745 0.001773 0.001023 0.000262 0.000262 0.000553 0.003228 0.010105 0.014359 0.05

δ

0.05
0.076440 0.077440 0.079140 0.085810 0.113210 0.480624 0.995560 1.000000 1.000000 1.000000 1.000000 1
0.004430 0.005020 0.005360 0.007330 0.017850 0.286010 0.946410 0.997210 0.999960 0.999980 0.999970 0.05

0.50
0.021250 0.021240 0.020560 0.021970 0.021780 0.062320 0.635820 0.972370 0.999010 0.999890 0.999860 1
0.000840 0.000870 0.000550 0.000780 0.000890 0.003330 0.017170 0.032600 0.043610 0.046410 0.047700 0.05

1.00
0.004280 0.004370 0.004510 0.003810 0.003410 0.005260 0.035820 0.114660 0.277980 0.425890 0.440990 1
0.000230 0.000260 0.000160 0.000200 0.000150 0.000220 0.002000 0.003800 0.005520 0.006120 0.005910 0.05

φ = 0.5, α ∈ (−1, 1)

−0.95 −0.90 −0.70 −0.50 −0.30 0 0.30 0.50 0.70 0.90 0.95 λ

θ

1.02
0.995020 0.994880 0.994800 0.994460 0.993490 0.988250 0.936280 0.693570 0.272970 0.118170 0.107720 1
0.999980 0.999980 1.000000 0.999980 0.999960 0.999820 0.943680 0.328860 0.060820 0.021760 0.020650 0.05

1.10
0.990200 0.989810 0.989520 0.988890 0.986900 0.975600 0.889050 0.601510 0.238770 0.110700 0.104630 1
0.999870 0.999850 0.999820 0.999870 0.999590 0.995420 0.600210 0.131810 0.029260 0.011710 0.010760 0.05

1.20
0.979300 0.978080 0.978060 0.976880 0.972870 0.952220 0.813460 0.506270 0.207750 0.106540 0.099790 1
0.997670 0.997770 0.997420 0.996350 0.992420 0.908190 0.278260 0.064790 0.015310 0.006500 0.005850 0.05

δ

0.05
0.499689 0.499118 0.497066 0.495669 0.494662 0.492034 0.489918 0.485569 0.477396 0.461660 0.455367 1
0.456381 0.452179 0.436525 0.423733 0.412621 0.381892 0.358381 0.316783 0.256556 0.182519 0.162304 0.05

0.50
0.517509 0.482040 0.354280 0.278578 0.236756 0.165244 0.130423 0.085810 0.048758 0.025838 0.021982 1
0.195365 0.154296 0.058931 0.030600 0.021007 0.010799 0.007627 0.004426 0.002485 0.001683 0.001633 0.05

1.00
0.601221 0.528941 0.258189 0.131011 0.083377 0.035020 0.022134 0.010706 0.005346 0.003420 0.003090 1
0.399714 0.300459 0.063075 0.016133 0.007234 0.002010 0.001179 0.000545 0.000364 0.000598 0.000806 0.05

δ

0.05
0.003560 0.003520 0.003890 0.003850 0.004640 0.009530 0.050440 0.268780 0.694960 0.865420 0.875450 1

0.000020** 0.000020 0.000000 0.000020 0.000010 0.000070 0.000850 0.009530 0.037110 0.058900 0.060270 0.05

0.50
0.001580 0.001420 0.001600 0.001820 0.002090 0.003150 0.013320 0.053700 0.171200 0.282310 0.295480 1
0.000020* 0.000020* 0.000000* 0.000020* 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0.05

1.00
0.000400 0.000440 0.000610 0.000520 0.000580 0.000860 0.002340 0.007770 0.019470 0.030020 0.031220 1
0.000030 0.000000 0.000000 0.000000 0.000000 0.000010 0.000160 0.000930 0.003890 0.006170 0.006440 0.05
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5. CONCLUDING REMARKS

The introduction of automatic measuring devices and the subsequent in-

crease in the frequency of the measurements led to autocorrelated output, a major

issue in the process industries, as [13, p. iii] felt bound to point out.

This paper confirms that autocorrelation can cause traditional simultaneous

control schemes to produce misleading signals either more or less frequently than

simultaneous residual schemes, depending on the type of autocorrelation. In fact,

if we ignore or neglect the autocorrelation structure of the output then we can

obtain estimates of PMS of types III and IV smaller than the ones we would

obtain if we adopted simultaneous residual schemes to monitor the mean and

variance of AR(1), AR(2) and ARMA(1,1) processes; furthermore, the regions

where these schemes are superseded by the traditional ones tend to be symmetric

for the PMS of types III and IV, thus, only simultaneous residual schemes will

give the necessary protection to MS of both types, as previously mentioned by [8]

for the AR(1) process. Some monotonicity properties of the real PMS of Type IV

for AR(2) and ARMA(1,1), in terms of the model parameters, surface pointedly

in this study, adding up to one already enunciated by [8] for the AR(1) model —

PMSIV(δ, φ1, φ2) (resp. PMSIV(δ, φ, α)) appears to increase with both φ1 and φ2

(resp. increase with φ and decrease with α), when simultaneous residual schemes

are used to control the mean and variance of AR(2) (resp. ARMA(1,1)) output.

This paper also reaffirms that simultaneous EWMA residuals schemes should be

preferred to the Shewhart-type if we plan to anticipate a few dramatic reductions

of the PMS of types III and IV.

Misleading signals deserve further investigation while using other simulta-

neous schemes for µ and σ
2

suchlike the ones pertinently proposed by [5], si-

multaneous EWMA schemes with the following characteristics: their constituent

charts for σ
2

are able to detect both upward and downward shifts in the process

variance; the maximum of ARL for fixed µ = µ0 and for varying σ
2

is attained at

σ
2

= σ
2
0. Future research can also be done in the following direction: assess the

impact on MS of falsely assuming a simpler model, e.g., an AR(1) model, when

the output is better described by a slightly more complex process, e.g., an AR(2)

process or an ARMA(1,1) model.

Since MS can be rather frequent and the general assumption of indepen-

dence can have a meaningful effect in the ability of a simultaneous scheme for

the process mean and variance to identify which one of these two parameters has

changed, it is convenient to implement additional procedures for use as diagnostic

aids to determine which parameters changes, as recommended by [20]. Although

investigation on these diagnostic procedures is beyond the scope of this paper,

this issue will be certainly considered in future work and we shall take into ac-

count that [18] suggest the use of the pattern of the points beyond the control



On the Impact of Falsely Assuming I.I.D. Output in the PMS 243

limits of the constituent charts in the identification of the parameter that has

effectively changed (a plausible justification for this diagnostic aid stems from

the fact that changes in µ and σ
2

have different impacts in those patterns).

Finally, let us remind the reader that the phenomenon of MS can also arise

in other settings, such as multivariate control schemes for the mean vector and

the covariance matrix of i.i.d. output as investigated by [17] and [16].
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1. INTRODUCTION

The Birnbaum–Saunders (BS) distribution is being widely considered. This

distribution is unimodal and positively skewed, has positive support and two pa-

rameters corresponding to its shape and scale; see Birnbaum & Saunders (1969a),

Johnson et al. (1995) and Athayde et al. (2012). Interest in the BS distribution is

due to its physical theoretical arguments, its attractive properties and its relation-

ship with the normal model. Although the BS distribution has its genesis from

material fatigue, it has been used for applications in: agriculture, business, con-

tamination, engineering, finance, food, forest and textile industries, informatics,

insurance, medicine, microbiology, mortality, nutrition, pharmacology, psychol-

ogy, quality control, queue theory, toxicology, water quality and wind energy; see

Leiva et al. (2007, 2008c, 2010a,b, 2011, 2012, 2014a,b,d), Ahmed et al. (2008),

Barros et al. (2008), Balakrishnan et al. (2009a,b, 2011), Bhatti (2010), Kotz

et al. (2010), Vilca et al. (2010), Sanhueza et al. (2011), Santana et al. (2011),

Villegas et al. (2011), Azevedo et al. (2012), Ferreira et al. (2012), Paula et al.

(2012), Fierro et al. (2013), Marchant et al. (2013a,b) and Saulo et al. (2013).

One of the most studied topics in the BS distribution is its estimation

and inference. Several types of estimators for its original parameterization have

been proposed. Birnbaum & Saunders (1969b) found its maximum likelihood

(ML) estimators. Bhattacharyya & Fries (1982) mentioned that the lack of an

exponential family structure for the BS distribution complicates the statistical

inference of its parameters. Engelhardt et al. (1981), Achcar (1993), Chang &

Tang (1994) and Dupuis & Mills (1998) proposed other types of estimators of

the original parameters. However, in all of these cases, it is not possible to find

explicit expressions for its estimators, so that numerical procedures must be used.

Ng et al. (2003) introduced a modified moment (MM) method for estimating the

BS model parameters, which provides simple analytical expressions to compute

them. From & Li (2006) presented and summarized several estimation methods

for the BS distribution. Results about improved inference for this distribution are

attributed to Lemonte et al. (2007) and Cysneiros et al. (2008). Thus, different es-

timation aspects related to the BS distribution have been considered by a number

of authors. Nevertheless, not much attention has been paid to parameterizations

that are different from that originally proposed by Birnbaum & Saunders (1969a),

which was based on the physics of materials. Some works on reparameterizations

of the BS distribution were proposed by Volodin & Dzhungurova (2000), Ahmed

et al. (2008), Lio et al. (2010) and Santos-Neto et al. (2012). The present work

is focused on Santos-Neto et al. (2012)’s reparameterization.

Our main motivation for studying this reparameterization of the BS dis-

tribution is based on the search of estimators with good statistical properties.

Such a reparameterization is useful, because, first, moment estimates for the orig-

inal parameterization of the BS distribution do not have a closed-form, but this is
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possible with Santos-Neto et al. (2012)’s reparameterization and, second, it allows

a response variable to be modeled in its original scale (see Leiva et al., 2014c),

which is not possible with the parameterizations proposed until now.

The objectives of this paper are:

(i) to provide some results on moments of a reparameterized version of

the BS distribution and a generator of random numbers;

(ii) to propose estimators for this reparameterization;

(iii) to study the performance of these estimators;

(iv) to apply the results to real-world data.

The proposed estimators are based on generalized moment (GM), ML, MM and

moment methods.

The article is organized as follows. In Section 2, we present some results of

the reparameterized version of the BS distribution that include a shape analysis, a

generator of random numbers, its characteristic function (CF) and its moments.

In Section 3, we develop estimation and inference for this reparameterization

based on the GM, ML, MM and moment methods. In Section 4, we evaluate the

performance of the proposed estimators through Monte Carlo (MC) simulations.

In Section 5, we conduct an application with two real-world data sets, one from

engineering and another from economics, which is a new application of the BS

distribution. In Sections 4 and 5, computational aspects based on packages in the

R software are discussed. In Section 6, we sketch some conclusions of this study.

2. BS DISTRIBUTIONS

In this section, we present some results of a reparameterized version of the

BS distribution, including a shape analysis, a generator of random numbers and

its moments.

2.1. The original parameterization

The first parameterization of the BS distribution was proposed by Birn-

baum & Saunders (1969a) based on the physics of materials in terms of shape (α)

and scale (β) parameters. Thus, if a random variable (RV) Y follows the BS dis-

tribution with parameters α > 0 and β > 0, the notation Y ∼ BS(α, β) is used

and the corresponding probability density function (PDF) is given by

(2.1) f(y; α, β) =
1√
2π

exp

(

− 1

2α2

[

y

β
+

β

y
− 2

])

[y + β]

2α

√

βy3
, y > 0 .
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2.2. A reparameterized version of the BS distribution

Recently, Santos-Neto et al. (2012) proposed a reparameterized version of

the BS distribution, given, with respect to the original parameterization, by

α =
√

2/δ and β = δµ/[δ+1], such that δ = 2/α
2

and µ = β[1 + α
2
/2], where

δ > 0 and µ > 0 are shape and mean parameters, respectively. For details about

motivations and justifications for this reparameterized version, see Santos-Neto

et al. (2012) and Leiva et al. (2014c).

Thus, the PDF of Y ∼ BS(µ, δ) is given by

f(y; µ, δ) =
exp(δ/2)

√
δ+1

4
√

πµ y3/2

[

y +
δµ

δ+1

]

(2.2)

× exp

(

−δ

4

[

y{δ+1}
δµ

+
δµ

y{δ+1}

])

, y > 0 .

From (2.1) and considering the indicated reparameterization, one can note that

BS and standard normal RVs are related by

Y =
δµ

δ+1





Z√
2δ

+

√

{

Z√
2δ

}2

+ 1





2

and

(2.3)

Z =

√

δ

2





√

{δ+1}Y

µδ
−
√

µδ

{δ+1}Y



 .

Hence, from (2.3), the cumulative distribution function (CDF) and the quantile

function (QF) of Y ∼ BS(µ, δ) are, respectively, given by

F (y; µ, δ) = Φ





√

δ

2





√

{δ+1}y

µδ
−
√

µδ

{δ+1}y







 , y > 0 ,

and

y(q; µ, δ) = F
−1

(q) =
δµ

δ+1





z(q)√
2δ

+

√

{

z(q)√
2δ

}2

+ 1





2

, 0 < q < 1 ,

where z(q) is the qth quantile of the standard normal distribution and F
−1

is the

inverse CDF of Y . The hazard rate function of Y is defined by

h(y; µ, δ) =
f(y; µ, δ)

1 − F (y; µ, δ)
=

exp(δ/2)
√

δ+1

4
√

πµy3

[

y +
δµ

δ+1

]

×
exp

(

− δ
4

[

y{δ+1}
δµ +

δµ
y{δ+1}

])

Φ

(

−
√

δ
2

[

√

{δ+1}y
µδ −

√

µδ
{δ+1}y

]) , y > 0 .
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2.3. Shape analysis

Figures 1(a)–1(b) show shapes for the PDF of Y ∼ BS(µ, δ) considering

different values of µ, when δ is fixed, and different values of δ, when µ is fixed.

From Figure 1(a), note that the parameter µ controls the scale of the PDF, so

that it is a scale parameter and also the mean of the distribution. This aspect can

be formally verified because b Y ∼ BS(b µ, δ), with b > 0. From Figure 1(b), notice

that the parameter δ controls the shape of the PDF, making it more platykurtic

as δ increases. Figure 1(c) shows a graphical plot of δ versus Var[Y ], for µ = 1.0.

This figure allows the effect exerted by δ on the variance of the distribution to

be detected. Note that such a variance decreases as δ increases, and it converges

to 5.0, when δ goes to zero. Then, by means of this graphical analysis, we note

that δ is a precision parameter.
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Figure 1: PDF plots of a reparameterized BS distribution for different

values of µ with δ = 100.0 (a) and of δ with µ = 1.0 (b), and

plot of δ versus Var[Y ] (c).

2.4. Number generation

Random numbers from the reparameterized BS distribution can be obtained

by using the generator described in Algorithm 1.

Algorithm 1 – Generator of BS random numbers

1: Generate a random number z from a RV Z∼ N(0, 1);

2: Set values for µ and δ of Y ∼ BS(µ, δ);

3: Compute a random number y from Y ∼ BS(µ, δ), using formula given in (2.3);

4: Repeat steps 1 to 3 until the required amount of numbers to be completed.
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2.5. Moments

Another way to characterize a distribution is by using its CF, which allows

us to obtain its moments. Here, we provide some results on the CF and moments

of the reparameterized BS distribution. Moments for the original parameteriza-

tion of the BS distribution can be found in Leiva et al. (2008a) and Balakrishnan

et al. (2009a). In the literature on the BS distribution, the CF is practically not

studied. From the PDF given in (2.2), we obtain the CF of Y ∼ BS(µ, δ) in the

following theorem.

Theorem 2.1. Let Y ∼ BS(µ, δ). Then, the CF ϕ : R → C of Y is

ϕ(t) = E

[

exp(itY )

]

=
1

2

[

{

1 +

√
δ+1√

1 + δ− 4tiµ

}

exp

(

δ
{√

δ+1 −√
1 + δ− 4tiµ}

2
√

δ+1

)]

, t ∈ R ,

where i =
√
−1 is the imaginary unit.

Proof: The result is obtained using algebraic and integration methods.

Corollary 2.1. Let Y ∼ BS(µ, δ) with CF ϕ as given in Theorem 2.1.

Then, the rth derivative of ϕ with respect to t, evaluated at the point t = 0, is

ϕ(0)
(r)

=
d

r
ϕ(t)

dtr

∣

∣

∣

∣

t=0

= i
r
E

[

Y
r
exp(itY )

] ∣

∣

∣

t=0

=
1

2
√

π [δ+1]
3
2

[

i
r
µ

r
δ
2
exp

(

δ

2

)

×
{

(

δ
r− 1

2 +δ
r− 3

2

)

(δ+1)
1
2
−r

Kr+ 1
2

(

δ

2

)

+ δ
r− 3

2 (δ+1)
3
2
−r

Kr− 1
2

(

δ

2

)}

]

,

where Kv is the modified Bessel function of second type.

Table 1 displays the values of the function Kv (see Abramowitz & Stegun,

1972) for some values of v, which are useful for calculating the moments around

zero of the BS distribution.
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Table 1: Values of Kv(δ/2) for the indicated values of v.

v Kv(δ/2)

1
2

√

π exp
�
−

1
2

δ
�

√

δ

3
2

K1

2

�
δ
2

�h
1 + 2

δ

i
5
2

K1

2

�
δ
2

�h
1 + 6

δ
+ 12

δ2

i
7
2

K1

2

�
δ
2

�h
1 + 12

δ
+ 60

δ2 + 120
δ3

i
9
2

K1

2

�
δ
2

�h
1 + 20

δ
+ 180

δ2 + 840
δ3 + 1680

δ4

i
By means of Theorem 2.1 and Corollary 2.1, it is possible to obtain the

moments around zero of Y ∼ BS(µ, δ). By using the fact that ϕ(0)
(r)

= i
r
E[Y

r
],

we can easily find, for example, the four first moments of Y as

E
[

Y
]

= µ , E
[

Y
2
]

= µ
2 [δ

2
+ 4δ + 6]

[δ + 1]2
,

E
[

Y
3
]

= µ
3 [δ

3
+ 9δ

2
+ 36δ + 60]

[δ + 1]3
and(2.4)

E
[

Y
4
]

= µ
4 [δ

4
+ 16δ

3
+ 120δ

2
+ 460δ + 840]

[δ + 1]4
.

The rth central moment of Y ∼ BS(µ, δ), which we denote by µr, is given by

(2.5) µr = E
[

Y − µ
]r

=

r
∑

j=0

(

r

j

)

(−1)
r−j

E
[

Y
j
]

µ
r−j

, r = 2, 3, ...

From (2.4) and (2.5), we have that the variance of Y is Var[Y ]=µ
2
[2δ+5]/[δ+1]

2
,

which allows the parameter δ to be interpreted as a precision parameter because,

for µ fixed, the variance of Y decreases when δ increases. In addition, we can

rewrite this variance as Var[Y ]=V (µ)/φ, where φ=[δ+1]
2
/[2δ+5] and V (µ)=µ

2
,

with V (µ) acting as a “variance function”, such as in generalized linear models.

Another interesting result is that the reparameterized BS distribution pre-

serves the reciprocation property of the original BS distribution, that is, 1/Y

is in the same family of distributions of Y . Thus, if Y ∼ BS(µ, δ), then 1/Y ∼
BS([δ+1]

2
/µδ

2
, δ) and, consequently,

E
[

1/Y
]

=
[δ + 1]

2

µδ2
and Var

[

1/Y
]

=
[2δ + 5][δ + 1]

2

µ2 δ4
.
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3. ESTIMATION

In this section, we derive estimation and inference for the parameters, in

the sequel denoted by θ = [µ, δ]
⊤
, of the reparameterized BS distribution based

on the GM, ML, MM and moment methods.

3.1. Maximum likelihood estimation

Let Y = [Y1, ..., Yn]
⊤

be a random sample of size n from Y ∼ BS(µ, δ). Then,

the log-likelihood function for θ is

(3.1) ℓ(θ) =

n
∑

j=1

ℓj(θ) ,

where ℓj(θ) is the logarithm of the PDF given in (2.2) replacing y by yj . Figure 2

displays graphical plots of the log-likelihood function and its respective contours,

considering, as illustration, a sample from Y ∼ BS(µ=1.5, δ=10). In this figure,

note that the shape of the log-likelihood function is well behaved and, through its

contours, it is easy to see the region where the values that maximize the function

ℓ(θ) given in (3.1) are located.
ℓ
(
θ
)

µ
δ

15
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25
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(a) (b)

Figure 2: Plots of the log-likelihood function (a) and its respective contours (b),

for the BS(µ=1.5, δ=10) distribution.

As is well-known, to obtain the ML estimates of the parameters, we must

equal the score functions to zero. In the case of the reparameterized BS distri-
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bution, the score vector for θ is given by U(θ) = [Uµ, Uδ]
⊤
, where

Uµ =
∂ℓ(θ)

∂µ
=

n
∑

j=1

[

δ

δyj + yj + δµ
+

yj {δ+1}
4µ2

− δ
2

4yj {δ+1} − 1

2µ

]

and

Uδ =
∂ℓ(θ)

∂δ
=

n
∑

j=1

[

yj + µ

δyj + yj + δµ
− yj

4µ
− δ{δ+2}µ

4{δ+1}2 yj
+

δ

2{δ+1}

]

.

Such as in the case of the original BS parameterization, for the reparameterized

version, it is not possible to find closed-form estimators for its parameters. Then,

we must use an iterative numerical method to optimize the function ℓ(θ) given in

(3.1). For example, a Newton–Raphson type algorithm can be used in this case.

The corresponding expected Fisher information matrix, denoted by K(θ) =

[Kθjθk
], has elements

Kµµ = −E

[

∂
2
ℓ(θ)

∂µ2

]

= n

[

δ

2µ2
+

δ
2

{δ+1}2
I(θ)

]

,

Kδµ = −E

[

∂
2
ℓ(θ)

∂µ ∂δ

]

= n

[

1

2µ{δ+1} +
δµ

{δ+1}3
I(θ)

]

and(3.2)

Kδδ = −E

[

∂
2
ℓ(θ)

∂δ2

]

= n

[

δ
2
j + 3δj + 1

2δ2
j {δj +1}2

+
µ

2
j

{δj +1}4
I(θ)

]

,

where Kδµ = Kµδ and

I(θ) =

∫ ∞

0

[

y +
µδ

δ+1

]−2

f(y; θ) dy .

Under regularity conditions (see Cox & Hinkley, 1974), we have that the cor-

responding variance-covariance matrix is Cov[µ̂, ̂δ] =K(θ)
−1

, whose elements of

K(θ) are given in (3.2). In addition, in general, as is well-known, ML estimators

have an asymptotic bivariate normal joint distribution. Thus, in our case, [µ̂, δ̂]
⊤

approximately follows the distribution

N2

(

[

µ

δ

]

, K(θ)
−1

)

.

3.2. Moment estimation

Moment conditions are needed to estimate parameters by using the moment

method; see Mátyás (1999). Next, we define these conditions.

Definition 3.1. Let Y = [Y1, ..., Yn]
⊤

be a random sample of size n from

any distribution. We want to estimate an unknown p×1 parameter vector θ,
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with true value θ0. Let g(Yj , θ) be a q×1 vector, which is a continuous function

of θ, and assume that E[g(Yj , θ)] exists and it is finite for all j and θ. Then, the

moment conditions to estimate θ are that E[g(Yj , θ0)] = 0.

We want to estimate the vector θ using the moment conditions given in

Definition 3.1. First, we consider the case when p = q, that is, when θ is exactly

identified by the moment conditions. Thus, these conditions represent a set of p

equations, with p unknown parameters. Solving these equations, we find the true

value of θ, θ0 say, which satisfies the mentioned moment conditions. However,

it is not possible to observe E[g(Yj , θ)], but only g(yj , θ). In this way, a natural

procedure is to define the sample moments of g(Yj , θ), given by

(3.3) gn(θ) =
1

n

n
∑

j=1

g(Yj , θ) .

If the sample moments are estimators of the population moments with good prop-

erties, we then hope that the estimator ˜θ holding the sample moment conditions

gn(θ) = 0 is a good estimator of the true value θ0, which holds the population

moment conditions E[g(Yj , θ)] = 0. Hence, ˜θ is a moment estimator of θ.

Theorem 3.1. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the moment estimators of µ and δ are, respectively,

µ̃ = Ȳ and ˜δ =
Ȳ

2 − S
2
+

√
Ȳ 4 + 3 Ȳ 2S2

S2
,

where Ȳ = [1/n]
∑n

j=1Yj and S
2

= [1/n]
∑n

j=1[Yj − Ȳ ]
2
.

Proof: Recall from (2.4) and (2.5) that E[Y −µ]
2

= µ
2
[2δ +5]/[δ +1]

2
and

E[Y ] = µ. Also, recall θ = [µ, δ]
⊤

and define the vector of functions

g(Yj , θ) =

[

Yj −µ, {Yj −µ}2 − µ
2{2δ+5}
{δ+1}2

]⊤
.

Then, the moment conditions are E[g(Yj , θ0)] = 0. We have that gn(˜θ) = 0, with

gn defined in (3.3), implies that

1

n

n
∑

j=1

Yj − µ̃ = 0 and
1

n

n
∑

j=1

[Yj − µ̃]
2 − µ̃

2
[2˜δ+5]

[˜δ+1]2
= 0 ,

which, after some algebraic manipulations, result to be

µ̃ = Ȳ and ˜δ =
1 − κ̃

2
+

√
3 κ̃2 + 1

κ̃2
,(3.4)

where κ̃ =
√

S2/Ȳ is the sample coefficient of variation (CV), with 0 < κ̃ <
√

5.

Therefore, we have that (3.4) can be rewritten as

µ̃ = Ȳ and ˜δ =
Ȳ

2 − S
2
+
√

Ȳ 4 + 3 Ȳ 2S2

S2
.
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Theorem 3.2. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̃ and ˜δ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̃, ˜δ]
⊤ approximately follows the distribution

N2





[

µ

δ

]

,
1

n





µ2{2δ+5}
{δ+1}2 −µ{2δ2+8δ−3}

{δ+1} {δ+4}

−µ{2δ2+8δ−3}
{δ+1} {δ+4}

2δ4+28δ3+122δ2+126δ+57
{δ+4}2







 .

Proof: Let Y = [Y1, ..., Yn]
⊤

be independent identically distributed (IID)

RVs according to Y ∼ BS(µ, δ) and E[Y
4
] given in (2.4) be finite. In addition, let

µ̃ = f1(Ȳ, S
2
) and ˜δ = f2(Ȳ, S

2
) be the moment estimators of the parameters µ

and δ, respectively. Assume that the random vector

√
n

[

Ȳ − E[Y ]

S
2 − E[Y −µ]

2

]

approximately follows the distribution

N2

([

0

0

]

, Σ

)

, where Σ =

[

ν µ3

µ3 µ4−ν
2

]

,

with

ν = Var[Y ] =
µ

2
[2δ+5]

[δ+1]2
, µ3 =

4[3δ+11]µ
3

[δ+1]3
and µ4−ν

2
=

8µ
4
[δ

2
+20δ+76]

[δ+1]4
.

We want to determine the asymptotic joint distribution of the estimators µ̃ =

f1(Ȳ, S
2
) and ˜δ = f2(Ȳ, S

2
). These estimators can be expressed as

f1(x, y) = x and f2(x, y) =
x

2 − y +
√

x4 + 3x2y

y
.

By using the delta method (see Rao, 1965), we obtain that the random vector

√
n

[

µ̃ − µ

˜δ − δ

]

approximately follows the distribution

N2

([

0

0

]

, Σ

)

,

where

Σ =





µ2{2δ+5}
{δ+1}2 −µ{2δ2+8δ−3}

{δ+1} {δ+4}

−µ{2δ2+8δ−3}
{δ+1} {δ+4}

{2δ4+28δ3+122δ2+126δ+57}
{δ+4}2



 .
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3.3. Modified moment estimation

Ng et al. (2003) used the fact that the BS distribution satisfies the recipro-

cation property to propose MM estimates for its parameters. The MM estimation

method is a variation of the moment estimation method, substituting the expres-

sion that equates the second population and sample moments by equating the

expected value of 1/Y with [1/n]
∑n

j=1 1/Yj . Because the reparameterized BS

distribution preserves the reciprocation property, once again, the MM estimates

of its parameters µ and δ can be easily obtained.

Theorem 3.3. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the MM estimators of µ and δ are, respectively,

µ̆ = Ȳ and δ̆ =





√

Ȳ

Ȳh
− 1





−1

,

where Ȳh =
[

{1/n}∑n
j=1{1/Yj}

]−1
.

Proof: Let Y = [Y1, ..., Yn]
⊤

be a random sample of size n from Y ∼ BS(µ, δ).

Then, E[Y ] = µ and E [1/Y ] = [δ+1]
2
/[µδ

2
]. Thus,

g(Yj , θ) =

[

Yj − µ ,
1

Yj
− {δ+1}2

µδ2

]⊤
.

Recall the moment conditions are E[g(Yj , θ0)] = 0. We have that gn(θ̆) = 0, with

gn defined in (3.3), implies that

(3.5)
1

n

n
∑

j=1

Yj − µ̆ = 0 and
1

n

n
∑

j=1

1

Yj
− [δ̆+1]

2

µ̆ δ̆2
= 0 .

Hence, solving (3.5), we obtain the MM estimators

µ̆ = Ȳ and δ̆ =





√

Ȳ

Ȳh
− 1





−1

,

where Ȳh is defined in Theorem 3.3. In addition, we have that δ̆ is well-defined

for Ȳh 6= Ȳ , when Ȳh < Ȳ .

Theorem 3.4. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̆ and δ̆ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̆, δ̆]
⊤ approximately follows the distribution

N2





[

µ

δ

]

,
1

n





µ2{2δ+5}
{δ+1}2 − 2µδ

δ+1

− 2µδ
δ+1 2δ

2







 .
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Proof: Let Y = [Y1, ..., Yn]
⊤

be IID RVs according to Y ∼ BS(µ, δ) and

E[Y
4

j ] < ∞. Then, the vector [Ȳ, Ȳ
−1
h ]

⊤
follows an asymptotic bivariate normal

distribution, which implies that

√
n

[

Ȳ − E[Y ]

Ȳ
−1
h − E[Y

−1
]

]

·∼ N2

([

0

0

]

, Σ

)

,

where “
·∼” means “approximately follows the distribution” and

Σ =

[

Var[Y ] Cov[Y, Y
−1

]

Cov[Y, Y
−1

] Var[Y
−1

]

]

,

with

Var[Y ] =
µ

2
[2δ+5]

[δ+1]2
, Cov[Y,Y

−1
] = 1− [δ+1]

2

δ2
and Var[Y

−1
] =

[2δ+5][δ+1]
2

µ2 δ4
.

However, our interest is to find the asymptotic joint distribution of µ̆ = f1(Ȳ, Ȳ
−1
h )

and δ̆=f2(Ȳ,Ȳ
−1
h ). For these estimators, consider f1(x,y)=x, f2(x,y)=[

√
xy−1]

−1

and the delta method. Then,

√
n

[

µ̆ − µ

δ̆ − δ

]

·∼ N2

([

0

0

]

, Σ

)

,

where

Σ =





µ2{2δ+5}
{δ+1}2 − 2µδ

δ+1

− 2µδ
δ+1 2δ

2



 .

3.4. Generalized moment estimation

The GM method provides estimators that are in general consistent, but

in general not efficient. The GM method is an extension of the usual moment

estimation method; see details in Mátyás (1999) and in the following definition.

Definition 3.2. Let Y = [Y1, ..., Yn]
⊤

be a random sample of size n from

any distribution. We want to estimate an unknown p×1 parameter vector θ, with

true value θ0. Let E[g(Yj , θ0)] = 0 be a set of q moment conditions and gn(θ) be

the corresponding sample moments given in (3.3). Define the criterion function

Qn(θ) = gn(θ)
⊤
A

−1
n gn(θ) ,

where An is a Op(1) stochastic positive definite matrix. Then, the GM estimator

of θ is

(3.6) θ̌ = argmin
θ

Qn(θ) .



A Reparameterized BS Distribution 261

As mentioned, in general, the GM method provides consistent estimators,

but θ must be the unique solution of E[g(Yj , θ)] and an element of a compact

space. Some assumptions on high order moments of g(Yj , θ) also are needed.

However, there are no restrictions on the model that generates the data, except

for the case of dependent data.

Considering q > p in Definition 3.2, we can perform the J test (see Hansen,

1982) to assess the moment conditions and/or the specification of model, because

it acts as an omnibus test for model misspecification. In this case, the null hypoth-

esis H0: E[g(Yj , θ0)] = 0 can be tested by using the statistic ngn(θ̌)
⊤Ǎ−1

n gn(θ̌),

which approximately follows the χ
2
q−p distribution under H0; see Mátyás (1999).

If the model is misspecified and/or some of the moment conditions do not hold,

then the J statistic will have a small p-value.

Theorem 3.5. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, the GM estimators of µ and δ, µ̌ and δ̌ say, can be obtained

in a general setting from (3.6).

Proof: The result is direct from (3.6).

Theorem 3.6. Let Y = [Y1, ..., Yn]
⊤ be a random sample of size n from

Y ∼ BS(µ, δ). Then, µ̌ and δ̌ have an asymptotic bivariate normal joint distribu-

tion, that is, [µ̌, δ̌]
⊤ approximately follows the distribution

N2

([

µ

δ

]

,
1

n
V

)

,

where

V = E

[

∂g(Yj , θ)

∂θ

]⊤
A

−1
n E

[

∂g(Yj , θ)

∂θ

]

.

Proof: Given some regularity conditions (see Mátyás, 1999, Section 1.3.2),

as n goes to infinity, the GM estimator converges to a bivariate normal distribu-

tion and so the random vector
√

n [θ̌ − θ]
·∼ N2(0,V ), where

V = E

[

∂g(Yj , θ)

∂θ

]⊤
A

−1
n E

[

∂g(Yj , θ)

∂θ

]

.

To obtain point and interval estimates of the parameters of the BS dis-

tribution, we can use the gmm package (see Chaussé, 2010) of the R software

(www.R-project.org). The matrix An, which produces efficient estimators for θ,

can be estimated by an heteroskedasticity and autocorrelation consistent covari-

ance matrix; see Newey & West (1987) and Chaussé (2010). To obtain the

corresponding estimates, we run the gmm function using as starting values µ0 = µ̆

and δ0 = δ̆. To test the specification of estimated model, we use the J test

through of the specTest() function also available in the gmm package.
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4. SIMULATION

In this section, we conduct a study based on MC simulations to evaluate the

performance of the GM, ML, MM and moment estimators for the reparameterized

BS distribution.

MC replications are based on Algorithm 1.For each replication generated

by this algorithm, we calculate GM, ML, MM and moment estimates. The al-

gorithm and estimation methods are implemented in the R software by using the

gamlss (see Stasinopoulos & Rigby, 2007) and gmm packages. For details about

generation of numbers from the BS distribution, see Leiva et al. (2008b) and

Barros et al. (2009). Then, the mean, bias, standard error (SE) and squared root

of the mean squared error (
√

MSE) of these estimators are empirically computed.

We obtain point estimates, confidence intervals (CIs) and their coverage proba-

bilities (CPs) of 95% level, based on the asymptotic results associated with each

estimator given in Section 3. The ML estimates are obtained from the gamlss()

function and the GM estimates from the gmm() function. The CIs based on the

GM estimates are obtained by using the R function confint(), where the main

argument is an object of the gmm class. The scenario of this simulation study con-

siders 10 000 MC replications in each case, sample sizes n ∈ {30, 50, 75, 100, 200}
and values for δ ∈ {0.5, 2.0, 8.0, 32.0, 200} (according to different levels of skew-

ness) and µ = 1.0 (without loss of generality). The obtained results are presented

in Tables 2, 3, 4 and 5.

To perform the GM estimation of the parameters µ and δ of the BS distri-

bution, we consider the following vector of moment conditions:

E [g(Yj , θ)] = E











µ − Yj

µ2{2δ+5}
{δ+1}2 − {Yj−µ}2

{δ+1}2

µδ2 − 1
Yj











= 0 ,

where the gradient function of gn(θ) is given by

G =
∂gn(θ)

∂θ
= E











1 0

2µ{2δ+5}
{δ+1}2 − 2µ + 2 Ȳ −2µ2{δ+4}

{δ+1}3

−{δ+1}2

{µδ}2 −2{δ+1}
µδ3











.

From Tables 2 through 5, note that the ML, MM and moment estimators of the

parameter µ present similar statistical properties in relation to the empirical bias

and
√

MSE. However, the GM estimator presents similar properties to the other

estimators only when the sample size is large. In the case of the parameter δ,

its ML and MM estimators present similar properties for the different sample
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sizes and true values assumed for this parameter. Table 3 shows that, in general,

the GM method underestimates the true value of µ. From Tables 4 and 5, note

that the values of the empirical SE and
√

MSE increase as δ increases, for all the

considered methods, in the case of the parameter δ. Nevertheless, in the case of

the parameter µ, we have a reverse behavior, that is, the values of the empirical SE

and
√

MSE decrease as δ increases, for all the considered methods. In addition,

the GM estimator presents the worse behavior in terms of statistical properties,

but, as the sample size increases, the estimators obtained by this method turn to

be more competitive, with respect to the other estimators considered.

Table 6 provides empirical CPs of 95% CIs for the parameters of the

BS(µ, δ) distribution. Note that the CIs based on the GM estimates have CPs

smaller than those from the other methods. However, as the sample size increases,

the distance between CPs for the fixed confidence levels decreases. Also, when

the true value of δ increases, the distance between the confidence level (0.95) and

the empirical CP decreases. Thus, such as in the study based on point estima-

tion, for interval estimation, ML and MM estimators present similar statistical

properties and better than the other estimators considered.

Table 2: Empirical mean of the estimator of the indicated parameter,

method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 1.004 1.002 1.002 0.869 0.561 0.772 0.561 0.633
2.0 1.001 1.001 1.001 0.929 2.232 2.526 2.232 2.508

30 8.0 1.000 1.000 1.000 0.978 8.886 9.285 8.886 9.949
32.0 1.000 1.000 1.000 1.005 35.477 35.920 35.477 40.352

200.0 1.000 1.000 1.000 1.003 221.734 222.150 221.734 245.663

0.5 0.999 0.998 0.998 0.896 0.536 0.668 0.536 0.578
2.0 0.999 0.999 0.999 0.946 2.137 2.321 2.137 2.319

50 8.0 1.000 1.000 1.000 0.981 8.522 8.775 8.522 9.174
32.0 1.000 1.000 1.000 1.002 34.058 34.339 34.058 37.064

200.0 1.000 1.000 1.000 1.002 212.782 213.040 212.782 227.794

0.5 0.998 0.996 0.996 0.916 0.524 0.610 0.524 0.552
2.0 0.999 0.998 0.998 0.958 2.092 2.210 2.092 2.220

75 8.0 0.999 0.999 0.999 0.985 8.355 8.518 8.355 8.835
32.0 1.000 1.000 1.000 1.000 33.385 33.559 33.385 35.463

200.0 1.000 1.000 1.000 1.001 208.676 208.810 208.676 219.441

0.5 0.999 0.998 0.998 0.933 0.518 0.581 0.518 0.539
2.0 0.999 0.999 0.999 0.967 2.068 2.150 2.068 2.163

100 8.0 1.000 1.000 1.000 0.988 8.261 8.377 8.261 8.634
32.0 1.000 1.000 1.000 0.999 33.022 33.148 33.022 34.590

200.0 1.000 1.000 1.000 1.001 206.366 206.453 206.366 214.828

0.5 0.998 0.997 0.997 0.960 0.509 0.541 0.509 0.521
2.0 0.999 0.999 0.999 0.980 2.036 2.077 2.036 2.085

200 8.0 1.000 0.999 0.999 0.993 8.137 8.195 8.137 8.338
32.0 1.000 1.000 1.000 0.998 32.529 32.600 32.529 33.313

200.0 1.000 1.000 1.000 1.001 203.274 203.362 203.274 207.927
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Table 3: Empirical bias of the estimator of the indicated parameter,

method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.004 0.002 0.002 −0.131 0.061 0.272 0.061 0.133
2.0 0.001 0.001 0.001 −0.071 0.232 0.526 0.232 0.508

30 8.0 0.000 0.000 0.000 −0.022 0.886 1.285 0.886 1.949
32.0 0.000 0.000 0.000 0.005 3.477 3.920 3.477 8.352

200.0 0.000 0.000 0.000 0.003 21.734 22.150 21.734 45.663

0.5 −0.001 −0.002 −0.002 −0.104 0.036 0.168 0.036 0.078
2.0 −0.001 −0.001 −0.001 −0.054 0.137 0.321 0.137 0.319

50 8.0 0.000 0.000 0.000 −0.019 0.522 0.775 0.522 1.174
32.0 0.000 0.000 0.000 0.002 2.058 2.339 2.058 5.064

200.0 0.000 0.000 0.000 0.002 12.782 13.040 12.782 27.794

0.5 −0.002 −0.004 −0.004 −0.084 0.024 0.110 0.024 0.052
2.0 −0.001 −0.002 −0.002 −0.042 0.092 0.210 0.092 0.220

75 8.0 −0.001 −0.001 −0.001 −0.015 0.355 0.518 0.355 0.835
32.0 0.000 0.000 0.000 0.000 1.385 1.559 1.385 3.463

200.0 0.000 0.000 0.000 0.001 8.676 8.810 8.676 19.441

0.5 −0.001 −0.002 −0.002 −0.067 0.018 0.081 0.018 0.039
2.0 −0.001 −0.001 −0.001 −0.033 0.068 0.150 0.068 0.163

100 8.0 0.000 0.000 0.000 −0.012 0.261 0.377 0.261 0.634
32.0 0.000 0.000 0.000 −0.001 1.022 1.148 1.022 2.590

200.0 0.000 0.000 0.000 0.001 6.366 6.453 6.366 14.828

0.5 −0.002 −0.003 −0.003 −0.040 0.009 0.041 0.009 0.021
2.0 −0.001 −0.001 −0.001 −0.020 0.036 0.077 0.036 0.085

200 8.0 0.000 −0.001 −0.001 −0.007 0.137 0.195 0.137 0.338
32.0 0.000 0.000 0.000 −0.002 0.529 0.600 0.529 1.313

200.0 0.000 0.000 0.000 0.001 3.274 3.362 3.274 7.927

Table 4: Empirical SE of the estimator of the indicated parameter,

method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.296 0.298 0.298 0.308 0.162 0.440 0.162 0.257
2.0 0.182 0.182 0.182 0.195 0.638 0.986 0.638 0.925

30 8.0 0.092 0.092 0.092 0.102 2.532 2.993 2.532 3.533
32.0 0.046 0.046 0.046 0.051 10.100 10.627 10.100 13.359

200.0 0.018 0.018 0.018 0.020 63.122 63.636 63.122 78.065

0.5 0.226 0.228 0.228 0.237 0.113 0.340 0.113 0.153
2.0 0.139 0.139 0.139 0.148 0.448 0.733 0.448 0.582

50 8.0 0.071 0.071 0.071 0.078 1.786 2.186 1.786 2.212
32.0 0.035 0.035 0.035 0.040 7.134 7.624 7.134 8.809

200.0 0.014 0.014 0.014 0.015 44.580 45.136 44.580 51.508

0.5 0.185 0.187 0.187 0.193 0.089 0.276 0.089 0.104
2.0 0.114 0.114 0.114 0.121 0.353 0.591 0.353 0.432

75 8.0 0.058 0.058 0.058 0.063 1.404 1.744 1.404 1.663
32.0 0.029 0.029 0.029 0.032 5.609 6.025 5.609 6.693

200.0 0.012 0.012 0.012 0.013 35.043 35.502 35.043 39.398

0.5 0.159 0.160 0.160 0.166 0.075 0.240 0.075 0.084
2.0 0.099 0.099 0.099 0.104 0.299 0.504 0.299 0.347

100 8.0 0.051 0.051 0.051 0.055 1.191 1.484 1.191 1.372
32.0 0.025 0.025 0.025 0.028 4.764 5.128 4.764 5.535

200.0 0.010 0.010 0.010 0.011 29.733 30.126 29.733 32.884

0.5 0.114 0.115 0.115 0.118 0.051 0.172 0.051 0.055
2.0 0.070 0.070 0.070 0.073 0.206 0.354 0.206 0.221

200 8.0 0.036 0.036 0.036 0.037 0.820 1.028 0.820 0.884
32.0 0.018 0.018 0.018 0.019 3.283 3.538 3.283 3.563

200.0 0.007 0.007 0.007 0.008 20.510 20.790 20.510 21.865
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Table 5: Empirical
√

MSE of the estimator of the indicated parameter,

method, n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.296 0.298 0.298 0.334 0.173 0.517 0.173 0.290
2.0 0.182 0.182 0.182 0.208 0.679 1.117 0.679 1.055

30 8.0 0.092 0.092 0.092 0.104 2.683 3.257 2.683 4.035
32.0 0.046 0.046 0.046 0.052 10.682 11.327 10.682 15.755

200.0 0.018 0.018 0.018 0.020 66.759 67.380 66.759 90.440

0.5 0.226 0.228 0.228 0.259 0.119 0.379 0.119 0.172
2.0 0.139 0.139 0.139 0.158 0.469 0.800 0.469 0.663

50 8.0 0.071 0.071 0.071 0.080 1.861 2.320 1.861 2.505
32.0 0.035 0.035 0.035 0.040 7.425 7.975 7.425 10.161

200.0 0.014 0.014 0.014 0.016 46.376 46.981 46.376 58.528

0.5 0.185 0.187 0.187 0.210 0.092 0.297 0.092 0.116
2.0 0.114 0.114 0.114 0.128 0.365 0.627 0.365 0.485

75 8.0 0.058 0.058 0.058 0.065 1.448 1.819 1.448 1.861
32.0 0.029 0.029 0.029 0.032 5.777 6.223 5.777 7.536

200.0 0.012 0.012 0.012 0.013 36.101 36.578 36.101 43.933

0.5 0.159 0.161 0.161 0.179 0.077 0.253 0.077 0.093
2.0 0.099 0.099 0.099 0.109 0.307 0.526 0.307 0.383

100 8.0 0.051 0.051 0.051 0.056 1.219 1.531 1.219 1.511
32.0 0.025 0.025 0.025 0.028 4.873 5.255 4.873 6.111

200.0 0.010 0.010 0.010 0.011 30.407 30.809 30.407 36.072

0.5 0.114 0.115 0.115 0.125 0.052 0.177 0.052 0.059
2.0 0.070 0.070 0.070 0.075 0.209 0.362 0.209 0.237

200 8.0 0.036 0.036 0.036 0.038 0.832 1.046 0.832 0.947
32.0 0.018 0.018 0.018 0.019 3.325 3.589 3.325 3.797

200.0 0.007 0.007 0.007 0.008 20.770 21.060 20.770 23.258

Table 6: CP of 95% CIs for the indicated parameter, method,

n and δ, with µ = 1.0.

n δ
µ δ

ML Moment MM GM ML Moment MM GM

0.5 0.899 0.884 0.896 0.622 0.956 0.993 0.957 0.864
2.0 0.917 0.906 0.916 0.707 0.956 0.983 0.956 0.861

30 8.0 0.930 0.924 0.930 0.785 0.956 0.970 0.956 0.858
32.0 0.937 0.935 0.937 0.826 0.956 0.961 0.956 0.836

200.0 0.942 0.940 0.942 0.815 0.956 0.958 0.956 0.880

0.5 0.999 0.903 0.914 0.703 0.955 0.984 0.955 0.886
2.0 0.929 0.921 0.930 0.779 0.954 0.978 0.954 0.878

50 8.0 0.939 0.934 0.938 0.826 0.954 0.967 0.954 0.886
32.0 0.943 0.941 0.942 0.857 0.954 0.960 0.953 0.864

200.0 0.943 0.943 0.943 0.843 0.953 0.954 0.953 0.896

0.5 0.928 0.920 0.926 0.757 0.954 0.982 0.953 0.904
2.0 0.936 0.930 0.936 0.820 0.954 0.973 0.953 0.899

75 8.0 0.941 0.938 0.940 0.862 0.954 0.964 0.954 0.901
32.0 0.943 0.942 0.942 0.880 0.954 0.957 0.953 0.887

200.0 0.944 0.944 0.944 0.862 0.954 0.953 0.954 0.906

0.5 0.935 0.929 0.933 0.794 0.952 0.978 0.952 0.913
2.0 0.942 0.939 0.942 0.848 0.952 0.972 0.952 0.910

100 8.0 0.944 0.942 0.944 0.879 0.953 0.961 0.953 0.911
32.0 0.944 0.940 0.944 0.888 0.952 0.955 0.952 0.897

200.0 0.944 0.944 0.943 0.869 0.952 0.953 0.952 0.912

0.5 0.940 0.935 0.938 0.851 0.952 0.978 0.952 0.926
2.0 0.944 0.942 0.943 0.888 0.951 0.969 0.951 0.926

200 8.0 0.949 0.947 0.948 0.916 0.950 0.958 0.950 0.926
32.0 0.948 0.949 0.948 0.916 0.950 0.952 0.950 0.925

200.0 0.947 0.947 0.947 0.894 0.950 0.950 0.950 0.927
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5. APPLICATIONS

In this section, we provide a practical illustration of the proposed estimation

methods based on two real-world data sets, with moderate and large sample sizes

and from two fields: economics and engineering.

5.1. Data set I (S1): Griffiths et al. (1993)

The first data set (S1) is presented in Griffiths et al. (1993) and corre-

sponds to household expenditures for food in the United States (US) expressed

in thousands of US dollars (M$). These data are provided in Table 7.

Table 7: Household expenditures for food (in M$) (Griffiths et al., 1993).

15.998 16.652 21.741 7.431 10.481 13.548 23.256 17.976 14.161 8.825
14.184 19.604 13.728 21.141 17.446 9.629 14.005 9.160 18.831 7.641
13.882 9.670 21.604 10.866 28.980 10.882 18.561 11.629 18.067 14.539
19.192 25.918 28.833 15.869 14.910 9.550 23.066 14.751

Table 8 presents a descriptive summary of S1 that includes sample mean

(ȳ), median (ỹ), standard deviation (SD), CV, coefficients of skewness (CS) and

of kurtosis (CK), and minimum (y(1)) and maximum (y(n)) values. Note that

the empirical distribution of the studied RV is slightly positive skewed. Figure 3

presents the boxplots and histogram for S1. From Figure 3(a), note that the ad-

justed and usual boxplots exhibit the same behavior, which makes sense because

the data have little asymmetry. From Figure 3(b), note that the BS distribu-

tion fits the data well, whose PDF is estimated with µ̂ = 15.95 and ̂δ = 15.57.

Point estimates of the µ and δ parameters of the BS distribution for the proposed

methods, and 90% and 95% CIs for these parameters, are displayed in Table 9.

Table 8: Descriptive statistics for S1 (in M$).

y(1) ỹ ȳ y(n) SD CV CS CK

7.431 14.831 15.953 28.980 5.624 0.353 0.525 2.556

Table 9: Estimates and CIs for indicated parameter and method with S1.

Method
µ δ

Estimate CI(90%) CI(95%) Estimate CI(90%) CI(95%)

ML 15.95 [14.41;17.50] [14.11;17.79] 15.57 [ 9.70;21.45] [ 8.57;22.57]
Moment 15.95 [14.47;17.43] [14.19;17.72] 16.91 [ 9.51;24.31] [ 8.10;25.72]

MM 15.95 [14.41;17.50] [14.11;17.79] 15.57 [ 9.70;21.45] [ 8.57;22.57]
GM 15.30 [14.31;16.30] [14.12;16.49] 15.94 [10.96;20.92] [10.00;21.87]
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Figure 3: Boxplots (a) and histogram with estimated PDF (b) for S1.

Next, we evaluate the fitting of theBSdistribution to S1with goodness-of-fit

tests. Consider the null hypothesis H0: “the data come from a RV Y ∼ BS(µ, δ)”

versus the alternative hypothesis H1: “the data do not come from this RV”. We

use the Cramér–von Mises (CM) and Anderson–Darling (AD) statistics to test

these hypotheses; see Barros et al. (2014). The corresponding p-values of the

CM and AD tests obtained for S1, with the BS distribution under H0, are 0.656

and 0.608, respectively. Thus, we do not have evidence to indicate than the BS

distribution does not fit these data well. We check moment conditions of the

GM method for S1 with the J test, by using the R function specTest(), whose

p-value is 0.430. Thus, once again the null hypothesis is not rejected for any

usual significance level. Therefore, we do not have evidence to conclude that the

moment conditions are incorrect or that the BS distribution does not fit S1 well.

5.2. Data set II (S2): Birnbaum & Saunders (1969b)

The second data set (S2) is a classical one used in the literature on the

topic. These data were introduced by Birnbaum & Saunders (1969b) and cor-

respond to lifetimes of 6061-T6 aluminum coupons expressed in cycles (×10
−3

)

at a maximum stress level of 3.1 psi (×10
4
), until the failure to occur. These

coupons were cut parallel to the direction of rolling and oscillating at 18 cycles

per seconds. The data are displayed in Table 10.

Table 10: Lifetimes (in cycles ×10
−3

) (Birnbaum & Saunders, 1969b).

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212
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Table 11 presents a descriptive summary of S2 in a similar way to S1. Note

that the empirical distribution of the studied RV is relatively symmetric and lep-

tokurtic. Figure 3 presents the boxplots and histogram for S2. From Figure 4(a),

note also that the adjusted and usual boxplots exhibit the same behavior, which

makes sense because the data have little asymmetry. From Figure 4(b), note that

the BS distribution fits the data well, whose PDF is estimated with µ̂ = 133.73

and ̂δ = 68.89. Point estimates of the µ and δ parameters of the BS distribution

for the proposed methods, and 90% and 95% CIs for these parameters, for S2,

are displayed in Table 12. From this table, we note that less accurate CIs are

obtained by the GM method.

Table 11: Descriptive statistics for S2 (in cycles ×10
−3

).

y(1) ỹ ȳ y(n) SD CV CS CK

70.00 133.000 133.733 212.000 22.356 0.167 0.326 3.973

Table 12: Estimates and CIs for indicated parameter and method with S2.

Method
µ δ

Estimate CI(90%) CI(95%) Estimate CI(90%) CI(95%)

ML 133.73 [129.99;137.47] [129.27;138.19] 68.89 [52.95; 84.84] [49.89;87.89]
Moment 133.73 [130.09;137.37] [129.39;138.07] 72.76 [55.24; 90.27] [51.88;93.63]

MM 133.73 [129.99;137.47] [129.27;138.19] 68.89 [52.95; 84.84] [49.89;87.89]
GM 137.69 [129.62;145.76] [128.08;147.31] 75.36 [33.88;116.85] [25.93;124.80]

Adjusted boxplot Original boxplot
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Figure 4: Boxplots (a) and histogram with estimated PDF (b) for S2.

The corresponding p-values of the CM and AD tests obtained for S2 are

0.202 and 0.169, respectively. Thus, we do not have evidence to indicate than the

BS distribution does not fit S2 well. The J test presented a p-value = 0.720, so

that the null hypothesis is not rejected for any usual significance level. Therefore,

we do not have evidence to conclude that the moment conditions are incorrect or

that the BS distribution does not fit S2 well.
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6. CONCLUSIONS

In this paper, we have provided some novel results on moments and gen-

eration of random numbers from a reparameterized version of the Birnbaum–

Saunders distribution. In addition, we have studied several estimation methods

for this parameterization. We have considered the generalized moment, maximum

likelihood, modified moment and moment methods to estimate the corresponding

parameters. Furthermore, we have conducted a Monte Carlo study to evaluate

the performance of these estimators. From this study, we can conclude that the

maximum likelihood and modified moment estimators present similar statistical

properties and better that those of the other estimators considered. Therefore,

due to the modified moment estimators are easier to compute, we recommend

their use for the reparameterized Birnbaum–Saunders distribution. In addition,

we have obtained moment estimators in a closed-form, which is not possible with

the original parameterization of the Birnbaum–Saunders distribution. However,

the parameter estimators obtained by the moment method, as well as those ob-

tained by the generalized moment method, are underperformed with respect to

their statistical properties. Nevertheless, for the case of large sample sizes, all the

studied estimators have similar statistical properties. We have discussed appli-

cations of the BS distribution in different scientific fields and taken advantage of

the computational implementation in the R software for carrying an application

with two real-world data sets, which allowed us to illustrate the obtained results.
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1. INTRODUCTION

The conditional hazard function remains an indispensable tool in survival

analysis and many other fields (medicine, reliability or seismology).

The nonparametric estimation of this function in the case of multivariate

data is abundant. The first works date back to Waston and Leadbetter ([31]), they

introduce the hazard estimate method, since, several results have been developed,

see for example, Roussas ([26]) (for previous works), Li and Tran ([18]) (for recent

references). The literature has paid quite some attention to nonparametric hazard

rate estimation when the data are functional. The first work which deals with this

question is Ferraty et al. ([12]). They established the almost complete convergence

of the kernel estimate of the conditional hazard function in the independent case.

This result was extended to the dependent case by Quintela-del-Ŕıo ([23]), he

treats the almost complete convergence, the mean quadratic convergence and

the asymptotic normality of this estimate. The uniform version of the almost

complete convergence (with rate) in the i.i.d. case was obtained by Ferraty et al.

([10]). Recently, Laksaci and Mechab ([16]) consider the spatial case. The almost

complete convergence rate of an adapted estimate of this model are given.

Estimating the conditional hazard function is closely related to the condi-

tional density, and for the last one, the bandwidth selection is very important for

the performance of an estimate. The bandwidth must not be too large, so as to

prevent over-smoothing, i.e. substantial bias, and must not be too small either,

so as prevent detecting the underlying structure. Particularly, in nonparametric

curve estimation, the smoothing parameter is critical for the performance.

Starting from this point of view, this work deals with the nonparametric

estimation with k nearest neighbors method k-NN, more precisely we consider a

kernel estimator of the hazard function constructed from a local window to take

into account the exact k nearest neighbors with real response variable Y and

functional curves X.

The k nearest neighbor or k-NN estimator is a weighted average of response

variables in the neighborhood of x. The existent bibliography of the k-NN method

estimation dates back to Royall ([27]) and Stone ([30]) and has received, since,

continuous developments (Mack ([20]) derived the rates of convergence for the bias

and variance as well as asymptotic normality in the multivariate case, Collomb

([4]) studied different types of convergence (probability, a.s., a.co.) of the estimator

of the regression function. Devroye ([6]) obtained the strong consistency and the

uniform convergence. For the functional data studies, the k-NN kernel estimate

was first introduced in the monograph of Ferraty and Vieu ([13]), Burba et al. ([2])

obtained the rate of almost complete convergence of the regression function using

the k-NN method for independent data and the asymptotic normality of robust

nonparametric regression function was established in Attouch and Benchikh ([1]).
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This paper is organized as follows. In Section 2 we present the model and

the k-NN estimator. Section 3, is dedicated to fix notations, hypotheses and

the presentation of the main results, the almost complete convergence and the

asymptotic normality. Section 4 is devoted to some applications in several prob-

lems of nonparametric statistics. Some technical auxiliary results are deployed in

Section 5, subsequently, in Section 6, we show the proofs of our main result.

2. MODELS AND ESTIMATORS

Let (Xi, Yi)i=1,n be an independent sequence identically distributed (i.i.d.)

as (X, Y ) which is a random pair valued in E×R. Here (E , d) is a semi-metric

space. E is not necessarily of a finite dimension, and we do not suppose the

existence of a density for the functional random variable X.

Our goal, in this article, is to estimate the conditional hazard function

defined by:

(2.1) h
X

(Y ) =
f

X
(Y )

1 − FX(Y )
,

where

f
X

(Y ) is the conditional density function of Y given X ,

F
X

(Y ) is the conditional distribution function of Y given X .

For a fixed x ∈ E , the k-NN kernel estimator of h
x
(Y= y) is given by:

(2.2) ̂h
x
k−NN (Y= y) = ̂h

x
(y) =

̂f
x
(y)

1 − ̂F x(y)
,

with

F
x
(y) = P

[

Y≤ y/X= x
]

= E
[

1I]−∞,y]/X= x
]

= r
(

1I]−∞,y]

)

,

where r(·) is the regression function defined in Ferraty and Vieu ([13]). Therefore:

˜F
x
(y) = r̂

(

1I]−∞,y]

)

=

n
∑

i=1

1I]−∞,y] K
(

H
−1
n d(x, Xi)

)

n
∑

i=1

K
(

H
−1
n d(x, Xi)

)

.
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Finally, by Roussas ([25]), Samanta ([28]) and Ferraty and Vieu ([13]), the esti-

mator of the conditional distribution function is given by

(2.3) ̂F
x
(y) =

n
∑

i=1

K
(

H
−1
n d(x, Xi)

)

R
(

g
−1
n (y−Yi)

)

n
∑

i=1

K
(

H
−1
n d(x, Xi)

)

, ∀ y ∈ R ,

where K is an asymmetrical kernel, Hn is a positive random variable, defined as

follows:

(2.4) Hn(x) = min

{

h ∈ R
+
/

n
∑

i=1

1IB(x,h)(Xi) = k

}

,

with

B(x, h) =

{

x
′ ∈ E ; d(x, x

′
)< h

}

.

R is a distribution function and (gn)n∈N is a sequence of strictly positive real

numbers (depending on n). Under a differentiability assumption of ̂F
x
(y), we

can obtain the conditional density function by differentiating the conditional dis-

tribution function, then we have

̂f
x
(y) =

∂

∂y

̂F
x
(y)

and then

(2.5) ̂f
x
(y) =

n
∑

i=1

K
(

H
−1
n d(x, Xi)

)

g
−1
n R

′(
g
−1
n (y − Yi)

)

n
∑

i=1

K
(

H
−1
n d(x, Xi)

)

.

In parallel, in order to emphasize differences between the k-NN method and the

traditional kernel approach, we define the estimator of the conditional hazard

function Ferraty et al. ([12]) by:

(2.6) ̂h
x
kernel(y) =

̂f
x
kernel(y)

1 − ̂F x
kernel(y)

,

with

(2.7) ̂f
x
kernel(y) =

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

g
−1
n R

′(
g
−1
n (y − Yi)

)

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)
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and

(2.8) ̂F
x
kernel(y) =

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

R
(

g
−1
n (y−Yi)

)

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

,

where K is a kernel, R is a distribution function and (hn)n∈N, (gn)n∈N are se-

quences of strictly positive numbers.

3. ASYMPTOTIC PROPERTIES OF THE k-NN METHOD

3.1. The almost complete convergence (a.co.)

We focus in the pointwise the almost complete convergence
1

and rate of

convergence
2

of the k-NN estimator of the conditional hazard function ̂h
x
(y)

defined on (2.2).

Before giving the main asymptotic result, we need some assumptions. The

first one is about the concentration function ϕx(h) and can be interpreted as a

small ball probability of the functional variable x given by:

(H1) ϕx(h) = P
(

X ∈B(x, h)
)

= P
[

X ∈
{

x
′∈E ; d(x, x

′
)< h

}]

,

with ϕx(h) continuous and strictly increasing in a neighborhood of 0

and ϕx(0) = 0.

(H2) We also need a kernel K:

The kernel K is a function from R into R
+
, we say that K is a

kernel of type I, so that: there exist two real constants C1, C2,

0 < C1 < C2 < ∞, such that

C11I[0,1] < K < C21I[0,1] .

1Let (Xn)n∈N be a sequence of real random variables. We say that (Xn)n∈N converges almost
completely (a.co.) to some r.r.v. X if and only if:

∀ ǫ > 0 ,

∞X
n=1

P
�
|Xn−X|> ǫ

�
< ∞ .

2Let (un)n∈N be a sequence of positive real number. We say that Xn = Oa.co.(un) if and only

if: ∃ ǫ > 0, so that,
∞X

n=1

P
�
|Xn|> ǫ un

�
< ∞. This kind of convergence implies both almost sure

convergence and convergence in probability.
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K is a kernel of type II, so that: the support of K is [0, 1] and if

its derivative K
′
exists on [0, 1] and satisfies, for two real constants

−∞ < C1 < C2 < 0,

C1 < K
′
< C2 .

In this case, we also suppose that: ∃C3 > 0, ∃ ǫ0:

∀ ǫ < ǫ0 ,

∫ ǫ

0
ϕx(u) du > C3 ǫ ϕx(ǫ) .

(H3) R is a differentiable function such that:

∃C <∞ , ∀ (x1, x2) ∈ R
2
, |R′

(x1) − R
′
(x2)| ≤ C|x1 − x2| .

R
′

is of the support compact [−1, 1] .

(H4) ∃ ζ > 0:







∀ (x1, x2) ∈ R
2
, |R(x1) − R(x2)| ≤ C|x1 − x2| ,

∫

|t|ζR′
(t) dt < ∞ .

(H5) (gn)n∈N is a strictly positive sequence such that:











lim
n→∞

gn = 0 , ∃ a > 0, lim
n→∞

n
a
gn = ∞ ,

lim
n→∞

log n

n gnϕx(h)
= 0 .

The nonparametric model of the function h
x

will be determined by regu-

larity conditions of the conditional distribution of Y given X. These conditions

are:

(H6) Nx will denote a fixed neighborhood of x, S will be a fixed compact

subset of R:

We will consider two kinds of nonparametric models. The first one

is called the “Lipschitz-type” model that is defined:

LipE×R :











f : E×R→R , ∀ (x1, x2) ∈ N
2
x , ∀ (y1, y2) ∈ S

2
,

∃C <∞ , ∃α, β > 0 ,

∣

∣f(x1, y1) − f(x2, y2)
∣

∣ ≤ C
(

d(x1, x2)
α

+ |y1− y2|β
)

.

(H7) The second one, called the “Continuity type” model, is defined as:

C
0
E×R =

{

f : E×R→R , ∀x
′ ∈Nx, lim

d(x,x′)→0
f(x

′
, y) = f(x, y)

}

.

(H8) Finally, we will consider the conditional moments of the response

random variable Y :

∀m ≥ 2, E
[

|Y |m/X = x
]

= σm(x) < ∞ ,

with σm(·) continuous on x.
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Before studying the k-NN estimator, we remind asymptotic properties of

̂h
x
kernel defined by equation (2.6). Ferraty et al. ([12]), showed the almost complete

convergence of this estimator.

Theorem 3.1.

• In the “continuity type” model and under the assumptions (H1), (H2),

(H6) and (H8) we have:

̂h
x
kernel(y) −→ h

x
(y) a.co.

• Under the “Lipschitz type” model and the hypotheses (H1), (H2), (H3),

(H5), (H8), we have:

̂h
x
kernel(y) − h

x
(y) = O(h

α
n) + O(g

β
n) + O

(
√

log n

n ϕx(h)

)

.

Now we state the almost complete convergence for the nonparametric k-NN

method estimate, defined in (2.2).

Theorem 3.2. In the “continuity type” model and under the hypotheses

(H1), (H2), (H4), (H5) and (H6), suppose that k = kn is a sequence of positive

real numbers such that
kn

n
→ 0 and

log n

kn
→ 0, then we have:

lim
n→∞

̂h
x
(y) = h

x
(y) a.co.

Proof: We consider the following decomposition:

(3.1) ̂h
x
(y) − h

x
(y) =

1

1− ̂F x(y)

[

̂f
x
(y)−f

x
(y)
]

+ h
x
(y)

1

1− ̂F x(y)

[

̂F
x
(y)−F

x
(y)
]

.

Then the proof of Theorem 3.2 can be deduced from the following intermediate

results.

Lemma 3.1. Under the hypotheses of Theorem 3.2, we have:

lim
n→∞

̂f
x
(y) = f

x
(y) a.co.(3.2)

and

lim
n→∞

̂F
x
(y) = F

x
(y) a.co.(3.3)

Lemma 3.2. Under the hypotheses of Theorem 3.2, we have:

(3.4) ∃ δ > 0 ,

∑

n∈N

P
[(

1− ̂F x
(y)
)

< δ
]

< ∞ .
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Theorem 3.3. The hypotheses (H1)–(H8) imply

̂h
x
(y) − h

x
(y) = O

(

ϕ
−1
x

(

k

n

)α
)

+ O
(

g
β
n

)

+ O

(
√

log n

kngn

)

a.co.

Proof: We consider the decomposition (3.1), and the proof of this Theo-

rem is a consequence of these results.

Lemma 3.3. Under the hypotheses of Theorem (3.3), we have:

(3.5) ̂f
x
(y) − f

x
(y) = O

(

ϕ
−1
x

(

kn

n

)α
)

+ O
(

g
β
n

)

+ O

(
√

log n

kngn

)

a.co.

Lemma 3.4. Under the hypotheses of Theorem (3.3), we have:

(3.6) ̂F
x
(y) − F

x
(y) = O

(

ϕ
−1
x

(

kn

n

)α
)

+ O
(

g
β
n

)

+ O

(

√

log n

kn

)

a.co.

3.2. Asymptotic normality

This section contains results on the asymptotic normality of ̂h
x
(y). For

this, we have to add the followings assumptions:

(H9) For each sequence Un ↓ 0 as n → ∞ of positive real numbers, there

exists a function λ(·) such that:

∀ t ∈ [0, 1] , lim
Un→∞

ϕx(tUn)

ϕx(Un)
= λ(t) .

(H10) lim
n→∞

(

g
2
n − ϕ

−1
x

(

k

n

)

)

√

kn = 0 and
1

kngn
= o
(

g
β
n

)

.

Theorem 3.4. Assume that (H1), (H9), (H10) hold, then for any x ∈ A,

we have:

(3.7)

(

kngn

σ2
h(x, y)

)1/2
[

̂h
x
(y) − h

x
(y)

]

D−→ N (0, 1) as n → ∞ ,

where

σ
2
h(x, y) =

α2 h
x
(y)

α2
1

(

1−F x(y)
)(3.8)

(

with: αj = K
j
(1) −

∫ 1

0
(K

j
)
′
(s)λ(s) ds for j =1, 2

)

,

A =

{

x ∈ E ; f
x
(y)
[

1−F
x
(y)
]

6= 0

}

,

D−→ means the convergence in distribution.
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Proof: We consider the decomposition (3.1) and we show that the proof

of Theorem (3.4) is a consequence of the following results.

Lemma 3.5. Under the hypotheses of Theorem (3.4), we have:

(

kngn

σ2
f (x, y)

)1/2
[

̂f
x
(y) − f

x
(y)

]

D−→ N (0, 1) as n → ∞ ,

where

(3.9) σ
2
f (x, y) = f

x
(y)

∫

R
′2
(t) dt .

Lemma 3.6. Under the hypotheses of Theorem 3.4, we have:

(

kngn

σ2
F (x, y)

)1/2
[

̂F
x
(y) − F

x
(y)

]

D−→ N (0, 1) as n → ∞ ,

where

(3.10) σ
2
F (x, y) = F

x
(y)
[

1−F
x
(y)
]

.

Lemma 3.7. Under the hypotheses of Theorem 3.4, we have:

(

1− ̂F
x
(y)
)

→
(

1−F
x
(y)
)

in probability .

4. APPLICATIONS

4.1. Conditional Confidence Interval

The main application of the Theorem (3.4) is the to build confidence inter-

val for the true value of h
x
(y) for a given curve X = x. A plug-in estimate for the

asymptotic standard deviation σ(x, θx) can be obtained using the estimators ̂h
x
(y)

and ̂F
x
(y) of h

x
(y), F

x
(y) respectively. We get σ̂(x, y) :=

(

α̂2
̂h

x
(y)

(α̂1)
2 (1− ̂F x(y))

)1/2

.

Then ̂h
x
(y) can be used to get the following approximate (1 − ζ) confidence in-

terval for h
x
(y)

̂h
x
(y) ± t1−ζ/2 ×

(

σ̂
2
n(x, y)

gnk

)1/2

where t1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal distribution.
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We estimate empirically α1 and α2 by

α̂1 =
1

kg(x)

n
∑

i=1

Ki and α̂2 =
1

kg(x)

n
∑

i=1

K
2
i ,

where Ki = K

(

d(x, Xi)

φ−1(k/n)

)

.

This last estimation is justified by the fact that, under (H1), (H5) and (H6),

we have, (see Ferraty and Vieu ([13]) p. 44)

1

kg(x)
E[K

j
1 ] → αj , j = 1, 2 .

4.2. A Simulation study

In this section we will show the effectiveness of k-NN method compared to

the kernel estimation using simulated data. For this we considered a sample of a

diffusion process on interval [0, 1], Z1(t) = 2 − cos(πtW ) and Z2(t) = cos(πtW ),

where W is the standard normal distribution and take X(t)=AZ1(t)+(1−A)Z2(t),

where A is random variable Bernoulli distributed. We carried out the simulation

with a 200-sample of the curve X which is represented by the following graph:

0 50 100 150

−3
−2

−1
0

1

Figure 1: The 200 curves X.

For the scalar response variable, we took Y = Ar1(X)+(1−A)r2(X) where

r1 (resp. r2) is the nonlinear regression model r1(X) = 0.25×
(∫ 1

0
X

′
(t) dt

)2

+ ǫ,

with ǫ is U([0, 0.5]) (resp. r2(X) is the null function). We choose a quadratic

kernel K defined by:

K(x) =
3

2
(1−x

2
) 1I[0,1] .
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In practice, the semi-metric choice is based on the regularity of the curves X. For

this we use the semi-metric defined by the L2-distance between the q
th

derivatives

of the curves. In order to evaluate the MSE (Mean Square Error) we proceed by

the following algorithm:

Step 1. We split our data into two subsets; the first sample, of size n =120

corresponds to the learning sample which will be used, as a sam-

ple, to compute our conditional hazard function estimators for

the 80 remaining curves (considered as the test sample).

• (Xj , Yj)j∈J learning sample,

• (Xi, Yi)i∈I test sample.

Step 2. • We use the learning sample for computing the hazard function

estimator ̂hj , for all j ∈ J .

• We set: i
∗

= arg minj∈J d(Xi, Xj).

• We put: ∀ i ∈ I,

̂Ti = ̂h
Xi∗ (Yi) for kernel method ,

̂Ti = ̂h
Xkopt (Yi) for k-NN method ,

where

Xi∗ : is the nearest curve to Xj ,

kopt : arg min
a

(CV (a)) ,

with

CV (a) =
1

n

[

∑

i∈J

∫

(

̂f
−i
(a,b)(Xi, y)

)2
dy − 2

∑

i∈J

̂f
−i
(a,b)(Xi, Yi)

]

and

̂f
−k
(a,b)(x, y) =

b
−1
∑

i∈J,i6=k K

(

d(x, Xi)

a

)

R

(

y−Yi

b

)

∑

i∈J K

(

d(x, Xi)

a

) .

Step 3. The error used to evaluate this comparison is the mean of square

error (MSE ) expressed by

1

card(I)

∑

i∈I

∣

∣

∣h(Yi) − ̂T (Xi, Yi)

∣

∣

∣

2
,

where ̂T designate the estimator used: kernel or k-NN method

estimation and h is the true hazard function.

Consequently, the k-NN method gives slightly better results than the kernel

method. This is confirmed by the MSE-k-NN= 0.8227394 and MSE-Kernel =

1.347982.
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4.3. Real data application

To highlight the efficiency and robustness of the method of k nearest neigh-

bors with respect to the kernel method in estimating the conditional hazard func-

tion, we will test these two methods in the presence or not of heterogeneous data.

To do this, based on the study of Burba et al. (2009) which emphasizes the

effect of the nature of the data (homogeneous or heterogeneous) on the quality of

the estimate, especially the superiority of the k-nearest neighbors in the presence

of very heterogeneous data.

For this purpose, we apply the described algorithm used in the simulation

study to some chemiometrical real data available on the site
3
, the original of

these data (215 selected pieces of meat) comes from a quality control problem

in the food industry that controls grease on a sample of finely chopped meat by

chemical processes.

The sample of size 215 was split into learning sample of size 205 (with all

data), 178 (without the heterogeneous data, 27 values) and testing sample of size

10. Figure 2 displays the curves of learning sample for all data and the curves of

learning sample without the heterogeneous one.���������	 	���
���
���� ����

����� �� �� �� �� ���� ��� ��� ��� ��
� ��� ��� ��� ��

 !"#$%&'()*+( )%(%,*-%.%*+ /!(!
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Figure 2: The learning curves.

For our study, we use the standard L
2

semi-metric and a quadratic kernel

function K.

We plot the conditional hazard function estimated for the first 3 values of

the testing sample, Figure 3 depicts that the k-NN method in presence of hetero-

3
http://lib.stat.cmu.edu/datasets/tecator.
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geneous data give a better estimation of the conditional hazard function predic-

tion (regular function) than the kernel method estimation (non-regular function)

and when the data are homogeneous the two method give the same result which

can be easily seen in Figure 4.

0 20 40 60 80

Index

0 20 40 60 80

k−NN method with all data

Index

0 20 40 60 80

Index

0 20 40 60 80

Index

0 20 40 60 80

kernel method with all data

Index

0 20 40 60 80

Index

Figure 3: k-NN method (upper panels) vs kernel method (lower panels)

of conditional hazard function far all data.
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Figure 4: k-NN method (upper panels) vs kernel method (lower panels)

of conditional hazard function for homogeneous data.
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5. GENERAL TECHNICAL TOOLS

Let (Ai, Bi)i∈N be a sequence of random variables with values in (Ω×R,

A⊗B), independent but not necessarily identically distributed,where (Ω,A) is a

general measurable space, let G : R×Ω → R
+

a measurable function such that:

∀w, w
′ ∈ R,

w ≤ w
′

=⇒ G(w, z) ≤ G(w
′
, z) , ∀ z ∈ Ω .

Let c be a not random positive real number and T a real random variable: we

define, ∀n ∈ N
∗
,

Cn(T ) =

n
∑

i=1

BiG(T, Ai)

n
∑

i=1

G(T, Ai)

.

Lemma 5.1 (Burba et al. ([3])). Let (Dn)n∈N be a sequence of real ran-

dom variables and (un)n∈N be a decreasing sequence of positive numbers.

If l = lim un 6= 0, and if, for all increasing sequence βn ∈ ]0, 1[ , there exist two

sequences of real random variables (D
+
n (βn))n∈N and (D

−
n (βn))n∈N:

(L1) ∀n ∈ N, D
−
n ≤ D

+
n and 1ID−

n ≤Dn≤D+
n
→ 1 a.co.

(L2)

n
∑

i=1

G(D
−
n , Ai)

n
∑

i=1

G(D
+
n , Ai)

− βn = O(un) a.co.

(L3) Cn(D
−
n ) − c = O(un) a.co.

Cn(D
+
n ) − c = O(un) a.co.

Then:

Cn(Dn) − c = O(un) a.co.

If l= 0 and if (L1), (L2), (L3) hold for any increasing sequence βn ∈ ]0, 1[ with

limit 1, the same result holds.

Lemma 5.2 (Burba et al. ([3])). Let (Dn)n∈N be a sequence of real ran-

dom variables and (vn)n∈N be a decreasing positive sequence. If l
′
= lim vn 6= 0,

and if, for all increasing sequence βn ∈ ]0, 1[ , there exist two sequences of real

random variables (D
+
n (βn))n∈N and (D

−
n (βn))n∈N:

(L′1) ∀n ∈ N, D
−
n ≤ D

+
n and 1ID−

n ≤Dn≤D+
n
→ 1 a.co.
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(L′2)

n
∑

i=1

G(D
−
n , Ai)

n
∑

i=1

G(D
+
n , Ai)

− βn = o(vn) a.co.

(L′3) Cn(D
−
n ) − c = o(vn) a.co.

Cn(D
+
n ) − c = o(vn) a.co.

Then:

Cn(Dn) − c = o(vn) a.co.

If l
′
= 0 and if (L′1), (L′2), (L′3) hold for any increasing sequence (βn) ∈ ]0, 1[

with limit 1, the same result holds.

Burba et al. ([3]) use in their consistency proof of the k-NN kernel estimate

for independent data a Chernoff-type exponential inequality to check conditions

(L1) or (L
′
1).

Lemma 5.3 (Burba et al. ([3])). Let (X1, X2, ..., Xn) be independent ran-

dom variable in {0, 1}. We note X =

n
∑

i=1

Xi and µ = E(X): then, ∀ δ > 0,

P
[

X > (1+ δ)µ
]

<
[

e
δ
/(1+ δ)

1+δ
]µ

,

P
[

X < (1− δ)µ
]

<
[

e
−δ2/2µ

]

.
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APPENDIX

Proof of Section 3.1

Proof of Lemma 3.1: On one hand, to prove the first result, we apply

Lemma 5.2 with:

(A.1)























vn = 1 ,

Hn = Dn ,

̂f
x
(y) = Cn(Dn) ,

f
x
(y) = c .

Choose βn ∈ ]0, 1[, (D
−
n ) and (D

+
n ) such that:

(A.2)











ϕx(D
−
n ) =

√
βn ϕx(h) =

√
βn

kn

n
,

ϕx(D
+
n ) =

1√
βn

ϕx(h) =
1√
βn

kn

n
.

Define

(A.3)















h
−

= D
−
n = ϕ

−1
x

(√
βn

kn

n

)

,

h
+

= D
+
n = ϕ

−1
x

(

1√
βn

kn

n

)

.

Ferraty and Vieu ([13]) proved under the conditions of Theorem 3.1 that:

1

n ϕx(h)

n
∑

i=1

K
(

h
−1

d(x, Xi)
)

→ 1 a.co.

Under the conditions (A.2) and (A.3), we have:























1

n ϕx(D
−
n )

n
∑

i=1

K
(

(D
−
n )

−1
d(x, Xi)

)

→ 1 a.co.

1

n ϕx(D
+
n )

n
∑

i=1

K
(

(D
+
n )

−1
d(x, Xi)

)

→ 1 a.co.

Then:
n
∑

i=1

K
(

(D
−
n )

−1
d(x, Xi)

)

n
∑

i=1

K
(

(D
+
n )

−1
d(x, Xi)

)

→ βn a.co. ,



290 M. Kadi Attouch and F. Zohra Belabed

so that (L
′
2) is checked. Now by using Lemma (6.15) in Ferraty and Vieu ([13])

under the conditions of Theorem 3.1 and

(A.4) Dn −→ 0 ,
log n

nϕx(Dn)
−→ 0 (n → ∞) ,

we have:

Cn(D
−
n ) → c a.co.

Cn(D
+
n ) → c a.co.

so (L
′
3) is verified. Finally, we check (L

′
1). The first part is obvious, and the

second one that: ∀ ǫ > 0,

∑

n≥0

P

[

∣

∣1ID−
n <Hn<D+

n
− 1
∣

∣ > ǫ

]

< ∞ .

We know that:

P

[

∣

∣1ID−
n <Hn<D+

n
− 1
∣

∣ > ǫ

]

≤ P
[

Hn < D
−
n

]

︸ ︷︷ ︸

A1

+ P
[

Hn > D
+
n

]

︸ ︷︷ ︸

A2

,

A1 ≤ P

[

n
∑

i=1

1IB(x,D−
n ) > kn

]

.

And by using Lemma 5.3 with

(A.5)











































Xi = 1IB(x,D−
n ) ,

X =

n
∑

i=1

1IB(x,D−
n ) ,

P
(

Xi=1
)

= ϕx(D
−
n ) ,

µ = E(X) =

n
∑

i=1

E
[

1IB(x,D−
n )

]

= n ϕx(D
−
n ) ,

we get:

P
[

Hn < D
−
n

]

<

[

e

(

1√
β
−1
)

/

(

1√
β

)− 1√
β

]nϕx(D−
n )

< n

(

− log
√

βn e(1−
√

βn)
)

−kn
log n

.

Under the hypotheses (A.4) and as
√

β(e
(1−

√
β)

) < 1 then:

A1 = P
[

Hn < D
−
n

]

< ∞ .

Turning now to the study of A2, we obtain

P
[

Hn > D
+
n

]

= P

[

n
∑

i=1

1IB(x,D+
n ) < n

√

βϕx(D
+
n )

]
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under the modification (A.5), and by applying the Lemma 5.3 we obtain:

P
[

Hn > D
+
n

]

< e

−kn(1−
√

β)2

2
√

β

<

(

n

(1−
√

β)2

2
√

β

)

−kn
log n

.

Since
(1 −√

β)
2

2
√

β
> 0 and

nϕx(h)

log n
→ ∞ then:

P
[

Hn > D
+
n

]

< ∞ .

Finally:

P

[

∣

∣1ID−
n <Hn<D+

n
− 1
∣

∣ > ǫ

]

< ∞ .

On the other hand, we prove the second result. For this, we use the preceding

steps with:

(A.6)



















vn = 1 ,

Hn = Dn ,

̂F
x
(y) = Cn(Dn) ,

F
x
(y) = c .

Proof of Lemma 3.2: It is clear that:

∣

∣1 − ̂F
x
(y)
∣

∣ <
1 − F

x
(y)

2
=⇒

∣

∣ ̂F
x
(y) − F

x
(y)
∣

∣ >
1 − F

x
(y)

2
.

Turning now, to the term of probability, we obtain:

P

[

∣

∣1 − ̂F
x
(y)
∣

∣ <
1 − F

x
(y)

2

]

≤ P

[

∣

∣ ̂F
x
(y) − F

x
(y)
∣

∣ >
1 − F

x
(y)

2

]

,

∑

n∈N

P

[

∣

∣1 − ̂F
x
(y)
∣

∣ <
1 − F

x
(y)

2

]

≤
∑

n∈N

P

[

∣

∣ ̂F
x
(y) − F

x
(y)
∣

∣ >
1 − F

x
(y)

2

]

.

For the second term, by result 3.3, we have:

∑

n∈N

P

[

∣

∣ ̂F
x
(y) − F

x
(y)
∣

∣ >
1 − F

x
(y)

2

]

< ∞ .

Then, for δ =
1 − F

x
(y)

2
, we obtain:

∑

n∈N

P

[

∣

∣ ̂F
x
(y) − F

x
(y)
∣

∣ >
1 − F

x
(y)

2

]

< ∞ .
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Proof of Lemma 3.3: To prove this lemma, we use Lemma 5.1. Choose

βn as an increasing sequence in ]0, 1[ with limit 1. Furthermore, we choose D
−
n

and D
+
n under (A.2), Ferraty and Vieu ([13]) proved under the conditions of

Theorem 3.1 that:

r̂3(x) − E [r̂3(x)] = O

(
√

log n

nhnϕx(h)

)

,

with

r̂3(x) =
1

n

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

R
(

g
−1
n (y − Yi)

)

E
[

K
(

h
−1
n d(x, X1)

)] ,

r̂3(x) =
1

n

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

Γi(y)

E
[

K
(

h
−1
n d(x, X1)

)] ,

Γi(y) = R
(

g
−1
n (y − Yi)

)

.

Then,

r̂3(x) − E [r̂3(x)] =
1

n

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

EK
(

h
−1
n d(x, X1)

) Γi(y)

− 1

n

n
∑

i=1

E

[

K
(

h
−1
n d(x, Xi)

)

EK
(

h
−1
n d(x, X1)

) Γi(y)

]

=
1

nEK
(

h
−1
n d(x, X1)

)

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

Γi(y)

− 1

EK
(

h
−1
n d(x, X1)

) E
[

K
(

h
−1
n d(x, X1)

)

E(Γ1(y)/X1)
]

=
1

nEK
(

h
−1
n d(x,X1)

)

n
∑

i=1

K
(

h
−1
n d(x,Xi)

)

Γi(y) − E(Γ1(y)/X1) .

Using the fact that E
[

K
(

h
−1
n d(x, Xi)

)]

= O(ϕx(h) (see Ferraty and Vieu ([13])

and under the notations (A.2) and (A.3), we have:



























1

nϕx(D
−
n )

n
∑

i=1

K

(

d(x, Xi)

D
−
n

)

Γi(y) = E(Γ1(y)/X1) + O

(
√

log n

gnkn

)

,

1

nϕx(D
+
n )

n
∑

i=1

K

(

d(x, Xi)

D
+
n

)

Γi(y) = E(Γ1(y)/X1) + O

(
√

log n

gnkn

)

.

By this, we obtain:

n
∑

i=1

K

(

d(x, Xi)

D
−
n

)

n
∑

i=1

K

(

d(x, Xi)

D
+
n

)

− βn = O

(
√

log n

gnkn

)

a.co.
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that (L2) is verified. Now, we apply Lemma (6.15) for Ferraty and Vieu ([13])

under (A.2) and (A.1), we get:

Cn(D
−
n ) − c = O

(

ϕ
−1
x

(

k

n

)α)

+ O(g
β
n) + O

(
√

log n

gnkn

)

a.co.

Cn(D
+
n ) − c = O

(

ϕ
−1
x

(

k

n

)α)

+ O(g
β
n) + O

(
√

log n

gnkn

)

a.co.

that verifies condition (L3).

Proof of Lemma 3.4: To verify this Lemma, we pass by the same steps

as before, such that: Ferraty and Vieu ([13]) showed that

r̂1(x) − 1 = O

(
√

log n

nϕx(h)

)

,

with

r̂1(x) =
1

n

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

EK
(

h
−1
n d(x, X1)

) .

Then

1

n

n
∑

i=1

K
(

h
−1
n d(x, Xi)

)

− ϕx(h) = O

(
√

log n

nϕx(h)

)

and under the same choice of h
−

= D
−
n and h

+
= D

+
n as above, we have:



























1

n

n
∑

i=1

K

(

d(x, Xi)

D
−
n

)

=

√

βn
kn

n
+ O

(

√

log n

kn

)

,

1

n

n
∑

i=1

K

(

d(x, Xi)

D
+
n

)

=
1√
βn

kn

n
+ O

(

√

log n

kn

)

.

We get
n
∑

i=1

K

(

d(x, Xi)

D
−
n

)

n
∑

i=1

K

(

d(x, Xi)

D
+
n

)

− βn = O

(

√

log n

kn

)

so that, (L2) is checked. Now we are able to apply Lemma (6.14) in Ferraty and

Vieu ([13]) under (A.6), we obtain

Cn(D
−
n ) − c = O

(

ϕ
−1
x

(

kn

n

)α)

+ O(g
β
n) + O

(

√

log n

kn

)

,

Cn(D
+
n ) − c = O

(

ϕ
−1
x

(

kn

n

)α)

+ O(g
β
n) + O

(

√

log n

kn

)

,

and (L3) is verified.
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Proof of Section 3.2

Proof of Lemma 3.5: We denote:

(A.7)

{

Cn(Hn) = ̂f
x
(y) ,

c = f
x
(y) .

Under (A.2) and (A.3), we have:

(

kngn

σ2
f (x, y)

)1/2

[Cn(Hn) − c] =

(A.8)

=

(

kngn

σ2
f (x, y)

)1/2
[

Cn(D
+
n ) − c

]

+

(

kngn

σ2
f (x, y)

)1/2
[

Cn(Hn) − Cn(D
+
n )
]

.

Then, to establish the asymptotic normality of the conditional density function,

we need to show the asymptotic normality of the first term in equation (A.8) and

the second term converges a.co. to 0.

For this, we remind that, under the same assumptions as Lemma 3.5, Quintela-

del-Ŕıo ([23]) in Theorem 5 proved that

(

kngn

σ2
f (x, y)

)1/2
[

Cn(D
+
n ) − c

] D−→ N (0, 1) as n → ∞ .

On the other hand, by hypothesis (H2) and the fact that 1I{D−
n ≤Hn≤D+

n } → 1

where
kn

n
→ 0 (see Burba et al. ([3])), we have:

Cn(D
+
n ) ≤ Cn(Hn) ≤ Cn(D

−
n ) .

Using the fact that:

|Cn(Hn) − Cn(D
+
n )| ≤ |Cn(D

−
n ) − Cn(D

+
n )|

≤ |Cn(D
−
n ) − E

[

Cn(D
−
n )
]

| + |Cn(D
+
n ) − E[Cn(D

+
n )]|(A.9)

+ |E[Cn(D
−
n )] − E[Cn(D

+
n )]| .

For the first term, we can write:

|Cn(D
−
n ) − E

[

Cn(D
−
n )
]

| ≤ |Cn(D
−
n ) − c| + |E

[

Cn(D
−
n )
]

− c|

by Lemma (3.3), we have:

|Cn(D
−
n ) − c| = O

(

ϕ
−1
x

(

kn

n

)α)

+ O(g
β
n) + O

(
√

log n

kngn

)
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and Quintela-del-Ŕıo ([23]) proved that:

(A.10) |E
[

Cn(D
−
n )
]

− c| = o(g
β
n) + O

(

1

kn

)

.

Finally, under hypothesis (H10), we obtain the almost complete convergence of

the first term of (A.9). And to establish the almost complete convergence of the

second term we apply the same steps as before.

Finally for the third term, we have:

|E[Cn(D
−
n )] − E[Cn(D

+
n )]| ≤ |E[Cn(D

−
n )] − c| + |E[Cn(D

+
n )] − c|

the almost complete convergence to 0 of these two terms is verified in (A.10).

Proof of Lemma 3.6: To prove this Lemma, we apply the same steps as

preceding with:

(A.11)

{

Cn(Hn) = ̂F
x
(y) ,

c = F
x
(y) .

Proof of Lemma 3.7: It is clear that, the result (3.3) of Lemma (3.1)

permits to conclude that:

̂F
x
(y) → F

x
(y) in probability .
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[23] Quintela-del-Ŕıo, A. (2008). Hazard function given a functional variable:

non-parametric estimation under strong mixing conditions, J. Nonparametric

Stat., 20, 413–430.

[24] Ramsay, J. and Silverman, B. (2005). Functional Data Analysis, 2nd Ed.,

Springer Series in Statistics, Springer, New York.

[25] Roussas, G. (1969). Nonparametric estimation of the transition distribution

function of a Markov process, Annals of Mathematical Statistics, 40, 1386–1400.

[26] Roussas, G. (1989). Nonparametric estimation in mixing sequences of random

variables, J. Statist. Plann., 18, 135–149.

[27] Royall, R.M. (1966). A class of nonparametric estimates of a smooth regression

function, Ph.D. Diss., Stanford University.

[28] Samanta, M. (1989). Non-parametric estimation of conditional quantiles,

Statist. Proba. Letters, 7, 407–412.

[29] Samanta, M. and Thavaneswaran, A. (1990). Non-parametric estimation of

conditional model, Comm. Statist. Theory and Meth., 16, 4515–4524.

[30] Stone, C.J. (1977). Consistent nonparametric regression, Ann. Statist., 5, 595–

645.

[31] Waston, G.S. and Leadbetter, M.R. (1964). Hazard analysis, I. Biometrika,

51, 175–184.





REVSTAT – Statistical Journal

Volume 12, Number 3, November 2014, 299–328

PORT-ESTIMATION OF A SHAPE

SECOND-ORDER PARAMETER
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1. INTRODUCTION AND MOTIVATION

Let Xn = (X1, ..., Xn) denote a random sample of n independent, identi-

cally distributed (i.i.d.) random variables (r.v.’s) with distribution function (d.f.)

F . We are interested in heavy-tailed models, i.e. in d.f.’s with a regularly varying

right-tail. This means that, for ξ > 0, the right tail-function

F := 1 − F

is such that

(1.1) lim
t→∞

F (tx)/F (t) = x
−1/ξ

, for all x > 0.

We then say that F is of regular variation at infinity with an index equal to −1/ξ,

and define

(1.2) Gξ(x) :=

{

exp
(

−(1 + ξ x)
−1/ξ

)

, 1 + ξ x > 0, if ξ 6= 0

exp(− exp(−x)), x ∈ R, if ξ = 0,

the general extreme-value (EV) distribution function. If (1.1) holds, we are in the

domain of attraction for maxima of Gξ, with ξ > 0, and we write F ∈ DM(Gξ>0),

meaning that it is possible to find sequences of real constants {an > 0} and {bn ∈
R} such that the maximum Xn:n := max(X1, ..., Xn), linearly normalized, i.e.

(Xn:n − bn)/an, converges in distribution to a non-degenerate r.v. with d.f. Gξ(x),

in (1.2), with ξ > 0. This type of heavy-tailed models arises often in practice, in

fields like telecommunication traffic, finance, insurance, economics, ecology and

biometry, among others. The parameter ξ, in (1.2), is the extreme-value index

(EVI), one of the primary parameters of extreme events.

Let F
←

denote the generalised inverse function of F , defined by

(1.3) F
←

(t) := inf {x : F (x) ≥ t} ,

and let U be the associated (reciprocal) quantile function, defined as

(1.4) U(t) := F
←

(1 − 1/t), t ≥ 1.

1.1. First and second-order conditions for heavy-tailed models

In a heavy-tailed framework, i.e. if (1.1) holds, with the usual notation RVa

for the class of regularly varying functions at infinity with an index a ∈ R, and on

the basis of the results in Gnedenko (1943), for the right-tail function F = 1−F ,
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and in de Haan (1984), for U in (1.4), the following first-order conditions are

equivalent,

(1.5) F ∈ DM(Gξ>0) ⇐⇒ F ∈ RV−1/ξ ⇐⇒ U ∈ RVξ.

Now we need to say something about the rate of convergence in (1.5), and assume

that the following limiting relation holds for every x > 0,

(1.6) lim
t→∞

ln U(tx)−ln U(t)−ξ ln x
A(t) =

{

xρ−1
ρ , if ρ < 0

lnx, if ρ = 0,

where |A| must then be in RVρ (Geluk and de Haan, 1987). The second-order

parameter ρ ≤ 0 rules the rate of convergence provided by (1.6), which increases

with |ρ|. Note further that in the scope of applications, the most common models

depend on a location or shift parameter s ∈ R, not necessarily null, i.e. F (x) ≡
Fs(x) = F0(x− s). Then, U(t) ≡ Us(t) = U0(t)+ s and also both A and ρ depend

obviously on s, i.e. A = As and ρ = ρs, with

(1.7) ρs :=

{

−ξ, if ξ + ρ0 < 0 ∧ s 6= 0

ρ0, otherwise.

Among the literature specifically devoted to the estimation of the second-

order parameter ρ, in (1.6), we mention Gomes et al. (2002), Fraga Alves et

al. (2003a), and the more recent articles by Goegebeur et al. (2008; 2010), Ciu-

perca and Mercadier (2010) and Caeiro and Gomes (2012a,b). Indeed, most of

the research devised to improve the classical EVI-estimators tries to reduce the

dominant component of their asymptotic bias, deals with second-order reduced-

bias (SORB) EVI-estimators, and an adequate estimation of ρ is needed, for an

adequate reduction of the bias. Some of the pioneering papers in the area of

SORB-estimation are the ones by Beirlant et al. (1999), Feuerverger and Hall

(1999), Gomes et al. (2000) and Gomes and Martins (2001; 2002). More recently,

the minimum-variance reduced-bias (MVRB) EVI-estimators, studied in Caeiro

et al. (2005), Gomes et al. (2007) and Gomes et al. (2008c), among others, also

call for an adequate estimation of ρ. An overview of the subject can be found in

Chapter 6 of the book by Reiss and Thomas (2007). See also Gomes et al. (2008a)

and Beirlant et al. (2012) in this respect. However, despite of scale-invariant, all

these MVRB EVI-estimators are not location-invariant.

1.2. The PORT methodology

Let Xi:n, 1 ≤ i ≤ n, be the o.s.’s associated with the random sample Xn =

(X1, ..., Xn) with common d.f. F0. The class of estimators suggested here is a
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function of the sample of excesses over a random threshold Xnq :n, with nq =

⌊nq⌋+ 1, where ⌊x⌋ stands for the integer part of x. Such a sample is denoted by

(1.8) X
(q)
n :=

(

Xn:n − Xnq :n, Xn−1:n − Xnq :n, ..., Xnq+1:n − Xnq :n

)

,

where, we can have

• 0 < q < 1, for any F0∈DM(Gξ>0) (the random threshold, Xnq :n, is an

empirical quantile);

• q = 0, for d.f.’s with a finite left endpoint x
F

:= inf{x : F0(x) > 0}, (the

random threshold is the minimum, X1:n).

Any statistical inference methodology based on the sample of excesses X
(q)
n , in

(1.8), will be called a PORT-methodology, with PORT standing for peaks over

random thresholds, a term coined by Araújo Santos et al. (2006). This method-

ology enabled the introduction and study of classical location/scale invariant

EVI-estimators, like the PORT-Hill and the PORT-Moment estimators, studied

for finite-samples in Gomes et al. (2008b). This methodology was also applied in

the estimation of high quantiles in Henriques-Rodrigues and Gomes (2009).

Such a methodology leads to location-invariant estimation, where the un-

shifted model F0 thus plays a central role. In what follows, we use the notation

χq for the q-quantile of the d.f. F0, i.e. the value

(1.9) χq := F
←
0 (q)

(by convention χ0 := x
F
, the left endpoint of F0), with F

←
(·) defined in (1.3).

Since nq/n → q, as n → ∞, we then know that the o.s. Xnq :n, associated with

a sample from F0, is a consistent estimator for F
←
0 (q) (Mosteller, 1946, under

stronger assumptions on F ; van der Vaart, 1998, p.308), i.e. we have the following

convergence in probability:

(1.10) Xnq :n
p−→

n→∞
χq = F

←
0 (q), for 0 ≤ q < 1

(

χ0 = x
F

)

.

1.3. Scope of the paper

We shall make use of the above-mentioned PORT methodology for heavy

tails. Henceforth ξ > 0 denotes the first-order parameter of the model under-

lying the available data, ρ0 ≤ 0 is the second-order parameter of the associated

unshifted model, and χq has been provided in the limit of (1.10), in order to

introduce a class of location-invariant semi-parametric estimators of the so-called

PORT-ρ second-order parameter,

(1.11) ρq :=

{

−ξ, if ξ + ρ0 < 0 ∧ χq 6= 0

ρ0, otherwise.
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Note that when applying the PORT-methodology, we are working with the sample

of excesses in (1.8), and we can assume that we are dealing with an unshifted

d.f. F0 underlying the r.v. X0, to which we are inducing a random shift, strictly

related to χq, in (1.9). More precisely, we have a shift s = −χq, i.e. we are working

with Xq := X0 − χq, and use the simpler notation ρq for ρ−χq , with ρs defined in

(1.7). Hence ρq = −ξ 6= ρ0 if and only if χq 6= 0 and the underlying model is such

that ξ + ρ0 < 0, just as written in (1.11), i.e. ρq 6= ρ0 if and only if s = 0, χq 6= 0

and ξ + ρ0 < 0.

The main motivation for a class of estimators of the shape second-order

parameter ρq, in (1.11), is related to its possible use, concomitantly with a class

of PORT estimators of the functional A, in (1.6), or at least of an adequate

location-invariant estimator of the scale parameter of such a A-function, in the

building of second-order PORT-MVRB EVI-estimators, invariant for changes in

location. The study of the asymptotic behaviour of such EVI-estimators is a

challenging theoretical open subject, out of the scope of this paper, but already

dealt with by Monte-Carlo simulation, in Gomes et al. (2011, 2013).

The building block of our estimators of the shape second-order parameter

ρq, defined in (1.11) are of the same kind as the statistics used in Dekkers et al.

(1989), Gomes et al. (2002), Fraga Alves et al. (2003a) and Caeiro and Gomes

(2006), among others, i.e. for α > 0 we consider the moment statistics

(1.12) M
(α)
n,k ≡ M

(α)
n,k (Xn) :=

1
k

k
∑

i=1

(lnXn−i+1:n − lnXn−k:n)
α

,

but now applied to the sample of excesses X
(q)
n , 0 ≤ q < 1, in (1.8). For an

intermediate k-sequence, i.e. a sequence k = kn of positive integers such that

(1.13) k = kn → ∞ and k = o(n) as n → ∞,

we shall thus consider the location and scale-invariant statistics,

(1.14) M
(α,q)
n,k ≡ M

(α)
n,k (X

(q)
n ) :=

1
k

k
∑

i=1

(

ln
Xn−i+1:n−Xnq :n

Xn−k:n−Xnq :n

)α
,

defined for k < n − nq, with M
(α)
n,k (Xn) given in (1.12), α > 0.

Regarding the tuning parameters τq ∈ R, α, θ1, θ2 ∈ R
+
, θ1, θ2 6= 1 and θ1 <

θ2, we shall consider the PORT-versions of the statistics used in Fraga Alves et

al. (2003a) for the estimation of ρ, in (1.6), i.e.

(1.15) T
(α,θ1,θ2,τq ,q)
n,k :=

0�M
(α,q)
n,k

Γ(α+1)

1Aτq

−

0� M
(αθ1,q)
n,k

Γ(αθ1+1)

1Aτq/θ10� M
(αθ1,q)
n,k

Γ(αθ1+1)

1Aτq/θ1

−

0� M
(αθ2,q)
n,k

Γ(αθ2+1)

1Aτq/θ2
=:

D
(α,1,θ1,τq,q)

n,k
(ξ)

D
(α,θ1,θ2,τq,q)

n,k
(ξ)

,



PORT-Estimation of a Shape Second-Order Parameter 305

with Γ(t) denoting the complete Gamma function. As detailed in Section 3.1,

under adequate conditions upon the growth of k = kn, T
(α,θ1,θ2,τq ,q)
n,k converges in

probability to

(1.16) tα,θ1,θ2(ρq) := θ2
(θ1−1)(1−ρq)αθ2−θ1(1−ρq)α(θ2−1)+(1−ρq)α(θ2−θ1)

(θ2−θ1)(1−ρq)αθ2−θ2(1−ρq)α(θ2−θ1)+θ1
.

Remark 1.1. Note that the function tα,θ1,θ2(ρq), defined for ρq ≤ 0, α > 0,

θ1, θ2 ∈ R
+ \ {1}, θ1 < θ2, is a decreasing function of ρq if θ1, θ2 > 1 or θ1, θ2 < 1

and increasing otherwise. Since tα,θ1,θ2(ρq) is always monotone continuous then

it is invertible. Moreover,

lim
ρq→−∞

tα,θ1,θ2(ρq) =
θ2(θ1−1)

θ2−θ1
and lim

ρq→0
tα,θ1,θ2(ρq) =

θ1−1
θ2−θ1

.

The general class of consistent ρq-estimators, invariant for changes in lo-

cation, already introduced and validated under a second-order framework in

Henriques-Rodrigues and Gomes (2012), and named PORT-ρ class of estimators,

it is now written as

(1.17) ρ̂
(α,θ1,θ2,τq ,q)
n,k|T := −

∣

∣

∣
t
←
α,θ1,θ2

(

T
(α,θ1,θ2,τq ,q)
n,k

)∣

∣

∣
.

with T
(α,θ1,θ2,τq ,q)
n,k given in (1.15).

The simplest choice of tuning control parameters suggested in Fraga Alves

et al. (2003a) for the classical ρ-estimators, (α, θ1, θ2) = (1, 2, 3), gives rise to an

explicit ρ-estimator, denoted ρ̂
(τ)
k in the aforementioned paper, and leads us to

a simpler class of PORT-ρ estimators of the shape second-order parameter ρq,

because it only depends on the tuning parameter τq. With ρq defined in (1.11),

we have that

t(ρq) = t1,2,3(ρq) =
3(1−ρq)
3−ρq

=

{

3(1+ξ)
3+ξ , if ξ + ρ0 < 0 ∧ χq 6= 0,

3(1−ρ0)
3−ρ0

, otherwise.

Thus the PORT-ρ estimator associated with (α, θ1, θ2) = (1, 2, 3) is explicitly

given by

(1.18) ρ̂
(τq,q)
k ≡ ρ̂

(1,2,3,τq ,q)
n,k|T := −

∣

∣

∣

∣

3
(

T
(1,2,3,τq,q)

n,k
−1
)

T
(1,2,3,τq,q)

n,k
−3

∣

∣

∣

∣

,

where

T
(1,2,3,τq ,q)

n,k =

�
M

(1,q)
n,k

�τq
−
�
M

(2,q)
n,k

/2
�τq/2�

M
(2,q)
n,k

/2
�τq/2

−
�
M

(3,q)
n,k

/6
�τq/3 ,

for any τq ∈ R, with M
(α,q)
n,k given in (1.14). The notation a

bτq = b ln a is used for

τq = 0.
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In Section 2 of this paper we present preliminary asymptotic results related

to the PORT-methodology. In Section 3 we justify the class of PORT-ρ estima-

tors of the shape second-order parameter ρq, in (1.11), addressing the possibility

of shifted heavy-tailed models, and refer the conditions required for their con-

sistency and asymptotic normality. In Section 4, we illustrate the finite sample

behaviour of the new estimators through a small-scale Monte-Carlo simulation

study. Finally, in Section 5, we present the proofs of the results in Section 3.

2. TECHNICAL RESULTS RELATED TO THE

PORT-METHODOLOGY

2.1. The second-order PORT-framework for heavy-tailed models

Under the aforementioned set-up in Section 1.3, the transformed r.v.,

Xq = X0 − χq, has an associated quantile function given by Uq(t) = U0(t) − χq.

The second-order condition in (1.6) translates as

(2.1) lim
t→∞

ln Uq(tx)−ln Uq(t)−ξ ln x
Aq(t) =

{

xρq−1
ρq

, if ρq < 0

lnx, if ρq = 0,

for all x > 0. Moreover, |Aq| ∈ RVρq , ρq ≤ 0, and Aq relates to A0 according to

the following lemma.

Lemma 2.1. Assume U0 ∈ RVξ satisfies the second order condition in

(1.6) with ρ = ρ0 and A = A0. Then Uq(t) = U0(t)−χq, with χq defined in (1.9),

is such that Uq ∈ RVξ and (2.1) holds with ρq given in (1.11) and

(2.2) Aq(t) :=











ξχq/U0(t), if ξ + ρ0 < 0 ∧ χq 6= 0

A0(t), if ξ + ρ0 > 0 ∨ χq = 0

A0(t) + ξχq/U0(t), if ξ + ρ0 = 0 ∧ χq 6= 0.

2.2. Third-order framework and asymptotic behaviour of auxiliary

statistics

Next, we present the asymptotic behaviour of the statistics M
(α,q)
n,k defined

in (1.14), based on the sample of excesses X
(q)
n , 0 ≤ q < 1, defined in (1.8). This

requires a third-order framework because we further need to know the rate of con-

vergence in (1.6). It is common to assume a third-order condition that rules such
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a rate of convergence through the shape third-order parameter ρ
′ ≤ 0, assuming

that for all x > 0,

(2.3) lim
t→∞

ln U(tx)−ln U(t)−ξ ln x
A(t) −xρ−1

ρ
B(t) =

xρ+ρ′−1
ρ+ρ′ ,

with |A| ∈ RVρ and |B| ∈ RVρ′ . For technical simplicity, we shall assume that

ρ, ρ
′
< 0, i.e. we assume to be working in a class H of heavy-tailed models, such

that, as t → ∞,

(2.4) U(t) = Ct
ξ
{

1 + D1t
ρ

+ D2t
ρ+ρ′

+ o(t
ρ+ρ′

)

}

,

where C > 0. Details on the third-order condition in (2.3) can be found in Fraga

Alves et al. (2003b, 2006) and more generally in Wang and Cheng (2005).

Note that the statistics M
(α,q)
n,k , in (1.14), depend on q through χq, in (1.9)

(see also (1.10)), but are obviously independent on any shift s imposed to the

data. We can thus assume throughout that s = 0.

Let E and Var denote the mean value and variance operators, respectively,

and let E denote a unit exponential random variable. For any real α > 0, with

ξ > 0 and ρ < 0, let us define

µ
(1)
α (ξ) := E

(

E
α
e
−ξE

)

=
Γ(α+1)

(1+ξ)α+1 , µ
(1)
α := µ

(1)
α (0) = Γ(α + 1),(2.5)

σ
(1)
α :=

√

Var(Eα) =

√

Γ(2α + 1) − Γ2(α + 1),(2.6)

µ
(2)
α (ξ, ρ) := E

(

E
α−1

e
−ξE

(e
ρE − 1)/ρ

)

=
Γ(α)

ρ

(

(1+ξ)α−(1+ξ−ρ)α

(1+ξ−ρ)α(1+ξ)α

)

,

µ
(2)
α (ρ) := µ

(2)
α (0, ρ) =

Γ(α)
ρ

(

1−(1−ρ)α

(1−ρ)α

)

,

σ
(2)
α (ρ) :=

√

Var
(

Eα−1(e
ρE − 1)/ρ

)

=

√

µ
(3)
2α (ρ) −

(

µ
(2)
α (ρ)

)2
,

η
(3)
α (ξ, ρ) := E

(

E
α−2

(

(e
−ξE − 1)/(−ξ)

)

(

(e
ρE − 1)/ρ

)

)

=







− 1
ξρ ln

(1+ξ)(1−ρ)
1+ξ−ρ , if α = 1

− Γ(α)
ξρ(α−1)

{

1
(1+ξ−ρ)α−1 − 1

(1+ξ)α−1 − 1
(1−ρ)α−1 + 1

}

, if α 6= 1,

and

µ
(3)
α (ρ) := E

(

E
α−2

(

(e
ρE − 1)/ρ

)2
)

=







1
ρ2 ln

(1−ρ)2

1−2ρ , if α = 1

Γ(α)
ρ2(α−1)

{

1
(1−2ρ)α−1 − 2

(1−ρ)α−1 + 1

}

, if α 6= 1.



308 L. Henriques-Rodrigues, M.I. Gomes, M.I. Fraga Alves and C. Neves

Let us further introduce the notations:

µ
(j)
α (ρ) :=

µ
(j)
α (ρ)

µ
(1)
α

, j = 2, 3, µ
(2)
α (ξ, ρ) :=

µ
(2)
α (ξ,ρ)

µ
(1)
α

,(2.7)

η
(3)
α (ξ, ρ) :=

η
(3)
α (ξ,ρ)

µ
(1)
α

,(2.8)

σ
(1)
α :=

σ
(1)
α

µ
(1)
α

, σ
(2)
α (ρ) :=

σ
(2)
α (ρ)

µ
(1)
α

,(2.9)

and for any θ1, θ2 > 0, define

dα,θ1,θ2(ρ) := µ
(2)
αθ1

(ρ) − µ
(2)
αθ2

(ρ).(2.10)

Recall that Ei, i ≥ 1, are i.i.d. unit exponential r.v.’s, and, with σ
(1)
α given in

(2.6), define the asymptotically standard normal r.v.’s

(2.11) Z
(α)
k :=

√
k

(

1
k

k
∑

i=1

E
α
i − Γ(α + 1)

)

/σ
(1)
α .

Now, together with (2.9), we can combine these as follows:

(2.12) W
(α,θ1,θ2)
k := σ

(1)
αθ1

Z
(αθ1)
k /θ1 − σ

(1)
αθ2

Z
(αθ2)
k /θ2.

Finally, for τ ∈ R, α, θ > 0, and with
(

µ
(2)
α (ρ), µ

(2)
α (ξ, ρ)

)

and η
(3)
α (ξ, ρ) de-

fined in (2.7) and (2.8), respectively, we define

cα,θ,τ (ρ) := (αθ − 1)µ
(3)
αθ (ρ) + α(τ − θ)

(

µ
(2)
αθ (ρ)

)2
,(2.13)

gα,θ,τ (ξ, ρ) := µ
(2)
αθ (ξ, ρ) + (αθ − 1)η

(3)
αθ (ξ, ρ) + α(τ − θ)µ

(2)
αθ (ρ)µ

(2)
αθ (−ξ),(2.14)

hα,θ,τ (ξ) := 2µ
(2)
αθ (−2ξ) + (αθ − 1)µ

(3)
αθ (−ξ) + α(τ − θ)

(

µ
(2)
αθ (−ξ)

)2
.(2.15)

We first state Proposition 2.1, related to the behaviour of M
(α)
n,k , in (1.12),

now needed only for s = 0 (ρ = ρ0), proved in Gomes et al. (2002), also under a

third-order framework.

Proposition 2.1 (Gomes et al., 2002). Under the third-order condition

(2.3), with ρ0, ρ
′
0 < 0, for intermediate sequences k = kn, i.e. sequences of positive

integers such that (1.13) holds, and with M
(α)
n,k , µ

(1)
α , µ

(j)
α (ρ), j = 2, 3, σ

(1)
α and

Z
(α)
k defined in (1.12), (2.5), (2.7), (2.9) and (2.11), respectively,

M
(α)
n,k

d
= ξ

α
µ

(1)
α

{

1 + σ
(1)
α

Z
(α)
k√
k

+
α
ξ µ

(2)
α (ρ0)A0(n/k)

+

(

α(α−1)
2ξ2 µ

(3)
α (ρ0)A

2
0(n/k) +

α
ξ µ

(2)
α (ρ0 + ρ

′
0)A0(n/k)B0(n/k)

)

(1 + op(1))

}

.

We next provide, under the third-order framework in (2.3), the behaviour

of M
(α,q)
n,k , in (1.14).
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Proposition 2.2. Let us assume that (1.13) holds, as well as the third-

order condition in (2.3), with ρ0, ρ
′
0 < 0. We then get for M

(α,q)
n,k , in (1.14), α > 0,

k < n−nq, with χq and M
(α)
n,k (for s = 0), given in (1.10) and (1.12), respectively,

µ
(1)
α and

(

µ
(2)
α (ρ), µ

(2)
α (ξ, ρ), µ

(3)
α (ρ)

)

and η
(3)
α (ξ, ρ) respectively given in (2.5), (2.7)

and (2.8), the distributional representation,

(2.16) M
(α,q)
n,k

d
= M

(α)
n,k +

αξαµ
(1)
α χq

U0(n/k)

{

µ
(2)
α (−ξ)

+
µ

(2)
α (ξ,ρ0)+(α−1) η

(3)
α (ξ,ρ0)

ξ A0(n/k)(1 + op(1))

+
χq

U0(n/k)

(

µ
(2)
α (−2ξ) +

(α−1)
2 µ

(3)
α (−ξ)

)

(1 + op(1))

}

.

3. ASYMPTOTIC BEHAVIOUR OF THE PORT-ρ ESTIMATORS

3.1. Consistency of the PORT-ρ estimators

For α > 0, let us consider the statistics M
(α,q)
n,k = M

(α)
n,k

(

X
(q)
n

)

, in (1.14),

defined for k < n − nq, with X
(q)
n the sample of excesses in (1.8). Under the

third-order framework in (2.3), if (1.13) holds, on the basis of the results in

Propositions 2.1 and 2.2, similarly to the developments in Fraga Alves et al.

(2003a), and for real tuning parameters τq ∈ R and θ 6= 0,

(3.1)
(

M
(αθ,q)
n,k

µ
(1)
αθ

)τq/θ
d
= ξ

ατq

(

1 +
τq

θ

σ
(1)
αθ√
k

Z
(αθ)
k +

ατq µ
(2)
αθ

(ρ0)A0(n/k)

ξ +
ατq χq µ

(2)
αθ

(−ξ)

U0(n/k)

+

{

ατq cα,θ,τq (ρ0)

2ξ2 A
2
0(n/k) +

ατq µ
(2)
αθ

(ρ0+ρ′0)

ξ A0(n/k)B0(n/k)

}

(1 + op(1))

+

{

ατqχq

ξ gα,θ,τq
(ξ, ρ0)

A0(n/k)
U0(n/k) +

ατqχ2
q

2 hα,θ,τq
(ξ)

1
U2

0 (n/k)

}

(1 + op(1))

)

.

i.e.

(

M
(αθ,q)
n,k

µ
(1)
αθ

)τq/θ
d
=

(

M
(αθ)
n,k

µ
(1)
αθ

)τq/θ

+
ατqξατq χq

U0(n/k)

{

µ
(2)
αθ (−ξ)

+
gα,θ,τq (ξ,ρ0)

ξ A0(n/k)(1 + op(1)) +
χq hα,θ,τq (ξ)

2
1

U0(n/k)(1 + op(1))

}

,

with M
(α,q)
n,k , µ

(1)
α , µ

(j)
α (ρ), j = 2, 3, σ

(1)
α , Z

(α)
k , cα,θ,τ (ρ), gα,θ,τ (ξ, ρ) and hα,θ,τ (ξ)

given in (1.14), (2.5), (2.7), (2.9), (2.11), (2.13), (2.14) and (2.15), respectively.
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Let us next introduce the notations,

uα,θ1,θ2,τ (ρ) :=
{

cα,θ1,τ (ρ) − cα,θ2,τ (ρ)
}

/(2ξ),(3.2)

vα,θ1,θ2(ρ, ρ
′
) := µ

(2)
αθ1

(ρ + ρ
′
) − µ

(2)
αθ2

(ρ + ρ
′
) ≡ dα,θ1,θ2(ρ + ρ

′
),(3.3)

wα,θ1,θ2,τ (ξ, ρ) := {gα,θ1,τ (ξ, ρ) − gα,θ2,τ (ξ, ρ)}/ξ,(3.4)

yα,θ1,θ2,τ (ξ) := {hα,θ1,τ (ξ) − hα,θ2,τ (ξ)}/2,(3.5)

with dα,θ1,θ2(ρ), cα,θ,τ (ρ), gα,θ,τ (ξ, ρ) and hα,θ,τ (ξ) defined in (2.10), (2.13), (2.14)

and (2.15), respectively. On the basis of (3.1), using the notation W
(α,θ1,θ2)
k in

(2.12), and with D
(α,θ1,θ2,τq ,q)
n,k (ξ) defined in (1.15), we can write

(3.6) D
(α,θ1,θ2,τq ,q)
n,k (ξ)

d
= ξ

ατq

(

τq√
k

W
(α,θ1,θ2)
k +

ατq A0(n/k)
ξ

{

dα,θ1,θ2(ρ0)

+ uα,θ1,θ2,τ (ρ0)A0(n/k)(1 + op(1)) + vα,θ1,θ2(ρ0, ρ
′
0)B0(n/k)(1 + op(1))

}

+
ατqχq

U0(n/k)

{

dα,θ1,θ2(−ξ) + wα,θ1,θ2,τ (ξ, ρ0)A0(n/k)(1 + op(1))

+
χq yα,θ1,θ2,τ (ξ)

U0(n/k) (1 + op(1))

})

,

i.e.

D
(α,θ1,θ2,τq ,q)
n,k (ξ)

d
= D

(α,θ1,θ2,τ)
n,k (ξ) +

ατqχqξατq

U0(n/k)

{

dα,θ1,θ2(−ξ)

+wα,θ1,θ2,τ (ξ, ρ0)A0(n/k)(1 + op(1)) +
χq yα,θ1,θ2,τ (ξ)

U0(n/k) (1 + op(1))

}

.

The dominant component of the right hand-side of (3.6) depends on the

relative behaviour of the functions A0(t) and 1/U0(t). We shall thus consider

three different regions related to χq, in (1.9), and the vector (ξ, ρ0) of the unshifted

model F0 associated with the available data:

• R1 := {F0 : ξ + ρ0 < 0 ∧ χq 6= 0},
• R2 := {F0 : ξ + ρ0 > 0 ∨ χq = 0},
• R3 := {F0 : ξ + ρ0 = 0 ∧ χq 6= 0}.

We now state the following:

Theorem 3.1 (Henriques-Rodrigues and Gomes, 2013, Theorem 1). Under

the validity of the second-order condition in (1.6), with ρ = ρ0 < 0, ρq defined in

(1.11), ρ̂
(α,θ1,θ2,τq ,q)
n,k|T defined in (1.17), and with an explicit expression given in

(1.18) for the particular case (α, θ1, θ2) = (1, 2, 3), is consistent for the estimation

of ρq, i.e.

ρ̂
(α,θ1,θ2,τq ,q)
n,k|T

p−→
n→∞

ρq,
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for any real α > 0, τq ∈ R, θ1, θ2 ∈ R
+\{1}, θ1 < θ2 and 0 < q < 1 or q = 0 if

χ0 = x
F
, the left endpoint of the underlying parent, is finite, provided that k is

an intermediate sequence, and moreover, with Aq defined in (2.2),

(3.7)

√
kAq(n/k) → ∞, as n → ∞.

Remark 3.1. Note that when we consider models F0 ∈ R1, A0(t) =

o(1/U0(t)) and with Aq(t) = ξχq/U0(t), by (2.2), condition (3.7) corresponds

to
√

k/U0(n/k) → ∞, as n → ∞. For models F0 ∈ R2, 1/U0(t) = o(A0(t)) and

since Aq(t) = A0(t), condition (3.7) is equivalent to
√

kA0(n/k) → ∞, as n →
∞. Finally, for models F0 ∈ R3, 1/U0(t) = O(A0(t)) and since Aq(t) = A0(t) +

ξχq/U0(t), condition (3.7) is equivalent to
√

kA0(n/k) → ∞ or
√

k/U0(n/k) → ∞,

as n → ∞.

3.2. Non-degenerate asymptotic behaviour of the PORT-ρ estimators

In this section, and under a third-order framework, we derive the non-

degenerate asymptotic properties of the PORT-ρ classes of estimators introduced

with all the generality in (1.17), and particularised in (1.18). We first state the

following result:

Proposition 3.1 (Fraga Alves et al., 2003). Under the validity of the

second-order condition in (1.6), with ρ < 0, if (1.13) holds and
√

kA(n/k) → ∞,

as n → ∞, the asymptotic variance of W
(α,θ1,θ2)
k , in (2.12), is

(3.8) σ
2
W |α,θ1,θ2

=
2
α

(

Γ(2αθ1)
θ3
1Γ2(αθ1)

+
Γ(2αθ2)

θ3
2Γ2(αθ2)

− (θ1+θ2)Γ(α(θ1+θ2))
θ2
1θ2

2Γ(αθ1)Γ(αθ2)

)

−
(

1
θ1

− 1
θ2

)2
,

and the asymptotic covariance of (W
(α,1,θ1)
k , W

(α,θ1,θ2)
k ) is given by

(3.9) σW |α,1,θ1,θ2
=

1
α

(

(θ1+1)Γ(α(θ1+1))
θ2
1Γ(α)Γ(αθ1)

− (θ2+1)Γ(α(θ2+1))
θ2
2Γ(α)Γ(αθ2)

− 2Γ(2αθ1)
θ3
1Γ2(αθ1)

+
(θ1+θ2)Γ(α(θ1+θ2))
θ2
1θ2

2Γ(αθ1)Γ(αθ2)

)

−
(

1 − 1
θ1

)(

1
θ1

− 1
θ2

)

.

Note that t
′
α,θ1,θ2

(ρ) := dtα,θ1,θ2(ρ)/dρ, with tα,θ1,θ2(ρq) defined in (1.16), is

given by

(3.10) t
′
α,θ1,θ2

(ρ)(1 − ρ)

(

(θ2 − θ1)(1 − ρ)
αθ2 − θ2(1 − ρ)

α(θ2−θ1)
+ θ1

)2

= αθ1θ2

{

θ1(θ2 − 1)(1 − ρ)
α(θ2−1)

(

1 + (1 − ρ)
α(θ2−θ1+1)

)

− (θ2 − θ1)(1 − ρ)
α(θ2−θ1)

(

1 + (1 − ρ)
α(θ2−θ1−1)

)

− θ2(θ1 − 1)(1 − ρ)
αθ2

(

1 + (1 − ρ)
α(θ2−θ1−1)

)}

.
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Let us further use the notations,

(3.11) y
(α,θ1,θ2,τ)
T (ξ, ρ) :=

yα,1,θ1,τ (ξ)−tα,θ1,θ2
(ρ)yα,θ1,θ2,τ (ξ)

dα,θ1,θ2
(ρ) ,

y
(α,θ1,θ2,τ)
ρ|T (ξ, ρ) :=

y
(α,θ1,θ2,τ)
T

(ξ,ρ)

t′
α,θ1,θ2

(ρ)
,

(3.12) z
(α,θ1,θ2)
T (ξ, ρ) :=

dα,1,θ1
(ρ)−tα,θ1,θ2

(−ξ)dα,θ1,θ2
(ρ)

ξdα,θ1,θ2
(−ξ) ,

z
(α,θ1,θ2)
ρ|T (ξ, ρ) :=

z
(α,θ1,θ2)
T

(ξ,ρ)

t′
α,θ1,θ2

(−ξ)
,

(3.13) u
(α,θ1,θ2,τ)
T (ρ) :=

uα,1,θ1,τ (ρ)−tα,θ1,θ2
(ρ)uα,θ1,θ2,τ (ρ)

dα,θ1,θ2
(ρ) ,

u
(α,θ1,θ2,τ)
ρ|T (ρ) :=

u
(α,θ1,θ2,τ)
T

(ρ)

t′
α,θ1,θ2

(ρ)
,

(3.14) v
(α,θ1,θ2)
T (ρ, ρ

′
) :=

vα,1,θ1
(ρ,ρ′)−tα,θ1,θ2

(ρ)vα,θ1,θ2
(ρ,ρ′)

dα,θ1,θ2
(ρ) ,

v
(α,θ1,θ2)
ρ|T (ρ, ρ

′
) :=

v
(α,θ1,θ2)
T

(ρ,ρ′)
t′
α,θ1,θ2

(ρ)
,

(3.15) f
(α,θ1,θ2)
T (ξ, ρ) :=

ξ
{

dα,1,θ1
(−ξ)−tα,θ1,θ2

(ρ)dα,θ1,θ2
(−ξ)
}

dα,θ1,θ2
(ρ) ,

f
(α,θ1,θ2)
ρ|T (ξ, ρ) :=

f
(α,θ1,θ2)
T

(ξ,ρ)

t′
α,θ1,θ2

(ρ)
,

(3.16) g
(α,θ1,θ2,τ)
T (ξ, ρ) :=

wα,1,θ1,τ (ξ,ρ)−tα,θ1,θ2
(ρ)wα,θ1,θ2,τ (ξ,ρ)

dα,θ1,θ2
(ρ) ,

g
(α,θ1,θ2,τ)
ρ|T (ξ, ρ) :=

g
(α,θ1,θ2,τ)
T

(ξ,ρ)

t′
α,θ1,θ2

(ρ)
,

with tα,θ1,θ2(ρ), dα,θ1,θ2(ρ), uα,θ1,θ2,τ (ρ), vα,θ1,θ2,τ (ρ, ρ
′
), wα,θ1,θ2,τ (ξ, ρ), yα,θ1,θ2,τ (ξ)

and t
′
α,θ1,θ2

(ρ) given in (1.16), (2.10), (3.2), (3.3), (3.4), (3.5) and (3.10), respec-

tively.

We can finally derive the non-degenerate asymptotic behaviour of the class

of PORT-ρ estimators, in (1.17).

Theorem 3.2. Let us assume that the third-order condition in (2.3)

holds, with ρ0, ρ
′
0 < 0 and consider the PORT-ρ class of estimators, ρ̂

(α,θ1,θ2,τq ,q)
n,k|T ,

defined in (1.17), with ρq given in (1.11). Then, with θ1 < θ2, real numbers dif-

ferent from 1, α > 0, τq ∈ R and 0 < q < 1 or q = 0 provided that χ0 = x
F

is

finite, and intermediate sequences of positive integers k = kn, as in (1.13), such

that (3.7) holds, we have:
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i) In R1, let us consider the regions R11 := {ρ0 < −2ξ ∧χq 6= 0}, R12 :=

{ρ0 = −2ξ∧χq 6= 0} and R13 := {−2ξ < ρ0 < −ξ∧χq 6= 0}. If we fur-

ther assume that lim
n→∞

√
kA0(n/k) = λ and lim

n→∞

√
k/U

2
0 (n/k) = λ

U
, we

get

√
k

U0(n/k)

(

ρ̂
(α,θ1,θ2,τq ,q)
n,k − ρq

)

d−→
n→∞

N
(

•
µ

(α,θ1,θ2,τq ,q)

ρ0|T ,
•
σ

2

ρ0|T,α,θ1,θ2,q

)

,

with

•
µ

(α,θ1,θ2,τq ,q)

ρ0|T =























χq λ
U
y

(α,θ1,θ2,τq)
ρ0|T (ξ,−ξ), in R11

λ z
(α,θ1,θ2)

ρ0|T
(ξ,ρ0)+χ2

q λ
U

y
(α,θ1,θ2,τq)

ρ0|T
(ξ,−ξ)

χq
, in R12

λ z
(α,θ1,θ2)

ρ0|T
(ξ,ρ0)

χq
, in R13,

y
(α,θ1,θ2,τ)
ρ|T (ξ, ρ) and z

(α,θ1,θ2)
ρ|T (ξ, ρ) defined in (3.11) and (3.12), respec-

tively. Moreover,

•
σ

2

ρ0|T,α,θ1,θ2,q ≡ •
σ

2

ρ0|T,α,θ1,θ2
=

{•
σT |α,θ1,θ2

/t
′
α,θ1,θ2

(−ξ)

}2
,

where

•
σ

2

T |α,θ1,θ2
=

(

1
αχqdα,θ1,θ2

(−ξ)

)2
Var

(

W
(α,1,θ1)
k − tα,θ1,θ2(−ξ)W

(α,θ1,θ2)
k

)

=
σ2

W |α,1,θ1
+t2

α,θ1,θ2
(−ξ)σ2

W |α,θ1,θ2
−2tα,θ1,θ2

(−ξ)σW |α,1,θ1,θ2

(αχqdα,θ1,θ2
(−ξ))

2 ,

with σ
2
W |α,θ1,θ2

, σW |α,1,θ1,θ2
and t

′
α,θ1,θ2

(ρ) given in (3.8), (3.9) and

(3.10), respectively.

ii) In R2, let us consider the regions R21 := {−ξ < ρ0 < − ξ
2 ∧ χq 6= 0},

R22 := {ρ0=− ξ
2 ∧χq 6=0} and R23 := { ξ

2 <ρ0<0∨(ξ>−ρ0∧χq =0)}.
If we further assume that lim

n→∞

√
kA

2
0(n/k)=λA, lim

n→∞

√
kA0(n/k)B0(n/k)

= λB and lim
n→∞

√
k/U0(n/k) = λ

′, we get

√
kA0(n/k)

(

ρ̂
(α,θ1,θ2,τq ,q)
n,k − ρq

)

d−→
n→∞

N
(

µ
(α,θ1,θ2,τq ,q)
ρ0|T , σ

2
ρ0|T,α,θ1,θ2,q

)

,

where with µ
(α,θ1,θ2,τq)
ρ0|T := u

(α,θ1,θ2,τq)
ρ0|T (ρ0)λA + v

(α,θ1,θ2)
ρ0|T (ρ0, ρ

′
0)λB, and

u
(α,θ1,θ2,τ)
ρ|T (ρ), v

(α,θ1,θ2)
ρ|T (ρ, ρ

′
) and f

(α,θ1,θ2)
ρ|T (ξ, ρ) given in (3.13), (3.14)

and (3.15), respectively,

µ
(α,θ1,θ2,τq ,q)
ρ0|T =



















χqλ
′
f

(α,θ1,θ2)
ρ0|T (ξ, ρ0), in R21

µ
(α,θ1,θ2,τq)
ρ0|T + χqλ

′
f

(α,θ1,θ2)
ρ0|T (ξ, ρ0), in R22

µ
(α,θ1,θ2,τq)
ρ0|T , in R23.
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Additionally,

σ
2
ρ0|T,α,θ1,θ2,q = σ

2
ρ0|T,α,θ1,θ2

=
{

σT |α,θ1,θ2
/t
′
α,θ1,θ2

(ρ0)
}2

,

with σ
2
T |α,θ1,θ2

given by

σ
2
T |α,θ1,θ2

=

(

ξ
αdα,θ1,θ2

(ρ0)

)2
Var

(

W
(α,1,θ1)
k − tα,θ1,θ2(ρ0)W

(α,θ1,θ2)
k

)

=
ξ2
�
σ2

W |α,1,θ1
+t2

α,θ1,θ2
(ρ0)σ2

W |α,θ1,θ2
−2tα,θ1,θ2

(ρ0)σW |α,1,θ1,θ2

�
(αdα,θ1,θ2

(ρ0))
2 ,(3.17)

σ
2
W |α,θ1,θ2

and σW |α,1,θ1,θ2
defined in (3.8) and (3.9), respectively.

iii) In R3, if we further assume that lim
n→∞

√
kA

2
0(n/k) = λA,

lim
n→∞

√
kA0(n/k)B0(n/k) = λB and lim

n→∞

√
kA0(n/k)/U0(n/k) = λAU ,

we get

√
kA0(n/k)

(

ρ̂
(α,θ1,θ2,τq ,q)
n,k − ρq

)

d−→
n→∞

N
(

µ̃
(α,θ1,θ2,τq ,q)
ρ0|T , σ̃

2
ρ0|T,α,θ1,θ2,q

)

,

where, with ˜λ = lim
n→∞

1/
(

A0(n/k)U0(n/k)
)

6= 0, w
(α,θ1,θ2,τ)
ρ|T :=

g
(α,θ1,θ2)
ρ|T (ξ, ρ) + χq

˜λ y
(α,θ1,θ2,τ)
ρ0|T (ξ, ρ), y

(α,θ1,θ2,τ)
ρ|T (ξ, ρ), g

(α,θ1,θ2)
ρ|T (ξ, ρ)

and σ
2
T |α,θ1,θ2

defined in (3.11), (3.16) and (3.17), respectively,

µ̃
(α,θ1,θ2,τq ,q)
ρ0|T =

u
(α,θ1,θ2,τq)

ρ0|T
(ρ0)λA+v

(α,θ1,θ2)

ρ0|T
(ρ0,ρ′0)λB+ξχqw

(α,θ1,θ2,τq)

ρ0|T
λAU

1+ξeλχq
,

σ̃
2
ρ0|T,α,θ1,θ2,q = σ̃

2
ρ0|T,α,θ1,θ2

=
σ2

ρ0|T,α,θ1,θ2

(1+ξeλχq)2
=

{

σT |α,θ1,θ2

(1+ξeλχq) t′
α,θ1,θ2

(ρ0)

}2

.

We finally present the non-degenerate behaviour of the PORT-ρ estimators,

in (1.18).

Corollary 3.1. Under the validity of the third-order condition in (2.3),

with ρ = ρ0, ρ
′
= ρ

′
0 < 0, and for the particular case (α, θ1, θ2) = (1, 2, 3), we

have the validity of the following asymptotic distributional representation for the

PORT-ρ estimator, ρ̂
(τq,q)
k , in (1.18).

i) In R1, and with the same notation as before for R11, R12 and R13,

ρ̂
(τq ,q)
k

d
= ρq +

•
σρ0,q√

k/U0(n/k)
W

R1
k

+



















χq yρ0|T (ξ)

U0(n/k) (1 + op(1)), in R11
(

zρ0|T (ξ,ρ0)A0(n/k)U0(n/k)

χq
+

χq yρ0|T (ξ)

U0(n/k)

)

(1 + op(1)), in R12

zρ0|T (ξ,ρ0)A0(n/k)U0(n/k)

χq
(1 + op(1)), in R13,
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where W
R1
k is asymptotically standard normal,

yρ0|T (ξ) =
6ξ(−4+ξ(−13+2ξ(−3+2ξ(2+ξ)2)))−ξ(3+ξ)(1+2ξ)3(3+2ξ)τ

12(1+ξ)2(1+2ξ)3
,

zρ0|T (ξ, ρ0) = − (1+ξ)3ρ0(ξ+ρ0)
ξ2(1−ρ0)3

and
•
σ

2

ρ0,q = (1 + ξ)
6
(

2 ξ
2
+ 2 ξ + 1

)

/(ξχq)
2
.

ii) In R2, and again with the same notation as before for R21, R22 and

R23,

ρ̂
(τq ,q)
k

d
= ρq +

σρ0,q√
kA0(n/k)

W
R2
k

+















(

χqfρ0|T (ξ,ρ0)

A0(n/k)U0(n/k)

)

(1 + op(1)), in R21
(

mρ0,ρ′0|T +
χqfρ0|T (ξ,ρ0)

A0(n/k)U0(n/k)

)

(1 + op(1)), in R22

mρ0,ρ′0|T (1 + op(1)), in R23,

where mρ,ρ′|T = uρ|T (ρ)A0(n/k) + vρ|T (ρ, ρ
′
)B0(n/k), with uρ|T (ρ) ≡

uρ(τ = τq) and vρ|T (ρ, ρ
′
) ≡ vρ,ρ′ , given by

(3.18)

uρ ≡ uρ(τ) =
ρ (ρ (42−45 τ)+ρ3 (96−44 τ)+8 ρ4 (τ−3)+9 τ+2 ρ2 (37 τ−60))

12 ξ (1−3 ρ+2 ρ2)2

and

(3.19) vρ,ρ′ = (1 − ρ)
3
ρ
′ (

ρ + ρ
′)

/
{

ρ
(

1 − ρ − ρ
′)3 }

,

respectively. Moreover, W
R2
k is asymptotically standard normal,

σ
2
ρ0,q ≡ σ

2
ρ0

= ξ
2
(1 − ρ0)

6
(

2ρ
2
0 − 2ρ0 + 1

)

/ρ0
2
,

fρ0|T (ξ, ρ0) =
ξ2(1−ρ0)3(ξ+ρ0)

(1+ξ)3ρ0
.

iii) In R3, and with ˜λ = lim
n→∞

1/
(

A0(n/k)U0(n/k)
)

= (ξβ0C)
−1 6= 0, with

C given in (2.4),

ρ̂
(τq ,q)
k

d
= ρq +

eσρ0,q√
kA0(n/k)

W
R3
k

+

(

ũρ0|T A0(n/k) + ṽρ0,ρ′0|T B0(n/k) + ξχq
egξ,ρ0|T +χq

eλ eyξ,ρ0|T
U0(n/k)

)

(1+op(1)),

where W
R3
k is an asymptotically standard normal r.v., uρ|T ≡ uρ(τ = τq)

and vρ,ρ′|T ≡ vρ,ρ′ , defined in (3.18) and (3.19), respectively, ũρ|T =

uρ|T /(1 + ξ˜λχq), ṽρ,ρ′|T = vρ,ρ′|T /(1 + ξ˜λχq), and •̃ξ,ρ|T = •ξ,ρ|T /

(1 + ξ˜λχq), with • = g, y, with

gξ,ρ0|T = g−ρ0,ρ0|T ≡ gρ0|T

= −6(4+ρ0(−13+2ρ0(3+2ρ0(2−ρ0)2)))+(3−ρ0)(3−2ρ0)(1−2ρ0)3τ

6(1−ρ0)2(1−2ρ0)3
,
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yξ,ρ0|T = y−ρ0,ρ0|T ≡ yρ0|T =
(3−ρ0)(1−ρ0)3

2ρ0
b(ρ0, τ),

b(ρ, τ) = − (ρ−2)2(τ−2)
4(1−ρ)4

+
τ−1

(1−ρ)2
− 2(1−ρ)

(1−2ρ)2
+

2
1−2ρ − 1

1−ρ(3−2ρ)

+
(1−ρ)ρ

{

−(ρ+3)(5ρ(ρ+3)+12)(2ρ+1)3τ−6(6+ρ(3+2ρ)(4ρ5+24ρ4+42ρ3+31ρ2+14ρ+9))
}

12(3−ρ)(1+ρ)6(1+2ρ)3

and σ̃
2
ρ0,q = (1 − ρ0)

6
(

2 ρ0
2 − 2 ρ0 + 1

)

/
(

1 − ˜λχq ρ0

)2
.

3.3. A few comments and conclusions

• We consider that the class of PORT-ρ estimators introduced and stud-

ied in this article is, from a theoretical point of view, a nice alternative

to the classical ρ-estimators whenever, in a real data analysis, we are

led to a bad performance of the classical estimators. Such a bad perfor-

mance is usually due to the existence of a location s 6= 0 in the available

data, associated with unshifted models with ξ + ρ0 < 0, a quite common

situation in practical applications.

• Concomitantly, the development and the theoretical study of a new class

of PORT-estimators of the functional A, in (1.6), can lead us to SORB

EVI-estimators, invariant for changes in location and MVRB for an

adequate choice of q, i.e. EVI-estimators of the type of the ones in

Caeiro et al. (2005), Gomes et al. (2007) and Gomes et al. (2008c),

but invariant for changes in location, the so-called PORT-MVRB EVI-

estimators. Note that these PORT-MVRB EVI-estimators have already

been studied for finite samples in Gomes et al. (2011, 2012), and exhibit

a quite interesting performance.

4. A SMALL-SCALE MONTE-CARLO SIMULATION

We next present in Figures 1 and 2, respectively the mean values (E) and

the root mean squared errors (RMSE), of the classical estimator ρ̂
(0)
k and the

PORT-ρ estimators

{

ρ̂
(0,q)
k

}

q=0,0.1,0.25
, as defined in Eq. (1.18), as a function of

the sample fraction k/n, for sample sizes n = 5000 and n = 10000. The results

are associated with the output of a small-scale simulation, of size 5000, related to

underlying Fréchet parents F0(x) = exp(−x
−1/ξ

), x > 0, with ξ = 0.25, and the

shifted model Fs(x) = exp
(

−(x − s)
−1/ξ

)

, x > s, with s = 1.
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Figure 1: Mean values of the estimators under consideration for Fréchet

unshifted (s = 0) and shifted (s = 1) parents, with ξ = 0.25,

and sample size n = 5000 (left) and n = 10000 (right).
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Figure 2: RMSEs of the estimators under consideration for Fréchet un-

shifted (s = 0) and shifted (s = 1) parents, with ξ = 0.25, and

sample size n = 5000 (left) and n = 10000 (right).

There is indeed only a light improvement in all estimators as the sample size

increases, and a high volatility of the classical ρ-estimators for shifted models, as

can be seen, in either Figure 1 or in Figure 2, where the RMSE of such estimator

is above 2, even for n = 10000. For smaller values of n, the sample paths of all

estimators are even more volatile, particularly for small sample fractions k/n. But

if we consider a much larger sample size, n = 100000, there is a clear improvement

only in the classical ρ-estimators for shifted models, as can be seen, in Figure 3.
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Figure 3: Mean values (left) and RMSEs ( right) of the estimators under

consideration for Fréchet unshifted (s = 0) and shifted (s = 1)

parents, with ξ = 0.25, and sample size n = 100000.

We now would like to emphasise the following points:

• The stability of the classical ρ-estimators around the ‘target’ for large k

can be fictitious or even non-existent, unless the model is an unshifted

model. As can be seen in Figures 1 and 3, left, the classical ρ-estimator

associated with the unshifted model, ρ̂
(0)
k |s = 0 is close to −1 for large

values of k, as expected, but the ρ-estimator associated with the shifted

model, ρ̂
(0)
k |s = 1, that should converge to −0.25, exhibits no stability

in the sample paths.

• We are in the region ξ + ρ0 < 0 (ξ = 0.25, ρ0 = −1). Consequently, the

PORT-ρ estimator should converge to −ξ = −0.25 for χq 6= 0 and to

ρ0 = −1 for χq = 0. Unfortunately, the pattern of the PORT-ρ estima-

tors does not depend strongly on χq. If we decide for a large value of

k, we obtain a value close to −1 if χq = 0, but a value not a long way

from −1 when χq 6= 0. But if we look at the region of k/n close to

0.2, the PORT-ρ estimators associated with χq 6= 0 are reasonably close

to −ξ = −0.25, with a not too large RMSE. We shall thus be again

confronted with an adequate choice of the threshold k.

• This means that for shifted models or PORT-ρ estimators associated

with χq 6= 0, the optimal level is clearly attained for not very large k,

as can be seen in Figures 2 and 3, right, when we look at the minimal

RMSE.

• For χq = 0, the PORT-ρ estimator is able to beat the classical one re-

garding minimum RMSE, even for very large sample sizes.

• Similar comments apply to other simulated underlying models.
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• The choice of the tuning parameters τ and τq is also crucial. We have

here used τq = τ = 0. The choice τ = 0 has been heuristically suggested

and used before for the ρ-estimation and the region |ρ| ≤ 1, but it is

possibly not the most adequate choice for the PORT-ρ estimation. This

is another interesting topic out of the scope of this paper.

5. PROOFS

Proof: [Lemma 2.1]. We begin by writing

lnUq(tx) − ln Uq(t) = ln
U0(tx)−χq

U0(t)−χq
= ln

(

U0(tx)
U0(t)

1−
χq

U0(tx)

1−
χq

U0(t)

)

= ξ lnx + ln

(

x
−ξ U0(tx)

U0(t)

)

+ ln

(

1 − χq

U0(tx)

)

− ln

(

1 − χq

U0(t)

)

.

Using Taylor’s expansion of ln(1 + x), as x → 0, we obtain

lnUq(tx) − lnUq(t) = ξ lnx + ln

(

x
−ξ U0(tx)

U0(t)

)

− χq

U0(tx) +
χq

U0(t) + o

(

1
U0(t)

)

,

= ξ lnx + ln

(

x
−ξ U0(tx)

U0(t)

)

+
χq

U0(t)

(

1 − U0(t)
U0(tx)

)

+ o

(

1
U0(t)

)

,

as t → ∞. Since U0(tx) ∼ x
ξ
U0(t), t → ∞, we thus have that

lnUq(tx) − lnUq(t) − ξ lnx

= ln

(

x
−ξ U0(tx)

U0(t)

)

+
χq

U0(t)(1 − x
−ξ

) − χq

U0(t)

(

U0(t)
U0(tx) − x

−ξ
)

+ o

(

1
U0(t)

)

.

Now, condition (1.6) with U , A and ρ replaced with U0, A0 and ρ0, respectively,

ascertains

lnUq(tx) − lnUq(t) − ξ lnx = A0(t)
xρ0−1

ρ0
+

χq

U0(t)(1 − x
−ξ

)

− χq

U0(t)

(

U0(t)
U0(tx) − x

−ξ
)

+ o

(

1
U0(t)

)

+ o
(

A0(t)
)

.

The precise result thus follows by noting that 1/U0 ∈ RV−ξ (hence χq/U0 is also

in RV−ξ) and that x
ξ
U0(t)/U0(tx) − 1 divided by A0(t) has the same limit as in

(1.6), with the same second order parameter ρ0 (cf. Proposition 6 and Corollary

7 of Neves, 2009). This result confirms a similar one for the rate of convergence

of Uq(tx)/Uq(t) to x
ξ

as obtained in Araújo Santos et al. (2006, Lemma 2.1).

Proof: [Proposition 2.2]. Using the same arguments as in Fraga Alves

et al. (2009), bearing in mind the unshifted model (s = 0), we can write the PORT

log-excesses of the observations over the random quantile Xnq :n, i.e. Xn−i+1:n −
Xnq :n, for i = 1, ..., k, in terms of the POT log-excesses, Xn−i+1:n −χq, over χq :=

F
←
0 (q) = U0(1/(1 − q)), as follows:

ln
(

Xn−i+1:n − Xnq :n

)

= ln
(

Xn−i+1:n − χq

)

+ ln

(

1 − Xnq :n−χq

Xn−i+1:n−χq

)

.
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Now for the second term holds the inequality

ln

(

1 − Xnq :n−χq

Xn−i+1:n−χq

)

≤ ln

(

1 − Xnq :n−χq

Xn:n−χq

)

.

Since we are assuming ξ > 0 we have that Xn:n − χq
p−→

n→∞
∞, which in conjunc-

tion with the asymptotical normality of the empirical quantile
√

n
(

Xnq :n − χq

)

=

Op (1) ascertains

√
k ln

(

1 − Xnq :n−χq

Xn:n−χq

)

=

√
k

Xnq :n−χq

Xn:n−χq
(1 + op(1)) =

√

k/n op

(√
n(Xnq :n − χq)

)

= op

(

√

k/n

)

p−→
n→∞

0 .

Then it is easily seen that, for any α > 0, the PORT-moment statistics M
(α,q)
n,k pro-

vided in (1.14) are asymptotically identically distributed to their POT-moment

counterparts

˜M
(α,q)
n,k =

1
k

k
∑

i=1

(

ln
Xn−i+1:n−χq

Xn−k:n−χq

)α
.

In fact, ˜M
(α,q)
n,k differs from M

(α)
n,k =

1
k

∑k
i=1

(

ln
Xn−i+1:n

Xn−k:n

)α
by a deterministic shift

−χq = −U0(1/(1 − q)) in the observations Xi, 1 ≤ i ≤ n. Then the asymptotic

results for ˜M
(α,q)
n,k ≡ 1

k

∑k
i=1

(

ln
eXn−i+1:neXn−k:n

)α
can be obtained in view of the shifted

observations from ˜X := Xq = X0 − χq, with associated Uq(t) = U0(t) − χq.

Let us begin with the first moment of the log-excesses. With {Yi}i=1,...,n

i.i.d. unit Pareto r.v.’s, we have the equality in distribution

{ ˜Xn−i+1:n}n
i=1 := {Xn−i+1:n − χq}n

i=1
d
= {Uq(Yn−i+1:n)}n

i=1,

and we can write,

(5.1) ˜M
(1,q)
n,k =

1
k

k
∑

i=1

ln ˜Xn−i+1:n − ln ˜Xn−k:n

d
=

1
k

k
∑

i=1

lnUq (Yn−i+1:n) − lnUq(Yn−k:n).

We note that

lnUq(tx) − lnUq(t) −
(

lnU0(tx) − lnU0(t)
)

= ln

U0(tx)
U0(t) −

χq

U0(t)

1−
χq

U0(t)

− (ln U0(tx) − lnU0(t))

= ln

(

(

x
−ξ U0(tx)

U0(t) − 1
)

− x
−ξ χq

U0(t) + 1

)

− ln

(

(

x
−ξ U0(tx)

U0(t) − 1
)

+ 1

)

− ln
(

1 − χq

U0(t)

)

.

Next, we deal with the first two terms in the above. Towards this end, we define

for each x > 0,

y1(t) :=
(

x
−ξ U0(tx)

U0(t) − 1
)

− x
−ξ χq

U0(t) ,

y2(t) := x
−ξ U0(tx)

U0(t) − 1,
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with y1(t) and y2(t) converging to zero as t → ∞ (see text in the end of the

proof of lemma 2.1). MacLaurin’s expansion of the logarithm, i.e. ln(1 + y) =

y − y
2
/2 + o(y

2
), applied to both y1(t) and y2(t) now yields

lnUq(tx) − ln Uq(t) −
(

lnU0(tx) − lnU0(t)
)

= −x
−ξ χq

U0(t) −
1

2

(

x
−ξ χq

U0(t)

)2
(

1 + o(1)
)

+
(

x
−ξ U0(tx)

U0(t)
− 1
)

x
−ξ χq

U0(t)

(

1 + o(1)
)

− ln
(

1 − χq

U0(t)

)

.

In order to have a grasp at the remainder o(1)-terms, we require the following

uniform bounds, which arise in connection with the third-order framework in

(2.3) and Remark B.3.12 of de Haan and Ferreira (2006): for any ε, δ > 0, there

exists a t0 = t0(ε, δ) such that for t ≥ t0, x ≥ 1,

∣

∣

∣

∣

∣

x−ξ U0(tx)
U0(t) −1

A0(t) −xρ0−1
ρ0

B0(t) − xρ0+ρ′0−1
ρ0+ρ′0

∣

∣

∣

∣

∣

≤ εx
ρ0+ρ′0+δ

.

Furthermore, since 0 < − ln(1− v)− v − v
2
/2 < v

3
/
(

3(1− v)
)

, v ∈ (0, 1), we can

set v = χq/U0 in order to establish the upper bound

lnUq(tx) − lnUq(t) −
(

lnU0(tx) − ln U0(t)
)

− ξ
(

x−ξ−1
−ξ

) χq

U0(t) − ξ
(

x−2ξ−1
−2ξ

)( χq

U0(t)

)2 − x
−ξ
(

xρ0−1
ρ0

)χqA0(t)
U0(t)

≤ χ3
q

3

(

U
3
0 (t)

(

1− χq

U0(t)

)

)−1
+x
−ξ xρ0+ρ′0−1

ρ0+ρ′0
χq

A0(t)
U0(t)B0(t)+ε

∣

∣

A0(t)
U0(t)B0(t)

∣

∣x
−ξ+ρ0+ρ′0+δ

.

We can also establish a similar lower bound. In this development, and with

respect to the right hand-side of (5.1), assuming k = kn an intermediate sequence

of positive integers, i.e. such that (1.13) holds, then taking average across i =

1, 2, ..., k, for arbitrary ε, δ > 0, the weak law of large numbers ensures that

M
(1,q)
n,k −M

(1)
n,k =

χq

U0(n/k)

(

ξ
1+ξ +

ξ
1+2ξ

χq

U0(n/k)(1+ op(1))+
A0(n/k)

(1+ξ)(1+ξ−ρ0)
(1+ op(1))

)

.

We are then led to (2.16) for α = 1 where

ξ
1+ξ = ξµ

(2)
1 (−ξ),

1
(1+ξ)(1+ξ−ρ0)

= µ
(2)
1 (ξ, ρ0) and

ξ
1+2ξ = ξµ

(2)
1 (−2ξ).

Let us next consider a general α. Similarly as before, we can write

(

lnUq(tx) − lnUq(t)

)α
−
(

lnU0(tx) − lnU0(t)

)α
=

α(ξ ln x)αχq

U0(t)

(

1
ln x

(

x−ξ−1
−ξ

)

+
1
ξ

(

x−ξ

ln x

(

xρ0−1
ρ0

)

+
(α−1)
(ln x)2

(

xρ0−1
ρ0

)(

x−ξ−1
−ξ

))

A0(t)

+
1

ln x
χq

U0(t)

(

(

x−2ξ−1
−2ξ

)

+
α−1
2 ln x

(

x−ξ−1
−ξ

)2
)

)

+ o(1/U
2
0 (t)).
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Considering again k = kn as an intermediate sequence of integers, i.e. (1.13) holds,

the same type of arguments of the previous case (α = 1), and the weak law of

large numbers enable us to write (2.16) for any α > 0.

Proof: [Theorem 3.2]. (i) In the region R1, A0(t) = o(1/U0(t)), as

t → ∞, the third and last term of the right-hand side of (3.6) is the domi-

nant one, and the r.v.’s D
(α,θ1,θ2,τq ,q)
n,k (ξ)/(1/U0(n/k)) converge in probability to

α τqξ
ατqχq dα,θ1,θ2(−ξ) provided that (3.7) holds, i.e. if

√
k/U0(n/k) → ∞, as

n → ∞ (see Remark 3.1). Moreover, we get

D
(α,θ1,θ2,τq,q)

n,k
(ξ)

1/U0(n/k)

d
= ξ

ατq

(

α τqχq dα,θ1,θ2(−ξ) +
τqW

(α,θ1,θ2)
k

U0(n/k)√
k

+ ατq

{

dα,θ1,θ2
(ρ0)A0(n/k)U0(n/k)(1+op(1))

ξ +
χ2

qyα,θ1,θ2,τq (ξ)(1+op(1))

U0(n/k)

})

.

For levels k such that (1.13) holds, with W
(α,θ1,θ2)
k given in (2.12), and with

T
(α,θ1,θ2,τq ,q)
n,k defined in (1.15), we can say that if (3.7) holds,

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(−ξ) +

(dα,θ1,θ2
(−ξ))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(−ξ)W

(α,θ1,θ2)
k

)

αχq

√
k/U0(n/k)

+
z
(α,θ1,θ2)
T

(ξ,ρ0)A0(n/k)U0(n/k)(1+op(1))
χq

+
χqy

(α,θ1,θ2τq)

T
(ξ,−ξ)(1+op(1))

U0(n/k) .

For sequences of positive intermediate integers k = kn such that kn = o(n),√
k/U0(n/k) → ∞,

√
kA0(n/k) → λ and

√
k/U

2
0 (n/k) → λ

U
, as n → ∞, let us

consider the following cases:

• if ξ + ρ0 < −ξ and χq 6= 0, then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(−ξ)

+
(dα,θ1,θ2

(−ξ))−1
(

W
(α,1,θ1)
k

−tα,θ1,θ2
(−ξ)W

(α,θ1,θ2)
k

)

αχq

√
k/U0(n/k)

+
χqy

(α,θ1,θ2,τq)

T
(ξ,−ξ)(1+op(1))

U0(n/k) ,

and
√

k
U0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k − tα,θ1,θ2(−ξ)

)

d−→
n→∞

N (
•
µT |α,θ1,θ2,τq ,q,

•
σ

2

T |α,θ1,θ2
),

where
•
µT |α,θ1,θ2,τq ,q = λ

U
χqy

(α,θ1,θ2,τq)
T (ξ,−ξ), with y

(α,θ1,θ2,τ)
T (ξ, ρ) de-

fined in (3.11).

• if ξ + ρ0 = −ξ and χq 6= 0, then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(−ξ)

+
(dα,θ1,θ2

(−ξ))−1
(

W
(α,1,θ1)
k

−tα,θ1,θ2
(−ξ)W

(α,θ1,θ2)
k

)

αχq

√
k/U0(n/k)

+
z
(α,θ1,θ2)
T

(ξ,ρ0) A0(n/k)U0(n/k)(1+op(1))
χq

+
χq y

(α,θ1,θ2,τq)

T
(ξ,−ξ)(1+op(1))

U0(n/k) ,
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and

√
k

U0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k − tα,θ1,θ2(−ξ)

)

d−→
n→∞

N (
•
µT |α,θ1,θ2,τq ,q,

•
σ

2

T |α,θ1,θ2
),

where
•
µT |α,θ1,θ2,τq ,q =

λz
(α,θ1,θ2)
T

(ξ,ρ0)
χq

+ λ
U
χqy

(α,θ1,θ2,τq)
T (ξ,−ξ), with

y
(α,θ1,θ2,τ)
T (ξ, ρ) and z

(α,θ1,θ2)
T (ξ, ρ) defined in (3.11) and (3.12), respec-

tively.

• if ξ + ρ0 > −ξ and χq 6= 0, then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(−ξ)

+
(dα,θ1,θ2

(−ξ))−1
(

W
(α,1,θ1)
k

−tα,θ1,θ2
(−ξ)W

(α,θ1,θ2)
k

)

αχq

√
k/U0(n/k)

+
z
(α,θ1,θ2)
T

(ξ,ρ0)A0(n/k)U0(n/k)(1+op(1))
χq

,

and

√
k

U0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k − tα,θ1,θ2(−ξ)

)

d−→
n→∞

N (
•
µT |α,θ1,θ2,τq ,q,

•
σ

2

T |α,θ1,θ2
),

where
•
µT |α,θ1,θ2,τq ,q =

λz
(α,θ1,θ2)
T

(ξ,ρ0)
χq

, with z
(α,θ1,θ2)
T (ξ, ρ) defined in (3.12).

(ii) In the region ξ + ρ0 > 0, where 1/U0(t) = o(A0(t)), as t → ∞, or more

generally in the region R2, the second term of the right-hand side of (3.6) is

the dominant one. In R2, Aq(t) = A0(t), so condition (3.7) can be rewritten as√
kA0(n/k) → ∞, as n → ∞ and if we assume that this condition holds,

D
(α,θ1,θ2,τq,q)

n,k
(ξ)

A0(n/k)

d
= ξ

ατq

(

ατq dα,θ1,θ2
(ρ0)

ξ +
τqW

(α,θ1,θ2)
k√

kA(n/k)

+ uα,θ1,θ2,τq
(ρ0)A0(n/k)(1 + op(1)) + vα,θ1,θ2(ρ0, ρ

′
0)B0(n/k)(1 + op(1))

+
ατqχq

A0(n/k)U0(n/k)dα,θ1,θ2(−ξ)

)

.

If ξ > −ρ0 or (ξ ≤ −ρ0, χq = 0), and (3.7) holds,

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(ρ0) +

ξ(dα,θ1,θ2
(ρ0))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(ρ0)W

(α,θ1,θ2)
k

)

α
√

kA0(n/k)

+

(

u
(α,θ1,θ2,τq)
T (ρ0)A0(n/k) + v

(α,θ1,θ2)
T (ρ0, ρ

′
0)B0(n/k)

)

(1 + op(1))

+
χq f

(α,θ1,θ2)
T

(ξ,ρ0)

A0(n/k)U0(n/k) (1 + op(1)).

For sequences of positive intermediate integers k = kn such that kn = o(n),√
kA0(n/k) → ∞,

√
kA

2
0(n/k) → λ

A
,
√

kA0(n/k)B0(n/k) → λ
B

and
√

k/U0(n/k)
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→ λ
′
, as n → ∞, let us consider the following cases:

• if 0 < ξ + ρ0 < −ρ0 and χq 6= 0, then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(ρ0)+

ξ(dα,θ1,θ2
(ρ0))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(ρ0)W

(α,θ1,θ2)
k

)

α
√

kA0(n/k)

+
χq f

(α,θ1,θ2)
T

(ξ,ρ0)

A0(n/k)U0(n/k) (1 + op(1)),

and

√
kA0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k −tα,θ1,θ2(ρ0)

)

d−→
n→∞

N (µT |α,θ1,θ2,τq ,q, σ
2
T |α,θ1,θ2

),

where µT |α,θ1,θ2,τq ,q = χq f
(α,θ1,θ2)
T (ξ, ρ0)λ

′
, with f

(α,θ1,θ2)
T (ξ, ρ) and

σ
2
T |α,θ1,θ2

defined in (3.15) and (3.17), respectively.

• if ξ + ρ0 = −ρ0 and χq 6= 0, then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(ρ0)+

ξ(dα,θ1,θ2
(ρ0))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(ρ0)W

(α,θ1,θ2)
k

)

α
√

kA0(n/k)

+

(

u
(α,θ1,θ2,τq)
T (ρ0)A0(n/k) + v

(α,θ1,θ2)
T (ρ0, ρ

′
0)B0(n/k)

)

(1 + op(1))

+
χq f

(α,θ1,θ2)
T

(ξ,ρ0)

A0(n/k)U0(n/k) (1 + op(1)),

and

√
kA0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k −tα,θ1,θ2(ρ0)

)

d−→
n→∞

N (µT |α,θ1,θ2,τq ,q, σ
2
T |α,θ1,θ2

),

where µT |α,θ1,θ2,τq ,q = u
(α,θ1,θ2,τq)
T (ρ0)λA + v

(α,θ1,θ2)
T (ρ0, ρ

′
0)λB +

χq f
(α,θ1,θ2)
T (ξ, ρ0)λ

′
, u

(α,θ1,θ2,τq)
T (ρ), v

(α,θ1,θ2)
T (ρ, ρ

′
), f

(α,θ1,θ2)
T (ξ, ρ) and

σ
2
T |α,θ1,θ2

defined in (3.13), (3.14), (3.15) and (3.17), respectively.

• if ξ + ρ0 > −ρ0 or (ξ + ρ0 > 0 ∧ χq = 0), then

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(ρ0)+

ξ(dα,θ1,θ2
(ρ0))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(ρ0)W

(α,θ1,θ2)
k

)

α
√

kA0(n/k)

+

(

u
(α,θ1,θ2,τq)
T (ρ0)A0(n/k) + v

(α,θ1,θ2)
T (ρ0, ρ

′
0)B0(n/k)

)

(1 + op(1)),

and

√
kA0(n/k)

(

T
(α,θ1,θ2,τq ,q)
n,k −tα,θ1,θ2(ρ0)

)

d−→
n→∞

N (µT |α,θ1,θ2,τq ,q, σ
2
T |α,θ1,θ2

),

where µT |α,θ1,θ2,τq ,q=µT |α,θ1,θ2,τq
=u

(α,θ1,θ2,τq)
T (ρ0)λA +v

(α,θ1,θ2)
T (ρ0, ρ

′
0)λB,

with u
(α,θ1,θ2,τq)
T (ρ) and v

(α,θ1,θ2)
T (ρ, ρ

′
) defined in (3.13) and (3.14), re-

spectively, and σ
2
T |α,θ1,θ2

is defined in (3.17).
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(iii) In the region R3, A0(t) and 1/U0(t) are of the same order, i.e. the

dominant terms of the right-hand side of (3.6) are the second and the third.

In R3, Aq(t) = A0(t) + ξχq/U0(t), so condition (3.7) can be rewritten as√
kA0(n/k) → ∞, as n → ∞. If we assume that this condition holds with

˜λ = limn→∞ 1/(A0(n/k)U0(n/k)) 6= 0, then

D
(α,θ1,θ2,τq,q)

n,k
(ξ)

A0(n/k)

d
= ξ

ατq

(

ατq

ξ

{

dα,θ1,θ2(ρ0) + ξ ˜λχqdα,θ1,θ2(−ξ)

}

+
τqW

(α,θ1,θ2)
k√

kA0(n/k)

+
ατq

ξ

{

uα,θ1,θ2,τq
(ρ0)A0(n/k)(1 + op(1)) + vα,θ1,θ2(ρ0, ρ

′
0)B0(n/k)(1 + op(1))

}

+
ατqχq

U0(n/k)

{

wα,θ1,θ2,τq
(ξ, ρ0) + yα,θ1,θ2,τq

(ξ)˜λχq(1 + op(1))

})

,

If ξ + ρ0 = 0 and χq 6= 0, if we consider levels k such that (1.13) and (3.7) hold,

T
(α,θ1,θ2,τq ,q)
n,k

d
= tα,θ1,θ2(ρ0) +

ξ(dα,θ1,θ2
(ρ0))−1

(

W
(α,1,θ1)
k

−tα,θ1,θ2
(ρ0)W

(α,θ1,θ2)
k

)

α(1+ξeλχq)
√

kA0(n/k)

+
u
(α,θ1,θ2,τq)

T
(ρ0)A0(n/k)+v

(α,θ1,θ2)
T

(ρ0,ρ′0)B0(n/k)

1+ξeλχq
(1 + op(1))

+

{

ξχq g
(α,θ1,θ2,τq)

T
(ξ,ρ0)

(1+ξeλχq)U0(n/k)
+

ξχ2
q
eλ y

(α,θ1,θ2,τq)

T
(ξ,ρ0)

(1+ξeλχq)U0(n/k)

}

(1 + op(1)),

with y
(α,θ1,θ2,τ)
T (ξ, ρ), u

(α,θ1,θ2,τ)
T (ξ, ρ), v

(α,θ1,θ2)
T (ξ, ρ) and g

(α,θ1,θ2,τ)
T (ξ, ρ) defined

in (3.11), (3.13), (3.14) and (3.16), respectively. The proof of the theorem

follows for sequences of positive intermediate integers k = kn such that

kn = o(n),
√

kA0(n/k) → ∞,
√

kA
2
0(n/k) → λ

A
,
√

kA0(n/k)B0(n/k) → λ
B

and√
kA0(n/k)/U0(n/k) → λAU , as n → ∞.
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