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Abstract:

• This paper provides an accessible methodology for approximating the distribution of

a general linear combination of non-central chi-square random variables. Attention

is focused on the main application of the results, namely the distribution of positive

definite and indefinite quadratic forms in normal random variables. After explaining

that the moments of a quadratic form can be determined from its cumulants by means

of a recursive formula, we propose a moment-based approximation of the density func-

tion of a positive definite quadratic form, which consists of a gamma density function

that is adjusted by a linear combination of Laguerre polynomials or, equivalently, by

a single polynomial. On expressing an indefinite quadratic form as the difference of

two positive definite quadratic forms, explicit representations of approximations to its

density and distribution functions are obtained in terms of confluent hypergeometric

functions. The proposed closed form expressions converge rapidly and provide accu-

rate approximations over the entire support of the distribution. Additionally, bounds

are derived for the integrated squared and absolute truncation errors. An easily

implementable algorithm is provided and several illustrative numerical examples are

presented. In particular, the methodology is applied to the Durbin–Watson statistic.

Finally, relevant computational considerations are discussed. Linear combinations of

chi-square random variables and quadratic forms in normal variables being ubiquitous

in statistics, the distribution approximation technique introduced herewith should

prove widely applicable.
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• chi-square random variables; linear combinations; quadratic forms; cumulants;

moments; density approximation; Durbin–Watson statistic.
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1. INTRODUCTION

The distribution of linear combinations of chi-square random variables and

that of quadratic forms in normal vectors have already received a lot of atten-

tion in the statistical literature. Box (1954) considered a linear combination of

chi-square variables having even degrees of freedom. Some representations of the

density function of linear combinations of chi-square variables were derived by

Mathai and Saxena (1978). Various representations of the distribution function

of a quadratic form are available, and several procedures have been proposed for

computing percentage points and preparing tables. Gurland (1948, 1953, 1956),

Pachares (1955), Ruben (1960, 1962), Shah and Khatri (1961), and Kotz et al.

(1967a,b) among others, have given representations of the distribution function of

quadratic forms in terms of MacLaurin series and the distribution function of chi-

square variables. Gurland (1956) and Shah (1963) considered respectively central

and non-central indefinite quadratic forms, but as pointed by Shah (1963), the

expansions obtained are not practical. Press (1967) provided infinite series repre-

sentations of the density and distribution functions of an indefinite quadratic form

in normal variables. Other representations of the exact density and distribution

functions of indefinite quadratic forms have been given by Imhof (1961), Davis

(1973) and Rice (1980). As pointed out in Mathai and Provost (1992), a wide

array of statistics can be expressed in terms of quadratic forms in normal random

vectors. For example, one may consider the lagged regression residuals developed

by De Gooijer and MacNeill (1999) and discussed in Provost et al. (2005), or

certain change point test statistics derived by MacNeill (1978). Hillier (2001)

expressed the density function of a ratio of quadratic forms in normal random

variables in terms of top-order zonal polynomials involving difference quotients

of the characteristic roots of the matrix in the numerator quadratic form. The

sample serial correlation coefficient as defined in Anderson (1990) and discussed

in Provost and Rudiuk (1995) as well as the sample innovation cross-correlation

function for an ARMA time series whose asymptotic distribution was derived by

McLeod (1979) have such a structure.

Monte Carlo simulations, whereby artificial data are generated and sam-

pling distributions and moments then are estimated, can be implemented more

easily on an extensive array of models. These simulations may, however, result

in some limitations such as sampling variations and simulation inadequacies, and

their results may be specific to the set of parameter values assumed in the sim-

ulations. Hendry and Harrison (1974), Dempster et al. (1977), Hendry (1979),

and Hendry and Mizon (1980) among others, have attempted to cope with these

issues. On the other hand, the analytical approach derives results which hold

over the entire parameter space but may find some limitations in terms of simpli-

fications on the model, which are imposed to render the problem tractable. The

analytical approach has been applied to various statistics involving quadratic
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forms. Examples in this area include certain heteroscedastic models studied by

Taylor (1977, 1978), the first-order autoregressive process considered by Sawa

(1978) and Phillips (1977, 1978), the regression models analyzed by Dwivedi and

Srivastava (1979), a linear model with unknown covariance structure studied by

Yamamoto (1979), as well as the Bayesian analysis of simultaneous equations

models carried out by Zellner (1971) and Dreze (1976).

A novel and accessible moment-based approach is proposed in this paper

for approximating the density function of positive definite quadratic forms in

normal random variables in terms of a gamma density function and a linear

combination of Laguerre polynomials, which is re-expressed as a single polynomial

so that analytic expressions could also be worked out for the case of indefinite

quadratic forms. The resulting closed form density and distribution functions

converge rapidly and provide accurate approximations over the entire support of

the distribution.

Existing expansions that are expressed in terms of rescaled chi-square den-

sity functions and Laguerre polynomials such as those discussed in Kotz et al.

(1967a,b) for the case of positive definite quadratic forms, were derived by making

use of a different technique. As in the case of Edgeworth-type expansions whose

leading terms are Gaussian density or distribution functions, such representations

cannot converge as quickly as the proposed expansion, which is more appropri-

ately based on a gamma density function whose first two moments match those

of the target distribution. It should also be pointed out that the saddlepoint

approximation and Imhof’s formula, which incidentally is not closed form, need

to be recalculated at each point of the distribution. Moreover, as can be seen for

instance from Huzurbazar (1999), Figure 2, the saddlepoint approximation may

not be accurate throughout the entire range of the distribution.

As will be explained, the results also apply to ratios of certain quadratic

forms. Such ratios arise for example in regression theory, linear models, analysis

of variance and time series.

A representation of non-central indefinite quadratic forms, which relies on

the spectral decomposition theorem, is derived in Section 2; a formula for de-

termining their moments in terms of their cumulants is provided as well. A

so-called Laguerre polynomial approximation of the density function of a pos-

itive definite quadratic form, which is expressed as the product of a gamma

density function and a single polynomial, is introduced in Section 3; explicit rep-

resentations of the resulting density and distribution functions of an indefinite

quadratic form are also given. We note that the expansions are expressed in

terms of Laguerre polynomials (or their coefficients) since their associated weight

functions are proportional to gamma density functions, which are suitable for

approximating the distribution of positive linear combinations of chi-square ran-

dom variables. An algorithm describing the methodology is provided in Section 4.
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Several numerical examples, including an application of the proposed technique

to the Durbin–Watson statistic, are presented in Section 5. Finally, certain com-

putational considerations are discussed in Section 6.

2. THE MOMENTS OF A LINEAR COMBINATION OF CHI-

SQUARE RANDOM VARIABLES

Since linear combinations of possibly non-central chi-square random vari-

ables can be expressed in terms of quadratic forms, we shall provide a represen-

tation of the moments of the latter in this section. These moments are required

in order to implement the proposed density approximation methodology.

Indefinite quadratic forms in normal random variables can be expressed in

terms of standard normal variables as follows. Let X ∼ N p(µ, Σ) where Σ is a

positive definite covariance matrix. On letting Z ∼ Np(0, I), where I is a p× p

identity matrix, one has X = Σ
1
2 Z + µ where Σ

1
2 denotes the symmetric square

root of Σ. Then, the quadratic form Q = X′
AX where A is a p×p real symmetric

matrix and X′
denotes the transpose of X can be expressed as follows:

Q =
(

Z + Σ
− 1

2 µ
)′

Σ
1
2AΣ

1
2
(

Z + Σ
− 1

2 µ
)

(2.1)

=
(

Z + Σ
− 1

2 µ
)′
P P

′
Σ

1
2AΣ

1
2 P P

′
(

Z + Σ
− 1

2 µ
)

where P is an orthogonal matrix that diagonalizes Σ
1
2AΣ

1
2 , that is, P

′
Σ

1
2AΣ

1
2P =

diag(λ1, ..., λp), λ1, ..., λp being the eigenvalues of Σ
1
2AΣ

1
2 (or equivalently those

of AΣ) in decreasing order. Let vi denote the normalized eigenvector of Σ
1
2AΣ

1
2

corresponding to λi (such that Σ
1
2AΣ

1
2 vi = λivi and vi

′vi = 1), i = 1, ..., p, and

P = (v1, ...,vp). Letting U = P
′Z, one has U ∼ Np(0, I) since P is an orthogonal

matrix, and then, according to the spectral decomposition theorem,

Q = (U + b)
′
diag(λ1, ..., λp) (U + b)(2.2)

=

p
∑

j=1

λj(Uj + bj)
2

where diag(λ1, ..., λp) is a diagonal matrix whose diagonal elements are λ1, ..., λp,

b = P
′
Σ
− 1

2 µ with b = (b1, ..., bp)
′
, U = (U1, ..., Up)

′
, and Uj + bj are indepen-

dently distributed N (bj , 1) random variables, j = 1, ..., p. Thus,

Q =

r
∑

j=1

λj (Uj + bj)
2 −

p
∑

j=r+θ+1

|λj | (Uj + bj)
2

(2.3)

≡ Q1 −Q2 ,

where r is the number of positive eigenvalues of AΣ and p− r− θ is the number of

negative eigenvalues of AΣ, θ being the number of null eigenvalues. Consequently,
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a non-central indefinite quadratic form, Q, can be expressed as a difference of

independently distributed linear combinations of independent non-central chi-

square random variables having one degree of freedom each. This will be referred

to as a general linear combination of such variables. It should be noted that the

chi-square random variables are central whenever µ = 0. When A ≥ 0, Q is a

positive semidefinite quadratic form, and Q∼Q1 as defined in Equation (2.3).

We note that if A is not symmetric, it suffices to replace this matrix by (A+A
′
)/2,

which results in the same quadratic form. Accordingly, it will be assumed without

any loss of generality that the matrices of the quadratic forms being considered

are symmetric.

As shown in Mathai and Provost (1992), the s
th

cumulant of X′
AX where

X ∼ N p(µ, Σ) is

k(s) = 2
s−1

s!

(

tr(AΣ)
s
/s + µ′

(AΣ)
s−1

Aµ
)

,(2.4)

tr(·) denoting the trace of (·). It should be noted that tr(AΣ)
s

=
∑

p

j=1 λ
s

j
where

the λj ’s, j=1, ..., p, are the eigenvalues of AΣ. The moments of a random variable

can be obtained from its cumulants by means of a recursive relationship that is

derived for instance in Smith (1995). Accordingly, the h
th

moment of X′
AX is

given by

µ(h) =

h−1
∑

i=0

(h− 1)!

(h− 1 − i)! i!
k(h− i)µ(i) ,(2.5)

where k(s) is as specified by Equation (2.4).

One can make use of Equation (2.5) to determine the moments of the pos-

itive definite quadratic forms, Q1 ≡ W′
1A1W1 and Q2 ≡ W′

2A2W2, appearing in

Equation (3) whereA1=diag(λ1,...,λr), A2 =diag(|λr+θ+1|, ..., |λp|), W1∼Nr(b1,I)

with b1 = (b1, ..., br)
′
, and W2 ∼ N p−r−θ(b2, I) with b2 = (br+θ+1, ..., bp)

′
, the

bj ’s being as defined in Equation (2.2).

Since an indefinite quadratic form is distributed as the difference of two

positive definite quadratic forms, its density function can be obtained via the

transformation of variables technique. For the problem at hand, letting hQ(q),

fQ1(q1) and fQ2(q2) respectively denote the approximate densities of Q, Q1 and

Q2, the approximate density function of the indefinite quadratic form Q is given

by

(2.6) hQ(q) =

{

hP (q) for q ≥ 0 ,

hN (q) for q < 0 ,

where

hP (q) =

∫ ∞

0
fQ1(q + x) fQ2(x) dx ,(2.7)
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hN (q) =

∫ ∞

−q

fQ1(q + x) fQ2(x) dx ,(2.8)

and hP (q) and hN (q) are explicitly given in the next section.

3. LAGUERRE POLYNOMIAL DENSITY APPROXIMANTS

In order to approximate the distribution of a positive definite quadratic

form, it is appropriate to make use of an approximation that is based on Laguerre

polynomials since their associated weight function is proportional to a gamma

density function with parameters α ≡ ν + 1 and β = 1. Accordingly, letting Y be

a gamma-type random variable whose exact raw moments are denoted by µY (h),

h = 0, 1, ..., d, we first approximate the distribution of X = Y/β where β, the

second parameter of the gamma approximation, which can be easily obtained by

matching moments, is given by

β =
µY (2)

µY (1)
− µY (1) .(3.1)

Similarly, the shape parameter ν in the weight function is determined as follows:

ν =
µ

2
Y

(1)

µY (2) − µ
2
Y

(1)
− 1 .(3.2)

Let L
ν

i
(x) denote the i

th
degree Laguerre polynomial with parameter ν, that is,

L
ν

i
(x) =

i
∑

k=0

d
ν

i,k
x

k
(3.3)

where

d
ν

i,k
=

(−1)
i−k

Γ(i+ ν + 1)

(i− k)! k! Γ(ν + k + 1)
.(3.4)

As explained in Provost and Ha (2009), on equating
∫ ∞
0 L

ν

i
(y)f(y) dy to

∫ ∞
0 L

ν

i
(y)

fYd
(y) dy for h= 0, 1, ..., d , where f(y) is the exact density function being approx-

imated and fYd
(x) denotes the representation of the approximate density function

given in Equation (3.19) (which, incidentally, is equivalent to assuming that the

first d moments of the approximate distribution coincide with those of the target

distribution), one can determine the coefficients of the Laguerre polynomials by

making use of their orthogonality property. Then, by collecting the coefficients of

each monomial x
k

in the resulting representation, one can express the d
th

degree

Laguerre polynomial density approximant as

gXd
(x) = cν wν(x)

d
∑

k=0

ξν,k x
k
,(3.5)
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where

cν = 1/Γ(ν + 1) ,(3.6)

wν(x) = x
ν
e
−x

,(3.7)

and the coefficients ξν,k can be obtained as

ξν,k =















































1 +

d
∑

i=2

η
ν

i
d

ν

i,k
, for k = 0 ;

d
∑

i=2

η
ν

i
d

ν

i,k
, for k = 1 ,

d
∑

i=k

η
ν

i
d

ν

i,k
, for k = 2, ..., d ,

(3.8)

with

η
ν

i
=

i!

Γ(ν + i+ 1)

i
∑

k=0

d
ν

i,k
µX(k)(3.9)

and

µX(k) = µY (k)/β
k
.(3.10)

Thus, the representation of the approximate density function given in Equation

(3.5) can be viewed as a mixture of d+ 1 gamma densities with parameters ν +

k+ 1 and 1. The density function of the random variable Y can then be obtained

from gXd
(x) as specified in Equation (3.5) via the transformation Y = βX as

fYd
(y) = gXd

(y/β)/β .(3.11)

This form of the approximate density function lends itself more readily to alge-

braic manipulations than that specified in Equation (3.19), which may be some-

what simpler to evaluate.

The corresponding approximate cumulative distribution function of Y eval-

uated at c0 > 0 is then

FYd
(c0) =

∫

c0

0
gXd

(y/β)/β dy

=

∫

c0/β

0
gXd

(x) dx

(3.12)

=

∫

c0/β

0
cν wν(x)

d
∑

k=0

ξν,k x
k

dt

=

d
∑

i=0

ξν,i

Γ(ν + i+ 1) − Γ(ν + i+ 1, c0/β)

Γ(ν + 1)
,
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where

Γ(a, θ) =

∫ ∞

θ

t
a−1

e
−t

dt(3.13)

denotes the incomplete gamma function. Conditions ensuring that the proposed

approximants, whether applied to quadratic forms or random variables having an

asymptotic chi-square distribution, will converge to their exact density functions,

are available in Alexits (1961, p. 304).

The density functions of Q1 and Q2 as defined in Equation (2.3) can be ap-

proximated from their respective moments which can be determined in Equation

(2.5). The density of an indefinite quadratic form Q = Q1 −Q2, where Q1 and

Q2 are positive definite quadratic forms, can then be approximated by making

use of Equation (2.6) where fQ1(·) and fQ2(·) respectively denote the Laguerre

polynomial density approximants of Q1 and Q2, which are available from Equa-

tion (3.11). Explicit representations of hP (q) and hN (q) as specified by Equations

(2.7) and (2.8), respectively, can be obtained as follows. When q is positive, the

probability density function of Q is given by

hP (q) =

∫ ∞

0
fQ1(q + y) fQ2(y) dy

=

∫ ∞

0

(

γν1,β1(q + y)

d
∑

i=0

ξν1,i

(

q + y

β1

)

i
) (

γν2,β2(y)

d
∑

j=0

ξν2,j

(

y

β2

)

j
)

dy(3.14)

with γνℓ,βℓ
(z) = z

νℓ e
−z/βℓ/(β

νℓ+1
ℓ

Γ(νℓ + 1)), ℓ = 1, 2; νℓ and βℓ determined from

Equations (3.1) and (3.2), respectively, ℓ = 1, 2, the coefficients ξν1,i and ξν2,i

being as defined in Equation (3.8). Identities 3.384 3 and 9.220 4 from Gradshteyn

and Ryzhik (1980) yield

hP (q) =

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j

∫ ∞

0

(

q + y

β1

)

i
(

y

β2

)

j

γν1,β1(q + y) γν2,β2(y) dy

=

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j e
−q/β1

β
ν1+i+1
1 β

ν2+j+1
2 Γ(ν1 +1) Γ(ν2 +1)

(

(

β1 + β2

β1β2

)−1−i−j−ν1−ν2

× Γ
(

i+ j+ν1+ν2 +1
)

1F1

(

−i−ν1,−i− j−ν1−ν2, q(β1+β2)/(β1β2)
)

(3.15)

+
Γ
(

−1 − i− j − ν1 − ν2) Γ(j + ν2 + 1)

Γ(−i− ν1)
q
i+j+ν1+ν2+1

× 1F1

(

j + ν2 + 1, i+ j + ν1 + ν2 + 2, q(β1 + β2)/(β1 β2)
)

)

,

where

1F1(a, b, z) =

∞
∑

k=0

Γ(a+ k) Γ(b) z
k

Γ(a) Γ(b+ k) k!
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is Kummer’s confluent hypergeometric function. Similarly, when q is negative,

one has

hN (q) =

∫ ∞

−q

(

γν1,β1(q + y)

d
∑

i=0

ξν1,i

(

q + y

β1

)

i
)(

γν2,β2(y)

d
∑

j=0

ξν2,j

(

y

β2

)

j
)

dy

=

∫ ∞

0

(

γν1,β1(w)

d
∑

i=0

ξν1,i

(

w

β1

)

i
)(

γν2,β2(w− q)

d
∑

j=0

ξν2,j

(

w− q

β2

)

j
)

dw

=

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j

β
i

1 β
j

2

∫ ∞

0
w

i
(w − q)

j
γν1,β1(w) γν2,β2(w − q) dw

=

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j e
q/β2

β
ν1+i+1
1 β

ν2+j+1
2 Γ(ν1 + 1) Γ(ν2 + 1)

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

(3.16)

× Γ
(

i+j+ν1+ν2+1
)

1F1

(

−j−ν2,−i−j−ν1−ν2,−q(β1+β2)/(β1β2)
)

+
Γ(−1 − i− j − ν1 − ν2) Γ(i+ ν1 + 1)

Γ(−j − ν2)
(−q)i+j+ν1+ν2+1

× 1F1

(

i+ ν1 + 1, i+ j + ν1 + ν2 + 2, −q(β1 + β2)/(β1 β2)
)

)

.

We note that the series representations given in Equations (3.15) and (3.16) do

not converge when ν1 or ν2 are integer-valued. In this case, one would have to

evaluate the integral representations by numerical integration.

The corresponding cumulative distribution function is then obtained by

integration. The approximate cumulative distribution function for the negative

part of Q is given by

HN (y) =

∫

y

−∞
hN (q) dq

=

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j

β
ν1+i+1
1 β

ν2+j+1
2 Γ(ν1 +1) Γ(ν2 +1)

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(i+ j + ν1 + ν2 + 1)

×

∫

y

−∞
e
q/β2

1F1

(

−j − ν2,−i− j − ν1 − ν2,−q(β1 + β2)/(β1 β2)
)

dq(3.17)

+
Γ(−1 − i− j − ν1 − ν2) Γ(i+ ν1 + 1)

Γ(−j − ν2)

×

∫

y

−∞
(−q)i+j+ν1+ν2+1

e
q/β2

× 1F1

(

i+ ν1 + 1, i+ j + ν1 + ν2 + 2, −q(β1 + β2)/(β1 β2)
)

dq

)

=
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=

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

β
ν1+k+i+1
1 β

ν2+k+j+1
2 Γ(ν1 +1) Γ(ν2 +1)

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(1 + i+ j + ν1 + ν2)
Γ(−j + k − ν2) Γ(−i− j − ν1 − ν2)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

×

∫

y

−∞
(−q)k

e
q/β2dq +

Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

×
Γ(i+ k + ν1 + 1) Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

∫

y

−∞
(−q)i+j+k+ν1+ν2+1

e
q/β2 dq

)

(3.17)

=

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

β
ν1+k+i+1
1 β

ν2+k+j+1
2 Γ(ν1 +1) Γ(ν2 +1)

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

× Γ(1+ i+ j+ν1+ν2)
Γ(−j+k−ν2) Γ(−i− j−ν1−ν2)β

k+1
2 Γ(k+1,−y/β2)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

Γ(i+ k + ν1 + 1) Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

× β
i+j+k+ν1+ν2+2
2 Γ(i+ j + k + ν1 + ν2 + 2,−y/β2)

)

.

Similarly, the approximate cumulative distribution function for the positive part

of Q can be expressed as follows:

HP (y) = HN (0) +

∫

y

0
hP (q) dq

= HN (0) +

d
∑

i=0

d
∑

j=0

ξν1,i ξν2,j

β
ν1+i+1
1 β

ν2+j+1
2 Γ(ν1 + 1) Γ(ν2 + 2)

×

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

Γ(i+ j + ν1 + ν2 + 1)

×

∫

y

0
e
−q/β1

1F1

(

−i− ν1, −i− j − ν1 − ν2, q(β1 + β2)/(β1 β2)
)

dq

+
Γ(−1 − i− j − ν1 − ν2) Γ(j + ν2 + 1)

Γ(−i− ν1)

×

∫

y

0
q
i+j+ν1+ν2+1

e
−q/β1

1F1

(

j+ν2+1, i+j+ν1+ν2+2, q(β1+β2)/(β1β2)
)

dq

)

(3.18)

= HN (0) +

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j

β
ν1+i+1
1 β

ν2+j+1
2 Γ(ν1 + 1) Γ(ν2 + 1)

×

(

(

β1+β2

β1β2

)−1−i−j+k−ν1−ν2 Γ(1+ i+j+ν1+ν2)Γ(−i−ν1+k)Γ(−i−j−ν1−ν2)

Γ(−i−ν1) Γ(−i−j+k−ν1−ν2) k!

× β
k+1
1

(

Γ(1 + k) − Γ(1 + k, y/β1)

)

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−i− ν1)

Γ(j + k + ν2 + 1) Γ(i+ j + ν1 + ν2 + 2)

Γ(i+ j + k + ν1 + ν2 + 2) k!

× β
i+j+k+ν1+ν2+2
1

(

Γ(i+ j+k+ν1+ν2 +2) − Γ(i+ j+k+ν1+ν2 +2, y/β1)

)

)
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where

HN (0) =

d
∑

i=0

d
∑

j=0

∞
∑

k=0

ξν1,i ξν2,j (β1 + β2)
k

β
ν1+k+i+1
1 β

ν2+k+j+1
2 Γ(ν1 + 1) Γ(ν2 + 1)

×

(

(

β1 + β2

β1 β2

)−1−i−j−ν1−ν2

Γ(1 + i+ j + ν1 + ν2)

×
Γ(−j + k − ν2) Γ(−i− j − ν1 − ν2) β

k+1
2 Γ(k + 1)

Γ(−j − ν2) Γ(−i− j + k − ν1 − ν2) k!

+
Γ(−1 − i− j − ν1 − ν2)

Γ(−j − ν2)

Γ(i+ k + ν1 + 1) Γ(i+ j + ν1 + ν2 + 2)

k!

× β
i+j+k+ν1+ν2+2
2

)

.

Even though the sum over k has infinitely many summands, we observed

that fifty terms provide sufficient accuracy. In most cases of interest, a suitable

degree for a density approximation can be determined by a de visu inspection

of the density plots of approximants of successive degrees. More specifically, one

might be satisfied that an approximant of degree d+1 is adequate if no noticeable

differences are observed when comparing the plots of approximants of degrees d

and d+ 2. This criterion was applied to all the examples presented in Section 5.

Equivalently, one may wish to set a tolerance for the integrated absolute differ-

ence of approximants of successive degrees and select the number of terms to be

used in the approximation accordingly. If one wishes to determine the number

of terms required to obtain a satisfactory approximation for a specific percentile,

one could evaluate the percentile approximations for successive values of d un-

til convergence is observed or a preset tolerance value exceeds the difference of

two successive approximations. Since we are dealing with a sequence of approxi-

mants converging to the exact density function, the close proximity of successive

approximants indicates that convergence is nearly attained. Bounds for the inte-

grated absolute and squared truncation errors are obtained in the remainder of

this section. In light of Equation (3.19) of Provost (2005), the truncated density

function corresponding to that given in Equation (3.11) can be expressed as

fYd
(y) =

y
ν
e
−y/β

βν+1

d
∑

j=0

δ
ν

j
L

ν

j
(y/β)(3.19)

with L
ν

j
(·) as defined in Equation (11) and

δ
ν

j
=

j
∑

k=0

(−1)
k
j! µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)
.

Let FYd
(y) and FY (y) respectively denote the cumulative distribution func-

tions of Yd and Y and fY (y) denote the density function being approximated.
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Letting

δ
ν

j
=

j!

Γ(ν + j + 1)
ψ

ν

j

where

ψ
ν

j
=

j
∑

k=0

(−1)
k
Γ(ν + j + 1) µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)
,

a bound for the truncation error with respect to the probability density function

of Y can be determined as follows:

Ed(y) =
∣

∣fY (y) − fYd
(y)

∣

∣(3.20)

=
y

ν
e
−y/c

cν+1

∞
∑

j=d+1

j!

Γ(ν + j + 1)
|ψν

j
| |Lj(ν, y/c)| ,

where according to Szegö (1975),

Lj(ν, y/c) ≤
(ν + 1)j

j!
e
y/(2c)

(3.21)

=
Γ(ν + 1 + j)

Γ(ν + 1) j!
e
y/(2c)

.

Thus,

Ed(y) ≤
y

ν
e
−y/(2c)

cν+1 Γ(ν + 1)

∞
∑

j=d+1

|ψν

j
| ,(3.22)

and letting λd =
∑∞

j=d+1 |ψ
ν

j
|, a bound for ed, the integrated absolute truncation

error, can be obtained as follows:

ed =

∫ ∞

0
Ed(y) dy

≤

∫ ∞

0
λd

y
ν
e
−y/(2c)

cν+1 Γ(ν + 1)
dy(3.23)

= 2
ν+1

λd

= 2
ν+1

∞
∑

j=d+1

∣

∣

∣

∣

∣

j
∑

k=0

(−1)
k
Γ(ν + j + 1) µX(j − k)

k! (j − k)! Γ(ν + j − k + 1)

∣

∣

∣

∣

∣

.

This result yields a bound for the distribution function integrated absolute error:

|FY (y) − FYd
(y)| =

∣

∣

∣

∣

∫

y

0

(

fY (y) − fYd
(y)

)

dx

∣

∣

∣

∣

≤

∫ ∞

0

∣

∣fY (y) − fYd
(y)

∣

∣ dx(3.24)

≤ 2
ν+1

λd .
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A bound for the density function integrated squared error can be similarly

obtained:

e
∗
d

=

∫ ∞

0
E2

d
(y) dy

≤

∫ ∞

0
λ

2
d

y
2ν
e
−y/c

c2(ν+1) Γ2(ν + 1)
dy(3.25)

=
λ

2
d

Γ(2ν + 1)

c Γ2(ν + 1)
.

Admittedly, these bounds are not very tight. Moreover, a precise order of con-

vergence cannot be determined since these error bounds depend on the moments

of the distribution being approximated.

4. THE ALGORITHM

The following algorithm can be utilized to approximate the density func-

tion of the quadratic form Q = X′
AX where X ∼ N p(µ, Σ), Σ > 0 and A is an

indefinite symmetric real matrix.

1. The eigenvalues of AΣ denoted by λ1≥ ··· ≥ λr > 0>λr+θ+1 ≥ ··· ≥ λp ,

and the corresponding normalized eigenvectors, ν1, ...,νp, are deter-

mined.

2. Letting P = (ν1, ...,νp), γ1, ..., γp be the eigenvalues of Σ, t1, ..., tp

be the normalized eigenvectors of Σ corresponding to γ1, ..., γp, T =

(t1, ..., tp), Σ
−1/2

= T diag(γ
−1/2
1 , ..., γ

−1/2
p ) T

′
, b = (b1, ···, bp)

′
=

P
′
Σ
−1/2 µ and the Uj ’s denote independently distributed standard

normal variables, one has the decomposition Q =
∑

r

j=1 λj(Uj + bj)
2 −

∑

p

j=r+θ+1 |λj |(Uj + bj)
2 ≡ Q1 − Q2, where Q1 ≡ W′

1A1W1, W1 ∼

N r(b1, I), b1 = (b1, ..., br)
′
, A1 = diag(λ1, ..., λr), and Q2 ≡ W′

2A2W2,

W2 ∼N p−r−θ(b2, I), b2 = (br+θ+1, ..., bp)
′
, A2 = diag(|λr+θ+1|, ..., |λp|).

Clearly, b = 0 whenever µ = 0 and, in that case, there is no need to

determine the matrices P or T .

3. The cumulants and the moments of Q1 and Q2 are obtained from Equa-

tions (2.4) and (2.5), respectively.

4. Laguerre polynomial density approximants, as specified by Equation

(3.11), are obtained for each of the positive definite quadratic form

Q1 and Q2 on the basis of their respective moments and denoted by

fQ1(·) and fQ2(·). This requires the determination of βi and νi from

Equations (3.1) and (3.2) for each Qi, i = 1, 2. The degree d of a

given approximant can initially be set equal to 6 and then progressively

increased until convergence is observed (graphically or with respect to

certain percentiles of interest).



An Approximation to the Distribution of a Linear Combination... 245

5. Given fQ1(·) and fQ2(·), the approximate density of Q is obtained

from Equation (2.6) where hP (·) and hN (·) are respectively specified

by Equation (3.15) and (3.16).

6. The corresponding cumulative distribution function can then be eval-

uated from Equations (3.17) and (3.18).

Remarks. In the case of a nonnegative definite quadratic form, that is,

Q = X′
AX where A = A

′
and A ≥ 0, all the eigenvalues of A are nonnegative

and one has Q = Q1 whose approximate density and distribution functions are

directly obtained from Equations (3.11) and (3.12), respectively.

5. NUMERICAL EXAMPLES

In this section, the proposed Laguerre polynomial approximation method-

ology is applied to positive definite and indefinite quadratic forms as well as the

Durbin–Watson statistic. In each case, the approximated distribution will either

be compared with the exact or simulated distributions. It should be noted that

Equations (3.15) and (3.16) can be viewed as closed form representations since

the 1F1 hypergeometric function can be readily evaluated by most mathematical

or statistical computing packages. More precision can be obtained by increasing

the degree d of the polynomial adjustment appearing in Equation (13). However,

when several successive approximations are seen to be nearly identical, the gain

in accuracy becomes minimal. Percentage points were obtained by equating the

distribution functions to a given probability and solving the resulting equations

numerically. The simulated distribution functions were generated by making use

of the Monte Carlo technique.

Example 1.

We first consider the case of a positive definite central quadratic form in in-

dependently distributed standard normal variables, which, according to Equation

(2.2), can be expressed as

Q
I

= X′
AX =

r
∑

j=1

λjYj ,(5.1)

where A > 0, X ∼ Np(0, I), λj , j = 1, ..., r, are the positive eigenvalues of A, the

Yj ’s, j = 1, ..., r are independently distributed central chi-square random vari-

ables, each having one degree of freedom.

In this first example, λ1 = λ2 = 1, λ3 = λ4 = 2.5, and λ5 = λ6 = 9. Since

the eigenvalues occur in pairs, the exact density function can be determined from
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the positive part of Equation (3.23) wherein λ
′
k

= λk/2, s = t = r/2, ρ = 0 and an

empty product is interpreted as 1. In this case, with ν = 0.77054 and β = 14.12,

the density function of Q
I

can be directly approximated by means of Equation

(3.11) in conjunction with Equations (3.1), (3.2) and (3.5). Certain quantiles

determined from the exact distribution, the gamma density and the sixth and

fourteenth-degree Laguerre polynomial approximant specified by Equation (3.12)

are included in Table 1.

The 95
th

percentiles obtained from approximants of degrees 4, 6, 8, 10, 12

and 14 are respectively 60.5291, 62.5418, 62.3713, 61.8045, 61.7053 and 61.8384.

This sequence suggests that a fourteenth-degree approximant might be sufficiently

accurate. The exact 95
th

percentile is in fact 61.8999. Certain extreme tail

quantiles obtained from the exact density function and the fourteenth-degree

Laguerre polynomial approximants are presented in Table 2. Bounds for the

integrated absolute and squared errors are plotted in Figure 1 for various values

of d. Figure 2 shows exact integrated absolute (left panel) and squared (right

panel) differences between the exact and approximate cumulative distribution

function versus d.

Table 1: Certain quantiles of Q
I
.

CDF Gamma Laguerre (d = 6) Laguerre (d = 14) Exact

0.01 1.43483 1.92384 2.51869 2.5795

0.05 3.77669 4.63033 5.04397 5.04193

0.10 5.88517 6.83939 7.03708 7.00919

0.50 20.4832 20.3014 20.0027 20.0400

0.90 50.0482 49.0916 49.3561 49.4183

0.95 61.6596 62.5418 61.8384 61.8999

0.99 87.6053 91.4214 90.9503 90.8707

Table 2: Certain extreme tail quantiles of Q
I
.

CDF Gamma Laguerre (d = 6) Laguerre (d = 14) Exact

0.0001 0.102918 0.149769 0.403458 0.491026

0.001 0.380511 0.542588 1.00356 1.09778

0.999 123.408 127.632 132.491 132.317

0.9999 158.391 183.558 173.364 173.764
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Figure 1: Bounds for the Integrated Absolute (left panel) and Squared (right panel)

Truncation Errors with Respect to the Truncation Order.
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Figure 2: Integrated Absolute Difference (left panel);

Integrated Squared Difference (right panel).

Example 2.

We now consider the general case of a non-central indefinite quadratic form,

Q
II

= X′
AX where

A =









1 1 2 6

1 8 0 0

2 0 −1/2 1

6 0 1 −2









,

X ∼ N4(µ, Σ) with µ = (1, 2, 3, 4)
′
and

Σ =









1 4/5 −1/5 0

4/5 1 1/3 1/4

−1/5 1/3 1 0

0 1/4 0 1









.

In light of Equation (2.3), Q
II

can be re-expressed as

Q
II

= Q1 −Q2 =

2
∑

i=1

λi(Ui + bi)
2 −

4
∑

j=3

|λj | (Uj + bj)
2

(5.2)

where the Ui’s, i = 1, 2, 3, 4, are standard normal random variables, λ1 = 14.487,
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λ2 = 0.175399, λ3 = −1.05353, λ4 = −6.30884, b1 = 3.04567, b2 = 7.26373, b3 =

−2.10575, and b4 = −2.93822. Clearly Q
II

can also be regarded as a general

linear combination of non-central chi-square random variables. In this case, the

matrices P and Σ
1/2

are respectively

P =









0.552559 0.72748 0.200698 0.353796

0.537095 0.0528413 −0.257096 −0.801647

0.119867 −0.0192312 −0.919478 0.373928

0.62597 −0.683821 0.219504 0.303922









and

Σ
1/2

=









0.829443 0.524395 −0.186334 −0.048092

0.524395 0.798945 0.248679 0.157654

−0.186334 0.248679 0.950168 −0.0248771

−0.048092 0.157654 −0.0248771 0.986009









.

The approximate density functions of Q1 and Q2 were obtained by mak-

ing use of sixth-degree Laguerre polynomial approximants. The resulting ap-

proximations of the density and distribution functions of Q
II

as evaluated from

Equations (3.15) and (3.16) and Equations (3.17) and (3.18) with ν1 = 2.05092,

β1 = 51.8858, ν2 = 1.99611 and β2 = 22.1952, are plotted in Figure 3. The right

panel of Figure 3 also shows the simulated distribution function, which was ob-

tained on the basis of 100,000 replications. Accordingly, the standard error is at

most 1/633 ≈ 0.0016.
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Figure 3: Approximated PDF (left panel);

Simulated and Approximated CDF (right panel).

Example 3.

Consider the following general linear combination of independently dis-

tributed central chi-square random variables:

Q
III

= Q1 −Q2 =

r
∑

i=1

λiYi −

p
∑

j=r+θ+1

|λj |Yj ,(5.3)
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where θ = 0, the Yj ’s, j = 1, ..., 16 are independently distributed central chi-

square random variables having one degree of freedom and λ1 = λ2 = 2, λ3 = λ4 =

4, λ5 = λ6 = 6, λ7 = λ8 = 8, λ9 = λ10 = 10, λ11 = λ12 = −20, λ13 = λ14 = −30

and λ15 = λ16 = −40.

Since the eigenvalues occur in pairs in the right-hand side of Equation

(3.21), Q
III

can be expressed as

Q
III

=

s
∑

i=1

λ
′
i
Ti −

t
∑

j=s+1

|λ′
j
|Tj ,(5.4)

where s = r/2, t = p/2, λ
′
k

= λk/2, k = 1, ..., t, and the Ti’s and Tj ’s are indepen-

dently distributed chi-square random variables, each one having two degrees of

freedom. Imhof (1961) derived the following representation of the exact density

function of Q
III

g(q) =



































∑

s

j=1

λ
t−2
j ′ e

−2q/(2λ′
j)

2

(Qs
k=1,k 6=j(λ

′
j−λ

′
k)

)(Qt
k=s+1(|λ′

j |+|λ′
k|)

) , q ≥ 0 ,

∑

t

j=s+1

|λ′
j |

t−2
e
2q/(2|λ′

j |)

2

(Qt
k=s+1,k 6=j(|λ

′
j |−|λ′

k|)

)(Qs
k=1(λ′

j+λ
′
k)

) , q < 0 .

(5.5)

The sixth-degree Laguerre polynomial density approximant of Q
III

as determined

from Equations (3.14) and (3.15) is shown in Figure 4, superimposed on the exact

density.
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Figure 4: Exact density and Laguerre Polynomial Approximant

(dotted line).
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Example 4.

The statistic proposed by Durbin and Watson (1950), which in fact assesses

whether the errors in the linear regression model

Y = Xβ + ǫ(5.6)

are uncorrelated, can be expressed as

D =
ǫ̂′A∗ǫ̂

ǫ̂′ǫ̂
(5.7)

where

ǫ̂ = Y −Xβ̂(5.8)

is the vector of residuals,

β̂ = (X
′
X)

−1
X

′Y(5.9)

being the ordinary least-squares estimator of β, and A
∗

= (a
∗
ij

) is a symmetric

tridiagonal matrix with a
∗
11 = a

∗
pp

= 1; a
∗
ii

= 2, for i = 2, ..., p− 1; a
∗
ij

= −1 if

|i− j| = 1; and a
∗
ij

= 0 if |i− j| ≥ 2. Assuming that the error vector is normally

distributed, one has ǫ ∼ Np(0, I) under the null hypothesis.

Then, on writing ǫ̂ as MY where Mp×p = I −X(X
′
X)

−1
X

′
= M

′
is an

idempotent matrix of rank p− k, the test statistic can be expressed as the fol-

lowing ratio of quadratic forms:

D =
Z′
MA

∗
MZ

Z′MZ
,(5.10)

where Z ∼ Np(0, I); this can be seen from the fact that MY and MZ are iden-

tically distributed singular normal vectors with mean vector 0 and covariance

matrix MM
′
. We note that the distribution function of D (and, in general,

ratios of quadratic forms of the form (X′
BX)/(X′

CX)) at the point t0 can be

determined as follows:

Pr (D < t0) = Pr

(

Z′
MA

∗
MZ < t0Z

′
MZ

)

= Pr

(

Z′
M(A

∗
M − t0I)Z < 0

)

.(5.11)

On letting U = Z′
M(A

∗
M − t0I)Z, U can be re-expressed as a difference of two

positive quadratic forms by applying Steps 1 and 2 of the algorithm provided in

Section 4, with A = M(A
∗
M − t0I), µ = 0 and Σ = I. The moments and the

Laguerre polynomial approximant of the density function of U are then obtained

from Steps 3, 4 and 5.

We make use of a data set that is provided in Hildreth and Lu (1960,

p. 58). In this case, there are k = 5 independent variables, p = 18, the observed
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value of D is 0.96, and the 13 non-zero eigenvalues of M(A
∗
M − t0I) are those

of MA
∗
M minus t0. The non-zero eigenvalues of MA

∗
M are 3.92807, 3.82025,

3.68089, 3.38335, 3.22043, 2.95724, 2.35303, 2.25696, 1.79483, 1.48804, 0.948635,

0.742294 and 0.378736. For instance, when t0 = 1.80977, which corresponds to the

10
th

percentile of the simulated cumulative distribution function resulting from

1,000,000 replications, the eigenvalues of the positive definite quadratic form Q1

are 2.11817, 2.01035, 1.87099, 1.57345, 1.41053, 1.14734, 0.54313 and 0.44706,

while those of Q2 are 0.01507, 0.32186, 0.861265, 1.06761 and 1.43116. The

approximate cumulative distribution function of D based on ten moments was

evaluated from Equations (3.17) and (3.18) at certain percentiles of the distribu-

tion obtained by simulation. The results reported in Table 3 indicate that the

empirical and approximate distribution functions are in close agreement for the

given simulated percentiles.

Table 3: Approximate CDF evaluated at certain empirical percentile of D.

CDF Simulated Approximate CDF

0.01 1.36069 0.010435

0.025 1.51197 0.025476

0.05 1.64792 0.050280

0.1 1.80977 0.099761

0.25 2.08536 0.247875

0.5 2.39014 0.495934

0.75 2.6861 0.748343

0.9 2.93742 0.902156

0.95 3.07679 0.952783

0.975 3.18896 0.977276

0.99 3.31005 0.991466

1 3.83768 1

6. COMPUTATIONAL CONSIDERATIONS AND CONCLUDING

REMARKS

Laguerre polynomials for which an explicit representation is provided in

this paper are readily available from numerous mathematical packages including

Mathematica and Maple. It should be pointed out that, after the determination

of the parameters ν and β, the only remaining step for obtaining a density approx-

imant is the evaluation of the polynomial coefficients, which are easily determined

from Equation (3.8). Quantiles can then be obtained by numerical integration or
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from the explicit representation of the cumulative distribution function given in

Equations (3.17) and (3.18) for indefinite quadratic forms. Conveniently, the req-

uisite calculations can be handled by most mathematical or statistical packages.

The symbolic computational package Mathematica was used for evaluating the

approximants and plotting the graphs, the code being available from the authors

upon request.

The proposed density approximation methodology is conceptually simple

since it is essentially based on a moment-matching technique. Moreover, it is

easy to program and consistently yields remarkably accurate percentage points.

Although most applications require relatively few moments, the proposed approx-

imation can accommodate a large number of moments, if need be. The applicabil-

ity of the results is not restricted to quadratic forms since this methodology can

also be utilized to approximate the density functions of random variables that are

approximately or asymptotically distributed as gamma random variables, such as

those that are proportional to the logarithm of the inverse of certain likelihood ra-

tio test statistics or those that can be expressed as general linear combinations of

independently distributed non-central chi-square random variables, which occur

in asymptotic theory.
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1. INTRODUCTION

The multiplicative censoring density model can be described as follows.

We observe n i.i.d. random variables Y1, ..., Yn where, for any i ∈ {1, ..., n},

Yi = UiXi ,(1.1)

U1, ..., Un are n unobserved i.i.d. random variables having the common uniform

distribution on [0, 1] and X1, ..., Xn are n unobserved i.i.d. random variables with

common unknown density f : [0, 1] → [0,∞]. For any i ∈ {1, ..., n}, we suppose

that Ui andXi are independent. Our aim is to estimate f (or a transformation of f)

from Y1, ..., Yn. Details, applications and results of this model can be found in,

e.g., [37], [38], [2] and [1]. For recent applications in the field of signal processing,

we refer to [7] and references therein for further readings.

In this paper, we investigate the estimation of f
(m)

(including f for m = 0).

This is particularly of interest to detect possible bumps, concavity or convexity

properties of f . The estimation of the derivatives of a density have been investi-

gated by several authors. The pioneers are [4], [35] and [36]. Recent studies can

be found in [31], [9, 10], [32] and [8].

In recent years, wavelet methods in nonparametric function estimation

have become a powerful technique. The major advantages of these methods are

their spatial adaptivity and asymptotic optimality properties over large function

spaces. We refer to, e.g., [3], [23] and [39]. These facts motivate the estimation

of f
(m)

via wavelet methods. To the best of our knowledge, this has never been

investigated before for (1.1). Combning the approaches of [1] and [31], we con-

struct two different wavelet estimators: a linear one and a nonlinear adaptive one

based on a hard thresholding rule introduced by [18]. The latter method has the

advantage to be adaptive; it does not depend on the knowledge of the smoothness

of f
(m)

in its construction. We explore their performances via the Lp-risk with

p ≥ 1 (including the Mean Integrated Squared Error (MISE) which corresponds

to p = 2) over a “standard” wide class of unknown functions: the Besov balls

B
s

r,q
(M). Our main result proves that the considered adaptive wavelet estimator

achieves a fast rate of convergence. Then we show the finite sample properties of

the considered estimators by a simulated data.

The rest of the paper is organized as follows. Section 2 briefly describes the

wavelet basis and the Besov balls. Assumptions on the model and the wavelet es-

timators are presented in Section 3. The theoretical results are given in Section 4.

A simulation study is done in Section 5. The proofs are gathered in Section 6.
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2. WAVELETS AND BESOV BALLS

This section is devoted to bascics on wavelets and Besov balls.

2.1. Wavelets

Let N be a positive integer such that N > 10(m+ 1) (where m refers to

the estimation of f
(m)

).

Throughout the paper, we work within an orthonormal multiresolution

analysis of L2([0, 1]) =
{

h : [0, 1] → R;
∫ 1
0 h(x)

2
dx <∞

}

, associated with the ini-

tial wavelet functions φ and ψ of the Daubechies wavelets db2N . The features of

these functions are to be compactly supported and Cm+1
.

Set

φj,k(x) = 2
j/2
φ(2

j
x− k) , ψj,k(x) = 2

j/2
ψ(2

j
x− k) .

Then, with an appropriate treatment at the boundaries, there exists an integer τ

satisfying 2
τ ≥ 2N such that, for any ℓ ≥ τ , the system

S =

{

φℓ,k; k ∈ {0, ..., 2ℓ−1}; ψj,k; j ∈N−{0, ..., ℓ−1}, k ∈ {0, ..., 2j −1}
}

is an orthonormal basis of L2([0, 1]).

For any integer ℓ ≥ τ , any h ∈ L2([0, 1]) can be expanded on S as

h(x) =

2ℓ−1
∑

k=0

cℓ,k φℓ,k(x) +

∞
∑

j=ℓ

2j−1
∑

k=0

dj,k ψj,k(x) , x ∈ [0, 1] ,(2.1)

where

cj,k =

∫ 1

0
h(x)φj,k(x) dx , dj,k =

∫ 1

0
h(x)ψj,k(x) dx .(2.2)

See, e.g., [14] and [27].

As usual in nonparametric statistics via wavelets, we will suppose that the

unknown function f
(m)

belongs to Besov balls defined below.

2.2. Besov balls

LetM>0, s>0, r≥1, q≥1 andLr([0,1]) =
{

h : [0,1]→R;
∫ 1
0 |h(x)|

r
dx<∞

}

.

Set, for every measurable function h on [0,1] and ǫ≥ 0, ∆ǫ(h)(x) = h(x+ǫ)−h(x),

∆
2
ǫ
(h)(x) = ∆ǫ(∆ǫ(h))(x) and, identically, ∆

N

ǫ
(h)(x) = ∆

N−1
ǫ

(∆ǫ(h))(x).
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Let

ρ
N

(t, h, r) = sup

|ǫ|≤t

(∫ 1

0
|∆N

ǫ
(h)(x)|r dx

)1/r

.

Then, for s ∈ [0, N), we define the Besov ball B
s

r,q
(M) by

B
s

r,q
(M) =

{

h ∈ Lr([0, 1]);

(∫ 1

0

(

ρ
N

(t, h, r)

ts

)q
dt

t

)1/q

≤M

}

,

with the usual modifications if r = ∞ or q = ∞.

We have the equivalence: h ∈ B
s

r,q
(M) if and only if there exists a constant

M
∗
> 0 (depending on M) such that (2.2) satisfy

(

2τ−1
∑

k=0

|cτ,k|
r

)1/r

+







∞
∑

j=τ






2

j(s+1/2−1/r)





2j−1
∑

k=0

|dj,k|
r





1/r






q






1/q

≤ M
∗
,

with the usual modifications if r = ∞ or q = ∞.

In this expression, s is a smoothness parameter and r and q are norm

parameters. Details on Besov balls can be found in [28] and [23, Chapter 9].

3. ESTIMATORS

This section describes our wavelet estimation approach.

3.1. Wavelet methodology

Suppose that, for any v ∈ {0, ...,m}, f (v) ∈ L2([0, 1]). Then we have the

wavelet series expansion:

f
(m)

(x) =

2ℓ−1
∑

k=0

c
(m)
ℓ,k

φℓ,k(x) +

∞
∑

j=ℓ

2j−1
∑

k=0

d
(m)
j,k

ψj,k(x) , x ∈ [0, 1] ,

where c
(m)
j,k

=
∫ 1
0 f

(m)
(x)φj,k(x) dx and d

(m)
j,k

=
∫ 1
0 f

(m)
(x)ψj,k(x) dx and m is the

order of the density derivative to be estimated.

We now aim to construct natural estimators for these unknown wavelet

coefficients. Combining the approaches of [1] and [31], let us investigate a more

arranging expression for c
(m)
j,k

(the same development holds for d
(m)
j,k

).
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Suppose that, for any v ∈ {0, ...,m}, f (v)
(0) = f

(v)
(1) = 0. It follows from

m-fold integration by parts that

c
(m)
j,k

= (−1)
m

∫ 1

0
f(x)(φj,k)

(m)
(x) dx .

Note that, since U1 ∼ U([0, 1]) and U1 and X1 are independent, the density of Y1

is

g(x) =

∫ 1

x

f(y)

y
dy , x ∈ [0, 1] .(3.1)

Hence f(x) = −xg′(x), x ∈ [0, 1].

One integration by parts yields

c
(m)
j,k

= (−1)
m

(

−

∫ 1

0
g
′
(x)x(φj,k)

(m)
(x) dx

)

= (−1)
m

∫ 1

0

(

(φj,k)
(m)

(x) + x(φj,k)
(m+1)

(x)

)

g(x) dx

= E

(

(−1)
m

(

(φj,k)
(m)

(Y1) + Y1(φj,k)
(m+1)

(Y1)

)

)

.

The method of moments gives the following unbiased estimator for c
(m)
j,k

:

ĉ
(m)
j,k

=
(−1)

m

n

n
∑

i=1

(

(φj,k)
(m)

(Yi) + Yi(φj,k)
(m+1)

(Yi)

)

(3.2)

and, similarly, an unbiased estimator for d
(m)
j,k

is

d̂
(m)
j,k

=
(−1)

m

n

n
∑

i=1

(

(ψj,k)
(m)

(Yi) + Yi(ψj,k)
(m+1)

(Yi)

)

.(3.3)

Further properties of these wavelet coefficients estimators are explored in Propo-

sitions 6.1 and 6.2 below. We are now in the position to present the considered

estimators for f
(m)

.

3.2. Main estimators

We define the linear estimator f̂
(m)
lin

by

f̂
(m)
lin

(x) =

2j0−1
∑

k=0

ĉ
(m)
j0,k

φj0,k(x) , x ∈ [0, 1] ,(3.4)

where ĉ
(m)
j,k

is defined by (3.2) and j0 is an integer which will be properly chosen

later.
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Recent developments on the linear wavelet estimators for various density

estimation problems can be found in [11].

We define the hard thresholding estimator f̂
(m)
hard

by

f̂
(m)
hard

(x) =

2τ−1
∑

k=0

ĉ
(m)
τ,k

φτ,k(x) +

j1
∑

j=τ

2j−1
∑

k=0

d̂
(m)
j,k

1n
|d̂

(m)
j,k |≥κδ

(m)
j

oψj,k(x) ,(3.5)

x ∈ [0, 1] ,

where ĉ
(m)
j,k

and d̂
(m)
j,k

are defined by (3.2) and (3.3), 1 is the indicator function, j1

is the integer satisfying

(

n

lnn

)1/(2m+3)
< 2

j1+1 ≤ 2

(

n

lnn

)1/(2m+3)
,

δ
(m)
j

is the threshold:

δ
(m)
j

= 2
j(m+1)

√

lnn

n

and κ is a large enough constant (see Remark 4.2 and Proposition 6.2).

The major difference between f̂
(m)
lin

and f̂
(m)
hard

is the term-by-term selection

of the wavelet coefficients estimators which makes f̂
(m)
hard

adaptive. Discussions on

hard thresholding estimators in nonparametric function estimation can be found

in, e.g., [18], [23], [16] and [39].

Remark 3.1. A preliminary idea is to rewrite the model (1.1) as: − lnYi =

− lnXi− lnUi. In this form, it becomes the standard density deconvolution model

where − lnU1, ...,− lnUn are n unobserved i.i.d. random variables having the

common exponential distribution with parameter 1 and − lnX1, ...,− lnXn are n

unobserved i.i.d. random variables with unknown density

q(x) = e
−x
f(e

−x
) , x ∈ (0,∞) .

Then there exist a wide variety of methods to estimate q. See, e.g., [19], [22],

[29], [5], [15] and [26]. Results on the estimation of q
(m)

via kernel methods can

be found in [19]. However, due to the definition of q, it seems difficult to deduce

results on the estimation of f
(m)

from q
(m)

under the Lp-risk.

Remark 3.2. Another possible approach to estimate f
(m)

is described

below. Since f(x) = −xg′(x), x ∈ [0, 1], we have

f
(m)

(x) = −
(

mg
(m)

(x) + xg
(m+1)

(x)
)

, x ∈ [0, 1] .(3.6)

Then a plug-in approach to estimate f
(m)

consists in estimating g
(m)

by ĝ
(m)

and

g
(m+1)

by ĝ
(m+1)

, and to inject them in (3.6). This yields the estimator

f̂
(m)
∗ (x) = −

(

mĝ
(m)

(x) + xĝ
(m+1)

(x)
)

, x ∈ [0, 1] .
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However, there are at least two disadvantages to this approach.

• Firstly, since two different estimators are required, more errors are in-

jected in f̂
(m)
∗ in comparison to (3.5).

• Secondly, the choices of ĝ
(m)

and ĝ
(m+1)

are not so clear. If we focus

our attention on wavelet estimators, one can chose hard thresholding

versions as in [31]. However, the presence of x in front of ĝ
(m+1)

(x)

implies that we work with the nonorthonormal basis S∗ = {xφℓ,k(x), k ∈

{0, ..., 2ℓ − 1}; xψj,k(x); j ∈ N− {0, ..., ℓ− 1}, k ∈ {0, ..., 2j − 1}}. And

it is not immediately clear how we can manipulate it in the context of

the Lp-risk.

4. RESULTS

Before presenting the main results, let us formulate the following assump-

tions:

(A1) for any v ∈ {0, ...,m}, f (v)
(0) = f

(v)
(1) = 0,

(A2) there exists a known constant C > 0 such that, for any v ∈ {0, ...,m},

∫ 1

0

(

f
(v)

(x)
)2
dx ≤ C ,

(A3) there exists a known constant C > 0 such that

sup

x∈[0,1]
g(x) ≤ C ,

where g is as in (3.1).

Theorems 4.1 and 4.2 below explore the performance of our estimators

under the Lp-risk over Besov balls.

Theorem 4.1 (Lp-risk for f̂
(m)
lin

). Consider (1.1) under (A1), (A2) and

(A3). Let p ≥ 1. Suppose that f (m) ∈ B
s

r,q
(M) with s > 0, r ≥ 1 and q ≥ 1. Set

s∗ = min(s, s− 1/r + 1/p) and let f̂
(m)
lin

be as in (3.4) with j0 being the integer

such that

n
1/(2s∗+2m+3)

< 2
j0+1 ≤ 2n

1/(2s∗+2m+3)
.

Then there exists a constant C > 0 such that

E

(∫ 1

0

(

f̂
(m)
lin

(x) − f
(m)

(x)

)

p

dx

)

≤ C n
−s∗p/(2s∗+2m+3)

.
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Remark 4.1. As usual in linear wavelet estimation, we distinguish in The-

orem 4.1 two different zones: the homogeneous zone corresponding to r ≥ p,

and the inhomogeneous zone corresponding to p > r (following the classifica-

tion of [23, Remark 10.4]). For the homogeneous zone, we obtain the rate of

convergence um,n = n
−sp/(2s+2m+3)

whereas for the inhomogeneous zone, um,n =

n
−(s−1/r+1/p)p/(2(s−1/r+1/p)+2m+3)

which is slower than the previous one. Observe

that these rates of convergence are similar to those attained by wavelet estima-

tors for some inverse problems (see, e.g., [29], [24] and [12] for deconvolution

problems).

Theorem 4.2 (Lp-risk for f̂
(m)
hard

). Consider (1.1) under (A1), (A2) and

(A3). Let f̂
(m)
hard

be (3.5). Suppose that f (m) ∈ B
s

r,q
(M) with s > 0, r ≥ 1 and

q ≥ 1. Then there exists a constant C > 0 such that

E

(∫ 1

0

(

f̂
(m)
hard

(x) − f
(m)

(x)

)

p

dx

)

≤ C ϕn,m ,

where

ϕn,m =







































(

lnn

n

)

sp/(2s+2m+3)

, for rs > (m+3/2)(p−r) ,

(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2m+3)

, for rs < (m+3/2)(p−r) ,

(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2m+3)

(lnn)
(p−r/q)+ , for rs= (m+3/2)(p−r) .

We see in Theorems 4.1 and 4.2 that

• over the homogeneous zone (i.e., r ≥ p), f̂
(m)
hard

attains a rate of conver-

gence close to the one of f̂
(m)
lin

, i.e., n
−sp/(2s+2m+3)

(the only difference

is a logarithmic term).

• over the inhomogeneous zone (i.e., p > r), f̂
(m)
hard

attains a better rate of

convergence than the one of f̂
(m)
lin

. From an asymptotic point of view,

the difference is really significant.

Naturally, taking into account that f̂
(m)
hard

is adaptive, it is preferable to f̂
(m)
lin

in

the estimation of f
(m)

.

Remark 4.2. The optimal choice of the threshold κ is difficult to explicit

because it depends on numerous constants including those in (A2) and (A3), some

norms of the elements of the wavelet basis and the universal constants appearing

in Bernstein inequality (see Proposition 6.2). The knowledge of these constants

is however determinant for the knowledge of κ and, a fortiori, for the adaptivity

of f̂
(m)
hard

.
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Remark 4.3. Note that Theorem 4.2 taken with p = 2 and m = 0 coin-

cides with [1, Theorem 4.2] taken with w(x) = 1.

Perspectives. A possible extension of this work will be to consider more

complex thresholding technique as the block thresholding one (see, e.g., [6] and

[13]). Moreover, to ensure that n
−sp/(2s+2m+3)

is the optimal in the minimax

sense, lower bounds must be proved. However, important technical difficulties

related to the estimation of f
(m)

(not only f) appear. All these aspects need

further investigations that we leave for a future work.

5. SIMULATION STUDY

We investigate the performances of three wavelets estimators: the linear

wavelet estimator (3.4) defined with j0 = 7 (which is an arbitrary choice since

s is unknown), the hard thresholding wavelet estimator 3.5 defined with the

“universal threshold constant”κ = σ̂
√

2, where σ̂ is the standard deviation of the

estimated wavelet coefficients (see [17]) and a linear wavelet estimator after local

linear smoothing.

Remark 5.1. As noticed in [33], the smooth linear wavelet estimator is

motivated by the fact that, when f
(m)

is smoother than the decomposing wavelet

(or the sample size is small), the wavelet shrinkage estimators may contain abusive

peaks and artifacts. A possible solution is to consider another smoothing method

such as the local linear regression smoother introduced by [20, 21] which enjoys

good sampling properties and high minimax efficiency. The construction of the

considered estimator is based on [21, eq (2.1)-(2.4)], where Yj is the wavelet

linear estimator (3.4) with j0 = j, Xj = j/n, K denotes the Gaussian kernel and

h = 0.08. Note that we do not claim any theoretical properties of this estimator

in this study.

The quality of the estimated density is measured by ANorm which are

obtained by following formula

ANorm =
1

N

N
∑

l=1

(

n
∑

i=1

(

f̂
(m)
l

(i/n) − f
(m)
l

(i/n)

)2
)1/2

,

where N is the number of replications and f̂
(m)
l

is estimator of f
(m)
l

in three state

linear, hard threshold and smoothing methods. We selectN = 100 andm ∈ {0, 1}

at (ANorm) formula. The codes were written in MATLAB software and use

Daubechies-Lagarias algorithm for calculating various orthonormal wavelets.

In two examples, we consider samples from a Beta distribution and from a

mixture of two Beta distributions.
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In both of these examples, the smooth linear wavelet estimators is better

than others. On the other hand, hard thresholding estimator (see (3.5)) works

better than the linear estimator (see (3.4)).

Example 1. We generate samples X1, ..., Xn from a Beta distribution

Beta(α, β) with parameters α = 3 and β = 3 with size n = 1000. Also we generate

n = 1000 samples from uniform distribution on [0, 1] that are independent of the

Xi’s to produce multiplicative censoring. Then we estimate original density using

various wavelet methods for derivatives of order m ∈ {0, 1}. Fig. 1 shows the

original density and Fig. 2 its derivative.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5
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0.5
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1.5
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2.5

3
Linear,hard threshold,smoothing estimators of derivative pdf for m=0

Figure 1: The original density with black line, linear estimator with dot-

ted line, hard threshold estimator with blue line and smoothing

estimator is red line. (Density estimation for Beta distribution).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Linear,hard threshold,smoothing estimators of derivative pdf for m=1

Figure 2: The original density with black line, linear estimator with dot-

ted line, hard threshold estimator with blue line and smoothing

estimator is red line. (Derivative estimation for Beta distribution).
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The original density with black line, linear estimator with dotted line, hard

threshold estimator with blue line and smoothing estimator is red line.

With obvious ANorm and standard deviation in Tables 1 and 2, we conclude

when sample size increases, ANorm is smaller and we have better performance.

Table 1: Computed values for ANorm and (Standard deviation)

with Beta distribution for m = 0.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 12.7357 (0.9611) 9.2113 (0.7728) 6.8497 (0.5323) 5.2332 (0.4201)

Hard Thresholding 6.7080 (1.6041) 5.0373 (1.1540) 3.8189 (0.9575) 3.2546 (0.6949)

Smoothing 3.0102 (1.0213) 2.5472 (0.7237) 2.4273 (0.4855) 2.3779 (0.4057)

Table 2: Computed values for ANorm and (Standard deviation)

with Beta distribution for m = 1.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 40.4498 (3.3822) 31.5682 (2.5285) 25.8549 (1.6848) 22.2075 (1.0914)

Hard Thresholding 23.1572 (4.4096) 20.8959 (3.2689) 19.3508 (1.7315) 18.6700 (1.2586)

Smoothing 19.0204 (3.1333) 18.6047 (1.9025) 18.3701 (1.5284) 18.1202 (1.0132)

Example 2. In this example, we consider mixture Beta distribution.

We generate n = 1000 samples X1, ..., Xn such that f ∼ (1/3)Beta(4, 6) +

(2/3)Beta(3, 4) and proceed as the previous example. Fig. 3 and Fig. 4 show

plot from defined estimators.

We calculated ANorm and standard deviation in Tables 3 and 4 for different

values of n.

Table 3: Computed values for ANorm and (Standard deviation)

with Beta mixture distribution for m = 0.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 13.0786 (1.1155) 9.2829 (0.9413) 6.8973 (0.6469) 5.1470 (0.4214)

Hard Thresholding 9.0021 (1.8353) 6.0055 (1.4657) 4.5009 (0.9155) 3.7527 (0.5689)

Smoothing 3.0145 (1.0037) 2.7518 (0.8104) 2.7084 (0.6871) 2.5294 (0.3554)
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Table 4: Computed values for ANorm and (Standard deviation)

with Beta distribution for m = 1.

Estimation Methods
ANorm and (Standard deviation)

n = 256 n = 512 n = 1024 n = 2048

Linear 64.1098 (7.1914) 48.2251 (4.7379) 36.6836 (2.8821) 29.3822 (2.0521)

Hard Thresholding 32.9540 (10.2685) 26.2743 (7.7777) 25.0095 (4.1568) 21.9653 (2.2657)

Smoothing 20.5346 (4.5341) 20.2737 (4.0706) 19.6435 (2.3666) 19.3836 (1.9703)
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3.5
Linear,hard threshold,smoothing estimators of derivative pdf for m=0

Figure 3: The original density with black line, linear estimator with dotted line,

hard threshold estimator with blue line and smoothing estimator is

red line. (Density estimation for Beta mixture distribution).
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Linear,hard threshold,smoothing estimators of derivative pdf for m=1

Figure 4: The original density with black line, linear estimator with dotted line,

hard threshold estimator with blue line and smoothing estimator is

red line. (Derivative estimation for Beta mixture distribution).
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6. PROOFS

In this section, C denotes any constant that does not depend on j, k and

n. Its value may change from one term to another and may depend on φ or ψ.

This section is organized as follows. Firstly, we introduce two auxiliary

results on some properties of (3.2) and (3.3) at the heart of the proofs of our

main theorems.

Proposition 6.1. Let p ≥ 1. For any integer j ≥ τ such that 2
j ≤ n and

any k ∈ {0, ..., 2j − 1}, let ĉ
(m)
j,k

be (3.2), d̂
(m)
j,k

be (3.3), c
(m)
j,k

=
∫ 1
0 f

(m)
(x)φj,k(x)dx

and d
(m)
j,k

=
∫ 1
0 f

(m)
(x)ψj,k(x)dx . Then, under (A1), (A2) and (A3), there exists

a constant C > 0 such that

E

(

(

ĉ
(m)
j,k

− c
(m)
j,k

)2p
)

≤ C 2
j(2m+2)p 1

np

and

E

(

(

d̂
(m)
j,k

− d
(m)
j,k

)2p
)

≤ C 2
j(2m+2)p 1

np
.

Proposition 6.2. Let p ≥ 1. For any integer j ≥ τ such that 2
j ≤ n/ lnn

and any k ∈ {0, ..., 2j − 1}, let d̂
(m)
j,k

be (3.3) and d
(m)
j,k

=
∫ 1
0 f

(m)
(x)ψj,k(x)dx.

Then, under (A1), (A2) and (A3), there exists a constant κ > 0 such that

P

(

∣

∣d̂
(m)
j,k

− d
(m)
j,k

∣

∣ ≥
κ

2
2

j(m+1)

√

lnn

n

)

≤ 2

(

lnn

n

)

p

.

Proof of Proposition 6.1: For convenience, let us prove the second in-

equality, the proof of the first one is identical.

For the sake of simplicity, for any i ∈ {1, ..., n}, set

Q
(m)
i,j,k

= (−1)
m

(

(ψj,k)
(m)

(Yi) + Yi(ψj,k)
(m+1)

(Yi)

)

and

Ui = Q
(m)
i,j,k

− d
(m)
j,k

.

Then we can write

E

(

(d̂
(m)
j,k

− d
(m)
j,k

)
2p

)

=
1

n2p
E





(

n
∑

i=1

Ui

)2p


 .(6.1)

Let us now investigate the bound of this expectation via the Rosenthal

inequality presented below (see [34]).
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Lemma 6.1 (Rosenthal’s inequality). Let n be a positive integer, γ ≥ 2

and U1, ..., Un be n zero mean i.i.d. random variables such that E(|U1|
γ
) <∞.

Then there exists a constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

γ
)

≤ Cmax

(

nE
(

|U1|
γ
)

, n
γ/2
(

E(U
2
1 )
)γ/2

)

.

Observe that U1, ..., Un are i.i.d. and, since E(Q
(m)
i,j,k

) = d
(m)
j,k

, E(U1) = 0.

Since Y1(Ω) = [0, 1], we have

∣

∣Q
(m)
i,j,k

∣

∣ ≤
∣

∣(ψj,k)
(m)

(Yi)
∣

∣+
∣

∣Yi(ψj,k)
(m+1)

(Yi)
∣

∣

≤
∣

∣(ψj,k)
(m)

(Yi)
∣

∣+
∣

∣(ψj,k)
(m+1)

(Yi)
∣

∣ .(6.2)

Let υ ≥ 1. It follows from E(Q
(m)
i,j,k

) = d
(m)
j,k

, the Hölder inequality and (6.2) that

E
(

|U1|
υ
)

≤ C E
(

|Q
(m)
1,j,k

|υ
)

≤ C

(

E
(∣

∣(ψj,k)
(m)

(Y1)
∣

∣

υ
)

+ E
(∣

∣(ψj,k)
(m+1)

(Y1)
∣

∣

υ
)

)

.(6.3)

Using (A3), (ψj,k)
(m)

(x) = 2
j(2m+1)/2

ψ
(m)

(2
j
x− k) and doing the change

of variables y = 2
j
x− k, we have

E
(∣

∣(ψj,k)
(m)

(Y1)
∣

∣

υ
)

=

∫ 1

0

∣

∣(ψj,k)
(m)

(x)
∣

∣

υ
g(x) dx ≤ C

∫ 1

0

∣

∣(ψj,k)
(m)

(x)
∣

∣

υ
dx

= C 2
jυ(2m+1)/2

∫ 1

0

∣

∣ψ
(m)

(2
j
x− k)

∣

∣

υ
dx(6.4)

= C 2
j(υ(2m+1)/2−1)

∫ 2j−k

−k

∣

∣ψ
(m)

(y)
∣

∣

υ
dy ≤ C 2

j(υ(2m+1)/2−1)
.

In a similar way, we prove that

E
(∣

∣(ψj,k)
(m+1)

(Y1)
∣

∣

υ
)

≤ C 2
j(υ(2m+3)/2−1)

.(6.5)

Putting (6.3), (6.4) and (6.5) together, we obtain

E
(

|U1|
υ
)

≤ C 2
j(υ(2m+3)/2−1)

.(6.6)

Using the Rosenthal inequality with U1, ..., Un, γ = 2p and 2
j ≤ n, we have

E





(

n
∑

i=1

Ui

)2p


 ≤ C max

(

nE(U
2p

1 ), n
p
(

E(U
2
1 )
)p
)

≤ C max

(

n 2
j((2m+3)p−1)

, n
p
2

j(2m+2)p
)

(6.7)

≤ Cn
p
2

j(2m+2)p
.
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By (6.1) and (6.7), we have

E

(

(

d̂
(m)
j,k

− d
(m)
j,k

)2p
)

≤ C
1

n2p
n

p
2

j(2m+2)p ≤ C 2
j(2m+2)p 1

np
.

Similarly, we prove that

E

(

(

ĉ
(m)
j,k

− c
(m)
j,k

)2p
)

≤ C 2
j(2m+2)p 1

np
.

The proof of Proposition 6.1 is complete.

Proof of Proposition 6.2: For the sake of simplicity, for any i∈{1, ..., n},

set

Q
(m)
i,j,k

= (−1)
m

(

(ψj,k)
(m)

(Yi) + Yi(ψj,k)
(m+1)

(Yi)

)

and

Ui = Q
(m)
i,j,k

− d
(m)
j,k

.

Then, for any κ > 0, we can write

(6.8)

P

(

∣

∣d̂
(m)
j,k

− d
(m)
j,k

∣

∣ ≥
κ

2
2

j(m+1)

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ C
κ

2
2

j(m+1)
√
n lnn

)

.

Let us now explore the bound of this probability via the Bernstein inequality

described below (see [30]).

Lemma 6.2 (Bernstein’s inequality). Let n be a positive integer and

U1, ..., Un be n i.i.d. zero mean independent random variables such that there

exists a constant M > 0 satisfying |U1| ≤M <∞. Then, for any υ > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

−
υ

2

2
(

nE(U2
1 ) + υM/3

)

)

.

Observe that U1, ..., Un are i.i.d. and, since E(Q
(m)
i,j,k

) = d
(m)
j,k

, E(U1) = 0.

Since Y1(Ω) = [0, 1], (ψj,k)
(m)

(x) = 2
j(2m+1)/2

ψ
(m)

(2
j
x − k), sup

y∈[0,1]

|(ψj,k)
(m)

(y)| ≤ C2
j(2m+1)/2

and sup
y∈[0,1] |(ψj,k)

(m+1)
(y)| ≤ C2

j(2m+3)/2
, we have

|Q
(m)
1,j,k

| ≤
∣

∣(ψj,k)
(m)

(Y1)
∣

∣+
∣

∣Y1(ψj,k)
(m+1)

(Y1)
∣

∣

≤ C

(

sup

y∈[0,1]

∣

∣(ψj,k)
(m)

(y)
∣

∣+ sup

y∈[0,1]

∣

∣(ψj,k)
(m+1)

(y)
∣

∣

)

≤ C 2
j(2m+3)/2

.

Observe that, thanks to (A2) and the Cauchy–Schwarz inequality,

|d
(m)
j,k

| ≤

(∫ 1

0

(

f
(m)

(x)
)2
dx

)1/2(∫ 1

0

(

ψj,k(x)
)2
dx

)1/2

≤ C .
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Using 2
j ≤ n/ lnn, we have

|U1| ≤ C
(∣

∣Q
(m)
1,j,k

∣

∣+
∣

∣d
(m)
j,k

∣

∣

)

≤ C
(

2
j(2m+3)/2

+ C
)

= C 2
j(2m+3)/2 ≤ C 2

j(m+1)

√

n

lnn
.

It follows from (6.6) that

E(U
2
1 ) ≤ C 2

j(2m+2)
.

The Bernstein inequality applied with U1, ..., Un and υ = (κ/2) 2
j(m+1)

√
n lnn

gives

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

−
υ

2

2
(

nE(U2
1 ) + υM/3

)

)

≤ 2 exp

(

−
(κ/2)

2
2

j(2m+2)
n lnn

Cn2j(2m+2) + C(κ/2)2j(m+1)
√
n lnn 2j(m+1)

√

n/ lnn

)

(6.9)

= 2n
−C

κ2

1+κ .

By (6.8) and (6.9), there exists a constant κ > 0 such that

P

(

∣

∣d̂
(m)
j,k

− d
(m)
j,k

∣

∣ ≥
κ

2
2

j(m+1)

√

lnn

n

)

≤ 2n
−C

κ2

1+κ ≤ 2

(

lnn

n

)

p

.

Proposition 6.2 is proved.

Proof of Theorem 4.1: We expand the function f
(m)

on S as

f
(m)

(x) =

2j0−1
∑

k=0

c
(m)
j0,k

φj0,k(x) +

∞
∑

j=j0

2j−1
∑

k=0

d
(m)
j,k

ψj,k(x) ,

where c
(m)
j0,k

=
∫ 1
0 f

(m)
(x)φj0,k(x)dx and d

(m)
j,k

=
∫ 1
0 f

(m)
(x)ψj,k(x)dx.

We have

E

(∫ 1

0

(

f̂
(m)
lin

(x) − f
(m)

(x)

)

p

dx

)

≤ 2
p−1

(A+B) ,(6.10)

where

A = E





∫ 1

0





2j0−1
∑

k=0

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)

φj0,k(x)





p

dx





and

B =

∫ 1

0





∞
∑

j=j0

2j−1
∑

k=0

d
(m)
j,k

ψj,k(x)





p

dx .

Let us now introduce a Lp-norm result for wavelets.
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Lemma 6.3. Let p ≥ 1. For any sequence of real number (θj,k)j,k, there

exists a constant C > 0 such that

∫ 1

0





2j−1
∑

k=0

θj,k φj,k(x)





p

dx ≤ C 2
j(p/2−1)

2j−1
∑

k=0

|θj,k|
p
.

The proof can be found in, e.g., [23, Proposition 8.3].

Lemma 6.3, Proposition 6.1 and the Cauchy–Schwarz inequality yield

A ≤ C 2
j0(p/2−1)

2j0−1
∑

k=0

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)

p
)

≤ C 2
j0(p/2−1)

2j0−1
∑

k=0

(

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)2p
))1/2

(6.11)

≤ C 2
j0(p/2−1)

2
j0 2

j0(m+1)p 1

np/2
= C

(

2
j0(2m+3)

n

)

p/2

.

On the other hand, using f
(m) ∈ B

s

r,q
(M) and proceeding as in [18, eq (24)], we

have

B ≤ C 2
−j0s∗p

.(6.12)

It follows from (6.10), (6.11), (6.12) and the definition of j0 that

E

(∫ 1

0

(

f̂
(m)
lin

(x) − f
(m)

(x)

)

p

dx

)

≤ C





(

2
j0(2m+3)

n

)

p/2

+ 2
−j0s∗p





≤ C n
−s∗p/(2s∗+2m+3)

.

This ends the proof of Theorem 4.1.

Proof of Theorem 4.2: Theorem 4.2 is a consequence of Theorem 6.1

below by taking with ν = m+ 1 and using Propositions 6.1 and 6.2 above.

Theorem 6.1. Let h ∈ L2([0, 1]) be an unknown function to be estimated

from n observations and (2.1) its wavelet decomposition. Let ĉj,k and d̂j,k be

estimators of cj,k and dj,k respectively such that there exist three constants ν > 0,

C > 0 and κ > 0 satisfying

Moments inequalities: for any j ≥ τ such that 2
j ≤ n and k ∈ {0, ..., 2j − 1},

E
(

(ĉj,k − cj,k)
2p
)

≤ C 2
2νjp

(

lnn

n

)

p
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and

E

(

(

d̂j,k − dj,k

)2p
)

≤ C 2
2νjp

(

lnn

n

)

p

.

Concentration inequality: for any j≥ τ such that 2
j ≤n/ lnn and k ∈{0, ..., 2j−1},

P

(

∣

∣d̂j,k − dj,k

∣

∣ ≥
κ

2
2

νj

√

lnn

n

)

≤ C

(

lnn

n

)

p

.

Let us define the hard thresholding wavelet estimator of h by

ĥ(x) =

2τ−1
∑

k=0

ĉτ,k φτ,k(x) +

j1
∑

j=τ

2j−1
∑

k=0

d̂j,k 1n
|d̂j,k|≥κ2νj

√
ln n/n

oψj,k(x) , x ∈ [0, 1] ,

where j1 is the integer satisfying (n/ lnn)
1/(2ν+1)

< 2
j1+1 ≤ 2 (n/ lnn)

1/(2ν+1).

Suppose that h ∈ B
s

r,q
(M) with s > 0, r ≥ 1 and q ≥ 1. Then there exists

a constant C > 0 such that

E

(∫ 1

0

(

ĥ(x) − h(x)

)

p

dx

)

≤ C Θn,ν ,

where

Θn,ν =







































(

lnn

n

)

sp/(2s+2ν+1)

, for rs > (ν+1/2)(p−r) ,

(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

, for rs < (ν+1/2)(p−r) ,

(

lnn

n

)(s−1/r+1/p)p/(2s−2/r+2ν+1)

(lnn)
(p−r/q)+ , for rs= (ν+1/2)(p−r) .

Theorem 6.1 does not appear in this form in the literature but can be

proved using similar arguments to [25, Theorem 5.1] for a bound of the Lp-risk

and [12, Theorem 4.2] for the determination of the rates of convergence.
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it controls the first order behavior of the distribution tail. In the literature, numerous
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on the k largest observations of the underlying sample. Their bias is controlled by the

second order parameter ρ. In order to reduce the bias of γ’s estimators or to select the

best number k of observations to use, the knowledge of ρ is essential. In this paper,

we propose a simple approach to estimate the second order parameter ρ leading to

both existing and new estimators. We establish a general result that can be used to

easily prove the asymptotic normality of a large number of estimators proposed in the

literature or to compare different estimators within a given family. Some illustrations

on simulations are also provided.
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1. INTRODUCTION

Extreme-value theory establishes the asymptotic behavior of the largest ob-

servations in a sample. It provides methods for extending the empirical distribu-

tion function beyond the observed data. It is thus possible to estimate quantities

related to the tail of a distribution such as small exceedance probabilities or ex-

treme quantiles. We refer to [11, 25] for general accounts on extreme-value theory.

More specifically, let X1, ..., Xn be a sequence of random variables (rv), indepen-

dent and identically distributed from a cumulative distribution function (cdf) F .

Extreme-value theory establishes that the asymptotic distribution of the maxi-

mum Xn,n = max{X1, ..., Xn} properly rescaled is the extreme-value distribution

with cdf

Gγ(x) = exp
(

−(1 + γx)+

)−1/γ

where y+ = max(y, 0). The parameter γ ∈ R is referred to as the extreme-value

index. Here, we focus on the case where γ > 0. In such a situation, F is said to

belong to the maximum domain of attraction of the Fréchet distribution. In this

domain of attraction, a simple characterization of distributions is available: the

quantile function U(x) := F
←

(1 − 1/x) can be written as

U(x) = x
γ
ℓ(x) ,

where ℓ is a slowly varying function at infinity i.e. for all λ > 0,

(1.1) lim
x→∞

ℓ(λx)

ℓ(x)
= 1 .

The distribution F is said to be heavy tailed and the extreme-value parameter

γ governs the heaviness of the tail. The estimation of γ is a central topic in

the analysis of such distributions. Several estimators have thus been proposed

in the statistical literature and their asymptotic distributions established under

a second order condition: There exist a function A(x) → 0 of constant sign for

large values of x and a second order parameter ρ < 0 such that, for every λ > 0,

(1.2) lim
x→∞

1

A(x)
log

(

ℓ(λx)

ℓ(x)

)

= Kρ(λ) :=

∫

λ

1
u
ρ−1

du .

Let us highlight that (1.2) implies that |A| is regularly varying with index ρ,

see [16]. Hence, as the second order parameter ρ decreases, the rate of convergence

in (1.1) increases. Thus, the knowledge of ρ can be of high interest in real

problems. For example, the second order parameter is of primordial importance

in the adaptive choice of the best number of upper order statistics to be considered

in the estimation of the extreme-value index [24]. The estimation of ρ can also

be used to propose bias reduced estimators of the extreme value index (see for

instance [4, 21, 23]) or of the Weibull tail-coefficient [9, 10], even though some

bias reduction can be achieved with the canonical choice ρ = −1 as suggested in
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[12, 22]. For the above mentioned reasons, the estimation of the second order

parameter ρ has received a lot of attention in the extreme-value literature, see

for instance [3, 6, 13, 14, 17, 19, 26, 30, 31].

In this paper, we propose a simple and general approach to estimate ρ.

Let I =
t
(1, ..., 1) ∈ R

d
. The two main ingredients of our approach are a random

variable Tn = Tn(X1, ..., Xn) ∈ R
d

verifying the following three assumptions:

(T1) There exists rvs ωn, χn and a function f : R
− → R

d
such that

ω
−1
n

(Tn − χnI)
P

−→ f(ρ),

and a function ψ : R
d → R such that

(Ψ1) ψ(x+ λI) = ψ(x) for all x ∈ R
d

and λ ∈ R,

(Ψ2) ψ(λx) = ψ(x) for all λ ∈ R\{0}.

Note that (T1) imposes that Tn properly normalized converges in probability to

some function of ρ, while (Ψ1) and (Ψ2) mean that ψ is both location and shift

invariant. Starting from these three assumptions, we straightforwardly obtain

that

ψ
(

ω
−1
n

(Tn − χnI)
)

= ψ(Tn)
P

−→ ψ(f(ρ)) ,

under a continuity condition on ψ. Denoting by Zn := ψ(Tn) and by ϕ := ψ ◦ f :

R
− → R, we obtain Zn

P
−→ ϕ(ρ). It is thus clear that, under an additional reg-

ularity assumption and assuming that both Zn and ϕ are known, ρ can be con-

sistently estimated thanks to ϕ
−1

(Zn). This estimation principle is described

more precisely in Section 2. The consistency and asymptotic normality of the

proposed estimator is also established. Examples of Tn random variables are pre-

sented in Section 3. Some functions ψ are proposed in Section 4 and it is shown

that the above mentioned estimators [6, 13, 14, 17, 19] can be read as particular

cases of our approach. As a consequence, this remark permits to establish their

asymptotic properties in a simple and unified way. We illustrate how several

asymptotically Gaussian estimators can be derived from this framework. Finally,

some estimators are compared in Section 5 both from the asymptotic and finite

sample size performances points of view.

2. MAIN RESULTS

Recall that Tn is a R
d
- random vector verifying (T1) and ψ is a function

R
d → R verifying (Ψ1) and (Ψ2). We further assume that:

(Ψ3) There exist J0 ⊆ R
−

and an open interval J ⊂ R such that ϕ = ψ ◦f

is a bijection J0 → J .
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Under this assumption, the following estimator of ρ may be considered:

(2.1) ρ̂n =

∣

∣

∣

∣

∣

ϕ
−1

(Zn) if Zn ∈ J ,

0 otherwise .

To derive the consistency of ρ̂n, an additional regularity assumption is introduced:

(Ψ4) ψ is continuous in a neighborhood of f(ρ) and f is continuous in a

neighborhood of ρ.

The proof of the next result is based on the heuristic consideration of Sec-

tion 1 and is detailed in Section 6.

Theorem 2.1. If (T1) and (Ψ1)–(Ψ4) hold then ρ̂n
P

−→ ρ as n→ ∞.

The asymptotic normality of ρ̂n can be established under a stronger version

of (Ψ4):

(Ψ5) ψ is continuously differentiable in a neighborhood of f(ρ) and f is

continuously differentiable in a neighborhood of ρ,

and the assumption that a normalized version of Tn is itself asymptotically Gaus-

sian:

(T2) There exists two rvs ωn, χn, a sequence vn → ∞, two functions

f, m : R
− → R

d
and a d×d matrix Σ such that vn

(

ω
−1
n

(Tn − χnI)−

f(ρ)
)

d
−→ Nd

(

m(ρ), γ
2
Σ
)

.

Theorem 2.2. Suppose (T2), (Ψ1)–(Ψ3) and (Ψ5) hold. If ρ ∈ J0 and

ϕ
′
(ρ) 6= 0, then

vn(ρ̂n − ρ)
d

−→ N

(

mψ(ρ)

ϕ′(ρ)
,
γ

2
σ

2
ψ
(ρ)

(ϕ′(ρ))2

)

,

with ϕ′(ρ) =
t
f
′
(ρ)∇ψ(f(ρ)) and where we have defined

mψ(ρ) :=
t
m(ρ) ∇ψ(f(ρ)) ,

σ
2
ψ
(ρ) :=

t∇ψ(f(ρ)) Σ ∇ψ(f(ρ)) .

3. EXAMPLES OF Tn RANDOM VARIABLES

Let X1,n ≤ ... ≤ Xn,n be the sample of ascending order statistics and k = kn

be an intermediate sequence i.e. such that k → ∞ and k/n→ 0 as n→ ∞. Most

extreme-value estimators are based either on the log-excesses (logXn−j+1,n −
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logXn−k,n) or on the rescaled log-spacings j(logXn−j+1,n − logXn−j,n) defined

for j = 1, ..., k. In the following, two examples of Tn random variables are pre-

sented based on weighted means of the log-excesses and of the rescaled log-

spacings.

The first example is based on

(3.1) Rk(τ) =
1

k

k
∑

j=1

Hτ

(

j

k + 1

)

j
(

logXn−j+1,n − logXn−j,n

)

,

where Hτ : [0, 1] → R is a weight function indexed by a parameter τ ∈ (0,∞).

Without loss of generality, one can assume that Hτ integrates to one. This

random variable is used for instance in [1] to estimate the extreme-value index γ,

in [17, 26, 30] to estimate the second order parameter ρ and in [18] to estimate

the third order parameter, see condition (C2) below. It is a particular case of

the kernel statistic introduced in [7]. Let us also note that, in the case where

Hτ (u) = 1 for all u ∈ [0, 1], Rk(τ) reduces to the well-known Hill estimator [27].

The asymptotic properties of Rk(τ) require some technical condition (denoted by

(C1)) on the weight function Hτ . It has been first introduced in [1] and it is

recalled hereafter. Introducing the operator

µ : h ∈ L2([0, 1]) −→ µ(h) =

∫ 1

0
h(u)du ∈ R

and It(u) = u
−t

for t ≤ 0 and u ∈ (0, 1], the condition can be written as

(C1) Hτ ∈ L2([0, 1]), µ(|Hτ |Iρ+1+ε) <∞ and

Hτ (t) =
1

t

∫

t

0
u(ν) dν

for some ε > 0 and for some function u satisfying for all j = 1, ..., k

∣

∣

∣

∣

∣

(k+1)

∫

j/(k+1)

(j−1)/(k+1)
u(t) dt

∣

∣

∣

∣

∣

≤ g

(

j

k + 1

)

,

where g is a positive continuous and integrable function defined on

(0, 1). Furthermore, for η ∈ {0, 1}, and k → ∞:

1

k

k
∑

j=1

Hτ

(

j

k + 1

)(

j

k + 1

)−ηρ

= µ(HτIηρ) + o(k
−1/2

) ,

max
j∈{1,...,k}

∣

∣

∣

∣

Hτ

(

j

k + 1

)∣

∣

∣

∣

= o(k
1/2

) .

It is then possible to define T
(R)
n on the basis of Rk(τ), given in (3.1), as

(3.2) T
(R)
n

=

(

T
(R)
n,i

=
(

Rk(τi)/γ
)

θi
, i= 1, ..., d

)

,
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where θi, i= 1, ..., d are positive parameters. In the next lemma, it is proved that

T
(R)
n satisfies condition (T2) under a third order condition, which is a refinement

of (1.2):

(C2) There exist functions A(x) → 0 and B(x) → 0 both of constant sign

for large values of x, a second order parameter ρ < 0 and a third

order parameter β < 0 such that, for every λ > 0,

lim
x→∞

(

log ℓ(λx) − log ℓ(x)
)

/A(x) −Kρ(λ)

B(x)
= L(ρ,β)(λ)

where

L(ρ,β)(λ) :=

∫

λ

1
s
ρ−1

∫

s

1
u
β−1

du ds ,

and the functions |A| and |B| are regularly varying functions with

index ρ and β respectively.

This condition is the cornerstone for establishing the asymptotic normality of

estimators of ρ. Let us denote by Yn−k,n the n− k largest order statistics from a

n-sample of standard Pareto rv.

Lemma 3.1. Suppose (C1), (C2) hold and let k = kn be an intermediate

sequence k such that

(3.3)

k → ∞ , n/k → ∞ , k
1/2
A(n/k) → ∞ ,

k
1/2
A

2
(n/k) → λA , k

1/2
A(n/k)B(n/k) → λB ,

for λA ∈ R and λB ∈ R. Then, the random vector T
(R)
n satisfies (T2) with ω

(R)
n =

A(Yn−k,n)/γ, χ
(R)
n = 1, vn = k

1/2
A(n/k),

f
(R)

(ρ) =

(

θiµ(HτiIρ), i= 1, ..., d

)

,

m
(R)

(ρ) =

(

λA
θi(θi − 1)

2γ
µ

2
(HτiIρ) − λB θi µ(HτiIρK−β); i= 1, ..., d

)

,

and, for (i, j) ∈ {1, ..., d}2, Σ
(R)
i,j

= θi θj µ(HτiHτj ).

The proof is a straightforward consequence of Theorem 2 and Appendix A.5

in [17].

The second example requires some additional notations. Let us consider

the operator ϑ : L2([0, 1])×L2([0, 1]) −→ R defined by

ϑ(h1, h2) =

∫ 1

0

∫ 1

0
h1(u)h2(v) (u ∧ v − uv) du dv
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and the two functions Īt(u) = (1− u)
−t

and Jt(u) = (− log u)
−t

defined for t ≤ 0

and u ∈ (0, 1]. The random variables of interest are

(3.4) Sk(τ, α) =
1

k

k
∑

j=1

Gτ,α

(

j

k + 1

)

(

logXn−j+1,n − logXn−k,n

)

α
,

where Gτ,α is a positive function indexed by two positive parameters α and τ .

Without loss of generality, it can be assumed that µ(Gτ,αJ−α) = 1. In [8, 20, 29]

several estimators of γ based on Sk(τ, α) are introduced in the particular case

where G is constant. Most recently, in [6, 14, 26, 28], Sk(τ, α) is used to esti-

mate the parameters γ and ρ. The asymptotic distribution of these estimators is

obtained under the following assumption on the function Gτ,α.

(C3) The functionGτ,α is positive, non-increasing and integrable on (0, 1).

Furthermore, there exists δ > 1/2 such that 0 < µ(Gτ,αIδ) <∞ and

0 < µ(Gτ,αĪδ) <∞.

It is then possible to define T
(S)
n on the basis of Sk(τ, α), see (3.4), as

(3.5) T
(S)
n

=

(

T
(S)
n,i

=
(

Sk(τi, αi)/γ
αi
)

θi
, i= 1, ..., d

)

.

The following result is the analogous of Lemma 3.1 for the above random

variables.

Lemma 3.2. Suppose (C2), (C3) hold. If the intermediate sequence k

satisfy (3.3) then the random vector T
(S)
n satisfies (T2) with ω

(S)
n = A(n/k)/γ,

χ
(S)
n = 1, vn = k

1/2
A(n/k),

f
(S)

(ρ) =

(

−θiαiµ
(

Gτi,αiJ1−αiK−ρ

)

; i= 1, ..., d

)

,

m
(S)

(ρ) =

(

λA
θiαi(αi−1)

2γ
µ
(

GτiαiJ2−αiK
2
−ρ

)

+ λBαiθiµ
(

Gτi,αiJ1−αiL(−ρ,−β)

)

;

i = 1, ..., d

)

,

and, for (i, j) ∈ {1, ..., d}2, Σ
(S)
i,j

= θiθjαiαj ϑ
(

Gτi,αiJ1−αi , Gτj ,αjJ1−αj

)

.

The proof is a straightforward consequence of Proposition 3 and Lemma 1

in [6]. In the next section, we illustrate how the combination of T
(R)
n or T

(S)
n with

some function ψ following (2.1) can lead to existing or new estimators of ρ.

4. APPLICATIONS

In this section, we propose estimators of ρ based on the random variable

T
(R)
n (subsection 4.1) and T

(S)
n (subsection 4.2). In both cases, d = 8 and the
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following function ψδ : D 7→ R\{0} is considered

(4.1) ψδ(x1, ..., x8) = ˜ψδ(x1 − x2, x3 − x4, x5 − x6, x7 − x8) ,

where δ ≥ 0, D =
{

(x1, ..., x8) ∈ R
8
; x1 6= x2, x3 6= x4, and (x5−x6)(x7−x8)> 0

}

,

and ˜ψδ : R
4 7→ R is given by:

˜ψδ(y1, ..., y4) =
y1

y2

(

y4

y3

)

δ

.

Let us highlight that ψδ verifies the invariance properties (Ψ1) and (Ψ2).

4.1. Estimators based on the random variable Rk(τ)

Since d = 8, the random variable T
(R)
n defined in (3.2) depends on 16 pa-

rameters:
{

(θi, τi) ∈ (0,∞)
2
, i = 1, ..., 8

}

. The following condition on these pa-

rameters is introduced. Let θ̃ = (θ̃1, ..., θ̃4) ∈ (0,∞)
4

with θ̃3 6= θ̃4.

(C4)
{

θi = θ̃⌈i/2⌉, i= 1, ..., 8
}

with δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4). Furthermore,

τ1 < τ2 ≤ τ3 < τ4, τ5 < τ6 ≤ τ7 < τ8 ,

where ⌈x⌉ = inf{n∈N | x≤n}. Under this condition, T
(R)
n involves 12 free param-

eters. We also introduce the following notations: Z
(R)
n =ψδ(T

(R)
n ) andϕ

(R)
δ

=ψδ◦f
(R)

where f
(R)

is given in Lemma 3.1. Note that, since δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4), it is

easy to check that Z
(R)
n does not depend on the unknown parameter γ. We now

establish the asymptotic normality of the estimator ρ̂
(R)
n defined by (2.1) when

T
(R)
n and the function ψδ are used:

(4.2) ρ̂
(R)
n

=

∣

∣

∣

∣

∣

(ϕ
(R)
δ

)
−1

(Z
(R)
n ) if Z

(R)
n ∈J ,

0 otherwise .

The following additional condition is required:

(C5) The function νρ(τ) = µ(HτIρ) is differentiable with, for all ρ < 0

and all τ ∈ R, ν
′
ρ
(τ) > 0.

Let us denote for i ∈ {1, ..., 4},

m
(R,i)
A

= exp

{

(θ̃i − 1)
(

νρ(τ2i−1) + νρ(τ2i)
)

}

,

m
(R,i)
B

= exp

{

µ
(

(Hτ2i−1−Hτ2i) IρK−β

)

νρ(τ2i−1) − νρ(τ2i)

}

,

and for u ∈ [0, 1],

v
(R,i)

(u) = exp

{

Hτ2i−1(u) −Hτ2i(u)

νρ(τ2i−1) − νρ(τ2i)

}

.
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For the sake of simplicity, we also introduce m
(R)
A

=
(

m
(R,i)
A

, i= 1, ..., 4
)

, m
(R)
B

=
(

m
(R,i)
B

, i= 1, ..., 4
)

and v
(R)

=
(

v
(R,i)

, i= 1, ..., 4
)

.

Corollary 4.1. Suppose (C1), (C2), (C4) and (C5) hold. There exist

two intervals J and J0 such that for all ρ ∈ J0 and for a sequence k satisfying (3.3),

k
1/2
A(n/k) (ρ̂

(R)
n

−ρ)
d

−→ N

(

λA

2γ
AB

(R)
1 (δ, ρ) − λBAB

(R)
2 (δ, ρ, β) , γ

2AV(R)
(δ, ρ)

)

where

AB
(R)
1 (δ, ρ) =

ϕ
(R)
δ

(ρ)
[

ϕ
(R)
δ

]′
(ρ)

log ψ̃δ

(

m
(R)
A

)

,

AB
(R)
2 (δ, ρ, β) =

ϕ
(R)
δ

(ρ)
[

ϕ
(R)
δ

]′
(ρ)

log ψ̃δ

(

m
(R)
B

)

,

AV(R)
(δ, ρ) =

(

ϕ
(R)
δ

(ρ)
[

ϕ
(R)
δ

]′
(ρ)

)2

µ

(

log
2
ψ̃δ

(

v
(R)
)

)

.

Note that this result can be read as an extension of [17], Proposition 3, in

two ways. First, we do not limit ourselves to the case δ = 1. Second, we do not

assume that the function ϕ
(R)
δ

is a bijection, but it is shown to be a consequence

of (C4). Besides, the proof of Corollary 4.1 is very simple based on Theorem 2.2

and Lemma 3.1, see Section 6 for details.

As an example, the function Hτ : u ∈ [0, 1] 7→ τu
τ−1

, τ ≥ 1 satisfies condi-

tions (C1) and (C5) since νρ(τ) = τ/(τ − ρ). Letting τ1 ≤ τ5, τ2 = τ3, τ4 = τ8

and τ6 = τ7 leads to a simple expression of ϕ
(R)
δ

:

(4.3) ϕ
(R)
δ

(ρ) = ω(δ, θ̃)

(

τ4 − ρ

τ1 − ρ

)(

τ5 − ρ

τ4 − ρ

)

δ

where

ω(δ, θ̃) =

(

θ̃1(τ1 − τ2)

θ̃2(τ2 − τ4)

)(

θ̃4(τ6 − τ4)

θ̃3(τ5 − τ6)

)

δ

.

Moreover, one also has explicit forms for J0 and J in two situations:

(i) If 0≤ δ≤ δ0 := (τ4−τ1)/(τ4−τ5) then ϕ
(R)
δ

is increasing from J0 = R
−

to J = ω(δ, θ̃) • (1, ˜ψδ(τ4, τ1, τ4, τ5)).

(ii) If δ ≥ δ1 := δ0τ5/τ1 then ϕ
(R)
δ

is decreasing from J0 = R
−

to J =

ω(δ, θ̃) • ( ˜ψδ(τ4, τ1, τ4, τ5), 1).

Here, • denotes the scaling operator. The case δ ∈ (δ0, δ1) is not considered here,

since one can show that, in this situation, J0 ( R
−

and thus the condition ρ ∈ J0
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of Corollary 4.1 is not necessarily satisfied. Let us now list some particular cases

where the inverse function of ϕ
(R)
δ

is explicit.

Example 4.1. Let δ = 1 i.e. θ̃1 − θ̃2 = θ̃3 − θ̃4. The rv Z
(R)
n is denoted

by Z
(R)
n,1 . Since δ0 > 1, we are in situation (i) and

ρ̂
(R)
n,1 =

τ5ω(1, θ̃) − τ1Z
(R)
n,1

ω(1, θ̃) − Z
(R)
n,1

I

{

Z
(R)
n,1 ∈ ω(1, θ̃) •

(

1, ˜ψ1(τ4, τ1, τ4, τ5)
)

}

.

Remark that this estimator coincides with the one proposed in [17], Lemma 1.

Example 4.2. Let δ= 0 i.e. θ̃1= θ̃2. The rv Z
(R)
n is thus denoted by Z

(R)
n,2 .

Again, we are in situation (i) and a new estimator of ρ is obtained

ρ̂
(R)
n,2 =

τ4ω(0, θ̃) − τ1Z
(R)
n,2

ω(0, θ̃) − Z
(R)
n,2

I

{

Z
(R)
n,2 ∈ ω(0, θ̃) •

(

1, ˜ψ0(τ4, τ1, τ4, τ5)
)

}

.

Example 4.3. Let τ1 = τ5. In this case δ0 = δ1 = 1 and thus, we are in

situation (i) if δ < 1 and in situation (ii) otherwise. In this case, the rv Z
(R)
n is

denoted by Z
(R)
n,3 . A new estimator of ρ is obtained:

ρ̂
(R)
n,3 =

τ4

(

Z
(R)
n,3 /ω(δ, θ̃)

)1/(δ−1)
− τ1

(

Z
(R)
n,3 /ω(δ, θ̃)

)1/(δ−1)
− 1

I
{

Z
(R)
n,3 ∈ J

}

.

4.2. Estimators based on the random variable Sk(τ, α)

The random variable T
(S)
n defined in (3.5) depends on 24 parameters:

{

(θi, τi, αi) ∈ (0,∞)
3
, i= 1, ..., 8

}

. Let (ζ1, ..., ζ4) ∈ (0,∞)
4

with ζ3 6= ζ4. In the

following, we assume that

(C6)
{

θiαi = ζ⌈i/2⌉, i= 1, ..., 8
}

with δ = (ζ1 − ζ2)/(ζ3 − ζ4). Further-

more, (τ2i−1, α2i−1) 6= (τ2i, α2i), for i= 1, ..., 4 and, for i = 3, 4,

(τ2i−1, α2i−1) < (τ2i, α2i) ,

where (x, y) 6= (s, t) means that x 6= s and/or y 6= t and (x, y) < (s, t) means that

x < s and y ≤ t or x = s and y < t. We introduce the notations: Z
(S)
n = ψδ(T

(S)
n )

and ϕ
(S)
δ

= ψδ ◦ f
(S)

where f
(S)

is given in Lemma 3.2. Under this condition, T
(S)
n

involves 20 free parameters. Besides, since δ = (ζ1 − ζ2)/(ζ3 − ζ4), it is easy to

check that Z
(S)
n does not depend on the unknown parameter γ. To establish the

asymptotic distribution of the estimator ρ̂
(S)
n , the following condition is required:
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(C7) For all ρ < 0, the function νρ(τ, α) = µ(Gτ,αJ1−αK−ρ) is differen-

tiable with
∂

∂τ
νρ(τ, α) > 0 and

∂

∂α
νρ(τ, α) > 0 for all α > 0 and all

τ ∈ R.

For i = 1, ..., 4, let logm
(S,i)
A

and logm
(S,i)
B

denote respectively

{

(α2i−1 − 1)µ
(

Gτ2i−1,α2i−1J2−α2i−1K
2
−ρ

)

− (α2i − 1)µ
(

Gτ2i,α2iJ2−α2iK
2
−ρ

)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)

}

,

{

µ
(

Gτ2i−1,α2i−1J1−α2i−1L(−ρ,−β)

)

− µ
(

Gτ2i,α2iJ1−α2iL(−ρ,−β)

)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)

}

,

and for u ∈ [0, 1],

v
(S,i)

(u) =
Gτ2i−1,α2i−1(u)J1−α2i−1(u) −Gτ2i,α2i(u)J1−α2i(u)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)
.

Let us also consider m
(S)
A

=
(

m
(S,i)
A

, i= 1, ..., 4
)

and m
(S)
B

=
(

m
(S,i)
B

, i= 1, ..., 4
)

.

The next result is a direct consequence of Theorem 2.2 and Lemma 3.2, see

Section 6 for a short proof.

Corollary 4.2. Suppose (C2), (C3), (C6) and (C7) hold. There exist

two intervals J and J0 such that for all ρ ∈ J0 and for a sequence k satisfying (3.3),

k
1/2
A(n/k)

(

ρ̂
(S)
n

− ρ
)

d
−→ N

(

λA

2γ
AB

(S)
1 (δ, ρ) + λBAB

(S)
2 (δ, ρ, β), γ

2AV(S)
(δ, ρ)

)

where

AB
(S)
1 (δ, ρ) =

ϕ
(S)
δ

(ρ)
[

ϕ
(S)
δ

]′
(ρ)

log ψ̃δ

(

m
(S)
A

)

,

AB
(S)
2 (δ, ρ, β) =

ϕ
(S)
δ

(ρ)
[

ϕ
(S)
δ

]′
(ρ)

log ψ̃δ

(

m
(S)
B

)

,

AV(S)
(δ, ρ) =

(

ϕ
(S)
δ

(ρ)
[

ϕ
(S)
δ

]′
(ρ)

)2

× ϑ

(

v
(S,1)−v(S,2)−δ

(

v
(S,3)−v(S,4)

)

, v
(S,1)−v(S,2)−δ

(

v
(S,3)−v(S,4)

)

)

.

Let us highlight that Proposition 5, Proposition 7 and Proposition 9 of [6]

are particular cases of Corollary 4.2 for three different value of δ (δ = 2, δ = 1

and δ = 0 respectively). The asymptotic normality of the estimators proposed

in [19] and in [14] can also be easily established with Corollary 4.2.

As an example of function Gτ,α, one can consider the function defined on

[0, 1] by:

Gτ,α(u) =
gτ−1(u)

∫ 1
0 gτ−1(x)J−α(x)dx

for τ ≥ 1 and α > 0 ,
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where the function gτ is given by

g0(x) = 1 , gτ−1(x) =
τ

τ − 1
(1 − x

τ−1
), ∀ τ >1 .

Clearly, the function Gτ,α satisfies condition (C7) and, under (C6), the expres-

sion of ϕ
(S)
ρ is

ϕ
(S)
δ

(ρ) =
ζ1

ζ2

(

ζ4

ζ3

)

δ
νρ(τ1, α1) − νρ(τ2, α2)

νρ(τ3, α3) − νρ(τ4, α4)

[

νρ(τ7, α7) − νρ(τ8, α8)

νρ(τ5, α5) − νρ(τ6, α6)

]

δ

with

νρ(τ, α) =
1 − (1−ρ)−α + (τ −ρ)−α − τ

−α

αρ(1 − τ−α−1)
if τ 6= 1 ,

and

νρ(1, α) =
1

αρ

(1 − ρ)
α − 1

(1 − ρ)α
.

Even if Corollary 4.2 ensures the existence of intervals J0 and J , they are im-

possible to specify in the general case. In the following, we consider several sets

of parameters where these intervals can be easily exhibited and for which the

inverse function ϕ
(S)
δ

admits an explicit form. To this end, it is assumed that

τ2 = τ3 = τ5 = τ6 = τ7 = τ8 = α7 = 1, α6 = 3, α8 = 2 and the following notation

is introduced:

ω
∗
(δ, ζ) =

ζ1

ζ2

(

3 ζ4

ζ3

)

δ

.

In all the examples below, J0 = R
−

and thus the condition ρ ∈ J0 is always

satisfied. The first three examples correspond to existing estimators of the second

order parameter while the three last examples give rise to new estimators.

Example 4.4. Let δ = 0 (i.e. ζ1 = ζ2), α1 = α2 = α3 = α4 = 1, τ1 = 2 and

τ4 = 3. Denoting by Z
(S)
n,4 the rv Z

(S)
n , the estimator of ρ is given by:

ρ̂
(S)
n,4 =

6
(

Z
(S)
n,4 + 2

)

3Z
(S)
n,4 + 4

I

{

Z
(S)
n,4 ∈ (−2,−4/3)

}

.

Note that this estimator corresponds to the estimator ρ̂
[2]
n,k

defined in [6], Sec-

tion 5.2.

Example 4.5. Let δ = 0, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = 2.

Denoting by Z
(S)
n,5 the rv Z

(S)
n , we find back the estimator ρ̂

[3]
n,k

proposed in [6],

Section 5.2:

ρ̂
(S)
n,5 =

2
(

Z
(S)
n,5 − 2

)

2Z
(S)
n,5 − 1

I

{

Z
(S)
n,5 ∈ (1/2, 2)

}

.
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Example 4.6. Let α1 = ζ1 = 4, α3 = ζ2 = ζ4 = 2, ζ3 = 3 and α2 = α4 =

α5 = τ1 = τ4 = 1. These choices entail δ = 2. Denoting by Z
(S)
n,6 the rv Z

(S)
n , the

estimator of ρ given by:

ρ̂
(S)
n,6 =

6Z
(S)
n,6 − 4 +

(

3Z
(S)
n,6 − 2

)1/2

4Z
(S)
n,6 − 3

I

{

Z
(S)
n,6 ∈ (2/3, 3/4)

}

.

corresponds to the one proposed in [19], equation (12).

Example 4.7. Consider the case δ = 1 (i.e. ζ1 − ζ2 = ζ3 − ζ4), α1 = α2 =

α3 = α4 = 1, τ1 = α5 = 2 and τ4 = 3. Denoting by Z
(S)
n,7 the rv Z

(S)
n , a new esti-

mator of ρ is given by:

ρ̂
(S)
n,7 =

6Z
(S)
n,7 + 4ω

∗
(1, ζ)

3Z
(S)
n,7 + 4ω∗(1, ζ)

I

{

Z
(S)
n,7 ∈ ω

∗
(1, ζ) • (−4/3,−2/3)

}

.

Example 4.8. Let δ = 1, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = α5 = 2.

Denoting by Z
(S)
n,8 the rv Z

(S)
n , we obtain a new estimator of ρ:

ρ̂
(S)
n,8 =

6Z
(S)
n,8 − 4ω

∗
(1, ζ)

2Z
(S)
n,8 − ω∗(1, ζ)

I

{

Z
(S)
n,8 ∈ ω

∗
(1, ζ) • (1/2, 2/3)

}

.

Example 4.9. Let τ1 = τ4 = α1 = 1, α2 = α3 = α5 = 2 and α4 = 3. De-

noting by Z
(S)
n,9 the rv Z

(S)
n , the estimator of ρ is given by:

ρ̂
(S)
n,9 =

3

(

Z
(S)
n,9 /

(

3ω
∗
(δ, ζ)

)

)1/(δ+1)
− 1

(

Z
(S)
n,9 /

(

3ω∗(δ, ζ)
)

)1/(δ+1)
− 1

I

{

Z
(S)
n,9 ∈ ω

∗
(δ, ζ) • (3

−δ
, 3)

}

.

In the particular case where δ = 0, this estimator corresponds to the one proposed

in [13].

To summarize, we have illustrated how Theorem 2.2 may be used to prove

the asymptotic normality of estimators built on T
(R)
n or T

(S)
n : Corollary 4.1 and

Corollary 4.2 cover a large number of estimators proposed in the literature. Five

new estimators of ρ have been introduced: ρ̂
(R)
n,2 , ρ̂

(R)
n,3 , ρ̂

(S)
n,7 , ρ̂

(S)
n,8 and ρ̂

(S)
n,9 . All

of them are explicit and are asymptotically Gaussian. The comparison of their

finite sample properties is a huge task since they may depend on their parameters

(θi, τi, αi) as well as on the simulated distribution. We conclude this study by

proposing a method for selecting some “asymptotic optimal” parameters within

a family of estimators. The performances and the limits of this technique are

illustrated by comparing several estimators on simulated data.
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5. COMPARISON OF SOME ESTIMATORS

Some estimators of ρ are now compared on a specific Pareto-type model,

namely the Burr distribution with cdf F (x) = 1− (ζ/(ζ+ x
η
))
λ
, x> 0, ζ, λ, η > 0,

considered for instance in [2], equation (3). The associated extreme-value index

is γ = 1/(λη) and this model satisfies the third order condition (C2) with ρ =

β = −1/λ, A(x) = γx
ρ
/(1 − x

ρ
) and B(x) = ρx

ρ
/(1 − x

ρ
). We limit ourselves to

the case ζ = 1 and λ = 1/η so that γ = 1.

5.1. Estimators based on the random variable Rk(τ)

Let us first focus on the estimators of ρ based on the random variables

Rk(τi) considered in Section 4.1 with kernel functions Hτi(u) = τiu
τi−1

, for i =

1, ..., 8. The values of the parameters τ1, ..., τ8, θ̃1, θ̃3 and θ̃4 are taken as in [17, 30]:

τ1 = 1.25, τ2 = τ3 = 1.75, τ4 = τ8 = 2, τ5 = 1.5, τ6 = τ7 = 1.75, θ̃1 = 0.01,

θ̃3 = 0.02 and θ̃4 = 0.04. According to the authors, these values yield good re-

sults for distributions satisfying the third order condition (C2) with β = ρ. For

these parameters, a simple expression of ϕ
(R)
δ

is obtained, see (4.3), and we have

δ0 = 1.5 and δ1 = 1.8. Recall that θ̃2 = θ̃1 + δ(θ̃4 − θ̃3) for δ ≥ 0. In the following,

we propose to choose the remaining parameter δ using a method similar to the one

proposed in [15]. It consists in minimizing with respect to δ an upper bound on

the asymptotic mean-squared error. The method is described in Paragraph 5.1.1

and an example of application is presented in Paragraph 5.1.2.

5.1.1. Controlling the asymptotic mean-squared error

As in [17], we assume that ρ = β. Following Corollary 4.1, the asymp-

totic bias components of ρ̂
(R)
n are respectively proportional to AB

(R)
1 (δ, ρ) and

AB
(R)
2 (δ, ρ, ρ) while its asymptotic variance is proportional to AV(R)

(δ, ρ). The

asymptotic mean-squared error AMSE(δ, γ, ρ) of ρ̂
(R)
n can be defined as

(5.1)
1

kA2(n/k)

(

(

λA

2γ
AB

(R)
1 (δ, ρ) − λB AB

(R)
2 (δ, ρ, ρ)

)2

+ γ
2AV(R)

(δ, ρ)

)

.

One way to choose the parameter δ could be to minimize the above asymptotic

mean-squared error. In practice, the parameters γ, ρ as well as the functions

A and B are unknown and thus the asymptotic mean-squared error cannot

be evaluated. To overcome this problem, it is possible to introduce an upper

bound on AMSE(δ, γ, ρ). Assuming that δ ∈ [0, δ0)∪ (δ1,∞) and ρ ∈ [ρmin, ρmax],
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it is easy to check that |AB
(R)
1 (δ, ρ)| ≥ |AB

(R)
1 (δ1, ρmax)|, |AB

(R)
2 (δ, ρ, ρ)| ≥

|AB
(R)
2 (δ0, ρmin, ρmin)|. Besides, numerically, one can observe that AV(R)

(δ, ρ) ≥

AV(R)
(1.32,−0.46). We thus have:

AMSE(δ, γ, ρ) ≤
Cπ(δ, ρ)

kA2(n/k)
,

with π(δ, ρ) = (AB
(R)
1 (δ, ρ)AB

(R)
2 (δ, ρ, ρ))

2 AV(R)
(δ, ρ) and where the constant C

does not depend on δ and ρ. We thus consider for ρ < 0 the parameter δ min-

imizing the function π(δ, ρ). For instance, when ρ is in the neighborhood of 0,

one can show that the optimal value is δ = δ0 = 1.5.

5.1.2. Illustration on the Burr distribution

Three estimators are compared:

• the estimator ρ̂
(R)
n,1 proposed in [17], and which corresponds to the case

δ = 1, see Example 4.1,

• the new explicit estimator ρ̂
(R)
n,2 introduced in Example 4.2 which corre-

sponds to the case δ = 0,

• the new implicit estimator defined by ρ̂
(R)
n,0 := ρ̂

(R)
n with δ = δ0 = 1.5, see

equation (4.2).

First, the estimators are compared on the basis of their asymptotic mean-

squared errors. Taking λA = k
1/2
A

2
(n/k) and λB = ρλA/γ, the asymptotic mean-

squared errors are plotted on the left panel of Figure 1 as a function of k ∈

{1500, ..., 4999} with n = 5000 and for ρ ∈ {−1,−0.25}. It appears that ρ̂
(R)
n,0

yields the best results for ρ = −1. This is in accordance with the results from

the previous paragraph: δ = 1.5 is the “optimal” when ρ is close to 0. As a pre-

liminary conclusion, the criterion π(·) seems to be well-adapted for tuning the

estimator parameters. At the opposite, when ρ = −0.25, the best estimator from

the asymptotic mean-squared error point of view is ρ̂
(R)
n,2 .

Second, the estimators are compared on their finite sample size perfor-

mances. For each estimator, and for each value of k ∈ {1500, ..., 4999}, the

empirical mean-squared error is computed on 500 replications of the sample of

size n = 5000. The results are displayed on the right panel of Figure 1. The

conclusions are qualitatively the same: ρ̂
(R)
n,0 yields the best results in the case

ρ ≥ −1 where as ρ̂
(R)
n,2 yields the best results in the case ρ < −1. Let us note that,

consequently, ρ̂
(R)
n,1 is never the best estimator in the situation considered here.

In practice, the case ρ ≥ −1 is the more interesting one, since it corresponds to

a strong bias. For this reason, it seems to us that ρ̂
(R)
n,0 should be preferred.
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Figure 1: Asymptotic mean-squared errors (left) and empirical mean-

squared errors (right) of ρ̂
(R)
n,0 , ρ̂

(R)
n,1 and ρ̂

(R)
n,2 as a function of k

for a Burr distribution.

5.2. Estimators based on the random variable Sk(τ, α)

Let us now consider the estimators of ρ based on the random variables

Sk(τi, αi) for i = 1, ..., 8 considered in Section 4.2 in the case where (τ1, α1) =

(τ7, α7), (τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5) and (τ4, α4) = (τ6, α6). In Para-

graph 5.2.1, we show that the asymptotic mean-squared error is independent

of δ. In contrast, Paragraph 5.2.2 illustrates the finite sample behavior of the

estimators when δ varies.
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5.2.1. Comparison in terms of asymptotic mean-squared error

From Corollary 4.2, the asymptotic bias and variance components of ρ̂
(S)
n

are respectively proportional to

AB
(S)
1 (δ, ρ) =

g
(S)

(ρ)
(

g(S)
)′

(ρ)

(

logm
(S,1)
A

− logm
(S,2)
A

)

,

AB
(S)
2 (δ, ρ) =

g
(S)

(ρ)
(

g(S)
)′

(ρ)

(

logm
(S,1)
B

− logm
(S,2)
B

)

,

AV(S)
(δ, ρ) =

(

g
(S)

(ρ)
(

g(S)
)′

(ρ)

)2

ϑ

(

v
(S,1) − v

(S,2)
, v

(S,1) − v
(S,2)

)

,

where

g
(S)

(ρ) =
ζ1

ζ2

µ(Gτ1,α1J1−α1K−ρ) − µ(Gτ2,α2J1−α2K−ρ)

µ(Gτ3,α3J1−α3K−ρ) − µ(Gτ4,α4J1−α4K−ρ)
.

It thus appears that the asymptotic mean-squared error (defined similarly to (5.1))

does not depend on δ. From the asymptotic point of view, all the estima-

tors ρ̂
(S)
n such that (τ1, α1) = (τ7, α7), (τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5) and

(τ4, α4) = (τ6, α6) are thus equivalent.

5.2.2. Comparison on the simulated Burr distribution

For the sake of simplicity, we fix α1 = α7 = θ5 = θ7 = τ1 = ... = τ8 = 1,

α2 = α3 = α5 = α8 = 2, α4 = α6 = 3, θ3 = θ8 = 1/2, θ4 = 1/3, θ6 = 2/3, θ1 =

δ + 1 and θ2 = (δ + 1)/2 so that δ is the unique free parameter. The resulting

estimator is ρ̂
(S)
n,9 , it coincides with the one proposed in [13] when δ = 0. For each

value of k ∈ {500, ..., 4999}, the empirical mean-squared error associated to ρ̂
(S)
n,9

is computed on 500 replications of the sample of size n = 5000 for δ ∈ {0, 1, 2}

and for ρ ∈ {−0.25,−1}. The results are displayed on Figure 2. It appears that

δ = 0 yields the best results for both values of ρ: the empirical mean-squared

error is smaller than these associated to δ = 1 or δ = 2. This hierarchy cannot

be observed on the asymptotic mean-squared error.
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Figure 2: Empirical mean-squared errors of ρ̂
(S)
n,9 as a function of k for a

Burr distribution.

5.3. Tentative conclusion

The families of estimators of the second order parameter usually depend on

a large set, say Θ, of parameters (12 parameters for estimators based on the ran-

dom variables Rk(τ) and 20 parameters for Sk(τ, α)). The methodology proposed

in Paragraph 5.1.1 permits to compute an upper bound π(·) on the asymptotic

mean-squared error AMSE associated to the estimators. This requires to show

that the quantities AB1, AB2 and AV are lower bounded when Θ varies in some

region RΘ. Thus, it may be possible, for some well chosen region RΘ, to find

an “optimal” set of parameters minimizing π(·). Unfortunately, the AMSE may

not depend on all the parameters in Θ (see Paragraph 5.2.1) whereas the finite

sample performances of the estimator does (see Paragraph 5.2.2). In such a case,

the definition of a criterion for selecting an optimal Θ is an open question.

6. PROOFS

Proof of Theorem2.1: Clearly, (Ψ1) and (Ψ2) entailZn=ψ(ω
−1
n

(Tn−χnI)).

Moreover, (T1) and (Ψ4) yield Zn
P

−→ ψ(f(ρ)) = ϕ(ρ). For all ε > 0, we have

P
(

|ρ̂n− ρ|> ε
)

= P
(

{|ρ̂n− ρ|> ε} ∩ {Zn ∈ J}
)

+ P
(

{|ρ̂n− ρ|> ε} ∩ {Zn /∈ J}
)

≤ P
(

{|ρ̂n− ρ|> ε} ∩ {Zn ∈ J}
)

+ P
(

{Zn /∈ J}
)

= P
(

{|ϕ−1
(Zn)− ρ|> ε} ∩ {Zn ∈ J}

)

+ P
(

{Zn /∈ J}
)

.
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From (Ψ3) and (Ψ4), ϕ−1
is also continuous in a neighborhood of ϕ(ρ). Since

Zn
P

−→ ϕ(ρ), it follows that P
(

{|ϕ−1
(Zn)− ρ|> ε} ∩ {Zn ∈ J}

)

→ 0 as n→ ∞.

Besides, ρ ∈ J0 yields ϕ(ρ) ∈ J and thus

(6.1) P
(

{Zn /∈ J}
)

→ 0 as n→ ∞ .

As a conclusion, P
(

|ρ̂n − ρ| > ε
)

→ 0 as n→ ∞ and the result is proved.

Proof of Theorem 2.2: Recalling that Zn = ψ(ω
−1
n

(Tn − χnI)), a first

order Taylor expansion shows that there exists ε ∈ (0, 1) such that

vn

(

Zn − ϕ(ρ)
)

=
t
(vnξn) ∇ψ

(

f(ρ) + εξn

)

,

where we have defined ξn = ω
−1
n

(Tn−χnI)− f(ρ). Therefore, ξn
P

−→ 0 and (Ψ5)

entail that ∇ψ(f(ρ) + εξn)
P

−→ ∇ψ(f(ρ)). Thus, taking account of (T2), we

obtain that

(6.2) vn

(

Zn − ϕ(ρ)
)

d
−→ N

(

mψ(ρ), γ
2
σ

2
ψ
(ρ)
)

.

Now, Pn(x) := P
(

{vn(ρ̂n − ρ) ≤ x}
)

can be rewritten as

Pn(x) = P
(

{vn(ρ̂n− ρ)≤ x} ∩ {Zn ∈ J}
)

+ P
(

{vn(ρ̂n−ρ)≤ x} ∩ {Zn /∈ J}
)

= P
(

{vn(ϕ
−1

(Zn)−ρ)≤ x} ∩ {Zn ∈ J}
)

+ P
(

{vn(ρ̂n−ρ)≤ x} ∩ {Zn /∈ J}
)

=: P1,n(x) + P2,n(x) .

Let us first note that

(6.3) 0 ≤ P2,n(x) ≤ P
(

{Zn /∈ J}
)

→ 0 as n→ ∞ ,

in view of (6.1) in the proof of Theorem 2.1. Focusing on P1,n(x), since ϕ is

continuously differentiable in a neighborhood of ρ and ϕ
′
(ρ) 6= 0, it follows that

ϕ is monotone in a neighborhood of ρ. Let us consider the case where ϕ is

decreasing, the case ϕ increasing being similar. Writing J = (a, b), it follows that

P1,n(x) = P

(

{

a ∨ ϕ(ρ+ x/vn) ≤ Zn ≤ b
}

)

= P

({

vn

(

a ∨ ϕ(ρ+ x/vn) − ϕ(ρ)
)

< vn

(

Zn − ϕ(ρ)
)

≤ vn

(

b− ϕ(ρ)
)

})

.

Introducing Gn the cumulative distribution function of vn(Zn − ϕ(ρ)), we have

1 − P1,n(x) = 1 −Gn

(

vn

(

b− ϕ(ρ)
)

)

+Gn

(

vn

(

a ∨ ϕ(ρ+ x/vn) − ϕ(ρ)
)

)

= 1 −Gn

(

vn

(

b− ϕ(ρ)
)

)

+ Gn

(

vn

(

a− ϕ(ρ)
)

)

∨Gn
(

vn

(

ϕ(ρ+ x/vn) − ϕ(ρ)
)

)

=: P1,1,n + P1,2,n ∨ P1,3,n(x) .
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Let G denote the cumulative distribution function of the N
(

mψ(ρ), γ
2
σ

2
ψ
(ρ)
)

distribution. It is straightforward that

P1,1,n ≤ 1 −G

(

vn

(

b− ϕ(ρ)
)

)

+ sup
t∈R

∣

∣Gn(t) −G(t)
∣

∣ .

Since ρ ∈ J0, we have ϕ(ρ) ∈ J = (a, b). In particular, b > ϕ(ρ) yields 1−G
(

vn(b−

ϕ(ρ))
)

→ 0 as n→ ∞. Besides, (6.2) shows that Gn(t) → G(t) for all t ∈ R and

thus Gn(t) → G(t) uniformly, see for instance [11], p. 552. As a preliminary con-

clusion P1,1,n→ 0 and, similarly, P1,2,n→ 0 as n→ ∞. Finally,

∣

∣

∣
P1,3,n(x) −G

(

xϕ
′
(ρ)
)

∣

∣

∣
≤
∣

∣

∣
G

(

vn

(

ϕ(ρ+ x/vn) − ϕ(ρ)
)

)

−G
(

xϕ
′
(ρ)
)

∣

∣

∣

+ sup
t∈R

∣

∣Gn(t) −G(t)
∣

∣

and, in view of (Ψ5), vn
(

ϕ(ρ+ x/vn) − ϕ(ρ)
)

→ xϕ
′
(ρ) as n→ ∞, which leads

to P1,3,n(x) → G(xϕ
′
(ρ)) as n→ ∞. We thus have shown that

(6.4) P1,n(x) → 1 −G
(

xϕ
′
(ρ)
)

= G(x|ϕ′(ρ)|) as n→ ∞ .

Collecting (6.3) and (6.4) yields

P
({

vn(ρ̂n − ρ) ≤ x
})

→ G
(

x |ϕ′(ρ)|
)

as n→ ∞

and concludes the proof.

Proof of Corollary 4.1: Clearly, ψδ given in (4.1) satisfies (Ψ1) and (Ψ2).

Moreover, Lemma 3.1 shows that (T2) holds. To apply Theorem 2.2 it only

remains to prove that (Ψ3) and (Ψ5) are satisfied. First remark that under (C4)

and (C5), ϕ
(R)
δ

(ρ) is well defined for all ρ ≤ 0 since f
(R)

(ρ) ∈ D. Furthermore,

from Lemma 3.1, we have for i = 1, ..., 4,

T
(R)
n,2i−1− T

(R)
n,2i =

θ̃iA(Yn−k,n)

γ

(

νρ(τ2i−1) − νρ(τ2i)
) (

1 + oP (1)
)

,

as n goes to infinity. Hence, conditions (C4) and (C5) imply that T
(R)
n ∈ D.

Finally, using Lerch’s Theorem (see [5], page 345), condition (C4) implies that

there exists ρ0 < 0 such that the first derivative of ϕ
(R)
δ

is non zero at ρ0. Thus,

the inverse function theorem insures the existence of intervals J0 and J for

which the function ϕ
(R)
δ

is a continuously differentiable bijection from J0 to J .

In conclusion, conditions (Ψ3) and (Ψ5) are satisfied and Theorem 2.2 applies.

Proof of Corollary 4.2: The proof follows the same lines as the one of

Corollary 4.1. It consists in remarking that, under (C6) and (C7), one has

f
(S)

(ρ) ∈ D and T
(S)
n ∈ D since,

T
(S)
n,2i−1− T

(S)
n,2i =

ζiA(n/k)

γ

(

νρ(τ2i, α2i

)

− νρ

(

τ2i−1, α2i−1)
) (

1 + oP (1)
)

,

in view of Lemma 3.2.
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[11] Embrechts, P.; Klüppelberg, C. and Mikosch, T. (1997). Modelling Ex-

tremal Events, Springer.

[12] Feuerverger, A. and Hall, P. (1999). Estimating a tail exponent by modeling

departure from a Pareto distribution, The Annals of Statistics, 27, 760–781.

[13] Fraga Alves, M.I.; Gomes, M.I. and de Haan, L. (2003). A new class of

semi-parametric estimators of the second order parameter, Portugaliae Mathe-

matica, 60(2), 193–213.



Estimation of the Second Order Parameter 299

[14] Fraga Alves, M.I.; de Haan, L. and Lin, T. (2003). Estimation of the

parameter controlling the speed of convergence in extreme value theory, Mathe-

matical Methods of Statistics, 12(2), 155–176.

[15] Gardes, L. and Girard, S. (2010). Conditional extremes from heavy-tailed

distributions: An application to the estimation of extreme rainfall return levels,

Extremes, 13(2), 177–204.

[16] Geluk, J. and de Haan, L. (1987). Regular Variation, Extensions and Taube-

rian Theorems, CWI Tract 40, Center for Mathematics and Computer Science,

Amsterdam, Netherlands.

[17] Goegebeur, Y.; Beirlant, J. and de Wet, T. (2010). Kernel estimators

for the second order parameter in extreme value statistics, Journal of Statistical

Planning and Inference, 140, 2632–2652.

[18] Goegebeur, Y. and de Wet, T. (2012). Estimation of the third-order param-

eter in extreme value statistics, Test, 21(2), 330–354.

[19] Gomes, M.I.; de Haan, L. and Peng, L. (2002). Semi-parametric estimation

of the second order parameter in statistics of extreme, Extremes, 5, 387–414.

[20] Gomes, M.I. and Martins, M.J. (2001). Generalizations of the Hill estimator

– asymptotic versus finite sample behaviour, Journal of Statistical Planning and

Inference, 93, 161–180.

[21] Gomes, M.I. and Martins, M.J. (2002). “Asymptotically unbiased” estimators

of the tail index based on external estimation of the second order parameter,

Extremes, 5(1), 5–31.

[22] Gomes, M.I. and Martins, M.J. (2004). Bias reduction and explicit semi-

parametric estimation of the tail index, Journal of Statistical Planning and Infer-

ence, 124, 361–378.

[23] Gomes, M.I.; Martins, M.J. and Neves, M. (2007). Improving second order

reduced bias extreme value index estimator, REVSTAT – Statistical Journal,

5(2), 177–207.

[24] Gomes, M.I. and Oliveira, O. (2001). The bootstrap methodology in statistics

of extremes – Choice of the optimal sample fraction, Extremes, 4(4), 331–358.

[25] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduc-

tion, Springer Series in Operations Research and Financial Engineering, Springer.

[26] Hall, P. and Welsh, A.H. (1985). Adaptative estimates of parameters of reg-

ular variation, The Annals of Statistics, 13, 331–341.

[27] Hill, B.M. (1975). A simple general approach to inference about the tail of a

distribution, The Annals of Statistics, 3, 1163–1174.

[28] Peng, L. (1998). Asymptotic unbiased estimators for the extreme value index,

Statistics and Probability Letters, 38, 107–115.

[29] Segers, J. (2001). Residual estimators, Journal of Statistical Planning and In-

ference, 98, 15–27.

[30] de Wet, T.; Goegebeur, Y. and Munch, M.R. (2012). Asymptotically un-

biased estimation of the second order tail parameter, Statistics and Probability

Letters, 82, 565–573.

[31] Worms, J. and Worms, R. (2012). Estimation of second order parameters using

probability weighted moments, ESAIM: Probability and Statistics, 16, 97–113.





REVSTAT – Statistical Journal

Volume 11, Number 3, November 2013, 301–315

TWO NONPARAMETRIC ESTIMATORS OF THE

MEAN RESIDUAL LIFE

Authors: Abdel-Razzaq Mugdadi

– Department of Mathematics and Statistics,

Jordan University of Science and Technology,

Irbid, Jordan

aamugdadi@just.edu.jo

Amanuel Teweldemedhin

– Department of Mathematics,

University of Wisconsin – Richland,

Richland Center, WI 53581, U.S.A.

amanuel.teweldemedhi@uwc.edu

Received: March 2012 Revised: January 2013 Accepted: February 2013

Abstract:

• The mean residual life function L(t) can be written based on the vitality function V (t).

In this article we propose two methods to estimate V (t). The two methods are based

on both the kernel density estimation and the empirical function. In addition, we

evaluate the mean square error of the two estimators and we study the consistency

for both of them.

Key-Words:

• mean residual life; kernel; empirical; estimation; mean square error; bandwidth;

consistent.

AMS Subject Classification:

• 62G05, 62N02.



302 Abdel-Razzaq Mugdadi and Amanuel Teweldemedhin



Two Nonparametric Estimators of the Mean Residual Life 303

1. INTRODUCTION

The mean residual life MRL is the expected remaining life, T − t, given

that the item has survived to time t. The unconditional mean of the distribution,

E(T ), is a special case given by L(0). To determine a formula for this expectation,

the conditional probability density function is needed

(1.1) fT |T≥t(τ) =
f(τ)

P
[

T ≥ t
] =

f(τ)

R(t)
, τ ≥ t .

This conditional probability density function is actually a family of probability

density functions (one for each value of t), each of which has an associated mean

E
[

T |T ≥ t
]

=

∞
∫

t

τfT |T≥t(τ) dτ =

∞
∫

t

τ
f(τ)

R(t)
dτ .

Thus, in life testing situations, the expected additional lifetime given that a

component has survived until time t is called the MRL. Since the MRL function

is the expected remaining life, t must be subtracted, yielding

(1.2) L(t) = E
[

T − t |T ≥ t
]

=
1

R(t)

∞
∫

t

τf(τ) dτ − t .

Thus L(t) can be written as

L(t) = V (t) − t ,

where

(1.3) V (t) =

∞
∫

t

sf(s) ds

R(t)
=

M(t)

R(t)
.

We study the vitality function estimator when R(t) > 0, since the vitality

function estimator generates the mean residual life function estimator directly by

the above equation.

Ratio functions for which nonparametric estimators have been considered

include the MRL function and hazard rate among others. One estimation method

involves individual estimates of the numerator and denominator. An alternative

estimator is to estimate the entire function not the separate pieces. For a discus-

sion of ratio functions estimates see Patil et al. [13]. In many reliability studies,

the MRL function (corresponding to a lifetime distribution with density f(t), and

survival function R(t)), is of prime importance. A problem of considerable inter-

est, therefore, is the estimation of mean residual life function. The kernel density
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estimation is the most popular technique to estimate the probability density func-

tion, which is basically can be define as follow: Let X1, ..., Xn be a random sample

from unknown continuous probability density function f(x). The kernel density

estimate with appropriate kernel function k(t) and smoothing parameter h is

(1.4) f̂n(x) =
1

nh

n
∑

i=1

k

(

x − Xi

h

)

.

Kernel type estimators of ratio functions, such as the density under random

censoring and the hazard rate have been studied by several authors (e.g. Watson

and Leadbetter [18], [19], Marron and Padgett [10], Lo et al. [9], Sarda and Vieu

[16], and Hollander and Proschan [8]).

The basic estimator for L(t) is L̂(t) = V̂0(t)− t, where V̂0(t) =
Me(t)
Re(t)

. Re(t)=

1
n

∑

n

i=1 1(Xi>t) and Me(t) =
1
n

∑

n

i=1 Xi1(Xi>t), but Abdous and Berred[1] dis-

cussed that V̂0(t) does not take into account the smoothness of V (t). Guillamon

et al. [6] studied the estimator V̂3(t) =
Mn(t)
Rn(t) for V (t), where Mn(t) =

∞
∫

t

sfn(s) ds,

fn(t) is the kernel density estimation defined in (1.4) and Vn(t) is the kernel re-

liability estimator (see Section 3). Other estimators or cases proposed by Mitra

and Basu [11], Ruiz and Guillamon [14], Chaubey and Sen [3], and Abdous and

Berred [1]. In this paper we propose and study two new estimators for the MRL

both based on the kernel estimator and the empirical function. Also, we propose

new techniques to select the bandwidth for the estimators. From the simulations,

we can conclude that the new estimator is competitive with the basic one but we

can’t say it is a better one.

2. THE FIRST ESTIMATOR ̂V1(t)

In the first propose estimator we use kernel estimate for the numerator

function and empirical estimator of the survival function in the denominator.

Thus,

(2.1) ̂V1(t) =

∞
∫

t

sfn(s) ds

Re(t)
=

Mn(t)

Re(t)
,

where

(2.2) fn(t) =
1

n

n
∑

i=1

kh(t − Xi) ,

and

(2.3) Mn(t) =

∞
∫

t

sfn(s) ds
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is the kernel estimate of the numerator, and

(2.4) Re(t) =
1

n

n
∑

i=1

1(Xi>t) ,

is the frequency count of a set divided by n. Thus, we can estimate the MRL

L(t) by:

(2.5) ̂L1(t) = ̂V1(t) − t .

2.1. Properties of ̂V1(t)

In this section, we evaluate the Bias, the variance and the Mean Square

Error (MSE) of ̂V1(t). In addition, we derive the optimal bandwidth that mini-

mizes the Asymptotic Mean Square Error (AMSE) and we study the consistency

of ̂V1(t).

Proposition 2.1. For any t with R(t) > 0,

(2.6) ̂V1(t)−V (t) =
1

nR(t)

(

n
∑

i=1

( ∞
∫

t

skh(s−Xi) ds − V (t)1(Xi>t)

))

(

1+o(1)

)

.

Proof:

̂V1(t) − V (t) =
Mn(t)

Re(t)
− V (t)

=

(

Mn(t) − V (t) Re(t)

R(t)

)(

1 +
R(t) − Re(t)

Re(t)

)

=
1

nR(t)

(

n
∑

i=1

( ∞
∫

t

skh(s − Xi) ds − V (t)1(Xi>t)

))

(

1 + o(1)

)

.

Lemma 2.1. Let ̂V1(t) be as (2.1), then

E

(

̂V1(t)

)

= V (t) +
h

2

2R(t)
µ2(k)

∞
∫

t

sf
′′
(s) ds + o(h

2
) ,

V ar

(

̂V1(t)

)

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k)

)

+ o
(

h
2
)

+ o

(

h

n

)

,

MSE

(

̂V1(t)

)

=
1

n

Γ2(t)

R2(t)
+ h

γ2(t)α(k)

nR2(t)
+ h

4 µ
2
2(k)

4R2(t)

( ∞
∫

t

sf
′′
(s) ds

)2

+ o

(

h
4
+

h

n
+h

)

,

where Γi(t) =

∞
∫

t

γi(s) ds, γi(t) = t
i
f(t), µ2(k) =

∞
∫

−∞
s
2
k(s) ds, and

α(k) =

∞
∫

−∞
2sW (s)k(s) ds < ∞.
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Proof: Using (2.6)

E

(

̂V1(t) − V (t)

)

=
1

R(t)

(

E

(

∞
∫

t

skh(s − X) ds

)

− V (t)E

(

1(X>t)

)

)

=
1

R(t)

(

Γ1(t) +
h

2

2
µ2(k)

∞
∫

t

sf
′′
(s) ds − V (t)

∞
∫

t

f(s) ds

)

+ o(h
2
)

=
h

2

2R(t)
µ2(k)

∞
∫

t

sf
′′
(s) ds + o(h

2
) .

Thus,

E

(

̂V1(t)

)

= V (t) +
h

2

2R(t)
µ2(k)

∞
∫

t

sf
′′
(s) ds + o(h

2
) .

Also, from (2.6), and after some reduction,

V ar

(

̂V1(t)−V (t)

)

=

=
1

nR2(t)



E

( ∞
∫

t

skh(s−X) ds − V (t)1(X>t)

)2

−

[

E

( ∞
∫

t

skh(s−X) ds − V (t)1(X>t)

)]2




=
1

nR2(t)



E

( ∞
∫

t

skh(s − X) ds

)2

− 2V (t)E

(

1X>t

∞
∫

t

skh(s−X) ds

)

+ V
2
(t)E

(

1X>t

)



+ o

(

h

n

)

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k) − 2V (t)A + V (t) Γ1(t)

)

+ o

(

h

n

)

.

But

A = E

(

1(X>t)

∞
∫

t

skh(s − X) ds

)

=

∞
∫

t

∞
∫

t−y
h

(y + hx) k(x) dx f(y) dy

=
1

2
Γ1(t) + h Γ

′
1(t)

∞
∫

0

sk(s) ds + o
(

h
2
)

.
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So that

V ar

(

̂V1(t) − V (t)

)

=

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k) − 2V (t)

[

1

2
Γ1(t) + hΓ

′
1(t)

∞
∫

0

sk(s) ds

]

+ V (t) Γ1(t)

)

+ o

(

h
2
+

h

n

)

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k) − Γ1(t)V (t) − 2hV (t) Γ
′
1(t)

∞
∫

0

sk(s) ds Γ1(t)

)

+ o

(

h
2
+

h

n

)

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k) − 2hV (t) Γ
′
1(t)

∞
∫

0

sk(s) ds

)

+ o

(

h
2
+

h

n

)

.

Thus,

V ar

(

̂V1(t)

)

=
1

nR2(t)

(

Γ2(t) + hγ2(t)α(k)

)

+ o
(

h
2
)

+ o

(

h

n

)

.

Therefore,

MSE

(

̂V1(t)

)

= Bias
2
(

̂V1(t)

)

+V ar

(

̂V1(t)

)

=
1

n

Γ2(t)

R2(t)
+ h

γ2(t)α(k)

nR2(t)
+ h

4 µ
2
2(k)

4R2(t)

( ∞
∫

t

sf
′′
(s)ds

)2

+ o

(

h
2
+h

4
+

h

n

)

.

The following corollaries can be obtained directly from the above Lemma.

Corollary 2.1. The asymptotic mean integrated square error (AMISE) of

V̂1(t) is

(2.7)

AMISE

(

̂V1(t)

)

=
1

n

∫

Γ2(t)

R2(t)
dt +

h

n
α(k)

∫

γ2(t)

R2(t)
dt

+
h

4

4
µ

2
2(k)

∫

1

R2(t)

( ∞
∫

t

sf
′′
(s) ds

)2

dt .

Corollary 2.2. The optimal bandwidth that minimizes the AMISE (V̂1(t))

is

̂hopt1 = n
− 1

3











−α(k)

µ
2
2(k)

∫

γ2(t)
R2(t)

dt

∫

1
R2(t)

(

∞
∫

t

sf ′′(s) ds

)2

dt











1
3

.
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Corollary 2.3. The estimator ̂V1(t) is a asymptotically consistent estima-

tor of the vitality function V (t). That is

(2.8) ̂V1(t)
p

−→ V (t) .

3. THE SECOND ESTIMATOR ̂V2(t)

In this section we use empirical estimate for the numerator and kernel

estimate of the survival function in the denominator. Thus,

(3.1) ̂V2(t) =

1
n

n
∑

i=1
Xi1(Xi>t)

Rn(t)
=

Me(t)

Rn(t)
,

where Rn(t) is the kernel reliability estimator

(3.2) Rn(t) =
1

n

n
∑

i=1

W

(

t − Xi

h

)

(see Nadaraya [12], Azzalini [2] and Swanepoel [17]), k(x) is a class-2 symmetric

kernel, kh(x) =
1
h

k(
x

h
), W (t) =

∞
∫

t

k(s) ds, and h is a bandwidth (or smoothing

parameter) verifying h → 0 and nh → ∞ when n → ∞; and

(3.3) Me(t) =
1

n

n
∑

i=1

Xi1(Xi>t) ,

where

1T =

{

1 if T is true ,

0 otherwise ,

is the empirical estimate of the numerator in the definition of V .

In this case, the MRL estimator is

(3.4) ̂L2(t) = ̂V2(t) − t .

3.1. Properties of ̂V2(t)

In this section we evaluate the MSE and the AMISE of ̂V2(t). Also, we

derive the optimal bandwidth and study the consistency of ̂V2(t).
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Proposition 3.1. For any t with R(t) > 0,

(3.5) ̂V2(t) − V (t) =
1

nR(t)

[

n
∑

i=1

(

Xi1(Xi>t) − V (t)W

(

t − Xi

h

)

)]

(

1 + o(1)

)

where W (t) =

∞
∫

t

k(s) ds.

Proof:

̂V2(t) − V (t) =
Me(t)

Rn(t)
− V (t)

=

(

Me(t) − V (t)Rn(t)

R(t)

)(

1 +
R(t) − Rn(t)

Rn(t)

)

=
1

nR(t)

[

n
∑

i=1

(

Xi1(Xi>t) − V (t)W

(

t − Xi

h

)

)]

(

1 + o(1)

)

.

Lemma 3.1. Let ̂V2(t), Γi(t), γi(t), µ2(k), and α(k) be as defined earlier,

then

E

(

̂V2(t)

)

= V (t) +
1

2
h
2V (t)

R(t)
f
′
(t) µ2(k) + o(h

2
) ,

V ar

(

̂V2(t)

)

=
1

nR2(t)
Γ2(t) +

h

nR2(t)
V

2
(t) f(t)α(k) + o(h) + o

(

h

n

)

,

MSE

(

̂V2(t)

)

=
1

4
h
4V

2
(t)

R2(t)

(

f
′
(t)

)2
µ

2
2(k) +

1

nR2(t)
Γ2(t) +

h

nR2(t)
V

2
(t) f(t)α(k)

+ o

(

h +
h

n

)

.

Proof: Using the result in Proposition (3.1)

E

(

̂V2(t) − V (t)

)

=
1

R(t)

(

E
(

yI(y>t)

)

− V (t)E

[

W

(

t − Xi

h

)]

)

=
h

2
V (t)

2R(t)
f
′
(t)µ2(k) + o(h

2
) .

Thus,

(3.6) E

(

̂V2(t)

)

= V (t) +
1

2
h

2V (t)

R(t)
f
′
(t)µ2(k) + o(h

2
) .
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Now, we want to evaluate the variance.

V ar

(

̂V2(t)−V (t)

)

=
1

nR2(t)

(

V ar
(

yI(y>t)

)

− V (t)W

(

t − y

h

)

)

=
1

nR2(t)

(

E
(

yI(y>t)

)2
− 2V (t)E

(

yI(y>t) − W

(

t − y

h

))

+ V
2
(t)E

(

W
2

(

t − y

h

))

)

+ o

(

h

n

)

=
1

nR2(t)

(

Γ2(t) −
1

2
h
2
V (t)µ2(k)

∞
∫

t

sf
′′
(s) ds + hV

2
(t)f(t)α(k)

)

+ o

(

h +
h

n

)

.

Thus,

V ar

(

̂V2(t)

)

=
1

nR2(t)
Γ2(t) +

h

nR2(t)
V

2
(t) f(t)α(k) + o

(

h +
h

n

)

.

Therefore,

MSE

(

̂V2(t)

)

=
1

4
h

4 V
2
(t)

R2(t)

(

f
′
(t)
)2

µ
2
2(k) +

1

nR2(t)
Γ2(t) +

h

nR2(t)
V

2
(t)f(t)α(k)

+ o

(

h +
h

n

)

.

Corollary 3.1.

(3.7)

AMISE

(

̂V2(t)

)

=
1

4
h

4
µ

2
2(k)

∫

V
2
(t)
(

f
′
(t)
)2

R2(t)
dt +

1

n

∫

Γ2(t)

R2(t)
dt

+
hα(k)

n

∫

V
2
(t)f(t)

R2(t)
dt .

Corollary 3.2. The optimal bandwidth that minimizes the AMISE (V̂2(t))

is

̂hopt2 = n
− 1

3









−α(k)

µ
2
2(k)

∫

V
2(t)f(t)
R2(t)

dt

∫

V 2(t) (f ′(t))2

R2(t)
dt









1
3

.

Corollary 3.3. The estimator ̂V2(t) is a asymptotically consistent estima-

tor of the vitality function V (t). That is

(3.8) ̂V2(t)
p

−−−→
n→∞

V (t) .
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From Corollaries 2.2 and 3.2, we can conclude that the optimal bandwidths

decrease at rate O(n
− 1

3 ), which is the same of rate of convergence for bandwidth

for the kernel distribution function estimator.

4. BANDWIDTH SELECTIONS

4.1. Likelihood Cross-Validation

The original cross-validation criterion, proposed by Habbema et al. [7] and

Duin [4] to select the bandwidth h by minimizing the score function

LCV (h) = −
1

n

n
∑

i=1

log f̂−i(Xi)

over possible values of h. f̂−i(Xi) is the “leave-one-out” kernel density estimator

defined using the data with Xi removed. That is

f̂−i(Xi) =
1

(n − 1)h

n
∑

j 6=i

k

(

Xi − Xj

h

)

.

The method of likelihood cross-validation is a natural development of the idea of

using likelihood to judge the adequacy of fit of a statistical model. It is of general

applicability beyond choosing h in kernel density estimation, having been used

for both parameter estimation and model selection (e.g. Geisser [5]).

Analogous to this we propose this kind of technique to our estimators. That

is we will minimize the following function:

(4.1) LCV (h) = −
1

n

n
∑

i=1

log V̂j,−i(Xi)

where V̂j,−i(Xi), j = 1, 2, is the “leave-one-out” vitality function estimators de-

fined using the data with Xi removed. That is

V̂1,−i(Xi) =

1
n−1

[

n
∑

j 6=i

Xi ·W
(

Xi−Xj

h

)

+ h

n
∑

j 6=i

Nk

(

Xi−Xj

h

)

]

1
n−1

n
∑

j 6=i

1Xj>Xi

(4.2)

and

V̂2,−i(Xi) =

1
n−1

n
∑

j 6=i

Xi · 1Xj>Xi

1
n−1

n
∑

j 6=i

W

(

Xi−Xj

h

)

.(4.3)
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4.2. Simulation

We have conducted a numerical study to asses the performance of the esti-

mators that introduced earlier. We simulated repeated samples of size n = 20, 40,

60, 80, and 100 from exponential distribution with different means. Thus, the

true value being estimated is L(t), when the f(t) is the exponential distribution.

The results obtained are based on 1000 repetitions at the sample sizes. We used

Epanechnikov kernel, and the likelihood cross-validation for bandwidth selections.

The Bias, Variance, and MSE are calculated by repeating the samples 1000 times

for each case. Epanechnikov kernel is used for the estimators L̂1, L̂2, and L̂3.

Note that L̂0(t) =
Me(t)
Re(t)

− t and L̂3(t) =
Mn(t)
Rn(t) − t.

Table 1: Simulation from exponential distribution of different means

and sample size 20.

n Mean Estimators Bias Variance MSE

20 0.5 L̂0 −0.2900 0.3222 0.4063
20 0.5 L̂1 0.3644 0.3034 0.4362
20 0.5 L̂2 0.2643 0.2792 0.3490
20 0.5 L̂3 0.6002 0.2358 0.5960

20 1 L̂0 0.1253 0.0842 0.0999
20 1 L̂1 −0.7525 0.0379 0.6083
20 1 L̂2 −0.2110 0.0575 0.1020
20 1 L̂3 0.0473 0.0542 0.0564

20 5 L̂0 0.1939 0.0478 0.0854
20 5 L̂1 −0.0125 0.0024 0.0026
20 5 L̂2 0.0634 0.0150 0.0191
20 5 L̂3 −0.0714 0.0040 0.0091

Table 2: Simulation from exponential distribution of different means

and sample size 40.

n Mean Estimators Bias Variance MSE

40 0.5 L̂0 −0.0546 0.3402 0.3432
40 0.5 L̂1 0.1494 0.0834 0.1057
40 0.5 L̂2 −0.9094 0.2316 1.0586
40 0.5 L̂3 0.0260 0.1623 0.1630

40 1 L̂0 0.2041 0.1025 0.1442
40 1 L̂1 0.2277 0.0857 0.1375
40 1 L̂2 −0.1786 0.0370 0.0688
40 1 L̂3 −0.0282 0.0311 0.0319

40 5 L̂0 −0.0406 0.0014 0.0031
40 5 L̂1 0.0632 0.0016 0.0056
40 5 L̂2 −0.0115 0.0036 0.0037
40 5 L̂3 0.0073 0.0019 0.0020
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The original purpose of this study was to provide kernel based estimators of

mean residual life function. We have found kernel estimation to be a useful tool

for nonparametric estimations of reliability functions such as MRL. However, the

use of this tool in practice can be hampered by the lack of a suitable bandwidth

selection procedure. The likelihood cross-validation proposed in this paper is a

suitable technique to select the bandwidth but we can not say it is the optimal one.

Also, we can not conclude in the MRL estimators that the smoothing technique

is better than the non smoothing technique.

Table 3: Simulation from exponential distribution of different means

and sample size 60.

n Mean Estimators Bias Variance MSE

60 0.5 L̂0 0.2186 0.1971 0.2449

60 0.5 L̂1 0.1788 0.1156 0.1476

60 0.5 L̂2 0.5544 0.1545 0.4619

60 0.5 L̂3 −0.2967 0.3261 0.4141

60 1 L̂0 −0.0105 0.0309 0.0310

60 1 L̂1 −0.0600 0.0535 0.0571

60 1 L̂2 −0.1795 0.0174 0.0497

60 1 L̂3 −0.0730 0.0450 0.0512

60 5 L̂0 −0.0195 0.0013 0.0017

60 5 L̂1 0.0443 0.0010 0.0030

60 5 L̂2 −0.0215 0.0006 0.0011

60 5 L̂3 −0.0309 0.0022 0.0032

Table 4: Simulation from exponential distribution of different means

and sample size 80.

n Mean Estimators Bias Variance MSE

80 0.5 L̂0 0.0833 0.0600 0.0669

80 0.5 L̂1 0.0319 0.0597 0.0607

80 0.5 L̂2 0.1759 0.2009 0.2317

80 0.5 L̂3 −0.0866 0.1025 0.1100

80 1 L̂0 0.0392 0.0606 0.0622

80 1 L̂1 0.0536 0.0478 0.0507

80 1 L̂2 0.2112 0.0465 0.0910

80 1 L̂3 −0.1948 0.0242 0.0622

80 5 L̂0 0.0013 0.0011 0.0012

80 5 L̂1 −0.0130 0.0011 0.0013

80 5 L̂2 −0.0516 0.0016 0.0043

80 5 L̂3 −0.0677 0.0018 0.0064
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Table 5: Simulation from exponential distribution of different means

and sample size 100.

n Mean Estimators Bias Variance MSE

100 0.5 L̂0 0.2901 0.0980 0.1822

100 0.5 L̂1 −0.0888 0.2403 0.2482

100 0.5 L̂2 −0.1093 0.1291 0.1411

100 0.5 L̂3 −0.1420 0.1204 0.1405

100 1 L̂0 −0.0415 0.0293 0.0310

100 1 L̂1 −0.0794 0.0119 0.0182

100 1 L̂2 −0.0278 0.0246 0.0253

100 1 L̂3 0.0736 0.0165 0.0220

100 5 L̂0 0.0131 0.0005 0.0006

100 5 L̂1 −0.0217 0.0020 0.0025

100 5 L̂2 −0.0324 0.0012 0.0022

100 5 L̂3 0.0147 0.0005 0.0007

The MRL estimators proposed in this paper seem natural, reasonable, and

intuitively appealing. It is shown that the MRL estimators are asymptotically

unbiased and consistent. Note also that the simulation study seem to indicate that

the MRL estimators have small variance and MSE. The optimal bandwidth using

mean integrated squared error criterion in each MRL estimators is h = cn
−1/3

.

It is also proven that the choice of a kernel function is less sensitive to the MRL

estimators.

ACKNOWLEDGMENTS

The authors thank the associate editor and the referee for their valuable

comments on the earlier three versions of this article.

REFERENCES

[1] Abdous, B. and Berred, A. (2005). Mean residual life estimation, Journal of

Statistical Planning and Inference, 132, 3–19.

[2] Azzalini, A. (1981). A note on the estimation of a distribution function and

quantiles by a kernel method, Biometrika, 68(1), 326–328.



Two Nonparametric Estimators of the Mean Residual Life 315

[3] Chaubey, Yogendra P. and Sen, Pranab K. (1999). On smooth estimation

of mean residual life, Journal of Statistical Planning and Inference, 75, 223–236.

[4] Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen esti-

mators of probability density functions, IEEE Trans. Comput., C-25, 1175–1179.

[5] Geisser, S. (1975). The predictive sample reuse method with applications, J.

Amer. Statist. Assoc., 70, 320–328.

[6] Guillamon, A.; Navarro, J. and Ruiz, J.M. (1998). Nonparametric estima-

tor for the mean residual life and vitality function, Statistical Papers, 39, 263–276.

[7] Habbema, J.D.F.; Hermans, J. and van der Broek, K. (1974). A stepwise

discrimination program using density estimation. In “Compstat” (G. Bruckman,

Ed.), Physica Verlag, Vienna.

[8] Hollander, M. and Proschan, F. (1984). Nonparametric concepts and meth-

ods in reliability. In “Handbook of Statistics” (P.R. Krishnaiah and P.K. Sen,

Eds.), 4, 613-655.

[9] Lo, S.H.; Mack, Y.P. and Wang, J.L. (1989). Density and hazard rate esti-

mation for censored data via strong representation of the Kaplan-Meier estimator,

Probab. Theory Rel. Fields, 80, 461–473.

[10] Marron, J.S. and Padgett, W.J. (1987): Asymptotically optimal bandwidth

selection for kernel density estimators from randomly right censored samples,

Ann. Statist., 15, 1520–1535.

[11] Mitra, M. and Basu, S. (1995). Change point estimation in non-monotonic

aging models, Ann. Inst. Statist. Math., 47(3), 483–491.

[12] Nadaraya, E.A. (1964). Some new estimates for distribution functions, Theory

Prob. Appl., 9, 497–500.

[13] Patil, P.N.; Wells, M.T. and Marron, J.S. (1993). Some heuristics of kernel

based estimators of ratio functions, J. Nonparametric Statistics, 4, 203–209.

[14] Ruiz, Jose M. and Guillamon, A. (1999). Nonparametric Recursive Estima-

tor for Mean Residual Life and Vitality Function under dependence conditions,

Commun. Statist. – Theory and Methods, 25(9), 1997–2011.

[15] Ruiz, Jose M. and Navarro, J. (1994). Characterization of Distributions By

Relationships Between Failure Rate and Mean Residual Life, IEEE Transactions

on Reliability, 43(4), 640–644.

[16] Sarda, P. and Vieu, P. (1991). Smoothing parameter selection in hazard esti-

mation, Statistics & Probability Letters, 11, 429–434.

[17] Swanepoel, Jan W.H. (1988). Mean integrated squared error properties and

optimal kernels when estimating a distribution function, Commun. Statist. – The-

ory Meth., 17(11), 3785–3799.

[18] Watson, G.S. and Leadbetter, M.R. (1964). Hazard analysis I, Biometrika,

51, 175–184.

[19] Watson, G.S. and Leadbetter, M.R. (1964). Hazard analysis II, Sankhya

Ser. A, 26, 101–116.





REVSTAT – Statistical Journal

Volume 11, Number 3, November 2013, 317–338

A GENERALIZED SKEW LOGISTIC DISTRIBUTION

Authors: A. Asgharzadeh

– Department of Statistics, University of Mazandaran

Babolsar, Iran

a.asgharzadeh@umz.ac.ir

L. Esmaeili

– Department of Statistics, University of Mazandaran

Babolsar, Iran

l.esmaily@stu.umz.ac.ir

S. Nadarajah

– School of Mathematics, University of Manchester

Manchester M13 9PL, UK

mbbsssn2@manchester.ac.uk

S.H. Shih

– Department of Mathematics and Statistics, American University of Sharjah

Sharjah, UAE

sshih@aus.edu

Received: July 2012 Revised: March 2013 Accepted: March 2013

Abstract:

• In this paper, we introduce a generalized skew logistic distribution that contains the

usual skew logistic distribution as a special case. Several mathematical properties

of the distribution are discussed like the cumulative distribution function and mo-

ments. Furthermore, estimation using the method of maximum likelihood and the

Fisher information matrix are investigated. Two real data applications illustrate the

performance of the distribution.

Key-Words:

• estimation; logistic distribution; moments.

AMS Subject Classification:

• 62E15.



318 A. Asgharzadeh, L. Esmaeili, S. Nadarajah and S.H. Shih



A Generalized Skew Logistic Distribution 319

1. INTRODUCTION

Azzalini [2] introduced the skew normal distribution specified by the prob-

ability density function (pdf):

fSN (x; λ) = 2φ(x) Φ(λx) , −∞ < x < ∞ ,(1.1)

where λ ∈ R is the skewness parameter, φ(x) is the standard normal pdf, and

Φ(x) is the standard normal cumulative distribution function (cdf). Although,

Azzalini introduced the skew version (1.1) for the normal distribution, this idea

can be applied to any symmetric pdf. Along the same line, the skew logistic

distribution with the skewness parameter λ can be proposed as follows. Consider

the standard logistic distribution specified by the cdf

H(x) =
1

1 + exp(−x)
, −∞ < x < ∞ ,

and the pdf

h(x) =
exp(−x)

(

1 + exp(−x)
)2 , −∞ < x < ∞ .

Using the idea of Azzalini [2], the pdf of the usual skew logistic distribution is

given by

fSL(x; λ) = 2h(x)H(λx) =
2 exp(−x)

(

1 + exp(−x)
)2 (

1 + exp(−λx)
)

(1.2)

for −∞ < x < ∞ and λ ∈ R. The properties of this distribution have been studied

extensively in the literature. See, for example, Nadarajah [12] and Gupta and

Kundu [9]. The skew logistic distribution in (1.2) has also received applications;

for example, Koessler and Kumar [11] illustrate an application with respect to

an adaptive test for the two-sample scale problem based on U -statistics.

Because of the increasing popularity of (1.2), one would like to have gen-

eralizations that are more flexible. The aim of this paper is to construct a new

generalization of (1.2) using the type III generalized logistic distribution instead

of the standard logistic distribution. We study mathematical properties of this

new generalization and discuss real data applications.
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The type III generalized logistic distribution has the pdf (see Johnson et al.

[10])

gα(x) =
1

B(α, α)

exp(−αx)
(

1 + exp(−x)
)2α

for −∞ < x < ∞ and α > 0. This distribution is symmetric for every α. When

α = 1, the above pdf reduces to the standard logistic pdf. This distribution has

the cdf

Gα(x) =
By(α, α)

B(α, α)
,

where y =
(

1 + exp(−x)
)−1

and

B(α, α) =

{

Γ(α)
}2

Γ(2α)
.

Here,

Γ(a) =

∫ ∞

0
t
a−1

exp(−t) dt , Bx(a, b) =

∫

x

0
t
a−1

(1 − t)
b−1

dt

are the gamma function and the incomplete beta function, respectively.

Now, we define the new skew logistic distribution as follows. If a random

variable X has the following pdf

f(x; α, λ) = 2 gα(x)Gα(λx) , −∞ < x < ∞, α > 0, λ ∈ R ,(1.3)

then we say that X has a general skew logistic (GSL) distribution. We write X∼

GSL(α, λ).

From (1.3), some basic properties of GSL(α, λ) can be noted as follows:

(i) When α = 1, (1.3) reduces to the usual skew logistic pdf;

(ii) When λ = 0, (1.3) reduces to the type III generalized logistic pdf;

(iii) If X ∼ GSL(α, λ), then −X ∼ GSL(α,−λ);

(iv) f(x; α, λ) + f(x; α,−λ) = 2gα(x) for all x ∈ R ;

(v) f(x; α, λ) → 2gα(x) I{x ≥ 0} as λ → +∞ and f(x; α, λ) → 2gα(x)

I{x ≤ 0} as λ → −∞ for all α ;

(vi) f(x; α, λ) → 0 as x → ±∞ for all α > 0 and λ ∈ R .

Numerical investigations show that (1.3) has a single mode. The mode is

at x0, where x0 is the root of

λ

α

gα(x)

Gα(x)
−

1 − exp(−x)

1 + exp(−x)
= 0 .
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Figures 1 and 2 illustrate possible shapes of the pdf (1.3) for α = 2 and selected

values of λ.

Figure 1: Plots of GSL(α, λ) pdf for α = 2 and λ > 0.

Figure 2: Plots of GSL(α, λ) pdf for α = 2 and λ < 0.
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Simulation from (1.3) is straight-forward by using the following represen-

tation due to Azzalini [3]:

• X = SUU , where, conditionally on U = u, SU = +1 with probability

Gα(λu) and SU = −1 with probability 1 − Gα(λu);

• X = SU |U |, where, conditionally on |U | = |u|, SU = +1 with probability

Gα(λ|u|) and SU = −1 with probability 1 − Gα(λ|u|).

Both these representations have physical meanings as explained in Azzalini [3].

In the sequel, we shall use the following functions:

τ1(b, q) =

∞
∑

j=0

(

−2q

j

)

(

q + j
)

b
, τ2(a, b, q, λ) =

∞
∑

j=0

(

−2q

j

)

(

λb + q + j
)

a

and, the Gauss hypergeometric function defined by

2F1(a, b; c; x) =

∞
∑

k=0

(a)k (b)k

(c)k

x
k

k!
,

where (z)k = z(z + 1) ··· (z + k − 1) denotes the ascending factorial.

Throughout the rest of this paper (unless otherwise stated), we shall assume

that λ > 0 since the corresponding results for λ < 0 can be obtained using the

fact that −X has the pdf 2gα(x)Gα(−λx).

Some results of this paper require certain series representations of the gen-

eral skew logistic pdf (1.3), which we derive now. Using the Taylor series expan-

sion for [1 + exp(−λx)]
−1

, we can obtain

Gα(λx) =



































































1

B(α, α)

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

·
(−1)

i
exp(−jλx)

i + α
, x > 0 ,

1

B(α, α)

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

·
(−1)

i
exp
(

λx(i + α + j)
)

i + α
, x < 0 .

Substituting this into (1.3), a double series representation for the general skew
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logistic pdf can be obtained as

f(x; α, λ) =



































































2

B(α, α)
2
(

1+ exp(−x)
)2α

∞
∑

i=0

∞
∑

j=0

(

α−1

i

)(

−(α+ i)

j

)

·
(−1)

i
exp
(

−x(λj + α)
)

i + α
, x > 0 ,

2

B(α, α)
2
(

1+ exp(−x)
)2α

∞
∑

i=0

∞
∑

j=0

(

α−1

i

)(

−(α+ i)

j

)

·
(−1)

i
exp
(

x(λi + λα + λj − α)
)

i + α
, x < 0 .

(1.4)

By expanding the terms in the denominators of (1.4), one can also obtain the

triple series representation

f(x; α, λ) =







































































2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α−1

i

)(

−(α+ i)

j

)(

−2α

k

)

·
(−1)

i
exp
(

−x(λj + k + α)
)

i + α
, x > 0 ,

2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α−1

i

)(

−(α+ i)

j

)(

−2α

k

)

·
(−1)

i
exp

(

x
(

λ(i + α + j) + k + α
)

)

i + α
, x < 0 .

(1.5)

2. CUMULATIVE DISTRIBUTION FUNCTION

Using the double and triple series representations in (1.4) and (1.5), we

derive some formulas for the cdf corresponding to (1.3). First, we use the double

series representation in (1.4). If x > 0, then the cdf F (x) can be written as

F (x) = F (0) +

∫

x

0

2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

(i + α)
(

1 + exp(−t)
)2α

(2.1)

· exp
(

−t(λj + α)
)

dt =
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= F (0) +
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
(2.2)

·

∫

x

0

exp
(

−t(λj + α)
)

(

1 + exp(−t)
)2α

dt

= F (0) +
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
(2.3)

·

∫ 1

exp(−x)

z
λj+α−1

(1 + z)
2α

dz

= F (0) +
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
I(x) ,(2.4)

where

I(x) =

∫ 1

exp(−x)

z
λj+α−1

(1 + z)
2α

dz =

∫ 1

0

z
λj+α−1

(1 + z)
2α

dz −

∫ exp(−x)

0

z
λj+α−1

(1 + z)
2α

dz

= I1 − I2 .

By equation (3.194.1) in Gradshteyn and Ryzhik [8], the integrals I1 and I2 can

be calculated as

I1 =

∫ 1

0

z
λj+α−1

(1 + z)
2α

dz =
1

λj + α
2F1

(

2α, α + λj; α + λj + 1;−1
)

,(2.5)

and

I2 =

∫ exp(−x)

0

z
λj+α−1

(1 + z)
2α

dz

=
exp
(

−(α + λj) y
)

α + λj
2F1

(

2α, α + λj; α + λj + 1;− exp(−x)
)

.(2.6)

Combining (2.5) and (2.6) and substituting into (2.4), the cdf F (x) for x > 0

becomes

F (x) = F (0) +
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α

·

{

1

λj + α
2F1

(

2α, α + λj; α + λj + 1;−1
)

−
exp
(

−(α + λj)x
)

α + λj
2F1

(

2α, α + λj, α + λj + 1;− exp(−x)
)

}

.
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Repeating the above argument with x = 0 yields the form for F (0) as

F (0) =

∫ 0

−∞
f(t) dt

=
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α

·

∫ 0

−∞

exp

(

t
(

λ(i + α + j) + α
)

)

(

1 + exp(t)
)2α

dt

=
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α

∫ 1

0

z
λ(i+α+j)+α−1

(1 + z)
2α

dz

=
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

(i + α)

·
2F1

(

2α, λ(i + α + j) + α; λ(i + α + j) + α + 1; −1

)

λ(i + α + j) + α
.

If x < 0, then similar arguments by using equation (3.194.1) in Gradshteyn and

Ryzhik [8] yields

F (x) =

∫

x

−∞
f(t) dt =

2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
I ,

where

I =

∫

x

−∞

exp

(

t
(

λ(j + α + i) + α
)

)

(

1 + exp(t)
)2α

=

∫ exp(x)

0

z
λ(i+α+j)+α−1

(1 + z)
2α

dz

=

exp

(

x
(

λ(i + α + j) + α
)

)

λ(i + α + j) + α

· 2F1

(

2α, λ(i + α + j) + α; λ(i + α + j) + α + 1, − exp(x)

)

,

and so the result

F (x) =
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α

·
exp

(

x
(

λ(i + α + j) + α
)

)

λ(i + α + j) + α

· 2F1

(

2α, λ(i + α + j) + α; λ(i + α + j) + α + 1, − exp(x)

)

.
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Using the triple series representation, (1.5), the cdf F (x) can be calculated as

F (x) =







































































1 −
2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α − 1

i

)(

−(α + i)

j

)(

−2α

k

)

(−1)
i

(i + α) (λj + k + α)

· exp
(

−x(λj + k + α)
)

, x > 0 ,

2

B(α, α)
2

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α − 1

i

)(

−(α + i)

j

)(

−2α

k

)

(−1)
i

(i + α)
(

λ(i + α + j) + k + α
)

· exp

(

x
(

λ(i + α + j) + k + α
)

)

, x < 0 .

3. MOMENTS

Many of the interesting characteristics of the general skew logistic distri-

bution can be studied through its moments. Let X ∼ GSL(α, λ). In this section,

we derive the nth moment of X. It is easy to show that if X follows GSL(α, λ)

then Y = |X| has the folded form of the type III generalized logistic distribution

specified by the pdf

g(y; α, λ) =
2

B(α, α)

exp(−αy)
(

1 + exp(−y)
)2α

for y > 0. Thus, the even order moments of X are obtained as

E (X
n
) =

2

B(α, α)

∫ ∞

0

x
n

exp(−αx)
(

1 + exp(−x)
)2α

dx =
2

B(α, α)

∫ 1

0

(

ln
1

z

)

n

z
α−1

(1 + z)
2α

dz

=
2

B(α, α)

∞
∑

i=0

(

−2α

i

)∫ 1

0

(

ln
1

z

)

n

z
α+i−1

dz

=
2n!

B(α, α)

∞
∑

i=0

(

−2α

i

)

(α + i)
n+1 =

2n!

B(α, α)
τ1(n + 1, α) ,

where the penultimate step follows by using equation (4.272.6) in Gradshteyn

and Ryzhik [8].
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If n is odd then, using the triple series representation, (1.5), one obtains

E (X
n
) =

2

B
2
(α, α)

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α − 1

i

)(

−(α + i)

j

)(

−2α

k

)

(−1)
i

i + α

·

{

∫ 0

−∞
x

n
exp

(

x
(

λ(i + α + j) + k + α
)

)

dx

+

∫ ∞

0
x

n
exp

(

−x
(

λj + k + α
)

)

dx

}

=
2n!

B
2
(α, α)

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

(

α − 1

i

)(

−(α + i)

j

)(

−2α

k

)

(−1)
i

i + α

·

{

1

(λj + k + α)
n+1 −

1
(

λ(i + α + j) + k + α
)

n+1

}

=
2n!

B
2
(α, α)

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
∆(n + 1, α, λ) ,

where ∆(n + 1, α, λ) = τ2(n + 1, j, α, λ) − τ2(n + 1, i + α + j, α, λ).

Using these, the first four moments of X can be obtained as

E(X) =
2

B
2
(α, α)

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
∆(2, α, λ) ,

E(X
2
) =

4

B(α, α)
τ1(3, α) ,

E(X
3
) =

12

B
2
(α, α)

∞
∑

i=0

∞
∑

j=0

(

α − 1

i

)(

−(α + i)

j

)

(−1)
i

i + α
∆(4, α, λ) ,

and

E(X
4
) =

48

B(α, α)
τ1(5, α) .

Using the above moments, we can calculate the four measures E(X),

V ar(X), Skewness(X) and Kurtosis(X). Figures 3 to 6 illustrate the behavior

of the four measures for λ = −10, ..., 10 and α = 1, 2, 5. From these figures, we

see that:

(i) E(X) increases with increasing λ ;

(ii) E(X) decreases with increasing α ;

(iii) V ar(X) decreases with increasing |λ| ;
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(iv) V ar(X) decreases with increasing α ;

(v) Skewness(X) increases with increasing λ ;

(vi) |Skewness(X)| decreases with increasing α ;

(vii) Kurtosis(X) initially decreases before increasing with increasing |λ|;

(viii) Kurtosis(X) decreases with increasing α .

Figure 3: Plot of E(X).

Figure 4: Plot of V ariance(X).
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Figure 5: Plot of Skewness(X).

Figure 6: Plot of Kurtosis(X).



330 A. Asgharzadeh, L. Esmaeili, S. Nadarajah and S.H. Shih

4. ESTIMATION

Let us first consider a version of (1.3) with the location parameter µ ∈ R

and scale parameter σ > 0, i.e.,

f(x; µ, σ, α, λ) =
2

σ
gα

(

x − µ

σ

)

Gα

[

λ

(

x − µ

σ

)]

(4.1)

for −∞ < x < ∞, α > 0 and λ ∈ R. In this section, we consider estimation of

the parameters µ, σ, α and λ and provide expressions for the Fisher information

matrix. The log-likelihood for a random sample x1, ..., xn from (4.1) is:

ℓ = lnL(µ, σ, α, λ) = −n lnσ +

n
∑

i=1

ln gα(yi) +

n
∑

i=1

ζ0(λyi) ,(4.2)

where yi =
xi−µ

σ
and ζ0(x) = ln{2Gα(x)}. We also define the derivative ζm(x) =

d
m

ζ0(x)/dx
m

, m = 1, 2, 3, ... and note that ζ1(x) = gα(x)/Gα(x). All subse-

quent derivatives can be expressed as functions of ζ1(x); in particular, ζ2(x) =

−α

(

1−exp(−x)
1+exp(−x)

)

ζ1(x) − ζ1(x)
2
.

By differentiating (4.2) with respect to µ, σ, α and λ, and equating the

derivatives to zero, the maximum likelihood estimators are the simultaneous so-

lutions of

2α

n
∑

i=1

exp(−yi)

1 + exp(−yi)
+ λ

n
∑

i=1

ζ1(λyi) = n α ,(4.3)

n + λ

n
∑

i=1

yi ζ1(λyi) = α

n
∑

i=1

yi

(

1 − exp(−yi)
)

1 + exp(−yi)
,(4.4)

n
∑

i=1

yi + 2

n
∑

i=1

ln
{

1+ exp(−yi)
}

−
n
∑

i=1

∂ ln
{

2Gα(λyi)
}

∂α
= 2n

(

Ψ(2α)−Ψ(α)
)

(4.5)

and

n
∑

i=1

yi ζ1(λyi) = 0 ,(4.6)

where Ψ(x) = ln Γ(x)/dx is the digamma function. In (4.5), we have

∂ ln
{

2Gα(λy)
}

∂α
= 2

(

Ψ(2α) − Ψ(α)
)

−

∫

λy

−∞
tgα(t) dt

Gα(λy)

−2

∫

λy

−∞
ln
(

1 + exp(−t)
)

gα(t) dt

Gα(λy)
.



A Generalized Skew Logistic Distribution 331

The maximum likelihood estimators (µ̂, σ̂, ̂λ, α̂) of (µ, σ, λ, α) are consistent

estimators, and
√

n(µ̂−µ, σ̂ − σ, ̂λ−λ, α̂−α) is asymptotically normal with zero

means and variance covariance matrix I−1
, where

I = −
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Now, we compute the Fisher information matrix based on the likelihood

equations. These enable, for example, construction of confidence intervals based

on pivotal quantities using the limiting normal distribution. For simplicity, let

us consider interval estimation of (µ, σ, λ) when α is known. In this case, the

elements of the Fisher information matrix can be written as

−E

(

∂
2
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∂
2
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∂
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where
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Gα(λZ)
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exp(−Z) − 1
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,

where Z = (X − µ)/σ,

akh(λ) = Eλ

{

Z
k
ζ

h

1 (λZ)
}

, bk(x) =

∫

x

−∞
t
k
gα(t) dt , Ψ(n, x) =

d
n

d
n
x

Ψ(x)

and

ckh(x) =

∫

x

−∞
t
k

ln
h
{

1 + exp(−t)
}

gα(t) dt .

Note that ak1(λ) = 0 when k is odd, and that akh(λ)≥ 0 when both k and h are

even. Also E(h(Z)ζ1(λZ)) = 0 when h(x) is an odd function and E(h(Z)ζ1(λZ))≥0

when h(x) is a even function. In general, these expectations will have to be

computed numerically. However, closed-form expressions are possible in some

particular cases.
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5. REAL DATA APPLICATIONS

In this section, we fit the general skew logistic GSL(µ, σ, λ, α) distribution to

two real data sets. We compare the fits with those of the usual logistic distribution

L(µ, σ), the type III generalized logistic distribution GL(µ, σ, α), the skew logistic

distribution SL(µ, σ, λ), Azzalini’s [2] skew normal distribution SN(µ, σ, λ), and

Azzalini and Capitanio’s [5] skew t distribution ST(µ, σ, λ, α). The parameter

λ in the skew normal and skew t distributions is the skewness parameter. The

parameter α in the skew t distribution is the degree of freedom parameter. As

with Azzalini’s [2] skew normal distribution, Azzalini and Capitanio’s [5] skew

t distribution has been studied by many authors. Two most recent papers are

Arellano-Valle and Azzalini [1] and Azzalini and Arellano-Valle [4].

Example 1. The first data set represents the strength data originally

reported in Badar and Priest [6]. It represents the strength measured in GPA for

single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were

tested under tension at gauge length of 10mm. This data have been analyzed

previously by Raqab and Kundu [13] and Gupta and Kundu [9]. The data are as

follows:

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397

2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614

2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917

2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145

3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346

3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628

3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020.

We fitted all six distributions to the above data by the method of maxi-

mum likelihood. The GSL distribution was fitted by solving (4.3)–(4.6). Table 1

presents the parameter estimates, the log likelihoods (LL), the Kolmogorov–

Smirnov (K-S) statistics and respective p-values. Table 2 presents the chi-squared

statistics with observed and expected frequencies. Note that the last two columns

of Tables 1 and 2 appear identical. This can be explained by the well-known fact

that the ST distribution reduces to the SN distribution as α approaches infinity.

Note also that the α̂ for the GSL distribution is very large. Some elementary

calculations show that

gλ(x) →
1

4
α
B(α, α)

I{x = 0}

and

Gλ(x) → I{x≥ 0}
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as α → ∞. So, the pdf of the GSL distribution in (1.3) reduces to

f(x; α, λ) →
2
1−2α

B(α, α)
I{x = 0} I{λx≥ 0}

as α → ∞.

Table 1: MLEs, log-likelihoods, Kolmogorov–Smirnov statistics

and corresponding p-values for Example 1.

Distribution L(µ, σ) SL(µ, σ, λ) GL(µ, σ, α) GSL(µ, σ, λ, α) SN(µ, σ, λ) ST(µ, σ, λ, α)bµ 3.024 2.328 3.048 2.271 2.271 2.271bσ 0.352 0.550 0.930 195.801 1.000 1.000b
λ — 3.713 — 4.418 4.419 4.419bα — — 5.041879 76605.63 — 26491.46

Log-likelihood −59.330 −56.794 −58.797 −55.902 −55.902 −55.902

KSS 0.094 0.084 0.097 0.073 0.075 0.075

p-value 0.606 0.754 0.571 0.880 0.877 0.877

Table 2: Observed and expected frequencies and chi-squared statistics

for Example 1.

Intervals Observed L(µ, σ) SL(µ, σ, λ) GL(µ, σ, α) GSL(µ, σ, λ, α) SN(µ, σ, λ) ST(µ, σ, λ, α)

< 2.5 12 11.61 11.88 11.48 12.28 12.28 12.28

2.5–3.0 20 18.80 22.53 18.00 21.35 21.35 21.35

3.0–3.5 17 19.61 15.25 19.22 15.55 15.55 15.55

3.5–4 9 9.26 7.61 10.51 8.53 8.53 8.53

> 4 5 3.72 5.74 3.79 5.29 5.29 5.29

χ
2=0.8832 χ

2=0.8345 χ
2=1.1055 χ

2=0.2682 χ
2=0.2684 χ

2=0.2684

From Tables 1 and 2, we see that the GSL distribution provides a better

fit for the data than the other five distributions. The GSL distribution takes the

smallest chi-squared statistic, the smallest K-S statistic, and the largest p-value.

The SN and ST distributions take the second smallest chi-squared statistic, the

second smallest K-S statistic, and the second largest p-value. The largest log-

likelihood of -55.902 is shared by the GSL, SN and ST distributions. Because

of this, one can argue that the SN distribution is a competitor to the GSL dis-

tribution (or perhaps that the SN distribution is a better choice than the GSL

distribution) since the former has one less parameter.

Figure 7 plots the fitted pdfs on top of the empirical histogram of the data.

Figure 8 plots the fitted cdfs on top of the empirical cdf of the data. Both these

figures support conclusions based on Tables 1 and 2. In both these figures, the
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fitted pdfs for the GSL, SN and ST distributions appear almost indistinguishable.

Both figures suggest that the GSL distribution captures the tails of the data better

than most other distributions.
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Figure 7: Histogram of the first data set and the fitted pdfs.
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Figure 8: Empirical cdf of the first data set and the fitted cdfs.
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Example 2. Here, we analyze the lean body mass of Australian athletes.

The data given in Cook and Weisberg [7] are as follows:

63.32 58.55 55.36 57.18 53.2 53.77 60.17 48.33 54.57 53.42

68.53 61.85 48.32 66.24 57.92 56.52 54.78 56.31 62.96 56.68

62.39 63.05 56.05 53.65 65.45 64.62 60.05 56.48 41.54 52.78

52.72 61.29 59.59 61.7 62.46 53.14 47.09 53.44 48.78 56.05

56.45 53.11 54.41 55.97 51.62 58.27 57.28 57.3 54.18 42.96

54.46 57.2 54.38 57.58 61.46 53.46 54.11 55.35 55.39 52.23

59.33 61.63 63.39 60.22 55.73 48.57 51.99 51.17 57.54 68.86

63.04 63.03 66.85 59.89 72.98 45.23 55.06 46.96 53.54 47.57

54.63 46.31 49.13 53.71 53.11 46.12 53.41 51.48 53.2 56.58

56.01 46.52 51.75 42.15 48.76 41.93 42.95 38.3 34.36 39.03

We fitted all six distributions to the above data by the method of maximum

likelihood.Table 3 presents the parameter estimates, the log likelihoods, theKolmo-

gorov–Smirnov statistics and respective p-values. The corresponding chi-squared

statistics with observed and expected frequencies are reported in Table 4.

Table 3: MLEs, log-likelihoods, Kolmogorov–Smirnov statistics

and corresponding p-values for Example 2.

Distribution L(µ, σ) SL(µ, σ, λ) GL(µ, σ, α) GSL(µ, σ, λ, α) SN(µ, σ, λ) ST(µ, σ, λ, α)bµ 55.101 57.148 55.036 55.356 54.895 59.085bσ 3.807 3.990 0.593 0.671 6.887 7.233b
λ — −0.389 — −0.057 8.706×10−6

−0.903bα — — 0.117 0.133 — 9.924

Log-likelihood −334.013 −333.557 −333.333 −333.265 −334.865 −333.738

KSS 0.072 0.071 0.070 0.069 0.080 0.072

p-value 0.658 0.712 0.712 0.715 0.642 0.711

Table 4: Observed and expected frequencies and chi-squared statistics

for Example 2.

Intervals Observed L(µ, σ) SL(µ, σ, λ) GL(µ, σ, α) GSL(µ, σ, λ, α) SN(µ, σ, λ) ST(µ, σ, λ, α)

< 42.084 5 3.17 3.85 3.97 4.35 3.14 3.93

42.084–49.808 16 16.77 16.69 14.22 14.47 19.86 16.95

49.808–57.532 48 45.51 44.28 50.67 50.18 41.90 43.57

57.532–65.256 25 28.06 29.66 24.35 24.78 28.47 30.15

> 65.256 6 6.49 5.52 6.79 6.23 6.62 5.40

χ
2=1.5987 χ

2=1.4574 χ
2=0.7444 χ

2=0.3633 χ
2=3.2157 χ

2=1.7422

From Tables 3 and 4, we can see that the GSL distribution takes the largest

log likelihood, the smallest chi-squared statistic, the smallest K-S statistic, and

the largest p-value. The GL distribution takes the second largest log likelihood,
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the second smallest chi-squared statistic, the second smallest K-S statistic, and

the second largest p-value. The SN distribution takes the smallest log likelihood,

the largest chi-squared statistic, the largest K-S statistic, and the smallest p-value.

Figures 9 and 10 plot the fitted pdfs and fitted cdfs, respectively. Both

these figures support conclusions based on Tables 3 and 4. Both figures suggest

that the GSL distribution captures the middle part of the data better than most

other distributions.
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Figure 9: Histogram of the second data set and the fitted pdfs.
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Figure 10: Empirical cdf of the second data set and the fitted cdfs.
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