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Abstract:
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1. INTRODUCTION

Suppose that the joint distribution of two n-dimensional random vectors X

and Y follows a 2n dimensional multivariate normal vector with positive definite

covariance matrix, i.e.

(1.1)

(

X
Y

)

∼ N2n

(

µ =

(

µx

µy

)

,
∑

=

(
∑

xx

∑

xy
∑T

xy

∑

yy

)

)

where µx, µy are respectively the mean vectors and
∑

xx,
∑

yy are the positive

definite variance matrices of X and Y, while
∑

xy is their covariance matrix. Let

X(n) = (X1:n, X2:n, ..., Xn:n)
T

be the vector of order statistics obtained from X

and Y(n) = (Y1:n, Y2:n, ..., Yn:n)
T

be the vector of order statistics obtained from

Y. Further, let Y[n] = (Y[1:n], Y[2:n], ..., Y[n:n])
T

be the vector of Y -variates paired

with the order statistics of X. The elements of Y[n] are called the concomitants

of the order statistics of X.

Nagaraja (1982) has obtained the distribution of a linear combination of

order statistics from a bivariate normal random vector where the variables are

exchangeable. Loperfido (2008a) has extended the results of Nagaraja (1982) to

elliptical distributions. Arellano-Valle and Genton (2007) have expressed the ex-

act distribution of linear combinations of order statistics from dependent random

variables. Sheikhi and Jamalizadeh (2011) have showed that for arbitrary vectors

a and b, the distribution of (X, aTY(2), bTY(2))
T

is a singular skew-normal and

carried out a regression analysis. Yang (1981) has studied the linear combina-

tion of concomitants of order statistics. Tsukibayashi (1998) has obtained the

joint distribution of (Yi:n, Y[i:n]), while He and Nagaraja (2009) have obtained the

joint distribution of (Yi:n, Y[j:n]) for all i, j = 1, 2, ..., n. Goel and Hall (1994)

have discussed the difference between concomitants and order statistics using the

sum
∑n

i=1 h(Yi:n − Y[i:n]) for some smooth function h. Recently much attention

has been focused on the connection between order statistics and skew-normal

distributions (see e.g. Loperfido 2008a and 2008b and Sheikhi and Jamalizadeh

2011). In this article we shall obtain the joint distribution of aTY(n) and bTY[n],

where a = (a1, a2, ..., an)
T

and b = (b1, b2, ..., bn)
T

are arbitrary vectors in R
n.

Since we do not assume independence, our results are more general than those of

He and Nagaraja (2009). On the other hand, He and Nagaraja (2009) have not

assumed normality.

The concept of the skew-normal distribution was proposed independently

by Roberts (1966), Ainger et al. (1977), Andel et al. (1984) and Azzalini (1985).

The univariate random variable Y has a skew-normal distribution if its distribu-

tion can be written as

(1.2) fY (y) = 2ϕ
(

y; µ, σ2
)

Φ

(

λ
y − µ

σ

)

y ∈ R
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where ϕ
(

.; µ, σ2
)

is the normal density with mean µ and variance σ2
and Φ(.)

denotes the standard normal distribution function.

Following Arellano-Valle and Azzalini (2006), a d-dimensional random vec-

tor Y is said to have a unified multivariate skew-normal distribution (Y ∼

SUNd,m (ξ, δ, Ω, Γ, Λ)), if it has a density function of the form

(1.3)

fY (y) = ϕd (y; ξ, Ω)
Φm

(

δ + ΛTΩ−1
(y − ξ) ; Γ − ΛTΩ−1Λ

)

Φm (δ; Γ)
y ∈ R

d

where ϕd(., ξ, Ω) is the density function of a multivariate normal and Φm(.; Σ) is

the multivariate normal cumulative function with the covariance matrix Σ.

If Σ
∗

=

(

Γ ΛT

Λ Ω

)

is a singular matrix we say that the distribution of X is

singular unified skew-normal and write SSUNd,m(ξ, δ,Ω, Γ, Λ). For more de-

tails see Arellano-Valle and Azzalini (2006) and Sheikhi and Jamalizadeh (2011).

In Section 2, we show that for two vectors a and b, the joint distribution of

aTY(n) and bTY[n] belongs to the unified multivariate skew-normal family. We

also discuss special cases of these distributions under the setting of independent

normal random variables. Finally, in section 3 we present a numerical application

of our results.

2. MAIN RESULTS

Define S(X) as the class of all permutation of components of the ran-

dom vector X, i.e. S(X) = {X(i)
= PiX; i = 1, 2, ..., n!}, where Pi is an n × n

permutation matrix. Also, suppose ∆ is the difference matrix of dimension

(n − 1) × n such that the ith row of ∆ is eT
n, i+1− eT

n, i, i = 1, ..., n − 1, where

e1, e2, ..., en are n-dimensional unit basis vectors. Then ∆X = (X2 − X1, X3 −

X2, ..., Xn − Xn−1)
T
. (See e.g. Crocetta and Loperfido 2005).

Further, let X(i)
and Y(i)

be the ith permutation of the random vectors X

and Y respectively. We write Gij(t, ξ,
∑

) = P
(

∆X(i) ≥ 0, ∆Y(j) ≥ 0
)

.

Theorem 2.1. Suppose the matrix





∆
aT

bT



 is of full rank. Then under

the assumption of model (1.1) the cdf of the random vector
(

aTY(n), bTY[n]

)T

is the mixture

FaT Y(n), bT Y[n]
( y1, y2) =

n!
∑

i=1

n!
∑

j=1

FSUN ( y1, y2 ; ξij , δij , Γij , Ωij , Λij)Gij(t, ξ,
∑

)
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where FSUN (. ; ξij , δij , Γij , Ωij , Λij) is the cdf of unified multivariate skew-

normal with

ξij=

(

aT µ
(i)
y

bT µ
(i)
y

)

, δij =

(

∆µ
(i)
x

∆µ
(j)
y

)

, Γij =

(

∆
∑(ii)

xx ∆T ∆
∑(ij)

xy ∆T

∆
∑(jj)

yy ∆T

)

,

Ωij =

(

aT
∑(ii)

yy a aT
∑(ij)

yy b

bT
∑(jj)

yy b

)

and Λij =

(

∆
∑(ii)

xy a ∆
∑(ij)

xy b

∆
∑(ij)

yy a ∆
∑(jj)

yy b

)T

where µ
(i)
x and µ

(j)
y are respectively the mean vectors of the ith permutation

of the random vector X and the jth permutation of the random vector Y and
∑(ii)

xx = V ar(X(i)
),
∑(jj)

yy = V ar(Y(j)
) and

∑(ij)
xy = Cov(X(i), Y(j)

).

Proof: We have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY(n) ≤ y1, bTY[n] ≤ y2

)

=

n!
∑

i=1

n!
∑

j=1

P
(

aTY(i) ≤ y1, bTY(j) ≤ y2|A
(ij)
)

P
(

A(ij)
)

where A(ij)
= {∆X(i) ≥ 0, ∆Y(j) ≥ 0}. Since

(2.1)









∆X(i)

∆Y(j)

aTY(i)

bTY(j)









2n×1

=









∆ 0 0
0 ∆ 0
0 0 aT

0 bT 0









2n×3n





X(i)

Y(j)

Y(i)





3n×1

,

the full rank assumption implies nonsingularity of the matrix on the right hand

side of (2.1). Furthermore,









∆X(i)

∆Y(j)

aTY(i)

bTY(j)









∼ N2n





















∆µ
(i)
x

∆µ
(j)
y

aT µ
(i)
y

bT µ
(j)
y











,











∆
∑(ii)

xx ∆T ∆
∑(ij)

xy ∆T ∆
∑(ii)

xy a ∆
∑(ij)

xy b

∆
∑(jj)

yy ∆T ∆
∑(ij)

yy a ∆
∑(jj)

yy b

aT
∑(ii)

yy a aT
∑(ij)

yy b

bT
∑(jj)

yy b





















.

Now, similar to Sheikhi and Jamalizadeh (2011), we immediately conclude

that

(

aTY(i), bTY(j)
)T

|∆X(i)≥0, ∆Y(j)≥0 ∼SUN2, 2(n−1)(ξij , δij , Γij , Ωij , Λij) .

This proves the Theorem.
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Remark 2.1. If the rank of the matrix
(

∆, aT ,bT
)T

is at most n−1, the

joint distribution of
(

aTY(n), bTY[n]

)T
is a mixture of a unified skew-normals

and a singular unified skew-normals. In this section we assume that the matrix
(

∆, aT ,bT
)T

is of full rank. A special case will be investigated later in the paper.

Let (Xi, Yi), i = 1, 2, ..., n be a random sample of size n from a bivariate

normal N2

(

µx, µy, σ2
x, σ2

y , ρ
)

, then the model (1.1) reduces to the following:

(2.2)

(

X
Y

)

∼ N2n

(

µ =

(

µx1n

µy1n

)

,
∑

=

(∑

xx

∑

xy
∑

yy

))

where
∑

xx = σ2
xIn,

∑

yy = σ2
yIn and

∑

xy = ρσxσy1n1
T
n where ρ is the correla-

tion coefficient between X and Y.

The following corollary describes the joint distribution of a linear combi-

nation of concomitants of order statistics and a linear combination of their order

statistics under the independence assumption.

Corollary 2.1. Suppose the matrix
(

∆, aT , bT
)T

is of full rank. Then

under the assumption of model (2.2) the distribution of the random vector
(

aTY(n), bTY[n]

)T
is SUN2, 2(n−1) (ξ, 02n−2, Ω, Γ, Λ) where

ξ =

(

µxa
T1n

µyb
T1n

)

, Ω = σ2
y

(

aTa aTb
bTb

)

, Γ =

(

σ2
x∆∆T ρσxσy∆∆T

σ2
y∆∆T

)

,

Λ =

(

ρσxσy∆a ρσxσy∆b
σ2

y∆a σ2
y∆b

)

.

Proof: We have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY(n) ≤ y1, bTY[n] ≤ y2

)

=

n!
∑

i=1

n!
∑

j=1

P
(

aTY(i)≤ y1, b
TY(j)≤ y2|A

(ij)
)

P
(

A(ij)
)

.

Since P
(

∆X(i) ≥ 0,∆Y(j) ≥ 0
)

=
(

1
n!

)2
, i, j = 1, ..., n!, by independence

we have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY ≤ y1, bTY ≤ y2|∆X ≥ 0, ∆Y ≥ 0
)

.

Moreover,
(

∆X, ∆Y, aTY, bTY
)T

follows an 2n dimensional multivari-

ate normal distribution with µ =
(

0n−1, 0n−1, µya
T1n, µyb

T1n

)T
and

∑

=









σ2
x∆∆T ρσxσy∆∆T ρσxσy∆a ρσxσy∆b

σ2
y∆∆T σ2

y∆a σ2
y∆b

σ2
ya

Ta σ2
ya

Tb

σ2
yb

Tb









.
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So, as in Theorem 2.1 the proof is completed.

We easily find that Γ = [γij ], where

γij =







2σ2
x |i − j| = 0

−σ2
x |i − j| = 1

0 |i − j| = 2, ..., 2(n − 1)

and Λ =

[

Λ1 0
0 Λ2

]

with Λ1 =
(

λ11, ..., λ(n−1)1

)T
where λk1 = σ2

x {ak+1 − ak} ,

k = 1, ..., n − 1 and Λ2 =
(

λ12, ..., λ(n−1)2

)T
where λk2 = σ2

y {bk+1 − bk},

k = 1, ..., n − 1.

Let the difference matrix ∆1 of dimension n − 1 × n be such that its first

i − 1 rows are eT
n, 1− eT

n, k, k = 2, 3, ..., i − 1 and the last n − i rows are eT
n, k−

eT
n, 1, k = i, ... n− 1. Also, let the matrix ∆2 of dimension n− 1×n be such that

its first j − 1 rows are eT
n, 1− eT

n, k, k = 2, 3, ..., j − 1 and the last n − j rows are

eT
n, j− eT

n, 1, k = j, ... n − 1 and 1n,i be a n − 1 dimensional vector with the first

i elements equal to 1 and the rest −1. Further, let Xi be a permutation of the

random vector X, such that its ith element is located in the first place.

Theorem 2.2. For a random sample of size n from a bivariate normal

random vector (X, Y ), the joint distribution of Yi:n, Y[j:n] is

FYi:n, Y[j:n]
( y1, y2) = k1FSUN (min(y1, y2) ; µy, 02(n−1), σ2

y , Γ, Λ)

+ k2FSSUN ( y1, y2 ; µy12 ,02(n−1), σ2
yI2, Γ, Λ)

where FSUN (. ; µy, 02(n−1), σ2
y , Γ, Λ) is the cdf of a non-singular unified multi-

variate skew-normal distribution SUN1, 2n−2

(

µy, 0, σ2
y , Γ, Λ

)

with

Γ =

(

σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1

σ2
y∆1∆

T
1

)

, Λ =

(

ρσxσy1n,i

σ2
y1n,i

)

and FSSUN (. ; µy12, 02(n−1), σ2
yI2, Γ, Λ) is the cdf of a singular unified multi-

variate skew-normal distribution SSUN2, 2n−2(µy12 , 02(n−1), σ2
yI2, Γ, Λ) where

I2 is an identity matrix of dimension 2 and

Γ =

(

σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1

σ2
y∆1∆

T
1

)

, Λ =

(

−ρσxσyJn−1 ρσxσy1n,j

σ2
y1n,i −σ2

yJn−1

)

,

k1 = n!(
1
4 +

1
2π

sin
−1

(−2ρ))
n and k2 = n(n − 1)((n − 1)!)

2
(
1
4 +

1
2π

sin
−1

(−2ρ))
n.

Proof: Let Bij denote the event that Yi is the ith order statistic among

{Y1, Y2, ..., Yn} and Xj is the jth order statistic among {X1, X2, ..., Xn}. So,
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Bij = {∆1Yi> 0, ∆2Xj > 0} and we have

FYi:n, Y[j:n]
(u, v)

= P
(

Yi:n ≤ u, Y[j:n] ≤ v
)

=

n
∑

i=1

n
∑

j=1

P (Yi ≤ u, Yj ≤ v|Bij)P (Bij)

=

n
∑

i=1

P (Yi ≤ u, Yi ≤ v|Bii)P (Bii) +

n
∑

i=1

n
∑

j=1

i6=j

P (Yi ≤ u, Yj ≤ v|Bij)P (Bij)

= n!P (Y1 ≤ min(u, v)|B11) P (B11)

+(n2 − n)((n − 1)!)
2P (Y1 ≤ u, Y2 ≤ v|B12)P (B12) .

The last equality holds by the independence assumption. Since the distribution

of Y1|B11 is identical to the distribution of Y1|{∆1Y1> 0, ∆1X1 > 0}, we have





∆1X1

∆1Y1

Y1



 ∼ N2n−1









0n−1

0n−1

µy



 ,





σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1 ρσxσy1n,i

σ2
y∆1∆

T
1 σ2

y1n,i

σ2
y







 .

So, Y1|B11 ∼ SUN1, 2n−2

(

µy, 02(n−1), σ2
y , Γ, Λ

)

where

Γ =

(

σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1

σ2
y∆1∆

T
1

)

and Λ =

(

ρσxσy1n,i

σ2
y1n,i

)

.

Also, the conditional distribution of Y1 and Y2 given B12 is the same as

the distribution of (Y1, Y2)
T |{∆2X2> 0, ∆1Y1 > 0}. Moreover, (∆2X2, ∆1Y1,

Y1, Y2)
T

follows a 2n multivariate singular normal distribution with rank 2n− 1,

µ =
(

0n−1, 0n−1, µy12

)T
and

∑

=









σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1 −ρσxσyJn−1 ρσxσy1n,j

σ2
y∆1∆

T
1 σ2

y1n,i −σ2
yJn−1

σ2
y 0

σ2
y









where Jn−1 = (1, 0n−2)
T .

We note that the matrix (∆2X2, ∆1Y1)
T

is of full rank but (∆2X2, ∆1Y1,

Y1, Y2)
T

is not. Hence, according to the case (3) of Arellano-Valle and Azzalini

(2006) we conclude that (Y1, Y2)
T |{∆2X2, ∆1Y1 > 0} ∼ SSUN2,2n−2(µy12,

02(n−1), σ2
yI2, Γ, Λ) where

Γ =

(

σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1

σ2
y∆1∆

T
1

)

and Λ =

(

−ρσxσyJn−1 ρσxσy1n,j

σ2
y1n,i −σ2

yJn−1

)

.
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On the other hand, using the orthant probabilities (e.g. Kotz et al. 2000)

we easily obtain

P (B11) = P (X2 > X1, X3 > X1, ..., X3 > X1, Y2 > Y1, Y3 > Y1, ..., Yn > Y1)

= (P (X2 > X1, Y2 > Y1))
n

= (
1

4
+

1

2π
sin

−1
(−2ρ))

n .

So, k1 = n!(
1
4 +

1
2π

sin
−1

(−2ρ))
n
. Similarly, k2 = n(n − 1)((n − 1)!)

2
(
1
4 +

1
2π

sin
−1

(−2ρ))
n
.

This completes the proof.

Remark 2.2. As a special case, we assume n = 2, (X, Y )
T ∼ BN(0, 0,

1, 1, ρ), i = 1 and j = 2. Then the joint pdf of Y1:2 and Y[2:2] is obtained as

FY1:2, Y[2:2]
( y1, y2) = k1FSUN (min(y1, y2) ) + k2FSSUN ( y1, y2 )

where k1 and k2 are as in Theorem 2.2 with n = 2 and FSUN (.) and FSSUN (., .)

are the cdfs of

ϕ((min(y1, y2))

Φ2

(

(ρ, −1)
T

min(y1, y2); M1

)

Φ2

(

(0, 0)
T

; M2

)

and

ϕ(y1)ϕ( y2)

Φ2

(

(ρ, 1)
T

(y1 − y2); M3

)

Φ2

(

(0, 0)
T

; M4

)

respectively where

M1 =

(

2 − ρ2 ρ
ρ 1

)

, M2 = 2

(

1 −ρ
−ρ 1

)

,

M3 =

(

2 − ρ2
0

0 0

)

and M4 = 2

(

1 ρ
ρ 1

)

,

and their joint pdf is

(2.3)

fY1:2, Y[2:2]
( y1, y2) =











ϕ(y)
Φ2((ρ, −1)T y;M1)

Φ2((0,0)T ; M2)
if y1 = y2 = y

ϕ(y1)ϕ(y2)
Φ2(ρ(y2−y1), y2−y1; M3)

Φ2((0,0)T ; M4)
if y1 < y2 .
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Remark 2.3. When X and Y are independent, the joint density (2.3)

becomes

fY1:2, Y[2:2]
( y1, y2) =

{

2ϕ(y)(1 − Φ(y)) if y1 = y2 = y
2ϕ(y1)ϕ(y2) if y1 < y2

which is the same as the joint distribution (8) of He and Nagaraja (2009) under

these assumptions (see e.g. He, 2007, p. 35).

Furthermore, He and Nagaraja (2009) discussed some relations between Yi:n

and Y[j:n] in a bivariate setting. In particular, they showed that Corr(Yi:n, Y[j:n])=

Corr(Yn−i+1:n, Y[n−j+1:n]). The following remark shows that, in addition, the

joint distribution of Yi:n, Y[j:n] and Yn−i+1:n, Y[n−j+1:n] belong to a same family

and differ only in one parameter. The relation (24) of He and Nagaraja (2009) is

a direct consequence.

Remark 2.4. Let B́ij denote the event that Yi is the (n − i + 1)th order

statistic among {Y1, Y2, ..., Yn} and Xj is the (n− j + 1)th order statistic among

{X1, X2, ..., Xn}. Then B́ij = {∆1Yi< 0, ∆2Xj < 0} = {−∆1Yi> 0, −∆2Xj

> 0}. Hence, the joint distribution of Yn−i+1:n, Y[n−j+1:n] is

FYn−i+1:n, Y[n−j+1:n]
( y1, y2) = k1FSUN (min(y1, y2) ; µy, 0, σ2

y , Γ, Λ́ )

+k2FSSUN ( y1, y2 ; µy12 ,0, σ2
yI2, Γ, Λ́ )

where Λ́ = −Λ and the parameters as in Theorem 2.2.

3. NUMERICAL EXAMPLE

Loperfido (2008b), with the assumption of exchangeability, have estimated

the distribution of extreme values of vision of left eye (Y1) and vision of right eye

(Y2) and the conditional distribution of age (X), given these extreme values as a

skew-normal family. Johnson and Wichern (2002, p.24) provide data consisting

of mineral content measurements of three bones (radius, humerus, ulna) in two

arms (dominant and non dominant) for each of 25 old women. We consider the

following variables:

X1 : Dominant radius

X2 : Non dominant radius

Y1 : Dominant ulna

Y2 : Non dominant ulna
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The sample data is presented in Table 1. We apply model (1.1) to this data

and obtain the unbiased estimates of the parameters of these models as

ˆ
µx =

[

0.8438

0.8191

]

,
ˆ
µy =

[

0.7044

0.6938

]

, Σ̂2
x =

[

0.0130 0.0103

0.0103 0.0114

]

,

Σ̂2
y =

[

0.0115 0.0088

0.0088 0.0105

]

and Σ̂xy =

[

0.0091 0.0085

0.0085 0.0105

]

.

Table 1: Data of measurements of two bones in 25 old women.

Dominant radius Non dominant radius Dominant ulna Non dominant ulna

1.103 1.052 0.873 0.872
0.842 0.859 0.590 0.744
0.925 0.873 0.767 0.713
0.857 0.744 0.706 0.674
0.795 0.809 0.549 0.654
0.787 0.799 0.782 0.571
0.933 0.880 0.737 0.803
0.799 0.851 0.618 0.682
0.945 0.876 0.853 0.777
0.921 0.906 0.823 0.765
0.792 0.825 0.686 0.668
0.815 0.751 0.678 0.546
0.755 0.724 0.662 0.595
0.880 0.866 0.810 0.819
0.900 0.838 0.723 0.677
0.764 0.757 0.586 0.541
0.733 0.748 0.672 0.752
0.932 0.898 0.836 0.805
0.856 0.786 0.578 0.610
0.890 0.950 0.758 0.718
0.688 0.532 0.533 0.482
0.940 0.850 0.757 0.731
0.493 0.616 0.546 0.615
0.835 0.752 0.618 0.664
0.915 0.936 0.869 0.868

Yang (1981) has considered general linear functions of the form

L =
1

n

n
∑

i=1

J(
i

n
)Y[i:n]

where J is a smooth function. He has established that L is asymptotically normal

and may be used to construct consistent estimator of various conditional quanti-

ties such as E(Y |X = x), P (Y ∈ A|X = x) and V ar(Y |X = x). We assume that

J is a quadratic function and estimate the joint distribution of L and the sample

midrange of Y, i.e. T =
1
2

∑2
i=1 Yi:n . The joint distribution of T and L is as in

Theorem 2.1 with ∆ =
(

−1 1
)

, a =
(

1/2 1/2
)T

and b =
(

1/8 1/2
)T

.
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In particular,

ξ11=ξ21 =

(

0.6991

0.4345

)

and ξ12=ξ22 =

(

0.6991

0.4389

)

.

Also, if

Mn = n−1
n
∑

i=1

h(n)
−1K(

(i/n) − Fn(x)

h(n)
)Y[i:n]

where Fn(x) is the proportion of the Xi less than or equal to x, K(x) is some

pdf on real line and h(n) → 0 as n → ∞, then Mn is a mean square consistent

estimator of the regression function E(Y |X = x). We assume that K(x) is the

pdf of the normal distribution with mean 0.8314 and variance 0.0108, i.e. K(x) is

the pdf of the radius. Moreover, we set h(n) =
1

n−1 . At x = 0.8, we obtain M2 =

0.012Y[1:2] + 0.515Y[2:2]. Again, the joint distribution of T and M2 is as in Theo-

rem 2.1 with ∆ =
(

−1 1
)

, a =
(

1/2 1/2
)T

and b =
(

0.012 0.515
)T

.

4. CONCLUSION

In this paper we model the joint distribution of a linear combination of con-

comitants of order statistics and linear combinations of their order statistics as

a unified skew-normal family assuming a multivariate normal distribution. How-

ever, there are many interesting further work which may be carried out. Viana

and Lee (2006) have studied the covariance structure of two random vectors X(n)

and Y[n] in the presence of a random variable Z. We may generalize their work

by extending our results in the presence of one or more covariates. The results

of this paper may be extended to elliptical distributions or using exchangeability

assumption. Other results such as the regression analysis of concomitants using

their order statistics are also of interest.
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1. INTRODUCTION

GARCH models are prominent stochastic models in finance, designed to

capture the time-varying conditional volatilities and heavy tail phenomenon of

financial time series. We refer to Bollerslev ([5]); Bougerol and Picard ([6]);

Nelson ([16]); Basrak et al. ([1]); Berkes et al. ([3]), and for its estimation, to Hall

and Yao ([9]); Berkes and Horváth ([2]); Francq and Zaköıan ([8]). In ordinary

discrete time GARCH models, time series are assumed to be equally spaced.

However, in some situations, time series are often observed irregularly. This

phenomenon happens, for instance, in tick-by-tick data and daily data which is

not observed on weekends and holidays. To accommodate the irregularity of time

spaces, several authors have made efforts to extend the discrete time GARCH

model to a continuous time counterpart. Nelson ([15]) demonstrated that the

discrete time GARCH process with Gaussian innovations is a finite approximation

of a bivariate diffusion process. Therein, the limiting diffusion process is driven by

two independent Brownian motions, which unfortunately undermines the spirit of

GARCH processes since they are originally designed to have a single innovation

sequence. Later, Klüppelberg et al. ([12]) proposed a continuous time GARCH

(COGARCH) process driven by a Lévy process, which can be seen as an analogue

of discrete time GARCH process. Also, Maller et al. ([13]) demonstrated that the

discrete time GARCH process embeds in COGARCH processes and further, the

embedded GARCH process converges in a strong sense to the original COGARCH

process that embeds it as the discrete grid used for obtaining the embedded

process gets finer (cf. Theorem 2.1 of [13]). For more details, we refer to Kallsen

and Vesenmayer ([11]).

Concerning the estimation of COGARCH parameters, Haug et al. ([10])

considered a method of moment estimator which is suitable for equally spaced

time series and verified its consistency and asymptotic normality under some

regularity conditions, which, however, is not directly applicable to irregularly

spaced time series. On the other hand, Müller ([14]) proposed an MCMC-based

estimation for COGARCH(1,1) models driven by a compound Poisson process,

which is suitable for irregularly spaced time series, which, however, has a defect

that computation is somewhat intensive. Maller et al. ([13]) proposed using a

Gaussian maximum likelihood estimator (MLE) in COGARCH(1,1) models but

its asymptotic properties such as consistency and asymptotic normality has not

been thoroughly investigated yet in the literature. Motivated by this, we are led

to study the asymptotic behavior of the MLE in COGARCH(1,1) models. Since

some empirical study to evaluate finite sample performance has been already

implemented by [13], here we focus on the rigorous verification of the asymptotic

properties of the MLE.

The organization of this paper as follows. In Section 2.1, we give a brief
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review for COGARCH(1,1) processes. In Section 2.2, we present the main result

of this paper. In Section 3, we provide the proof for the result presented in Section

2.2.

2. THE COGARCH(1,1) MODEL AND ESTIMATION

2.1. COGARCH(1,1) Processes

In this subsection, we summarize the COGARCH(1,1) process. Let (Ω,F , P,

{Ft : t ≥ 0}) be a filtered probability space satisfying the usual conditions:

• F0 has all the measurable sets of P -measure 0,

• each Ft is right continuous, i.e., Ft =
⋂

t<s Fs.

Let L := {Lt,Ft : t ≥ 0} be a càdlàg Lévy process with characteristic triplet

(γ, φ,Π) satisfying
∫

R
min{1, x2}Π(dx) < ∞. The characteristic function of Lt

is given by

u 7→ EeiuLt = exp

{

itγu −
tφ2u2

2
+ t

∫

R

{eiux − 1 − iux1(|x|≤1)}Π(dx)

}

.

which is called Lévy-Khintchine’s representation (cf. Theorem 43 of Chapter I of

Protter ([17])). In this paper, we assume φ = 0.

Let η◦ > 0, ϕ◦ > 0, and β◦ > 0 satisfying η◦ > ϕ◦
. Define ∆Ls := Ls −Ls−

and

Xt := η◦t −
∑

0<s≤t

log
(

1 + ϕ◦
(∆Ls)

2
)

,

which is a càdlàg process. Let σ2
0 be an integrable random variable which is

independent of {Lt}. Define

σ2
t :=

(

β◦

∫ t

0
eXsds + σ2

0

)

e−Xt− ,

which is a càglàd process. According to Proposition 3.2 of Klüppelberg et al.

([12]), the process {σ2
t } satisfies the stochastic integral equation

(2.1) σ2
t − σ2

0 =

∫ t

0
(β◦ − η◦σ2

s)ds + ϕ◦
∑

0<s<t

σ2
s(∆Ls)

2.

Note that due to φ = 0, L is a quadratic pure jump, i.e., [L, L]t − [L, L]0 =
∑

0<s≤t(∆Ls)
2

(cf. p. 71 of [17]) and (2.1) is rewritten as

(2.2) σ2
t − σ2

0 =

∫ t

0
(β◦ − η◦σ2

s)ds + ϕ◦

∫

(0,t)
σ2

sd[L, L]s,
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i.e., {σ2
t+} is the almost surely unique and càdlàg solution of the stochastic dif-

ferential equation

dσ2
t+ = (β◦ − η◦σ2

t )dt + ϕ◦σ2
t d[L, L]t.

Later, we take σ2
0 so that the solution is strictly stationary (see (3.1)). Finally,

we define the integrated COGARCH(1,1) process as

Gt :=

∫

(0,t]
σsdLs, t ≥ 0.

2.2. Gaussian ML Estimation

In this subsection, we consider the maximum likelihood estimation method

as proposed by Maller et al. ([13]) and study its asymptotic properties. Particu-

larly, we consider the situation in which {Gt : t ≥ 0} is observed discretely with

irregular time spaces. For each n ∈ N, we set N = Nn ∈ N,

0 = t0 < t1 < ··· < tN < ∞, ∆tk := tk − tk−1,

and

Ynk := Gtk − Gtk−1
,

where {∆tk} are allowed to be nonidentical. By putting ∆ := ∆n :=

max{∆t1, ..., ∆tN}, we assume that ∆ → 0 and tN → ∞ as n → ∞.

Let θ◦ = (β◦, ϕ◦, η◦)′ be the vector of (unknown) true parameters. Let

θ = (β, η, ϕ)
′
and

Θ := {θ = (β, η, ϕ) : β∗ ≤ β ≤ β∗, η∗ ≤ η ≤ η∗, ϕ∗ ≤ ϕ ≤ ϕ∗, η − ϕ ≥ c∗},

where 0 < β∗ < β∗ < ∞, 0 < η∗ < η∗ < ∞ , 0 < ϕ∗ < ϕ∗ < ∞, and 0 < c∗ < ∞.

We assume that θ◦ ∈ Θ.

Following [13], we set σ̃2
n,k(θ) (k = 0, 1, 2, ..., N) to be the solution of the

recursion formula:

σ̃2
n0(θ) :=

β

η − ϕ
,

σ̃2
nk(θ) := β∆tk + e−η∆tk σ̃2

n,k−1(θ) + ϕe−η∆tkY 2
nk for k = 1, 2, ..., N.

More precisely,

σ̃2
nk(θ) = β

k−1
∑

i=0

∆tk−ie
−η(tk−tk−i) + e−ηtk σ̃2

n0(θ) + ϕe−ηtk

k
∑

i=1

eηtk−iY 2
n,k−i+1,
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which can be viewed as an estimate of σ2
tk

when θ = θ◦. By observing the argu-

ment:

E
{

(Gt+h − Gt)
2|Ft

}

=

(

σ2
t −

β◦

η◦ − ϕ◦

)(

exp{(η◦ − ϕ◦
)h} − 1

η◦ − ϕ◦

)

+
β◦h

η◦ − ϕ◦
,

provided that E{L2
1} = 1 and {σ2

t } is strictly stationary (see the proof of Propo-

sition 5.1 of [12]), we use the terms:

ρ̃2
nk(θ) :=

(

σ̃2
n,k−1(θ) −

β

η − ϕ

)(

exp{(η − ϕ)∆tk} − 1

η − ϕ

)

+
β∆tk
η − ϕ

as estimates of conditional variances of Ynk when θ = θ◦.

Let m = mn be a positive integer. Then we define a Gaussian log-likelihood

function of θ = (β, ϕ, η) as

LN (θ) :=

N
∑

k=m

lnk(θ)∆tk, lnk(θ) = −

(

Y 2
nk

ρ̃2
nk(θ)

+ log
ρ̃2

nk(θ)

∆tk

)

,

which is slightly different from that of [13] in which ∆tk does not appear. Below,

we show that θ̂n, a measurable maximum point of LN , i.e.,

LN (θ̂n) = max
θ∈Θ

LN (θ)

is consistent and asymptotically normal under some regularity conditions such as

C1: θ◦ ∈ Θ. ∆ → 0 and tN → ∞. tm = o(tN ) and e−η
∗
tm = O(∆

1/2
).

C2: φ = 0, i.e., {Lt : t ≥ 0} is a quadratic pure jump.

C3: E{L1} = 0, E{L2
1} = 1, and E{L4

1} < ∞; Ψ(2) < 0, where Ψ(z) :=

log Ee−zX1 .

C4: θ◦ is an interior point of Θ; tN∆ → 0; E|Gh|
4+δ

= O(h) for some

δ > 0;
∫

R
x3dΠ(x) = 0.

The following is the main result of this paper, the proof of which is presented

in the next section.

Theorem 2.1. Under C1-C3,

(2.3) θ̂n
P

−→ θ◦.

Suppose that C4 also holds. Then,

(2.4)
√

tN (θ̂n − θ◦) ⇒ N(0, τΣ
−1

),

where

τ :=

∫

R

x4
Π(dx) = lim

h↓0

hE
{

(Gh − G0)
4|F0

}

{E {(Gh − G0)
2|F0}}

2

and Σ is a positive definite matrix presented in Proposition 3.3.



MLE in COGARCH(1,1) 141

3. PROOFS

In what follows, K denotes a generic constant. We begin with the existence

of a strictly stationary solution of (2.2). Let {L∗
t } be an independent copy of

{Lt : 0 ≤ t < ∞}. We extend the time domain of {Lt} and {Xt} to R by letting

Lt := −L∗
(−t)− for −∞ < t < 0

and

Xt := η◦t +

∑

t<s≤0

log
(

1 + ϕ◦
(∆Ls)

2
)

for −∞ < t < 0.

Note that {Lt : t ∈ R} and {Xt : t ∈ R} are càdlàg processes and still have inde-

pendent and strictly stationary increments. We define

(3.1) σ2
u := β◦

∫ u

−∞

eXv−Xu−dv for u ≤ 0.

Lemma 3.1. Suppose that C3 holds. Then, σ2
u is square integrable.

Proof: Note that

E

{∫ u

−∞

eXv−Xu−dv

}2

= lim
h→∞

E

{∫ u

u−h

eXv−Xu−dv

}2

< ∞,

(cf. the proof of Proposition 4.1 of [12]). This completes the proof.

It can be easily checked that {σ2
u} with σ2

0 =
∫ 0
−∞

eXv−X0−dv is the almost

surely unique strictly stationary solution of (2.2).

3.1. The Proof of Consistency

In this subsection, we assume that C1-C3 hold. Note that

σ2
0(θ) := β/η + ϕ

∫

(−∞,0)
eηuσ2

ud[L, L]u

is integrable, since

E

∫

(−∞,0]
eηuσ2

ud[L, L]u = lim
h→∞

E

∫

(−h,0]
eηuσ2

ud[L, L]u = Eσ2
0

∫ ∞

0
e−ηudu < ∞.

We set

σ2
t (θ) := β/η + (σ2

0(θ) − β/η)e−ηt
+ ϕe−ηt

∫

(0,t)
eηsσ2

sd[L, L]s, (t > 0)

which is a càglàd process.
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Lemma 3.2. {σ2
t (θ)} is strictly stationary and satisfies the stochastic dif-

ferential equation

(3.2) dσ2
t+(θ) = (β − ησ2

t (θ))dt + ϕσ2
t d[L, L]t.

Especially, σ2
t (θ) ≥ β/η and Eσ4

t (θ) < ∞.

Proof: Note that

σ2
t+(θ) − σ2

0+(θ) =
(

σ2
0(θ) − β/η

) (

e−ηt − 1
)

+ ϕe−ηt

∫

(0,t]
eηsσ2

sd[L, L]s.

By using Fubini’s theorem, we can see that

∫ t

0
(β − ησ2

s(θ))ds =

∫ t

0
(β − ησ2

s+(θ))ds

=

∫ t

0

{

−η(σ2
0(θ) − β/η)e−ηs − ϕηe−ηs

∫

(0,s]
eηuσ2

ud[L, L]u

}

ds

=
(

σ2
0(θ) − β/η

) (

e−ηt − 1
)

− ϕ

∫ t

0
ηe−ηs

∫

(0,s]
eηuσ2

ud[L, L]uds

=
(

σ2
0(θ) − β/η

) (

e−ηt − 1
)

− ϕ

∫

(0,t]

{∫ t

u

ηe−ηsds

}

eηuσ2
ud[L, L]u

=
(

σ2
0(θ) − β/η

) (

e−ηt − 1
)

− ϕ

∫

(0,t]

(

e−ηu − e−ηt
)

eηuσ2
ud[L, L]u

=
(

σ2
0(θ) − β/η

) (

e−ηt − 1
)

− ϕ

∫

(0,t]
σ2

ud[L, L]u + ϕe−ηt

∫

(0,t]
eηuσ2

ud[L, L]u,

and which implies (3.2). Now that the strict stationarity can be easily checked,

σ2
0(θ) ≥ β/η obviously implies σ2

t (θ) ≥ β/η. Moreover,

σ2
0(θ) ≤

β

η
+

∞
∑

j=0

e−ηj

∫

(−j−1,−j]
σ2

ud[L, L]u,

which indicates the square integrability since E{
∫

(0,1] σ
2
ud[L, L]u}

2 < ∞ due to

C3. This gives the lemma.

Lemma 3.3. σ2
0(θ

◦
) = σ2

0 a.s. Hence, σ2
t (θ

◦
) = σ2

t a.s. for every t ≥ 0

and σ2
t ≥ β◦/η◦.
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Proof: By using Fubini’s theorem, we obtain

σ2
0(θ

◦
) = β◦/η◦ + ϕ◦

∫

(−∞,0)
eη◦uσ2

ud[L, L]u

= β◦/η◦ + ϕ◦

∫

(−∞,0)
eη◦u

(

β◦

∫ u

−∞

eXv−Xu−dv

)

d[L, L]u

= β◦/η◦ + β◦ϕ◦

∫ 0

−∞

(

∫

(v,0)
eη◦u−Xu−d[L, L]u

)

eXvdv

= β◦

∫ 0

−∞

eη◦vdv + β◦ϕ◦

∫ 0

−∞

(

∫

(v,0)
eη◦u−Xu−d[L, L]u

)

eXvdv

= β◦

∫ 0

−∞

(

eη◦v−Xv + ϕ◦

∫

(v,0)
eη◦u−Xu−d[L, L]u

)

eXvdv.

On the other hand, we have

eη◦v−Xv = exp







−
∑

v<s≤0

log(1 + ϕ◦
(∆Ls)

2
)







=

∑

v<w≤0



exp







−
∑

w≤s≤0

log(1 + ϕ◦
(∆Ls)

2
)







− exp







−
∑

w<s≤0

log(1 + ϕ◦
(∆Ls)

2
)









+ 1

= −ϕ◦
∑

v<w≤0

exp







−
∑

w≤s≤0

log(1 + ϕ◦
(∆Ls)

2
)







(∆Lw)
2
+ 1

= −ϕ◦

∫

(v,0]
eη◦w−Xw−d[L, L]w + 1,

and thus,

σ2
0(θ

◦
) = β◦

∫ 0

−∞

{

1 − ϕ◦e−X0−(∆L0)
2
}

eXvdv.

Since (∆L0)
2

= 0 = X0− a.s., we obtain

σ2
0(θ

◦
) = β◦

∫ 0

−∞

eXv−X0−dv = σ2
0 a.s.

This verifies the uniqueness of the solution of (3.2) and completes the proof.

The following proposition plays a key role in proving the consistency.

Proposition 3.1. If σ2
0(θ) = σ2

0 a.s., then θ = θ◦. Hence,

Υ(θ) := −E

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

, θ ∈ Θ
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has the unique maximum at θ = θ◦. Moreover, Υ(θ) is uniformly continuous in

θ ∈ Θ.

Proof: Suppose that σ2
0(θ) = σ2

0, a.s. Then, we have

∫

(−∞,0)

{

ϕeηu − ϕ◦eη◦u
}

σ2
ud[L, L]u = β◦/η◦ − β/η, a.s.

Also, by the strict stationarity, for every t,
∫

(−∞,t)

{

ϕeη(t−u) − ϕ◦eη◦(t−u)
}

σ2
ud[L, L]u = β◦/η◦ − β/η, a.s.

which implies σ2
t (θ) = σ2

t , a.s. Moreover, both the processes are càglàd processes

and so are indistinguishable. Thus, we have

∫ t

0
(β − ησ2

s)ds + ϕ

∫

(0,t)
σ2

sd[L, L]s =

∫ t

0
(β◦ − η◦σ2

s)ds + ϕ◦

∫

(0,t)
σ2

sd[L, L]s.

Suppose that ϕ◦ 6= ϕ. Then,

∫

(0,t)
σ2

sd[L, L]s =
1

ϕ − ϕ◦

∫ t

0

{

β◦ − β + (η − η◦)σ2
s

}

ds,

which implies that there exist constants α, γ such that

σ2
t = σ2

0 +

∫ t

0
(α + γσ2

s)ds.

If γ 6= 0, σ2
t = γ−1{(α + γσ2

0)e
γt − α}, which contradicts the strictly stationarity

of {σ2
t }. On the other hand, if γ = 0, σ2

t = σ2
0 +αt. In this case, α 6= 0 contradicts

the strictly stationarity of {σ2
t } as well. Thus, α = γ = 0, which in turn produces

σ2
t = σ2

0 a.s. for every t > 0. Then, we should have

0 = β◦ − η◦σ2
0 + ϕ◦σ2

0{[L, L]1 − [L, L]0} a.s.

However, the above is also false since [L, L]1− [L, L]0 is independent of σ2
0. There-

fore, ϕ = ϕ◦
. If η 6= η◦, then σ2

t = c for some constant c. Thus from the same

reasoning, we conclude that η = η◦, and β◦
= β.

Now, we have that for h > 0, η1, η2 satisfying η∗ ≤ η2 < η1 ≤ η∗,
∥

∥

∥

∥

∥

∫

(−∞,0)
|eη1u − eη2u|σ2

ud[L, L]u

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∫

(−∞,0)
eη2u|e(η1−η2)u − 1|σ2

ud[L, L]u

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

sup
−h<u<0

|e(η1−η2)u − 1|

∫

(−∞,0)
eη2uσ2

ud[L, L]u

+e−η2h

∫

(−∞,−h]
eη2(u+h)σ2

ud[L, L]u

∥

∥

∥

∥

∥

2

≤

(

sup
−h<u<0

|e(η1−η2)u − 1| + e−η2h

)

∥

∥

∥

∥

∥

∫

(−∞,0]
eη2uσ2

ud[L, L]u

∥

∥

∥

∥

∥

2

,
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which implies

lim
δ→0

sup

|η1−η2|<δ

∥

∥

∥

∥

∥

∫

(−∞,0)
eη1uσ2

ud[L, L]u −

∫

(−∞,0)
eη2uσ2

ud[L, L]u

∥

∥

∥

∥

∥

2

= 0.

This in turn implies that Υ is continuous. So the proposition is established.

The proof of the consistency is based on the uniform convergence of the like-

lihood function, which can be obtained from the ergodic theorem and smoothness

condition on the likelihood function.

Lemma 3.4. Let σ2
n,k−1(θ) := σ2

tk−1
(θ). Then,

1

tN

N
∑

k=m

{

σ2
n,k−1

σ2
n,k−1(θ)

+ log σ2
n,k−1(θ)

}

∆tk
P

−→ E

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

.

Proof: Since

sup
tk−1<u≤tk

|σ2
n,k−1(θ) − σ2

u(θ)|

≤ ϕeη∆tk

∫ tk

tk−1

σ2
t d[L, L]t +

(

1 − e−η∆tk
)

ϕ

∫ tk−1

−∞

e−η(tk−1−t)σ2
t d[L, L]t

and

sup
tk−1<s≤tk

σ2
s(θ) ≤ σ2

tk−1
(θ) + ϕ

∫ tk

tk−1

σ2
t d[L, L]t,

we have that E suptk−1<s≤tk
σ4

s(θ) < ∞ and

max
m≤k≤N

∥

∥

∥

∥

∥

sup
tk−1<u≤tk

|σ2
n,k−1(θ) − σ2

u(θ)|

∥

∥

∥

∥

∥

2

= o(1).

Thus, we have

E

∣

∣

∣

∣

∣

1

tN

N
∑

k=m

{

σ2
n,k−1

σ2
n,k−1(θ)

+ log σ2
n,k−1(θ)

}

∆tk −
1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ)

+ log σ2
s(θ)

}

ds

∣

∣

∣

∣

∣

≤
1

tN

N
∑

k=m

E sup
tk−1<s≤tk

{∣

∣

∣

∣

∣

σ2
n,k−1

σ2
n,k−1(θ)

−
σ2

s

σ2
s(θ)

∣

∣

∣

∣

∣

+
∣

∣log σ2
n,k−1(θ) − log σ2

s(θ)
∣

∣

}

∆tk → 0.

On the other hand, by the ergodic theorem,

1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ)

+ log σ2
s(θ)

}

ds
P

−→ E

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

,

(cf. Lemma A.1). Hence, the lemma is validated.
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Lemma 3.5. There exists a constant c > 0 such that for all large n,

min
m≤k≤N

inf
θ∈Θ

σ̃2
nk(θ) ∧ min

m≤k≤N
inf
θ∈Θ

ρ̃2
nk(θ)

∆tk
> c a.s.

Proof: Since

σ̃2
nk(θ) ≥ β

k−1
∑

i=0

∆tk−ie
−η(tk−tk−i) a.s.,

we have that for all large n,

min
m≤k≤N

inf
θ∈Θ

σ̃2
nk(θ) ≥

β∗

2η∗
> 0 a.s.

and

min
m≤k≤N

{

inf
θ∈Θ

σ̃2
n,k−1(θ) − sup

θ∈Θ

β

η − ϕ

{

e(η−ϕ)∆tk − 1

(η − ϕ)∆tk
− 1

}}

≥
β∗

4η∗
> 0 a.s.

This completes the proof.

Now, we prove that {σ̃2
nk(θ)} approximates to {σ2

nk(θ)} well.

Lemma 3.6.

E

(

∫

(0,h]
Gs−σsdLs

)2

= O(h2
) as h → 0.

Proof: From Corollary 4.1 of [12], we obtain

E|σ2
t − σ2

0|
2

= 2{Var(σ2
0) − Cov(σ2

t , σ
2
0)} = 2 Var(σ2

0){1 − etΨ(1)},

i.e., E|σ2
t − σ2

0|
2

= O(t) as t → 0. Further, for h > 0,

E

(

∫

(0,h]
Gs−σsdLs

)2

=

∫

(0,h]
E{G2

s−σ2
s}ds

=

∫

(0,h]
EG2

s−{σ
2
s − σ2

0}ds +

∫

(0,h]
EG2

s−σ2
0ds.

Since

∣

∣EG2
s−{σ

2
s − σ2

0}
∣

∣ ≤ E
1/2G4

s−E
1/2

(σ2
s − σ2

0)
2

= O(s) as s → 0

and

E{G2
s−σ2

0} = E
{

E
(

G2
s−|F0

)

σ2
0

}

= O(s) as s → 0,

the lemma is established.



MLE in COGARCH(1,1) 147

Lemma 3.7. Suppose that e−η
∗
tm = O(∆

1/2
). Then,

max
m≤k≤N

‖σ2
nk(θ) − σ̃2

nk(θ)‖2 = O(∆
1/2

).

Proof: Since

σ̃2
nk(θ) = β

k
∑

i=0

∆tk−ie
−η(tk−tk−i) + e−ηtk σ̃2

n0(θ) + ϕe−ηtk

k
∑

i=1

eηtk−iY 2
n,k−i+1

and

k
∑

i=1

e−η(tk−tk−i)Y 2
n,k−i+1

=

k
∑

i=1

e−η(tk−tk−i)

{

[G, G]tk−i+1
− [G, G]tk−i

+ 2

∫

(tk−i,tk−i+1]
(Gu− − Gtk−i

)dGu

}

=

k
∑

i=1

e−η(tk−tk−i)

{

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u + 2

∫

(tk−i,tk−i+1]
(Gu− − Gtk−i

)σudLu

}

,

we only have to deal with

(3.3) e−ηtk
∑

0<s≤tk

eηsσ2
sd[L, L]s − e−ηtk

k
∑

i=1

eηtk−i

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u

and

(3.4)

k
∑

i=1

e−η(tk−tk−i)

∫

(tk−i,tk−i+1]
(Gu− − Gtk−i

)σudLu.

Note that (3.3) is bounded by

k
∑

i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u

=

k
∑

i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)

∫

(tk−i,tk−i+1]
σ2

udu

+

k
∑

i=1

(eη∆tk−i+1 − 1)e−η(tk−tk−i)

∫

(tk−i,tk−i+1]
σ2

ud {[L, L]u − u} ,

where the second term is a sum of martingale differences. Thus, the L2
-norm of

(3.3) is O(∆
1/2

) uniformly in m ≤ k ≤ N , since

E

(

∫

(s,t]
σ2

ud {[L, L]u − u}

)2

= E

(

∫

(0,t−s]
σ2

ud {[L, L]u − u}

)2

= Eσ4
0 · E[L, L]

2
1 · (t − s).

Moreover, since (3.4) is also a sum of martingale differences, the L2
-norm of (3.4)

is O(∆
1/2

) due to Lemma 3.6. Hence, the proof is completed.
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For vector x = (x1, x2, x3)
′
, we denote |x| :=

√
x′x.

Lemma 3.8.

max
m≤k≤N

∥

∥

∥

∥

sup
θ∈Θ

1

ρ̃2
nk(θ)

∣

∣

∣

∣

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

2

< ∞.

Proof: Due to Lemma 3.5, we have

sup
θ∈Θ

1

ρ̃2
nk(θ)

∣

∣

∣

∣

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

≤ K sup
θ∈Θ

{∣

∣

∣

∣

∂

∂θ
σ̃2

n,k−1(θ)

∣

∣

∣

∣

+ O(∆tk)σ̃
2
n,k−1(θ)

}

≤ K

{

1 +

k−1
∑

i=1

e−(η
∗
/2)(tk−1−tk−i−1)Y 2

n,k−i−1

}

.

Further, according to the proof of Lemma 3.7,

max
m≤k≤N

∥

∥

∥

∥

∥

k−1
∑

i=1

e−(η
∗
/2)(tk−1−tk−i−1)Y 2

n,k−i−1 −

∫

(0,tk−1]
e−(η

∗
/2)(tk−1−s)σ2

sd[L, L]s

∥

∥

∥

∥

∥

2

→ 0.

Since

max
m≤k≤N

∥

∥

∥

∥

∥

∫

(0,tk−1]
e−(η

∗
/2)(tk−1−s)σ2

sd[L, L]s

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

∫

(−∞,0]
e−(η

∗
/2)sσ2

sd[L, L]s

∥

∥

∥

∥

∥

2

< ∞,

the lemma is validated.

In fact, Lemma 3.10 below shows a more general result. However, Lemma

3.8 is sufficient to verify the consistency. Finally, we verify the uniform conver-

gence of the likelihood function. In what follows, we denote

ρ2
nk(θ) :=

(

σ2
n,k−1(θ) −

β

η − ϕ

)(

exp{(η − ϕ)∆tk} − 1

η − ϕ

)

+
β∆tk
η − ϕ

and ρ2
nk := ρ2

nk(θ
◦
).

Proposition 3.2.

sup
θ∈Θ

∣

∣

∣

∣

1

tN
LN (θ) − Υ(θ)

∣

∣

∣

∣

= oP (1).

Proof: We have

1

tN

N
∑

k=m

lnk(θ)∆tk

=
1

tN

N
∑

k=m

{lnk(θ) − E(lnk(θ)|Fn,k−1)}∆tk +
1

tN

N
∑

k=m

E(lnk(θ)|Fn,k−1)∆tk

=
1

tN

N
∑

k=m

{lnk(θ) − E(lnk(θ)|Fn,k−1)}∆tk −
1

tN

N
∑

k=m

{

ρ2
nk

ρ̃2
nk(θ)

+ log
ρ̃2

nk(θ)

∆tk

}

∆tk,
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where the first term is a sum of martingale differences, which converges to 0 in

probability. Then, we obtain from Lemmas 3.5 and 3.7 that

max
m≤k≤N

∥

∥

∥

∥

ρ2
nk

ρ̃2
nk(θ)

−
ρ2

nk

ρ2
nk(θ)

+ log ρ̃2
nk(θ) − log ρ2

nk(θ)

∥

∥

∥

∥

1

≤ K max
m≤k≤N

(

∥

∥σ2
n,k−1

∥

∥

2
+ 1

)

∥

∥σ̃2
n,k−1(θ) − σ2

n,k−1(θ)
∥

∥

2
−→ 0

and

max
m≤k≤N

sup
θ∈Θ

∣

∣

∣

∣

∣

ρ2
nk(θ)

∆tkσ
2
n,k−1(θ)

− 1

∣

∣

∣

∣

∣

= O(∆),

which implies

1

tN

N
∑

k=m

{

ρ2
nk

ρ̃2
nk(θ)

+ log
ρ̃2

nk(θ)

∆tk

}

∆tk −
1

tN

N
∑

k=m

{

σ2
n,k−1

σ2
n,k−1(θ)

+ log σ2
n,k−1(θ)

}

∆tk

= oP (1).

Note that due to Lemma 3.4, the pointwise convergence holds:

(3.5)
1

tN

N
∑

k=m

lnk(θ)∆tk
P

−→ Υ(θ), for each θ ∈ Θ.

Below, we verify the uniform convergence. Letting l̇nk(θ) :=
∂
∂θ

lnk(θ), we have

1

tN
sup

|θ1−θ2|<h

|LN (θ1) − LN (θ2)| ≤
1

tN

N
∑

k=m

sup
θ∈Θ

∣

∣

∣
l̇nk(θ)

∣

∣

∣
∆tkh

since θ1 + λ(θ2 − θ1) ∈ Θ for any λ ∈ (0, 1). Moreover, due to Lemmas 3.1, 3.5,

and 3.8,

max
m≤k≤N

E sup
θ∈Θ

∣

∣

∣l̇nk(θ)
∣

∣

∣ ≤ max
m≤k≤N

E sup
θ∈Θ

{

Y 2
nk

ρ̃2
nk(θ)

+ 1

} ∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

≤ K max
m≤k≤N

E

{

Y 2
nk

∆tk
+ 1

}

sup
θ∈Θ

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

= max
m≤k≤N

E

{

E(Y 2
nk|Ftk−1

)

∆tk
+ 1

}

sup
θ∈Θ

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

≤ K max
m≤k≤N

E

{

σ2
tk−1

+ 1

}

sup
θ∈Θ

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

≤ K max
m≤k≤N

∥

∥

∥

∥

sup
θ∈Θ

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

2

< ∞.

Therefore, we obtain

(3.6) lim
h→0

lim sup
n→∞

E
1

tN
sup

|θ1−θ2|<h

|LN (θ1) − LN (θ2)| = 0.
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Now, for given h > 0, take finitely many open balls Bh(θi) := {θ ∈ Θ : |θ −

θi| < h} with θi ∈ Θ such that Θ ⊂
⋃

i Bh(θi). Then,

sup
θ∈Θ

∣

∣

∣

∣

1

tN
LN (θ) − Υ(θ)

∣

∣

∣

∣

≤ max
i

sup

θ∈Bh(θi)

∣

∣

∣

∣

1

tN
LN (θ) −

1

tN
LN (θi)

∣

∣

∣

∣

+ max
i

∣

∣

∣

∣

1

tN
LN (θi) − Υ(θi)

∣

∣

∣

∣

+ max
i

sup

θ∈Bh(θi)
|Υ(θi) − Υ(θ)| .

Thus, we obtain from (3.5) that for every ǫ > 0,

lim sup
n→∞

P

(

sup
θ∈Θ

∣

∣

∣

∣

1

tN
LN (θ) − Υ(θ)

∣

∣

∣

∣

> ǫ

)

≤ lim sup
n→∞

P

(

sup

|θ1−θ2|<h

∣

∣

∣

∣

1

tN
LN (θ1) −

1

tN
LN (θ2)

∣

∣

∣

∣

>
ǫ

3

)

+P

(

sup

|θ1−θ2|<h

|Υ(θ1) − Υ(θ2)| >
ǫ

3

)

,

so that the uniform convergence is achieved by letting h → 0 thanks to (3.6) and

Proposition 3.1.

The Proof of Consistency. Let ǫ > 0 and Bǫ(θ
◦
) := {θ ∈ Θ : |θ − θ◦| <

ǫ}. Then, Θ − Bǫ(θ
◦
) is compact, since Θ is taken as a compact subset in R

3
.

Hn =

{

θ ∈ Θ : Υ(θ) < Υ(θ◦) −
1

n

}

, n ∈ N

constitute a collection of open subsets relative to Θ, which covers Θ − Bǫ(θ
◦
)

since Υ(θ) < Υ(θ◦) for each θ ∈ Θ − Bǫ(θ
◦
) (cf. Proposition 3.1). By virtue of

compactness, there is n0 ∈ N such that Θ − Bǫ(θ
◦
) ⊂ Hn0 , i.e.,

sup {Υ(θ) : θ ∈ Θ − Bǫ(θ
◦
)} ≤ Υ(θ◦) −

1

n0
.

Therefore, by Proposition 3.2, we have that with probability tending to 1,

sup

{

1

tN
LN (θ) : θ ∈ Θ − Bǫ(θ

◦
)

}

≤ Υ(θ◦) −
1

2n0
.

On the other hand,

1

tN
LN (θ◦)

P
−→ Υ(θ◦),

1

tN
LN (θ◦) ≤

1

tN
LN (θ̂n).

Hence, limn→∞ P
(

θ̂n ∈ Bǫ(θ
◦
)

)

= 1.
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3.2. The Proof of Asymptotic Normality

In this subsection, we assume that C1-C4 hold. By Taylor’s theorem, we

have

0 =
1

√
tN

N
∑

k=m

l̇nk(θ̂n)∆tk(3.7)

=
1

√
tN

N
∑

k=m

l̇nk(θ
◦
)∆tk +

{

1

tN

N
∑

k=m

l̈nk(θ
∗
n)∆tk

}

·
√

tN (θ̂n − θ◦),

where

l̇nk(θ
◦
) =

∂

∂θ
lnk(θ

◦
) =

(

Y 2
nk

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂

∂θ
ρ̃2

nk(θ
◦
),

l̈nk(θ) =
∂

∂θ∂θ′
lnk(θ) =

(

1 − 2
Y 2

nk

ρ̃2
nk(θ)

)

1

ρ̃2
nk(θ)

∂

∂θ
ρ̃2

nk(θ)
1

ρ̃2
nk(θ)

∂

∂θ′
ρ̃2

nk(θ)

+

(

Y 2
nk

ρ̃2
nk(θ)

− 1

)

1

ρ̃2
nk(θ)

∂2

∂θ∂θ′
ρ̃2

nk(θ).

More precisely,

l̈nk(θ
∗
n) =







∂
∂θ′

∂
∂β

lnk(θ
◦
+ λ1(θ̂n − θ◦))

∂
∂θ′

∂
∂η

lnk(θ
◦
+ λ2(θ̂n − θ◦))

∂
∂θ′

∂
∂ϕ

lnk(θ
◦
+ λ3(θ̂n − θ◦))







for some λ1, λ2, λ3 ∈ (0, 1).

Let
∂q

∂βi∂ηj∂ϕl be a differential operator of order q, where q, i, j, l are non-

negative integers with i + j + l = q. Observe that

1

∆tk

∂q

∂βi∂ηj∂ϕl
ρ̃2

nk(θ)(3.8)

=
∂q

∂βi∂ηj∂ϕl
σ̃2

n,k−1(θ) + O(∆tk)







∑

p≤q

∑

a,b,c

∂p

∂βa∂ηb∂ϕc
σ̃2

n,k−1(θ) + 1
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uniformly in θ ∈ Θ, and

∂q

∂βa∂ηb∂ϕc
σ̃2

nk(θ)(3.9)

=
∂q

∂βa∂ηb∂ϕc

{

β
k−1
∑

i=0

∆tk−ie
−η(tk−tk−i)

}

+(−1)
q
1(a = 0, c = 0)ϕ

k
∑

i=1

(tk − tk−i)
qe−η(tk−tk−i)Y 2

n,k−i+1

+(−1)
q−1

1(a = 0, c = 1)

k
∑

i=1

(tk − tk−i)
q−1e−η(tk−tk−i)Y 2

n,k−i+1

+
∂q

∂βa∂ηb∂ϕc

βe−ηtk

η − ϕ
.

Define

∂q

∂βa∂ηb∂ϕc
σ2

t (θ) :=
∂q

∂βa∂ηb∂ϕc

β

η

+(−1)
q
1(a = 0, c = 0)ϕ

∫

−∞<s<t

(t−s)qe−η(t−s)σ2
sd[L, L]s

+(−1)
q−1

1(a = 0, c = 1)

∫

−∞<s<t

(t−s)q−1e−η(t−s)σ2
sd[L, L]s.

Below, we show that a nice approximation to
{

∂
∂θ

σ2
nk(θ)

}

is achievable similarly to

Lemma 3.7. For a random vector X = (X1, X2, X3)
′
, we denote ‖X‖2 :=

√
EX′X.

Lemma 3.9.

max
m≤k≤N

∥

∥

∥

∥

∂

∂θ
σ̃2

nk(θ) −
∂

∂θ
σ2

nk(θ)

∥

∥

∥

∥

2

= O(∆
1/2

).

Proof: We can express

k
∑

i=1

(tk − tk−i) e−η(tk−tk−i)Y 2
n,k−i+1

=

k
∑

i=1

(tk − tk−i) e−η(tk−tk−i)

{

∫

(tk−i,tk−i+1]
σ2

u d[L, L]u + 2

∫

(tk−i,tk−i+1]
(Gu− − Gtk−i

)σu dLu

}

and
∣

∣

∣

∣

∣

k
∑

i=1

(tk − tk−i) e−η(tk−tk−i)

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u −

∫ tk

0
(tk − u)e−η(tk−u)σ2

ud[L, L]u

∣

∣

∣

∣

∣

≤
k
∑

i=1

sup

u∈(tk−i,tk−i+1]

∣

∣

∣(tk − tk−i) e−η(tk−tk−i) − (tk − u)e−η(tk−u)
∣

∣

∣

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u

≤ K

k
∑

i=1

∆tk−i+1e
−η(tk−tk−i)(tk − tk−i + 1)

∫

(tk−i,tk−i+1]
σ2

ud[L, L]u.
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By virtue of the above facts, the lemma can be proven in the same fashion to

prove Lemma 3.7.

Lemma 3.10. For any p > 0 and any nonnegative integer q,

(3.10) max
m≤k≤N

E sup
θ

∣

∣

∣

∣

∣

1

σ̃2
n,k−1(θ)

∂qσ̃2
n,k−1(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

∣

p

∨ E sup
θ

∣

∣

∣

∣

1

σ2
0(θ)

∂qσ2
0(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

p

< ∞

and

max
m≤k≤N

E sup
θ

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂qρ̃2
nk(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

p

∨ E sup
θ

∣

∣

∣

∣

1

ρ2
nk(θ)

∂qρ2
nk(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

p

< ∞.

Proof: Assume that p > 1. In view of (3.9), we have

∣

∣

∣

∣

∣

1

σ̃2
n,k−1(θ)

∂qσ̃2
n,k−1(θ)

∂βa∂ηb∂ϕc

∣

∣

∣

∣

∣

≤ K
1 +

∑1
l=0

∑k
i=1 (tk − tk−i)

q−l e−η(tk−tk−i)Y 2
n,k−i+1

β/η + ϕ
∑k

i=1 e−η(tk−tk−i)Y 2
n,k−i+1

.

Since
x

c+x
≤ x1/p

holds for every x > 0 and c > 0, letting Bj := {i : j ≤ ti < j +1,

i ≤ k}, we have

E sup
θ

∣

∣

∣

∣

∣

∑k
i=1 (tk − tk−i)

q e−η(tk−tk−i)Y 2
n,k−i+1

β/η + ϕ
∑k

i=1 e−η(tk−tk−i)Y 2
n,k−i+1

∣

∣

∣

∣

∣

p

≤ E sup
θ

∣

∣

∣

∣

∣

∣

[tk]
∑

j=0

([tk] − j + 1)
q

∑

i∈Bj
e−η(tk−ti)Y 2

n,i+1

β/η + ϕ
∑

i∈Bj
e−η(tk−ti)Y 2

n,i+1

∣

∣

∣

∣

∣

∣

p

≤ E sup
θ

∣

∣

∣

∣

∣

∣

∣

1

ϕ

[tk]
∑

j=0

([tk] − j + 1)
q





∑

i∈Bj

e−η(tk−ti)Y 2
n,i+1





1/p
∣

∣

∣

∣

∣

∣

∣

p

≤ KE

∣

∣

∣

∣

∣

∣

∣

[tk]
∑

j=0

([tk] − j + 1)
q e−η

∗
/p([tk]−j)





∑

i∈Bj

Y 2
n,i+1





1/p
∣

∣

∣

∣

∣

∣

∣

p

≤ K

∣

∣

∣

∣

∣

∣

∣

[tk]
∑

j=0

([tk] − j + 1)
q e−η

∗
/p([tk]−j)



E

∑

i∈Bj

Y 2
n,i+1





1/p
∣

∣

∣

∣

∣

∣

∣

p

< ∞

uniformly in m ≤ k ≤ N . Similarly, we also have

1

σ2
0(θ)

∂qσ2
0(θ)

∂βi∂ηj∂ϕl
≤ K

1 +
∑1

l=0

∫ 0
−∞

(−u)
q−l eηuσ2

ud[L, L]u

β/η + ϕ
∫ 0
−∞

eηuσ2
ud[L, L]u
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and

E sup
θ

∣

∣

∣

∣

∣

∫ 0
−∞

(−u)
q eηuσ2

ud[L, L]u

β/η + ϕ
∫ 0
−∞

eηuσ2
ud[L, L]u

∣

∣

∣

∣

∣

p

≤ E sup
θ

∣

∣

∣

∣

∣

∣

∞
∑

j=0

(j + 1)
q

∫ −j

−j−1 eηuσ2
ud[L, L]u

β/η + ϕ
∫ −j

−j−1 eηuσ2
ud[L, L]u

∣

∣

∣

∣

∣

∣

p

≤ E sup
θ

∣

∣

∣

∣

∣

∣

1

ϕ

∞
∑

j=0

(j + 1)
q

(∫ −j

−j−1
eηuσ2

ud[L, L]u

)1/p
∣

∣

∣

∣

∣

∣

p

≤ KE

∣

∣

∣

∣

∣

∣

∞
∑

j=0

(j + 1)
q e−(η

∗
/p)j

(∫ −j

−j−1
σ2

ud[L, L]u

)1/p
∣

∣

∣

∣

∣

∣

p

≤ K

∣

∣

∣

∣

∣

∣

∞
∑

j=0

(j + 1)
q e−(η

∗
/p)j

(

E

∫ −j

−j−1
σ2

ud[L, L]u

)1/p
∣

∣

∣

∣

∣

∣

p

< ∞.

Therefore, we obtain (3.10).

Now, due to (3.8),

∣

∣

∣

∣

1

ρ̃2
nk(θ)

∂qρ̃2
nk(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

≤ K

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ)

∂qσ̃2
n,k−1(θ)

∂βi∂ηj∂ϕl

∣

∣

∣

∣

∣

+O(∆tk)







∑

p≤q

∑

a,b,c

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ)

∂pσ̃2
n,k−1(θ)

∂βa∂ηb∂ϕc

∣

∣

∣

∣

∣

+ 1







uniformly in θ ∈ Θ. Further, a similar argument can be applied to

supθ

∣

∣

∣

1
ρ2

nk
(θ)

∂qρ2
nk

(θ)

∂βi∂ηj∂ϕl

∣

∣

∣ . Hence, the lemmas is proved.

Below, we establish a central limit theorem for the asymptotic normality.

To this end, we show that the score function can be approximated by a sum of

square integrable martingale differences. For vector x = (x1, x2, x3)
′
, we denote

|x| :=
√

x′x. And for random vector X = (X1, X2, X3)
′
, we denote ‖X‖1 := E|X|.

Lemma 3.11. Suppose that tN∆ → 0. Then,

1
√

tN

N
∑

k=m

(

Y 2
nk

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂

∂θ
ρ̃2

nk(θ
◦
)∆tk

=
1

√
tN

N
∑

k=m

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)

1

ρ2
nk(θ

◦)

∂

∂θ
ρ2

nk(θ
◦
)∆tk + oP (1)(3.11)

=
1

√
tN

N
∑

k=m

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)∆tk + oP (1).(3.12)
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Proof: Due to Lemmas 3.5, 3.7, 3.9, and 3.10, we have

∥

∥

∥

∥

(

Y 2
nk

ρ̃2
nk(θ

◦)
−

Y 2
nk

ρ2
nk(θ

◦)

)

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∥

∥

∥

∥

1

= E

{

Y 2
nk

∣

∣

∣

∣

(

1

ρ̃2
nk(θ

◦)
−

1

ρ2
nk(θ

◦)

)

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∣

∣

∣

∣

}

= E

{

E
{

Y 2
nk|Ftk−1

}

∣

∣

∣

∣

(

1

ρ̃2
nk(θ

◦)
−

1

ρ2
nk(θ

◦)

)

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∣

∣

∣

∣

}

= E

∣

∣

∣

∣

(

ρ2
nk(θ

◦
)

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∣

∣

∣

∣

≤

∥

∥

∥

∥

ρ2
nk(θ

◦
) − ρ̃2

nk(θ
◦
)

ρ̃2
nk(θ

◦)

∥

∥

∥

∥

2

∥

∥

∥

∥

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∥

∥

∥

∥

2

≤ K
∥

∥σ2
n,k−1(θ

◦
) − σ̃2

n,k−1(θ
◦
)
∥

∥

2

∥

∥

∥

∥

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ

∥

∥

∥

∥

2

= O(∆
1/2

)

uniformly in m ≤ k ≤ N , and

∥

∥

∥

∥

Y 2
nk

ρ2
nk(θ

◦)

{

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ
−

1

ρ2
nk(θ

◦)

∂ρ2
nk(θ

◦
)

∂θ

}∥

∥

∥

∥

1

= E

{

E(Y 2
nk|Ftk−1

)
1

ρ2
nk(θ

◦)

∣

∣

∣

∣

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ
−

1

ρ2
nk(θ

◦)

∂ρ2
nk(θ

◦
)

∂θ

∣

∣

∣

∣

}

=

∥

∥

∥

∥

1

ρ̃2
nk(θ

◦)

∂ρ̃2
nk(θ

◦
)

∂θ
−

1

ρ2
nk(θ

◦)

∂ρ2
nk(θ

◦
)

∂θ

∥

∥

∥

∥

1

≤ K

{∥

∥

∥

∥

∥

∂σ̃2
n,k−1(θ

◦
)

∂θ
−

∂σ2
n,k−1(θ

◦
)

∂θ

∥

∥

∥

∥

∥

1

+
∥

∥σ̃2
n,k−1(θ

◦
) − σ2

n,k−1(θ
◦
)
∥

∥

2

∥

∥

∥

∥

∥

1

ρ2
n,k(θ

◦)

∂ρ2
nk(θ

◦
)

∂θ

∥

∥

∥

∥

∥

2

}

= O(∆
1/2

),

uniformly in m ≤ k ≤ N . Thus, (3.11) follows.

Further, note that

1

ρ2
nk(θ

◦)

∂

∂θ
ρ2

nk(θ
◦
) =

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

+O(∆)

{∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

+ 1

}
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uniformly in m ≤ k ≤ N and

E

∣

∣

∣

∣

∣

1
√

tN

N
∑

k=m

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)∆tk

∣

∣

∣

∣

∣

≤
1

√
tN

N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
+ 1

)

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

∆tk

≤
1

√
tN

N
∑

k=m

2E

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

∆tk = O(t
1/2
N ),

so that (3.12) holds. This completes the proof.

The following proposition and lemma are concerned with the stability of

the sum of conditional variances of the score function.

Proposition 3.3. Suppose that C2-C3 hold and
∫

R
x3dΠ(x) = 0. Then,

as h ↓ 0,

E
{

(Gt+h − Gt)
4|Ft

}

= h

(∫

R

x4
Π(dx) + o(1)

)

σ4
t ,(3.13)

E
{

(Gt+h − Gt)
2|Ft

}

= h(1 + o(1))σ2
t(3.14)

uniformly in t ≥ 0, and therefore,

τ :=

∫

R

x4
Π(dx) = lim

h↓0

hE
{

(Gt+h − Gt)
4|Ft

}

{E {(Gt+h − Gt)
2|Ft}}

2 for every t ≥ 0.

Further,

Σ := E
1

σ4
0(θ

◦)

∂

∂θ
σ2

0(θ
◦
)

∂

∂θ′
σ2

0(θ
◦
)

is positive definite.

Proof: We defer the proof of (3.13) and (3.14) to Lemma A.2. Since

E
1

σ4
0(θ◦)

∣

∣

∂
∂θ

σ2
0(θ

◦
)
∣

∣

2
< ∞ (cf. Lemma 3.10), Σ is well defined and symmetric.

Moreover, since we have that for λ ∈ R
3
, λ′ ∂

∂θ
σ2

0(θ
◦
) = 0 a.s. if and only if λ = 0,

Σ is positive definite.

For a matrix A = (aij)i,j=1,2,3, we denote |A| :=

(

∑

ij |aij |
2
)1/2

.

Lemma 3.12.

1

tN

N
∑

k=m

1

σ4
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∂

∂θ′
σ2

n,k−1(θ
◦
)∆tk

P
−→ Σ.
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Proof: Notice

sup

u∈(tk−1,tk]

∣

∣

∣

∣

∣

1

σ4
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∂

∂θ′
σ2

n,k−1(θ
◦
) −

1

σ4
u(θ◦)

∂

∂θ
σ2

u(θ◦)
∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∣

≤ sup

u∈(tk−1,tk]

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)
−

1

σ2
u(θ◦)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂θ
σ2

n,k−1(θ
◦
)

1

σ2
n,k−1(θ

◦)

∂

∂θ′
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

+ sup

u∈(tk−1,tk]

1

σ2
u(θ◦)

∣

∣

∣

∣

∣

(

∂

∂θ
σ2

n,k−1(θ
◦
) −

∂

∂θ
σ2

u(θ◦)

)

1

σ2
n,k−1(θ

◦)

∂

∂θ′
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

+ sup

u∈(tk−1,tk]

∣

∣

∣

∣

1

σ2
u(θ◦)

∂

∂θ
σ2

u(θ◦)
∂

∂θ′
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)
−

1

σ2
u(θ◦)

∣

∣

∣

∣

∣

+ sup

u∈(tk−1,tk]

∣

∣

∣

∣

1

σ2
u(θ◦)

∂

∂θ
σ2

u(θ◦)
1

σ2
u(θ◦)

(

∂

∂θ′
σ2

n,k−1(θ
◦
) −

∂

∂θ′
σ2

u(θ◦)

)∣

∣

∣

∣

.

We concentrate on the third term since the other terms can be treated similarly.

Note that

sup

u∈(tk−1,tk]

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)
−

1

σ2
u(θ◦)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂θ
σ2

n,k−1(θ
◦
)

1

σ2
n,k−1(θ

◦)

∂

∂θ′
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

≤ K sup

u∈(tk−1,tk]
|σ2

n,k−1(θ
◦
) − σ2

u(θ◦)|

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

1

σ2
u(θ◦)

∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∣

.

Since

sup

u∈(tk−1,tk]
|σ2

n,k−1(θ
◦
) − σ2

u(θ◦)|

≤ ϕ◦eη◦∆tk

∫ tk

tk−1

σ2
t d[L, L]t + ϕ◦

(

1 − e−η◦∆tk
)

∫ tk−1

−∞

e−η◦(tk−1−t)σ2
t d[L, L]t,

we can have

max
m≤k≤N

∥

∥

∥

∥

∥

sup

u∈(tk−1,tk]
|σ2

n,k−1(θ
◦
) − σ2

u(θ◦)|

∥

∥

∥

∥

∥

2

= o(1).

Similarly,

max
m≤k≤N

∥

∥

∥

∥

∥

sup

u∈(tk−1,tk]

∣

∣

∣

∣

∂

∂θ
σ2

n,k−1(θ
◦
) −

∂

∂θ
σ2

u(θ◦)

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

= o(1).
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Moreover, we have that for h > 0 and p > 1, q > 0,

∣

∣

∣

∣

∣

∫ h

−∞
(h − u)

q e−η(h−u)σ2
ud[L, L]u

β/η + ϕ
∫ h

−∞
e−η(h−u)σ2

ud[L, L]u

∣

∣

∣

∣

∣

p

≤

∣

∣

∣

∣

∣

∣

∫ h

0 e−η(h−u)σ2
ud[L, L]u

β/η + ϕ
∫ h

0 e−η(h−u)σ2
ud[L, L]u

+

∞
∑

j=0

(j+1)
q

∫ −j

−j−1 e−η(h−u)σ2
ud[L, L]u

β/η + ϕ
∫ −j

−j−1e
−η(h−u)σ2

ud[L, L]u

∣

∣

∣

∣

∣

∣

p

≤

∣

∣

∣

∣

∣

∣

(∫ h

0
e−η(h−u)σ2

ud[L, L]u

)1/p

+
1

ϕ

∞
∑

j=0

(j + 1)
q

(∫ −j

−j−1
e−η(h−u)σ2

ud[L, L]u

)1/p
∣

∣

∣

∣

∣

∣

p

≤

∣

∣

∣

∣

∣

∣

(∫ h

0
σ2

ud[L, L]u

)1/p

+
1

ϕ

∞
∑

j=0

(j + 1)
q e−η(h+j)

(∫ −j

−j−1
σ2

ud[L, L]u

)1/p
∣

∣

∣

∣

∣

∣

p

.

Thus, it can be seen that

∥

∥

∥

∥

∥

sup

u∈(tk−1,tk]

∣

∣

∣

∣

1

σ2
u(θ◦)

∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∥

∥

∥

∥

∥

4

< ∞

and

∥

∥

∥

∥

∥

sup

u∈(tk−1,tk]

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

1

σ2
u(θ◦)

∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

4

∥

∥

∥

∥

∥

sup

u∈(tk−1,tk]

∣

∣

∣

∣

1

σ2
u(θ◦)

∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∥

∥

∥

∥

∥

4

< ∞.

Therefore,

E sup

u∈(tk−1,tk]

∣

∣

∣

∣

∣

1

σ4
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∂

∂θ′
σ2

n,k−1(θ
◦
) −

1

σ4
u(θ◦)

∂

∂θ
σ2

u(θ◦)
∂

∂θ′
σ2

u(θ◦)

∣

∣

∣

∣

∣

→ 0

uniformly in m ≤ k ≤ N . Then the lemma is validated by the ergodic theorem

(cf. Lemma A.1).

Now, we establish the asymptotical normality of the score function.

Proposition 3.4. Suppose that there exists δ > 0 such that E|Gh|
4+δ

=

O(h). Then,

1
√

tN

N
∑

k=m

l̇nk(θ
◦
)∆tk ⇒ N(0, τΣ).

Proof: Due to Lemma 3.11, it suffices to show that

1
√

tN

N
∑

k=m

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)

1

σ2
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)∆tk ⇒ N(0, τΣ).



MLE in COGARCH(1,1) 159

Let λ be any vector in R
3

and

ξn,k−1 :=
1

σ4
n,k−1(θ

◦)

{

λ′ ∂

∂θ
σ2

n,k−1(θ
◦
)

}2

.

Note that

∆tk√
tN

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)

1

σ2
n,k−1(θ

◦)
λ′ ∂

∂θ
σ2

n,k−1(θ
◦
), k = m, ..., N

are row-wise martingale differences with respect to {Ftk : k = m, ..., N}. Since

due to Proposition 3.3 and Lemma 3.12

1

tN

N
∑

k=m

{

∆tk

(

E
{

Y 4
nk|Ftk−1

}

ρ4
nk(θ

◦)
− 1

)}

ξn,k−1∆tk
P

−→ τλ′
Σλ,

it suffices to verify Lindeberg’s condition for martingale differences (cf. Theorem

35.12 of Billingsley ([4])). For ǫ > 0 and A > 0, we have

N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

ξn,k−1
∆t2k
tN

I

{

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

ξn,k−1
∆t2k
tN

> ǫ

}

≤
N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

A
∆t2k
tN

I

{

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

A
∆t2k
tN

> ǫ

}

+

N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

ξn,k−1
∆t2k
tN

I {ξn,k−1 > A} ,

and further, due to Lemma 3.5 and the fact E|Gh|
4+δ

= O(h),

N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

A
∆t2k
tN

I

{

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

A
∆t2k
tN

> ǫ

}

≤
N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

A
∆t2k
tN

∣

∣

∣

∣

Y 2
nk

ρ2
nk(θ

◦)
− 1

∣

∣

∣

∣

δ/2(
A

ǫ

)δ/4
∆t

δ/2
k

t
δ/4
N

≤ K
N
∑

k=m

E

∣

∣

∣

∣

Y 2
nk

ρ2
nk(θ

◦)
− 1

∣

∣

∣

∣

2+δ/2
∆t

2+δ/2
k

t
1+δ/4
N

≤ K
N
∑

k=m

{(

E|Ynk|
4+δ

∆t
2+δ/2
k

+ 1

)}

∆t
2+δ/2
k

t
1+δ/4
N

≤ K
N
∑

k=m

{(

O(∆tk)

∆t
2+δ/2
k

+ 1

)}

∆t
2+δ/2
k

t
1+δ/4
N

→ 0,

and due to Proposition 3.3,

N
∑

k=m

E

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2

ξn,k−1
∆t2k
tN

I {ξn,k−1 > A}

=

N
∑

k=m

E

{

∆tk

(

E{Y 4
nk|Ftk−1

}

ρ4
nk(θ

◦)
− 1

)

ξn,k−1
∆tk
tN

I {ξn,k−1 > A}

}

≤ KE {ξ0I {ξ0 > A}} .

Then by letting A → ∞, we establish the proposition.
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Note that every component of
1

tN

∑N
k=m l̈nk(θ

∗
n)∆tk is expressed as

1

tN

N
∑

k=m

∂2

∂βi∂ηj∂ϕl
lnk(θ

∗
n)∆tk =

1

tN

N
∑

k=m

∂2

∂βi∂ηj∂ϕl
lnk(θ

◦
)∆tk

+
1

tN

N
∑

k=m

∂

∂θ′
∂2

∂βi∂ηj∂ϕl
lnk(δθ

∗
n + (1 − δ)θ◦)(θ∗n − θ◦)∆tk

with δ ∈ (0, 1). The rest of this subsection is devoted to verifying the convergence

of
1

tN

∑N
k=m l̈nk(θ

∗
n)∆tk.

Lemma 3.13.

1

tN

N
∑

k=m

(

1 − 2
Y 2

nk

ρ̃2
nk(θ

◦)

)

1

ρ̃2
nk(θ

◦)

∂

∂θ
ρ̃2

nk(θ
◦
)

1

ρ̃2
nk(θ

◦)

∂

∂θ′
ρ̃2

nk(θ
◦
)∆tk

P
−→ −Σ

and

1

tN

N
∑

k=m

(

Y 2
nk

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂2

∂θ∂θ′
ρ̃2

nk(θ
◦
)∆tk

P
−→ 0.

Hence,

1

tN

N
∑

k=m

l̈nk(θ
◦
)∆tk

P
−→ −Σ.

Proof: For convenience, we set ∂1 :=
∂

∂βi∂ηj∂ϕl and ∂2 :=
∂

∂βa∂ηb∂ϕc to de-

note any differential operators of the first order. Due to Lemmas 3.5 and 3.7, we

have

E

{

Y 2
nk

∣

∣

∣

∣

1

ρ̃2
nk(θ

◦)
−

1

ρ2
nk(θ

◦)

∣

∣

∣

∣

∣

∣

∣

∣

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

}

= E

{

ρ2
nk

∣

∣

∣

∣

1

ρ̃2
nk(θ

◦)
−

1

ρ2
nk(θ

◦)

∣

∣

∣

∣

∣

∣

∣

∣

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

}

= E

{∣

∣

∣

∣

ρ2
nk(θ

◦
)

ρ̃2
nk(θ

◦)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

}

≤ K
∥

∥σ̃2
n,k−1(θ

◦
) − σ2

n,k−1(θ
◦
)
∥

∥

2

∥

∥

∥

∥

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∥

∥

∥

∥

2

−→ 0,

uniformly in m ≤ k ≤ N , since

max
m≤k≤N

∥

∥

∥

∥

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∥

∥

∥

∥

2

< ∞
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(cf. Lemma 3.10). Moreover, due to Proposition 3.3,

1

t2N

N
∑

k=m

E

{

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)2(
∂1ρ̃

2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

)2
}

∆t2k

=
1

t2N

N
∑

k=1

E

{

∆tk

(

E
(

Y 4
nk|Ftk−1

)

ρ4
nk(θ

◦)
− 1

)

(

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

)2
}

∆tk

=
K

t2N

N
∑

k=1

E

(

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

)2

∆tk −→ 0,

so that we get

1

tN

N
∑

k=m

(

Y 2
nk

ρ2
nk(θ

◦)
− 1

)(

∂1ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

)

∆tk = oP (1),

i.e.,

1

tN

N
∑

k=m

(

Y 2
nk

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂

∂θ
ρ̃2

nk(θ
◦
)

1

ρ̃2
nk(θ

◦)

∂

∂θ′
ρ̃2

nk(θ
◦
)∆tk

P
−→ 0.

Similarly, we can see that

1

tN

N
∑

k=m

(

Y 2
nk

ρ̃2
nk(θ

◦)
− 1

)

1

ρ̃2
nk(θ

◦)

∂2

∂θ∂θ′
ρ̃2

nk(θ
◦
)∆tk

P
−→ 0.

On the other hand, we have

E
1

ρ̃2
nk(θ

◦)

∣

∣∂1ρ̃
2
nk(θ

◦
) − ∂1ρ

2
nk(θ

◦
)
∣

∣

∣

∣

∣

∣

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

≤ K
∥

∥∂1σ̃
2
n,k−1(θ

◦
) − ∂1σ

2
n,k−1(θ

◦
)
∥

∥

2

∥

∥

∥

∥

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∥

∥

∥

∥

2

−→ 0,

and

E

∣

∣

∣

∣

1

ρ̃2
nk(θ

◦)
−

1

ρ2
nk(θ

◦)

∣

∣

∣

∣

∣

∣

∣

∣

∂1ρ
2
nk(θ

◦
)
∂2ρ̃

2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

= E

∣

∣

∣

∣

ρ2
nk(θ

◦
)

ρ̃2
nk(θ

◦)
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∂1ρ
2
nk(θ

◦
)

ρ2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∣

∣

∣

∣

≤ K
∥

∥σ̃2
n,k−1(θ

◦
) − σ2

n,k−1(θ
◦
)
∥

∥

2

∥

∥

∥

∥

∂1ρ
2
nk(θ

◦
)

ρ2
nk(θ

◦)

∂2ρ̃
2
nk(θ

◦
)

ρ̃2
nk(θ

◦)

∥

∥

∥

∥

2

−→ 0

uniformly in m ≤ k ≤ N . Therefore,

1

tN

N
∑

k=m

l̈nk(θ
◦
)∆tk = −

1

tN

N
∑

k=m

1

σ4
n,k−1(θ

◦)

∂

∂θ
σ2

n,k−1(θ
◦
)

∂

∂θ′
σ2

n,k−1(θ
◦
)∆tk +oP (1).

Henceforth, the lemma is validated by Lemma 3.12.
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Lemma 3.14. We have

max
m≤k≤N

E sup
θ∈Θ

∣

∣

∣

∣

∂3

∂βi∂ηj∂ϕl
lnk(θ)

∣

∣

∣

∣

< ∞.

Hence,

1

tN

N
∑

k=m

∂

∂θ′
∂2

∂βi∂ηj∂ϕl
lnk(δθ

∗
n + (1 − δ)θ◦)(θ∗n − θ◦)∆tk

P
−→ 0.

Proof: Observe that
∂3

∂βi∂ηj∂ϕl lnk(θ) is a finite sum of the terms:

Y 2
nk

ρ̃2
nk(θ)

3
∏

i=1

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

,
Y 2

nk

ρ̃2
nk(θ)

1

ρ̃2
nk(θ)

∂

∂βa∂ηb∂ϕc
ρ̃2

nk(θ)
1

ρ̃2
nk(θ)

∂2

∂βi∂ηj∂ϕl
ρ̃2

nk(θ),

Y 2
nk

ρ̃2
nk(θ)

1

ρ̃2
nk(θ)

∂3

∂βa∂ηb∂ϕc
ρ̃2

nk(θ),

where ∂i, (i = 1, 2, 3) are differential operators of the first order. Now, by Lemmas

3.5 and 3.10,

E sup
θ

Y 2
nk

ρ̃2
nk(θ)

3
∏

i=1

∣

∣

∣

∣

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

≤ KE
Y 2

nk

∆tk

3
∏

i=1

sup
θ

∣

∣

∣

∣

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

≤ KE
ρ2

nk

∆tk

3
∏

i=1

sup
θ

∣

∣

∣

∣

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

≤ KE
(

σ2
n,k−1 + O(∆)

)

3
∏

i=1

sup
θ

∣

∣

∣

∣

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

≤ K‖σ2
n,k−1+O(∆)‖2

∥

∥

∥

∥

∥

3
∏

i=1

sup
θ

∣

∣

∣

∣

∂iρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

≤ K‖σ2
n,k−1+O(∆)‖2

∥

∥

∥

∥

sup
θ

∣

∣

∣

∣

∂1ρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

4

∥

∥

∥

∥

sup
θ

∣

∣

∣

∣

∂2ρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

8

∥

∥

∥

∥

sup
θ

∣

∣

∣

∣

∂3ρ̃
2
nk(θ)

ρ̃2
nk(θ)

∣

∣

∣

∣

∥

∥

∥

∥

8

< ∞

uniformly in m ≤ k ≤ N . The other terms can be treated in essentially the same

fashion. Hence, the lemmas is asserted.

The following proposition is due to Lemmas 3.13-3.14:

Proposition 3.5.

1

tN

N
∑

k=m

l̈nk(θ
∗
n)∆tk

P
−→ −Σ.

The Proof of Asymptotic Normality. (2.4) can be proven by using

standard arguments (cf. the proof of Theorem 2.2 in Francq and Zaköıan ([8]))

and the results in (3.7) and Propositions 3.3-3.5.
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APPENDIX

Lemma A.1. Suppose that C3 holds. Then,

1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ)

+ log σ2
s(θ)

}

ds
P

−→ E

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

,(A.1)

1

tN

∫ tN

tm

1

σ4
s(θ

◦)

∂

∂θ
σ2

s(θ
◦
)

∂

∂θ′
σ2

s(θ
◦
)ds

P
−→ E

1

σ4
0(θ

◦)

∂

∂θ
σ2

0(θ
◦
)

∂

∂θ′
σ2

0(θ
◦
).(A.2)

Proof: We only verify (A.1) since (A.2) can be proved similarly. Let h > 0

and

σ2
s(θ, h) := β/η + ϕ

∫

(s−h,s)
e−η(s−u)σ2

ud[L, L]u.

Then we have

E

∣

∣

∣

∣

1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ)

+ log σ2
s(θ)

}

ds −
1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ, h)

+ log σ2
s(θ, h)

}

ds

∣

∣

∣

∣

(A.3)

≤ E

∣

∣

∣

∣

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

−

{

σ2
0

σ2
0(θ, h)

+ log σ2
0(θ, h)

}∣

∣

∣

∣

≤ EK
{

σ2
0|σ

2
0(θ) − σ2

0(θ, h)|
}

≤ K‖σ2
0‖2‖σ

2
0(θ) − σ2

0(θ, h)‖2 ≤ Ke−ηh.

Note that

σ2
s = β◦

∫ s

s−h

eXu−Xs−du + σ2
s−he−Xs−h−Xs−

and thus,

σ2
s

σ2
s(θ, h)

+ log σ2
s(θ, h) ∈ Gs

s−h,

where Gt
s := σ{σu, Lu − Ls : s < u < t}. Let

α(v) := sup
0≤t<∞

sup
{

P (A ∩ B) − P (A)P (B) : A ∈ Gt
−∞, B ∈ G∞

t+v

}

,

and define α∗
in the same way with replacing Gt

s by σ{σ2
u : s < u < t}. According

to the proof of Theorem 3.5 of Haug et al. ([10]), we can have

0 ≤ α(v) ≤ 6α∗
(v) → 0 as v → ∞,

(cf. Fasen ([7])), which implies that

{

σ2
s

σ2
s(θ,h)

+ log σ2
s(θ, h) : s ≥ 0

}

is càglàd,

strictly stationary and strong mixing. Thus,

Zi :=

∫ i

i−1

(

σ2
s

σ2
s(θ, h)

+ log σ2
s(θ, h)

)

ds ∈ Gi
i−h−1, i = 1, 2, ...
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is strictly stationary and ergodic. Then, since by the ergodic theorem,

1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ, h)

+ log σ2
s(θ, h)

}

ds =
1

tN

[tN ]
∑

i=[tm]+1

Zi + oP (1)

P
−→ E

{

σ2
0

σ2
0(θ, h)

+ log σ2
0(θ, h)

}

owing to (A.3), by letting h → ∞, we get

1

tN

∫ tN

tm

{

σ2
s

σ2
s(θ)

+ log σ2
s(θ)

}

ds
P

−→ E

{

σ2
0

σ2
0(θ)

+ log σ2
0(θ)

}

.

This completes the proof.

Lemma A.2. Suppose that C2-C3 hold and
∫

R
x3dΠ(x) = 0. Then, as

h ↓ 0,

E
{

(Gt+h − Gt)
4|Ft

}

= h

(∫

R

x4
Π(dx) + o(1)

)

σ4
t ,

E
{

(Gt+h − Gt)
2|Ft

}

= h(1 + o(1))σ2
t

uniformly in t ≥ 0.

Proof: By the strict stationarity, it suffices to consider the case t = 0. For

h > 0,

(Gh − G0)
2

= 2

∫

(0,h]
Gu−dGu + [G, G]h = 2

∫

(0,h]
Gu−σudLu +

∫

(0,h]
σ2

ud[L, L]u,

(Gh − G0)
4

= 2

∫

(0,h]
G2

s−dG2
s + [G2, G2

]h

= 4

∫

(0,h]
G3

s−σsdLs + 2

∫

(0,h]
G2

s−σ2
sd[L, L]s

+4

∫

(0,h]
G2

s−σ2
sd[L, L]s +

∫

(0,h]
σ4

sd[[L, L], [L, L]]s

+4

∫

(0,h]
Gs−σ3

sd[[L, L], L]s,

where

E

{

∫

(0,h]
G3

s−σsdLs

∣

∣

∣

∣

∣

F0

}

= 0.

Since
∫

R
x3dΠ(x) = 0,

E

{

∫

(0,h]
Gs−σ3

sd[[L, L], L]s

∣

∣

∣

∣

∣

F0

}

= 0.
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Thus, we have

E
{

(Gh − G0)
4|F0

}

= 6

∫

(0,h]
E
{

G2
s−σ2

s |F0

}

ds +

∫

R

x4
Π(dx)

∫

(0,h]
E
{

σ4
s |F0

}

ds.

Let Zs =
∫

(0,s] Gu−σudLu. By the integration by parts and associativity

(cf. [17]), we can write

Zsσ
2
s+ = β◦

∫

(0,s]
Zu−du − η◦

∫

(0,s]
Zu−σ2

udu + ϕ◦

∫

(0,s]
Zs−σ2

ud[L, L]u +

∫

(0,s]
σ3

uGu−dLu

+

[

∫

(0,·]
(β◦ − η◦σ2

u)du + ϕ◦

∫

(0,·]
σ2

ud[L, L]u ,

∫

(0,·]
Gu−σudLu

]

s

.

Note that for F ∈ F0,

E

{

∫

(0,s]
Zu−du · 1F

}

=

∫

(0,s]
E {Zu−1F } du =

∫

(0,s]
E {E(Zu−|F0)1F } du = 0,

E

{

∫

(0,s]
Zu−σ2

udu · 1F

}

=

∫

(0,s]
E
{

Zuσ2
u1F

}

du.

Since
[

∫

(0,·]
(β◦ − η◦σ2

u)du + ϕ◦

∫

(0,·]
σ2

ud[L, L]u,

∫

(0,·]
Gu−σudLu

]

=

[

∫

(0,·]
(β◦ − η◦σ2

u)du,

∫

(0,·]
Gu−σudLu

]

+

[

ϕ◦

∫

(0,·]
σ2

ud[L, L]u,

∫

(0,·]
Gu−σudLu

]

= ϕ◦

∫

(0,·]
Gu−σ3

ud[[L, L], L]u,

we have

E

{[

∫

(0,·]
(β◦ − η◦σ2

u)du + ϕ◦

∫

(0,·]
σ2

ud[L, L]u,

∫

(0,·]
Gu−σudLu

]

1F

}

= 0

due to
∫

R
x3dΠ(x) = 0. Thus,

E
{

Zsσ
2
s1F

}

= (ϕ◦ − η◦)

∫ s

0
E
{

Zuσ2
u1F

}

du, E
{

Z0σ
2
01F

}

= 0,

which implies E
{

Zsσ
2
s1F

}

= 0 for each F ∈F0. This in turn implies E
{

Zsσ
2
s |F0

}

= 0 and

E
{

G2
s−σ2

s |F0

}

= E
{

G2
sσ

2
s |F0

}

= E

{

σ2
s

∫

(0,s]
σ2

ud[L, L]u + 2σ2
s

∫

(0,s]
Gu−σudLu

∣

∣

∣

∣

∣

F0

}

= ϕ−1
◦ E

{

σ2
s

{

σ2
s+ − σ2

0+ − β◦s + η◦
∫ s

0
σ2

udu

}∣

∣

∣

∣

F0

}

= ϕ−1
◦

{

E{σ4
s |F0} − (σ2

0 + β◦s)E{σ2
s |F0} + η◦

∫ s

0
E{σ2

sσ
2
u|F0}du

}

.
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Since σ2
s = β◦

∫ s

0 e−(Xs−−Xu)du + σ2
0e

−Xs− , we can have

E{σ2
s |F0} = β◦

∫ s

0
Ee−Xs−udu + σ2

0Ee−Xs = β◦

∫ s

0
Ee−Xudu + σ2

0Ee−Xs

= β◦

∫ s

0
Ee−Xudu + σ2

0Ee−Xs

=
β◦

(esΨ(1) − 1)

Ψ(1)
+ esΨ(1)σ2

0.

Then, observing

σ4
s = β2

◦

{∫ s

0
e−(Xs−−Xu)du

}2

+ 2σ2
0e

−Xs−β◦

∫ s

0
e−(Xs−−Xu)du + σ4

0e
−2Xs− ,

we obtain

E
{

σ4
s |F0

}

= β2
◦E

{∫ s

0
e−Xudu

}2

+ 2β◦σ2
0E

{∫ s

0
eXu−2Xsdu

}

+ σ4
0Ee−2Xs

= β2
◦

{

2

Ψ(1)Ψ(2)
+

2

Ψ(2) − Ψ(1)

(

esΨ(2)

Ψ(2)
−

esΨ(1)

Ψ(1)

)}

+2β◦σ2
0

esΨ(2) − esΨ(1)

Ψ(2) − Ψ(1)
+ σ4

0e
sΨ(2)

and

E
{

σ2
sσ

2
u|F0

}

= E
{

σ2
uE
{

σ2
s |Fu

}∣

∣F0

}

= E

{

σ2
u

β◦
(e(s−u)Ψ(1) − 1)

Ψ(1)
+ e(s−u)Ψ(1)σ4

u

∣

∣

∣

∣

∣

F0

}

= E{σ2
u|F0}

β◦{e(s−u)Ψ(1) − 1}

Ψ(1)
+ e(s−u)Ψ(1)

E
{

σ4
u|F0

}

=

{

β◦
(euΨ(1) − 1)

Ψ(1)
+ euΨ(1)σ2

0

}

β◦{e(s−u)Ψ(1) − 1}

Ψ(1)

+e(s−u)Ψ(1)β2
◦

{

2

Ψ(1)Ψ(2)
+

2

Ψ(2) − Ψ(1)

(

euΨ(2)

Ψ(2)
−

euΨ(1)

Ψ(1)

)}

+2e(s−u)Ψ(1)β◦σ2
0

euΨ(2) − euΨ(1)

Ψ(2) − Ψ(1)
+ e(s−u)Ψ(1)σ4

0e
uΨ(2).

Hence,

E
{

(Gh − G0)
4|F0

}

= 6

∫

(0,h]
E
{

G2
s−σ2

s |F0

}

ds +

∫

R

x4
Π(dx)

∫

(0,h]
E
{

σ4
s |F0

}

ds

= h

(∫

R

x4
Π(dx) + o(1)

)

σ4
0,

E
{

(Gh − G0)
2|F0

}

= h(1 + o(1))σ2
0.

This completes the proof.
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1. INTRODUCTION

Given X1, ..., Xn independent copies of an absolutely continuous real ran-

dom variable with unknown density and distribution functions f and F , respec-

tively, a kernel estimator of F is introduced by authors such as Tiago de Oliveira

[33], Nadaraya [20] or Watson and Leadbetter [35]. Such an estimator arises as

an integral of the Parzen-Rosenblatt kernel density estimator (see Rosenblatt [25]

and Parzen [21]) and is defined, for x ∈ R, by

(1.1) F̄nh(x) =
1

n

n
∑

i=1

K̄

(

x−Xi

h

)

,

where, for u ∈ R,

K̄(u) =

∫

]−∞,u]
K(v)dv,

with K a kernel on R, that is, a bounded and symmetric probability density func-

tion with support [−1, 1] and h = hn a sequence of strictly positive real numbers

converging to zero when n goes to infinity. Theoretical properties of this esti-

mator, including bandwidth selection, have been investigated by several authors.

Classical and more recent references, showing a continued interest in the sub-

ject, are, among others, Winter [36, 37], Yamato [38], Falk [7], Singh, Gasser and

Prasad [28], Swanepoel [30], Jones [13], Shirahata and Chu [27], Sarda [26], Alt-

man and Léger [1], Bowman, Hall and Prvan [2], Tenreiro [31, 32], Liu and Yang

[16], Giné and Nickl [11], Mason and Swanepoel [18] and Chacón and Rodŕıgues-

Casal [3].

If the support of f is known to be the finite interval [a, b], from the conti-

nuity of F it is well known that the kernel estimator (1.1) is an asymptotically

unbiased estimator of F if and only if h→ 0 as n goes to infinity (see Yamato

[38], Lemma 1). However, if F is not smooth enough at the extreme points of

the distribution support, the bias of F̄nh does not achieve the standard h2
order

of convergence on the left and right boundary regions. In fact, assuming that

the restriction of F to the interval [a, b] is twice continuously differentiable, for

x = a+ αh with, α ∈ [0, 1], we have

EF̄nh(x) − F (x) = hF ′
+(a)ϕ1(α) +

h2

2
F ′′

+(a)ϕ2(α) + o(h2
),

uniformly in α, with

(1.2) ϕ1(α) = α(µ0,α(K) − 1) − µ1,α(K),

ϕ2(α) = α2
(µ0,α(K) − 1) − 2αµ1,α(K) + µ2,α(K) and µℓ,α(K) =

∫ α

−1 z
ℓK(z)dz.

A similar expansion is valid for x in the right boundary region. As noticed by

Gasser and Müller [9] in a regression context, this local behaviour dominates the
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global behaviour of the estimator which implies an inferior global order of con-

vergence for the kernel estimator (1.1) which can be confirmed by examining the

asymptotic behaviour of widely used measures of the quality of kernel estimators

such as the maximum absolute deviation or the mean integrated squared error.

This type of boundary effect for kernel estimators of curves with compact

supports is well-known in regression and density function estimation frameworks

and several modified estimators have been proposed in the literature (see Müller

[19], Karunamuni and Alberts [14], and Karunamuni and Zhang [15], and refer-

ences therein). In order to improve the theoretical performance of the standard

kernel distribution function estimator when the underlying distribution function

F is not smooth enough at the extreme points of the distribution support, the

use of the so-called boundary kernels, suggested for regression and density kernel

estimators by Gasser and Müller [9], Rice [24], Gasser, Müller and Mammitzsch

[10] and Müller [19], is addressed in this paper, which is organised as follows.

In Section 2, we introduce the boundary modified kernel distribution func-

tion estimator and some families of boundary kernels are presented, one of them

leading to proper distribution function estimators. Contrary to the boundary

modified kernel density estimators which possibly assume negative values, in a

distribution function estimation framework the theoretical advantage of using

boundary kernels is compatible with the natural property of obtaining a proper

distribution function estimate. In Section 3 we show that the Chung-Smirnov

theorem, that gives the supremum norm convergence rate of the empirical distri-

bution function estimator, is also valid for the boundary kernel distribution func-

tion estimator. In Section 4 we present an asymptotic expansion for the mean

integrated squared error of the estimator. This result illustrates the superior

theoretical performance of the boundary kernel distribution function estimator

over the classical kernel estimator whenever the underlying distribution function

is not smooth enough at the extreme points of the distribution support. The au-

tomatic selection of the bandwidth is addressed in Section 5 where beta reference

distribution and cross-validation bandwidth selectors are considered. Simulations

suggest that the cross-validation bandwidth performs well, although the simpler

reference distribution bandwidth is quite effective for the generality of test dis-

tributions. All the proofs can be found in Section 6. The simulations and plots

in this paper were carried out using the R software [23].

2. KERNEL ESTIMATOR WITH BOUNDARY KERNELS

In order to deal with the boundary effects that occur in nonparametric re-

gression and density function estimation, the use of boundary kernels is proposed

and studied by authors such as Gasser and Müller [9], Rice [24], Gasser, Müller
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and Mammitzsch [10] and Müller [19]. Next we extend this approach to a distri-

bution function estimation framework, where we assume that the support of the

underlying distribution is known to be the finite interval [a, b].

We consider the boundary modified kernel distribution function estimator

given by

(2.1) F̃nh(x) =
1

n

n
∑

i=1

K̄x,h

(

x−Xi

h

)

,

for x ∈ ]a, b[ and 0 < h ≤ (b− a)/2, where

K̄x,h(u) =

∫

]−∞,u]
Kx,h(v)dv,

and Kx,h takes the form

Kx,h(u) =







KL
(u; (x− a)/h), a < x < a+ h

K(u), a+ h ≤ x ≤ b− h
KR

(u; (b− x)/h), b− h < x < b,

where K is a bounded and symmetric probability density function with support

[−1, 1], and KL
(·;α) and KR

(·;α) are second order (left and right) boundary ker-

nels for α ∈ ]0, 1[. Therefore, KL
(·;α) and KR

(·;α) are such that theirs supports

are contained in the intervals [−1, α] and [−α, 1], respectively, and

∫

Kℓ
(u;α)du = 1,

∫

uKℓ
(u;α)du = 0 and

∫

u2Kℓ
(u;α)du 6= 0,

for all α ∈ ]0, 1[, with ℓ = R,L. Additionally we define F̃nh(x) = 0 for x ≤ a and

F̃nh(x) = 1 for x ≥ b.

If we write

K̄ℓ
(u;α) =

∫

]−∞,u]
Kℓ

(v;α)dv,

for ℓ = L,R, the kernel K̄x,h can be written as

K̄x,h(u) =







K̄L
(u; (x− a)/h), a < x < a+ h

K̄(u), a+ h ≤ x ≤ b− h
K̄R

(u; (b− x)/h), b− h < x < b.

In the following examples we present three families of boundary kernels.

We will assume that KR
(u;α) = KL

(−u;α). In this case, we have K̄R
(u;α) =

1 − K̄L
(−u;α).
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Example 2.1. In a density estimation setting the standard choice for KL

is

KL
(u;α) = (Aα(K) +Bα(K)u)K(u)I(−1 ≤ u ≤ α),

where Aα(K) = µ2,α(K)/Dα(K), Bα(K) = −µ1,α(K)/Dα(K) and Dα(K) =

µ0,α(K)µ2,α(K) − µ1,α(K)
2
. Despite being negative for small values of α, this

type of boundary kernels is suitable for density estimation. Contrary to nonneg-

ative boundary kernels, they allow the control of the variability of the estimator

near the support distribution boundary (see Gasser and Müller [9]). In this case,

we get

K̄L
(u;α) = (Aα(K)K̄(u) +Bα(K)µ1,u(K))I(−1 ≤ u ≤ α) + I(u > α).

A local behaviour analysis of the modified kernel distribution function es-

timator near the end points of the distribution support reveals that this class of

boundary kernels may not be especially appropriate for the estimation of a distri-

bution function. Restricting our analysis to the left-sided boundary region, and

assuming the continuity of the second derivative of F in ]a, a+h[, for x = a+αh,

with α ∈ ]0, 1[, we have

(2.2) EF̃nh(x) − F (x) =
h2

2
F ′′

(x)µ(α) + o(h2
)

and

(2.3) Var F̃nh(x) =
F (x)(1 − F (x))

n
−
h

n
F ′

(x)ν(α) +O(n−1h2
),

where

µ(α) =

∫ α

−1
z2KL

(z;α) dz

and

ν(α) =

∫ α

−1
zBL

(z;α) dz,

with BL
(u;α) = 2K̄L

(u;α) KL
(u;α) (see expansions (6.4) and (6.5) in Section

6).

For the previous class of kernels the quantity ν(α) can be negative for small

values of α, which leads to an estimator whose local variability is larger than the

empirical distribution function one. Additionally, as µ(α) converges to a strictly

negative value, when α tends to zero, a local bias can occur for small values of

α (at the order of convergence h2
). In the next examples we take for KL

(·;α)

a symmetric probability density function with support [−α, α]. In this case,

Fnh is nonnegative and ν(α) > 0, for α ∈ ]0, 1[. Therefore, the boundary kernel

estimator has a local variability inferior to the empirical distribution function

one. Additionally, µ(α) converges to zero, as α approaches zero (for the boundary

kernels of Example 2.2, this is true whenever K is continuous on a neighbourhood

of the origin with K(0) > 0).
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Example 2.2. If K is such that
∫ α

0 K(u)du > 0 for all α > 0, for

KL
(u;α) = (2K̄(α) − 1)

−1K(u)I(−α ≤ u ≤ α),

we have

K̄L
(u;α) = (2K̄(α) − 1)

−1
(K̄(u) − K̄(−α))I(−α ≤ u ≤ α) + I(u > α).

Example 2.3. If we take

KL
(u;α) = K(u/α)/α

we get

K̄L
(u;α) = K̄(u/α).

Finally, note that, for these two last classes of boundary kernels, F̃nh is,

with probability one, a continuous probability distribution function. Therefore, in

a distribution function estimation framework, the theoretical advantage of using

boundary kernels, which we establish in the following sections, is compatible with

the natural property of obtaining proper distribution function estimates.

3. UNIFORM CONVERGENCE RESULTS

The almost sure (or complete) uniform convergence of the classical kernel

distribution function estimator F̄nh to F was established by Nadaraya [20], Winter

[36] and Yamato [38], whereas Winter [37] proved that, under certain regularity

conditions, F̄nh has the Chung-Smirnov law of iterated logarithm property (see

also Degenhardt [5] and Chacón and Rodŕıgues-Casal [3]). In this section we show

that these results are also valid for the boundary kernel distribution function

estimator (2.1). For that, we will need the following lemma that gives upper

bounds for ||F̃nh − EF̃nh|| and ||EF̃nh − F ||, where || · || denotes the supremum

norm.

Lemma 3.1. For all 0 < h ≤ (b− a)/2, we have

(3.1) ||F̃nh − EF̃nh|| ≤ CK ||Fn − F ||

and

(3.2) ||EF̃nh − F || ≤ CK sup

x,y∈[a,b]: |x−y|≤h

|F (x) − F (y)|,

where Fn is the empirical distribution function and

CK = max

(

1, max
ℓ=L,R

sup

α∈ ]0,1[

∫

|Kℓ
(u;α)| du

)

.
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Moreover, if the derivative F ′ is continuous on [a, b], then

(3.3) ||EF̃nh − F || ≤ hCK sup

x,y∈[a,b]: |x−y|≤h

|F ′
(x) − F ′

(y)|.

The next results follow straightforwardly from Lemma 3.1 after separat-

ing the difference F̃nh − F into a stochastic component F̃nh − EF̃nh and a non-

stochastic bias component EF̃nh − F . The first one is a consequence of a well-

known exponential inequality due to Dvoretzky, Kiefer and Wolfowitz [6], which

gives a bound on the tail probabilities of ||Fn − F ||, and the second one follows

from the law of iterated logarithm for the empirical distribution function esti-

mator due to Smirnov [29] and Chung [4] (see also van der Vaart [34], p. 268,

and references therein). Also note that the condition imposed on the boundary

kernels is trivially satisfied by nonnegative boundary kernels such as those of the

Examples 2.2 and 2.3. It is also fulfilled by the boundary kernels of Example 2.1.

Theorem 3.1. For ℓ = L,R, let Kℓ be such that

sup

α∈ ]0,1[

∫

|Kℓ
(u;α)| du <∞.

If h→ 0, then

||F̃nh − F || → 0 almost completely.

Theorem 3.2. Under the conditions of Theorem 3.1, if F is Lipschitz

and (n/ log log n)
1/2h→ 0, then F̃nh has the Chung-Smirnov property, i.e.,

lim sup
n→+∞

(2n/ log log n)
1/2||F̃nh − F || ≤ 1 almost surely.

Moreover, the same is true whenever F ′ is Lipschitz on [a, b] and h satisfies the

less restrictive condition (n/ log log n)
1/2h2 → 0.

Remark 3.1. If F is Lipschitz and the bandwidth fulfills the more restric-

tive condition n1/2h→ 0, the Chung-Smirnov property can be deduced from the

strong approximation property
√
n ||F̃nh −Fn|| = o(1) almost surely, that can be

derived by adapting the approach by Fernholz [8]. In this case,
√
n ||F̃nh−F || and

the Kolmogorov statistic
√
n ||Fn − F || have the same asymptotic distribution.

Remark 3.2. When F ′
is Lipschitz on [a, b] and (n/ log log n)

1/2h2 → 0,

Fnh has the Chung-Smirnov property without assuming the continuity of F ′
at

x = a or x = b. This shows that Fnh improves on F̄nh for distribution functions

which are not smooth enough at the extreme points of the distribution support

(cf. Winter [37], Theorem 3.2).



Boundary kernels for distribution function estimation 177

Remark 3.3. If F is the uniform distribution on [a, b], from inequality

(3.3) we deduce that ||EF̃nh − F || = 0, for all 0 < h ≤ (b− a)/2. Therefore,

||F̃nh − F || = ||F̃nh − EF̃nh|| ≤ CK ||Fn − F ||,

and F̃nh has the Chung-Smirnov property even when h does not converge to zero

as n goes to infinity.

Remark 3.4. In practice the bandwidth h is usually chosen on the basis

of the data, that is, h = ĥ(X1, ..., Xn). From the proof of Lemma 3.1 we easily

conclude that the so-called automatic boundary kernel estimator defined by (2.1)

with h = ĥ satisfies the inequalities

||F̃
nĥ

− F || ≤ CK

{

||Fn − F || + sup

x,y∈[a,b]: |x−y|≤ĥ

|F (x) − F (y)|
}

,

for any F , and

||F̃
nĥ

− F || ≤ CK

{

||Fn − F || + ĥ sup

x,y∈[a,b]: |x−y|≤ĥ

|F ′
(x) − F ′

(y)|
}

,

whenever F ′
is continuous on [a, b]. Therefore, under the conditions of Theorems

3.1 and 3.2, if the assumptions on h are replaced by their almost sure counterparts,

we conclude that the automatic boundary kernel estimator, F̃
nĥ

, is an almost sure

uniform convergent estimator of F that enjoys the Chung-Smirnov property.

4. MISE ASYMPTOTIC EXPANSION

A widely used measure of the quality of the kernel estimator is the mean

integrated squared error given by

MISE(F ;h) = E

∫

{F̃nh(x) − F (x)}2dx

=

∫

Var F̃nh(x)dx+

∫

{EF̃nh(x) − F (x)}2dx

=: Ṽ(F ;h) + B̃(F ;h),

where the integrals are over R. Denoting by V̄(F ;h) and B̄(F ;h) the corre-

sponding variance and bias terms for the classical kernel distribution function

estimator (1.1), the approach followed by Swanepoel [30] leads to the following

expansions whenever the restriction of F to the interval [a, b] is twice continuously

differentiable:

V̄(F ;h) =
1

n

∫

F (x)(1 − F (x))dx−
h

n

∫

uB(u)du+O
(

n−1h2
)

(4.1)
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where

B(u) = 2K̄(u)K(u),

for u ∈ R, and

B̄(F ;h) = h3
(

F ′
+(a)2 + F ′

−(b)2
)

∫ 1

0
ϕ1(α)

2dα(4.2)

+ h4
(

F ′
+(a)F ′′

+(a) − F ′
−(b)F ′′

−(b)
)

∫

u2K(u) du

∫ 1

0
ϕ1(α)dα

+
h4

4

(∫

u2K(u) du

)2

||F ′′||22 + o(h4
),

where ϕ1 is given by (1.2) and || · ||2 is the L2 distance in [a, b].

Depending on the smoothness of F on R, we see that two different orders

of convergence to zero for the mean integrated square error can be obtained.

In the smooth case, that is, when F ′
+(a) = F ′

−(b) = 0, the previous expansions

agree with the classical ones (cf. Jones [13]). However, in the non-smooth case an

inferior global order of convergence occurs and a different order of convergence for

the optimal bandwidth, in the sense of minimising the asymptotic MISE, takes

place.

Next we show that, even when F is not smooth at the extreme points of the

distribution support, the leading terms of the MISE expansion of the boundary

kernel estimator agree with those given in Jones [13] for the classical kernel distri-

bution function estimator. This shows the theoretical advantage of the boundary

kernel distribution function estimator over the classical kernel estimator. Next

define Bℓ
(u;α) = 2K̄ℓ

(u;α)Kℓ
(u;α), for u ∈ R, α ∈ ]0, 1[ and ℓ = L,R.

Theorem 4.1. For ℓ = L,R, let Kℓ be such that
∫ 1

0

(∫

|Kℓ
(u;α)|du

)2

dα <∞,

and assume that the restriction of F to the interval [a, b] is twice continuously

differentiable. We have

Ṽ(F ;h) =
1

n

∫

F (x)(1 − F (x))dx−
h

n

∫

uB(u)du+O
(

n−1h2
)

and

B̃(F ;h) =
h4

4

(∫

u2K(u)du

)2

||F ′′||22 + o
(

h4
)

.

Note that the previous assumptions on the boundary kernels are trivially

satisfied by nonnegative boundary kernels such as those of Examples 2.2 and 2.3,

and also by the boundary kernels of Example 2.1. Next we give the asymptotically

optimal choice for the bandwidth in the sense of minimising the leading terms in

the expansion of the MISE.
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Theorem 4.2. Under the conditions of Theorem 4.1, let us assume that

CB > 0 where

CB = 2

∫

uB(u) du−

∫ 1

0

∫

u
(

BL
(u;α) +BR

(u;α)
)

dudα.

Then the asymptotically optimal bandwidth is given by

h0 = min

(

δ(K)||F ′′||
−2/3
2 n−1/3 ,

b− a

2
min

(

1 ,

∫

uB(u)du
/

CB

))

,(4.3)

where

δ(K) =

(∫

uB(u) du

)1/3(∫

u2K(u)du

)−2/3

.

Remark 4.1. Following the approach by Marron and Jones [17], and tak-

ing into account the results of Swanepoel [30] and Jones [13], we conclude that

the uniform density on [−1, 1] is the optimal kernel in the sense of minimising the

asymptotic MISE. However, as noticed by Jones [13], other suboptimal kernels,

such as the Epanechnikov kernel on [−1, 1], have a performance very close to the

optimal one.

Remark 4.2. For the boundary kernels of Example 2.3, we have CB =
∫

uB(u)du > 0 and the asymptotically optimal bandwidth is simply given by

h0 = min
(

δ(K)||F ′′||
−2/3
2 n−1/3, (b− a)/2

)

.

5. BANDWIDTH SELECTION

In a kernel estimation setting the bandwidth is usually chosen on the basis

of the data. For the classical kernel distribution function estimator (1.1) and as-

suming that f is a smooth function over the whole real line, two main approaches

for the automatic selection of h can be found in the literature. Cross-validation

methods are discussed in Sarda [26], Altman and Léger [1] and Bowman, Hall

and Prvan [2], and direct plug-in methods, including normal reference distribu-

tion methods, are proposed by Altman and Léger [1], Polansky and Baker [22]

and Tenreiro [32]. In the following subsections we consider two fully automatic

bandwidth selectors for the boundary kernel distribution function estimator. The

first one is a reference distribution method based on the beta distribution family.

The second one is a cross-validation bandwidth selector inspired in the approach

of Bowman, Hall and Prvan [2].
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5.1. A reference distribution method

A commonly used quick and simple method for choosing the bandwidth

involves using the asymptotically optimal bandwidth for a fixed reference dis-

tribution having the same mean and scale as that estimated for the underlying

distribution. In what follows a beta distribution over the interval [a, b] with both

shape parameters greater than or equal to 2 is taken as reference distribution.

The restriction on the shape parameters values takes into account the assump-

tions on F imposed in Theorem 4.1. If X has a beta distribution over the interval

[a, b] with shape parameters p and q, the expected value of X is given by

E(X) = a+ (b− a)
p

p+ q

and the variance of X by

Var(X) = (b− a)2
pq

(p+ q)2(p+ q + 1)

(see Johnson, Kotz and Balakrishnan [12], p. 222). Taking the sample mean X̄

and the sample variance S2
as estimators of E(X) and Var(X), respectively, the

method of moments estimators for the parameters p and q are given by

p̃ = X̃(X̃(1 − X̃)S̃−2 − 1) and q̃ = (1 − X̃)(X̃(1 − X̃)S̃−2 − 1),

where X̃ = (X̄ − a)/(b− a) and S̃2
= S2/(b− a)2. Thus, denoting by F̂ the beta

distribution over the interval [a, b] with shape parameters p̂ = max(2, p̃) and q̂ =

max(2, q̃), the considered beta optimal bandwidth, which we denote by ĥBR, is

defined by (4.3) with ||F̂ ′′||2 in place of ||F ′′||2 where

||F̂ ′′||22 =
(p̂− 1)(q̂ − 1)B(2p̂− 3, 2q̂ − 3)

(b− a)(2(p̂+ q̂) − 5)B(p̂, q̂)2
,

and B(x, y) =
∫ 1
0 t

x−1
(1 − t)y−1dt is the beta function.

5.2. A cross-validation method

An alternative approach for bandwidth selection can be based on the cross-

validation ideas of Bowman, Hall and Prvan [2]. The cross-validation function

proposed by these authors is a mean over all the observations of the integrated

squared error between the indicator function I(Xi ≤ x) associated to the obser-

vation Xi, and the boundary kernel estimator constructed from the data with

observation Xi omitted, that is,

CV(h) =
1

n

n
∑

i=1

∫

{I(Xi ≤ x) − F̃−ih(x)}2dx,
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where

F̃−ih(x) =
1

n− 1

n
∑

j=1
j 6=i

K̄x,h

(

x−Xj

h

)

.

The cross-validation bandwidth, which we denote by ĥCV, is the minimiser of

CV(h). The main motivation for this method comes from the equality

E

(

CV(h) −
1

n

n
∑

i=1

∫

{I(Xi ≤ x) − F (x)}2dx

)

= E

∫

{F̃n−1,h(x) − F (x)}2dx,

which shows that the criterion function CV(h) provides an unbiased estimator of

MISE(F ;h) for a sample size n− 1, shifted vertically by an unknown term which

is independent of h. Although the asymptotic behaviour of the cross-validation

bandwidth is not discussed in this paper, it will be of interest to know whether

ĥCV is asymptotically equivalent to the asymptotically optimal bandwidth h0.

As shown in Bowman, Hall and Prvan [2], this property is valid for the standard

kernel distribution function estimator.

5.3. A simulation study

In order to analyse the finite sample performance of the bandwidth selec-

tors ĥBR and ĥCV, a simulation study was carried out for a set of beta mixture

distributions with support [0, 1] that represents different shapes and boundary

behaviours. Their weights and shape parameters are given in Table 1 and the cor-

responding probability density and cumulative distribution functions are shown

in Figure 1.

Table 1: Beta mixture test distributions.

Beta mixture distribution
P

i
wi B(pi, qi)

Weights w 1st shape parameters p 2nd shape parameters q

#1 (1/4, 3/4) (1, 6) (6, 1)
#2 (1/10, 7/10, 2/10) (1, 2, 3) (2, 2, 1)
#3 (1/10, 7/10, 2/10) (1, 2, 6) (2, 6, 1)
#4 (5/16, 5/16, 3/16, 2/16, 1/16) (1, 25, 160, 320, 800) (10, 60, 100, 80, 90)

From each distribution we generated 500 samples of sizes n = 25, 50, 100

and 200, and we calculated the integrated squared error ISE(F ;h) =
∫

{F̃nh(x)−

F (x)}2dx for h = ĥBR and h = ĥCV as a measure of the performance of each

bandwidth selector. The integrated squared error associated to the asymp-

totically optimal bandwidth h0 was also evaluated for the sake of comparison.
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Figure 1: Beta mixture test density and

cumulative distribution functions.



Boundary kernels for distribution function estimation 183

Distribution #1

h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0

−
1
0

−
8

−
6

−
4

−
2

lo
g
(I

S
E

)

n = 25 n = 50 n = 100 n = 200

Distribution #2

h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0

−
1
0

−
8

−
6

−
4

−
2

lo
g
(I

S
E

)

n = 25 n = 50 n = 100 n = 200

Distribution #3

h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0

−
1
0

−
8

−
6

−
4

−
2

lo
g
(I

S
E

)

n = 25 n = 50 n = 100 n = 200

Distribution #4

h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0 h
^

BR h
^

CV h0

−
1
0

−
8

−
6

−
4

lo
g
(I

S
E

)

n = 25 n = 50 n = 100 n = 200

Figure 2: Integrated squared error results for the smoothing parameters

h = ĥBR, h = ĥCV and h = h0 and sample sizes n = 25, 50, 100

and 200. K is the Epanechnikov density function. The number

of replications for each case is 500.
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In the implementation of cross-validation method the minimisation of CV(h)

was confined to the interval [ĥBR/10, 1/2]. The previous integrals have been

numerically evaluated using the composite Simpson’s rule. The Epanechnikov

densityK(t) =
3
4(1− t2)I(|t| ≤ 1) was taken as kernel function and we restrict our

attention to the boundary kernels defined by Kℓ
(u, α) = K(u/α)/α for ℓ = L,R

(see Example 2.3). The integrated squared error empirical distributions (log

scale) are presented in Figure 2.

For all the considered test distributions, Figure 2 suggests that the cross-

validation bandwidth performs quite well showing a performance close to that one

of the oracle estimator with bandwidth h0. Additionally, for distributions #1, #2

and #3 there is no indication of significant differences between the bandwidths

ĥCV and ĥBR. This can be seen as an evidence of the well-known fact that smooth-

ing has only a second order effect in kernel distribution function estimation. For

the beta mixture #4 the cross-validation approach is clearly more effective than

the beta optimal smoothing for large sample sizes. This distribution presents fea-

tures that are not revealed until the sample size is above some threshold which

explains the fact that both methods performed similarly for small sample sizes

but not for large ones. In this latter case the cross-validation method is able to

adapt to distributional shape while the beta distribution reference method does

not reveal such a property.

In conclusion, we can say that the cross-validation bandwidth reveals a very

good performance, although the simpler and less time consuming beta reference

distribution bandwidth shows it self to be quite effective for the generality of test

distributions.

6. PROOFS

Proof of Lemma 3.1: We start by the analysis of the stochastic compo-

nent ||F̃nh −EF̃nh||. For that we follow the approach by Winter [37]. In order to

deal with kernels that could have negative values, we need the following version

of the integration by parts result presented by Winter [37, Lemma 2.1].

Lemma 6.1. If Φ is a probability distribution function and

Ψ(u) =

∫

]−∞,u]
ψ(v)dv,

where ψ is a Lebesgue integrable function with
∫

ψ(v)dv = 1, then

∫

ΦdΨ +

∫

ΨdΦ = 1.
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Proof: Denoting by µΦ and µΨ the finite signed measures defined by

µΦ(] −∞, x]) = Φ(x) and µΨ(] −∞, x]) = Ψ(x), for all x ∈ R, it is enough to

apply Fubini’s theorem to the indicator function (s, t) → I(s > t) which is inte-

grable with respect to the product measure µΦ ⊗ µΨ.

Returning to the proof of Lemma 3.1, for x ∈ ]a, a+ h[, we have

F̃nh(x) =

∫

K̄L
((x− y)/h; (x− a)/h)dFn(y) = 1 −

∫

Ψx,h(y)dFn(y),

EF̃nh(x) =

∫

K̄L
((x− y)/h; (x− a)/h)dF (y) = 1 −

∫

Ψx,h(y)dF (y),

and

F̃nh(x) − EF̃nh(x) =

∫

Ψx,h(y)(dF (y) − dFn(y)),

where Ψx,h(u) =
∫

]−∞,u] ψx,h(v)dv with ψx,h(v) = KL
((x− v)/h; (x− a)/h)/h.

From Lemma 6.1 we get

F̃nh(x) − EF̃nh(x) =

∫

{Fn(y) − F (y)}dΨx,h(y),

and therefore

(6.1) sup

x∈ ]a,a+h[
|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F || sup

α∈ ]0,1[

∫

|KL
(u;α)| du

because

sup

x∈ ]a,a+h[

∫

d|Ψx,h|(y) = sup

x∈ ]a,a+h[

∫

|ψx,h(u)| du ≤ sup

α∈ ]0,1[

∫

|KL
(u;α)| du.

Similarly, we get

(6.2) sup

x∈ ]b−h,b[
|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F || sup

α∈ ]0,1[

∫

|KR
(u;α)| du,

and the standard approach (see Winter [37]) can be used for x ∈ [a+ h, b− h], in

order to obtain

(6.3) sup

x∈ [a+h,b−h]
|F̃nh(x) − EF̃nh(x)| ≤ ||Fn − F ||.

Finally, from (6.1), (6.2) and (6.3) we obtain the upper bound (3.1) for ||F̃nh −

EF̃nh||.
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In the analysis of the bias component ||EF̃nh − F ||, we first note that, for

x ∈ ]a, a+ h[, the expectation of F̃nh(x) is given by

EF̃nh(x) =

∫

K̄L
((x− y)/h; (x− a)/h)f(y) dy

=

∫∫

KL
(u; (x− a)/h)f(y)I(y ≤ x− uh) dudy

=

∫

F (x− uh)KL
(u; (x− a)/h) du.

Therefore,

(6.4) EF̃nh(x) − F (x) =

∫

{F (x− uh) − F (x)}KL
(u; (x− a)/h) du,

which leads to

sup

x∈ ]a,a+h[
|EF̃nh(x) − F (x)| ≤ sup

x,y∈[a,b]: |x−y|≤h

|F (x) − F (y)| sup

α∈ ]0,1[

∫

|KL
(u;α)| du.

Additionally, if F ′
is continuous on [a, b], from the Taylor formula we have

F (x− uh) − F (x) = −uhF ′
(x) − uh

∫ 1

0
{F ′

(x− tuh) − F ′
(x)} dt.

Using the fact that
∫

uKL
(u;α)du = 0, for all α ∈ ]0, 1[, from (6.4) we get

EF̃nh(x) − F (x) = −h

∫

{F ′
(x− tuh) − F ′

(x)}uKL
(u; (x− a)/h) du

which leads to

sup

x∈ ]a,a+h[
|EF̃nh(x) − F (x)| ≤ h sup

x,y∈[a,b]: |x−y|≤h

|F ′
(x) − F ′

(y)| sup

α∈ ]0,1[

∫

|KL
(u;α)| du.

A similar analysis can be carried out for the cases x ∈ [a+h, b−h] and x ∈

]b−h, b[, leading to the bounds (3.2) and (3.3) for the bias term ||EF̃nh −F ||.

Proof of Theorem 4.1: We start by the analysis of the bias term B̃(F ;h)

=
∫

{EF̃nh(x) − F (x)}2dx. By using the continuity of the second derivative of F

and the Taylor expansion

F (x− uh) − F (x) = −uhF ′
(x) + u2h2

∫ 1

0
(1 − t)F ′′

(x− tuh) dt,

from (6.4) we get

∫ a+h

a

{EF̃nh(x) − F (x)}2 dx

= h5

∫ 1

0

(∫∫ 1

0
(1 − t)F ′′

(a+ αh− tuh)u2KL
(u;α) dtdu

)2

dα

≤ h5 ||F ′′||2
∫ 1

0

(∫

|KL
(u;α)|du

)2

dα = O
(

h5
)

.
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A similar upper bound can be obtained for the term
∫ b

b−h
{EF̃nh(x) − F (x)}2dx.

The stated expansion for B̃(F ;h) follows now from the dominated convergence

theorem:

∫ b−h

a+h

{EF̃nh(x) − F (x)}2dx

=

∫ b−h

a+h

(∫

{F (x− uh) − F (x)}K(u) du

)2

dx

= h4

∫ b−h

a+h

(∫∫ 1

0
(1 − t)F ′′

(x− tuh)u2K(u) dtdu

)2

dx

=
h4

4

(∫

u2K(u) du

)2

||F ′′||22 + o
(

h4
)

.

The analysis of the variance term, Ṽ(F ;h) =
∫

Var F̃nh(x)dx, can be made

easy by considering the expansion

nVar F̃nh(x) = F (x)(1 − F (x)) +

∫

{F (x− uh) − F (x)}Bx,h(u) du(6.5)

− {EF̃nh(x) − F (x)}2 − 2{EF̃nh(x) − F (x)}F (x),

where Bx,h is defined as Kx,h with K replaced by B. In fact, from the first part

of the proof we conclude that the integral over [a, b] of the last two terms is of

order O(h2
), and from standard arguments we get

∫ b−h

a+h

∫

{F (x− uh) − F (x)}Bx,h(u) dudx = −h

∫

uB(u) du+O
(

h2
)

and

∣

∣

∣

∣

∫ a+h

a

∫

{F (x− uh) − F (x)}Bx,h(u) dudx

∣

∣

∣

∣

≤ h2 ||F ′||

∫ 1

0

∫

|u||BL
(u;α)| dudα

≤ h2||F ′||

∫ 1

0

(∫

|KL
(u;α)|du

)2

dα = O
(

h2
)

.

Taking into account that the same order of convergence can be obtained

for the term
∫ b

b−h

∫

{F (x− uh) − F (x)}Bx,h(u)dudx, we finally get the stated

expansion for Ṽ(F ;h).

Proof of Theorem 4.2: We shall restrict our attention to the case where

F is the uniform distribution function on the interval [a, b]. From Remark 3.3

and equality (6.5) we get

MISE(F ;h) =
b− a

6n
−
h

n

(∫

uB(u) du− h
CB

b− a

)

,
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for 0 < h ≤ (b− a)/2. It is now easy to conclude that

h0 =
b− a

2
min

(

1 ,

∫

uB(u) du
/

CB

)

is the minimiser of MISE(F ;h), for 0 < h ≤ (b− a)/2.
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1. INTRODUCTION

The exponential distribution is the first and most popular model for fail-

ure times. In recent years, many authors have proposed generalizations of the

exponential distribution. The generalizations are based on a “failure of a system”

framework.

Suppose a series system is made up of Z unknown independent compo-

nents. (The variable Z could be determined by such factors as economy, man

power, and customer demand.) Let Y1, Y2, ..., YZ denote the failure times of the

Z components, assumed to be independent of Z. Then the system lifetime is

X = min(Y1, Y2, ..., YZ). It is reasonable to assume that Yjs are exponential ran-

dom variables, so the cumulative distribution function (cdf) and the probability

density function (pdf) of X are

FX(x) = 1 −
∞

∑

n=0

exp(−nβx) Pr(Z = n)(1.1)

and

fX(x) = β
∞

∑

n=0

n exp(−nβx) Pr(Z = n),(1.2)

respectively, for x > 0 and β > 0.

Several authors have constructed models for (1.1) and (1.2) by taking Z to

follow different distributions. Models with Z belonging to the Panjer class (Panjer

[15]) have widespread applications in risk theory. The Panjer class includes the

geometric, Poisson, negative binomial and other distributions. Panjer [15]’s paper

was a breakthrough on the iterative computation of the distribution of aggregate

claims, see, for example, Rolski et al. [18]. Extended versions of the Panjer class

have been introduced by Sundt and Jewell [19], Hess et al. [7] and Pestana and

Velosa [16]. Panjer class is also used in other contexts, see, for example, Katz [9].

Adamidis and Loukas [1] take Z to be a geometric random variable with

parameter p, so yielding

fX(x) =
β(1 − p) exp(−βx)

[1 − p exp(−βx)]
2(1.3)

for x > 0, 0 < p < 1 and β > 0. The case of Z being geometric has been considered

much earlier by Rényi [17] in the context of rarefection and by Gnedenko and

Korolev [5] and Kovalenko [10] with applications to reliability. We shall refer to

(1.3) as the EG distribution. Kus [11] and Hemmati et al. [6] take Z to be a

Poisson random variable with parameter λ, so yielding

f(x) =
λβ

1 − exp(−λ)
exp {−λ − βx + λ exp(−βx)}(1.4)
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for x > 0, λ > 0 and β > 0. We shall refer to this as the EP distribution. Tah-

masbi and Rezaei [20] take Z to be a logarithmic random variable with parameter

p, so yielding

f(x) = −
1

log p

β(1 − p) exp(−βx)

1 − (1 − p) exp(−βx)
(1.5)

for x > 0, 0 < p < 1 and β > 0. We shall refer to this as the EL distribution. We

are not aware of any other model for (1.1) and (1.2) considered in the literature.

In this paper, we propose a new model for (1.1) and (1.2). We take Z to

be a negative binomial random variable given by the probability mass function

(pmf)

fZ(z) =

(

z − 1

k − 1

)

(1 − p)
kpz−k

(1.6)

for z = k, k + 1, .... Geometric pmf is a particular case of (1.6). Poisson pmf is a

limiting case of (1.6). Then (1.1) and (1.2) reduce to

FX(x) = 1 −
(1 − p)

k
exp(−kβx)

[1 − p exp(−βx)]
k

(1.7)

and

fX(x) =
kβ(1 − p)

k
exp(−kβx)

[1 − p exp(−βx)]
k+1

,(1.8)

respectively, for x > 0, k > 0, 0 < p < 1 and β > 0. The corresponding hazard

rate function (hrf) is

hX(x) =
kβ

1 − p exp(−βx)
(1.9)

for x > 0, k > 0, 0 < p < 1 and β > 0. The corresponding quantile function is

F−1
(u) =

1

β
log

[

p +
1 − p

(1 − u)
1/k

]

(1.10)

for 0 < u < 1. We shall refer to the distribution given by (1.7) and (1.8) as the

exponential negative binomial (ENB) distribution. The exponential distribution

arises as the particular case for k = 1 and p = 0. The EG distribution of Adamidis

and Loukas [1] arises as the particular case for k = 1.

Note that d log f(x)/dx < 0 for all x > 0, so f(x) is a monotonically de-

creasing function all the time. Note also that f(0) = kβ/(1 − p), f(∞) = 0 and

f(x) ∼ kβ(1− p)
k
exp(−kβx) as x → ∞. So, the pdf takes a finite value at x = 0

and has an exponentially decaying upper tail. Clearly, the hrf given by (1.9) is

also a monotonically decreasing function with h(0) = kβ/(1− p) and h(∞) = kβ.
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Figure 1 illustrates possible shapes of (1.8) for selected parameter values.

Figure 2 illustrates possible shapes of (1.9) for selected parameter values. The

upper tails of (1.8) become lighter with increasing p and with increasing k. The

upper tails of (1.9) become heavier with increasing p and become lighter with

increasing k.
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Figure 1: Plots (1.8) versus x for β = 1, k = 0.1, 0.5, 2, 5, p = 0.2 (solid curve),

p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and p = 0.8 (curve

of dots and dashes).
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Figure 2: Plots (1.9) versus x for β = 1, k = 0.1, 0.5, 2, 5, p = 0.2 (solid curve),

p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and p = 0.8 (curve

of dots and dashes).
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The new distribution given by (1.7) and (1.8) can be motivated in several

different ways. Firstly, the negative binomial distribution is a generalization of

the geometric and Poisson distributions (Poisson is a limiting particular case).

The negative binomial distribution with support over the set of all non-negative

integers is also a generalization of the Poisson distribution in the sense that it

can deduced as a hierarchical model if X ∼ Poisson (Λ) with Λ being a gamma

random variable, see, for example, Casella and Berger [3].

So, (1.8) can be considered a generalization of (1.3) and (1.4). The loga-

rithmic distribution is used to construct (1.5). The logarithmic distribution is

widely used in population studies, iteration, fractality and chaos. But it is not

a well known model for counts as the geometric, Poisson and negative binomial

distributions are.

Secondly, using the series expansion

(1 − a)
−k−1

=

∞
∑

i=0

(

−k − 1

i

)

(−a)
i,

we can rewrite (1.8) as

fX(x) = kβ(1 − p)
k

∞
∑

i=0

(

−k − 1

i

)

(−p)
i
exp {−(k + i)βx} .(1.11)

Integrating (1.11), we can rewrite (1.7) as

FX(x) = 1 − k(1 − p)
k

∞
∑

i=0

(

−k − 1

i

)

(−p)
i

k + i
exp {−(k + i)βx} .(1.12)

It follows from (1.11) and (1.12) that the ENB distribution is a mixture of the

exponential distribution, the earliest and the best known model for failure times.

Our third motivation is simulation based. We shall see later (see Section 6)

that the ENB distribution provides significantly better fits than the EG, EP and

EL distributions, the only known competing distributions under the framework of

(1.1) and (1.2), for more than tens of thousands of simulated samples. This is the

case even when the samples are simulated from the EG, EP and EL distributions.

Our fourth and final motivation is real data based. We shall see later (see

Section 7) that the proposed distribution outperforms the EP and EL distribu-

tions as well as the two-parameter Weibull distribution and the three-parameter

Weibull Poisson distribution (Hemmati et al. [6]) with respect to at least two

real data sets.

The contents of this paper are organized as follows. An account of math-

ematical properties of the new distribution is provided in Sections 2 to 4. The

properties studied include: raw moments, order statistics and their moments,
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and asymptotic distribution of the extreme values. Estimation by the methods

of moments and maximum likelihood is presented in Section 5. A simulation

study to compare the performance of the proposed distribution versus the EG,

EP and EL distributions is presented in Section 6. Finally, Section 7 illustrates

an application by using two real data sets.

2. MOMENTS

Let X denote a random variable with the pdf (1.8). It follows from Lemma

A.1 in the Appendix that

E (Xn
) =

n!(1 − p)
k

βnkn n+2Fn+1 (1 + k, k, ..., k; k + 1, ..., k + 1; p)

=
n!(1 − p)

k

βnkn n+1Fn (k, ..., k; k + 1, ..., k + 1; p) ,

where pFq(a1, a2, ..., ap; b1, b2, ..., bq; x) denotes the generalized hypergeometric

function defined by

pFq (a1, a2, ..., ap; b1, b2, ..., bq; x) =

∞
∑

k=0

(a1)k (a2)k ··· (ap)k

(b1)k (b2)k ··· (bq)k

xk

k!
,

where (e)k = e(e + 1)···(e + k − 1) denotes the ascending factorial. In particular,

the first four moments of X are

E (X) =
(1 − p)

k

βk
2F1 (k, k; k + 1; p) ,

E
(

X2
)

=
2(1 − p)

k

β2k2 3F2 (k, k, k; k + 1, k + 1; p) ,

E
(

X3
)

=
6(1 − p)

k

β3k3 4F3 (k, k, k, k; k + 1, k + 1, k + 1; p)

and

E
(

X4
)

=
24(1 − p)

k

β4k4 5F4 (k, k, k, k, k; k + 1, k + 1, k + 1, k + 1; p) .

The variance, skewness and kurtosis of X can be obtained using the relationships

V ar(X) = E(X2
)− (E(X))

2
, Skewness(X) = E(X −E(X))

3/(V ar(X))
3/2

and

Kurtosis(X) = E(X − E(X))
4/(V ar(X))

2
. The variations of E (X), Var (X),

Skewness (X) and Kurtosis (X) versus k and p for β =1 are illustrated in Figure 3.

It appears that E(X) and V ar(X) are decreasing functions with respect to both

k and p. Skewness (X) and Kurtosis (X) appear to increase with respect to a.

With respect to p, they initially increase before decreasing.
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Figure 3: Mean, variance, skewness and kurtosis for (1.8) versus k for p = 0.2
(solid curve), p = 0.4 (curve of dashes), p = 0.6 (curve of dots) and

p = 0.8 (curve of dots and dashes).

3. ORDER STATISTICS

Suppose X1, X2, ..., Xn is a random sample from (1.8). Let X1:n < X2:n <

··· < Xn:n denote the corresponding order statistics. It is well known that the

pdf and the cdf of the rth order statistic, say Y = Xr:n, are given by

fY (y) =
n!

(r − 1)!(n − r)!
F r−1

X (y) {1 − FX(y)}n−r fX(y)

=
n!

(r − 1)!(n − r)!

n−r
∑

ℓ=0

(

n − r

ℓ

)

(−1)
ℓF r−1+ℓ

X (y)fX(y)

and

FY (y) =

n
∑

j=r

(

n

j

)

F j
X(y) {1 − FX(y)}n−j

=

n
∑

j=r

n−j
∑

ℓ=0

(

n

j

)(

n − j

ℓ

)

(−1)
ℓF j+ℓ

X (y),

respectively, for r = 1, 2, ..., n. It follows from (1.8) and (1.7) that

fY (y) =
kβn!

(r − 1)!(n − r)!

n−r
∑

ℓ=0

(

n − r

ℓ

)

(−1)
ℓ (1 − p)

(r+ℓ)k
exp [−(r + ℓ)kβy]

[1 − p exp(−βy)]
(r+ℓ)k+1
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and

FY (y) =

n
∑

j=r

n−j
∑

ℓ=0

(

n

j

)(

n − j

ℓ

)

(−1)
ℓ (1 − p)

(j+ℓ)k
exp [−(j + ℓ)kβy]

[1 − p exp(−βy)]
(j+ℓ)k

.

Using Lemma A.1 in the Appendix, the qth moment of Y can be expressed as

E (Y q
) =

q!n!

βqkq
(r − 1)!(n − r)!

n−r
∑

ℓ=0

(

n − r

ℓ

)

(−1)
ℓ
(1 − p)

(r+ℓ)k

(r + ℓ)q+1 G(ℓ)

for q ≥ 1, where G(ℓ) = q+1Fq(ℓk + rk, ..., ℓk + rk; 1 + ℓk + rk, ..., 1 + ℓk + rk; p).

4. EXTREME VALUES

If X = (X1 + ··· + Xn)/n denotes the sample mean then by the usual cen-

tral limit theorem
√

n(X − E(X))/
√

V ar(X) approaches the standard normal

distribution as n → ∞. Sometimes one would be interested in the asymptotics of

the extreme values Mn = max(X1, ..., Xn) and mn = min(X1, ..., Xn).

Let g(t) = 1/(kβ). Take the cdf and the pdf as specified by (1.7) and (1.8),

respectively. Since f(x) ∼ kβ(1 − p)
k
exp(−kβx) as x → ∞,

lim
t→∞

1 − F (t + xg(t))

1 − F (t)
= lim

t→∞

f(t + x/(kβ))

f(t)
= exp(−x).

Since f(0) = kβ/(1 − p),

lim
t→0

F (tx)

F (t)
= lim

t→∞

xf(tx)

f(t)
= x.

Hence, it follows from Theorem 1.6.2 in Leadbetter et al. [12] that there must be

norming constants an > 0, bn, cn > 0 and dn such that

Pr {an (Mn − bn) ≤ x} → exp {− exp(−x)}

and

Pr {cn (mn − dn) ≤ x} → 1 − exp (−x)

as n → ∞. The form of the norming constants can also be determined. For

instance, using Corollary 1.6.3 in Leadbetter et al. [12], one can see that bn =

F−1
(1 − 1/n) and an = kβ, where F−1

(·) is given by (1.10).
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5. ESTIMATION

Here, we consider estimation by the methods of moments and maximum

likelihood and provide expressions for the associated Fisher information matrix.

Suppose x1, ..., xn is a random sample from (1.8). For moments estima-

tion, let m1 = (1/n)
∑n

j=1 xj , m2 = (1/n)
∑n

j=1 x2
j and m3 = (1/n)

∑n
j=1 x3

j . By

equating the theoretical moments of (1.8) with the sample moments, we obtain

the equations:

(1 − p)
k

βk
2F1 (k, k; k + 1; p) = m1,

2(1 − p)
k

β2k2 3F2 (k, k, k; k + 1, k + 1; p) = m2,

and

6(1 − p)
k

β3k3 4F3 (k, k, k, k; k + 1, k + 1, k + 1; p) = m3.

The method of moments estimators (mmes), say p̃, ˜k and ˜β, are the simultaneous

solutions of these three equations.

Now consider estimation by the method of maximum likelihood. The log

likelihood function of the three parameters is:

log L(p, k, β) = n log(kβ) + nk log(1 − p) − kβ
n

∑

i=1

xi

−(k + 1)

n
∑

i=1

log [1 − p exp (−βxi)] .(5.1)

It follows that the maximum likelihood estimators (mles), say p̂, ̂k and ̂β, are the

simultaneous solutions of the equations:

n

k
+ n log(1 − p) = β

n
∑

i=1

xi +

n
∑

i=1

log [1 − p exp (−βxi)] ,

n

β
= k

n
∑

i=1

xi + p(k + 1)

n
∑

i=1

xi exp (−βxi)

1 − p exp (−βxi)
,

and

nk

1 − p
= (k + 1)

n
∑

i=1

exp (−βxi)

1 − p exp (−βxi)
.
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For interval estimation of (p, k, β) and tests of hypothesis, one requires the

Fisher information matrix:

I =

















E

(

−
∂2

log L

∂p2

)

E

(

−
∂2

log L

∂p∂k

)

E

(

−
∂2

log L

∂p∂β

)

E

(

−
∂2

log L

∂k∂p

)

E

(

−
∂2

log L

∂k2

)

E

(

−
∂2

log L

∂k∂β

)

E

(

−
∂2

log L

∂β∂p

)

E

(

−
∂2

log L

∂β∂k

)

E

(

−
∂2

log L

∂β2

)

















.

Using Lemma A.1 in the Appendix, the elements of this matrix for (5.1) can be

worked out as:

I11 =
n

k2 ,

I12 = I21 =
n(1 − p)

k

βk
2F1 (k, k; k + 1; p)

+
npk(1 − p)

k

β(k + 1)
2 3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p) ,

I13 = I31 =
n

1 − p
−

nk

(k + 1)(1 − p)
,

I22 =
n

β2 −
npk(1 − p)

k

β2
(k + 1)

2 3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p) ,

I23 = I32 =
nk(1 − p)

k

β(k + 1)
3F2 (k + 3, k + 1, k + 1; k + 2, k + 2; p)

+
npk(k + 1)(1 − p)

k

β(k + 2)
2 2F1 (k + 2, k + 2; k + 3; p) ,

and

I33 =
nk

(1 − p)
2 −

nk(k + 1)

(k + 2)(1 − p)
2 .

Under regularity conditions, the asymptotic distribution of (p̂,̂k, ̂β) as n → ∞

is trivariate normal with zero means and variance co-variance matrix I−1
. So,

Var (p̂) = (I33I22 − I32I23)/∆, Cov (p̂,̂k) = −(I33I12 − I32I13)/∆, Cov (p̂, ̂β) =

(I23I12−I22I13)/∆, Var(̂k) = (I33I11−I31I13)/∆, Cov(̂k, ̂β) =−(I23I11−I21I13)/∆

and Var (̂β) = (I22I11 − I21I12)/∆, where ∆ = I11(I33I22 − I32I23)− I21(I33I12 −

I32I13) + I31(I23I12 − I22I13).
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6. A SIMULATION STUDY

Here, we perform a simulation study to compare the performance of the

proposed distribution versus those given by (1.3), (1.4) and (1.5); that is, the

EG, EP and EL distributions, the only known competing distributions under the

framework of (1.1) and (1.2). We use the following scheme:

1. Generate ten thousand samples of size n from (1.8);

2. For each sample, fit the models given by (1.8), (1.3), (1.4) and (1.5);

3. Let ℓ1i, ℓ2i, ℓ3i and ℓ4i, i = 1, 2, ..., 10000 denote the maximized log-

likelihoods for (1.8), (1.3), (1.4) and (1.5) for the ten thousand samples;

4. Draw the box plots of 2(ℓ1i − ℓ2i), 2(ℓ1i − ℓ3i) and 2(ℓ1i − ℓ4i), i =

1, 2, ..., 10000.

This scheme compares the fits of the four distributions when simulated sam-

ples are from the proposed distribution. For completeness, we repeated the above

scheme with simulated samples coming from the EG, EP and EL distributions.

The resulting box plots are shown in Figure 4 for n = 25 and (β, λ, k, p) =

(1, 1, 2, 0.5). The figure shows that proposed distribution provides the best fit

wherever the sample comes from. The relative performances of the EG, EP

and EL distributions with respect to the proposed one appear similar. The four

distributions are not nested, so the likelihood ratio test may not be used to

discriminate between them. But the differences in the log-likelihood are so large

that they are significant even with respect to the AIC and BIC criteria.

For reasons of space, we have presented results for only one value for n and

the parameters. But the conclusions of Figure 4 hold also for larger sample sizes

and other parameter values.

The results are not surprising because, as explained in Section 1, the pro-

posed distribution is flexible enough to contain the EG and EP distributions as

particular cases. The logarithmic distribution used to construct the EL distribu-

tion is not flexible and is certainly not widely used.
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Figure 4: Box plots of 2(ℓ1i − ℓ2i), 2(ℓ1i − ℓ3i) and 2(ℓ1i − ℓ4i) when the sim-

ulated samples are from the proposed distribution (top left), the

EG distribution (top right), the EP distribution (bottom left) and

the EL distribution (bottom right).
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7. APPLICATIONS

Here, we illustrate applicability of the ENB distribution using two real data

sets. The first data set contains intervals in days between successive failures of a

piece of software. See Jelinski and Moranda [8] and Linda [13]. The second data

set consists of lifetimes of pressure vessels. See Pal et al. [14].

We compare the fit of the ENB distribution with those of the EP and EL

distributions as well as those of the Weibull distribution given by the pdf

f(x) = βλβxβ−1
exp

{

−(λx)
β
}

(for x > 0, λ > 0 and β > 0) and, the Weibull Poisson distribution (Hemmati et

al. [6]) given by the pdf

f(x) =
θαβα

exp(θ) − 1
exp {−(βx)

α} exp {−θ exp [−(βx)
α
]}

for x > 0, θ > 0, α > 0 and β > 0. The parameters of the ENB distribution are

estimated by the method of maximum likelihood, see Section 5. The parameters

of other distributions are also estimated by the method of maximum likelihood.

The mles and the corresponding log-likelihood value, the Kolmogorov Smir-

nov statistic, its p value, the AIC value and the BIC value are shown in Tables

1 and 2. We can see that the largest log-likelihood value, the largest p value,

the smallest AIC value and the smallest BIC value are obtained for the ENB

distribution.

Table 1: Fitted estimates for data set 1.

Model Parameter estimates Log likelihood K-S statistic p-value AIC BIC

Weibull (16.7835, 0.6460) -131.6366 0.2046 0.1092 267.2732 270.2662
EL (0.0300, 0.0162) -129.6636 0.2147 0.0818 263.3273 266.3203
EP (0.0191, 3.9168) -131.2939 0.1967 0.1358 266.5878 269.5808
WP (0.0182, 0.8072, 3.3587) -129.5968 0.1634 0.3070 265.1936 269.6831
ENB (0.0076, 0.9491, 0.9462) -127.7312 0.1372 0.5189 261.4624 265.9519

Table 2: Fitted estimates for data set 2.

Model Parameter estimates Log likelihood K-S statistic p-value AIC BIC

Weibull (488.1066, 0.7162) -145.3353 0.1519 0.6904 294.6705 296.6620
EL (0.1239, 0.0011) -146.5781 0.1700 0.5531 297.1562 299.1477
EP (0.0015, 0.6978) -146.9594 0.1534 0.6787 297.9189 299.9104
WP (0.0020, 0.7162, 0.0001) -145.3353 0.1519 0.6904 296.6705 299.6577
ENB (0.0342, 0.0434, 0.9748) -143.4332 0.1309 0.8400 292.8665 295.8537
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Figure 5: Quantile-quantile plots for the fitted models for the first data set.
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Figure 6: Quantile-quantile plots for the fitted models for the second data set.
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The conclusion based on Tables 1 and 2 can be verified by means of quantile-

quantile plots and density plots. A quantile-quantile plot consists of plots of the

observed quantiles against quantiles predicted by the fitted model. For example,

for the model based on the ENB distribution, x(j) was plotted versus F−1
((j −

0.375)/(n + 0.25)), j = 1, 2, ..., n, as recommended by Blom [2] and Chambers et

al. [4], where F−1
(·) is given by (1.10), x(j) are the sorted values of the observed

data in the ascending order and n is the number of observations. The quantile-

quantile plots for the five fitted models and for each data set are shown in Figures

5 and 6. We can see that the model based on the ENB distribution has the points

closer to the diagonal line for each data set.

A density plot compares the fitted pdfs of the models with the empirical

histogram of the observed data. The density plots for the two data sets are

shown in Figures 7 and 8. Again the fitted pdfs for the ENB distribution appear

to capture the general pattern of the empirical histograms better.
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APPENDIX

We need the following lemma.

Lemma A.1. Let

I(a, b, c) = kβ(1 − p)
k

∫ ∞

0

xa
exp [−(k + b)βx]

[1 − p exp(−βx)]
k+1+c

dx.

Then

I(a, b, c) =
a!k(1−p)

k
a+2Fa+1 (1+k+ c, k+ b, ..., k+ b; k+ b+1, ..., k+ b+1; p)

βa
(k + b)a+1 .

Proof: Using the series expansion

(1 − a)
−k−1−c

=

∞
∑

i=0

(

−k − 1 − c

i

)

(−a)
i,

we can write

I(a, b, c) = kβ(1 − p)
k

∞
∑

i=0

(

−k − 1 − c

i

)

(−p)
i

∫ ∞

0
xa

exp [−(k + b + i)βx)] dx

= a!kβ−a
(1 − p)

k
∞

∑

i=0

(

−k − 1 − c

i

)

(−p)
i

(k + b + i)a+1

= a!kβ−a
(1 − p)

k
(k + b)−a−1

∞
∑

i=0

(k + 1 + c)i(k + b)i···(k + b)i

(k + b + 1)i···(k + b + 1)i

pi

i!
.

The result now follows from the definition of hypergeometric functions.
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1. INTRODUCTION

Due to technological progress, in particular the enlarged capacity of com-

puter memory and the increasing efficiency of data collection devices, there is

a growing number of applied sciences (biometrics, chemometrics, meteorology,

medical sciences...) where collected data are curves which require appropriate

statistical tools. Because of this, functional data analysis has known a quite im-

portant development in the last fifteen years (see, e.g., [26], [27], [14], [7], [16],

[17] and [18] for monographs and collective books on this specific subject). How-

ever, whereas there has been substantial work on the nonparametric estimation of

the probability density function for univariate and multivariate random variables

since the papers of [22] and [28], much less attention has been paid to the infinite-

dimensional case. The extension of the results from the multivariate framework

to the infinite dimensional one is not direct since there is no equivalent of the

Lebesgue measure on an infinite dimensional Hilbert space. In fact, the only lo-

cally finite and translation invariant measure on an infinite dimensional Hilbert

space is the null measure and any locally finite measure µ is even very irregular:

denoting by B(x, r) the ball of center x and radius r, we have that, for any point

x, any arbitrary large M and any arbitrary small r such that µ(B(x, r)) <∞,

there exist (x1, x2) ∈ B(x, r)2 such that µ(B(x1, r/4)) < M ×µ(B(x2, r/4)). For a

coverage of the theme of measures on infinite dimension spaces, we refer to [33],

[34], [8] and [31].

The first consistency result for a kernel estimator of the density function

for infinite dimensional random variables has been obtained in [4] where a rate is

given in the special case when the kernel is an indicator function and the density

is defined with respect to the Wiener measure. Later, different estimators of

the density, based on orthogonal series (see [5]), delta sequences (see [25]) or

wavelets (see [24]), have been proposed but none of them is adaptive. Note that

the estimation of the density probability function is nonetheless itself of intrinsic

interest but it also has a key role in mode estimation and curve clustering (see

[6]).

Contrary to the chronology of studies in the multivariate case, in the func-

tional framework, estimators of the regression function have been proposed before

those of the density. Ferraty and Vieu introduced the first fully nonparametric

estimator of the regression function, at first under the hypothesis that the under-

lying measure has a fractal dimension in [12] and then using only probabilities of

small balls in [13]. However, since these pioneering works, no adaptive estimator

has been proposed.

Considering the density estimation problem from functional data, [24] has

recently developed a new procedure based on the multiresolution approach on

a separable Hilbert space introduced by [19]. This procedure belongs to the
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family of the linear wavelet estimators. As proved in [24, Theorem 3.1], it enjoys

powerful asymptotic properties. However, such a linear wavelet estimator has two

drawbacks: it is not adaptive (i.e., its performances are deeply associated to the

smoothness of the unknown function) and it is not efficient to estimate functions

with complex singularities (the sparsity nature of the wavelet decomposition of

the unknown function is not captured). For these reasons, [24, Page 2 lines 14-

16] states “it would be interesting to investigate the advantage of these wavelet

estimators for functional data by using wavelet thresholding suggested by [11]”.

This perspective motivates our study.

Adopting the multiresolution approach on a separable Hilbert space H of

[19], we construct an adaptive wavelet procedure extending the hard threshold-

ing rule introduced by [11] to a general nonparametric estimation context for

functional data. In order to study its asymptotic properties, we introduce two

different kinds of decomposition spaces expressed in terms of wavelet coefficients

via the new basis (see Section 2). They are related to the maxiset approach

introduced by [3] and of interest as they contain a wide variety of unknown func-

tions, complex or not. Exploring the density model and the regression model for

functional data, we determine the rates of convergence attained by our estimator

under the mean integrated squared error on H and over the intersection of the

two considering decomposition spaces. To the best of our knowledge, this study

is the first one developing a wavelet-based adaptive estimator in the context of

functional data (and studying it theoretically). Let us mention that the new

findings includes several obtained results for H = Lp([a, b]).

The paper is structured as follows. In Section 2, we briefly describe the

wavelet bases on H and we define some decomposition spaces. The density es-

timation problem for functional data via wavelet thresholding is considered in

Section 3. The regression one is developed in Section 4. The proofs are gathered

in Section 5.

2. WAVELET BASES ON H AND DECOMPOSITION SPACES

2.1. Wavelet bases on H

Let us briefly describe the construction of wavelet bases on H introduced

by [19]. Let H be a separable Hilbert space of real- or complex-valued functions

defined on a complete separable metric space or a normed vector space S. SinceH

is separable, it has an orthonormal basis E = {ej ; j ∈ Λ} for some countable index

set Λ. As usual, we denote by 〈., .〉 and ||.|| the inner product and corresponding

norm that H is equipped with.
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Let {Ik; k ≥ 0} be an increasing sequence of finite subsets of Λ such that
⋃

k≥0 Ik = Λ and, for any k ≥ 0, Jk = Ik+1/Ik. For any k ≥ 0, we suppose that

there exist ζk,ℓ ∈ S, ℓ ∈ Ik and ηk,ℓ ∈ S, ℓ ∈ Jk, such that the two matrices

Ak = (ej(ζk,ℓ))(j,ℓ)∈I2
k
, Bk = (ej(ηk,ℓ))(j,ℓ)∈J 2

k
,

satisfy one of the two following conditions:

(A1) A∗
kAk = diag(ck,ℓ)ℓ∈Ik

and B∗
kBk = diag(sk,ℓ)ℓ∈Jk

, where ck,ℓ, sk,ℓ′ ,

for ℓ ∈ Ik and ℓ′ ∈ Jk, are positive constants,

(A2) AkA
∗
k = diag(dk,j)j∈Ik

and BkB
∗
k = diag(tk,j)j∈Jk

, where dk,j , tk,j′

for j ∈ Ik and j′ ∈ Jk, are positive constants.

For any x ∈ S, we set























φk(x; ζk,ℓ) =

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x),

ψk(x; ηk,ℓ) =

∑

j∈Jk

1
√

hj,k,ℓ

ej(ηk,ℓ)ej(x),

where

gj,k,ℓ =

{

ck,ℓ if (A1),

dk,j if (A2),
hj,k,ℓ =

{

sk,ℓ if (A1),

tk,j if (A2).

Then the collection

B = {φ0(x; ζ0,ℓ), ℓ ∈ I0; ψk(x; ηk,ℓ), k ≥ 0, ℓ ∈ Jk}

is an orthonormal basis for H (see [19, Theorem 2 (a)]).

Consequently, any f ∈ H can be expressed on B as

f(x) =

∑

ℓ∈I0

α0,ℓφ0(x; ζ0,ℓ) +

∑

k≥0

∑

ℓ∈Jk

βk,ℓψk(x; ηk,ℓ), x ∈ S,

where

α0,ℓ = 〈f, φ0(.; ζ0,ℓ)〉, βk,ℓ = 〈f, ψk(.; ηk,ℓ)〉.(2.1)

We formulate the two following assumptions on E :

• There exists a constant C1 > 0 such that, for any integer k ≥ 0,

∑

j∈Ik

1

gj,k,ℓ

|ej(ζk,ℓ)|
2 ≤ C1,

∑

j∈Jk

1

hj,k,ℓ

|ej(ηk,ℓ)|
2 ≤ C1.(2.2)

This assumption is obviously satisfied under (A1) with C1 = 1. Remark

also that the second example in [19, Section 4] satisfies both (A2) and

(2.2).
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• There exists a constant C2 > 0 such that, for any integer k ≥ 0,

sup
x∈S

∑

j∈Jk

|ej(x)|
2 ≤ C2|Jk|.(2.3)

This assumption is satisfied by the three examples in [19] (we have

supx∈S supj∈Jk
|ej(x)| ≤ 1). Remark that it contains [24, (3.16)].

2.2. Decomposition spaces

Let s > 0 and r > 0. From the wavelet coefficients (2.1) of a function f ∈ H,

we define the Besov spaces Bs
∞(H) by

Bs
∞(H) =







f ∈ H; sup
m≥0

|Jm|2s
∑

k≥m

∑

ℓ∈Jk

|βk,ℓ|
2 <∞







(2.4)

and the “weak Besov spaces” Wr
(H) by

Wr
(H) =







f ∈ H; sup
λ>0

λr
∑

k≥0

∑

ℓ∈Jk

1I{|βk,ℓ|≥λ} <∞







,(2.5)

where 1IA is the indicator function on A.

Such kinds of function spaces are extensively used in approximation theory

for the study of non linear procedures such as thresholding and greedy algorithms.

See, e.g., [10] and [30]. From a statistical point of view, they are connected to

the maxiset approach. See, e.g., [3], [21] and [1].

3. DENSITY ESTIMATION FOR FUNCTIONAL DATA

3.1. Problem statement

Let {Ω,F , P} be a probability space and {Xi; i ≥ 1} be i.i.d. random

variables defined on {Ω,F , P} and taking values in a complete separable metric

space or a Hilbert space S associated with the corresponding Borel σ-algebra

B. Let PX be the probability measure induced by X1 on (S,B). Suppose that

there exists a σ-finite measure ν on the measurable space (S,B) such that PX

is dominated by ν. The Radon-Nikodym theorem ensures the existence of a

nonnegative measurable function f such that

PX(B) =

∫

B

f(x)ν(dx), B ∈ B.



Nonparametric Estimation for Functional Data by Wavelet Thresholding 217

In this context, we aim to estimate f based on n observed functional data

X1, ..., Xn.

We suppose that f ∈ H, where H is a separable Hilbert space of real-valued

functions defined on S and square integrable with respect to the σ-finite measure

ν.

Moreover, we suppose that there exists a known constant Cf > 0 such that

sup
x∈S

f(x) ≤ Cf .(3.1)

The estimation of the density function for functional data has been first

addressed in [4], and the consistency in L2
-norm has been established in [5] for

a projection estimator. More recently, [24] established the convergence in mean

square -with rate- of a non adaptive wavelets based estimator. We refer to these

papers for details and applications of the model.

3.2. Estimator

Following the procedure of [11] and adopting the notation of Section 2, we

define the wavelet hard thresholding estimator f̂ by

f̂(x) =

∑

ℓ∈I0

α̂0,ℓφ0(x; ζ0,ℓ) +

mn
∑

k=0

∑

ℓ∈Jk

β̂k,ℓ1I
�
|β̂k,ℓ|≥κ

q
ln n
n

�ψk(x; ηk,ℓ),(3.2)

x ∈ S, where

α̂k,ℓ =
1

n

n
∑

i=1

φk(Xi; ζk,ℓ), β̂k,ℓ =
1

n

n
∑

i=1

ψk(Xi; ηk,ℓ),(3.3)

κ is a large enough constant and mn is the integer satisfying

1

2

n

lnn
< |Jmn

| ≤
n

lnn
.

The construction of f̂ consists in three steps: firstly, we estimate the un-

known wavelet coefficients (2.1) of f by (3.3), secondly, we select only the “great-

est” β̂k,ℓ via a hard thresholding and thirdly we reconstruct the selected elements

of the initial wavelet basis. The choices of the threshold κ(lnn/n)
1/2

(correspond-

ing to the “universal threshold”) and the definition of mn are based on theoretical

considerations (see Theorem 3.1 below).

Note that f̂ is adaptive, i.e., it does not depend on the knowledge of the

smoothness of f . It can be viewed as an adaptive and thresholded version of the

linear wavelet estimator proposed by [24]
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Details on the wavelet hard thresholding estimator for H = Lp([a, b]) and

the standard nonparametric models can be found in [11], [9], [20] and [32].

3.3. Results

Theorem 3.1 below evaluates the performance of f̂ assuming that f belongs

to the decomposition spaces described in Subsection 2.2.

Theorem 3.1. Consider the density estimation problem described in

Subsection 3.1. Suppose that E satisfies (2.2) and (2.3). Let f̂ be given by (3.2).

Suppose that f satisfies (3.1) and, for any θ ∈ (0, 1), f ∈ B
θ/2
∞ (H) ∩W2(1−θ)

(H),

where B
θ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)

(H) (2.5) with r = 2(1 − θ).

Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)θ

for n large enough.

An immediate consequence is the following upper bound result: if f ∈

B
s/(2s+1)
∞ (H) ∩W2/(2s+1)

(H) for s > 0, then there exists a constant C > 0 such

that

E(||f̂ − f ||2) ≤ C

(

lnn

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “standard”

minimax setting (see, e.g., [20]).

Moreover, applying [21, Theorem 3.2], one can prove that B
θ/2
∞ (H) ∩

W2(1−θ)
(H) is the “maxiset” associated to f̂ at the rate of convergence (lnn/n)

θ
,

i.e.,

lim
n→∞

( n

lnn

)θ

E(||f̂ − f ||2) <∞ ⇔ f ∈ Bθ/2
∞ (H) ∩W2(1−θ)

(H).

These new theoretical results complete the work of [24] in the sense that

our wavelet-based procedure is adaptive thanks to its term-by-term selection of

the β̂k,ℓ and we prove that it achieves a suitable rate of convergence over a wide

class of functions well adapted to our setting.

The next section considers another statistical problem: the the regression

estimation for functional data. We show how adapt our wavelet methodology to

this problem.
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4. REGRESSION ESTIMATION FOR FUNCTIONAL DATA

4.1. Problem statement

Let {Ω,F , P} be a probability space and {(Xi, Yi); i ≥ 1} be i.i.d. replica of

a couple of random variables (X,Y ) defined on {Ω,F , P}, where Y is real valued

and X takes values in a complete separable metric space or a Hilbert space S

associated with the corresponding Borel σ-algebra B such that

Y = f(X) + ǫ,(4.1)

f denotes an unknown regresion function and ǫ is a random variable independent

of X with ǫ ∼ N (0, 1). We suppose that f ∈ H where H is a separable Hilbert

space of real-valued functions defined on S. Let PX be the probability measure

induced by X1 on (S,B). Suppose that there exists a σ-finite measure ν on the

measurable space (S,B) such that PX is dominated by ν. As a consequence of

the Radon-Nikodym theorem, there exists a nonnegative measurable function g

such that

PX(B) =

∫

B

g(x)ν(dx), B ∈ B.

We suppose that g is known.

In this context, we want to estimate f from (X1, Y1), ..., (Xn, Yn).

The kernel estimator of the regression function for functional data has been

proposed by [13] and the convergence in mean square of that estimator has been

established by [15] with the rate O(h2
+ (nP (X ∈ B(x, h))−1

) where h is the

bandwidth. Note that the optimal choice of h depends on the underlying unknown

distribution.

We shall suppose that there exist two known constants Cf > 0 and cg > 0

such that

sup
x∈S

f(x) ≤ Cf , inf
x∈S

g(x) ≥ cg.(4.2)

4.2. Results

Theorem 4.1 below explores the performance of f̂ assuming that f belongs

to the decomposition spaces described in Subsection 2.2.
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Theorem 4.1. Consider the regression estimation problem described above.

Suppose that E satisfies (2.2) and (2.3). Let f̂ be as in (3.2) with

α̂k,ℓ =
1

n

n
∑

i=1

Yi

g(Xi)
φk(Xi; ζk,ℓ), β̂k,ℓ =

1

n

n
∑

i=1

Yi

g(Xi)
ψk(Xi; ηk,ℓ),

κ is a large enough constant and mn is the integer satisfying

1

2

n

(lnn)2
< |Jmn

| ≤
n

(lnn)2
.

Suppose that f and g satisfy (4.2) and, for any θ∈(0,1), f ∈B
θ/2
∞ (H)∩W2(1−θ)

(H),

where B
θ/2
∞ (H) is (2.4) with s = θ/2 and W2(1−θ)

(H) (2.5) with r = 2(1 − θ).

Then there exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

(lnn)
2

n

)θ

for n large enough.

Again, note that, if f ∈ B
s/(2s+1)
∞ (H) ∩W2/(2s+1)

(H) for s > 0, then there

exists a constant C > 0 such that

E(||f̂ − f ||2) ≤ C

(

(lnn)
2

n

)2s/(2s+1)

.

This rate of convergence corresponds to the near optimal one in the “standard”

minimax setting (see, e.g., [20]) up to an extra logarithmic term. To the best

of our knowledge, Theorem 4.1 is first one studying an adaptive wavelet-based

estimator for functional data in the nonparametric regression context.

CONCLUSION AND PERSPECTIVES

We construct an efficient and new adaptive estimator for an unknown func-

tion f belonging to a separable Hilbert space H. To reach this goal, we combine

several existing techniques: the wavelet basis on H developed by [19], the hard

thresholding rule introduced by [11] and some elements related to the maxiset

approach proposed by [3]. Rates of convergence are determined under the mean

integrated squared error on H over B
θ/2
∞ (H) ∩W2(1−θ)

(H). Perspectives of this

work are

• To determine the optimal lower bounds over the considered spaces,

• To remove the logarithmic term by perhaps considering other thresh-

olding techniques. Thanks to its performances in numerous i.i.d. non-

parametric models, the block thresholding introduced by [2] is a good

candidate.
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• Consider the regression model (4.1) with an unknown g.

These aspects require further investigations that we leave for a future work.

5. PROOFS

In this section, C denotes any constant that does not depend on j, k and

n. Its value may change from one term to another and may depends on φ or ψ.

Proof of Theorem 3.1: The proof of Theorem 3.1 is a consequence of

[21, Theorem 3.1] with c(n) = (lnn/n)
1/2

, σi = 1, r = 2 and the following propo-

sition.

Proposition 5.1. For any k ∈ {0, ...,mn} and any ℓ ∈ Ik or ℓ ∈ Jk, let

αk,ℓ and βk,ℓ be given by (2.1), and α̂k,ℓ and β̂k,ℓ be given by (3.3). Then

(i) There exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|
2
) ≤ C

lnn

n
.

(ii) There exists a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|
4
) ≤ C

(

lnn

n

)2

.

(iii) For κ > 0 large enough, there exists a constant C > 0 such that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ 2

(

lnn

n

)2

.

Let us now prove (i), (ii) and (iii) of Proposition 5.1 (which corresponds

to [21, (3.1) and (3.2) of Theorem 3.1]).

(i) We have

E(α̂k,ℓ) = E(φk(X1; ζk,ℓ)) =

∫

S

f(x)φk(x; ζk,ℓ)ν(dx) = αk,ℓ.(5.1)

So

E(|α̂k,ℓ − αk,ℓ|
2
) = V (α̂k,ℓ) =

1

n
V (φk(X1; ζk,ℓ)) ≤

1

n
E
(

|φk(X1; ζk,ℓ)|
2
)

.



222 Christophe Chesneau, Maher Kachour and Bertrand Maillot

It follows from (3.1), the fact that E is an orthonormal basis of H and (2.2) that

E
(

|φk(X1; ζk,ℓ)|
2
)

=

∫

S

|φk(x; ζk,ℓ)|
2f(x)ν(dx)

≤ Cf

∫

S

|φk(x; ζk,ℓ)|
2ν(dx)

= Cf

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= Cf

∑

j∈Ik

1

gj,k,ℓ

|ej(ζk,ℓ)|
2 ≤ CfC1.(5.2)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|
2
) ≤ C

1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.1), we show that E (ψk(Xi; ηk,ℓ)) = βk,ℓ. Hence

E(|β̂k,ℓ − βk,ℓ|
4
) =

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ,(5.3)

where

Ui,k,ℓ = ψk(Xi; ηk,ℓ) − E(ψk(Xi; ηk,ℓ)).

We will bound this last term via the Rosenthal inequality (recalled in the

Appendix).

We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we have

E(|U1,k,ℓ|
2
) ≤ CE

(

|ψk(X1; ηk,ℓ)|
2
)

≤ C.(5.4)

Let us now investigate the bound of E(|U1,k,ℓ|
4
). Observe that, thanks to the

Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ

|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ

|ej(ηk,ℓ)|
2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|
2





1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn
| ≤ C

√

n

lnn
.(5.5)
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The Hölder inequality, (5.5) and (5.4) yield

E(|U1,k,ℓ|
4
) ≤ CE

(

|ψk(X1; ηk,ℓ)|
4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|
2
)

≤ Cn.(5.6)

It follows from the Rosenthal inequality, (5.4) and (5.6) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|
4
)

,
(

nE
(

|U1,k,ℓ|
2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

.(5.7)

By (5.3) and (5.7), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|
4
) ≤ C

(

lnn

n

)2

.

(iii) We adopt the same notation as in (ii). Observe that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

.(5.8)

We will bound this probability via the Bernstein inequality (recalled in the

Appendix).

We have E(U1,k,ℓ) = 0.

By (5.5),

|U1,k,ℓ| ≤ C sup
x∈S

|ψk(x; ηk,ℓ)| ≤ C

√

n

lnn
.

Applying (5.2) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|U1,k,ℓ|
2
) ≤

C.

It follows from the Bernstein inequality that

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ 2 exp



−
Cn2κ2 ln n

n

n+ nκ
√

ln n
n

√

n
ln n



 ≤ 2n−w(κ),(5.9)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, combining (5.17) and (5.19), and taking κ such that

w(κ) = 2, we have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

The points (i), (ii) and (iii) of Proposition 5.1 are proved. The proof of Theorem

3.1 is complete.
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Proof of Theorem 4.1: As in the proof of Theorem 3.1, we only need to

prove (i), (ii) and (iii) of Proposition 5.1.

(i) Since X1 and ǫ1 are independent and E(ǫ1) = 0, we have

E(α̂k,ℓ) = E

(

Y1

g(X1)
φk(X1; ζk,ℓ)

)

= E

(

f(X1)

g(X1)
φk(X1; ζk,ℓ)

)

=

∫

S

f(x)

g(x)
φk(x; ζk,ℓ)g(x)ν(dx) = αk,ℓ.(5.10)

So

E(|α̂k,ℓ − αk,ℓ|
2
) = V (α̂k,ℓ) =

1

n
V

(

Y1

g(X1)
φk(X1; ζk,ℓ)

)

≤
1

n
E

(

∣

∣

∣

∣

Y1

g(X1)
φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

.

It follows from (4.2), |Y1| ≤ Cf + |ǫ1|, g(X1) ≥ cg, the independence between X1

and ǫ1, E(ǫ21) = 1, the fact that E is an orthonormal basis of H and (2.2) that

E

(

∣

∣

∣

∣

Y1

g(X1)
φk(X1; ζk,ℓ)

∣

∣

∣

∣

2
)

≤ (C2
f + 1)

1

cg
E

(

|φk(X1; ζk,ℓ)|
2 1

g(X1)

)

= (C2
f + 1)

1

cg

∫

S

|φk(x; ζk,ℓ)|
2 1

g(x)
g(x)ν(dx)

= C

∫

S

|φk(x; ζk,ℓ)|
2ν(dx)

= C

∫

S

∣

∣

∣

∣

∣

∣

∑

j∈Ik

1
√
gj,k,ℓ

ej(ζk,ℓ)ej(x)

∣

∣

∣

∣

∣

∣

2

ν(dx)

= C
∑

j∈Ik

1

gj,k,ℓ

|ej(ζk,ℓ)|
2 ≤ C.(5.11)

Therefore there exists a constant C > 0 such that

E(|α̂k,ℓ − αk,ℓ|
2
) ≤ C

1

n
≤ C

lnn

n
.

(ii) Proceeding as in (5.10), we show that E (Yiψk(Xi; ηk,ℓ)/g(Xi)) = βk,ℓ.

Set

Ui,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ) − E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)

)

.

and observe that

E(|β̂k,ℓ − βk,ℓ|
4
) =

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 .(5.12)

We will bound this last term via the Rosenthal inequality (recalled in the Ap-

pendix).
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We have E(U1,k,ℓ) = 0.

By the Hölder inequality and (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ),

we obtain

E(|U1,k,ℓ|
2
) ≤ CE

(

∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

2
)

≤ C.(5.13)

Let us now investigate the bound of E(|U1,k,ℓ|
4
). Observe that, thanks to the

Cauchy-Schwarz inequality, (2.2) and (2.3), we have

sup
x∈S

|ψk(x; ηk,ℓ)| ≤ sup
x∈S

∑

j∈Jk

1
√

hj,k,ℓ

|ej(ηk,ℓ)||ej(x)|

≤





∑

j∈Jk

1

hj,k,ℓ

|ej(ηk,ℓ)|
2





1/2

sup
x∈S

∑

j∈Jk

|ej(x)|
2





1/2

≤ C
1/2
1 C

1/2
2

√

|Jk| ≤ C
√

|Jmn
| ≤ C

√

n

(lnn)2
.(5.14)

The Hölder inequality, (5.14) and (5.13) yield

E(|U1,k,ℓ|
4
) ≤ CE

(

|ψk(X1; ηk,ℓ)|
4
)

≤ CnE
(

|ψk(X1; ηk,ℓ)|
2
)

≤ Cn.(5.15)

It follows from the Rosenthal inequality, (5.13) and (5.15) that

1

n4
E





∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

4


 ≤ C
1

n4
max

(

nE
(

|U1,k,ℓ|
4
)

,
(

nE
(

|U1,k,ℓ|
2
))2
)

≤ C
1

n2
≤ C

(

lnn

n

)2

.(5.16)

By (5.12) and (5.16), we prove the existence of a constant C > 0 such that

E(|β̂k,ℓ − βk,ℓ|
4
) ≤ C

(

lnn

n

)2

.

(iii) We adopt the same notation as in (ii). Since E (Yiψk(Xi; ηk,ℓ)/g(Xi))

= βk,ℓ, we can write

Ui,k,ℓ = Vi,k,ℓ +Wi,k,ℓ,

where

Vi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAi

− E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAi

)

,

Wi,k,ℓ =
Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAc

i
− E

(

Yi

g(Xi)
ψk(Xi; ηk,ℓ)1IAc

i

)

,

Ai =

{

|ǫi| ≥ c∗
√

lnn
}
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and c∗ denotes a constant which will be chosen later.

We have

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

= P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui,k,ℓ

∣

∣

∣

∣

∣

≥ n
κ

2

√

lnn

n

)

≤ I1 + I2,(5.17)

where

I1 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

≥
κ

4

√
n lnn

)

and

I2 = P

(∣

∣

∣

∣

∣

n
∑

i=1

Wi,k,ℓ

∣

∣

∣

∣

∣

≥
κ

4

√
n lnn

)

.

Let us now bound I1 and I2.

Upper bound for I1. The Markov inequality and the Cauchy-Schwarz in-

equality yield

I1 ≤
4

κ
√
n lnn

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi,k,ℓ

∣

∣

∣

∣

∣

)

≤ C

√

n

lnn
E(|V1,k,ℓ|)

≤ C

√

n

lnn
E

(∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

1IA1

)

≤ C

√

n

lnn

(

E

(

∣

∣

∣

∣

Y1

g(X1)
ψk(X1; ηk,ℓ)

∣

∣

∣

∣

2
))1/2

(P (A1))
1/2.

Using (5.13), an elementary Gaussian inequality and taking c∗ large enough, we

obtain

I1 ≤ C

√

n

lnn
e−c2

∗
ln n/4 ≤ C

1

n2
.(5.18)

Upper bound for I2. We will bound this probability via the Bernstein in-

equality (recalled in the Appendix).

We have E(W1,k,ℓ) = 0.

Using (4.2) which implies |Y11IAc
1
| ≤ Cf + c∗

√
lnn ≤ C

√
lnn and g(X1) ≥

cg, and (5.14), we obtain

|Wi,k,ℓ| ≤ C
√

lnn sup
x∈S

|ψk(x; ηk,ℓ)| ≤ C
√

lnn

√

n

(lnn)2
= C

√

n

lnn
.

Applying (5.11) with ψk(X1; ηk,ℓ) instead of φk(X1; ζk,ℓ), we obtain E(|W1,k,ℓ|
2
) ≤

C.
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It follows from the Bernstein inequality that

I2 ≤ 2 exp



−
Cn2κ2 ln n

n

n+ nκ
√

ln n
n

√

n
ln n



 ≤ 2n−w(κ),(5.19)

where

w(κ) =
Cκ2

1 + κ
.

Since limκ→∞w(κ) = ∞, taking κ such that w(κ) = 2, we have

I2 ≤ 2
1

n2
.

It follows from (5.17), (5.18) and (5.19) that

P

(

|β̂k,ℓ − βk,ℓ| ≥
κ

2

√

lnn

n

)

≤ C
1

n2
≤ C

(

lnn

n

)2

.

Hence the points (i), (ii) and (iii) of Proposition 5.1 are satisfied by our estima-

tors. The proof of Theorem 4.1 is complete.
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APPENDIX

Here we state the two inequalities that have been used for proving the

results in earlier section.

Lemma A.1 ([29]). Let n be a positive integer, p ≥ 2 and V1, ..., Vn be n

zero mean i.i.d. random variables such that E(|V1|
p
) <∞. Then there exists a

constant C > 0 such that

E

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

p)

≤ Cmax

(

nE(|V1|
p
), np/2

(

E(V 2
1 )
)p/2

)

.

Lemma A.2 ([23]). Let n be a positive integer and V1, ..., Vn be n i.i.d.

zero mean random variables such that there exists a constant M > 0 satisfying

|V1| ≤M <∞. Then, for any υ > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ υ

)

≤ 2 exp

(

−
υ2

2
(

nE(V 2
1 ) + υM/3

)

)

.
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thesis, Université Paris 7. (tel-00008542).

[2] Cai, T. (1999). Adaptive wavelet estimation: a block thresholding and oracle

inequality approach, The Annals of Statistics, 27, 898–924.

[3] Cohen, A.; De Vore, R.; Kerkyacharian, G. and Picard, D. (2001).

Maximal spaces with given rate of convergence for thresholding algorithms, Appl.
Comput. Harmon. Anal., 11, 167–191.

[4] Dabo-Niang, S. (2002). Estimation de la densité dans un espace de dimension
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