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FOREWORD

Modern methods of statistics of extremes have been widely applied in risk

modeling, with more and more scientists concerned with extrapolating to the

tails of a distribution, often beyond any existing data. Complex estimation and

inference problems arise when assessing the probability of such rare events, and

ingenious statistical methods have been developed based on various assumptions

useful for extrapolation.

This special issue of Revstat—Statistical Journal presents an overview of

such methods, by discussing recent developments in the statistical modeling of

extremes and their applications to the analysis of risk. It covers a variety of

topics, from methods for scalar extremes, often applied in a discrete time setting,

to the infinite-dimensional setting, thus far mostly applied in the space domain.

This special issue aims to provide a broad view of such topics, integrating modern

advances with the historical perspective. This allows the authors to go to the

origins of the concepts, methods and models of extremes, but in the light of the

current state of the art. A Collection of Surveys on Tail Event Modeling tries,

however, to offer more, as some challenges for future work are pinpointed by the

authors. We hope these papers stimulate interaction between experts in the field

of extremes and that they are useful for those entering this important field.

We thank Ivette Gomes, editor-in-chief of Revstat—Statistical Journal, for

encouraging us to take on this challenge. On the behalf of the Editorial Board

we would like to thank the authors for contributing to this special issue.

M. B. de Carvalho and A. C. Davison J. Beirlant
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Abstract:

• This review paper focuses on statistical issues arising in modeling univariate extremes

of a random sample. In the last three decades there has been a shift from the area

of parametric statistics of extremes, based on probabilistic asymptotic results in ex-

treme value theory, towards a semi-parametric approach, where the estimation of the

right and/or left tail-weight is performed under a quite general framework. But new

parametric models can still be of high interest for the analysis of extreme events, if

associated with appropriate statistical inference methodologies. After a brief reference

to Gumbel’s classical block methodology and later improvements in the parametric

framework, we present an overview of the developments on the estimation of parame-

ters of extreme events and testing of extreme value conditions under a semi-parametric

framework, and discuss a few challenging open research topics.
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• extreme value index; parameters of extreme events; parametric and semi-parametric
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1. INTRODUCTION, LIMITING RESULTS IN THE FIELD OF

EXTREMES AND PARAMETRIC APPROACHES

We shall assume that we have a sample (X1, ..., Xn) of n independent,

identically distributed (IID) or possibly stationary, weakly dependent random

variables from an underlying cumulative distribution function (CDF), F , and

shall use the notation (X1,n ≤ ··· ≤ Xn,n) for the sample of associated ascending

order statistics (OSs). Statistics of univariate extremes (SUE) helps us to learn

from disastrous or almost disastrous events, of high relevance in society and with a

high societal impact. The domains of application of SUE are thus quite diverse.

We mention the fields of hydrology, meteorology, geology, insurance, finance,

structural engineering, telecommunications and biostatistics (see, for instance,

and among others, Coles, 2001; Reiss & Thomas, 2001, 2007; Beirlant et al.,

2004, §1.3; Castillo et al., 2005; Resnick, 2007). Although it is possible to find

some historical papers with applications related to extreme events, the field dates

back to Gumbel, in papers from 1935 on, summarized in his book (Gumbel,

1958). Gumbel develops statistical procedures essentially based on Gnedenko’s

(Gnedenko, 1943) extremal types theorem (ETT), one of the main limiting results

in the field of extreme value theory (EVT), briefly summarized below.

1.1. Main limiting results in EVT

The main limiting results in EVT date back to the papers by Fréchet (1927),

Fisher & Tippett (1928), von Mises (1936) and Gnedenko (1943). Gnedenko’s

ETT provides the possible limiting behaviour of the sequence of maximum or

minimum values, linearly normalised, and an incomplete characterization, fully

achieved in de Haan (1970), of the domains of attraction of the so-called max-

stable (MS) or min-stable laws. Here, we shall always deal with the right-tail,

F (x) := 1 − F (x), for large x, i.e., we shall deal with top OSs. But all results

for maxima (top OSs) can be easily reformulated for minima (low OSs). Indeed,

X1,n =−max1≤i≤n(−Xi), and consequently, P(X1,n≤ x) = 1 − {1−F (x)}n. MS

laws are defined as laws S such that the functional equation Sn(αnx+βn) = S(x),

n ≥ 1, holds for some αn > 0, βn ∈ R. More specifically, all possible non-degener-

ate weak limit distributions of the normalized partial maxima Xn,n, of IID random

variables X1, ..., Xn, are (generalized) extreme value distributions (EVDs), i.e., if

there are normalizing constants an > 0, bn ∈ R, and some non-degenerate CDF G

such that, for all x,

(1.1) lim
n→∞

P
{

(Xn,n− bn)/an ≤ x
}

= G(x) ,
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we can redefine the constants in such a way that

(1.2) G(x) ≡ Gγ(x) :=

{

exp
{

−(1 + γx)−1/γ
}

, 1 + γx > 0 , if γ 6= 0 ,

exp
{

− exp(−x)
}

, x ∈ R , if γ = 0 ,

given here in the von Mises–Jenkinson form (von Mises, 1936; Jenkinson, 1955).

If (1.1) holds, we then say that the CDF F which is underlying X1, X2, ..., is in

the max-domain of attraction (MDA) of Gγ , in (1.2), and often use the notation

F ∈ DM(Gγ). The limiting CDFs G in (1.1) are then MS. They are indeed the

unique MS laws. The real parameter γ, the primary parameter of interest in

extreme value analysis (EVA), is called the extreme value index (EVI). The EVI,

γ, governs the behaviour of the right-tail of F . The EVD, in (1.2), is often

separated into the three types:

(1.3)

Type I (Gumbel) : Λ(x) = exp
{

− exp(−x)
}

, x ∈ R ,

Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0 ,

Type III (max-Weibull) : Ψα(x) = exp
{

−(−x)α
}

x ≤ 0 .

Indeed, with γ = 0, γ = 1/α > 0 and γ = −1/α < 0, respectively, we have Λ(x) =

G0(x), Φα(x) = G1/α{α(1− x)} and Ψα(x) = G−1/α{α(x + 1)}, with Gγ the EVD

in (1.2). The Fréchet domain of attraction (γ > 0) contains heavy-tailed CDFs

like the Pareto and the Student t-distributions, i.e., tails of a negative polynomial

type and infinite right endpoint. Short-tailed CDFs, with finite right endpoint,

like the beta CDFs, belong to the Weibull MDA (γ < 0). The Gumbel MDA

(γ = 0), is relevant for many applied sciences, and contains a great variety of

CDFs with an exponential tail, like the normal, the exponential and the gamma,

but not necessarily with an infinite right endpoint. As an example of a CDF

F ∈ DM(G0), with a finite right endpoint xF, we have the exponential-type dis-

tribution, F (x) = K exp
{

−c/(xF− x)
}

, for x < xF , c > 0 and K > 0.

Apart from the ETT and the already mentioned EVD, in (1.2), it is also

worth mentioning the generalized Pareto distribution (GPD), the limit distribu-

tion of scaled excesses over high thresholds (see the pioneering papers by Balkema

& de Haan, 1974; Pickands, 1975), which can be written as

(1.4) Pγ(x) = 1 + lnGγ(x) =

{

1− (1 + γx)−1/γ , 1+ γx > 0 , x > 0 , if γ 6= 0 ,

1− exp(−x) , x > 0 , if γ = 0 ,

with Gγ given in (1.2), as well as the multivariate EVD, related with the limiting

distribution of the k largest values Xn−i+1:n, 1 ≤ i ≤ k, also called the extremal

process (Dwass, 1964), with associated probability density function (PDF)

(1.5) hγ(x1, ..., xk) = gγ(xk)

k−1
∏

j=1

gγ(xj)

Gγ(xj)
if x1 > ··· > xk ,

where gγ(x) = dGγ(x)/dx, with Gγ(x) given in (1.2).
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1.2. Parametric approaches to SUE

Deciding upon the right tail-weight for the distribution underlying the sam-

ple data constitutes an important initial task in EVA. On the other hand, statisti-

cal inference about rare events is clearly linked to observations which are extreme

in some sense. There are different ways to define such observations, leading to

different approaches to SUE. We next briefly reference the most common para-

metric approaches to SUE. For further details on the topic, and pioneering papers

on the subject, see Gomes et al. (2008a).

Block maxima (BM) method. With (λn, δn) ∈ R×R
+, a vector of

unknown location and scale parameters, the ETT supports the approximation

(1.6) P
(

Xn,n≤ x
)

= Fn(x) ≈ Gγ

{

(x− λn)/δn

}

.

Gumbel was pioneer in the use of approximations of the type of the one provided

in (1.6), but for any of the models in (1.3), suggesting the first model in SUE,

usually called the BM model or the annual maxima model or the extreme value

(EV) univariate model or merely Gumbel’s model. The sample of size n is di-

vided into k sub-samples of size r (usually associated to k years, with n = r×k,

r reasonably large). Next, the maximum of the r observations in each of the

k sub-samples is considered, and one of the extremal models in (1.3), obviously

with extra unknown location and scale parameters, is fitted to such a sample.

Nowadays, whenever using this approach, still quite popular in environmental

sciences, it is more common to fit to the data a univariate EVD, Gγ{(x−λr)/δr},
with Gγ given in (1.2), (λr, δr, γ) ∈ (R, R+, R) unknown location, scale and ‘shape’

parameters. All statistical inference is then related to EVDs.

The method of largest observations (LO). Although the BM-method

has proved to be fruitful in the most diversified situations, several criticisms

have been made on Gumbel’s technique, and one of them is the fact that we are

wasting information when using only observed maxima and not further top OSs,

if available, because they surely contain useful information about the right-tail of

the CDF underlying the data. To make inference on the right-tail weight of the

underlying model, it seems sensible to consider a small number k of top OSs from

the original data, and when the sample size n is large and k fixed, it is sensible to

consider the multivariate EVD, with a standardized PDF given in (1.5). Again,

unknown location and scale parameters, λn and δn, respectively, are considered

and estimated on the basis of the k top OSs, out of n. This approach to SUE is

the so-called LO method or multivariate EV model. It is now easier to increase

the number k of observations, contrary to what happens in Gumbel’s approach.

Multi-dimensional EV approaches. It is obviously feasible to combine

the two aforementioned approaches to SUE. In each of the sub-samples asso-
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ciated to Gumbel’s classical approach, we can collect a few top OSs modelled

through a multivariate EV model, and then consider the so-called multidimen-

sional EVmodel. Under this approach, we have access to the multivariate sample,

(X1, ..., Xk), where Xj = (X1j , ..., Xijj), 1 ≤ j ≤ k, are multivariate EVvectors.

The multi-dimensional EV model is indeed the multivariate EV model for the

ij top observations, j = 1, ..., m, in sub-samples of size m′, with m×m′ = n.

The choices m = k (m′ = r) and ij = 1 for 1 ≤ j ≤ k give the BM model.

The choices m′ = n (m = 1) and i1 = k give the LO model.

The peaks over threshold (POT) approaches. The Paretian model

for the excesses, Xj −u > 0, 1 ≤ j ≤ k, over a high threshold u, suitably chosen,

is considered under this approach, in a certain sense parallel to the multivariate

EV model, but where we restrict our attention only to observations that exceed a

certain high threshold u, fitting the appropriate statistical model to the excesses

over u. On the basis of the approximation P
(

X−u ≤ x |X > u
)

≈ Pγ(x/σ), with

Pγ(x) given in (1.4), we come to the so-called Paretian excesses model or POT

model. Statistical inference is then related to the GPD.

Bayesian approaches. The use of Bayesian methodology, within EVA,

has recently become quite common. We mention only some recent papers, written

after the monographs by Coles (2001) and Reiss & Thomas (2001), the ones by

Bermudez & Amaral-Turkman (2003), Bottolo et al. (2003), Stephenson & Tawn

(2004), on the use of reversible jump MCMC techniques for inference for the EVD

and the GPD and Diebolt et al. (2005), on a quasi-conjugate Bayesian inference

approach for the GPD with γ > 0, through the representation of a heavy-tailed

GPD as a mixture of an exponential and a gamma distribution.

Statistical choice of EV models under parametric frameworks.

The Gumbel type CDF, Λ ≡ G0 or the exponential (E) type CDF, E ≡ P0, with

Gγ and Pγ given in (1.2) and (1.4), respectively, are favorites in SUE, essentially

because of the simplicity of associated inference. Additionally, γ = 0 can be

regarded as a change-point, and any separation between EV models, with Λ or E

in a central position, turns out to be an important statistical problem. From a

parametric point of view, empirical tests of H0 : γ = 0 versus a sensible one-sided

or two-sided alternative, either for the EVD or the GPD, date back to Jenkinson

(1955) and Gumbel (1965). Next, we can find in the literature, different heuristic

tests, among which we reference only one of the most recent (Brilhante, 2004).

We can also find locally asymptotically normal tests (see Marohn, 2000, and Falk

et al., 2008, among others). The fitting of the GPD to data has been worked

out in Castillo & Hadi (1997) and Chaouche & Bacro (2004). The problem of

goodness-of-fit tests for the GPD has been studied by Choulakian & Stephens

(2001) and Luceño (2006), again among others. Tests from large sample theory,

like the likelihood ratio test have been dealt with by Hosking (1984) and Gomes

(1989). Further details on this topic can be found in Gomes et al. (2007a), an

enlarged version of Gomes et al. (2008a).
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1.3. Scope of the paper

In the late 1970s, there was a move from a parametric approach based

on the limiting models in EVT, towards a semi-parametric approach, where tail

estimation is done under a quite general framework. In §2 of this review paper

we cover classical semi-parametric inference. Recently, essentially for heavy tails,

i.e., for γ > 0, but also for a general γ ∈ R, the accommodation of bias of the

classical estimators of parameters of extreme events has been deeply considered

in the literature. The topic of second-order reduced-bias (SORB) estimation still

seems to open interesting perspectives in the field, and will be addressed in §3.

Finally, in §4, we shall discuss some still challenging topics in SUE, providing

some overall comments on the subject.

2. CLASSICAL SEMI-PARAMETRIC INFERENCE

Under these semi-parametric approaches, we work with the k top OSs as-

sociated to the n available observations or with the excesses over a high random

threshold, assuming only that, for a certain γ, the model F underlying the data

is in DM(Gγ) or in specific sub-domains of DM(Gγ), with Gγ provided in (1.2),

γ being the key parameter of extreme events to be estimated, using a few large

observations, and with suitable methodology. There is thus no fitting of a spe-

cific parametric model, dependent upon a location λ, a scale δ and a shape γ.

We usually need to base the EVI-estimation on the k top OSs in the sample,

with k intermediate, i.e., such that k = kn →∞ and k = o(n), i.e., k/n → 0, as

n → ∞. Such estimators, together with semi-parametric estimators of location

and scale (see, for instance, de Haan & Ferreira, 2006), can next be used to esti-

mate extreme quantiles, return periods of high levels, upper tail probabilities and

other parameters of extreme events. After introducing first and second-order con-

ditions in §2.1, §2.2 describes several classical semi-parametric EVI-estimators.

In §2.3, we give results on the testing of the EV condition F ∈ D(Gγ), under

a semi-parametric framework. Finally, in §2.4, we outline the semi-parametric

estimation of other parameters of extreme events.

2.1. First, second (and higher) order conditions

As mentioned above, in §1, the full characterization of DM (Gγ) has been

given in de Haan (1970), and can be also found in Falk et al. (2004) and de Haan &

Ferreira (2006). Indeed, with U standing for a (reciprocal) quantile type function
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associated with F and defined by U(t) :=
(

1/(1 − F )
)←

(t) = F←(1 − 1/t) =

inf
{

x : F (x) ≥ 1 − 1/t
}

, the extended regular variation property,

(2.1) F ∈ DM (Gγ) ⇐⇒ lim
t→∞

U(tx) − U(t)

a(t)
=







xγ −1

γ
if γ 6= 0 ,

ln x if γ = 0 ,

for every x > 0 and some positive measurable function a, is a well-known neces-

sary and sufficient condition for F ∈ DM(Gγ) (de Haan, 1984). Heavy-tailed mod-

els, i.e., models F ∈ D+
M := DM(Gγ>0), are quite important in many areas. We

can then choose a(t) = γ U(t) in (2.1), and F ∈ D+
M if and only if, for every x > 0,

limt→∞ U(tx)/U(t) = xγ , i.e., U is of regular variation with index γ, denoted

U ∈ RVγ . More generally, F ∈ D+
M ⇐⇒ F := 1−F ∈ RV−1/γ ⇐⇒ U ∈ RVγ .

For full details on regular variation see Bingham et al. (1987).

Under a semi-parametric framework, apart from the first-order condition

in (2.1), we often need to assume a second-order condition, specifying the rate of

convergence in (2.1). It is then common to assume the existence of a function A∗,

possibly not changing in sign and tending to zero as t → ∞, such that

(2.2) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A∗(t)
=

1

ρ∗

(

xγ+ρ∗−1

γ + ρ∗
− xγ −1

γ

)

, x > 0 ,

where ρ∗≤ 0 is a second-order parameter controlling the speed of convergence

of maximum values, linearly normalized, towards the limit law in (1.2). Then

limt→∞A∗(tx)/A∗(t) = xρ∗, x > 0, i.e., |A∗| ∈RVρ∗ (de Haan & Stadtmüller, 1996).

For heavy tails, the second-order condition is usually written as

(2.3) lim
t→∞

ln U(tx) − lnU(t) − γ lnx

A(t)
=

xρ−1

ρ
,

where ρ ≤ 0 and A(t) → 0 as t → ∞. More precisely, |A| ∈ RVρ according to

Geluk & de Haan (1987). For the link between (A∗(t), ρ∗) and (A(t), ρ), see

de Haan & Ferreira (2006) and Fraga Alves et al. (2007). Similarly, third-order

conditions specify the rate of convergence either in (2.2) or in (2.3). For further

details on the third-order condition for heavy tails, see Gomes et al. (2002a)

and Fraga Alves et al. (2003a). For a general third-order framework, see Fraga

Alves et al. (2003b, Appendix; 2006). Higher-order conditions can be similarly

postulated, but restrict the chosen CDFs in DM(Gγ) more strictly.

2.2. Classical semi-parametric EVI-estimation

The most basic EVI-estimators that have motivated several other refined

estimators, i.e., the Hill (H), Pickands (P), moment (M) and peaks over random

threshold-maximum likelihood (PORT-ML) estimators, are described in §2.2.1.

Next, in §2.2.2, we briefly discuss other classical EVI-estimators.
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2.2.1. H, P, M and PORT-ML EVI-estimators

The H-estimator. For heavy tailed models, i.e., in D+
M, a simple EVI-

estimator has been proposed in Hill (1975). The H-estimator, denoted γ̂H
n,k, is

the average of the scaled log-spacings as well as of the log-excesses, given by

(2.4) Ui := i

(

ln
Xn−i+1,n

Xn−i,n

)

and Vik := ln
Xn−i+1,n

Xn−k,n
, 1 ≤ i ≤ k < n ,

respectively. Its asymptotic properties have been thoroughly studied (see de Haan

& Peng, 1998, and the review in Gomes et al., 2008a).

The P-estimator. For a general EVI, γ ∈ R, and considering as the basis

of the estimation the k top OSs, we can write the P-estimator (Pickands, 1975)

as

γ̂P
n,k := ln

{

(

Xn−[k/4]+1,n − Xn−[k/2]+1,n

)/(

Xn−[k/2]+1,n − Xn−k+1,n

)

}

/

ln 2 ,

where [x] denotes the integer part of x. Asymptotic properties of this estimator

are provided in Dekkers & de Haan (1989).

The M-estimator. Dekkers et al. (1989) proposed the M-estimator, based

on

(2.5) M
(j)
n,k :=

1

k

k
∑

i=1

(

lnXn−i+1,n − lnXn−k,n

)j
, j > 0 ,

the j-moment of the log-excesses, M
(1)
n,k≡ γ̂H

n,k being the H-estimator. The M-esti-

mator is given by γ̂M
n,k := M

(1)
n,k + 1

2

(

1 −
(

M
(2)
n,k/[M

(1)
n,k]

2 − 1
)−1
)

.

The PORT-ML-estimator. Conditionally on Xn−k,n, with k interme-

diate, Dik := Xn−i+1,n − Xn−k,n, 1 ≤ i ≤ k, are approximately the k top OSs

associated to a sample of size k from GPγ(αx/γ), γ, α ∈ R, with GPγ(x) given

in (1.4). The solution of the maximum-likelihood (ML) equations associated

to the above mentioned set-up (Davison, 1984) gives rise to an explicit EVI-

estimator, the PORT-ML EVI-estimator, named PORT after Araújo Santos et al.

(2006), and given by γ̂PORT−ML
n,k := 1

k

∑k
i=1 ln(1 + α̂ Dik), where α̂ is the implicit

ML estimator of the unknown ‘scale’ parameter α. A comprehensive study of

the asymptotic properties of this ML estimator has been undertaken in Drees

et al. (2004). As recently shown by Zhou (2009, 2010), this estimator is valid for

γ >−1.
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2.2.2. Other ‘classical’ semi-parametric EVI-estimators

Kernel (K) and QQ-estimators. A general class of estimators for a

positive EVI are the K-estimators proposed by Csörgő et al. (1985), given by

γ̂Kn,k :=
∑n

i=1 K(i/k) (lnXn−i+1,n − lnXn−k,n)/
∑n

i=1 K(i/k), where K(·) is some

non-negative, non-increasing kernel defined on (0,∞) and with unit integral. As

an example, the H-estimator is a kernel estimator associated to the kernel K(t) =

I]0,1](t), where I
A
(t) denotes the indicator function (I

A
(t) = 1 if t ∈ A, and equal

to 0 otherwise). Kernel estimators for a real EVI are considered in Groeneboom

et al. (2003). The H-estimator can also be obtained from the Pareto QQ-plot,

through the use of a näıve estimator of the slope in the ultimate right-end of the

QQ-plot. More flexible regression methods can be applied to the highest k points

of the Pareto QQ-plot; see Beirlant et al. (1996a,c), Schultze & Steinbach (1996),

Kratz & Resnick (1996), Csörgő & Viharos (1998) and Oliveira et al. (2006).

They are all K-estimators.

Generalized P-estimators. The large asymptotic variance of the

P-estimator has motivated different generalizations of the type γ̂
P(θ)
n,k :=

− ln
{(

Xn−[θ2k]+1,n − Xn−[θk]+1,n

)

/
(

Xn−[θk]+1,n − Xn−k,n

)} /

ln θ , 0 < θ < 1.

(Fraga Alves, 1992, 1995; Themido Pereira, 1993; Yun, 2002). Drees (1995)

establishes the asymptotic normality of linear combinations of P-estimators, ob-

taining optimal weights that can be adaptively estimated from the data. Related

work appears in Falk (1994). In Segers (2005), the P-estimator is generalized in

a way that includes all of its previously known variants.

The generalized Hill (GH) estimator. The slope of a generalized

quantile plot led Beirlant et al. (1996b) to the GH-estimator, valid for all γ ∈ R,

with the functional form, γ̂GH
n,k = γ̂H

n,k + 1
k

∑k
i=1

(

ln γ̂H
n,i − ln γ̂H

n,k

)

. Further study

of this estimator has been performed in Beirlant et al. (2005).

The Mixed Moment (MM) estimator. Fraga Alves et al. (2009) intro-

duced the so-called MM-estimator, involving not only the log-excesses but also

another type of moment-statistics given by ϕ̂n,k :=
(

M
(1)
n,k −L

(1)
n,k

)/(

L
(1)
n,k

)2
, with

L
(1)
n,k := 1

k

∑k
i=1

(

1−Xn−k,n/Xn−i+1,n

)

, and where M
(1)
n,k is defined in (2.5). The statis-

tic ϕ̂n,k can easily be transformed into what has been called the MM-estimator,

valid for any γ ∈ R, and given by γ̂MM
n,k :=

{

ϕ̂n(k)−1
}/[

1+ 2 min{ϕ̂n(k)−1, 0}
]

.

This seems a promising alternative to the most popular EVI-estimators for γ ∈ R.

Semi-parametric probabilityweightedmoment (PWM)estimators.

The PWM method is a generalization of the method of moments, introduced in

Greenwood et al. (1979). For γ < 1 and for CDFs like the EVD, EVγ((x−λ)/δ),

with EVγ(x) given in (1.2), the Pareto d.f., Pγ(x; δ) = 1 − (x/δ)−1/γ
, x > δ,

and the GPD, GPγ(x/δ), with GPγ(x) defined in (1.4), the PWM have

simple expressions, which allow a simple parametric estimation of the EVI

(see Hosking et al., 1985; Hosking & Wallis, 1987; Diebolt et al., 2007, 2008c).



An Overview and Open Research Topics in Statistics of Univariate Extremes 11

On the basis of the GPD, de Haan and Ferreira (2006) considered, for γ < 1, the

semi-parametric GPPWM EVI-estimator, with GPPWM standing for generalized

Pareto PWM, given by γ̂GPPWM
n,k := 1 − 2 â⋆

1(k)/
(

â⋆
0(k) − 2 â⋆

1(k)
)

, 1 ≤ k < n, and

â⋆
s(k) :=

∑k
i=1

(

i
k

)s(
Xn−i+1:n − Xn−k:n

)

/k , s = 0, 1. On the basis of the Pareto

model, Caeiro & Gomes (2011) introduced the PPWM EVI-estimators, with

PPWM standing for Pareto PWM, given by γ̂PPWM
n,k := 1−â1(k)/

{

â0(k) − â1(k)
}

,

where âs(k) := 1
k+1

∑k+1
i=1

(

i
k+1

)s
Xn−i+1:n , s = 0, 1 with 1 ≤ k < n.

Other estimators. Falk (1995a) proposed the location-invariant estimator,

γ̂n,k := 1
k

∑k−1
i=1 ln

(

Xn,n − Xn−i,n

)/(

Xn,n − Xn−k,n

)

, as a complement of the

PORT-ML estimator for γ <−1/2. Such an estimator has been improved, on the

basis of an iterative procedure, in Hüsler & Müller (2005). The non-invariance for

shifts of the H-estimator led Fraga Alves (2001) to the consideration for k > k0,

with k0 appropriately chosen, of the location invariant Hill-type estimator γ̂n,k,k0
:=

1
k0

∑k
i=1 ln

((

Xn−i+1,n − Xn−k,n

)/(

Xn−k0+1,n − Xn−k,n

))

. Beirlant et al. (1996b)

consider a general class of estimators based on the mean, median and trimmed

excess functions. Drees (1998) obtains asymptotic results for a general class of

EVI-estimators, arbitrary smooth functionals of the empirical tail quantile func-

tion Qn(t) = Xn−[knt],n, t ∈ [0, 1]. Such a class includes H, P and K-estimators,

among others. For further references see, e.g., §6.4 of Embrechts et al. (1997),

Beirlant et al. (1996a;1998), Csörgő & Viharos (1998), §3 of de Haan & Ferreira

(2006), and Ling et al. (2011).

2.2.3. Consistency and asymptotic normal behaviour of the estimators

Weak consistency of any of the aforementioned EVI-estimators is achieved

in the sub-domain of DM(EVγ) where they are valid, whenever (2.1) holds and

k is intermediate. Under the validity of the second-order condition in (2.2), it is

possible to guarantee their asymptotic normality. More precisely, with T denoting

any of these EVI-estimators, and with B(t) a bias function converging to zero

as t → ∞ and closely related with the A∗(t) function in (2.3), it is possible to

guarantee the existence of C
T
⊂R and (b

T
, σ

T
) ∈ R×R

+, such that

(2.6) γ̂T
n,k

d
= γ + σ

T
P T

k /
√

k + b
T
B(n/k) + op

{

B(n/k)
}

,

with P T
k an asymptotically standard normal random variable. Consequently, for

values k such that
√

k B(n/k) → λ, finite, as n → ∞,

√
k
(

γ̂T
n,k − γ

) d−→
n→∞

Normal(λb
T
, σ2

T
) .

The values b
T

and σ2
T

are usually called the asymptotic bias and asymptotic

variance of γ̂T
n,k respectively. Details on the values of (b

T
, σ

T
) and the function B,

in (2.6) are given in the aforementioned papers associated with the T -estimators.
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2.3. Testing under a semi-parametric framework

Testing the hypothesis H0 : F ∈ DM(G0) against H1: F ∈ DM(Gγ), γ 6= 0,

or the corresponding one-sided alternatives, under a semi-parametric framework

is obviously natural and sensible. In a broad sense, tests of this nature can already

be found in papers prior to 2000 (see Gomes et al., 2007a). Non-parametric tests

appear in Jurečková & Picek (2001). But the testing of extreme value conditions

can be dated back to Dietrich et al. (2002), who propose a test statistic to test

whether the hypothesis F ∈ DM(Gγ) is supported by the data, together with a

simpler version devised to test whether F ∈ DM(Gγ≥0). Further results of this

last nature can be found in Drees et al. (2006) for testing F ∈ DM(Gγ>−1/2).

Tables of associated critical points are provided in Hüsler & Li (2006). Beirlant

et al. (2006) tackle the goodness-of-fit problem for the class of heavy-tailed or

Pareto-type distributions. For overviews of the subject see Hüsler & Peng (2008)

and Neves & Fraga Alves (2008). See also Koning & Peng (2008) and Goegebeur

& Guillou (2010).

2.4. Estimation of other parameters of extreme events

High quantiles of probability 1 − p, p small, or equivalently in financial

frameworks the Value at Risk at a level p (VaRp) are possibly the most important

parameters of extreme events, functions of the EVI, as well as of location/scale

parameters. In a semi-parametric context, the most usual estimators of a quan-

tile χ
1−p := U(1/p), with p small, can be easily derived from (2.1), through the

approximation U(tx) ≈ U(t) + a(t)(xγ−1)/γ. The fact that Xn−k+1,n
p∼ U(n/k)

enables us to estimate χ
1−p on the basis of this approximation and appropriate

estimates of γ and a(n/k). For the simpler case of heavy tails, the approxima-

tion is U(tx) ≈ U(t)xγ , and we get χ̂
1−p,k

:= Xn−k:n

{

k/(np)
}γ̂k , where γ̂k is any

consistent semi-parametric EVI-estimator. This estimator is of the type intro-

duced by Weissman (1978). Details on semi-parametric estimation of extremely

high quantiles for γ ∈ R, can be found in Dekkers & de Haan (1989), de Haan

& Rootzén (1993) and more recently in Ferreira et al. (2003). Fraga Alves et al.

(2009) also provide, jointly with the MM-estimator, accompanying shift and scale

estimators that make high quantile estimation almost straightforward. Other ap-

proaches to high quantile estimation can be found in Matthys & Beirlant (2003).

None of the above mentioned quantile estimators is equivariant. Araújo San-

tos et al. (2006) provide a class of semi-parametric VaRp estimators which enjoy

equivariance, the empirical counterpart of the theoretical linearity of a quantile

χp, χp(δX + λ) = δ χp(X) + λ, for any real λ and positive δ. This class of esti-

mators is based on the PORT methodology, providing exact properties for risk
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measures in finance: translation-equivariance and positive homogeneity. The es-

timation of the probability of exceedance of a fixed high level, has been dealt with

by Dijk & de Haan (1992) and Ferreira (2002), among others. See also Guillou et

al. (2010) and You et al. (2010). The estimation of the endpoint of an underlying

CDF has been studied by Hall (1982), Csörgő & Mason (1989), and Aarssen &

de Haan (1994), among others. Estimation of the mean of a heavy-tailed distri-

bution has been undertaken by Peng (2001) and Johansson (2003). Estimation of

the Weibull tail coefficient dates back to Girard (2004). See also Goegebeur et al.

(2010a), among others. See also de Haan & Ferreira (2006).

3. SORB ESTIMATION

Most of the classical semi-parametric estimators of any parameter of ex-

treme events have a strong bias for moderate up to large values of k, including

the optimal k, in the sense of minimal mean squared error (MSE). Accommo-

dation of bias of classical estimators of parameters of extreme events has been

deeply considered in the recent literature. We mention the pioneering papers of

Peng (1998), Beirlant et al. (1999), Feuerverger & Hall (1999) and Gomes et al.

(2000), where the classical bias-variance trade-off always appears. Such a trade-

off was removed with an appropriate estimation of the second-order parameters,

as done in Caeiro et al. (2005) and Gomes et al. (2007b; 2008c), who introduced

different types of minimum-variance reduced-bias (MVRB) EVI-estimators. Such

estimators have an asymptotic variance equal to that of the Hill EVI-estimator

but an asymptotic bias of smaller order, and thus beat the classical estimators

for all k. In §3.1 we deal with SORB semiparametric EVI-estimation and in §3.2,

we briefly describe the recent literature on SORB semi-parametric estimation of

other parameters of extreme events.

3.1. SORB semi-parametric EVI-estimation

Let us consider any ‘classical’ semi-parametric EVI-estimator, γ̂n,k. Let us

also assume that a distributional representation similar to the one in (2.6), with

(b
T
, σ

T
) replaced by (b, σ), holds for γ̂n,k. For intermediate k, γ̂n,k is consistent

for EVI-estimation, and it is asymptotically normal if we further assume that√
kB(n/k) → λ, finite. Approximations for the variance and the squared-bias of

γ̂n,k are then σ2/k and b2B2(n/k) respectively. Consequently, these estimators

exhibit the same peculiarities: a high variance for high thresholds Xn−k,n, i.e., for

small k; a high bias for low thresholds, i.e., for large k; a small region of stability

of the sample path (plot of the estimates versus k), making the adaptive choice of

the threshold problematic on the basis of any sample path stability criterion; and
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a very peaked MSE, making the choice of the value k0 := arg mink MSE (γ̂n,k)

difficult. These peculiarities have led researchers to consider the possibility of

dealing with the bias term in an appropriate manner, building new estimators

γ̂R
n,k, here called SORB EVI-estimators. In particular, for heavy tails, i.e., γ > 0,

bias reduction is very important for the estimation of γ or of the Pareto index,

α = 1/γ, when the slowly varying part of the Pareto type model disappears at a

very slow rate. We consider the following definition (Reiss & Thomas, 2007, §6).

Definition 3.1. Under the second-order condition in (2.2) and for inter-

mediate k, the statistic γ̂R
n,k, a consistent EVI-estimator, based on the k top OSs

in a sample from F ∈ DM(EVγ), is said to be a SORB semi-parametric EVI-

estimator, if there exist σ
R

> 0 and an asymptotically standard normal random

variable PR
k , such that for a large class of models in DM(EVγ), and with B(·) the

function in (2.6),

(3.1) γ̂R
n,k

d
= γ + σ

R
PR

k /
√

k + op

{

B(n/k)
}

.

Notice that for the SORB EVI-estimators, we no longer have a dominant

component of bias of the order of B(n/k), as in (2.6). Therefore,

√
k
(

γ̂R
n,k − γ

) d−→
n→∞

Normal
(

0, σ2
R

)

not only when
√

kB(n/k) → 0 (as for classical estimators), but also when√
kB(n/k) → λ, finite and non-null. Such a bias reduction provides usually a

stable sample path for a wider region of k-values, a ‘bath-shaped’ MSE and a

reduction of the MSE to the optimal level.

Such an approach has been carried out for heavy tails in different manners.

The key ideas are either to find ways of getting rid of the dominant component

bB(n/k) of bias, in (2.6), or to go further into the second-order behaviour of the

basic statistics used for the estimation of γ, like the log-excesses or the scaled log-

spacings, in (2.4). We first mention some pre-2000 results about bias-corrected es-

timators in EVT. Such estimators date back to Gomes (1994b), Drees (1996) and

Peng (1998), among others. Gomes uses the generalized jackknife (GJ) method-

ology in Gray & Schucany (1972), and Peng deals with linear combinations of ap-

propriate EVI-estimators, in a spirit close to that associated to the GJ technique.

Feuerverger & Hall (1999) discuss the question of the possible misspecification of

the second-order parameter ρ at −1, a value that corresponds to many commonly

used heavy-tailed models, like the Fréchet. Within the second-order framework,

Beirlant et al. (1999) investigate the accommodation of bias in the scaled log-

spacings and derive approximate ‘ML’ and ‘least squares’ SORB EVI-estimators.

In §3.1.1, we provide details about the GJ EVI-estimation. In §3.1.2 we briefly

review an approximate ML approach, together with the introduction of simple

SORB EVI-estimators based on the scaled log-spacings or the log-excesses, in
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(2.4). Second-order parameters are usually decisive for the bias reduction, and

we deal with their estimation in §3.1.3. Finally in §3.1.4, we conclude with some

remarks about further literature on SORB EVI-estimation, including the recent

first steps on SORB EVI-estimation for a general γ ∈ R.

3.1.1. A brief review of GJ estimators of a positive EVI

The pioneering SORB EVI-estimators are, in a certain sense, GJ estimators,

i.e., affine combinations of well-known estimators of γ. For details on the GJ

methodology, see Gray & Schucany (1972). Whenever we are dealing with semi-

parametric EVI-estimators, or even estimators of other parameters of extreme

events, we usually have information about their asymptotic bias. We can thus

choose estimators with similar asymptotic properties, and build the associated

GJ random variable or statistic. This methodology has been used in Gomes et al.

(2000, 2002b), among others, and was revisited by Gomes et al. (2011c). Indeed,

if the second-order condition in (2.3) holds, we can easily find two statistics γ̂
(j)
n,k,

such that (2.6) holds for both. The ratio between the dominant components of

bias of γ̂
(1)
n,k and γ̂

(2)
n,k is q = b1/b2 = q(ρ), and we get the GJ random variable,

(3.2) γ̂
GJ(ρ)
n,k :=

(

γ̂
(1)
n,k − q(ρ) γ̂

(2)
n,k

)/{

1 − q(ρ)
}

.

Then under the second-order condition in (2.3), a distributional representation

of the type in (3.1) holds for γ̂
GJ(ρ)
n,k , with σ2

GJ
> σ2

H
= γ2 and

(

P
R

k , B(n/k)
)

re-

placed by
(

P
GJ

k , A(n/k)
)

. The same result remains true for the GJ EVI-estimator,

γ
GJ(ρ̂)
n,k , provided that ρ̂ − ρ = op(1) for all k on which we initially base the EVI-

estimation. Then (Gomes & Martins, 2002), if
√

k A(n/k) → λ, finite,

(3.3)
√

k
(

γ̂
GJ(ρ̂)
n,k − γ

) d−→
n→∞

Normal
(

0, σ2
GJ

)

.

The result in (3.3), comes from the fact that, through the use of Taylor’s expan-

sion, we can write

(3.4) γ̂
GJ(ρ̂)
n,k

d
= γ̂

GJ(ρ)
n,k (k) +

(

ρ̂ − ρ
)

[

Op

(

1/
√

k
)

+ Op

{

A(n/k)
}

]

{

1 + op(1)
}

.

A closer look at (3.4) reveals that it does not seem convenient to compute ρ̂

at the value k considered for the EVI-estimation. Indeed, if we do that, and

since we have ρ̂ − ρ = ρ̂k − ρ = Op

[

1/
{
√

k A(n/k)
}]

(see Fraga Alves et al.,

2003a), (ρ̂ − ρ) A(n/k) is a term of the order of 1/
√

k, and the asymptotic vari-

ance of the EVI-estimator will change. Gomes et al. (2000) have suggested the

misspecification of ρ at ρ = −1, essentially due not only to the high bias and

variance of the existing estimators of ρ at that time, but also to the idea of con-

sidering ρ̂ = ρ̂k. Nowadays, the use of any of the algorithms in Gomes & Pestana

(2007a,b), among others, enables us to get the limiting result in (3.3), for k-values

such that
√

k A(n/k) → ∞, as n → ∞.
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3.1.2. Accommodation of bias in the scaled log-spacings and in the log-excesses:

alternative SORB EVI-estimators

The ML EVI-estimation based on the scaled log-spacings. The

accommodation of bias in the scaled log-spacings Ui in (2.4) has also been a source

of inspiration for the building of SORB EVI-estimators. Under the second-order

condition in (2.3), but for ρ < 0, i.e., working in Hall’s class of Pareto-type models

(Hall, 1982), with a right-tail function F (x) = Cx−1/γ
(

1 + Dxρ/γ + o
(

xρ/γ
))

, as

x → ∞, C > 0, D real, ρ < 0, we can choose in (2.3),

(3.5) A(t) = α tρ =: γ β tρ , β ∈ R , ρ < 0 ,

where β can be regarded as a slowly varying function. Beirlant et al. (1999)

provide the approximation

(3.6) Ui ∼
{

γ + A(n/k) (i/k)
−ρ}Ei , 1 ≤ i ≤ k ,

where Ei, i ≥ 1, denotes a sequence of IID standard exponential random variables.

Feuerverger and Hall (1999) consider the approximation

(3.7) Ui ∼ γ exp
(

A(n/k) (i/k)
−ρ/γ

)

Ei = γ exp
(

A(n/i)/γ
)

Ei , 1 ≤ i ≤ k .

The approximation (3.6), or equivalently (3.7), has been made more precise in

the asymptotic sense, in Beirlant et al. (2002). The use of the approximation in

(3.7) and the joint maximization, in γ, β and ρ, of the approximate log-likelihood

of the scaled log-spacings,

log L
(

γ, β, ρ ; Ui, 1≤ i≤ k
)

= −k log γ − β
k
∑

i=1

(i/n)−ρ − 1

γ

k
∑

i=1

e−β(i/n)−ρ

Ui ,

led Feuerverger and Hall to an explicit expression for γ̂,

(3.8) γ̂ = γ̂
FH(β̂,ρ̂)
n,k :=

1

k

k
∑

i=1

e−β̂(i/n)−ρ̂

Ui ,

as a function of β̂ and ρ̂, where β̂ = β̂
FH(ρ̂)
n,k and ρ̂ = ρ̂FH

n,k are both computed at

the same k used for the EVI-estimation, and are numerically obtained through

(3.9) (β̂, ρ̂) := arg min
(β,ρ)

{

log

(

1

k

k
∑

i=1

e−β(i/n)−ρ

Ui

)

+ β

(

1

k

k
∑

i=1

(i/n)−ρ

)}

.

If k is intermediate and the second-order condition (2.3) hold, it is possible to

state that if ρ is unknown as well as β, as usually happens, and they are both

estimated through the above mentioned ML technique,

(3.10)
√

k
(

γ̂
FH(β̂,ρ̂)
n,k − γ

)

d−→
n→∞

Normal

(

0, σ2
FH

= γ2

(

1− ρ

ρ

)4)

.
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Again, even when
√

k A(n/k) → λ, non-null, we have a null asymptotic bias

for the reduced-bias EVI-estimator, but at the expenses of a larger asymptotic

variance, ruled by σ2
FH

= γ2
{

(1 − ρ)/ρ
}4

. Note that the asymptotic variance is

smaller, and given by γ2
{

(1 − ρ)/ρ
}2

, if we assume ρ to be known.

A simplified maximum likelihood EVI-estimator based on the

external estimation of ρ. The use of the first-order approximation, ex = 1+x,

as x → 0, in the two ML equations that provided before (β̂, ρ̂), led Gomes &

Martins (2002) to an explicit estimator for β, given by

(3.11) β̂
GM(ρ̂)
n,k :=

(

k

n

)ρ̂

(

1
k

∑k
i=1

(

i
k

)−ρ̂
)

Ĉ0 − Ĉ1
(

1
k

∑k
i=1

(

i
k

)−ρ̂
)

Ĉ1 − Ĉ2

, Ĉj =
1

k

k
∑

i=1

( i

k

)−jρ̂
Ui ,

and, on the basis of an appropriate consistent estimator ρ̂ of ρ, they suggest the

following approximate ML estimator for the EVI, γ,

(3.12) γ̂
GM(ρ̂)
n,k :=

1

k

k
∑

i=1

Ui − β̂
GM(ρ̂)
n,k

(

n

k

)ρ̂

Ĉ1 .

The estimator in (3.12) is clearly a bias-corrected Hill estimator, i.e., the dom-

inant component of the bias of the H-estimator, equal to A(n/k)/(1 − ρ) =

γβ(n/k)ρ/(1 − ρ) is estimated through β̂
GM(ρ̂)
n,k (n/k)ρ̂ Ĉ1, and directly removed

from the H-estimator, which can also be written as γH
n,k =

∑k
i=1 Ui/k. Un-

der the same conditions as before, the asymptotic variance of γ̂
GM(ρ̂)
n,k is σ2

GM
=

γ2(1 − ρ)2/ρ2 < σ2
FH

, but still greater than σ2
H

= γ2.

External estimation of second-order parameters and the weighted

Hill (WH) EVI-estimator. In a trial to accommodate bias in the excesses

over a high random threshold, Gomes et al. (2004b) were led, for heavy tails, to a

weighted combination of the log-excesses Vik, 1 ≤ i ≤ k < n, also in (2.4), giving

rise to the WH EVI-estimator in Gomes et al. (2008c),

(3.13) γ̂WH
n,k,β̂,ρ̂

:=
1

k

k
∑

i=1

p
ik

(β̂, ρ̂)Vik , pik(β̂, ρ̂) := e β̂ (n/k)ρ̂((i/k)−ρ̂−1)/(ρ̂ ln(i/k)),

where (β̂, ρ̂) are suitable consistent estimators of second-order parameters (β, ρ).

The key to the success of the WH-estimator lies in the estimation of β and ρ

at a level k1, such that k = o(k1), with k the number of top OSs used for the

EVI-estimation. The level k1 needs to be such that (β̂, ρ̂) is consistent for the

estimation of (β, ρ) and ρ̂− ρ = op(1/ ln n). For more details on the choice of k1,

see Gomes et al. (2008c), and more recently Caeiro et al. (2009). Compared to

the SORB EVI-estimators available in the literature and published prior to 2005,

this EVI-estimator is a MVRB EVI-estimator, in the sense that, in comparison

with the Hill estimator, it keeps the same asymptotic variance σ2
WH

= σ2
H

= γ2
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and a smaller order asymptotic bias, outperforming the H-estimator for all k.

Related work appears in Caeiro et al. (2005) and Gomes et al. (2007b). Gomes

et al. (2007b) suggest the computation of the β-estimator β̂
GM(ρ̂)
n,k , used at (3.12),

at the level k1 used for the estimation of ρ. With the notation β̂ := β̂
GM(ρ̂)
n,k1

, they

suggest thus the replacement of the estimator in (3.12) by

(3.14) γ̂
M(β̂,ρ̂)
n,k := γH

n,k − β̂

(

n

k

)ρ̂

Ĉ1 ,

where γH
n,k denotes the H-estimator, and (β̂, ρ̂) are appropriate consistent estima-

tors of the second-order parameters (β, ρ). With the same objectives, but with a

simpler expression, we also mention the estimator (Caeiro et al., 2005).

(3.15) γ̂
H(β̂,ρ̂)
n,k := γH

n,k

(

1 − β̂(n/k)ρ̂/(1− ρ̂)
)

.

The dominant component of the bias of the H-estimator is estimated in (3.15)

through γH
n,k β̂(n/k)ρ̂/(1− ρ̂), and directly removed from Hill’s classical EVI-

estimator. The appropriate estimation of β and ρ at a level k1 of a higher order

than the level k used for the EVI-estimation, enables, for a large diversity of

heavy-tailed models, the reduction of bias without increasing the asymptotic vari-

ance, which is kept at the value γ2, the asymptotic variance of Hill’s estimator.

Reiss & Thomas (2007), §6, and Gomes et al. (2008a) review this topic.

3.1.3. Second-order parameters estimation for heavy tails

The first estimator of the parameter ρ, in (2.3), with A(·) given in (3.5),

but where β can possibly be any slowly varying function, appears in Hall &

Welsh (1985). Peng (1998) claims that no good estimator for the second-order

parameter ρ was then available in the literature, and considers a new ρ-estimator,

alternative to the ones in Hall & Welsh (1985), Beirlant et al. (1996c) and Drees

& Kaufmann (1998). Another estimator of ρ appears in Gomes et al. (2002a), and

more recently, we mention the classes of ρ-estimators in Goegebeur et al. (2008;

2010b) and Ciuperca & Mercadier (2010). Here we choose particular members of

the class of estimators of the second-order parameter ρ proposed by Fraga Alves

et al. (2003a). Under appropriate general conditions, they are asymptotically

normal estimators of ρ, if ρ < 0, which show highly stable sample paths as

functions of k, the number of top OSs used, for a wide range of large k-values.

Such a class of estimators, parameterised in a tuning real parameter τ ∈ R,

is defined as

(3.16) ρ̂
(τ)
n,k := −

∣

∣

∣
3
(

T
(τ)
n,k −1

)/(

T
(τ)
n,k −3

)

∣

∣

∣
, T

(τ)
n,k :=

(

M
(1)
n,k

)τ−
(

M
(2)
n,k/2

)τ/2

(

M
(2)
n,k/2

)τ/2 −
(

M
(3)
n,k/6

)τ/3
,

with M
(j)
n,k given in (2.5) and with the notation abτ = b ln a whenever τ = 0.
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Gomes & Martins (2002) provide an explicit estimator for β, based on

the scale log-spacings Ui, in (2.4), and already given in (3.11). An additional

estimator of β, is provided in Caeiro & Gomes (2006). See also Gomes et al.

(2010), for a β-estimator based on the log-excesses.

Algorithms for the estimation of second-order parameters can be found in

Gomes & Pestana (2007a,b). The use of such algorithms, where the ρ-estimator

is computed at k1 = [n1−ǫ], with ǫ small, say ǫ = 0.001, enables us to guarantee

that, for a large class of heavy-tailed models, as n → ∞,
(

ρ̂
(τ)
n,k1

− ρ
)

lnn = op(1),

a crucial property of the ρ-estimator, if we do not want to increase the asymptotic

variance of the random variable, function of (β, ρ), underlying the SORB EVI-

estimator. Such a crucial property can potentially be achieved if we compute ρ̂

at its optimal level (see Caeiro et al., 2009), but the adaptive choice of such a

level is still an open research topic.

3.1.4. Additional Literature on SORB EVI-estimation

Other approaches to bias reduction, in the estimation of a positive EVI can

be found in Gomes & Martins (2001, 2004), Caeiro & Gomes (2002), Gomes et

al. (2004a; 2005a; 2005b; 2007c; 2011a), Canto e Castro & de Haan (2006), and

Willems et al. (2007), among others. Recently, Cai et al. (2011) introduced the

first SORB estimators for γ ∈ R, based on the PWM methodology.

3.2. SORB semi-parametric estimation of other parameters of

extreme events

Reduced bias quantile estimators have been studied in Matthys et al. (2004)

and Gomes & Figueiredo (2006), who consider the classical SORB EVI-estimators.

Gomes & Pestana (2007b) and Beirlant et al. (2008) incorporate the MVRB EVI-

estimators in Caeiro et al. (2005) and Gomes et al. (2007b) in high quantile semi-

parametric estimation. See also Diebolt et al. (2008b), Beirlant et al. (2009),

Caeiro & Gomes (2009), Li et al. (2010). For a SORB estimation of the Weibull-

tail coefficient, we mention Diebolt et al. (2008a). Finally, for SORB endpoint

estimation, we mention Li & Peng (2009).
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4. OVERALL COMMENTS AND FURTHER RESEARCH

We shall next discuss a few areas where a lot has been already done but

further research is still welcome. In our opinion, SUE is still a lively topic of

research. Important developments have appeared recently in the area of spatial

extremes, where parametric models seem again to be quite relevant. In this case,

and now that we have access to highly sophisticated computational techniques,

a great variety of parametric models can further be considered. And in a semi-

parametric framework, topics like threshold selection, trends and change points

in the tail behaviour, and clustering, among others, are still challenging.

4.1. Rates of convergence and penultimate approximations

An important problem in EVT concerns the rate of convergence of

Fn(anx + bn) towards Gγ(x), in (1.2), or, equivalently, the search for estimates

of the difference dn(F, Gγ , x) := Fn(anx+ bn)−Gγ(x). Indeed, as detailed in §1,

parametric inference on the right-tail of F , usually unknown, is done on the basis

of the identification of Fn(anx + bn) and of Gγ(x). And the rate of convergence

may or may not support use of the commonest models in SUE. As noted by Fisher

& Tippett (1928), although the normal CDF Φ ∈ DM(G0), the convergence of

Φn(anx+bn) towards G0(x) is extremely slow. They then show, through the use of

skewness and kurtosis coefficients as indicators of closeness, that Φn(x) is ‘closer’

to a suitable penultimate G−1/γn
{(x − λn)/δn}, for γn > 0, λn ∈ R, δn > 0, than

to the ultimate G0{(x − bn)/an}. Such an approximation is the so-called penul-

timate approximation and several penultimate models have been advanced by

several authors. Dated overviews of the modern theory of rates of convergence

in EVT, introduced in Anderson (1971), can be seen in Galambos (1984) and

Gomes (1994a). More recently, Gomes & de Haan (1999) derived, for all γ ∈ R,

exact penultimate approximation rates with respect to the variational distance,

under appropriate differentiability assumptions. Kaufmann (2000) proved, under

weaker conditions, a result related to that in Gomes & de Haan (1999). This

penultimate or pre-asymptotic behaviour has further been studied by Raoult &

Worms (2003) and Diebolt & Guillou (2005), among others. Other type of penul-

timate approximations have been considered in Smith (1987b). Among them, we

mention a penultimate parametric model of the type

(4.1) PGγ(x; r) = exp
[

−(1 + γx)−1/γ
{

1 + r(1 + γx)−1/γ
}]

.

These models surely deserve deeper statistical consideration. Penultimate models

seem interesting alternatives to the classical models but have never been much

used. Concomitantly, the convergence of the estimators can be very slow when

ρ = 0 or ρ∗ = 0, as happens with normal and loggamma distributions, important

models in many areas, and alternative estimation procedures are still needed.
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4.2. Max-semistable laws

We also mention the class of max-semistable (MSS) laws, introduced by

Grienvich (1992a, 1992b), Pancheva (1992), and further studied in Canto e Castro

et al. (2000) and in Temido & Canto e Castro (2003). Such a class is more general

than the class of MS laws, given in (1.2). Indeed, the possible MSS laws are

Gγ,ν(x) =







exp
[

−ν
{

ln(1 + γx)
}

(1 + γx)−1/γ
]

, 1 + γx > 0 , if γ 6= 0 ,

exp
{

−ν(x) exp(−x)
}

, x ∈ R , if γ = 0 ,

where ν(·) is a positive, limited and periodic function. A unit ν-function enables

us to get the MS laws in (1.2). Discrete models like the geometric and negative

binomial, and some multimodal continuous models, are in DMSS but not in DM.

A recent survey of the topic can be found in Pancheva (2010). Generalized P-

statistics have been used in Canto e Castro and Dias (2011), to develop methods

of estimation in the MSS context. See also Canto e Castro et al. (2011). Such a

diversity of models, if duly exploited from a statistical point of view, can surely

provide fruitful topics of research, both in parametric and semi-parametric setups.

4.3. Invariance versus non-invariance

In statistics of extremes most of the methods of estimation are dependent

on the log-excesses, and consequently, are non-invariant with respect to shifts of

the data. But the invariance not only to changes in scale but also to changes in

location of any EVI estimator is statistically appealing. Wouldn’t be sensible to

use the PORT methodology in Araújo Santos et al. (2006), and consider PORT

EVI-estimators based on the transformed sample

(4.2) X∗i := Xi − X[np]+1,n , 0 < p < 1, 1 ≤ i ≤ n ?

A similar procedure was used by Fraga Alves et al. (2009), who also propose a

class of EVI-estimators alternative to the MM-estimator, invariant to changes

in location, and dependent on a similar tuning parameter p , 0 < p < 1. Such

estimators have the same functional expression as the original estimator, but

the original observation Xi is replaced everywhere by X∗i , in (4.2), 1 ≤ i ≤ n.

A similar procedure has been used for the H and M EVI-estimators, and for

quantile estimation in Araújo Santos et al. (2006). For PORT quantile estima-

tion, see also Henriques-Rodrigues & Gomes (2009). The shift invariant versions,

dependent on the tuning parameter p , have properties similar to those of the

original estimator T , provided we keep to appropriate k-values and choose an ap-

propriate tuning parameter p. For recent research on this topic see Gomes et al.

(2011b), but more is needed.
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4.4. Adaptive selection of sample fraction or threshold

A threshold is often set ‘almost arbitrarily’ (for instance at the 90% or the

95% sample quantile). However, the choice of the threshold, or equivalently of

the number k of top OSs to be used is crucial for a reliable estimation of any

parameter of extreme events. The topic has already been extensively studied for

classical EVI-estimators, for which (2.6) holds. In Hall & Welsh (1985), Hall

(1990), Beirlant et al. (1996c), Drees & Kaufmann (1998) and Danielsson et al.

(2001), methods for the adaptive choice of k are proposed for the H-estimator,

some of them involving the bootstrap technique. Gomes & Oliveira (2001) also

uses the bootstrap methodology to provide an adaptive choice of the threshold,

alternative to that in Danielsson et al. (2001), and easy to generalise to other semi-

parametric estimators of parameters of extreme events. For a general γ and for

the M-estimator and a generalized P-estimator, see Draisma et al. (1999). These

authors also use the bootstrap. Beirlant et al. (2002) consider the exponential

regression model (ERM) introduced in Beirlant et al. (1999), discuss applications

of the ERM to the selection of the optimal sample fraction in EV estimation,

and derive a connection between the new choice strategy in the paper and the

diagnostic of Guillou & Hall (2001). Csörgő & Viharos (1998) provide a data-

driven choice of k for kernel estimators. Apart from the papers by Drees &

Kaufmann (1998) and Guillou and Hall (2001), where choice of the optimal sample

fraction is based on bias stability, the other papers make the optimal choice

minimizing the estimated MSE. Possible heuristic choices are provided in Gomes

& Pestana (2007b), Gomes et al. (2008e) and Beirlant et al. (2011). The adaptive

SORB estimation is still giving its first steps. We can however mention the recent

papers by Gomes et al. (2011a,d). Is it sensible to use bootstrap computational

intensive procedures for threshold selection or there will be simpler techniques

possibly related with bias pattern? Is it possible to apply a similar methodology

for the estimation of other parameters of extreme events?

4.5. Other possible topics of research in SUE

Testing whether F ∈ DM(Gγ), for a certain γ, is a crucial topic, already

dealt with in several articles mentioned in §1.2 and 2.3. And what about testing

second-order and third-order conditions? Change-point detection is also a chal-

lenging topic. And SUE for weakly dependent data, with all problems related

with clustering of extreme values, merits further research. SUE for randomly

censored data is another challenging topic. See Beirlant et al. (2007; 2010),

Einmahl et al. (2008a) and Gomes & Neves (2011). Statistics of extremes in

athletics and estimation of the endpoint is another of the relevant topics in SUE.
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We mention the recent papers by Einmahl & Magnus (2008), Li & Peng (2009),

Einmahl & Smets (2011), Henriques-Rodrigues et al. (2011) and Li et al. (2011).

Recent models, like the extreme value Birnbaum–Saunders model in Ferreira et

al. (2011), can also become relevant in the area of SUE. Moreover, the estimation

of second and higher order parameters still deserves further attention, particu-

larly due to the importance of such estimation in SORB estimators of parameters

of extreme events.
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Resnick, S.I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling,

Springer, New York.

Schultze, J. & Steinbach, J. (1996). On least squares estimators of an exponential

tail coefficient, Statist. Decis., 14, 353–372.

Segers, J. (2005). Generalized Pickands estimators for the extreme value index,

J. Statist. Plann. Infer., 28, 381–396.

Smith, R.L. (1987b). Approximations in extreme value theory, Preprint, Univ. North-

Carolina.

Stephenson, A. & Tawn, J. (2004). Bayesian inference for extremes: accounting for

the three extremal types, Extremes, 7, 291–307.

Temido, M.G. & Canto e Castro, L. (2003). Max-semistable laws in extremes of

stationary random sequences, Th. Prob. Appl., 47, 365–374.

Themido Pereira, T. (1993). Second order behavior of domains of attraction and the

bias of generalized Pickands’ estimator. In “Extreme Value Theory and Applications

III, Proc. Gaithersburg Conference” (J. Lechner, J. Galambos and E. Simiu, Eds.)

(NIST special publ.).

Weissman, I. (1978). Estimation of parameters and large quantiles based on the

k largest observations, J. Am. Statist. Assoc., 73, 812–815.

Willems, P.; Guillou, A. & Beirlant, J. (2007). Bias correction in hydrologic

GPD based extreme value analysis by means of a slowly varying, J. Hydrology, 338,

221–236.

Zhou, C. (2009). Existence and consistency of the maximum likelihood estimator for

the extreme value index, J. Mult. Anal., 100, 794–815.

Zhou, C. (2010). The extent of the maximum likelihood estimator for the extreme value

index, J. Mult. Anal., 101, 971–983.

You, A.; Schneider, U.; Guillou, A. & Naveau, P. (2010). Improving extreme

quantile estimation by folding observations, J. Statist. Plann. Infer., 140, 1775–1787.

Yun, S. (2002). On a generalized Pickands estimator of the extreme value index,

J. Statist. Plann. Infer., 102, 389–409.





REVSTAT – Statistical Journal

Volume 10, Number 1, March 2012, 33–60

A REVIEW OF EXTREME VALUE THRESHOLD ES-

TIMATION AND UNCERTAINTY QUANTIFICATION

Authors: Carl Scarrott

– Mathematics and Statistics Department, University of Canterbury,

New Zealand

carl.scarrott@canterbury.ac.nz

Anna MacDonald

– Mathematics and Statistics Department, University of Canterbury,

New Zealand

anna.macdonald@pg.canterbury.ac.nz

Abstract:

• The last decade has seen development of a plethora of approaches for threshold esti-

mation in extreme value applications. From a statistical perspective, the threshold is

loosely defined such that the population tail can be well approximated by an extreme

value model (e.g., the generalised Pareto distribution), obtaining a balance between

the bias due to the asymptotic tail approximation and parameter estimation uncer-

tainty due to the inherent sparsity of threshold excess data. This paper reviews recent

advances and some traditional approaches, focusing on those that provide quantifica-

tion of the associated uncertainty on inferences (e.g., return level estimation).

Key-Words:

• extreme value threshold selection; graphical diagnostics; mixture modelling; rule of

thumb; threshold uncertainty.

AMS Subject Classification:

• 62G32, 62G07, 62G30, 62E20.



34 C. Scarrott and A. MacDonald



A Review of Extreme Value Threshold Estimation and Uncertainty Quantification 35

1. INTRODUCTION

This paper reviews the key historical threshold estimation approaches for

extreme value applications, and the latest developments. The focus is on ap-

proaches which provide not only threshold estimation but also uncertainty quan-

tification for the threshold itself and subsequent inferences for quantities like

return levels, though we also discuss some exceptions for key developments which

provide threshold estimation, but not uncertainty quantification. There is a cer-

tain focus on recently developed mixture model type approaches, as these deal

naturally with both estimation and formal uncertainty quantification. The aim is

to be all encompassing, a near-impossible task, so we apologise for any omissions.

The classical asymptotically motivated model for excesses above a high

threshold is the generalised Pareto distribution (GPD). Pickands (1975) and

Balkema & de Haan (1974) showed that if there is a non-degenerate limiting

distribution for appropriately linearly rescaled excesses of a sequence of inde-

pendent and identically distributed observations X1, ..., Xn above a threshold u,

then the limiting distribution will be a GPD. In applications, the GPD is used

as a tail approximation to the population distribution from which a sample of

excesses x − u above some suitably high threshold u are observed. The GPD is

parameterised by scale and shape parameters σu > 0 and ξ, and can equivalently

be specified in terms of threshold excesses x − u or, as here, exceedances x > u,

as

(1.1) G(x | u, σu, ξ) = Pr
(

X< x | X > u
)

=























1 −
[

1 + ξ

(

x − u

σu

)]−1/ξ

+

, ξ 6= 0 ,

1 − exp

[

−
(

x − u

σu

)]

+

, ξ = 0 ,

where y+ = max(y, 0). When ξ< 0 there is an upper end point, so u < x < u−σu/ξ.

Implicitly underlying the GPD is a third parameter required for estimation of

quantities like return levels, the proportion of threshold excesses φu = Pr(x > u),

used to calculate the unconditional survival probability:

Pr
(

X > x
)

= φu

[

1 − Pr
(

X < x | X > u
)

]

.(1.2)

This representation is often referred to as a Poisson-GPD, as it explicitly accounts

for the Poisson rate of excess events. Smith (1989) and Davison & Smith (1990)

consider statistical aspects of a Poisson point process (PPP) representation of the

classical extreme value models, details of which are not provided for brevity. The

principle benefits of the PPP representation is that it can be parameterised in

terms of location µ, scale σ and shape ξ which are independent of the threshold,

which can simplify extension to nonstationary or random effects type models, and

the excess rate φu is incorporated as a function of these parameters.
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The GPD satisfies a threshold stability property: for any higher threshold

v > u, the subsequent excesses also follow a GPD with the same shape but

shifted scale σv = σu + ξ(v − u). The subscript u on σu makes the threshold

dependence explicit, although in the limiting case ξ = 0 this disappears. The

‘modified scale’ reparameterisation σ∗ = σv−ξv is constant above u, i.e., once the

GPD provides an adequate tail approximation. The shape and scale parameter

can be orthogonalised following Cox & Reid (1987) with the preferred form usually

(σ̃u, ξ), where σ̃u = σu(1 + ξ), as the shape is often a key parameter of interest.

Traditionally, the threshold was chosen before fitting, giving the so-called

fixed threshold approach. Threshold choice involves balancing bias and variance.

The threshold must be sufficiently high to ensure that the asymptotics underly-

ing the GPD approximation are reliable, thus reducing the bias. However, the

reduced sample size for high thresholds increases the variance of the parameter es-

timates. Threshold choice is practically equivalent to estimation of the kth upper

order statistic X(n−k+1) from the ordered sequence X(1), ..., X(n), called the ‘tail

fraction’ below. Formally, to ensure tail convergence, as n →∞ the order k →∞
but at a reduced rate so that k/n → 0 (the so called intermediate sequence of

order statistics of Leadbetter et al. (1983)), i.e., as the sample size grows, the

quantile level of the threshold increases at a faster rate.

2. SUMMARY OF ESTIMATION APPROACHES

The classical fixed threshold modelling approach uses graphical diagnos-

tics, essentially assessing aspects of the model fit, to make an a priori threshold

choice. Some of the commonly used diagnostics and related statistics are de-

scribed in §2.1. A benefit of this approach is that it requires practitioners to

graphically inspect the data, comprehend their features and assess the model fit,

when choosing the threshold. A key drawback with these approaches is they can

require substantial expertise and can be rather subjective, as will be seen below.

Further, application of this approach when there are many datasets (e.g., different

stock returns series in finance applications) is time-consuming. In this situation,

it is common for practitioners to assume a constant quantile level across all se-

ries, determined by some assessment of fit across all or a subset of the datasets.

In some applications the threshold is pre-determined by physical considerations,

e.g., government target level for pollution concentrations. Some simple rules of

thumb for threshold selection are detailed in §3.

The drawback with fixed threshold approaches is that once the threshold

has been chosen it is treated as fixed, so the associated subjectivity and/or un-

certainty is ignored in subsequent inferences. Further, it is frequently observed in

applications that there is more than one suitable threshold with different inferred
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tail behaviours, which will be ignored when fixing the threshold. An informal

approach to overcoming these problems is to evaluate the sensitivity of the in-

ferences (e.g., parameters or quantiles) to different threshold choices. There has

been a proliferation of new approaches to estimate the threshold more objectively

and/or formally account for the threshold uncertainty. In §4 we summarise the

large literature on tail fraction estimation including further graphical diagnostics,

which mostly use asymptotic optimality-based arguments under various popula-

tion distribution assumptions, and §5 outlines resampling based approaches which

typically require weaker assumptions.

Direct comparison of the GPD likelihood for different thresholds is com-

plicated by the varying sample sizes. Recently, various extreme value mixture

models have been developed to overcome this problem. These mixture models

typically approximate the entire distribution function, so have a fixed sample size

for each threshold considered. Traditionally, the ‘bulk’ of the distribution below

the threshold was ignored, as they were not supported by the tail asymptotics.

Further, from a practical viewpoint the extreme and non-extreme events are of-

ten caused by different driving forces, so the latter will provide little information

about the tails. These mixture models have a rather ad-hoc development, often

motivated by their applications or by the underlying properties of the population

distribution (e.g., bounds on the support, multi-modality). The guiding principle

in their development is to choose a physically sensible model for the bulk dis-

tribution, for the application at hand, along with an appropriate tail/threshold

model. The most widely applicable mixture models are carefully defined to en-

sure that the bulk and tail fits are not too influenced by each other. There are a

range of mixture models with different assumptions for bulk, tail and threshold

components, which have loosely been classified into parametric, semiparametric

and nonparametric estimators for the bulk distribution in §6.1–6.3 below.

§7 describes approaches outside these general categories, e.g., robust esti-

mation. A nice short review of a subset of the threshold estimation approaches

outlined below is provided by de Zea Bermudez & Kotz (2010).

2.1. Graphical diagnostics

Coles (2001) outlines the common graphical diagnostics for threshold choice:

• Mean residual life (or mean excess) plot;

• Threshold stability plot(s);

• A suite of the usual distribution fit diagnostics (e.g., probability plots,

quantile plots, return level plots, empirical and fitted density compari-

son).
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The mean residual life (MRL) plot introduced by Davison & Smith (1990) uses the

expectation of the GPD excesses, E(X− u | X > u) = σu/(1 − ξ), as a diagnostic,

defined for ξ < 1 to ensure the mean exists. For any higher v > u the expectation

becomes

E
(

X− v | X > v
)

=
σu + ξv

(1 − ξ)

which is linear in v with gradient ξ/(1− ξ) and intercept σu/(1− ξ). Examples of

the behaviour of the MRL function for various distributions are given by Beirlant

et al. (2004). Empirical estimates of the sample mean excesses are typically

plotted against a range of thresholds, along with Wald type interval estimates,

though bootstrap or similar estimates would generally be more appropriate for

small tail samples. The threshold is chosen to be the lowest level where all the

higher threshold based sample mean excesses are consistent with a straight line,

once the sample uncertainty is accounted for. Coles (2001) acknowledges that

the interpretation of such plots can be challenging.

Figure 1 gives an example of a MRL plot for the Fort Collins total daily

precipitation data from the extRemes package in R (Gilleland et al., 2010).
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Figure 1: Mean residual life plot for the Fort Collins precipitation data. Solid

jagged line is empirical MRL with approximate pointwise Wald 95%

confidence intervals as dashed lines. The MRL implied by maximum

likelihood (ML) parameter estimates for thresholds u = 0.395, 0.85 and

1.2 inches are the upper, middle and lower straight lines respectively.

Vertical dashed lines mark these thresholds.
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A simplistic analysis of the marginal distribution is considered here, ignoring the

obvious seasonality and dependence structure, as we just want to demonstrate

the diagnostic plots. The ML estimates of the parameters for three threshold

choices provide three fitted MRL straight lines. The increasing variance of the

MRL for high thresholds leads to wide confidence intervals, which must be taken

into account when assessing the threshold choice.

The threshold of u = 0.395 inches suggested by Katz et al. (2002) gives

over 1000 exceedances, and is justified by the empirical MRL becoming close to

linear above this level, and below this level a curved MRL is observed indicating

a bias due to the GPD asymptotics breaking down. However, above 1.2 inches

strong deviations from the fitted MRL, shown by the upper straight line, are

observed with higher thresholds exhibiting a lighter tail. The upper straight

line is also close to the pointwise upper interval limit around 1.7 inches (where

there is still a reasonable amount of data), and above 2.7 inches the line lies

outside the intervals (although the sample sizes here are small so the interval

estimates are less reliable). A very different picture arises when considering the

highest threshold of u = 1.2, with 138 exceedances, which could be justified on

the same grounds: above this threshold the MRL is consistent with a straight line

(in fact a horizontal line indicating ξ ≈ 0) and before this level the MRL could be

considered to exhibit bias-related curvature. Both these thresholds are consistent

with the general guidelines for threshold choice using the MRL plot, but they

provide very different tail extrapolations (ξ = 0.21 and 0.003 respectively).

The threshold stability plots shown in Figure 2 also do not provide firm

conclusions. At a threshold of u = 0.395 the shape parameter appears to reach a

plateau, compared to lower thresholds which exhibit the bias-related curvature.

However, as with the MRL plot, inconsistencies are observed between the esti-

mated shape parameter at this level and higher thresholds around u = 1.2 and

2.3–2.4. The shape parameter reaches another plateau around 0.85–1.8 inches

(above which the sample variation is too large to make useful inferences), and

the shape parameter for the threshold u = 0.85 is essentially contained within all

the confidence intervals for higher thresholds. The plateau above a threshold of

u = 1.2 is also strongly indicated by the shape parameter threshold stability plot,

despite the confidence interval being much wider at this level. The corresponding

modified scale threshold stability plot exhibits some similar features, due to the

negative dependence with the shape parameter, but is rather more challenging to

interpret for high thresholds due to the large sample variability.

This example demonstrates the substantial subjectivity in interpreting these

diagnostic plots, and the resulting uncertainty. Similar challenges are seen with

the River Nidd data, shown in Tancredi et al. (2006), and many other exam-

ples in the literature. These examples suggests that a more ‘objective’ thresh-

old estimation approach is needed and that uncertainty must be accounted for.
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Figure 2: Threshold stability plots for (upper) shape and (lower) modified scale

parameters respectively for the Fort Collins precipitation data. Circles

are maximum likelihood estimates with vertical lines as approximate

pointwise Wald 95% confidence intervals. Three thresholds u = 0.395,

0.85 and 1.2 inches are shown by vertical dashed lines with corresponding

ML parameter estimates as horizontal lines.

In particular, multiple possible thresholds are indicated in both these examples,

so our inference should take this into account. Of course, if the inferences are

insensitive to the threshold choice then there is little value to be added from

more sophisticated analysis, but in all other cases pre-fixing a single threshold in

advance seems inappropriate.
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There is a plethora of other diagnostic plots in the literature assessing other

features of the model fit at different thresholds, e.g., assessing PPP assumptions

or general model goodness of fit statistics considered by Davison & Smith (1990).

Under the assumption of Pareto type tails (ξ > 0), Hill plots and their many

variants, are commonly used, and are discussed in §4.

3. RULES OF THUMB

Leadbetter et al. (1983) showed that the threshold sequence (for different

sample sizes n), for a population in the domain of attraction of a GPD, is a func-

tion of the properties of that distribution. So for a known distribution function F

a closed form, or approximation, to the threshold sequence can be derived.

For example, a unit exponential population has threshold sequence un = log(n).

In the more relevant case of an unknown F there is no general form for the

threshold sequence, although some properties of the sequence are known (e.g.,

order statistic convergence mentioned in §1). Many of the following results follow

from fairly general classes of population distributions, such as the Hall (1982)

class, which have certain specific tail properties.

Given the general order statistic convergence properties, various rules of

thumb have been derived in the literature. Simple fixed quantile rules, like the

upper 10% rule of DuMouchel (1983), are inappropriate from a theoretical view-

point, though frequently used in practice. Ferreira et al. (2003), amongst others,

use the square root rule k =
√

n in their simulation study to deterministically

specify the tail fraction, which satisfies the intermediate order statistic conver-

gence property in §1, but the source of a formal derivation of this rule is unknown

to us. Ho & Wan (2002) and Omran & McKenzie (1999) use the empirically driven

rule k = n2/3/log[log(n)] proposed by Loretan & Philips (1994).

Reiss & Thomas (2007) heuristically justify choosing the lowest upper order

statistic k to minimize

1

k

k
∑

i=1

iβ
∣

∣

∣
ξ̂i − median(ξ̂1, ..., ξ̂k)

∣

∣

∣
(3.1)

where ξ̂i is an shape parameter estimator for the tail fraction above upper order

statistic i and the tuning parameter satisfies 0≤ β ≤ 0.5. Minimising (3.1) searches

for the tail fraction where the distribution of these estimated shape parameters

stabilises (downweighting the small tail fractions when β 6= 0) and k is chosen

as an estimate of the location of the distribution. In practice, automated imple-

mentation is this approach is unreliable for small k (despite the weighting by iβ),
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so a minimum value of k is usually used. Further, best practice would validate the

selection using a graphical summary of (3.1), similar to the threshold stability plot

above, in combination with other diagnostics. Reiss & Thomas (2007) point out

there are many sensible extensions using alternative distance metrics or weighting

schemes and potentially using smoothers when there is limited data. Neves &

Alves (2004) investigated refinements to the choice of β.

4. PROBABILISTIC RESULTS

The Hill (1975) estimator is a classic tail index estimator for the Pareto

type distribution (ξ > 0), which has a power law form with regularly varying

tails,

1 − F (x) ≈ x−αL(x) , α > 0 ,(4.1)

where L(x) is a slowly varying function, i.e.,

lim
x→∞

L(tx)

L(x)
= 1 , t > 0 ,

which allows flexibility in the lower tail but that ensures the power law behavior

dominates the upper tail. Clearly, this model does not have such flexible upper tail

behaviour as the GPD, but it is an important special case in many applications

and since a wide range of techniques has been developed for both tail index and

tail fraction estimation, it is worthy of a brief review. Let X(1), ..., X(n) represent

the data in ascending order, where we assume that heavy-tailed but negative data

are transformed to be positive. The Hill estimator for the tail index ξ = α−1 based

on the k + 1 upper order statistics,

Hk =
1

k

k
∑

i=1

log X(n−i+1) − log X(n−k) ,

is the ML estimator for relative excesses from a strict Pareto tail, i.e., with a

constant for the slowly varying function in (4.1). Beirlant et al. (2004, §4.2)

outline alternative derivations of Hk.

The results from the Hill estimator are critically dependent on the tail

fraction chosen. The Hill plot, explored by Drees et al. (2000), is another graph-

ical diagnostic for prior determination of the tail fraction, which plots the Hill

estimator for a range of values of k against either k, the tail fraction, or the cor-

responding threshold. The value of k is chosen as the largest value (i.e., lowest

threshold) such that the Hill estimator has stabilised. Despite its rather different

formulation, the Hill plot is essentially the MRL plot of the log-transformed data,
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so suffers from many of the same benefits and drawbacks, and has been referred

to as the Hill horror plot by Resnick (1997). The Hill estimator can exhibit sub-

stantial bias if the slowly varying component decays slowly in the limit (Beirlant

et al., 2004). The Hill estimator is not shift invariant, although invariant estima-

tors have been proposed by Fraga Alves (2001), Drees (1995, 1998) and Pereira

(1994). The latter two issues are not of concern here, as we focus on threshold

estimation.

The Hill plot for the Fort Collins data shown in Figure 3 provides a rather

different picture of threshold choices than do Figures 1 and 2. The low threshold

of u = 0.395 inches is suggested to be inappropriate due to the Hill function not

having stabilised. The Hill function is rather more stable around the mid-range

threshold of u = 0.85, but is unstable around the high threshold of u = 1.2 inches.

So again, the Hill plot gives a different interpretation, thus redemonstrating the

expertise required in using these diagnostic plots; see also Drees et al. (2000)

and references therein. Drees et al. (2000) show that the ‘altplot’ of Resnick &

Starica (1997), which is a simple modification to the Hill plot, by essentially using

a log-scale on the k-axis, is beneficial for cases where the slowly varying function

is non-constant but also state this is not a panacea for threshold determination.
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as dashed lines. The three thresholds u = 0.395, 0.85 and 1.2 used in

Figure 1 are shown by the vertical dashed lines, with the corresponding

Hill estimates.
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Hill (1975) also suggested using the fact that the log spacings between

the order statistics should be exponentially distributed under the Pareto tail

assumption in choosing the tail fraction, by choosing the minimum k such that
{

log
(

X(n−i+1)

)

−log
(

X(n−k)

)

: i =1, ..., k
}

does not fail a exponentiality test (e.g.,

a Kolmogorov–Smirnov or similar test). However, in their work to find an optimal

tail fraction Hall & Welsh (1985) showed that this tends to overestimate the tail

fraction in large samples. Guillou & Hall (2001) extend the idea of Hill (1975)

to derive a plug-in estimator by applying the hypothesis test on an accumulation

of the log spacings. Goegebeur et al. (2008) further considered a kernel based

goodness of fit statistic of the tail fit in the Pareto type tail case, extending

Hill (1975), but taking advantage of the relationship between the specific kernel

statistics and bias in the asymptotic mean square error of the Hill estimator.

Pickands (1975) suggested choosing the tail fraction for the more general GPD

case by minimising the distance between empirical and GPD distribution function

estimators, with the latter using the Pickands’ estimator of the parameters. This

idea was extended by Gonzalo & Olmo (2004) using a weighted distance measure,

which includes the Pickands’ measure and the Kolmogorov–Smirnov statistic as

special cases.

Various authors have investigated automated approaches to determining

the tail fraction by, for example, minimising the mean square error of estima-

tors of properties of the tail distribution, such as the tail index (Beirlant et al.,

1999), the quantiles (Ferreira et al., 2003), or the tail probabilities (Hall & Weiss-

man, 1997), for which optimal asymptotic results typically require second order

assumptions in addition to (4.1), see Beirlant et al. (2004, §4.7). For example,

the plug-in estimator for the tail fraction of Hall (1982) requires prior knowledge

of the parameters of the restricted Hall class of tail behaviours. Dekkers (1993)

considered an extension of the Hall (1982) estimator to the GPD case using an

additional moment-based estimator incorporating the usual Hill estimator, al-

lowing ξ ≤ 0. Under assumed constraints on these parameters, Hall & Welsh

(1985) were able to find a simple adaptive plug-in estimator for the tail fraction,

but, the parameters are rather difficult to estimate. The approach of Feuerverger

& Hall (1999) suffers similarly from the prescriptive form of the second order

characteristics.

Even if the assumptions underlying these approaches are appropriate, their

major drawback is that they do not account for the threshold uncertainty on

subsequent inferences. Moreover the finite sample properties of such estimators

are not well understood. The need to estimate parameters of the unknown popu-

lation distribution F prior to determination of the optimal tail fraction (e.g., tail

index or second order characteristics) has led to the development of bootstrap

approaches or algorithmic estimators. As noted by Drees et al. (2000), both re-

place the problem of threshold determination with that of other characteristics

— bootstrap sample sizes or stopping rules, respectively.
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5. COMPUTATIONAL APPROACHES

Hall (1990) first proposed a resampling based method for estimation of

the (asymptotically) optimal tail fraction, by minimising the mean square error

(MSE) of the Hill estimator. This approach was applied to the Hall class of

Pareto type tails, with a further restriction on the power law parameter of the

slowly varying component. A sub-sampling approach is used for overcoming the

substantial bias observed when using a standard bootstrap, but it requires an

initial estimate of the bias. Gomes & Oliveira (2001) showed the entire procedure

is rather sensitive to this estimate. The bias correction uses the relationship

between the bootstrap on the full and sub-sample to quantify the bias.

Danielsson et al. (2001) overcome much of the restrictiveness of the plug-

in estimator of Hall (1990) using a two stage bootstrap procedure for tail index

estimation, by minimisation of the asymptotic MSE criterion, which includes au-

tomated sample fraction estimation. They avoid the need to know the second

order parameter, which is consistently estimated as a consequence of their boot-

strap procedure. Two bootstrap estimates of the tail fraction to minimise the

MSE of an auxiliary statistic based on the Hill estimator are estimated using

two different sample sizes of a particular form. These two estimates are then

combined in a closed form to determine the asymptotically optimal tail fraction,

and consequently the tail index. The only tuning parameters are the first stage

bootstrap resample size and the number of bootstrap samples, the latter being

essentially determined by computational capacity. The choice of tuning param-

eter for the bootstrap sample size at the first stage is in some sense automated

by minimisation of a diagnostic criterion over a grid of suitable values. Further,

Gomes & Oliveira (2001) have shown that the estimates are robust to the choice

of resample size. As this approach is based around the Hill estimator it is re-

stricted to positive shape parameter (ξ > 0), though Draisma et al. (1990) have

considered extension to the GPD case.

Ferreira et al. (2003) developed a bootstrap procedure extending that of

Danielsson et al. (2001), towards optimal estimation of high quantiles (or the

upper end-point) by minimisation of the asymptotic MSE. Unlike the similar

bootstrap procedure by Hall & Weissman (1997), which is designed for tail prob-

ability estimation, they do not require knowledge of the parameters or of second

order properties of the distribution for appropriate choice of the bootstrap tuning

parameters. They note that its performance is not satisfactory for sample sizes

below 2000.

Beirlant et al. (1996) consider choosing the tail fraction to provide an opti-

mal linear fit to the Pareto quantile plot (Beirlant et al., 2004, §4.2), which uses

the fact that the log transformed Pareto variables are exponential distributed.
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They suggest using optimal weights in the regression which require knowledge

of the second order parameter, but, estimation of these can be combined in an

iterative procedure. However, as with all these approaches, after selection of the

appropriate threshold there is no formal assessment of the uncertainty associated

with the threshold choice, though some progress has been made by Caers & Dyck

(1999) in extending the Hall (1990) approach to account for the tail fraction

uncertainty in Pareto power law parameter.

Drees & Kaufmann (1998) provide a hierarchical algorithm to determine

the optimal tail fraction for the Hall class. However, this procedure requires

prior knowledge of the tail index and second order characteristics (power law of

slowly varying function), for which they provide heuristically defined suggestions

as part of their simulation study. Beirlant et al. (2004, §4.7) reviews compara-

tive studies between this algorithmic, bootstrap based and adaptive Hill based

estimators of the tail fraction. In general the restrictive assumptions underlying

these approaches hinder their wide applicability.

6. MIXTURE MODELS

The main drawback of most of the aforementioned threshold estimation

approaches is that they do not account for the uncertainty associated with the

threshold choice. In the last decade, extreme value mixture models have been

proposed which encapsulate the usual threshold model in combination with a

component intended to capture (some or) all of the non-extreme distribution

(henceforth called the ‘bulk distribution’). The motivation for ignoring the non-

extremal data in early statistical developments in extreme value modelling was

mainly that:

1. Extreme and non-extreme events are often physically caused by differ-

ent underlying processes, which implies there is little information in the

bulk distribution for describing the tail behaviour;

2. The GPD is a flexible asymptotically justifiable model for the tail ex-

cesses, but classical probability models which combine flexible tail and

bulk behaviours are hard to come by and are often application specific;

3. The information content in the sample is typically spread between the

high density ‘low information’ bulk distribution and the low density but

‘highly informative’ tail observations. The balance between these in

terms of influence on the parameters (or related quantities like return

levels) is strongly dependent on the model and estimation method.

Therefore, when including non-extreme data one has to be careful that

the model/estimator provide sufficient relative importance to the tail

versus the bulk fit.
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The general principle with the mixture models is to combine the flexible thresh-

old model (e.g., GPD), with a suitably flexible and/or application appropriate

model of the bulk distribution. The threshold is either implicitly or explicitly

defined as a parameter to be automatically estimated, and in most cases the un-

certainty associated with the threshold choice can be accounted for naturally in

the inferences. In this way, appropriate tail fits can be achieved whilst allow-

ing automated threshold estimation and, provided the bulk distribution model is

sufficiently flexible, the bulk and tail fit should not strongly influence each other.

The major drawback of such models is their ad-hoc heuristic definitions, the

asymptotic properties of which are still little understood. They have also not had

time to be well used in practice and currently there is no readily available soft-

ware implementation to allow practitioners to gain wider experience. Arguably,

the biggest danger with using these models is ensuring that the bulk and tail

fits are fairly robust to each other. They cannot be fully disjoint, as they share

information, at least about the threshold location, thus ruling out simple applica-

tion of the EM algorithm. However, robustness of the tail fit to that of the bulk

distribution is clearly of major concern. Some discussion of their robustness in

this regard will be given, with some intuition, though a fuller comparative study

is needed. Another concern with these models is their behaviour at the threshold

(e.g., is the fitted density continuous?) and whether attempts to resolve such

issues have been successful or have created other problems.

The available mixture models have been broadly classified by the type of

bulk distribution models: fully parametric, semiparametric and nonparametric.

A general description of the model and estimation approaches as proposed in

their original papers will be given, followed by discussion and comparison of their

properties and areas for future developments. Many of the common features of

the mixture models are summarised in §6.1.

6.1. Parametric bulk models

One of the simplest extreme value mixture models is the spliced distribution

consisting of two parametric components:

• A parametric model for the bulk distribution below the threshold —

gamma in Behrens et al. (2004) and normal in Carreau & Bengio (2009a);

• A threshold tail model (GPD in these proposals) above the threshold.

These components are spliced together at the threshold, which is treated as a

parameter to be estimated. Behrens et al. (2004) also mooted inclusion of other

parametric, semiparametric and nonparametric possibilities below the threshold,

but these were not developed further.
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The normal spliced with GPD tail developed by Carreau & Bengio (2009a)

shown in Figure 4.3, named the ‘hybrid Pareto’ model, was further developed

to include constraints on the parameters to ensure continuity up to the first

derivative of the density. However, due to its poor performance in practice, this

model was extended to a mixture of hybrid Pareto distributions, and is discussed

in §6.2.

Gamma

Distribution
GPD

Threshold

GPD

Weibull 

Distribution

Transition Function - 

Cauchy CDF

Mixture

1. Behrens et al. (2004) 2. Frigessi et al. (2003)

GPD

Threshold

Normal

Distribution

Threshold

Low  

Threshold

GPD

3. Carreau & Bengio (2009a) 4. Tancredi et al. (2006)

POINT PROCESS (µ, σ, ξ)

THRESHOLD (u)

KERNEL DENSITY (h)

GPD (σu, ξ)

POINT PROCESS (µ, σ, ξ)

5. MacDonald et al. (2011a)

Figure 4: Schematic representations of some mixture models in the literature.
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Figure 4.1 illustrates the Behrens et al. (2004) model. The discontinuity at

the threshold highlights the lack of continuity constraint. This model was specifi-

cally designed and evaluated for distributions with a notable discontinuity at the

threshold, the relevance of which for applications is debatable. They also explic-

itly mention that in the case of a smooth transition at the threshold this type of

model (and more importantly the estimation procedure) struggles. Some evalua-

tion of performance in the latter situation was reported by Behrens et al. (2002).

In the case of a strong discontinuity this would lead to a discernible kink in mean

excess function at the threshold, so it would be easy to choose a threshold (with

little uncertainty) using traditional graphical diagnostics. In the more realistic

case of a smooth transition, the traditional diagnostics would also be harder to

interpret.

Bayesian inference was used by Behrens et al. (2004) with sensible prior

forms for the bulk, tail and threshold parameters. However, posterior sampling

for their approach is rather inefficient, as they have not accounted for the GPD

scale dependence on the threshold. Further, they treat the threshold and tail pa-

rameters as independent in the prior. These problems could be easily overcome

by suitable transformation of the GPD scale parameter or use of the PPP repre-

sentation of Smith (1989). The lack of independence of the threshold and GPD

scale parameters also makes comprehension of posterior statistics challenging.

Orthogonalisation of the GPD scale and shape parameters, or an adaptive poste-

rior sampling scheme (Roberts & Rosenthal, 2009), may help with convergence.

Cabras & Castellanos (2010) carried out a comparative study of this simple mix-

ture model and a semiparametric alternative, discussed below.

The major benefits and drawbacks of this parametric approach compared

to the semi- and nonparametric alternatives in §§6.2, 6.3, are common to other

modelling situations, so are not discussed in detail. In short, if the parametric

model is ‘correct’ then the parametric approach will usually provide the most

efficient inferences, but it will suffer when the model is misspecified. There are

currently no published results on the performance under model misspecification,

and in particular the robustness of the tail fit. In general, the coarse split of

information from the bulk and tail data will afford some robustness. However, if

the bulk fit is poor, then this will influence the location of the threshold, which

will impact the tail fit.

The most beneficial property of this mixture model approach is to provide

an objective estimate of a suitable threshold, that provides the best fit to the data

(according to the fitting metric used). However, the lack of a continuity (or higher

order) constraint at the threshold causes a specific issue with this type of model

and for similar approaches described below. The threshold adds an extra degree

of freedom, which has a strong localised effect on the fitted distribution function;

see Figure 6 of MacDonald et al. (2011a). Therefore, if the upper tail of the sample

density has spurious peaks or troughs, due to natural sample variability, then
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the threshold will often be drawn to those locations. This feature is frequently

seen in the posterior threshold samples (e.g., modes where sharp changes in the

sample density are observed) for this model and others below. However, this

type of feature also causes kinks in the MRL and deviations in the threshold

stability/Hill plots, so is actually capturing what practitioners would interpret

from these traditional graphical diagnostics as well.

A further beneficial property of these mixture models when using Bayesian

inference, or sampling based frequentist approaches, is that the entire parameter

posterior distribution is available. It is frequently observed in real life applica-

tions from the traditional graphical diagnostics that multiple suitable thresholds

are plausible, which is naturally accounted for in the inference for these mixture

models. The multiple threshold choices show themselves as a bi- or multi-modal

posteriors for the threshold, and sometimes other tail parameters; see Scarrott

& MacDonald (2010), Figure 4 of Behrens et al. (2004) and Figure 2b of Tan-

credi et al. (2006) for example. Computational Bayesian inference approaches

are particularly beneficial in this situation to avoid the optimisation challenges

associated with likelihood inference when there are multiple modes.

Posterior predictive inference (PPI) is often appropriate in applications

where the return levels for future events are of interest; see Coles & Powell (1996).

For such mixture models, PPI has a secondary benefit. Even if the underlying

density model is potentially discontinuous at the threshold, the PPI will integrate

over all posterior threshold possibilities and often provides practically continuous

density estimates. See further discussion and examples in do Nascimento et al.

(2011) and MacDonald et al. (2011a).

The first approach in the literature which attempts to give a continuous

transition between the bulk and tail models, but unfortunately can fail in ap-

plications, is provided by Frigessi et al. (2003); see Figure 4.2. Their model is

appropriate when there is a lower bound on the support, if the upper tail is of

interest (or vice versa). Without loss of generality we assume a zero lower bound.

The GPD tail is defined over the whole range of support. The bulk distribution

is also defined over the whole range of support, but is presumed to have a light

upper tail (e.g., a Weibull tail). A dynamic weight function, such as the cumu-

lative distribution function (cdf) of some smooth unimodal distribution, is then

applied to these two components, with highest weight given to the bulk distri-

bution function at low ranges in the support and high weight given to the GPD

in the upper tail. A normalization constant ensures that the density has unit

integral. The weight function allows the bulk model to dominate the lower tail

and the GPD to dominate the upper tail (especially as the bulk model has a light

upper tail), but permits a smooth transition. There is no explicit threshold, but

the threshold could be estimated by the point at which the relative contribution

of the weighted bulk model is sufficiently small compared to the weighted GPD
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tail model. Frigessi et al. (2003) point out that if the transition function is the

Heaviside function, then this model includes the Behrens et al. (2004) mixture

model as a special case.

Frigessi et al. (2003) use the Weibull for the bulk model, the GPD for

tail and the location-scale Cauchy cdf for the transition function, thus giving a

six parameter model. ML estimation is used throughout. However, parameter

identifiability can be challenging due to multiple modes, which cause problems for

simple black box optimisation schemes. More sophisticated optimisation schemes

(e.g., allowing multiple starting points) would likely be beneficial, or alternatively

a Bayesian inference MCMC based sampling scheme would be easily implemented.

Vrac & Naveau (2007) apply this mixture model to rainfall-runoff modelling.

The idea of a smooth transition is sensible, but two problems occur in prac-

tice (MacDonald, 2012). Consider the Cauchy cdf, which has a single parameter

controlling the spread of the transition from the bulk to tail model. A quick but

smooth transition (approximating the Heaviside function in the previous model)

is achieved when the Cauchy scale is almost zero. Therefore, the supposed smooth

transition can be lost in application, as the ‘localised degree of freedom’ of the

threshold discussed on page 49 rears its ugly head again. Vrac & Naveau (2007)

also noted a fast transition in some applications.

Another problem is the lack of robustness of the tail fit to that of the

bulk. Although the weight function controls the relative contributions, because

all three components of the model are defined over the whole range of support

they all potentially contribute to the fit over entire range. In particular, the GPD

reaches its pole at zero, so even though the weight applied to the GPD may be

low close to the lower bound if it is non-zero then the relative contribution of the

GPD to the lower tail fit can be high compared to the bulk model. Thus, the

lower tail fit can impact on the upper tail fit, which is undesirable. Further, the

fit in the upper tail is also impacted by the GPD and bulk models as, although

at asymptotic levels the GPD will dominate, at sub-asymptotic levels of typically

of interest in applications both the Weibull and GPD may contribute to the

tail. Thus, the fit to the bulk can again affect the tail fit. This feature can be

particularly problematic when there is an exponential or short upper tail.

As this model includes the Behrens et al. (2004) model as a special case,

most of the benefits and drawbacks carry over. Of particular note is the threshold

and GPD scale dependence, which complicates the inference.

Zhao et al. (2010) and Mendes & Lopes (2004) introduce a variant on the

Behrens et al. (2004) mixture model. They propose a mixture with a normal

distribution (as an example) for the bulk, with both tails represented by separate

threshold models (a so called two-tail model). Neither consider the threshold

dependence of the GPD scale parameter.
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Zhao et al. (2010) apply their model to financial applications where both

the gain and loss risks are of interest. The upper and lower thresholds are esti-

mated in tandem with the other parameters in a Bayesian framework. Thus their

approach, like that of Behrens et al. (2004), allows for automated threshold choice

and uncertainty quantification. Zhao et al. (2011) and Zhao (2010) consider the

testing of asymmetry of the gain and losses tails, by comparing the model fit be-

tween a general parameterisation of both tails and the two tails having a common

shape parameter.

Prior to application of their two tail model Mendes & Lopes (2004) ro-

bustly standardise the data to make ‘well defined’ tails, though it is unclear

what is meant by this phrase, as they apply the same linear rescaling to all the

observations, thus not providing any separation of the bulk and tail data. A ro-

bust nonlinear transformation which pushes out the tail data and shrinks in the

bulk observations would be needed to achieve this goal. After standardising the

data Mendes & Lopes (2004) propose a rather lengthy estimation procedure:

1. Select a grid of candidate tail fractions for both tails, and estimate the

corresponding empirical threshold (quantile) estimates);

2. Fit a standard normal or Student-t distribution to the robustified data

and use it to find robust estimates of the two tail fractions;

3. Use L-moment estimators to robustly fit the GPD to both tails;

4. Calculate the likelihood for the combined two-tail mixture model with

these robust estimates of the tail fractions, thresholds and GPD pa-

rameters;

5. The final selection of the tail fractions is that which maximises the

likelihood.

This procedure provides an objective automated threshold estimate, but the

threshold uncertainty is ignored and it is not obvious how to evaluate the overall

uncertainty.

6.2. Semiparametric bulk models

Carreau & Bengio (2009a) propose the hybrid Pareto model depicted in

Figure 4.3, which constrains the bulk and tail densities to have continuous zeroth

and first derivatives to ensure a smooth transition at the threshold. The five

parameters are thus reduced to three. Carreau & Bengio (2009a) chose to vary

the mean and location of the normal and the GPD shape parameter, from which

the threshold and GPD scale can be derived.

The fundamental idea underlying the hybrid Pareto to ensure smoothness

at the threshold is sensible. Unfortunately, the model performs poorly in practice,
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seemingly because these two constraints are rather strong, as noted by Carreau &

Bengio (2009a). Exploration of the single constraint of continuity would confirm

this. Carreau & Bengio (2009a) used a finite mixture of these hybrid Pareto densi-

ties as their final model to overcome this. This gives a distribution of thresholds

across the mixture components. Further, the tail is approximated by multiple

GPD’s. Asymptotically the mixture component with the heaviest tail behaviour

will dominate, but the sub-asymptotic behaviour is influenced by all the tail com-

ponents. Carreau & Bengio (2009a) suggest the threshold for the dominant tail

component could be used as a proxy for the threshold choice if this is of interest.

This model bypasses the threshold estimation problem, but it has been

included because the final estimates in some sense encapsulate the uncertainty

associated with the threshold estimation. Although Carreau & Bengio (2009a)

call their mixture of hybrid Pareto’s model a nonparametric model, it is cate-

gorised here as a semiparametric approach as the number of degrees of freedom

used in estimation will generally be small, growing slowly with the sample size,

compared to the nonparametric mixtures outlined below.

Maximum likelihood estimation is used throughout, including for the num-

ber of mixture components, although a neural network learning approach is im-

plemented by Carreau & Bengio (2009b) and Carreau et al. (2009) in an extension

to nonstationary and bivariate modelling situations. Carreau & Bengio (2009a)

point out the the interrelation between the parameters means that the standard

EM algorithm cannot be used, as also indicated by Behrens et al. (2004) and Mac-

Donald et al. (2011a) for related mixture models.

The performance of the mixture of hybrid Pareto models in situations where

the tail behaviour is exponential or short tailed needs exploration. In these cases,

the normal bulk model in each component of the mixture could adequately ap-

proximate the tail, so the implied threshold would be rather variable and it is

unclear how this would affect the inferences.

A major benefit of the mixture of hybrid Pareto’s model compared to the

other mixtures is the required continuity in the zeroth and first derivatives at the

threshold. This will reduce the local degree of freedom problem of the threshold

in the other mixtures mentioned above, but will introduce greater flexibility,

so it is not clear whether the uncertainty associated with this will be reduced,

particularly in the mixture of hybrid Paretos. A drawback with this mixture is

the parameter dependence, which means there may be a lack of robustness of the

tail fit to that of the bulk, as with the dynamically weighted mixture of Frigessi

et al. (2003). However, the flexibility may override this lack of robustness, as with

the fully nonparametric mixture models of Tancredi et al. (2006) and MacDonald

et al. (2011a) outlined below. It would be interesting to investigate both of these

issues in future research.
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Cabras & Castellanos (2010) consider another semiparametric bulk model

spliced with a GPD upper tail. The bulk distribution is approximated by an

equi-spaced binning of the data, followed by fitting a Poisson log-link GLM to

the counts, with a polynomial smoother for the mean parameter. A profile like-

lihood for all the observations is obtained by combining the GPD tail model for

observations above the threshold and Poisson GLM density estimator below the

threshold. However, the fitted density for the bulk distribution is assumed to

be fixed, so the likelihood is maximised with respect to only the threshold and

GPD parameters. Appropriate scalings are applied to ensure that the density

integrates to unity. Bayesian inference is used, but the threshold dependence of

the GPD scale parameter is ignored.

do Nascimento et al. (2011) extended the Behrens et al. (2004) model by

defining the bulk distribution as a weighted mixture of gamma densities. They

use Bayesian inference, conditional on a fixed number of the gamma components,

which is chosen using a BIC- or DIC-based statistic. This ensures that specific

parametric forms or constraints such as unimodality are not imposed, yielding

a flexible model for the bulk distribution. This mixture model is unlike that of

the hybrid model described by Carreau & Bengio (2009a), as it relies on a single

GPD for tail estimate and thus requires that only one threshold be estimated.

do Nascimento et al. (2011) also showed that the use of posterior predictive

inference practically eliminates any discontinuity at the threshold, even though

the individual posterior samples will likely exhibit a discontinuity.

The major benefit of these semiparametric mixtures over the parametric

ones is that they provide reasonably flexible models for the bulk without using up

as many degrees of freedom as the nonparametric alternatives discussed below.

Thus they combine some of the benefits of both these approaches. Of course,

it is not clear whether they provide sufficient flexibility to be robust to model

misspecification, particularly robustness of the tail fit to the bulk.

6.3. Nonparametric bulk models

Tancredi et al. (2006) were the first to propose an extreme value mixture

model combining a nonparametric estimator for the bulk distribution spliced with

an extreme value tail model. They were also the first to overcome the dependence

of the GPD scale parameter on the threshold by using the PP representation for

the tail excesses. Their bulk model is the mixture of uniforms density estima-

tor of Robert (1998) and Robert & Casella (2010), providing a piecewise linear

approximation to the cdf below the threshold; see Figure 4.4. The nonparamet-

ric mixture is defined between the upper threshold and a lower threshold that

is definitely too low (which could be the lower bound on the range of support).
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A benefit of this approach is that it fixes the sample size being included in the

inference, but potentially excludes data which is uninformative about the tail

behaviour.

Bayesian inference using MCMC is implemented. A hierarchy determines

whether the uniform widths should be the same or should be allowed to vary and

to what degree. However, as there is an unknown number of uniform densities, the

parameter space varies in dimension and a reversible jump algorithm is required

(Robert & Casella, 2010), whose implementation can be challenging.

MacDonald et al. (2011a) use a kernel density estimator for the bulk dis-

tribution, spliced at the threshold with a PPP tail model shown in Figure 4.5,

following a cruder version with a GPD tail model (Scarrott & MacDonald, 2010).

Nonparametric kernel density estimators using symmetric kernels work well with

populations with unbounded support, or at least a proper tail before the lower

boundary. For populations with bounded support, a boundary-corrected kernel

density estimator is used as an alternative by MacDonald et al. (2011b). The

kernel density estimator assumes a particular kernel such as the normal density,

which is centred at each datapoint, and is parameterised by a single bandwidth.

Such kernel density estimators can approximate most smooth densities (Silver-

man, 1986). If the lower tail is heavy then MacDonald et al. (2011a) also showed

that a mixture model, with both tails replaced by threshold models, can be used

to provide flexibility and robustness of the fits between the two tails and the bulk.

MacDonald et al. (2011a) utilise standard cross-validation likelihood to

choose the bandwidth, combined with the likelihood for PPP tail model, includ-

ing the threshold, to give a full likelihood for all the observations. The combined

likelihood is used in a Bayesian inference framework, with posterior predictive

inference used for all the key quantities of interest.

The major benefit of these nonparametric approaches as compared to the

parametric approaches is that the tail fit is robust to the bulk fit, as demonstrated

by simulation in Tancredi et al. (2006). MacDonald et al. (2011b) and MacDon-

ald (2012) use sensitivity curves to show the robustness of the tail fit to that of

the bulk and vice-versa. The main drawback with the mixture of uniforms for the

bulk distribution of Tancredi et al. (2006) is the computational complexity, noted

by Thompson et al. (2009), and in particular the difficulty of ensuring conver-

gence. The nonparametric kernel density estimator is computationally simpler,

but the cross-validation likelihood can be burdensome for large samples, and

the overall computing time can be reduced by other forms of subsampling or

by using an alternative penalty function. Further, both nonparametric mixture

models could be fit in two stages: (1) fit the nonparametric density estimator,

followed by (2) put this in a combined likelihood with the tail model and carry out

the tail inferences ignoring the uncertainty associated with the bulk parameter

estimation, as in the profile likelihood approach of Cabras & Castellanos (2010).
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The lack of sensitivity of the bulk parameter estimation to the tail parameters

would mean that little would be lost while substantially reducing the computa-

tional burden.

7. OTHER APPROACHES

Dupuis (2000) proposed a robust procedure for GPD fitting, including

statistics to guide threshold choice. The optimal bias robust estimation (OBRE)

procedure weights each observation between 0 and 1 depending on how consistent

they are with the GPD model, with high weights indicating a good fit. A test

statistic (or p-value) for the weights under the null hypothesis that the GPD is

the correct model is also provided, along with average weights from simulations

under the fitted models for further guidance. She suggests trying out a sensible

set of thresholds and choose the lowest threshold such that the weights are all

‘sufficiently close to one’.

This procedure essentially replaces the threshold selection problem with

that of selecting the tuning parameter which controls the cut-off of closeness

to unity. Dupuis (2000) suggested that this new threshold choice is easier to

automate. The OBRE also requires specification of the bound on the influence

function, which balances efficiency and robustness of the estimator (too high a

bound leads to a lack of robustness but higher efficiency as more information is

utilised, and vice versa). Some guidance is required to provide a suitable choice

for this bound, but this adds to concerns whether this this approach can be fully

automated. The principle drawback with this approach is that after choosing the

threshold, the OBRE procedure reduces to a fixed threshold approach.

Thompson et al. (2009) recently developed an automated procedure for

threshold estimation and uncertainty quantification. They set a uniformly spaced

grid of possible threshold values (between the median and 98% empirical quan-

tile). For each potential threshold the GPD is fitted (using ML estimation) and

the differences in the modified scale parameters for neighbouring thresholds is

calculated. They assume asymptotic normality of these scale differences, and

use the fact that they are centred around mean zero if the GPD is the correct

model. They pool these differences and treat them as a sample of normal random

variables. A forward selection procedure (increasing the threshold increment by

increment) is then applied, until the Pearson χ2 test under the assumption of

normality and mean zero is not rejected. At this point the threshold is said to

be consistent with a GPD. A simple bootstrap approach is used to quantify the

threshold uncertainty on the final inferences.
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de Zea Bermudez et al. (2001) use a Bayesian hierarchical model for tail

estimation, essentially averaging over all possible values of tail fraction. The

GPD is used to describe the tail excesses conditional on the tail fraction, with

the prior distribution defined at the next level of the hierarchy. The tail fraction

‘parameter’ k at the next level in the hierarchy is described by a doubly truncated

Poisson distribution with parameters for the mean and truncation points chosen

to be relatively uninformative, but still ensuring a suitable tail fraction. The next

hierarchy level describes the priors for the three tail fraction parameters, followed

by their hyperparameters at the final level. They consider only the Gumbel case

(exponential upper tail). In order to avoid the specification of the bulk model, as

used in the extreme value mixture models outlined in §6, they use an approximate

posterior, assuming that the contribution to the likelihood from the lower order

statistics can be safely ignored and only the conditional contributions for the

upper tail fraction contribute. Therefore, for each random effect for the tail

fraction k in the hierarchy, there is a differing amount of data contributing to

the approximate likelihood (and therefore posterior). The properties of such an

estimator (e.g., asymptotics, relative weighting of data points) are unclear.

Cabras & Morales (2007) propose using a sequential outlier detection method

to identify points above (below) some upper (lower) threshold which appear to

differ in character from the tail(s) of some assumed known parametric model for

the population distribution. The partial posterior predictive distribution is used

to sequentially estimate the likelihood of observing the pairs of the most outlying

(upper and lower) order statistics under the assumed population model, ignor-

ing those that have already been dropped. This procedure continues until the

probability of observing both in the pair is sufficiently high. The thresholds are

then defined by the last upper and lower order statistics that were dropped. Of

course, this requires specification of the outlyingness tolerance, which the user

must specify a priori, though the authors claim this will be straightforward to

elicit. In some ways this approach is related to the two-tail models considered

by Zhao et al. (2010) and Mendes & Lopes (2004) discussed above. No threshold

uncertainty quantification is applied.
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1. INTRODUCTION

Multivariate extreme-value analysis is concerned with the extremes in a

multivariate random sample, that is, points of which at least some components

have exceptionally large values. Isolating a single component brings us back to

univariate extreme-value theory. In this paper, the focus will rather be on the

dependence between extremes in different components. The issue of temporal

dependence will be ignored, so that the dependence will be understood as cross-

sectional only.

Mathematical theory suggests the use of max-stable models for univariate

and multivariate extremes. The univariate margins must be one of the clas-

sical extreme-value distributions, Fréchet, Gumbel, and extreme-value Weibull,

unified in the generalized extreme-value distributions. For the dependence struc-

ture, however, matters are more complicated. A complete characterization in the

multivariate case was given in de Haan & Resnick (1977), describing extremal

dependence in terms of spectral measures on a subset of the unit sphere. Statis-

tically, this formulation is not always the most practical one, and a large number

of other concepts have been proposed.

The aim of this paper is to provide a comprehensive account of the various

ways in which max-stable models are described (§2). Second, a construction

device is proposed for generating parametric families of max-stable distributions

(§3). The device is not new as it appears already for instance in the theory of

regularly varying multivariate time series in Basrak & Segers (2009) or in the

concept of a D-norm in Falk et al. (2010). Still, its role as a model generator

seems not yet to have been fully appreciated.

Inference on multivariate extremes via max-stable models for joint tails is an

exciting field that is still in development. Inference methods can be nonparametric

or parametric, and in the latter case, they can be likelihood-based, frequentist as

well as Bayesian, or based on other techniques such as the method of moments

or minimum distance estimation.

Max-stable models have the drawback that they are too coarse to describe

tails of multivariate distributions with asymptotic independence sufficiently accu-

rately. More refined models exist and they are the topic of an extensive literature,

originating from the seminal paper of Ledford & Tawn (1996).
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2. FUNDAMENTALS

Max-stable distributions arise out of the study of the limit behaviour of

vectors of componentwise maxima. Their dependence structure can be described

via a number of dependence functions or via certain measures. All these objects

are related and they highlight different aspects of the distribution of multivariate

extremes.

2.1. Convergence of vectors of componentwise maxima

Let Xi = (Xi1, ..., Xid), for i = 1, ..., n, be independent and identically

distributed random vectors in dimension d. For each component j = 1, ..., d,

consider the sample maximum, and collect these maxima in a new random vector:

Mn = (Mn1, ..., Mnd) , Mnj = max(X1j , ..., Xnj) .

Observe that most of the time, the point Mn does not belong to the sample, as the

maxima in different components will typically occur at different time instances.

Still, the analysis of the large-sample distribution of Mn is a natural starting

point for multivariate extreme-value theory.

Weak convergence of a sequence of random vectors implies weak conver-

gence of each of the components. As in univariate extreme-value theory, it is

therefore reasonable to apply increasing affine transformations to each of the

margins and consider the sequence of random vectors

(2.1)

(

Mnj − bnj

anj
: j =1, ..., d

)

, n = 1, 2, ... ,

in terms of normalizing constants anj > 0 and bnj . For each component j =1, ..., d,

the weak limit of (Mnj − bnj)/anj as n → ∞ must be a univariate max-stable dis-

tribution, and necessary and sufficient conditions on the marginal distribution Fj

of the j th component Xij for such convergence to take place are well known, see

for instance the monograph by de Haan & Ferreira (2006).

However, weak convergence of each of the d components in (2.1) is strictly

weaker than joint convergence of the vector of normalized maxima. What is

needed in addition is a condition on the dependence structure of the common

joint distribution F of the random vectors Xi. A convenient way to describe this

dependence is via the copula C1 of F , that is,

(2.2) Pr
[

Xi≤x
]

= F (x) = C1

(

F1(x1), ..., Fd(xd)
)

.
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Assuming the margins F1, ..., Fd are continuous, as we will do henceforth, the

copula C1 of the distribution function F in (2.2) is unique and can be obtained

as the joint distribution function of the random vector
(

F1(Xi1), ..., Fd(Xid)
)

.

Weak convergence of a sequence of multivariate distribution functions to a

limit with continuous margins is equivalent to weak convergence of the sequences

of margins and of the sequence of copulas (Deheuvels, 1984; Galambos, 1987). The

copula of the vector of component-wise maxima Mn, and hence of any vector that

is obtained by applying increasing transformations to each of its components, is

given by

(2.3) Cn(u) =
{

C1

(

u
1/n
1 , ..., u

1/n
d

)

}n
.

This can be checked from the fact that the joint distribution function of Mn is

Fn while its margins are Fn
j for j =1, ..., d. Hence, in order for the normalized

maxima in (2.1) to converge in distribution to a nondegenerate limit, besides

marginal convergence, the sequence of copulas Cn must converge as well.

The copulas that can arise as weak limits of Cn as n → ∞ are called

extreme-value copulas, that is, a copula C is called an extreme-value copula if

there exists a copula C1 such that, as n → ∞,

(2.4) lim
n→∞

{

C1

(

u
1/n
1 , ..., u

1/n
d

)

}n
= C(u1, ..., ud) .

Extreme-value copulas arise as the class of possible limit copulas of vectors Mn

as n → ∞. The copula C1 is said to be in the domain of attraction of C.

An extensive survey of the literature on extreme-value copulas is given in Guden-

dorf & Segers (2010).

The class of extreme-value copulas coincides with that of max-stable cop-

ulas, defined as follows. A copula C is max-stable if, for all u ∈ [0, 1]d and

k = 1, 2, ...,

C(u) =
{

C
(

u
1/k
1 , ..., u

1/k
d

)

}k
.

In the setting of componentwise maxima of independent random samples, the

previous identity means that the copula Ck of the random vector Mk is the same

for every sample size k. Clearly, a max-stable copula is also an extreme-value

copula, being in its own domain of attraction. Conversely, each extreme-value

copula can be shown to be max-stable: in (2.4), partition the sample of size

n = mk in m blocks of size k and let m tend to infinity for fixed k. Since the

limit must not depend on k, the max-stability relation follows.

In summary, we have found that nondegenerate limit distributions of vec-

tors of appropriately normalized componentwise maxima have extreme-value mar-

gins and an extreme-value or max-stable copula. Specifically, if

Pr

[

d
⋂

j=1

{

Mnj − bnj

anj
≤ xj

}

]

w−→ G(x1, ..., xd) , n → ∞ ,
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then necessarily

G(x1, ..., xd) = C
(

G1(x1), ..., Gd(xd)
)

with extreme-value margins G1, ..., Gd and an extreme-value copula C. Conver-

gence of margins and convergence of copulas being two isolated issues, we can

ignore the former and rather focus on the latter. In fact, the way in which the

components are normalized is immaterial, as long as the transformations applied

to the components are increasing.

2.2. Dependence functions

Take logarithms and apply a linear expansion to see that (2.4) is equivalent

to

lim
n→∞

n
{

1 − C1

(

1 − n−1x1, ..., 1 − n−1xd

)

}

= − log C
(

e−x1 , ..., e−xd
)

= ℓ(x) , x ∈ [0,∞)d .
(2.5)

The limit ℓ is called the stable tail dependence function of C, going back to Huang

(1992) and Drees & Huang (1998). The variable n tending to infinity along the

positive integers can be replaced by a variable t tending to infinity along the

positive reals.

The best known example is the Gumbel–Hougaard copula, for which ℓθ(x) =

(xθ
1 + ··· + xθ

d)
1/θ in terms of a parameter θ ∈ [1,∞] (Gumbel, 1960; Hougaard,

1986). The function ℓθ happens to be the θ-norm of the vector x. The fact that

ℓθ is a norm is no coincidence: in a remarkable paper by Molchanov (2008), a

characterization is given of all the norms that can give rise to stable tail depen-

dence functions. In Falk et al. (2010), ℓ(x) is called the D-norm of x, with D

referring to the Pickands dependence function, see below.

Let X = (X1, ..., Xd) denote a generic random vector in the original sample.

The expression on the left-hand side in (2.5) contains the rescaled probability

1 − C1

(

1 − x1/n, ..., 1 − xd/n
)

=
(2.6)

= Pr
[

F1(X1) > 1 − x1/n or ... or Fd(Xd) > 1 − xd/n
]

.

This probability concerns the event that at least one among the d components

X1, ..., Xd should exceed a high percentile of its own distribution. The copula

domain-of-attraction condition (2.4), originally involving the vector of compo-

nentwise sample maxima, has been replaced by a condition on the upper tail of a

single random vector. This is akin to the familiar peaks-over-threshold approach

in univariate extreme-value theory.
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The tail copula, R, of Schmidt & Stadtmüller (2006) arises if all d compo-

nents are required to exceed a large percentile simultaneously:

lim
n→∞

n Pr
[

F1(X1) > 1 − x1/n and ... and Fd(Xd) > 1 − xd/n
]

=

= R(x) , x ∈ [0,∞)d .

Clearly, the relation between the functions ℓ and R is governed by the inclusion-

exclusion formula. In higher dimensions, ℓ is somewhat more convenient than R,

as setting some components xj in the definition of ℓ to zero allows one to re-

trieve the lower-dimensional margins of the extreme-value copula. This is not

possible for the tail copula R, as setting even a single xj to zero immediately

yields R(x) = 0. The difference between the two functions ℓ and R is depicted in

Figure 1.
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Figure 1: Left: the stable tail dependence function ℓ — at least one

component should be large. Right: the tail copula R — all

components must be large simultaneously. Here Uj = Fj(Xj)

for j = 1, 2.

The dependence functions ℓ and R are homogeneous:

ℓ(ax) = lim
t→∞

t
{

1 − C1

(

1 − x1/(t/a), ..., 1 − xd/(t/a)
)

}

= lim
s→∞

a s
{

1 − C1

(

1 − x1/s, ..., 1 − xd/s
)

}

(2.7)

= a ℓ(x) , a > 0 , x ∈ [0,∞)d ,

and similarly for R. It is therefore sufficient to consider the restriction of these

functions to the unit simplex ∆d−1 =
{

(w1, ..., wd) ∈ [0, 1]d : w1 + ···+ wd = 1
}

.
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The restriction of ℓ to ∆d−1 is called the Pickands dependence function, D, after

Pickands (1981). By homogeneity,

ℓ(x) = (x1 + ··· + xd)D(w1, ..., wd) , wj =
xj

x1 + ··· + xd
.

Frequently, the variable wd = 1−w1 − ···−wd−1 is suppressed from the notation

and D is written as a function of the arguments (w1, ..., wd−1) only.

The probability on the right-hand side of (2.6) involves the union of the

events
{

Fj(Xj) > 1 − xj/n
}

, each of which has probability xj/n, provided 0 ≤
xj ≤ n. As a consequence, we have the elementary bounds

max(x1/n, ..., xd/n) ≤ Pr
[

F1(X1) > 1− x1/n or ... or Fd(Xd) > 1− xd/n
]

≤ x1/n + ··· + xd/n .

Multiplying by n and letting n tend to infinity, we obtain

(2.8) max(x1, ..., xd) ≤ ℓ(x1, ..., xd) ≤ x1 + ··· + xd , x ∈ [0,∞)d .

By (2.5) and (2.8), an extreme-value copula C must satisfy

(2.9) u1 ··· ud ≤ C(u1, ..., ud) ≤ max(u1, ..., un) , u ∈ [0, 1]d .

The lower and upper bounds in the two previous displays can be attained, corre-

sponding to the extreme cases of independence and perfect association. In partic-

ular, max-stable models are positive quadrant dependent. In fact, in Garralda-

Guillem (2000), the stronger property is shown that bivariate extreme-value copu-

las are monotone regression dependent; see also Theorem 5.2.10 in Resnick (1987).

By (2.5), the copula C can be given in terms of the tail dependence function

through

C(u1, ..., ud) = exp
{

−ℓ
(

− log u1, ..., − log ud

)

}

, u ∈ (0, 1]d .

In extreme-value theory, it is often convenient to standardize to other distribu-

tions than the uniform (0, 1) law. The three most common forms are the unit

Fréchet distribution, the Gumbel distribution, and the reverse exponential distri-

bution, yielding respectively

C
(

e−1/x1 , ..., e−1/xd
)

= exp
{

−ℓ
(

1/x1, ..., 1/xd

)

}

, x ∈ (0,∞)d ,(2.10)

C
(

e−e−x1

, ..., e−e−xd
)

= exp
{

−ℓ
(

e−x1 , ..., e−xd
)

}

, x ∈ R
d ,(2.11)

C
(

ex1 , ..., exd
)

= exp
{

−ℓ
(

−x1, ...,−xd

)

}

, x ∈ (−∞, 0)d .(2.12)

When using unit Fréchet margins, the notation V (x1, ..., xd) = ℓ(1/x1, ..., 1/xd)

is often employed too.



Max-Stable Models 69

2.3. The intensity measure

The transformation of the components Xj to uniform (0, 1) random vari-

ables via the probability integral transform Fj(Xj) has the disadvantage that all

the action regarding the upper extremes is compressed to the neighbourhood of 1.

Instead, for a univariate sequence ξ1, ξ2, ... of independent and identically dis-

tributed random variables with common distribution function Fξ, define the first

exceedance time of the level x by

T (x) = inf
{

i = 1, 2, ... : ξi > x
}

.

If Fξ(x) < 1, then T (x) will be a geometric random variable with success proba-

bility equal to 1 − Fξ(x). Its expectation,

E[T (x)] =
1

1 − Fξ(x)
,

is called the return time of the level x.

Now let us apply this return time transformation to each of the d compo-

nents of the random vector (X1, ..., Xd). The return time of observation Xj is

Yj = 1/{1−Fj(Xj)}. The law of Yj is unit Pareto rather than uniform on (0, 1),

as Pr
[

Yj > y
]

= Pr
[

Fj(Xj) > 1−1/y
]

= 1/y for y ≥ 1. We find that values of Xj

corresponding to high percentiles of Fj are mapped to large values of Yj . As is

evident from Figure 2, extremes are magnified.
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Figure 2: Two views on a sample: uniform (left) versus Pareto (right).

Now suppose that the copula C1 is in the domain of attraction of an

extreme-value copula with stable tail dependence function ℓ. Equation (2.5) says
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that the random vector Y = (Y1, ..., Yd) satisfies

t
{

1 − C1

(

1 − x1/t, ..., 1 − xd/t
)

}

= t Pr

[

d
⋃

j=1

{

Yj > t/xj

}

]

= t Pr
[

Y/t ∈
(

[0,∞]d \ [0, 1/x]
)

]

→ ℓ(x) , t → ∞ .

It follows that on the space Ed = [0,∞]d \{0}, there exists a measure µ such that

(2.13) E

[

n
∑

i=1

I
(

Yi/n ∈ ·
)

]

= n Pr
[

Y/n ∈ ·
] v−→ µ( · ) , n → ∞ .

The limit takes place in the mode of vague convergence of measures, meaning that

limn→∞ n E[f(Y/n)] =
∫

Ed
f(x) dµ(x) for every bounded, continuous function f

on Ed that vanishes in a neighbourhood of the origin. Intuitively, when n grows

large, the vector Y/n is pulled towards the origin, in the neighbourhood of which

the function f is zero. The intensity measure then only concerns the upper tail

of the distribution of Y . The first expression in the previous display shows that

µ expresses the limiting average intensity in space of the normalized sample cloud
{

Y1/n, ..., Yn/n
}

. The stable tail dependence function acts as a distribution

function for the intensity measure µ, as we have

ℓ(x) = µ
(

[0,∞]d \ [0, 1/x]
)

.

2.4. Extreme profiles

Assume that the vector of return times Y = (Y1, ..., Yd) with Yj = 1/{1 −
Fj(Xj)} is large, that is, at least one of its components exceeds a high threshold.

The relative sizes of the d components then inform us about the extremal depen-

dence: are some components large simultaneously or is one specific component

dominating all the other ones? Specifically, for y ∈ [0,∞)d \ {0} put

r(y) = y1 + ··· + yd ∈ (0,∞) ,

w(y) =
(

yj/r(y) : j =1, ..., d
)

∈ ∆d−1 ,

to be thought of as the magnitude and the profile of the vector y, respectively.

The spectral measure H lives on the unit simplex and is defined by

H(B) = µ
(

{

y : r(y) >1, w(y)∈B
}

)

,

for Borel subsets B of ∆d−1.
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The measure convergence in (2.13) implies that

E

[

n
∑

i=1

I
{

r(Yi) > n, w(Yi)∈ ·
}

]

=

(2.14)
= n Pr

[

r(Y ) > n, w(Y )∈ ·
] w−→ H( ·) , n → ∞ ,

with vague convergence being replaced by weak convergence because the state

space ∆d−1 is compact. In particular,

(2.15) Pr
[

w(Y )∈ · | r(Y ) > t
] d−→ H( ·)

H(∆d−1)
= Q( ·) , t → ∞ ,

meaning that the conditional distribution of the profile w(Y ) given that the

magnitude r(Y ) is large converges in distribution to the normalized spectral

measure Q.

The spectral measure H and the profile distribution Q( ·) are alternative,

equivalent ways of describing the extreme-value copula C. Indeed, homogeneity

of ℓ in (2.7) implies homogeneity of µ:

(2.16) µ(a ·) = a−1µ( ·) , a > 0 .

As a consequence, the intensity measure satisfies

µ
(

{

y : r(y) > z, w(y)∈B
}

)

= z−1µ
(

{

y | r > 1, w ∈B
}

)

(2.17)
= z−1H(B)

for z > 0 and for Borel sets B of ∆d−1. That is, when expressing a point y in the

coordinates (r, w), the intensity measure µ factorizes into a product measure on

(0,∞) × ∆d−1 given by r−2dr H(dw). Equation (2.17) leads to

(2.18)

∫

f(y)µ(dy) =

∫

∆d−1

∫ ∞

0
f(rw) r−2 dr H(dw)

for µ-integrable functions f , showing how to recover µ and thus ℓ and C from H.

The special case where f is equal to the indicator function of the set
{

y :

maxj xj yj > 1} for some x ∈ [0,∞)d yields, after some computation,

(2.19) ℓ(x) =

∫

∆d−1

max
j=1,...,d

(wj xj)H(dw) .

Incidentally, this representation of ℓ implies that ℓ must be convex. By special-

izing the bounds in (2.8) to the unit vectors in R
d, one finds that the spectral

measure H must satisfy the constraints

(2.20) 1 = ℓ(ej) =

∫

∆d−1

wj H(dw) , j = 1, ..., d .
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It follows that the total mass of H is equal to

H(∆d−1) =

∫

(w1 + ··· + wd)H(dw) = d .

Thanks to this property, it is possible to recover the spectral measure H from

the profile distribution Q. From (2.20), it then follows that a random vector

W = (W1, ..., Wd) on ∆d−1 with law equal to Q must satisfy

(2.21) EQ[Wj ] =

∫

∆d−1

wj Q(dw) = 1/d , j = 1, ..., d .

In §3, we will see that any such law Q can appear as the profile distribution of a

d-variate max-stable distribution.

In case of asymptotic independence, ℓ(x) = x1 + ···+ xd, the profile distri-

bution Q is equal to the discrete uniform distribution on the d vertices of ∆d−1:

asymptotically, only one component can be large at a time. In the case of asymp-

totic perfect dependence, ℓ(x) = max(x1, ..., xd), the profile distribution Q is

degenerate at the center (1/d, ..., 1/d) of ∆d−1: all components are equally large.

These two extreme cases are depicted in Figure 3.
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Figure 3: Asymptotic independence (left) versus

asymptotic perfect dependence (right).

To show the ease with which coefficients related to extremal dependence

can be computed, consider the random variable

N(t) =

d
∑

j=1

I
{

Fj(Xj) > 1 − 1/t
}

,

counting the number of components that exceed a high percentile. The following

dependence coefficients have natural interpretations.
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• Trouble is in the air:

lim
t→∞

t Pr
[

N(t)≥ 1
]

= ℓ(1, ..., 1) =

∫

∆d−1

max(w1, ..., wd)H(dw) .

• Multiple failures:

lim
t→∞

t Pr
[

N(t)≥ k
]

=

∫

∆d−1

w(d−k+1) H(dw) ,

for k = 1, ..., d, where w(1) ≤ ··· ≤ w(d) denote the order statistics of

(w1, ..., wd).

• The sky is falling:

lim
t→∞

t Pr
[

N(t) = d
]

= R(1, ..., 1) =

∫

∆d−1

min(w1, ..., wd)H(dw) .

• System collapse — how bad will it get?

lim
t→∞

E
[

N(t)−k | N(t)≥ k
]

=

∫

(

w(1) + ··· + w(d−k)

)

H(dw)

∫

w(d−k+1) H(dw)

,

for k = 1, ..., d − 1.

3. CONSTRUCTING MODELS

There is a fairly large number of parametric max-stable models available;

see for instance the overviews in Kotz & Nadarajah (2000) and Beirlant et al.

(2004). In a search for flexible models in large dimensions, new families are still

being constructed, as in Ballani & Schlather (2011), Boldi & Davison (2007), Coo-

ley et al. (2010), and Fougères et al. (2009). In this section, a simple construction

device will be proposed and illustrated.

From §2, we recall that max-stable models for extremal dependence can

be represented either via the extreme-value copula C, the stable tail dependence

function ℓ, the intensity measure µ, or the spectral measure H and its normalized

version, the profile distribution Q. However, as these objects must satisfy certain

constraints, construction of parametric models is not obvious, particularly in

high dimensions. Even if flexible parametric forms can be found, interpretation

of the model parameters may not be obvious. In addition, when working with the

spectral measure or profile distribution, the passage to lower-dimensional margins

can be awkward, as the conditioning events in (2.15) will be different according

to which components are selected.
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3.1. A construction device

Let Z be a unit Fréchet random variable, that is, Pr(Z ≤ z) = exp(−1/z)

for z > 0. Let A = (A1, ..., Ad) be a random vector, independent of Z, such that

0 < E[max(Aj , 0)] < ∞ for every j ∈ {1, ..., d}. Consider the random vector

(3.1) X = (X1, ..., Xd) = (A1Z, ..., AdZ) .

The max-stable attractor of the distribution of X can be explicitly calculated.

Lemma 3.1. For x = (x1, ..., xd) ∈ (0,∞)d, we have

lim
n→∞

Pr
[

X1≤ nx1, ..., Xd ≤ nxd

]n
=

(3.2)

= exp
{

−E
[

max
(

A1/x1, ..., Ad/xd, 0
)

]}

.

Proof: Let x ∈ (0,∞)d. We have

Pr
[

X1≤ x1, ..., Xd ≤ xd

]

= Pr
[

A1Z ≤ x1, ..., AdZ ≤ xd

]

= Pr
[

A1/x1≤ 1/Z, ..., Ad/xd ≤ 1/Z
]

= Pr
[

1/Z ≥ max
(

A1/x1, ..., Ad/xd

)

]

.

The distribution of 1/Z is unit exponential. Since A and Z are independent,

Pr
[

X1≤ x1, ..., Xd ≤ xd | A1, ..., Ad

]

= exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}

.

It follows that

Pr
[

X1≤ x1, ..., Xd ≤ xd

]

= E
[

exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}]

.

Let A(1), A(2), ... be a sequence of independent and identically distributed

copies of A. Fix positive integer n. We have

Pr
[

X1≤ nx1, ..., Xd ≤ nxd

]n
=

=

(

E
[

exp
{

−max
(

A1/x1, ..., Ad/xd, 0
)

}]

)n

= E

[

exp

{

− 1

n

n
∑

i=1

max
(

A
(i)
1 /x1, ..., A

(i)
d /xd, 0

)

}]

.

Equation (3.2) now follows by the law of large numbers and the dominated con-

vergence theorem.
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The margins of the limit distribution function, say G, in (3.2) are equal to

Gj(xj) = exp
{

−E[max(Aj , 0)]/xj

}

for xj > 0. Assume that E[max(Aj , 0)] = 1

for all j = 1, ..., d; this can always be achieved by rescaling the variables Aj if

necessary. In that case, the margins of G are unit Fréchet. Comparing equa-

tions (3.2) and (2.10), we find that the stable tail dependence function of G is

given by

(3.3) ℓA(x1, ..., xd) = E
[

max
(

x1A1, ..., xdAd, 0
)

]

.

The spectral measure H corresponding to ℓ in (3.3) can be identified too.

Write A+
j = max(Aj , 0) and put R = A+

1 + ··· + A+
d . On the event R > 0, define

Wj = A+
j /R; on the event R = 0, the definition of Wj is immaterial — for def-

initeness, put Wj = 1/d if R = 0. Note that W takes values in ∆d−1 and that

E[R] =
∑d

j=1 E[A+
j ] = d. We have A+

j = RWj and thus

ℓA(x1, ..., xd) = E
[

R max
(

W1x1, ..., Wdxd

)

]

= E
[

E
[

R | W1, ..., Wd

]

max
(

W1x1, ..., Wdxd

)

]

.

Comparing this expression with (2.19), we find that the spectral measure H of

ℓA is given by

(3.4) H(dw) = E
[

R | W = w
]

Pr
[

W ∈ dw
]

,

that is, H is absolutely continuous with respect to the law of W with Radon–

Nikodym derivative equal to E
[

R | W = w
]

. Similarly, the profile distribution Q

satisfies

(3.5) Q(dw) = d−1 E
[

R | W = w
]

Pr
[

W ∈ dw
]

.

Intuitively, this makes sense: profiles W that on average yield larger values of R

will have a larger contribution to the joint extremes of X.

Incidentally, this construction shows that any probability distribution Q

on ∆d−1 satisfying (2.21) can appear as the profile distribution of a d-variate

max-stable distribution. Indeed, let the random vector W on ∆d−1 have law Q

and put Aj = dWj for all j = 1, ..., d. As A1 + ··· + Ad = d by construction, the

law of the random vector X in (3.1) is in the domain of attraction of a d-variate

max-stable distribution with profile distribution equal to Q.

If the dimension d is large, realistic models of extremal dependence should

allow for the possibility that only some but not all components of a random

vector are large simultaneously. In terms of the spectral measure or the profile

distribution, this is encoded by the lower-dimensional faces of the unit simplex.

For a non-empty subset I of {1, ..., d}, let ∆d−1,I denote the set of all w in ∆d−1

such that wj > 0 if j ∈ I and wj = 0 otherwise. If the probability of the event
{

minj∈I Aj > 0 ≥ maxj∈Ic Aj

}

is non-zero, then by (3.4), the spectral measure

and the profile distribution will put positive mass on ∆d−1,I . The set I contains

the indices of the components that are large.
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3.2. Examples

The simplicity of (3.3) is appealing and the reader is invited to the apply

the recipe in order to produce his or her own parametric models. In the remainder

of the article, a number of well-known examples are worked out.

Example 3.1 (Independence). Suppose that Pr
[

Aj >0≥max(Ai : i 6= j)
]

= pj for pj > 0 and p1 + ··· + pd = 1. Then only component can be large at the

time. After standardization ensuring that E[max(Aj , 0)] = 1 for all j = 1, ..., d,

we find ℓA(x1, ..., xd) = E
[

max(x1A1, ..., xdAd, 0)
]

= x1 + ···+xd, the stable tail

dependence function of the independence copula.

Example 3.2 (Perfect dependence). Suppose that Aj = aj B with proba-

bility one for all j = 1, ..., d, for some constants aj > 0 and a random variable B

such that E[max(B, 0)] is positive and finite. Then the profile of an extreme

vector is fixed. After standardization, aj = 1/ E[max(B, 0)], the stable tail de-

pendence function is that of perfect positive association, that is, ℓA(x1, ..., xd) =

max(x1, ..., xd).

Example 3.3 (Discrete spectral measures). Suppose that the distribu-

tion of A is discrete with a finite number of atoms. Specifically, suppose that

Pr[A = ak] = pk for k ∈ {1, ..., m}, where ak ∈ R
d and pk ∈ (0, 1) such that

∑m
k=1 pk = 1. Via standardization, ensure that 1 = E[max(Aj , 0)] =

∑m
k=1 pk a+

kj

for all j = 1, ..., d. Put rk = a+
k1 + ···+ a+

kd and write a+
k = rk wk: if rk > 0, then

wkj = a+
kj/rk, whereas if rk = 0, then put wkj = 1/d. It follows that

ℓA(x1, ..., xd) =

m
∑

k=1

pk max
(

a+
k1x1, ..., a

+
kdxd

)

=

m
∑

k=1

(pk rk)max
(

wk1x1, ..., wkdxd

)

.

We find that the spectral measure H and the profile distribution Q are discrete

and are given by

H =

m
∑

k=1

pk rk δwk
, Q =

m
∑

k=1

d−1pk rk δwk
,

with δw a unit point mass at w. The probabilities pk are tilted with the mag-

nitudes rk, giving higher prominence to profiles wk that are associated to larger

values of rk.

Max-stable models with discrete spectral measures are called extreme-value

factor models in Einmahl et al. (2011). Each of the m possible outcomes ak results
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in a different profile, according to the type of event or factor that triggered the

extreme value.

Example 3.4 (Random indicators). Let

ℓ(x, y) = E
[

max(xA, yB, 0)
]

, (x, y) ∈ [0,∞)2 ,

in terms of random variables A and B such that E[max(A, 0)] = E[max(B, 0)] = 1.

Let (I, J) be a pair of random indicators, independent of the pair (A, B), such

that Pr[I =1] = p , Pr[J =1] = q and Pr[I =J =1] = r. In the definition of ℓ,

replace the pair (A, B) by the pair (p−1IA, q−1JB); we assume that 0 < p ≤ 1 and

0 < q ≤ 1. The new stable tail dependence function is equal to

E
[

max
(

p−1xIA, q−1yJB, 0
)

]

= E
[

max
(

p−1xA, q−1yB
)

]

Pr
[

I = J = 1
]

+ E
[

max
(

p−1xA, 0
)

]

Pr
[

I = 1, J = 0
]

+ E
[

max
(

q−1yB, 0
)

]

Pr
[

I = 0, J = 1
]

= ℓ
(

p−1x, q−1y
)

r + p−1x (p− r) + q−1y (q − r) .

Writing α = r/p = Pr
[

J = 1 | I = 1
]

and β = r/q = Pr
[

I = 1 | J = 1
]

, we find

(3.6) ℓα,β(x, y) = ℓ(αx, βy) + (1 − α)x + (1 − β)y , (x, y) ∈ [0,∞)2 .

The new tail copula is simply

Rα,β(x, y) = x + y − ℓα,β(x, y)

= αx + βy − ℓ(αx, βy) = R(αx, βy) , (x, y) ∈ [0,∞)2 .

This is an asymmetric, two-parameter extension of the original model. Imposing

the equality constraint α = β = θ ∈ [0, 1] yields the symmetric, one-parameter

extension

(3.7) ℓθ(x, y) = θ ℓ(x, y) + (1− θ) (x + y) .

In higher dimensions, a vector of indicators (I1, ..., Id) can serve to switch

some components Xj ‘on’ or ‘off’. The dependence structure in these indica-

tors then yields an extremal dependence structure for the random vector X.

Specifically, let pj = Pr[Ij = 1]; we assume 0 < pj ≤ 1. Let A = (A1, ..., Ad) be

a random vector independent of (I1, ..., Id) and such that E[max(Aj , 0)] = 1 for

all j = 1, ..., d. Then we can define a stable tail dependence function via

ℓp(x1, ..., xd) = E
[

max
(

p−1
1 x1I1A1, ..., p−1

d xd IdAd, 0
)

]

(3.8)

=
∑

∅6=c⊂{1,...,d}

p(c) E
[

max
(

p−1
j xj Aj : j ∈ c

)

]
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where p(c) = Pr
[

{j = 1, ..., d : Ij = 1} = c
]

. Keeping the law of A fixed, the pa-

rameter vector p is equal to a probability distribution (p(c))c on the non-empty

subsets c of {1, ..., d}.

In this way, hierarchical structures can easily be built. For instance, in

dimension d = 4, we can think of (I1, I2, I3, I4) = (J, J, K, K). One can also think

of logit-type models for the indicators.

Example 3.5 (Marshall–Olkin copula). Applying the device in (3.6) to

the function ℓ(x, y) = max(x, y) yields the model

ℓα,β(x, y) = max(αx, βy) + (1 − α)x + (1 − β)y = x + y − min(αx, βy) .

The extreme-value copula associated to ℓα,β is the Marshall–Olkin copula

Cα,β(u, v) = uv min(u−α, v−β) = min(u1−αv, uv1−β) , (u, v) ∈ [0, 1]2 .

In higher dimensions, applying the device (3.8) to the function ℓ(x) = max(x),

that is, Aj = 1 with probability one, we get the model

ℓp(x1, ..., xd) =
∑

∅6=c⊂{1,...,d}

p(c) max
(

p−1
j xj : j ∈ c

)

,

the spectral measure of which is discrete. Another stochastic interpretation of

this model is provided in Embrechts et al. (2003).

Example 3.6 (Dirichlet model). Let α1, ..., αd be positive parameters

and let Z1, ..., Zd be independent Gamma(αj , 1) random variables, that is, the

density of Zj is

fj(z) =
1

Γ(αj)
zαj−1e−z , 0 < z < ∞ .

Put Aj = α−1
j Zj , a positive random variable with unit expectation. The stable

tail dependence function associated with the random vector A = (A1, ..., Ad) is

ℓA(x1, ..., xd) = E
[

max
(

x1A1, ..., xdAd

)

]

= E
[

max
(

α−1
1 x1Z1, ..., α

−1
d xdZd

)

]

= E
[

(Z1 + ··· + Zd) max
(

α−1
1 x1V1, ..., α

−1
d xdVd

)

]

,

where Vj = Zj/(Z1+···+Zd). It is well known that the random vector (V1, ..., Vd)

is independent of Z1 + ··· + Zd and has a Dirichlet distribution with parameters

(α1, ..., αd). We find

ℓA(x) = E
[

(α1 + ··· + αd) max
(

α−1
1 x1V1, ..., α

−1
d xdVd

)

]

(3.9)

=
Γ
(
∑d

j=1 αj + 1
)

∏d
j=1 Γ(αj)

∫

∆d−1

max
j=1,...,d

(

α−1
j xj vj

)

d
∏

j=1

v
αj−1
j dv1 ··· dvd−1 .

We recognize the Dirichlet model introduced in Coles & Tawn (1991).
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Example 3.7 (Polynomial Pickands functions). In the Dirichlet model

(3.9), put d = 2 and α1 = α2 = 1, to obtain

ℓ(x, y) = 2

∫ 1

0
max

{

xv, y(1− v)
}

dv = x + y − xy

x + y
.

The Pickands dependence function associated to ℓ is D(t) = ℓ(1−t, t) = 1−t(1−t)

for t ∈ [0, 1]. Applying the transformation in (3.7) yields the mixture model

D(t) = 1 − θ t (1− t) , t ∈ [0, 1] ,

in terms of a parameter θ ∈ [0, 1], introduced in Tawn (1988). This is the only

model in which D is a quadratic polynomial. Applying the transformation in

(3.6) yields the rational model

Dα,β(t) = ℓ
(

α(1− t), βt
)

+ (1− α) (1− t) + (1− β)t

= 1 − αβt(1− t)

α(1− t) + β t
, t ∈ [0, 1] ,

in terms of parameters α, β ∈ (0, 1].

More generally, bivariate max-stable models of which the Pickands depen-

dence function is a higher-order polynomial can be obtained via the transforma-

tion in (3.7) applied to the function ℓ(x, y) = E[max(xA, yB)] when A and B are

random sums

A = E1 + ··· + EJ , B = F1 + ··· + FK ,

in terms of independent random variables J, K, E1, F1, E2, F2, ... such that

J and K are counting random variables having finite support and unit expectation

and where E1, F1, E2, F2, ... are unit exponential random variables. Polynomial

Pickands dependence functions are studied in Guillotte & Perron (2012).

Example 3.8 (Schlather model). Let (S, T ) be a bivariate normal ran-

dom vector with standard normal margins and with correlation ρ ∈ (−1, 1). Put

A =
√

2π S and B =
√

2π T , so that E[max(A, 0)] = E[max(B, 0)] = 1. The sta-

ble tail dependence function corresponding to the random pair (A, B) is

ℓρ(x, y) = E
[

max(xA, yB, 0)
]

=

∫ 0

s=−∞

∫ ∞

t=0

√
2π yt

1

2π
e−(s2+2ρst+t2)/2 ds dt

+

∫ ∞

s=0

∫ 0

t=−∞

√
2π xs

1

2π
e−(s2+2ρst+t2)/2 ds dt

+

∫ ∞

0

∫ ∞

0

√
2π max(xs, yt)

1

2π
e−(s2+2ρst+t2)/2 ds dt .
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After some tedious calculations, this can be shown to be

ℓρ(x, y) =
1

2
(x + y)

(

1 +

√

1 − 2(ρ + 1)
xy

(x + y)2

)

,

see Schlather (2002). The Pickands dependence function corresponding to this

model is

Dρ(t) =
1

2

{

1 +
√

1 − 2(ρ + 1) t(1 − t)
}

, t ∈ [0, 1] .

Example 3.9 (Hüsler–Reiss model). Let (S, T ) be a bivariate normal

random vector with standard normal margins and with correlation ρ ∈ (−1, 1).

Let σ > 0 and put

A = exp
(

σS − σ2/2
)

, B = exp
(

σT − σ2/2
)

.

The pair (A, B) is lognormal with unit expectations, and it yields the stable tail

dependence function

ℓ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

max
{

xeσs, yeσt
}

e−σ2/2 1

2π
e−(s2+2ρst+t2)/2 ds dt .

The double integral can be calculated in terms of the standard normal cumulative

distribution function Φ, yielding

ℓa(x, y) = x Φ

(

a

2
+

1

a
log(x/y)

)

+ y Φ

(

a

2
+

1

a
log(y/x)

)

with parameter a = σ
√

2(1−ρ). This is the model introduced in Hüsler & Reiss

(1989).
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bivariées, C. R. Acad. Sci. Paris, Série I Math., 330, 593–596.

Gudendorf, G. & Segers, J. (2010). Extreme-value copulas. In “Copula theory and

its applications (Warsaw, 2009)” (P. Jaworski, F. Durante, W. Härdle and W. Rychlik,
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1. INTRODUCTION

The concept of asymptotic independence connects two central notions in

probability and statistics: asymptotics and independence. Suppose that X and Y

are identically distributed real-valued random variables, and that our interest is

in assessing the probability of a joint tail event (X > u, Y > u), where u denotes

a high threshold. We say that (X, Y ) is asymptotically independent, X
a. ind.∼ Y , if

(1.1) lim
u→∞

pr
(

X > u | Y > u
)

= lim
u→∞

pr
(

X > u, Y > u
)

pr
(

Y > u
) = 0 .

Intuitively, condition (1.1) implies that given that the decay of the joint distribu-

tion is faster than the marginals, it is unlikely that the largest values of X and Y

happen simultaneously.1 Whereas independence is unrealistic for many data ap-

plications, there has been a recent understanding that when modeling extremes,

asymptotic independence is often found in real data. It may seem surprising that

although the problem of testing asymptotic independence is an old goal in statis-

tics (Gumbel & Goldstein, 1964), only recently there has been an understanding

that classical models for multivariate extremes are unable to deal with it.

In this paper we review the current state of statistical modeling of asymp-

totically independent data. Our discussion includes a list of important topics,

including necessary and sufficient conditions, results on the asymptotic indepen-

dence of statistics of interest, estimation and inference issues, and joint tail mod-

eling. We also provide our personal view on some directions we think could be

of interest to be explored in the coming years. Our discussion is not exhaustive,

and in particular there are many results of probabilistic interest, on asymptotic

independence of other statistics not relevant to extreme value analyses, which are

not discussed here.

The title of this paper is based on the seminal work of Sibuya (1960), enti-

tled “Bivariate Extreme Statistics, I”which presents necessary and sufficient con-

ditions for the asymptotic independence of the two largest extremes in a bivariate

distribution. Sibuya mentions that a practical application should be “considered

in a subsequent paper” which to our knowledge never appeared.

Other recent surveys on asymptotic independence include Resnick (2002)

and Beirlant et al. (2004, §9). The former mostly explores connections with

hidden regular variation and multivariate second order regular variation.

1To be precise, the tentative definition in (1.1) corresponds simply to a particular instance
of the concept, i.e., asymptotic independence of the largest extremes in a bivariate distribution.
Although this is the version of the concept to which we devote most of our attention, the concept
of asymptotic independence is actually broader, and has also been studied for many other pairs of
statistics, other than bivariate extremes, even in the field of extremes; we revisit some examples
in §6.
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2. ASYMPTOTIC INDEPENDENCE—CHARACTERIZATIONS

2.1. Necessary and sufficient conditions for asymptotic independence

Early developments on asymptotic independence of the two largest extremes

in a bivariate distribution, were mostly devoted to obtaining necessary or suffi-

cient characterizations for asymptotic independence (Finkelstein, 1953; Geffroy,

1958, 1959; Sibuya, 1960; Berman, 1961; Ikeda, 1963; Mikhailov, 1974; Galambos,

1975; de Haan & Resnick, 1977; Marshall & Olkin, 1983; Takahashi, 1994).

Geffroy (1958) showed that the condition

(2.1) lim
x,y→∞

C
{

FX(x), FY (y)
}

1 − FX,Y (x, y)
= 0

is sufficient for asymptotic independence, where the operator

C
{

FX(x), FY (y)
}

≡ pr
(

X > x, Y > y
)

= 1 + FX,Y (x, y) − FX(x) − FY (y) , (x, y) ∈ R
2 ,

(2.2)

maps a pair of marginal distribution functions to their joint tails. We prefer to

state results using a copula, i.e., a function C : [0, 1]2 → [0, 1], such that

C(p, q) = FX,Y

{

F−1
X (p), F−1

Y (q)
}

, (p, q) ∈ [0, 1]2 .

Here F−1· (·) = inf
{

x : F·(x) ≥ · ∈ [0, 1]
}

, and the uniqueness of the function C

for a given pair of joint and marginal distributions follows by Sklar’s theorem

(Sklar, 1959). Geffroy’s condition can then be rewritten as

(2.3) lim
p,q ↑1

C(p, q)

1 − C(p, q)
= lim

p,q ↑1

1 + C(p, q) − p − q

1 − C(p, q)
= 0 .

Example 2.1. Examples of dependence structures obeying condition (2.3)

can be found in Johnson & Kotz (1972, §41), and include any member of the

Farlie–Gumbel–Morgenstern family of copulas

Cα(p, q) = p q
{

1 + α(1− p) (1− q)
}

, α ∈ [−1, 1] ,

and the copulas of the bivariate exponential and bivariate logistic distributions

(Gumbel, 1960, 1961), respectively given by

Cθ(p, q) = p + q − 1 + (1− p) (1− q) exp
{

−θ log(1− p) log(1− q)
}

, θ ∈ [0, 1] ,

C(p, q) =
p q

p + q − p q
, (p, q) ∈ [0, 1]2 .
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Sibuya (1960) introduced a condition related to (2.1)

(2.4) lim
q ↑1

C(q, q)

1 − q
= 0 ,

and showed that this is necessary and sufficient for asymptotic independence.

Condition (2.4) is simply a reformulation of (1.1) which describes the rate at

which we start lacking observations in the joint tails, as we move towards higher

quantiles. Sibuya used condition (2.4) to observe that bivariate normal dis-

tributed vectors with correlation ρ < 1 are asymptotically independent, and sim-

ilar results are also inherited by light-tailed elliptical densities (Hult & Lindskog,

2002).

Often the question arises on whether it is too restrictive to study asymptotic

independence only for the bivariate case. This question was answered long ago by

Berman (1961), who showed that a d-dimensional random vector Z = (Z1, ..., Zd),

with a regularly varying joint tail (Bingham et al., 1987), is asymptotically inde-

pendent if, and only if,

Zi
a. ind.∼ Zj , i 6= j .

Asymptotic independence in a d-vector is thus equivalent to pairwise asymptotic

independence.2 This can also be shown to be equivalent to having the exponent

measure put null mass on the interior of the first quadrant, and to concentrate on

the positive coordinate axes, or equivalently to having all the mass of the spec-

tral measure concentrated on 0 and 1; definitions of the spectral and exponent

measures are given in Beirlant et al. (2004, §8), and a formal statement of this

result can be found in Resnick (1987, Propositions 5.24–25). In theory, this allows

us to restrict the analysis to the bivariate case, so we confine the exposition to

this setting. Using the result of Berman (1961) we can also state a simple neces-

sary and sufficient condition, analogous to (2.4), for asymptotic independence of

Z = (Z1, ..., Zd), i.e.,

lim
q ↑1

d
∑

i=1

d
∑

j=1
(j 6=i)

Cij(q, q)

1 − q
= 0 , Cij(p, q) ≡ 1 + Cij(p, q)− p− q , (p, q) ∈ [0, 1]2 ,

with the obvious notations (Mikhailov, 1974, Theorem 2).

Example 2.2. Consider the copula of bivariate logistic distribution in

Example 2.1. Sibuya’s condition (2.4) follows directly:

lim
q ↑1

C(q, q)

1 − q
= lim

q ↑1

2(q − 1)2

2 − q
= 0 .

2The pairwise structure is however insufficient to determine the higher order structure;
e.g., in general not much can be inferred on pr

�
X > x, Y > y, Z > z

�
, from the pairs.
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The characterizations in (1.1) and (2.1) are population-based, but a lim-

iting sample-based representation can also be given, using the random sample

{(Xi, Yi)}n
i=1, so that asymptotic independence is equivalent to

(2.5) lim
n→∞

Cn
(

p1/n, q1/n
)

= p q , (p, q) ∈ [0, 1]2 .

In words: the copula of the distribution function of the sample maximum Mn =

max
{

(X1, Y1), ..., (Xn, Yn)
}

, where the maximum are taken componentwise, con-

verges to the product copula Cπ = p q; equivalently we can say that the extreme-

value copula, limn→∞ Cn
(

p1/n, q1/n
)

, is Cπ, or that C is in the domain of attrac-

tion of Cπ.

Srivastava (1967) and Mardia (1964) studied results on asymptotic inde-

pendence on bivariate samples, but for other order statistics, rather than the

maximum. Consider a random sample {(Xi, Yi)}n
i=1 and the order statistics

X1:n ≤ ··· ≤ Xn:n and Y1:n ≤ ··· ≤ Yn:n. It can be shown that if (X1:n, Y1:n) is

asymptotically independent, then

Xi:n
a. ind.∼ Yj:n , i, j ∈ {1, ..., n} .

See Srivastava (1967, Theorem 3).

The last characterization of asymptotic independence we discuss is due to

Takahashi (1994). According to Takahashi’s criterion, asymptotic independence

is equivalent to

(2.6) ∃ (a,b)∈ (0,∞)2 : ℓ(a, b) ≡ lim
q ↑1

1− C
{

1− a(1− q), 1− b(1− q)
}

1− q
= a+b .

Example 2.3. A simple analytical example to verify Takahashi’s criterion

is given by taking the bivariate logistic copula and checking that ℓ(1, 1) = 2.

Remark 2.1. The function ℓ(a, b) is the so-called stable tail dependence

function, and as shown in Beirlant et al. (2004, p. 286), condition (2.6) is equiv-

alent to

ℓ(a, b) = a + b , (a, b) ∈ [0,∞) .

2.2. Notes and comments

Some of the results obtained in Finkelstein (1953) were ‘rediscovered’ in

later papers. Some of these include results proved by Galambos (1975), who

claims that Finkelstein (1953) advanced his results without giving formal proofs.
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Tiago de Oliveira (1962/63) is also acknowledged for pioneering work in sta-

tistical modeling of asymptotic independence of bivariate extremes. Mikhailov

(1974) and Galambos (1975) obtained a necessary and sufficient condition for

d-dimensional asymptotic independence of arbitrary extremes; a related charac-

terization can also be found in Marshall & Olkin (1983, Proposition 5.2)

Most of the characterizations discussed above are directly based on distribu-

tion functions and copulas, but it seems natural to infer asymptotic independence

from contours of the joint density. Balkema & Nolde (2010) establish sufficient

conditions for asymptotic independence, for some homothetic densities, i.e., den-

sities whose level sets all have the same shape. In particular, they show that the

components of continuously differentiable homothetic light-tailed distributions

with convex levels sets are asymptotically independent; in their Corollary 2.1

Balkema and Nolde also show that asymptotic independence resists quite notable

distortions in the joint distribution.

Measures of asymptotic dependence for further order statistics are studied

in Ferreira & Ferreira (2012).

2.3. Dual measures of extremal dependence: (χ, χ)

Many measures of dependence, such as the Pearson correlation coefficient,

Spearman rank correlation, and Kendall’s tau, can be written as functions of

copulae (Schweizer & Wolff, 1981, p. 879), and as we discuss below, measures of

extremal dependence can also be conceptualized as functions of copulae.

To measure extremal dependence we first need to convert the data (X ,Y)

to a common scale. The rescaled variables (X, Y ) are transformed to have unit

Fréchet margins, i.e., FX(z) = FY (z) = exp(−1/z), z > 0; this can be done with

the mapping

(2.7) (X ,Y) 7→ (X, Y ) = −
(

{

log FX (X )
}−1

,
{

log FY(Y)
}−1

)

.

Since the rescaled variables have the same marginal distribution, any remaining

differences between distributions can only be due to dependence features (Em-

brechts et al., 2002). A natural measure to assess the degree of dependence at an

arbitrary high level τ < ∞, is the bivariate tail dependence index

(2.8) χ = lim
u→∞

pr
(

X > u | Y > u
)

= lim
q ↑1

pr
{

X >F−1
X (q) | Y >F−1

Y (q)
}

.

This measure takes values in [0, 1], and can be used to assess the degree of de-

pendence that remains in the limit (Coles et al., 1999; Poon et al., 2003, 2004).
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If dependence persists as u → ∞, then 0 < χ ≤ 1 and X and Y are said to be

asymptotically dependent; otherwise, the degree of dependence vanishes in the

limit, so that χ = 0 and the variables are asymptotically independent. The mea-

sure χ can also be rewritten in terms of the limit of a function of the copula C,

by noticing that

(2.9) χ = lim
q ↑1

χ(q) , χ(q) = 2 − log C(q, q)

log q
, 0 < q < 1 .

Thus, the function C ‘couples’ the joint distribution function and its correspond-

ing marginals, and it also provides helpful information for modeling joint tail

dependence. The function χ(q) can be understood as a quantile dependent mea-

sure of dependence, and the sign of χ(q) can be used to ascertain if the variables

are positively or negatively associated at the quantile q. As a consequence of

the Fréchet–Hoeffding bounds (Nelsen, 2006, §2.5), the level of dependence is

bounded,

(2.10) 2 − log(2 q − 1)+

log q
≤ χ(q) ≤ 1 , 0 < q < 1 ,

where a+ = max(a, 0), a ∈ R. Extremal dependence should be measured accord-

ing to the dependence structure underlying the variables under analysis. If the

variables are asymptotically dependent, the measure χ is appropriate for as-

sessing the strength of dependence which links the variables at the extremes.

If however the variables are asymptotically independent then χ = 0, so that

χ pools cases where although dependence may not prevail in the limit, it may per-

sist for relatively large levels of the variables. To measure extremal dependence

under asymptotic independence, Coles et al. (1999) introduced the measure

(2.11) χ = lim
u→∞

2 log pr
(

X > u
)

log pr
(

X > u, Y > u
) − 1 ,

which takes values on the interval (−1, 1]. The interpretation of χ is to a certain

extent analogous to that of the Pearson correlation: values of χ > 0, χ = 0

and χ < 0, respectively correspond to positive association, exact independence

and negative association in the extremes, and if the dependence structure is

Gaussian then χ = ρ (Sibuya, 1960). This benchmark case is particularly helpful

for guiding how does the dependence in the tails, as measured by χ, compares

with that arising from fitting a Gaussian dependence model.

Asymptotic dependence and asymptotic independence can also be charac-

terized through χ. For asymptotically dependent variables, it holds that χ = 1,

while for asymptotically independent variables χ takes values in (−1, 1). Hence

χ and χ can be seen as dual measures of joint tail dependence: if χ = 1 and

0 < χ ≤ 1, the variables are asymptotically dependent, and χ assesses the de-

gree of dependence within the class of asymptotically dependent distributions;

if −1 < χ < 1 and χ = 0, the variables are asymptotically independent, and
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χ assesses the degree of dependence within the class of asymptotically indepen-

dent distributions. In a similar way to (2.9), the extremal measure χ can also be

written using copulas, viz.

(2.12) χ = lim
q ↑1

χ(q) , χ(q) =
2 log(1 − q)

log C(q, q)
.

Hence, the function C can provide helpful information for assessing dependence

in extremes both under asymptotic dependence and asymptotic independence.

The function χ(q) has an analogous role to χ(q), in the case of asymptotic inde-

pendence, and it can also be used as quantile dependent measure of dependence,

with the following Fréchet–Hoeffding bounds:

(2.13)
2 log(1 − q)

log(1 − 2 q)+
− 1 ≤ χ(q) ≤ 1 , 0 < q < 1 .

For an inventory of the functional forms of the extremal measures χ and χ,

over several dependence models, see Heffernan (2000). We remark that the dual

measures (χ, χ) can be reparametrized as

(2.14) (χ, χ) = (2− θ, 2 η −1) ,

where θ = limq ↑1 log C(q, q)/ log q is the so-called extremal coefficient, and η is

the coefficient of tail dependence to be discussed in §3–4.

3. ESTIMATION AND INFERENCE

3.1. Coefficient of tail dependence-based approaches

The coefficient of tail dependence η corresponds to the extreme value index

of the variable Z = min{X, Y }, which characterizes the joint tail behavior above a

high threshold u (Ledford & Tawn, 1996). The formal details are described in §4,

but the heuristic argument follows by the simple observation that

pr
(

Z > u) = pr
(

X > u, Y > u
)

,

and hence we reduce a bivariate problem to a univariate one. This implies that we

can use the order statistics of the Zi = min{Xi, Yi}, Z(1)≤ ··· ≤Z(n), to estimate η

by applying univariate estimation methods, such as the Hill estimator

η̂k =
1

k

k
∑

i=1

{

log Z(n−k+i) − log Z(n−k)

}

.

By estimating η directly with univariate methods we are however underestimating

its uncertainty, since we ignore the uncertainty from transforming the data to

equal margins, say by using (2.7). The estimators of Peng (1999), Draisma et al.

(2004), Beirlant & Vandewalle (2002), can be used to tackle this, and a review of

these methods can be found in Beirlant et al. (2004, pp. 351–353).
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3.2. Score-based tests

Tawn (1988) and Ledford & Tawn (1996) proposed score statistics for exam-

ining independence within the class of multivariate extreme value distributions.

Ramos & Ledford (2005) proposed modified versions of such tests which solve the

problem of slow rate of convergence of such tests, due to infinite variance of the

scores. Consider the following partition of the outcome space R
2
+, given by

Rkl =
{

(x, y) : k = I(x > u), l = I(y > u)
}

, k, l ∈ {0, 1} ,

where u denotes a high threshold and I denotes the indicator function. The

approach of Ramos and Ledford is based on censoring the upper tail R11 for a high

threshold u, so that, using the logistic dependence structure, the score functions

at independence of Tawn (1988) and Ledford & Tawn (1996) are respectively

given by

U1
n =

∑

(Xi,Yi) /∈R11

∆1(Xi, Yi) + Λ , U2
n =

∑

(Xi,Yi) /∈R11

∆2(Xi, Yi) + Λ ,

where

∆1(Xi, Yi) = (1−X−1
i ) logXi + (1−Y −1

i ) logYi

+ (2 −X−1
i −Y −1

i ) log(X−1
i +Y −1

i ) − (X−1
i +Y −1

i )−1 ,

∆2(Xi, Yi) = I
{

(Xi, Yi) ∈ Rkl

}

Skl(Xi, Yi) ,

Λ =
2 u−1 log 2 exp(−2 u−1)N

2 exp(−u−1) − exp(−2 u−1) − 1
,

with N denoting the number of observations in region R11, and

S00(x, y) = −2 u−1 log 2 ,

S01(x, y) = −u−1 log u + (1− y−1) log y + (1− u−1− y−1) log(u−1 + y−1) ,

S10(x, y) = −u−1 log u + (1− x−1) log x + (1− x−1− u−1) log(x−1 + u−1) ,

S11(x, y) = (1− x−1) log x + (1− y−1) log y + (2− x−1− y−1) log(x−1 + y−1)

− (x−1 + y−1)−1 .

The modified score functions U1
n and U2

n have zero expectation and finite second

moments. The limit distributions under independence are then given as

−n−1/2 U i
n

σi

d−→ N(0, 1) , n → ∞ , i = 1, 2 ,

where
d−→ denotes convergence in distribution and σi denotes the variance of the

corresponding modified score statistics; we remark that these score tests typically

reject independence when evaluated on asymptotically independent data.
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3.3. Falk–Michel test

Falk & Michel (2006) proposed tests for asymptotic independence based on

the characterization

(3.1)

(X
a. ind.∼ Y ) ≡

{

Fδ(t) = pr
(

X−1+Y −1 < δ t
∣

∣ X−1+Y −1 < δ
)

−→
δ→0

t2 , t∈ [0,1]

}

.

Alternatively, under asymptotic dependence we have pointwise convergence of

Fδ(t) → t, for t ∈ [0, 1], as δ → 0. Falk & Michel (2006) use condition (3.1) to

test for asymptotic independence of (X, Y ) using a battery of classical goodness-

of-fit tests. An extension of their method can be found in Frick et al. (2007).

3.4. Gamma test

Zhang (2008) introduced the tail quotient correlation to assess extremal

dependence between random variables. If u is a positive high threshold, and W

and V are exceedance values over u of X and Y , then the tail quotient correlation

coefficient is defined as

(3.2) qu,n =
max

{

(u + Wi)/(u + Vi)
}n

i=1
+ max

{

(u + Vi)/(u + Wi)
}n

i=1
− 2

max
{

(u + Wi)/(u + Vi)
}n

i=1
max

{

(u + Vi)/(u + Wi)
}n

i=1
− 1

.

Asymptotically, qu,n can take values between zero and one. If both max
{

(u+Wi)/

(u +Vi)
}n

i=1
and max

{

(u + Vi)/(u + Wi)
}n

i=1
are large, so that large values of

both variables tend to occur one at a time, qu,n will be close to zero. If the two

‘max’ are close to one, then qu,n approaches one, and hence large values of both

variables tend to occur together. There is a connection to the tail dependence

index χ in (2.8): if χ is zero, then qu,n converges to zero almost surely. So if

(X, Y ) is asymptotically independent, qu,n is close to zero, although, in practice,

the tail quotient correlation coefficient may never reach zero. This brings us to

the hypotheses

H0 : (X, Y ) is asymptotically independent ,

H1 : (X, Y ) is asymptotically dependent .

The Gamma test for asymptotic independence says that as n → ∞,

n qu,n
d−→ Γ

{

2, 1− exp(−1/u)
}

.

A large value of qu,n is indicative of tail dependence and thus leads to a smaller

p-value. If H0 is rejected, we can use qu,n as measure of extremal dependence.
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Although it might seem that the tail quotient correlation increases as u increases,

this is not the case as an increase in u leads to a decrease in the scale parameter

1 − exp(−1/u), leading to a larger α-percentile.

The tail quotient correlation in (3.2) is an extension of another measure of

dependence—the quotient correlation—which is defined as

(3.3) qn =
max{Yi/Xi}n

i=1 + max{Xi/Yi}n
i=1 − 2

max{Yi/Xi}n
i=1 × max{Xi/Yi}n

i=1 − 1
.

Zhang et al. (2011) shows that (3.3) is asymptotically independent of the Pearson

correlation ρn, meaning that qn and ρn measure different degrees of association

between random variables, in a large sample setting.

3.5. Madogram test

Bacro et al. (2010) propose to test for asymptotic independence using a

madogram

W =
1

2

∣

∣FX(X) − FY (Y )
∣

∣ ,

which is a tool often used in geostatistics to capture spatial structures. The ex-

pected value and the variance of the madogram depend on the extremal coefficient

as follows:

µW =
1

2

(

θ − 1

θ + 1

)

, σ2
W =

1

6
− µ2

W − 1

2

∫ 1

0

dt
{

1 + A(t)
}2 ,

where A is the Pickands’ dependence function, which is related to the spectral

measure H, as follows:

A(t) = 2

∫ 1

0
max

{

w(1− t), (1−w)t
}

dH(w) .

Hence testing for asymptotic independence (θ = 2) is the same as testing if

µW = 1/6. Inference is made on the basis of the asymptotic result

n1/2

(

µ̂W − 1/6

σ̂W

)

d−→ N(0, 1)

where µ̂W and σ̂W are consistent estimators of µ and σ.

3.6. Notes and comments

Other tests of independence between marginal extremes include a Cramér–

von Mises-type statistic by Deheuvels & Martynov (1996), a dependence function
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based test by Deheuvels (1980), a test based on the number of points below certain

thresholds by Dorea & Miasaki (1993), the dependence function approaches of

Capéraà et al. (1997). The behavior of Kendall’s-τ as a measure of dependence

within extremes has been also examined; see Capéraà et al. (2000) and Genest

& Rivest (2001). An alternative likelihood-based approach that uses additional

occurrence time information is given in Stephenson & Tawn (2005), and Ramos &

Ledford (2009) propose likelihood ratio-based tests for asymptotic independence,

asymmetry, and ray independence, resulting from a joint tail modeling approach

which we describe in §4.2.

The huge literature on inference for asymptotic independence itself requires

an entire survey. The criterion for selecting the methods presented above was

mainly their simplicity, but many other methods exist which would also meet

this criterion; see de Haan & de Ronde (1998), Husler & Li (2009), Tsai et al.

(2011), among others.

4. JOINT TAIL MODELS

4.1. Joint tail specifications

We start by discussing three different regular variation-based specifications

that provide the basis for the joint tail models to be discussed. The idea is

to provide a chronological view on the different specifications considered on ex-

tremal dependence models that accommodate both asymptotic dependence and

asymptotic independence. Most of the emphasis is placed on the Ramos–Ledford

spectral model.

Let (X ,Y) be a bivariate random variable with joint distribution function

FX ,Y with margins FX and FY ; we apply (2.7) to obtain a pair of unit Fréchet

distributed random variables, X and Y . Ledford & Tawn (1996) proposed the

following specification for the joint survival function:

FX,Y (x, x) = pr
(

X > x, Y > x
)

=
ℓ(x)

x1/η
,

where η ∈ (0, 1] is the coefficient of tail dependence and ℓ is a slowly varying

function, i.e., limx→∞ ℓ(tx)/ℓ(x) = 1, for all t > 0.

Ledford & Tawn (1997, 1998) proposed the more flexible joint asymptotic

expansion

(4.1) FX,Y (x, y) = pr
(

X > x, Y > x) =
L(x, y)

xc1 yc2
, c1 + c2 = η ,
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where L is a bivariate slowly varying function, i.e., there is a function g, the

so-called limit function of L, such that for all x, y > 0 and c > 0

(4.2) g(x, y) ≡ lim
r→∞

{L(rx, ry)

L(r, r)

}

, g(cx, cy) = g(x, y) .

The so-called ray dependence function is then defined as

g∗(w) ≡ g(x, y) , w = x/(x + y) ∈ [0, 1] .

If g∗(w) varies with w, we say that L(x,y) is ray dependent; if otherwise g∗(w) =1,

w ∈ (0, 1), we say that is ray independent.

Ramos & Ledford (2009) considered a particular case of specification (4.1)

where c1= c2, i.e.,

(4.3) FX,Y (x, y) = pr
(

X > x, Y > x
)

=
L(x, y)

(xy)1/(2η)
.

4.2. Ramos–Ledford spectral model

Ramos & Ledford (2009) base their analysis on the bivariate conditional

random variable (S, T ) = limu→∞

{

(X/u, Y/u) : (X > u, Y > u)
}

, for a high thresh-

old u. The joint survivor function of the conditional random variable (S, T ) is

such that

FST (s, t) = pr
(

S > s, T > t
)

= lim
u→∞

pr
(

X > su, Y > tu
)

pr
(

X > u, Y > u
)

= η

∫ 1

0

{

min

(

w

s
,
1−w

t

)}1/η

dHη(w) ,

(4.4)

where Hη is a non-negative measure on [0, 1] that should obey the normalization

constraint

(4.5)

∫ 1/2

0
w1/η dHη(w) +

∫ 1

1/2
(1 − w)1/η dHη(w) =

1

η
.

The measure Hη is analogous to the spectral measure H in classical models for

multivariate extremes, which in turn must obey normalization and marginal mo-

ment constraints:

∫ 1

0
dH(w) = 1 ,

∫ 1

0
w dH(w) =

1

2
.

The two measures can be related: for example, if η = 1, dH1(w) = χ×2 dH(w)

(Ramos & Ledford, 2009, p. 240), with χ = 2 −
∫ 1
0 max(w, 1−w) dH(w). The
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measure Hη is a particular case of the hidden angular measure, which has been

studied by Resnick (2002) and Maulik & Resnick (2004), but in these papers the

normalization constraint (4.5) has been omitted.

Using the joint tail specification (4.3) we can also relate the joint survivor

function of the conditional random variable (S, T ) with the ray dependence func-

tion g⋆, as follows:

FST (s, t) = lim
u→∞

{ L(us, ut)

L(u, u)(st)1/(2η)

}

=
g(s, t)

(st)1/(2η)
=

g∗
{

s/(s + t)
}

(st)1/(2η)
.

Treating the limit in (4.4) as an approximation in the joint tail, we have that for

a sufficiently large threshold u

(4.6) FX,Y (x, y) ≈ FX,Y (u, u) FS,T (x/u, y/u) , (x, y) ∈ (u,∞)2 .

For an arbitrary (X ,Y) with joint distribution function FX ,Y , with margins FX

and FY , we apply (2.7) to obtain a pair of unit Fréchet distributed random

variables, X and Y . The joint survivor function of (X ,Y) can then be modelled

by

F(X ,Y)(x, y) = λ FST

{ −1

u log FX (x)
,

−1

u log FY(y)

}

, (x, y) ∈ (u1,∞)×(u2,∞) ,

where λ denotes the probability of falling in R11. Ramos & Ledford (2009) also

showed that for this approach to yield a complete joint tail characterization, the

marginal tails of the survivor function of S and T must satisfy certain monotonic-

ity conditions, implying that their marginal tails cannot be heavier than the unit

Fréchet survivor function. These conditions guarantee that a given function FST

can arise as a limit in equation (4.4).

Example 4.1. To exploit this in applications, Ramos & Ledford (2009)

propose a parametric model—the η-asymmetric logistic model—which is a mod-

ified version of the asymmetric logistic dependence structure for classical bivari-

ate extremes (Tawn, 1988), according to the model discussed above. The hidden

angular density for this model is

hη(w) =
η −α

α η2Nρ

{

(ρ w)−1/α +

(

1−w

ρ

)−1/α
}α/η−2

{

w(1−w)
}−(1+1/α)

, w ∈ [0,1] ,

where

Nρ = ρ−1/η + ρ1/η −
(

ρ−1/α + ρ1/α
)α/η

, η, α ∈ (0,1] , ρ > 0 .

Hence using (4.4) we obtain

FST (s, t) = N−1
ρ

[

(ρs)−1/η +

(

t

ρ

)−1/η

−
{

(ρs)−1/α +

(

t

ρ

)−1/α}α/η
]

,
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so that by (4.6) the joint survival model for (X, Y ) is

FX,Y (x, y) = FX,Y (u, u)× u1/η

Nρ

[

(ρx)−1/η +

(

y

ρ

)−1/η

−
{

(ρx)−1/α +

(

y

ρ

)−1/α}α/η
]

,

for (x, y) ∈ [u,∞)2.

4.3. Curse of dimensionality?

The model admits a d-dimensional generalization, where the hidden angular

measure now needs to obey the normalization constraint

(4.7)

∫

∆d

min{w1, ..., wd}1/η dHη(w) = 1/η ,

where ∆d = {w ∈R
d
+ :

∑d
i=1 wi = 1; w = (w1, ..., wd)

}

. The corresponding con-

straints that the angular measure needs to obey are

(4.8)

∫

∆d

w dH(w) = 1 ,

∫

∆d

w dH(w) = d−11d ,

Hence, whereas in classical models for multivariate extremes d +1 constraints

need to be fulfilled, in the d-dimensional version of the Ramos–Ledford model

only one constraint needs to be fulfilled.

A d-dimensional version of the η-asymmetric model discussed in Exam-

ple 4.1 can be found in Ramos & Ledford (2011, p. 2221).

4.4. Notes and comments

Qin et al. (2008) discuss a device for obtaining further parametric speci-

fications for the Ramos–Ledford model, using a construction similar to Coles &

Tawn (1991). Whereas Coles & Tawn (1991) propose a method that transforms

any positive measure on the simplex to satisfy the constraints (4.8), Qin et al.

(2008) propose a method that transforms any positive measure on the simplex, to

satisfy the Ramos–Ledford constraint (4.7). Qin et al. (2008) use their device to

produce a Dirichlet model for the hidden angular density hη. Ramos & Ledford

(2011) give a point process representation that supplements the model discussed

above.

Wadsworth & Tawn (2012a) propose a model based on a specification on

which the axis along which the extrapolation is performed is ‘tilted’ by assum-

ing that the marginals grow at different rates. They also obtain analogues of
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the Pickands and exponent functions for this setting, and propose the so-called

inverted multivariate extreme value distributions, which are models for asymp-

totic independence, having a one-to-one correspondence with multivariate ex-

treme value distributions; any construction principle or model generator for a

multivariate extreme value distributed X can thus be readily adapted to create

a inverted multivariate extreme value distributed Y . The link between multi-

variate extreme value distributions and their inverted versions allows the use

of approaches which are amenable to non/semi-parametric methods for a mod-

erate number of dimensions, and it also convenient for parametric modeling of

high-dimensional extremes; for example, the max-mixture max{aX, (1− a)Y },
a ∈ [0, 1], can then be used as a hybrid model, and this principle is adapted for

spatial modeling of extremes in Wadsworth & Tawn (2012b).

Maxima of moving maxima (M4) processes have been recently extended by

Heffernan et al. (2007) to produce models for asymptotic independence.

5. CONDITIONAL TAIL MODELS

5.1. Conditional tail specification

The models discussed in §4 focused on the joint tails, but under asymptotic

independence it may be restrictive to confine the analysis to such region. Heffer-

nan & Tawn (2004) propose conditional tail models, where the focus is on events

where at least one component of (X, Y ) is extreme, where here we now assume

Gumbel marginal distributions. We thus need to model the distribution of X |Y
when Y is large, and of Y |X when X is large; for concreteness we focus on

the latter. Analogously to the joint tail modeling, a limiting specification is also

needed here: we assume that there exist norming functions a(u) and b(u) > 0,

such that

(5.1) lim
u→∞

pr

{

Y − b(u)

a(u)
≤ e | X = u

}

= G(e) .

To ensure that Y has no mass at ∞, G needs to satisfy

lim
z→∞

G(z) = 1 .

We define the auxiliary variable ε = {Y − b(u)}/a(u), so that specification (5.1)

can be rewritten as limu→∞ pr
(

ε≤ e |X = u
)

= G(e).
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5.2. Heffernan–Tawn model

The starting point for modeling is the following approximation to specifi-

cation (5.1), which holds for a high threshold u:

pr
(

ε ≤ ǫ | X = x
)

≈ G(ǫ) = pr
(

ε ≤ ǫ
)

, x > u .

Hence, we have that ε ∼ G is (almost) independent of X, for u large. We restrict

our attention to a simplified version of the model where (X, Y ) are non-negatively

dependent, so that the norming functions are a(x) = αx and b(x) = xβ , with

α∈ [0, 1], β ∈ (−∞, 1], and x > u. The model can be thus written as a regression

model

Y = a(X) + b(X)ε

= αX + Xβε , X > u ,
(5.2)

where ε has mean µε and standard error σε. Since the distribution of ε is unspec-

ified, the model is semiparametric, with the estimation targets of interest being

α, β and G. The variable ε is analogous to a standardized residual in a classical

regression context, but here µε need not equal zero in general, so the conditional

mean and standard errors of the responses Y are

µY |X=x = αx + µεxβ , σY |X=x = σεxβ .

The interpretation for the α and β are the following: the larger the α the

greater the degree of extremal dependence; the larger the β the greater the condi-

tional variance of Y |X = x. Asymptotic dependence occurs when (α, β) = (1, 0),

whereas asymptotic independence holds whenever α ∈ [0, 1), regardless of the

value of β ∈ (−∞, 1). Inference is often made assuming normality of ε so that

maximum likelihood methods can be used for the parametric part of the model,

and the empirical distribution function is often used to estimate G. Estimation

can thus be based on the k =
∑n

i=1 I(xi > u) conditional exceedances using the

following two-stage method (Keef et al., 2009a):

Step 1. Parametric block

(α̂, ̂β) = arg max
(α,β)

−
n

∑

i=1

{

log(σY |X=xi
) +

1

2

(

yi − µY |X=xi

σY |X=xi

)2
}

I(xi > u) .

Step 2. Nonparametric block

̂G(e) =
1

k

n
∑

i=1

I
(

yi ≤ e x
bβ
i + α̂xi

)

I(xi > u) .
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As an alternative to Step 2 we can also obtain a kernel estimate as follows:

(5.3) ˜G(e) =
1

k

n
∑

i=1

K

(

e − yi − α̂xi

xbβ )

I(xi > u) ,

with K denoting a kernel and h > 0 its bandwidth. This procedure suffers how-

ever from a weakness common to all two-stage approaches: uncertainty is under-

estimated in the second step.

5.3. Notes and comments

Heffernan & Resnick (2007) provide a mathematical examination of a mod-

ified Heffernan–Tawn model and its connections with hidden regular variation.

A version of the model able to cope with missing data can be found in Keef

et al. (2009b). For applications see, for instance, Paulo et al. (2006), Keef et al.

(2009a), and Hilal et al. (2011).

6. REMARKS ON THE ONE-SAMPLE FRAMEWORK

6.1. Asymptotic independence of order statistics

The expression “asymptotic independence”did not appear for the first time

in the works of Geffroy (1958, 1959) and Sibuya (1960), in the context of statistics

of extremes. The concept was motivated by a conjecture that Gumbel made

on the joint limiting distribution of pairs of order statistics, in a one-sample

framework:

“In a previous article [1] the assumption was used that the mth obser-

vation in ascending order (from the bottom) and the mth observation in

descending order (from the top) are independent variates, provided that

the rank m is small compared to the sample size n.” (Gumbel, 1946).

While asymptotic independence, as described in §2, is a two-sample concept,

asymptotic independence as first described by Gumbel is a one-sample concept.

Although the expression “asymptotic independence” is not used in Gumbel’s pa-

per, the expression started to appear immediately thereafter (e.g. Homma, 1951).

Many papers that appeared after Gumbel (1946) focused on the analy-

sis of asymptotic independence of sets of order statistics (Ikeda, 1963; Ikeda &

Matsunawa, 1970; Falk & Kohne, 1986; Falk & Reiss, 1988).
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6.2. Asymptotic independence of sum and maximum

Chow & Teugels (1978) studied the asymptotic joint limiting distribution

of the standardized sum and maximum

(S∗
n, M∗

n) =

(

Sn− nbn

an
,
Mn− dn

cn

)

, Sn =

n
∑

i=1

Xi , Mn = max
{

Xi

}n

i=1
,

for norming constants an, cn > 0 and bn, dn ∈ R. Their results, which only ap-

ply to the case where the Xi are independent and identically distributed, were

later extended to stationary strong mixing sequences by Anderson & Turkman

(1991, 1995), who showed that for such sequences, (Sn, Mn) is asymptotically

independent, under fairly mild conditions; these results also allow us to charac-

terize the joint limiting distribution of (Xn, Mn), with Xn = n−1Sn. Hsing (1995)

extended these results further, and showed that for stationary strong mixing se-

quences, asymptotic normality of Sn is sufficient for the asymptotic independence

of (Sn, Mn).

Assume that E(Xi) = 0 and E(X2
i ) = 1, so that the process of interest has

autocorrelation rn = E(Xi+nXi). Ho & Hsing (1996) obtained the asymptotic

joint limiting distribution of (Sn, Mn) for stationary normal random variables

under the condition

(6.1) lim
n→∞

rn log n = r ∈ [0,∞)

and showed that (Sn, Mn) is asymptotically independent only if r = 0. Related

results can be found in Peng & Nadarajah (2003), who obtain the asymptotic joint

distribution of (Sn, Mn) under a stronger dependence setting. Ho & McCormick

(1999) and McCormick & Qi (2000) showed that (Mn−Xn, Sn) is asymptotically

independent if

(6.2) lim
n→∞

n−1 log n
n

∑

i=1

|ri − rn| = 0 .

James et al. (2007) study multivariate stationary Gaussian sequences, and show,

under fairly mild conditions, that if the componentwise maximum has a limiting

distribution, then (S∗
n, M∗

n) is asymptotically independent.

Hu et al. (2009) show that the point process of exceedances of a standard-

ized Gaussian sequence converges to a Poisson process, and that this process

is asymptotically independent of the partial sums; in addition, they obtain the

asymptotic joint distribution for the extreme order statistics and the partial sums.
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6.3. Notes and comments

Related results on the asymptotic independence of sum and maximum are

also discussed in Tiago de Oliveira (1961). Condition (6.1) was introduced by

Berman (1964) and Mittal & Ylvisaker (1975), who studied the asymptotic dis-

tribution of Mn in the cases of r = 0 and r > 0, respectively. Conditions (6.1),

was introduced by McCormick (1980), who studied the asymptotic distribution

of Mn−Xn.

From the statistical point of view, fewer estimation and inference tools

have been developed for asymptotic independence in the one-sample framework,

in comparison with the two-sample case, and many developments have been made

without any statistical applications being given, and mostly at the probabilistic

level.

7. CONCLUSION

We have reviewed key themes for statistical modeling of asymptotically in-

dependent data, with a focus on bivariate extremes. The inventory of approaches

is large, and there exists in the literature a wealth of different perspectives poten-

tially useful for modeling risk. Statistical and probabilistic issues are discussed,

providing a fresh view on the subject, by combining modern advances with a

historical perspective, and tools of theoretical and applied interest.
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Univ. Paris, 8, 3-52.

Genest, C. & Rivest, L.-P. (2001). On the multivariate probability integral trans-

form, Statist. Probab. Lett., 53, 391–399.

Gumbel, E.J. (1946). On the independence of the extremes in a sample, Ann. Math.

Statist., 17, 78–81.

Gumbel, E.J. (1960). Bivariate exponential distributions, J. Am. Statist. Assoc., 55,

698–707.

Gumbel, E.J. (1961). Bivariate logistic distributions, J. Am. Statist. Assoc., 56, 335–

349.

Gumbel, E.J. & Goldstein, N. (1964). Analysis of empirical bivariate extremal dis-

tributions, J. Am. Statist. Assoc., 59, 794–816.

Haan, L. & Resnick, S.I. (1977). Limit theory for multivariate sample extremes, Prob.

Theory Rel., 40, 317–337.

Heffernan, J.E.; Tawn, J.A. & Zhang, A. (2007). Asymptotically (in)dependent

multivariate maxima of moving maxima processes, Extremes, 10, 57–82.

Heffernan, J.E. & Resnick, S.I. (2007). Limit laws for random vectors with an

extreme component, Ann. Appl. Prob., 17, 537–571.

Heffernan, J.E. (2000). A directory of coefficients of tail dependence, Extremes, 3,

279–290.

Heffernan, J.E. & Tawn, J.A. (2004). A conditional approach for multivariate ex-

treme values (with discussion), J. R. Statist. Soc. B, 66, 497–546.

Hilal, S.; Poon, S.H. & Tawn, J.A. (2011). Hedging the black swan: Conditional

heteroskedasticity and tail dependence in S&P500 and VIX, J. Bank. Financ., 35,

2374–2387.

Ho, H. & Hsing, T. (1996). On the asymptotic joint distribution of the sum and

maximum of stationary normal random variables, J. Appl. Prob., 33, 138–145.

Ho, H. & McCormick, W. (1999). Asymptotic distribution of sum and maximum for

Gaussian processes, J. Appl. Prob., 36, 1031–1044.

Homma, T. (1951). On the asymptotic independence of order statistics, Rep. Stat. Appl.

Res. JUSE, 1, 1–8.

Hsing, T. (1995). A note on the asymptotic independence of the sum and maximum of

strongly mixing stationary random variables, Ann. Prob., 23, 938–947.

Hu, A.; Peng, Z. & Qi, Y. (2009). Joint behavior of point process of exceedances and

partial sum from a Gaussian sequence, Metrika, 70, 279–295.



106 M. de Carvalho and A. Ramos

Hult, H. & Lindskog, F. (2002). Multivariate extremes, aggregation and dependence

in elliptical distributions, Adv. Appl. Prob., 34, 587–608.

Husler, J. & Li, D. (2009). Testing asymptotic independence in bivariate extremes,

J. Statist. Plann. Infer., 139, 990–998.

Ikeda, S. (1963). Asymptotic equivalence of probability distributions with applications

to some problems of asymptotic independence, Ann. Inst. Statist. Math., 15, 87–116.

Ikeda, S. & Matsunawa, T. (1970). On asymptotic independence of order statistics,

Ann. Inst. Statist. Math., 22, 435–449.

James, B.; James, K. & Qi, Y. (2007). Limit distribution of the sum and maximum

from multivariate Gaussian sequences, J. Mult. Anal., 98, 517–532.

Johnson, N. & Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate

Distributions, Wiley, New York.

Keef, C.; Svensson, C. & Tawn, J.A. (2009a). Spatial dependence in extreme river

flows and precipitation for Great Britain, J. Hydrol., 378, 240–252.

Keef, C.; Tawn, J.A. & Svensson, C. (2009b). Spatial risk assessment for extreme

river flows, J. R. Statist. Soc. C, 58, 601–618.

Ledford, A.W. & Tawn, J.A. (1998). Concomitant tail behaviour for extremes, Adv.

Appl. Prob., 30, 197–215.

Ledford, A.W. & Tawn, J.A. (1996). Statistics for near independence in multivariate

extreme values, Biometrika, 83, 169–187.

Ledford, A.W. & Tawn, J.A. (1997). Modelling dependence within joint tail regions,

J. R. Statist. Soc. B, 59, 475–499.

Mardia, K. (1964). Asymptotic independence of bivariate extremes, Calcutta Statist.

Assoc. Bull., 13, 172–178.

Marshall, A. & Olkin, I. (1983). Domains of attraction of multivariate extreme value

distributions, Ann. Prob., 11, 168–177.

Maulik, K. & Resnick, S. (2004). Characterizations and examples of hidden regular

variation, Extremes, 7, 31–67.

McCormick, W. (1980). Weak convergence for the maxima of stationary Gaussian

processes using random normalization, Ann. Prob., 8, 483–497.

McCormick, W. & Qi, Y. (2000). Asymptotic distribution for the sum and maximum

of Gaussian processes, J. Appl. Prob., 8, 958–971.

Mikhailov, V. (1974). Asymptotic independence of vector components of multivariate

extreme order statistics, Theory Prob. Appl., 19, 817.

Mittal, Y. & Ylvisaker, D. (1975). Limit distributions for the maxima of stationary

gaussian processes, Stoch. Proc. Appl., 3, 1–18.

Nelsen, R.B. (2006). An Introduction to Copulas, 2nd ed., Springer, New York.

Paulo, M.J.; Van der Voet, H.; Wood, J.C.; Marion, G.R. & Van Klaveren,

J.D. (2006). Analysis of multivariate extreme intakes of food chemicals, Food Chem.

Toxic., 44, 994–1005.

Peng, L. (1999). Estimation of the coefficient of tail dependence in bivariate extremes,

Statist. Prob. Lett., 43, 399–409.

Peng, Z. & Nadarajah, S. (2003). On the joint limiting distribution of sums and

maxima of stationary normal sequence, Theory Prob. Appl., 47, 706–708.

Poon, S.; Rockinger, M. & Tawn, J.A. (2004). Extreme value dependence in finan-

cial markets: Diagnostics, models, and financial implications, Rev. Financ. Stud., 17,

581–610.

Poon, S.-H.; Rockinger, M. & Tawn, J.A. (2003). Modelling extreme-value depen-

dence in international stock markets, Statist. Sinica, 13, 929–953.

Qin, X.; Smith, R. & Ren, R. (2008). Modelling multivariate extreme dependence.

In “Proc. Joint Statist. Meet. Am. Statist. Assoc.”, pp. 3089–3096.



Bivariate Extreme Statistics, II 107

Ramos, A. & Ledford, A.W. (2005). Regular score tests of independence in multi-

variate extreme values, Extremes, 8, 5–26.

Ramos, A. & Ledford, A.W. (2009). A new class of models for bivariate joint tails,

J. R. Statist. Soc. B, 71, 219–241.

Ramos, A. & Ledford, A.W. (2011). An alternative point process framework for

modelling multivariate extreme values, Comm. Statist. Theory Meth., 40, 2205–2224.

Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes, Springer,

New York.

Resnick, S.I. (2002). Hidden regular variation, second order regular variation and

asymptotic independence, Extremes, 5, 303–336.

Schweizer, B. & Wolff, E.F. (1981). On nonparametric measures of dependence for

random variables, Ann. Statist., 9, 879–885.

Sibuya, M. (1960). Bivariate extreme statistics, I, Ann. Inst. Statist. Math., 11, 195–

210.
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1. INTRODUCTION

Statistical analysis of the extremes of time series is a traditional staple of hy-

drology and insurance, but the last two decades have seen applications broaden to

a huge variety of domains, from finance to atmospheric chemistry to climatology.

The most common approaches for describing the extreme events of stationary data

are the block maximum approach, which models the maxima of a set of contiguous

blocks of observations using the generalized extreme-value (GEV) distribution,

and the peaks-over-threshold approach, in which a Poisson process model is used

for exceedances of a fixed high or low threshold level; often this entails fitting the

generalized Pareto distribution (GPD) to the exceedances. The two approaches

lead to different but closely related descriptions of the extremes, determined by

the marginal distribution of the series and by its extremal dependence structure.

Whereas the marginal features are well-understood from the study of independent

and identically distributed (iid) variates, the rather less well-explored dependence

features are the main focus of this paper. We review some related relevant theory

and methods and attempt to list some aspects that seem to need further study.

Throughout the paper, we discuss maximum or upper extremes, but minima or

lower extremes can be handled by negating the data.

Temporal dependence is common in univariate extremes, which may display

intrinsic dependence, due to autocorrelation, or dependence due to the effects of

other variables, or both, and this demands an appropriate theoretical treatment.

Short-range dependence leading to clusters of extremes often arises: for example,

financial time series usually display volatility clustering, and river flow maxima

often occur together following a major storm. The joint behavior of the obser-

vations within a cluster is determined by the short-range dependence structure

and can be accommodated, though not fully described, within a general theory.

Long-range dependence of extremes seems implausible in most contexts, genetic

or genomic data being a possible exception. Large-scale variation due to trend,

seasonality or regime changes is typically dealt with by appropriate modelling.

Below we first give an account of the effect of dependence on time series

extremes, and discuss associated statistical methods. For completeness we then

outline some relevant Bayesian methods, and then turn to dealing with regression

and non-stationarity. The paper closes with a brief list of some open problems.
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2. SHORT-RANGE DEPENDENCE

2.1. Effect of short-range dependence

The discussion below is based partly on Leadbetter et al. (1983), a standard

reference to the literature on extremes of time series and random processes, and

on Beirlant et al. (2004, Ch. 10), which provides a more recent summary; see also

Coles (2001, Ch. 5). It is usual to study the effect of autocorrelation under a type

of mixing condition that restricts the impact of dependence on extremes.

Definition 2.1. A strictly stationary sequence {Xi}, whose marginal dis-

tribution F has upper support point xF = sup{x : F (x) < 1}, is said to satisfy

D(un) if, for any integers i1 < ··· < ip < j1 < ··· < jq with j1− ip > l,
∣

∣

∣

∣

P
{

Xi1 ≤ un, ..., Xip ≤ un, Xj1 ≤ un, ..., Xjq ≤ un

}

− P
{

Xi1 ≤ un, ..., Xip ≤ un

}

P
{

Xj1 ≤ un, ..., Xjq ≤ un

}

∣

∣

∣

∣

≤ α(n, l) ,

where α(n, ln) → 0 for some sequences ln = o(n) and un → xF as n → ∞.

The D(un) condition implies that rare events that are sufficiently separated

are almost independent. ‘Sufficient’ separation here is relatively short-distance,

since ln/n → 0 as n → ∞. This allows one to establish the following result, which

shows that if the D(un) condition is satisfied, then the GEV limit arises for the

maxima of dependent data, thereby justifying the use of the block maximum

approach for most stationary time series.

Theorem 2.1. Let {Xi} be a stationary sequence for which there exist

sequences of normalizing constants {an > 0} and {bn} and a non-degenerate dis-

tribution H such that Mn = max{X1, ..., Xn} satisfies

P
{

(Mn− bn)/an ≤ z
}

→ H(z) , n → ∞ .

If D(un) holds with un = anz + bn for each z for which H(z) > 0, then H is a

GEV distribution.

Thus the effect of dependence must be felt in the local behavior of extremes,

the commonest measure of which is the extremal index, θ. This lies in the in-

terval [0, 1], though θ > 0 except in pathological cases. If the sequence {Xn} is

independent, then θ = 1, but this is also the case for certain dependent series.

The relation between maxima of a dependent sequence and of a corresponding

independent sequence is summarised in the following theorem:
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Theorem 2.2. Let {Xi} be a stationary process and let {X̃i} be indepen-

dent variables with the same marginal distribution. Set Mn = max{X1, ..., Xn}
and M̃n = max{X̃1, ..., X̃n}. Under suitable regularity conditions,

P
{

(M̃n− bn)/an ≤ z
}

→ H̃(z) , n → ∞ ,

for sequences of normalizing constants {an > 0} and {bn}, where H̃ is a non-

degenerate distribution function, if and only if

P
{

(Mn− bn)/an ≤ z
}

→ H(z) ,

where H(z) = H̃θ(z) for some constant θ ∈ [0, 1].

Since the extremal types theorem implies that the only possible non-degen-

erate limit H̃ is the GEV distribution, with location, scale and shape parameters

µ ∈ R, σ > 0 and ξ ∈ R, say, it follows that H is also GEV, with parameters

µ̃ = µ − σ

ξ

(

1 − θ−ξ
)

, σ̃ = σ θξ , ξ̃ = ξ ,

and the value of θ determines by how much M̃n is stochastically larger than

Mn. As ξ̃ = ξ, the upper tail behaviour of H̃ is qualitatively the same as that

of H, regardless of θ. For example, when H̃ is Gumbel, then ξ̃ = ξ = 0, and the

parameters of the independent case are related to those of the stationary process

by µ̃ = µ + σ log θ and σ̃ = σ: H is also Gumbel with the same scale parameter

but a smaller location parameter.

The extremal index can be defined in various ways, which are equivalent

under mild conditions. One is

(2.1) θ−1 = lim
n→∞

E

{

pn
∑

j=1

I
(

Xi > un | Mpn > un

)

}

,

where pn = o(n) → ∞ and the threshold sequence {un} is chosen to ensure that

n{1 − F (un)} → λ ∈ (0,∞). Thus θ−1 is the limiting mean cluster size based on

a block of pn consecutive observations, as pn increases. Another is

(2.2) θ = lim
n→∞

P
{

max(X2, ..., Xpn)≤ un | X1≥ un

}

,

so θ is the limiting probability that an exceedance over un is the last of a cluster of

such exceedances. Asymptotically, therefore, extremes of the stationary sequence

occur in clusters of mean size 1/θ. Since the suitably rescaled times of exceedances

over un in an independent sequence would in the limit arise as a Poisson process

of rate λ, and since un is the same as for the corresponding independent series,

the mean time between clusters in dependent series must increase by a factor 1/θ,

corresponding to clusters of exceedances arising as a Poisson process of rate λθ.
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Hsing (1987) shows that the structure of these clusters is essentially arbitrary;

see also Hsing et al. (1988).

A consequence of Theorem 2.2 is that if the extremal types theorem is

applicable, then for a suitable choice of parameters we may write

P
(

Mn≤ x
)

≈ H(x) ≈ H̃(x)θ ≈ F (x)nθ ,

and so that Mn is effectively the maximum of nθ equivalent independent observa-

tions. Thus for dependent data and a large probability p, the marginal quantiles

for Xj will be estimated by

F−1(p) ≈ H−1(pnθ) > H−1(pn) ,

so ignoring the clustering would lead to an underestimation of quantiles of F .

When clustering occurs, the notion of return level is more complex. If θ = 1, for

instance, then the ‘100-year-event’ will occur on average ten times in the next

millennium, but has probability 0.368 of not appearing in the next 100 years,

whereas if θ = 1/10, then on average the event also occurs ten times in a mil-

lennium, but all ten events will tend to appear together, leading to a probability

around 0.9 of not seeing any in the next 100 years. Such information may be

highly relevant to structural design.

Robinson & Tawn (2000) discuss how sampling a time series at different

frequencies will affect the values of θ, and derive bounds on their relationships.

The left panel of Figure 1 shows a realization of Xj =
∑6

i=1 i |Zj−i|, where

the Zj are iid with a Cauchy distribution.Clusters manifest themselves as vertical

strings formed by points corresponding to successive large values of Xi, driven

by occasional huge values of Zj . The corresponding plot for an iid sequence

would show no clustering. The middle panel shows realizations of the sequence

Xj = Zj + 2Zj+1, with the Zj iid Cauchy variates. In this case Davis & Resnick

(1985) show that the average cluster size is 3/2. The right panel shows the Cauchy

sequence Xj = ρXj−1 + (1 − |ρ|)Zj where ρ ∈ (0, 1) and the Zj are iid standard

Cauchy variates, for ρ = 0.8; Chernick et al. (1991) show that the extremal index

is 1 − ρ, so in this case the mean cluster size is 5.

Examples such as these are instructive, but such models are not widely used

in applications. It follows from Sibuya (1960) that linear Gaussian autoregressive-

moving average models have θ = 1, corresponding to asymptotically independent

extremes, despite the clumping that may appear at lower levels, and this raises the

question of how to model the extremes of such series. Davis & Mikosch (2008,

2009a) show that while both GARCH and stochastic volatility models display

volatility clustering, only the former shows clustering of extremes, thus providing

a means to distinguish these classes of financial time series.
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Figure 1: Clustering in realizations of some theoretical processes.

Left panel: Xi =
∑

6

i=1
i |Zj−i| where the Zj are iid stan-

dard Cauchy. Middle panel: Xi = Zj + 2Zj+1 with the

Zj iid Cauchy; the data are transformed to sign(X)
√

|X|.
Right panel: Cauchy AR(1) sequence Xj = ρXj−1 + Zj

with ρ = 0.8 and Zj iid standard Cauchy.

Further conditions have been introduced to control local dependence of

extremes, the best known of which is the following.

Definition 2.2. A strictly stationary sequence {Xn} satisfies D′(un) if

lim sup
n→∞

n

[n/k]
∑

j=2

P
{

X1 > un, Xj > un

}

→ 0 , k = o(n) , n → ∞ .

for some threshold sequence {un} such that n{1 − F (un)} → λ ∈ (0,∞).

This condition may be harder to satisfy than one might expect; Chernick

(1981) gives an example of an autoregressive process with uniform margins that

satisfies D(un) but does not satisfy D′(un).

It can be shown that a stationary process satisfying both D(un) and D′(un)

has extremal index θ = 1. Similar conditions have been introduced to ensure

convergence of the point process of exceedances (Beirlant et al., 2004, Ch. 10).

2.2. Statistics of cluster properties

Suppose that a sequence {Xi} satisfies a suitable mixing condition, such as

that in Definition 2.1, and call π the probability mass function of the size of a

cluster of extreme values of mean size θ−1. Suppose that we wish to estimate θ

based on apparently stationary time series data of length n. The blocks esti-
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mator of θ is computed using the empirical counterpart of (2.1), by selecting

a value r, dividing the sample into [n/r] disjoint contiguous blocks of length r,

and then counting exceedances over a high threshold u in those blocks containing

exceedances. The proportion of blocks with k exceedances estimates the proba-

bility π(k) and the average number of exceedances per block having at least one

exceedance estimates θ−1. Likewise the runs estimator is the empirical counter-

part of (2.2). Computations in Smith & Weissman (1994) suggest that the runs

estimator has lower bias, and therefore is the preferable of the two. Ancona-

Navarrete & Tawn (2000) compare the then-known estimators of the extremal

index, using both nonparametric and parametric approaches.

In subsequent work Ferro & Segers (2003) proposed the intervals estimator,

based on a limiting characterization of the rescaled inter-exceedance intervals:

with probability θ an arbitrary exceedance is the last of a cluster, and then

the time to the next exceedance has an exponential distribution with mean 1/θ;

otherwise the next exceedance belongs to the same cluster, and occurs after a

(rescaled) time 0. Thus the inter-exceedance distribution is (1 − θ)δ0 + θ exp(θ),

where δ0 and exp(θ) represent a delta function with unit mass at 0 and the

exponential distribution with mean 1/θ. The parameter θ can be estimated from

the marginal inter-exceedance distribution in a variety of ways, of which the best

seem to be due to Süveges (2007). The intervals estimator can be made automatic

once the threshold has been chosen, and it also provides an automatic approach

to declustering and thus to the estimation of cluster characteristics, including

the cluster size distribution π. It can also be used to diagnose inappropriate

thresholds (Süveges and Davison, 2010).

Laurini & Tawn (2003) suggest a two-thresholds approach, according to

which a cluster starts with an exceedance of a higher threshold and ends either

when the process drops below a lower threshold before another such exceedance,

or after a sufficiently long period below the higher threshold. Although theoretical

investigation of its properties is difficult, they establish numerically that their

estimator is more stable than most of those above.

One reason to attempt declustering is that, as mentioned above, under

the limiting model for threshold exceedances, the marginal distribution of an

exceedance is the same as that of a cluster maximum; this is a consequence of

length-biased sampling. Thus reliable estimates and uncertainty measures of the

generalized Pareto distribution of exceedances may be obtained from the (essen-

tially independent) cluster maxima; this is the basis of the peaks over threshold

approach to modelling extremes. Its application requires reliable identification

of cluster maxima, however, and Fawcett & Walshaw (2007, 2012) establish that

the difficulty of this can lead to severe bias. This bias can be reduced by using all

exceedances to estimate the GPD, though then the standard errors must be mod-

ified to allow for the dependence. Eastoe & Tawn (2012) suggest an alternative

sub-asymptotic model for cluster maxima, with diagnostics of its appropriateness.
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The threshold approach allows the modelling of cluster properties, for ex-

ample using first-order Markov chains (Smith et al., 1997; Bortot & Coles, 2003),

which are estimated using a likelihood in which the extremal model is presumed

to fit only those observations exceeding the threshold, with the others treated as

censored. Standard bivariate extremal models can be used to generate suitable

Markov chains, and so can near-independence models (Ledford & Tawn, 1997;

Bortot & Tawn, 1998; Ramos & Ledford, 2009; de Carvalho & Ramos, 2012).

Further papers on modelling dependence in clusters include Coles et al. (1994) and

Fawcett & Walshaw (2006a,b). The use of self-exciting process models for clus-

tering of extreme events in financial time series is described by Chavez-Demoulin

et al. (2005) and Embrechts et al. (2011). Nonparametric estimation of cluster

properties is discussed by Segers (2003).

2.3. Extremogram

The correlogram plays a central role in the exploratory analysis of time

series, and attempts have been made to extend it to extremes, the goal being to

try and estimate the limiting probabilities

ρh = lim
u→∞

P
(

Xh > u | X0 > u
)

,

or, if ρh = 0, to attempt to distinguish different rates at which the convergence

takes place. Under the assumptions that the marginal distribution of {Xi} is

unit Fréchet and that P(Xh > u | X0 > u) ∼ Lh(u)u1−1/η for some slowly-varying

function Lh and some ηh ∈ (0, 1], Ledford & Tawn (2003) suggest plotting esti-

mates of ρh and Λh = 2 ηh −1 as functions of h. If ηh = 1 and Lh(u) → ρh > 0 as

u → ∞, then X0 and Xh are asymptotically dependent, so the first of these plots,

called an extremogram by Davis & Mikosch (2009b), provides an estimate of the

extremal dependence at lag h. By contrast, if ηh < 1, then the limiting probabil-

ity will equal zero, and the values of Λh better summarize the level of dependence

among the asymptotically-independent extremes: Λh > 0 corresponds to positive

extremal association, Λh = 0 to so-called near-independence, and Λh < 0 to neg-

ative extremal association. Natural estimators of ρh may be defined in terms of

ratios of indicator functions for finite u, and their significance assessed by per-

muting the original series (Davis & Mikosch, 2009b), but the joint probability

model corresponding to the equivalence above is needed to estimate Λh using

maximum likelihood (Ledford & Tawn, 2003).

Figure 2, which shows the daily returns of Google from 19 August 2004 to

10 February 2012, displays the volatility clustering that is often seen in finan-

cial time series. This is supported by the upper panels of Figure 3, which show

the correlograms for the returns themselves and for their absolute values; the

correlogram for the values themselves shows little structure, while that of the ab-
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solute values shows rather long-term volatility. The lower panels show estimates

of ρh, with u taken at the 99% quantile of the absolute values of the log returns.

Figure 2: Google daily returns, from 19 August 2004 to 10 February 2012.

There is again little structure in the plot for the returns themselves, but that for

their absolute values shows positive dependence of extremes over around 5 days.

The computations of Davis & Mikosch (2008, 2009a) imply that a GARCH model

would be preferred here, rather than a stochastic volatility model.

Figure 3: Correlogram (upper panels) and extremogram (lower panels) of the

Google returns (left panels) and absolute returns (right panels),

with 95% confidence bands for independence.
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In the asymptotically dependent case (Davis & Mikosch, 2009b) extend the

idea to broader sets of events A and B bounded away from zero, defining

ρA,B(h) = lim
u→∞

P
(

Xk
h ∈ uB | Xk

0 ∈ uA
)

, h = 0, 1, 2, ... ,

if it exists, where Xk
h denotes (Xh, ..., Xh+k) for some finite k, which yields ρh

when A=B=(1,∞) and k = 0, but encompasses also events such as A= {X0 > u},
B = {X1 > u} ∪ ··· ∪ {Xk > u}, corresponding to at least one large positive value

in the k time steps following a large positive value. The idea can be extended to

multiple time series (Huser & Davison, 2012).

2.4. Hill’s estimator

Let {Xi} denote a sequence of random variables with common marginal

distribution F , where F̄ = 1 − F is regularly varying at ∞, i.e., there exists an

α > 0 such that

F̄ (tx)/F̄ (x) → t−α , t > 0 , x → ∞ ,

or equivalently F̄ (x) = x−αL(x), x > 0, for some slowly varying function L(x).

Given a sequence X1, ..., Xn with j th-largest value X(j), the Hill estimator

Hn = k−1
k

∑

j=1

(

log X(j) − log X(k+1)

)

is widely used to estimate α−1. This estimator and its variants are widely used for

independent heavy-tailed data, and it has been intensively studied. Beirlant et al.

(2012) give a recent overview of its properties, and Beirlant et al. (2004, §10.6)

discuss then-known results for dependent data; see also Drees (2003). When

covariates are recorded simultaneously with the variable of interest, estimators of

the tail index that depend on the covariates have been suggested by Beirlant &

Goegebeur (2003), Wang & Tsai (2009) and Gardes et al. (2011).

3. BAYESIAN MODELLING

The use of Bayesian methods in statistics has grown vastly over the past

two decades, owing to the development of computational tools for fitting complex

models, and although Coles & Powell (1996) could write that ‘there are only very

few papers linking the themes of extreme value modelling and Bayesian inference’,

the situation has since greatly changed. From a practical viewpoint Bayesian

methods have several advantages: they allow the insertion of prior information
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leading to coherent inference; they may correspond to penalized estimators that

result in stable inferences; and they provide a computationally straightforward

way to ‘borrow strength’ across many related datasets through hierarchical mod-

elling. As in other applications, the main difficulties are the logical status and

appropriateness of the prior, and the computational burden, which can lead to

too much effort being placed on programming and related matters, and too little

on sensitivity analysis and other scientifically relevant aspects. In the study of

sample extremes, appropriate prior information can be particularly valuable, be-

cause of the sparsity of rare events, but this implies that particular care is needed

when choosing priors and assessing their effects. Moreover heavy tails may lead

to problems with convergence of empirical estimates of posterior predictive dis-

tributions; similar problems arise with the bootstrap (Wood, 2000).

In the simplest setting of estimation based on independent annual maxima,

it is straightforward to compute posterior distributions for the GEV parameters

and quantities such as return levels, for example using the R package evdbayes.

Very often the prior is chosen in a semi-automatic way, for example using a

trivariate normal prior for the location, log-scale and shape parameters of the

GEV distribution, but Coles & Tawn (1996) suggest that it will be easier for

an expert to formulate prior beliefs in terms of its quantiles. They propose

using independent gamma priors for differences of three quantiles, though clearly

there are alternatives, such as placing beta priors on probabilities of exceeding

certain levels. More general discussion of prior elicitation based on quantiles is

given in Dey & Liu (2007). Quantiles may however be more strongly dependent

a priori than are location and scale parameters, so that prior information on

their dependence is needed, and this may be hard to elicit reliably. Ribereau

et al. (2011) discuss the implications for estimation of parameter orthogonality

for the GPD. As is often the case, weak prior information provides inferences that

are essentially indistinguishable from those based on likelihood alone, whereas an

informative prior may strongly influence extrapolation beyond the data, greatly

reducing the associated uncertainty.

A common problem when fitting the GEV or GPD to small samples is

absurd estimates of the shape parameter, owing to its large uncertainty. One

way to deal with this is through robust estimation (Dupuis & Field, 1998; Dupuis

& Morgenthaler, 2002; Dupuis, 2005), but another is through a penalty function

corresponding to a prior. Martins & Stedinger (2000) suggest the use of maximum

likelihood estimation modulated by a beta prior ensuring that |ξ̂| < 1/2, and

this does indeed produce improved estimators for the hydrological studies they

consider, essentially by trading a small potential bias for a large variance reduction.

In more complex settings it is common to allow the parameters of extremal

models to vary with space, time or some covariate. Examples are Coles & Casson

(1998), Casson & Coles (1999), Fawcett & Walshaw (2006a), Cooley et al. (2006),

Cooley et al. (2007) and Sang & Gelfand (2009). In such models the location and
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log-scale parameters are commonly assumed to be sampled from an underlying

Gaussian process, whose spatial structure allows both smooth local variation in

these parameters and borrowing of strength across locations, leading to better

estimates than would be provided using individual station data. Depending on

the setting, it may be useful to constrain the parameters: very often the difficulty

of estimating the shape parameter means that a common value is used, and

sometimes the (scale parameter)/(location parameter) ratio is close to constant;

if so, the complexity of the prior can be reduced; see §4.3. The simplest such

models treat the data as independent, conditional on these processes, but more

sophisticated models using copulas to allow spatial dependence beyond this have

been suggested by Sang & Gelfand (2010) and Fuentes et al. (2012). Cooley et al.

(2012) and Davison et al. (2012) give more extensive reviews of spatial extremes,

including Bayesian modelling.

4. NON-STATIONARITY

4.1. Generalities

Stationary time series rarely arise in applications, where seasonality, trend,

regime changes and dependence on external factors are the rule rather than the

exception, and this must be taken into account when modelling extremes. There

are broadly two strategies: first, to use the full dataset to detect and estimate non-

stationarities, and then to apply methods for stationary extreme-value modelling

to the resulting residuals; and, second, to fit an non-stationary extremal model

to the original data. An example of the first strategy is McNeil & Frey (2000),

who use the GPD to estimate conditional value-at-risk and expected shortfall in

financial data after first removing volatility clustering by fitting a GARCH model.

An example of the second strategy is Maraun et al. (2009), who fit the GEV with

seasonally-varying parameters to monthly maxima of many parallel time series, in

a study of seasonal variation in heavy precipitation across the United Kingdom.

A benefit of the first strategy, i.e., using the full dataset, is that any non-

stationarities will be estimated much more precisely than would be the case based

on the extremal data alone. If the extremes of the residuals of this fit are hetero-

geneous, however, then it will be necessary to model this directly. With daily

temperature data, for example, residuals for summer maxima may have shorter

tails than do those for winter maxima, so even if seasonal variation in the loca-

tion and scale of the bulk of the data has been removed, non-stationarity persists

in the extremes. Thus two models for non-stationarity are needed, one for the

bulk of the data, and another for the extremes, and as in other two-stage fit-

ting procedures, it may be awkward to combine their respective uncertainties.
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Thus it is critical that the model for the bulk also removes non-stationarities in

the extremes, so far as possible. One approach to this is described by Eastoe &

Tawn (2009), who apply the Box–Cox transformation

Y
λ(xi)
i − 1

λ(xi)
= µ(xi) + σ(xi)Zi

to the original time series {Yi}, where the power transformation λ(xi) and the lo-

cation and log scale parameters µ(xi) and logσ(xi) depend linearly on covariates xi,

which themselves vary with time. The residuals, which are estimates of the se-

ries {Zi}, are modeled using a fixed threshold and a possibly time-varying GPD

distribution. Eastoe & Tawn (2009) show that this approach can be appreciably

more efficient than direct modelling of the extremes, even though the latter is

typically simpler, at least when a fixed threshold is applied.

The main benefit of the alternative approach is its simplicity: a fixed thresh-

old is applied, and its exceedance probability and the GPD parameters are mod-

eled directly, without reference to the bulk of the data. A fixed threshold will

often have a simple interpretation in terms of the underlying problem, making

this strategy attractive despite the loss of statistical efficiency. However a time-

varying threshold is preferable for more precise estimation of regression effects.

It can be estimated using for example quantile regression (Northrop & Jonathan,

2011), trigonometric functions (Coles et al., 1994) or by other approaches (e.g., de

Carvalho et al., 2012), though the difficulty of combining uncertainties from two

separate models, one for the threshold and another for the extremes, again arises.

An alternative that avoids modelling the threshold (Frossard, 2010; Chavez et al.,

2011; Frossard et al., 2012) is to divide the data into homogeneous blocks, and

then to base estimation on the largest r observations in each block, with param-

eters dependent on time and other covariates. In effect this takes the rth largest

observation in the block as the threshold, but includes its contribution to the

likelihood, so there is just one model to be estimated; this will give results similar

to the ideas in Smith (1989).

Using either strategy it is best to use the GEV parametrization of the

extremal model, because the GPD parameters are not threshold-invariant.

If the scale and shape parameters of the fitted GPD at threshold u are σu(x)

and ξ(x), where x is a covariate, then at a higher threshold v they become

σv(x) = σu(x)(v − u) + ξ(x) and ξ(x), so as the threshold changes the scale pa-

rameter varies with covariates in an unnatural way, unless ξ(x) ≈ 0. Typically the

covariates will enter the model linearly for the location, log scale and shape param-

eters, though other forms of dependence may be suggested in particular contexts.

The wide variety of possible ways in which covariates might enter the model

makes likelihood estimation attractive: not only is it efficient when the model is

well-chosen, but it can deal with censoring, rounding and related issues in a sim-

ple and unified way. Typically the clustering of rare events will be difficult to



Modelling Time Series Extremes 123

model parametrically, however, and if the main goal is to model non-stationarity,

it will be simpler to use an independence likelihood, which treats extreme obser-

vations as if they were independent, but then inflates standard errors to allow

for unmodelled dependence (Chandler & Bate, 2007). As the limiting marginal

distributions of cluster maxima and exceedances are the same, no bias should be

incurred, provided the marginal model is correctly specified. The block bootstrap

can also be used to assess uncertainty; it is typically applied to residuals, as in

Chavez-Demoulin & Davison (2005).

4.2. Semi-parametric models

Non- or semi-parametric modelling, in which more flexible forms of depen-

dence on covariates are used to supplement parametric forms, may be useful,

particularly for exploratory analysis or for model-checking. There are two main

approaches to this, based on local likelihood estimation and based on penalized re-

gression, and we now briefly describe these. For purposes of exposition we suppose

that the location parameter of the GEV distribution is to be modeled as a linear

function of covariates x and as an unspecified function of a further covariate t,

so that we take µ(x, t) = xTβ + g(t), where g is a smooth nonlinear function to

be estimated from the data. In principle it is straightforward to include several

smooth terms depending on different covariates, or to include smooth formu-

lations for the shape and scale parameters, though in practice limitations may

be imposed by computational considerations or parametrization issues (Chavez-

Demoulin & Davison, 2005). Hastie & Tibshirani (1990), Green & Silverman

(1994), Fan & Gijbels (1996), Denison et al. (2002), Ruppert et al. (2003) and

Wood (2006) give some entry points to the vast literature on nonparametric re-

gression.

Local likelihood estimation involves polynomial expansion of g(t) around

a target value t0 at which estimation is required, for example writing g(t)≈
g(t0)+ (t− t0) g′(t0), and then estimating g(t0) by maximizing a locally-weighted

likelihood, in which observations with t distant from t0 are given less weight than

those for which t − t0 is small. The procedure is then repeated for a range of

values of t0, and the corresponding estimates of g(t0) are interpolated to form an

estimate of g(t). The relative weights given to the observations are determined

by a bandwidth, a key parameter that can be varied to see the effects of different

degrees of smoothing or chosen automatically, for example by cross-validation.

The degree of smoothness is often expressed in terms of an equivalent degrees of

freedom, which is a decreasing function of the bandwidth. The use of an odd-

order polynomial reduces boundary bias, and thus typically a linear polynomial

expansion is used. Davison & Ramesh (2000), Hall & Tajvidi (2000), Ramesh

& Davison (2002), Butler et al. (2007) and Süveges (2007) have applied this in
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different settings, including spatial extremal analysis for oceanography and time-

varying estimation of the extremal index.

An alternative and in many ways more satisfactory approach is to replace

the function g(t) with a linear combination of suitable basis functions, α0 +α1t+

B(t) γ, where the columns of the matrix B(t) are typically chosen to span a space

orthogonal to that generated by the term α0+α1t. Spline or other basis functions

with bounded support are generally used in order to limit the impact of outliers

and non-local effects, to which polynomial fits are vulnerable. Spline modelling is

underpinned by an elegant theory with links to optimal prediction of stochastic

processes, has generally good computational properties, and suitable software

is widely available. The number of basis functions may be fixed in advance,

or may increase with sample size; in the latter case the penalized likelihood

ℓ(β, γ, σ, ξ) − λγTKγ/2 is maximized, where the penalty depends on a positive

definite matrix K that depends on the basis functions. The weight given to the

penalty is determined by a positive quantity λ, with larger λ giving a strong

penalization and thus a smoother fit, and conversely. Thus λ plays the same role

as the bandwidth in local likelihood estimation, though an elegant link to random

effects models may be used to choose λ by maximizing a marginal likelihood

(Padoan & Wand, 2008). This approach fits readily into a general regression

framework and has been thoroughly investigated (Ruppert et al., 2003); it can

also be easily applied using Bayesian computational tools (Laurini & Pauli, 2009).

The penalized likelihood approach has been applied to various extremal models by

Pauli & Coles (2001) and Chavez-Demoulin & Davison (2005). Yee & Stephenson

(2007) place it in a general computational setting.

4.3. Examples

Figure 4 shows the superposed monthly maximum river flow at the station

Muota-Ingenbohl, Switzerland, for the years 1923–2008. There is an exceptionally

high value in August 2005, though it does not appear to be an outlier. The non-

stationarity of the monthly maxima can be fitted by a nonparametric GEV with

time dependent location parameter µ = µ(m, t) where m is the month and t the

year. We suppose that the scale parameter satisfies σ(m) = c µ(m, t), for some

c > 0, and adapt the nonparametric smoothing approach of Chavez-Demoulin &

Davison (2005) for peaks over thresholds to our GEVmodel, which can be written

as

(4.1) Zm,t ∼ GEV
(

µ
(

{m, dfm}; {t, dft}
)

, cµ
(

{m, dfm}; {t, dft}
)

, ξ
)

,

where dfm and dft stand for “degrees of freedom” and control the smoothness

of the fitted curves for months and years. Technical details for the peaks over

threshold setting, including selection of the degrees of freedom and confidence

interval calculation, are given in Chavez-Demoulin & Davison (2005).
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Figure 4: Monthly maximum river flow (m3s−1), jittered,

at Muota-Ingenbohl, Switzerland, for the years 1923–2008.

The estimated curves

µ̂
(

{m, d̂fm}; {t, d̂ft}
)

, σ̂
(

{m, d̂fm}; {t, d̂ft}
)

and estimated parameter ξ̂ are shown in Figure 5. The constant c is estimated to

be 0.64, with 95% confidence interval [0.61, 0.66], so σ̂(m) has the same shape as
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Figure 5: Muota-Ingenbohl data. The upper left panel shows the estimated location

parameter µ̂(m, t) over month for the year t = 1924 (black) and t = 2005

(red, upper), with 95% pointwise bootstrap confidence intervals (dots).

The upper middle panel shows the estimated scale parameter σ̂ = ĉ µ̂(m, t)
for the year t = 1924 (black) and t = 2005 (red, upper). The upper right

panel shows the estimated shape parameter ξ̂. The lower left panel shows

the estimated location parameter µ̂(m, t) over year for July, m = 7, (black)

and January, m = 1, (green, lower). The lower middle panel shows the

estimated scale parameter σ̂ = ĉ µ̂(m, t) over year for July, m = 7, (black)

and January, m = 1, (green, lower).
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the location parameter curve. The model selected using the AIC has d̂fm = 2

for the variable month and a linear trend (d̂ft = 1) for the year, with slope

0.22m3 s−1/year, giving an annual increase of both location and scale parameters.

Figure 6 shows the estimated 100-year return level curve against month

for t = 2005 and the estimated 100-year return level curve against year for July.

The points in the left panel are the largest monthly values for 2005; they show

how unusual the August value that year was. Those in the right panel are July

observations from 1923 to 2008, which have been used to estimate the GEV

parameters. The 100-year return level slope evaluated in July has an annual

increase of 0.53 m3 s−1. The upper confidence interval bound was exceeded once,

so the estimation appears realistic. The confidence limits are rather narrow, but

there are 12 times more observations than appear in the panel.
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Figure 6: Muota-Ingenbohl data. Left panel: estimated 100-year return level curve

against month for t = 2005. The dotted lines are pointwise 95% con-

fidence intervals. The points are the largest monthly values of 2005.

Right panel: Estimated 100-year return level curve against year for July,

m = 7. The points are 30 observations during July from 1923 to 2008.

As a second example, we take data from the US National Oceanic and

Atmospheric Administration (http://www.ngdc.noaa.gov/) on Japanese tsunamis

from 1400–2011. The upper panel of Figure 7 shows the log maximum water

height above sea level in meters (not to be confused with the elevation at the

limit of inundation, called a run-up height) during a tsunami due to a preceding

earthquake. The maximum water height of 85.4m appeared in 1771, due to

a earthquake of magnitude 7.4 in Ryukyu Islands that led to around 13,500

deaths. The most recent events are the 54m water height in Sea of Japan that

succeeded an earthquake of magnitude 7.7 in 1993, leading to 208 deaths, and

the 2011 event in Honshu, with a preceding earthquake of magnitude 9, which led

to 15,550 deaths. With such data there are obvious concerns about changes in
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measurement and estimation of the earlier heights, and the increasing frequency

of events is probably also due to improved record-keeping. With this in mind

we focus on the amplitudes, using a GPD model for the water heights above

a threshold of 0.6m. The lower panel of Figure 7 shows the logarithm of the

maximum water height above the sea level in meters against the logarithm of

the earthquake magnitude preceding the tsunami for such events. We model the

maximum tsunami water height as a function of the magnitude x of the preceding

earthquake, plus a function of year t, giving

β0 + β1m(x) + g(t) ≈ β0 + β1a1(x) + ··· + βq aq(x) + γ1b1(t) + ··· + γp bp(t) ,

in terms of suitable basis functions.
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Figure 7: Tsunami data: The upper panel shows the logarithm of maximum water

height above the sea level in meters for each tsunami from 1403 to 2011,

the horizontal red line is the threshold 0.6m in logarithm. The lower panel

shows the logarithm of the maximum water height for each tsunami above

the sea level in meters above a threshold of 0.6m against the logarithm of

the earthquake magnitude preceding the tsunami.

As pointed out by Yee & Stephenson (2007), nonparametric estimation

of both scale and the shape parameters may be problematic in small datasets,

owing to the difficulty in estimating the shape, and the non-orthogonality of these

parameters. In this case the model selected among the various parametric and
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nonparametric models, fitted using the approach of Chavez-Demoulin & Davison

(2005), gives ξ̂ = 0.47 (0.12), linear dependence on earthquake magnitude and

three degrees of freedom for the dependence on time; see the lower panels of

Figure 8. This figure also shows the corresponding estimates for the GPD vector

generalized additive model of Yee & Stephenson (2007) and the generalized linear

mixed model representation for the extreme value spline model of Laurini & Pauli

(2009). There is reassuringly little to choose between the fits. The approach of

Laurini & Pauli (2009) is slowest but uncertainty on the equivalent degrees of

freedom is accounted for, and this leads to slightly wider confidence intervals,

whereas the Yee & Stephenson (2007) approach is overall somewhat less flexible

in terms of the modelling possibilities.
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Figure 8: Tsunami data. Nonparametric estimation of the logarithm of the GPD

scale parameter using methods of Yee & Stephenson (2007) (upper panels),

Laurini & Pauli (2009) (middle panels) and Chavez-Demoulin & Davison

(2005) (lower panels). The left panels show the estimated dependence on

year and the right panels show the estimated dependence on earthquake

magnitude, with 95% pointwise confidence intervals.
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5. DISCUSSION

Although impressive progress has been made in modelling time series ex-

tremes over the past two decades, certain topics still require further investigation.

One, an overarching theme in extreme-value statistics, is the relevance of asymp-

totic theory to applications. At the sub-asymptotic levels that can be observed in

practice the limiting results provide approximations that may be poor in certain

cases, and it is necessary to expand the theory. The resulting pre-asymptotic

models often prove difficult to fit, however, and so care is needed when providing

tools that are useful for practice. For example, it would be valuable to have avail-

able some broad classes of models for clusters, beyond first-order Markov chains

and able to encompass both dependent and near-independent extremes, perhaps

based on developments of Heffernan et al. (2007), Fougères et al. (2009) or Bortot

& Gaetan (2011). One interesting class of models for multivariate series is the

so-called multivariate maxima of moving maxima process (Zhang & Smith, 2010),

and it would be valuable to further develop suitable inference procedures, for ex-

ample along the lines suggested by Süveges and Davison (2012), and more broadly

to assess whether such models are broadly adequate for use in applications;

there is a close connection to extremal modelling with mixtures. A related topic

of interest is further investigation of extremal properties of standard time se-

ries models, including the effect of discretisation of continuous-time processes.

A potentially important advance would be the development of full likelihood in-

ference for time series extremes, perhaps based on an EM algorithm or suitable

Kalman filter. Absent this, it is tempting to use the independence likelihood

(Chandler & Bate, 2007) or related approaches for estimating marginal proper-

ties of extremal time series, but inference for this could be further developed.

Analogues of the extremal index beyond time series are well-studied for

asymptotically dependent data, but deserve fuller attention for near-independence

models.

Various classical topics also merit further study. One is the choice of thresh-

old for peaks over threshold analysis of dependent data, based on many related

series that display seasonality; the methods reviewed by Scarrott & MacDonald

(2012) are relevant. Others are extremal index estimation at sub-asymptotic

levels, particularly in many series and detection of regime change — often con-

founded with long-range dependence in classical time series — in extremes.
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Hsing, T.; Hüsler, J. & Leadbetter, M.R. (1988). On the exceedance point process

for a stationary sequence, Prob. Th. Rel. Fields, 78, 97–112.

Huser, R. & Davison, A.C. (2012). Space-time modelling of extreme events, submit-

ted.

Laurini, F. & Pauli, F. (2009). Smoothing sample extremes: The mixed model ap-

proach, Comp. Statist. Data Anal., 53, 3842–3854.

Laurini, F. & Tawn, J.A. (2003). New estimators for the extremal index and other

cluster characteristics, Extremes, 6, 189–211.

Leadbetter, M.R.; Lindgren, G. & Rootzén, H. (1983). Extremes and Related

Properties of Random Sequences and Processes, Springer, New York.

Ledford, A.W. & Tawn, J.A. (1997). Modelling dependence within joint tail regions,

J. R. Statist. Soc. B, 59, 475–499.

Ledford, A.W. & Tawn, J.A. (2003). Diagnostics for dependence within time series

extremes, J. R. Statist. Soc. B, 65, 521–543.

Maraun, D.; Rust, H.W. & Osborn, T.J. (2009). The annual cycle of heavy pre-

cipitation across the United Kingdom: a model based on extreme value statistics,

Int. J. Clim., 29, 1731–1744.

Martins, E. & Stedinger, J. (2000). Generalized maximum-likelihood generalized

extreme-value quantile estimators for hydrologic data, Water Res. Research, 36,

737–744.

McNeil, A.J. & Frey, R. (2000). Estimation of tail-related risk measures for hetero-

scedastic financial time series: an extreme value approach, J. Empir. Finance, 7,

271–300.

Northrop, P.J. & Jonathan, P. (2011). Threshold modelling of spatially-dependent

non-stationary extremes with application to hurricane-induced wave heights (with dis-

cussion), Environmetrics, 22, 799–809.

Padoan, S.A. & Wand, M.P. (2008). Mixed model-based additive models for sample

extremes, Statist. Prob. Lett., 78, 2850–2858.



Modelling Time Series Extremes 133

Pauli, F. & Coles, S.G. (2001). Penalized likelihood inference in extreme value anal-

yses, J. Appl. Statist., 28, 547–560.

Ramesh, N.I. & Davison, A.C. (2002). Local models for exploratory analysis of hy-

drological extremes, J. Hydrology, 256/1–2, 106–119.

Ramos, A. & Ledford, A.W. (2009). A new class of models for bivariate joint

extremes, J. R. Statist. Soc. B, 71, 219–241.

Ribereau, P.; Naveau, P. & Guillou, A. (2011). A note of caution when interpreting

parameters of the distribution of excesses, Adv. Water Res., 34, 1215–1221.

Robinson, M.E. & Tawn, J.A. (2000). Extremal analysis of processes sampled at

different frequencies, J. R. Statist. Soc. B, 62, 117–135.

Ruppert, D.; Wand, M.P. & Carroll, R.J. (2003). Semiparametric Regression,

Cambridge University Press, Cambridge.

Sang, H. & Gelfand, A.E. (2009). Hierarchical modeling for extreme values observed

over space and time, Environ. Ecol. Statist., 16, 407–426.

Sang, H. & Gelfand, A.E. (2010). Continuous spatial process models for spatial

extreme values, J. Agric. Biol. Environ. Statist., 15, 49–65.

Scarrott, C. & MacDonald, A. (2012). A review of extreme value threshold esti-

mation and uncertainty quantification, Revstat, 10, 33–60.

Segers, J.J. (2003). Functionals of clusters of extremes, Adv. Appl. Prob., 35, 1028–

1045.

Sibuya, M. (1960). Bivariate extreme statistics, I, Ann. Inst. Statist. Math., 11,

195–210.

Smith, R.L. (1989). Extreme value analysis of environmental time series: An example

based on ozone data (with Discussion), Statist. Science, 4, 367–393.

Smith, R.L.; Tawn, J.A. & Coles, S.G. (1997). Markov chain models for threshold

exceedances, Biometrika, 84, 249–268.

Smith,R.L. & Weissman, I. (1994). Estimating the extremal index, J.R. Statist. Soc. B,

56, 515–528.
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1. INTRODUCTION

Assessing the behavior of rare events such as the risk of flooding, potential

crop damage from drought, or health effects of potential extreme air pollution

events presents unique statistical challenges, and requires one to characterize the

tail of the distribution of the quantity of interest. Since many quantities such as

rainfall, temperature, or air pollution are measured at specifically-located mon-

itors, spatial modeling is necessary. Applications such as these have motivated

the development of methods and tools for analyzing and characterizing spatial

extreme data. In this paper, we survey the current practice of spatial extremes.

Recently, Davison et al. (2012) review spatial extremes methods via a case study

of extreme precipitation in Switzerland. This survey can be viewed as comple-

mentary to Davison et al. (2012), and we aim to provide an entry point for the

study of spatial extremes.

An analysis of spatial extreme data lies at the intersection of two branches

of statistics: extreme value analysis and geostatistics. Below, we give brief in-

troductions to each field. There are a number of books in each field which give

comprehensive overviews. For extremes, references include de Haan & Ferreira

(2006), Beirlant et al. (2004) and Coles (2001); geostatistics references include

Schabenberger & Gotway (2005), Banerjee et al. (2004) and Cressie (1993). For

many studies, spatial effects are often separated into large scale (i.e., regional)

effects and small scale (i.e., local) effects.

In terms of a statistical model, regional spatial effects are often captured

by characterizing how the marginal distribution varies over a study region. Local

spatial effects are typically described by a dependence structure. Given data,

the distinction between the local and regional effects is likely not obvious, and

one can view the task of separating these two effects as analogous to the task

of decomposing time series data into mean (trend and seasonal effects) and a

stationary noise process described by a covariance structure (Brockwell & Davis,

2002, §1.3.3).

Spatial data are necessarily multivariate as they are recorded at multiple

locations. Throughout, we will assume that we analyze only one quantity (e.g.,

rainfall) at multiple sites, although spatially analyzing multiple quantities is a

possible extension of the work surveyed herein.

Spatial data are often modeled as a realization of a spatial process which is

observed at a finite set of locations. We, too, will consider a spatial process, but

we begin with a review of the theory and statistical practice for finite-dimensional

extremes in order to introduce important concepts.
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1.1. Multivariate extremes: theory and practice

We assume that the reader is familiar with univariate extreme value theory

and its statistical application. For background on the univariate case see the

monographs by Coles (2001), Beirlant et al. (2004), and de Haan & Ferreira

(2006).

The notion of max-stability forms the foundation of extreme value theory.

Let Xi = (Xi,1, ..., Xi,d)
T, i= 1, ..., n, be an i.i.d. sequence of d-dimensional con-

tinuous random vectors, and letMn=(Mn,1, ...,Mn,d)
T=
(
∨n
i=1Xi,1, ...,

∨n
i=1Xi,d

)

T

,

where
∨

denotes the maximum. Assume there exist normalizing sequences {an}
and {bn} such that

Pr

(

Mn− bn
an

≤ y
)

−→ G(y) , n −→ ∞

where the division is understood to be element-wise and G is non-degenerate.

Then G belongs to the class of multivariate max-stable (equivalently, extreme

value) distributions. We will denote by Y = (Y1, ..., Yd)
T a max-stable random

vector; that is, a−1
n (Mn−bn) d→ Y . The i.i.d. assumption can be relaxed and the

multivariate max-stable distributions continue to serve as the possible limiting

distributions, if certain mixing conditions are met (Leadbetter et al., 1983).

Unlike in the univariate case, no fully parametric representation exists for

the multivariate max-stable distributions. The univariate marginal distributions

must be univariate max-stable and therefore can be described by the generalized

extreme value (GEV) distribution:

(1.1) Pr
(

Yj ≤ y
)

= Gj(y) = exp

{

−
[

(

1 + ξj
y − µj
σj

)−1/ξj

+

]}

,

for j = 1, ..., d. Here, µj , σj and ξj are the location, scale and shape parame-

ters for the j th component’s marginal and x+ = max(0, x). Accounting for each

GEV marginal is a nuisance, and representations for multivariate max-stable dis-

tributions generally presuppose that the marginals have a common, convenient

max-stable distribution. Throughout, we will assume Z = (Z1, ..., Zd)
T has a

multivariate max-stable distribution with unit-Fréchet marginals: Pr(Zj ≤ z) =

exp(−z−1). Then

Pr(Z ≤ z) = G∗(z) = exp
{

−V (z)
}

,(1.2)

V (z) = d

∫

∆d

d
∨

j=1

wj
zj
H(dw) .(1.3)

Here ∆d =
{

w ∈ R
d
+ | w1 + ··· + wd = 1

}

is the (d− 1)-dimensional simplex, and

the angular (or spectral) measure H is a probability measure on ∆d, which de-
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termines the dependence structure of the random vector. Due to the common

marginals, H obeys the moment conditions
∫

∆d
wj H(dw) = 1/d for j = 1, ..., d.

There is no loss of generality in assuming the multivariate max-stable dis-

tribution has unit-Fréchet margins, as Resnick (1987, Prop. 5.10) states that the

domain-of-attraction condition is preserved under monotone transformations of

the marginal distributions. If a−1
n (Mn− bn) d→ Y which does not have unit-

Fréchet marginals, from (1.1) one can define marginal transformations

Tj(x) =

(

1 + ξj
x− µj
σj

)−ξj

, j = 1, ..., d ,

and define

G∗(z1, ..., zd) = G
{

T←1 (z1), ..., T
←
d (zd)

}

,

where T←j is the inverse function of Tj , for j = 1, ..., d. This approach of trans-

forming to convenient marginals is similar to copula approaches, albeit with a

marginal suggested by extreme value theory rather than Uniform [0,1].

The above asymptotic theory suggests the following general statistical

methodology, referred to as the block maxima approach. Choose n to be a fixed

block size which is large enough such that the asymptotic theory holds approxi-

mately, and assume a sequence of i.i.d. Xi, i = 1, ..., nm, are observed, where m

denotes the number of blocks. DefineMk=
(
∨kn
i=(k−1)n+1Xi,1, ...,

∨kn
i=(k−1)n+1Xi,d

)

T

for k = 1, ...,m (note that the dependence on n in the notation Mk has been sup-

pressed), and fit a multivariate max-stable distribution to theMk. It is important

to note that Mk will not appear in the observation record unless the occurrence

times of each element’s block maximum coincide.

Using representation (1.2) to fit a multivariate max-stable distribution re-

quires that the marginals be unit Fréchet. Although transforming the marginals

is a simple theoretical procedure, in practice the marginal distributions must be

estimated. Subsequently, utilizing (1.2) to perform a multivariate analysis of ex-

tremes involves two tasks: (1) estimating the marginals, and (2) characterizing

the dependence via a model for V (z) or H(w). Tasks (1) and (2) seem sequential;

however, we note that inference can be performed all-at-once either in the fre-

quentist (Padoan et al., 2010) or Bayesian (Ribatet et al., 2011) settings.

For spatial extremes studies, the aforementioned regional and local spatial

effects each can be associated with one of the above tasks. Most study regions are

large enough that the marginal distribution of the studied quantity will vary over

the region. Thus, in order to transform to a common marginal, one must first

account for how the distribution’s tail varies by location. The local spatial effect

is related to the spatial extent of individual extreme events and the resulting

dependence in the data due to multiple sites being affected by the same event.

In terms of (1.2), this dependence is captured by V (z) or H(w). We will refer to
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the dependence remaining after the marginal standardization as ‘residual’ depen-

dence, as Sang & Gelfand (2010) termed the data after marginal transformation as

‘standardized residuals’. There is a useful analogy here drawn from atmospheric

science: these two types of spatial effects can be thought of as corresponding to

‘climate’ and ‘weather’ effects. Climate can be thought of as the distribution of

weather (Guttorp & Xu, 2011), and climate varies with location. Performing the

marginal transformation is akin to standardizing the climate across the study re-

gion. Weather events have a spatial extent which is best captured by a stochastic

representation. For most applications, there is a difference in the scale of these

two spatial effects. Climate varies on a larger (regional) spatial scale, and can

be largely (but often not completely) characterized by covariates such as latitude

and elevation. Weather spatial effects, particularly for extremes, are often more

localized.

Although all data are finite-dimensional, a finite-dimensional framework

can be inadequate for dealing with unobserved locations, and thus most classical

spatial work assumes a stochastic process framework. Let S be a study region,

and let s denote a location in a study region. For spatial applications, most

often s ∈ R2 and we will assume this throughout. We will assume Xi(s) is a

stochastic process, where it may be helpful to think of i as indexing the day of

the observation. A fundamental construct for spatial extremes is the max-stable

process, which is the infinite-dimensional analogue to a max-stable random vector.

If for all s ∈ S there exist normalizing sequences an(s) and bn(s) such that

(1.4) a−1
n (s)

{

max
i=1,...,n

Xi(s) − bn(s)
}

d−→ Y (s) ,

which has a non-degenerate distribution, then Y (s) is a max-stable process.

When the max-stable process has unit Fréchet margins, we will denote it by Z(s).

Given any finite set of locations s1, ..., sd, one can let Xi = (Xi(s1), ..., Xi(sd))
T

or Z = (Z(s1), ..., Z(sd))
T and return to the finite-dimensional setting.

An alternative approach to analyzing block maxima is to instead select

and analyze a subset of threshold exceedances. Although there has been work

to develop methods for multivariate threshold exceedance data, most spatial ex-

tremes work to date has aimed at developing max-stable models and fitting block-

maximum data. This survey will primarily focus on such work, but we briefly

discuss ongoing work in developing methods for spatial threshold exceedance data

in the discussion in §5.

1.2. Standard geostatistics

LetX(s) be a stochastic process. The field of geostatistics provides a frame-

work for exploring, modeling, and predicting or interpolating X(s). Much of clas-
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sical geostatistics tries to characterize X(s) in terms of its mean and covariance

function. One typically thinks of using the mean to represent large scale changes

of X(s) and the covariance function to capture the variability due to small- and

micro-scale stochastic sources (Schabenberger & Gotway, 2005, p. 132).

A basic model can be formulated as

(1.5) X(s) = α(s) + e(s) ,

where α(s) is the (non-random) mean function and e(s) is a zero-mean stochastic

process. Often, a regression relation is assumed for the mean function: α(s) =

W (s)Tβ, where W (s) is a vector of covariate information at location s and β is

a vector of regression coefficients.

The process e tries to account for any behavior not captured by the mean

function α. A simple geostatistical model may assume e(s) is second-order sta-

tionary and isotropic. Stationarity implies that the covariance does not depend

on location, i.e., Cov(e(s), e(s′)) = Cov(e(s+h), e(s′+h)), while isotropy implies

that covariance is a function of distance only, i.e., Cov(e(s), e(s + h)) = C(h),

where h = ‖h‖. At times it is useful to further assume that e(s) is a Gaussian

process, which in turn implies X(s) is a Gaussian process with mean α(s).

The second-order stationary and isotropic random field e is characterized

by its covariance function C(h) or equivalently its semivariogram

γ(h) =
1

2
Var
[

e(s+h) − e(s)
]

=
1

2
E
[

{

e(s+h) − e(s)
}2
]

.

Since the covariance function or semivariogram must satisfy several requirements

to be valid, models for C(h) or γ(h) are generally selected from parametric families

(see Schabenberger & Gotway, 2005, §4.2) known to meet these requirements.

Less restrictive than second-order stationary is intrinsic stationarity, which

implies that a process has stationary increments, i.e., e(s)−e(s+h)
d
= e(h)−e(0).

An intrinsically stationary process can be viewed as akin to a random walk in time

series, which is stationary after differencing. An intrinsically stationary process

does not have a covariance function C(h) but does have a semivariogram γ(h).

A geostatistical analysis often begins with an exploratory phase where de-

pendence is investigated via an empirical covariogram or semivariogram. As best

as one can, one must first account for large scale effects in the mean as “much

damage can be done by applying semivariogram estimators ... to data from non-

stationary spatial processes” (Schabenberger & Gotway, 2005, p. 135). Assuming

stationarity and isotropy, the traditional sample semivariogram is

(1.6) γ̂(h) =
1

2 |N (h)|
∑

(s,s′)∈N (h)

{

e(s) − e(s′)
}2
,
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where N (h) denotes the number of pairs (s, s′) separated by the distance h.

Applying the empirical semivariogram to observations provides insight for semi-

variogram model selection. Having selected a parametric family γφ(h) for the

semivariogram function, one often proceeds to estimate the model parameters

φ and β.

A primary goal of many geostatistics analyses is spatial prediction / inter-

polation employing an estimated semivariogram, which is known as kriging.

The point predictor from kriging corresponds to the best linear unbiased pre-

dictor (or the conditional expectation under a Gaussian assumption) of the value

of X(s0) at unobserved location s0 given observed values X(s1), ..., X(sd).

Prediction uncertainty is typically quantified in terms of mean-square prediction

error.

There is an analogy between the two tasks described in §1.1 and the geo-

statistics model (1.5). If e is stationary and Gaussian, then the marginal distri-

bution can only vary with α(s) which captures the regional spatial effects. After

accounting for regional effects with α, the residual dependence in e is character-

ized by its semivariogram or covariance function.

There are important fundamental differences between geostatistics and spa-

tial extremes. As it is based on first and second moments, geostatistics focuses on

central tendencies, not on the distribution’s tail. The Gaussian framework which

is never far from a traditional geostatistics analysis is incorrect for data that are

maxima, as the Gaussian distribution is not max-stable. Dependence in extremes

is described via the exponent measure function V (z) or angular measure H(w)

which cannot be linked to covariance. Finally, much of classical geostatistics is

applied to situations where one has only one realization of the process X(s),

observed at multiple locations. To perform an extreme value analysis, it is nec-

essary that multiple realizations Xi(s) underlie the subset of extreme data which

are eventually analyzed.

Much of the paper will study max-stable processes, and we need to extend

the notion of stationarity and isotropy to these processes. Stationarity for max-

stable processes is first-order, implying invariance of any finite-dimensional joint

distribution to translation:

Pr
(

Y (s1) ≤ y1, ..., Y (sd) ≤ yd

)

= Pr
(

Y (s1 +h) ≤ y1, ..., Y (sd +h) ≤ yd

)

.

Isotropy will imply that all bivariate joint distributions are also invariant to ro-

tation:

Pr
(

Y (s) ≤ y1, Y (s+h) ≤ y2

)

= Pr
(

Y (s) ≤ y1, Y (s+h′) ≤ y2

)

,

if ‖h‖ = ‖h′‖. For simplicity, we will generally assume that a random field is

stationary and isotropic.
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The remainder of the paper is structured to follow the order of a possible

spatial extremes analysis. We begin by reviewing tools which measure spatial

dependence in §2. In §3 we survey methods for modeling the marginal tail be-

havior over a study region. In §4, we review two primary methods for model-

ing the residual dependence: max-stable process models and copula approaches.

We conclude with a discussion which mentions work in development, challenges

posed by applications, and open problems.

2. MEASURING SPATIAL DEPENDENCE

To completely characterize the dependence among the components of a

max-stable random vector requires one to specify the angular measure H(w) or

the exponent measure function V (z). Specification of H(w) or V (z) is arduous,

especially as the dimension d grows, and representations are not easily compared.

It is useful to have summary measures of tail dependence, and several metrics

have been developed which aim to summarize the amount of tail dependence in

one number.

A complication arises because tail dependence falls into two distinct cat-

egories: asymptotic dependence and asymptotic independence. Since the cate-

gories are distinct, summary measures for dependence have been developed for

each category. We first focus on metrics for the asymptotic dependence case,

with a particular interest in measuring dependence in terms of spatial distance.

We then explain the notion of asymptotic independence (which does not imply

complete independence) and briefly mention how the amount of dependence in

the asymptotic independence case can be measured.

We note that the metrics all assume at least that random vectors or fields

have a common marginal distribution. Like in geostatistics, one must first try to

account for large-scale marginal effects before using these tools to assess (residual)

dependence.

2.1. Tail dependence metrics for asymptotic dependence

There are many related metrics for quantifying tail dependence when the

random vector exhibits asymptotic dependence. The list includes the metric d of

Davis & Resnick (1989) and the metric χ of Coles et al. (1999). We focus on two

metrics: the extremal coefficient (Smith, 1990; Schlather & Tawn, 2003) which is

readily interpretable and the madogram (Cooley et al., 2006; Naveau et al., 2009)

which has ties to the semivariogram.
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2.1.1. Extremal coefficient

Let Y be a d-dimensional max-stable random variable with common mar-

gins. The d-dimensional extremal coefficient θd can be implicitly defined as

Pr
(

Y1 ≤ y, ..., Yd ≤ y
)

= Pr

(

d
∨

j=1

Yj ≤ y

)

= Prθd
(

Y1 ≤ y
)

,

for any y in the support of Y1. Transforming the marginals of Y to obtain Z,

and due to the homogeneity property of V , we have

(2.1) Pr
(

Z1 ≤ z, ..., Zd ≤ z
)

= exp
{

−z−1V (1, ..., 1)
}

⇒ θd = V (1, ..., 1) .

The value θd can be thought of as the effective number of independent random

variables in the d-dimensional random vector. The coefficient takes values be-

tween 1 and d, with a value of 1 corresponding to complete dependence among

the locations, and a value of d corresponding to complete independence. The ex-

tremal coefficient is studied extensively in Schlather & Tawn (2003) and relations

between extremal coefficients of different orders are given in Schlather & Tawn

(2002).

Given replicates of a d-dimensional random vector Z, Smith (1990) and

Coles & Dixon (1999) propose an estimator of the extremal coefficient θd. As Z

has unit Fréchet margins, 1/Zj is unit exponential, and 1/
∨d
j=1 Zj is exponential

with mean 1/θd. Given i.i.d. replicates Zk, k = 1, ...,m, a simple estimator is

(2.2) θ̂d =
m

∑m
k=1 1

/
∨d
j=1(zk,j)

,

where zk,j is the j th component of the observation zk.

Although higher-order extremal coefficients are sometimes useful (see

Erhardt & Smith, 2011), θ2 is most widely used as it conveys the amount of

dependence between a pair of components. Bivariate dependence metrics are

especially useful in spatial studies as one generally wants to link the level of de-

pendence to spatial distance. Let Z(s) be a stationary and isotropic max-stable

random field with unit-Fréchet margins. It is possible to extend (2.1) to be a

distance-based dependence metric:

θ(h) = Pr
(

Z(s) ≤ z, Z(s+h) ≤ z
)

.

One could extend (2.2) to construct a distance-based estimator for θ(h); how-

ever, to our knowledge, distance-based dependence summary measures have been

primarily estimated via the madogram (for instance, see the SpatialExtremes

package in R, Ribatet, 2011).



A Survey of Spatial Extremes 145

2.1.2. Madogram

The madogram, a first-order semivariogram, has its roots in geostatistics

and its properties were studied by Matheron (1987). Since the madogram requires

the first-moment to be finite which is not always the case in extremes studies,

Cooley et al. (2006) proposed the F-madogram, which first transforms the ran-

dom variable by applying the cdf and is finite for any distribution. If Y (s) is a

stationary and isotropic max-stable process with marginal distribution G, then

the F-madogram is:

(2.3) ν(h) =
1

2
E

∣

∣

∣
G
{

Y (s)
}

−G
{

Y (s+h)
}

∣

∣

∣

(for consistency with above, we have used G, rather than F , to denote a max-

stable marginal distribution). The F-madogram’s values range from 0 to 1/6,

which corresponds to complete dependence and independence respectively. The

F-madogram is related to the other extremal dependence metrics, as Cooley et al.

(2006) show that

(2.4) θ(h) =
1 + 2 ν(h)

1 − 2 ν(h)
.
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Figure 1: Extremal coefficient (left panel) and the F-Madogram (right

panel) with unit Gumbel margins for the Schlather model with

Whittle–Matérn correlation functions. The red lines are the

theoretical extremal coefficient and F-madogram, gray points

are pairwise estimates, and black crosses are binned estimates.
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An advantage of the F-madogram is that its definition (2.3) suggests an

estimator. Let yk(s), k = 1, ...,m, be i.i.d. replicates of a max-stable process

with marginal distribution G which is observed at a finite set of locations. Then

the sample F-madogram is given by

(2.5) ν̂(h) =
1

m

m
∑

k=1

1

2 |N (h)|
∑

(s,s′)∈N (h)

∣

∣G
{

yk(s)
}

−G
{

yk(s
′)
}∣

∣ ,

analogous to the semivariogram estimator (1.6). An estimator θ̂(h) can be ob-

tained via a plug-in estimator from (2.4). Equation (2.5) assumes that the

marginal distribution G is known. Naveau et al. (2009) discuss estimation of

the madogram when the marginal distribution is not known and further define

the λ-madogram, which is related to the Pickands’ dependence function and which

extends the notion of the madogram to completely describe the bivariate depen-

dence structure.

2.2. Asymptotic independence

Two componentsX1 andX2 from a random vectorX with common margin-

als are asymptotically independent if

(2.6) lim
x→x∗

Pr
(

X2 > x | X1 > x
)

= 0 ,

where x∗ is the upper endpoint of the common marginal distribution. The com-

ponents are asymptotically dependent if the limit in (2.6) is a non-zero constant.

If asymptotically independent, then (X1, X2) lie in the domain of attraction of

max-stable (Y1, Y2), whose angular measure H(w) has a mass of 1/2 at w = (0, 1)

and at w = (1, 0), and 0 elsewhere. That is, the bivariate angular measure has

mass only on the axes. The extremal coefficient of (Y1, Y2) is 2, correspondingly.

Asymptotic independence does not imply (complete) independence and, in

fact, can mask relevant dependencies. The canonical example is that if (X1, X2)

is standard bivariate normal with fixed correlation ρ < 1, then it can be shown

(Sibuya, 1960) that the variables are asymptotically independent. Summarizing

tail dependence with the extremal coefficient or madogram, or modeling tail de-

pendence via H(w) or V (z), will ignore any dependence in an asymptotically

independent couple.

Ledford and Tawn (1996) identified the problems arising with the existing

modeling methodology in the case of asymptotic independence and proposed a

new parameter η, the coefficient of tail dependence. If (Z1, Z2) has unit Fréchet
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marginals, Ledford and Tawn (1996) assume a joint survival function F̄ satisfying

F̄ (z, z) = Pr
(

Z1 > z, Z2 > z
)

∼ L(z) z−1/η , z → ∞ ,

where L is a slowly varying function (L(tz)/L(z) → 1 as z → ∞) and η ∈ (0, 1].1

The coefficient of tail dependence η is used to quantify the tail dependence in the

asymptotic independent setting; η = 1 implies asymptotic dependence and η < 1

measures the degree of dependence under asymptotic independence. Ledford and

Tawn (1996) spawned much subsequent work including other estimators for η

(Draisma et al., 2004; Peng, 1999), development of other dependence measures

in the asymptotic independence setting (Coles et al., 1999), and development of

models in the case of asymptotic independence (Ledford & Tawn, 1997; Heffernan

& Tawn, 2004; Ramos & Ledford, 2009).

Models for and measures of tail dependence for spatial extremes have thus

far been limited to the asymptotically dependent case. However, an understand-

ing of the concept of asymptotic independence is essential to fully understanding

the limitations of summary dependence metrics such as θ(h) and for understand-

ing the models for residual dependence presented in §4.

3. CAPTURING SPATIAL STRUCTURE IN MARGINAL

BEHAVIOR

The representation of multivariate max-stable distributions (1.2) as well

as the spatial dependence models in §§4.1, 4.2 presuppose that the univariate

marginal distributions are known and common at all locations in the study region.

In most applications, the study regions are large enough that the assumption of a

common marginal distribution is unrealistic and the marginal distribution is not

known. Therefore, it becomes essential to model the marginal distribution at all

locations within the study region.

A simplistic approach would be to individually estimate the marginal dis-

tributions at each location. This approach has been used in (non-spatial) multi-

variate applications (e.g., Heffernan & Tawn, 2004; Cooley et al., 2010). Such an

approach is less-than-ideal for spatial applications for a number of reasons. First,

a goal of many spatial projects is to make inference at locations where there are

no data, i.e., to perform spatial interpolation. Constructing unconnected models

at each location does not allow one to readily interpolate. Second, there is a

desire to borrow strength across locations when estimating marginal parameters.

Many spatial data have a temporal record of several decades. Such a data record

1We use F to denote the cdf as Ledford and Tawn (1996) do not require that (Z1, Z2) be
max-stable.
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is more-than-enough to pin down the central tendencies of the marginal distribu-

tion, but large uncertainties remain about tail quantities. It is well-documented

that tail quantities, and in particular point estimates for the tail index ξ, can

vary wildly over the spatial region when estimated individually (e.g., Cooley &

Sain (2010)). Methods which borrow strength across locations ‘trade space for

time’ and help to reduce uncertainties.

Below we briefly detail several methods used to capture spatial structure

when describing the tail of the marginal distribution before focusing on the recent

approach of hierarchical modeling.

3.1. Methods for marginal parameter estimation

As mentioned in §1.2, regression approaches are frequently used to model

the mean process α(s) of a geostatistical model. Similarly, regression approaches

have been used to model the parameters of the extreme value distributions. When

modeling annual maximum precipitation in the southeast United States, Padoan

et al. (2010) select a model in which the location parameter µ(s) and scale param-

eter σ(s) are linear functions of latitude and elevation, and the shape parameter

ξ(s) is constant over the study region. Padoan et al. (2010) go on to model the

residual dependence via a max-stable process (see §4.1). Mannshardt-Shamseldin

et al. (2010) use a spatial regression approach which downscales extreme pre-

cipitation as generated by climate models to that observed at weather stations.

Generally, one wishes to employ covariates which are known at all locations s ∈ S
(both observed and unobserved), and often spatial coordinates are the only such

covariates. In geostatistics, regression models on spatial coordinates are known

as trend surface models (Schabenberger & Gotway, 2005, §5.3.1). However simple

regression models on available covariates are sometimes unable to fully capture

complex spatial behavior, and Ribatet et al. (2011) found this to be the case

in a study of extreme precipitation in Switzerland. Regional frequency analy-

sis (RFA) (Hosking & Wallis, 1997) is a term for a statistical procedure which

explicitly borrows strength across locations and which in turn characterizes the

spatial nature of the tail of the marginal distribution. RFA has a long history in

hydrology and traces its roots to the index flood procedure of Dalrymple (1960).

RFA is a multi-step procedure which pools data over predefined subregions of S
determined to be ‘homogeneous’. Hosking & Wallis (1997) advocate an esti-

mation method based on L-moments for RFA. A recent effort to update the

precipitation-frequency atlases for the United States (Bonnin et al., 2004a,b) em-

ploys an L-moment-based RFA coupled with an interpolation method based on

the PRISM method (Daly et al., 1994, 2002). A possible disadvantage of RFA is

that it does not construct an explicit spatial model for the marginal parameters.

To our knowledge, no RFA-based work has tried to account for residual depen-

dence in the data after accounting for marginal effects.
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3.2. Hierarchical modeling

Hierarchical (or multi-level) models have been extensively used in describing

the relationship between observations and the complex processes that generate

them. For many hierarchical models, the data collected is not well-suited for mod-

eling within the usual Gaussian framework of geostatistics. An early example of

spatial hierarchical modeling is Diggle et al. (1998), who model two sets of spatial

data: the first data set is assumed to be Poisson distributed, the second set is

assumed to be binomial. To explain the spatial variation of the data, hierarchical

models typically assume that the behavior of the data over the study region is

driven by an unobserved or latent process. For example, Diggle et al. (1998) mod-

eled both the Poisson intensity and a risk level associated with the binomial with

a Gaussian process which varied over the respective study regions. Treating the

parameters of the observations’ marginal distribution as spatial random effects is

especially useful when the spatial behavior is too complex to capture with fixed

effects. Much of the early work in spatial hierarchical modeling was done in the

field of epidemiology, and the book of Banerjee et al. (2004) has several examples.

Hierarchical models are often devised within a Bayesian framework, and

typically have three levels: (i) the data level, (ii) the process level, and (iii) the

prior level. To describe the set-up of the Bayesian hierarchical model (BHM),

let the vector of parameters, ψ, be defined as ψ = (ψ1,ψ2), where ψ1 are the

parameters in the data level, and ψ2 are the parameters in the process level.

Then, the posterior distribution of ψ given the data y, π(ψ | y), is given by

(3.1) π(ψ | y) ∝ π(y |ψ1) π(ψ1 |ψ2) π(ψ2) .

Here π(y |ψ1) defines the likelihood function, π(ψ1 |ψ2) describes the distribu-

tion of the process and π(ψ2) the (hyper) priors. When applied to extremes data,

the likelihood is based on an extreme-value distribution (EVD). Spatial modeling

at the process level is designed to borrow strength across locations and flexibly

capture spatial variation, showing how the marginal parameters of the EVD vary

over the study region.

In a spatial hierarchical model, the likelihood must account for the fact

that the data are observed at multiple locations. A simple approach is to assume

that the data at different locations are conditionally independent given the pa-

rameters ψ1, which themselves are spatially dependent from the process level of

the model. With this assumption, the likelihood becomes a product of the in-

dividual likelihoods at each location. This conditional independence assumption

is widely made in hierarchical modeling, and is quite sensible in most epidemio-

logical settings where disease counts at different locations can be assumed to be

independent once the latent risk level is accounted for. However, the conditional

independence assumption is questionable when modeling weather data because
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individual events can affect more than one location. A hierarchical model which

assumes conditional independence in the likelihood ignores any residual depen-

dence which remains after accounting for marginal effects.

Despite the aforementioned limitation of assuming conditional indepen-

dence, there are several applications of BHMs in the spatial extremes literature

whose primary aim is to characterize the marginal tail behavior and which make

this assumption. Among the earliest work constructing BHM’s for extremes is

that of Casson & Coles (1999) who use a GEV-based model and study hurricane

wind speed data. Fawcett & Walshaw (2006) apply a BHM to extreme wind

speed data. Cooley et al. (2007) use a hierarchical approach to model extreme

precipitation data from weather stations and then interpolate the marginal dis-

tribution over the study region to produce return level maps. Sang & Gelfand

(2009) modeled annual maximum rainfall over a region of South Africa, using a

spatial autoregressive model in the process level of their hierarchy, rather than a

geostatistical model. Both Cooley & Sain (2010) and Schliep et al. (2010) use a

BHM to characterize extreme precipitation as generated by climate models over

spatial regions with thousands of locations. Mendes et al. (2010) apply BHMs to

spatial extremes of large wildfire sizes.

Recent hierarchical work in extremes has sought to move beyond the con-

ditional independence assumption and capture both regional spatial effects via a

process-level spatial model on marginal parameters and local spatial effects via

a dependence structure within the likelihood at the data level. Sang & Gelfand

(2010) and Fuentes et al. (2011) respectively use a Gaussian copula model and a

Dirichlet process model to try and capture residual dependence within the struc-

ture of a hierarchical model. Ribatet et al. (2011) use max-stable process models

to formulate a likelihood designed to capture residual dependence. We discuss

these approaches in depth in §4.

Inference for BHMs is done by sampling, which is often complicated by the

fact that the full conditional distributions for the parameters often do not exist

in closed form. Markov Chain Monte Carlo (MCMC) methods can be used to

approximate the posterior distributions. One of the most popular approaches is

the Gibbs sampling method (Gelfand & Smith, 1990), which is accommodated

by the conditional relationships in (3.1). As conjugate priors for EVD’s are not

known, BHMs for extremes require a Metropolis–Hastings step to be included

within each iteration of the Gibbs sampler.

Both hierarchical approaches which assume conditional independence and

other methods such as RFA ignore residual dependence which arises due to the

spatial extent of individual events. In instances when interest is primarily on

the marginal behavior, it may be appropriate to ignore the residual dependence.

There is a long history in hydrology of producing return level maps; that is, a map

which depicts a high quantile (e.g., the quantile associated with a 100-year return
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level) at any site within a study region. The aforementioned projects by Bonnin

et al. (2004a,b) produced such maps and NOAA’s Hydrometeorological Design

Studies Center maintains a website2 which provides point-located return level es-

timates. Likewise, projects such as Cooley & Sain (2010), Sang & Gelfand (2009)

and Cooley et al. (2007) aimed only to estimate pointwise return levels. It is

imperative that it is recognized that such projects cannot be used to quantify the

aggregated effects of a large event which occurs across multiple locations, nor can

they be used to produce realistic simulated data (Davison et al., 2012, Figure 4).

4. MODELS FOR SPATIAL DEPENDENCE

In this section, we consider two approaches for capturing the residual de-

pendence assuming that the marginal effects have been accounted for. The first

approach is to use a max-stable process model (§1.1), which will assume that the

marginals have been transformed to be unit Fréchet. The second is a copula ap-

proach, a popular recent approach for modeling multivariate data which assumes

the marginals are Uniform [0,1].

4.1. Max-stable processes

The definition of a max-stable process, Equation (1.4), as the infinite di-

mensional generalization of a multivariate max-stable distribution gives a well-

defined class of models, but it does not suggest how to construct such processes.

A conceptual construction of max-stable processes was first given with a spectral

representation of extremal processes by de Haan (1984) and de Haan & Ferreira

(2006). A general representation of max-stable processes can be described by two

components, a stochastic process {X(s)} and a Poisson process Π with intensity

dζ/ζ2 on (0,∞). Let {Xi(s)}i∈N be independent realizations of a process X(s)

with E[X(s)] = 1, and let ζi ∈ Π be points of the Poisson process. Then

Z(s) = max
i≥1

ζiXi(s) , s ∈ S ,

is a max-stable process with unit-Fréchet margins and the distribution function

is determined by

Pr
(

Z(s) ≤ z(s), s ∈ S
)

= exp

(

−E
[

sup
s∈S

{

X(s)

z(s)

}])

,

where minus the exponent is the infinite-dimensional analogue to V ; see Equation

(1.3). Different choices of the process Xi(s) lead to different classes of max-stable

processes.

2 http://hdsc.nws.noaa.gov/hdsc/pfds/index.htm
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Although Gaussian distributions and processes are not well-suited for

modeling extremes, they can be used within the above max-stable construction

to produce appropriate models. This was first proposed by Smith (1990).

Let {(ζi, si); i≥ 1} denote the points of a Poisson process on (0,∞) × S with

intensity ζ−2 dζ ds. Let {f(x)} on R
d denote a non-negative function such that

∫

f(x) dx = 1 and define

Z(s) = max
i
ζi f(s− si) .

Then Z(·) is a max-stable process with unit-Fréchet margins. Smith also intro-

duced the so-called rainfall-storms interpretation: think of f(·) as the shape of

a storm centered at point si, and think of the overall magnitude of storm as ζi.

Then the max-stable process Z(·) is the pointwise maximum rainfall (taken over

all storms) for each location in S. If f(·) is a multivariate normal density with

covariance parameter Σ, then the process Z(·) is called a Gaussian extreme value

process and the joint distribution at two sites is given by

Pr
{

Z(s1) ≤ z1, Z(s2) ≤ z2

}

=

= exp

{

− 1

z1
Φ

(

a

2
+

1

a
log

z2
z1

)

− 1

z2
Φ

(

a

2
+

1

a
log

z1
z2

)

}

,

where a =
√

(s1− s2)T Σ−1(s1− s2) and Φ is the standard normal cumulative

distribution function. The dependence parameter a represents a transformed

distance between two sites and the limits a→ 0 and a→ ∞ correspond to perfect

dependence and independence, respectively. Thus the most common Smith model

takes Xi(s) to be a multivariate density function. Figure 2 shows a realization.

Schlather (2002) suggested a more flexible class of max-stable processes by

taking Xi(s) to be any stationary Gaussian random field with finite expectation.

A stationary max-stable process with unit-Fréchet margins can be obtained by

Z(s) = max
i
ζi max

{

0, Xi(s)
}

where µ = E
{

max(0, Xi(s))
}

<∞ and {ζi} denotes the points of a Poisson pro-

cess on (0,∞) with intensity measure µ−1ζ−2 dζ. The max-stable process also

allows a useful interpretation of spatial storm events. On taking a stationary ran-

dom process Xi(s), the spatial rainfall events have the same dependence structure

but the realizations will vary stochastically, not the deterministic form f(·) such

as Smith’s model. If the random process is specified for a stationary isotropic

Gaussian random field Xi(·) with unit variance, correlation ρ(·) and µ−1 =
√

2π,

then the process Z(s) is called an extremal Gaussian process and the bivariate

marginal distributions are given by

Pr
{

Z(s1) ≤ z1, Z(s2) ≤ z2

}

=

= exp

{

− 1

2

(

1

z1
+

1

z2

)(

1 +

√

1 − 2
(

ρ(h) + 1
) z1z2

(z1 + z2)2

)

}
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where h is the Euclidean distance between station s1 and s2. The correlation

is chosen from one of the valid families of correlations for Gaussian processes.

Figure 2 shows a realization of an extremal Gaussian process.

One drawback to the Schlather model is that it cannot attain independence

of extremes, because the extremal coefficient θ(h) = 1+
[1−ρ(h)

2

]1/2
takes the value

in the interval [1, 1.838] (and not the usual range of [1,2]) as the distance h→ ∞.

To overcome this, the process Xi(s) can be restricted to a random set B, i.e.,

Z(s) = max
i
ζiXi(s) IBi

(s− si)

where IB is the indicator function of a compact random set B ⊂ S and si are

the points of a Poisson process on S. If Xi is a Gaussian process, the bivariate

marginal distribution is

exp

{

−
(

1

z1
+

1

z2

)

[

1 − α(h)

2

(

1 −
√

1 − 2
(

ρ(h) + 1
) z1z2

(z1 + z2)2

)

]}

where α(h) = E
{

|B ∩ (h+B)|
}

/E(|B|) ∈ [0, 1]. The extremal coefficient takes on

any value in the interval [1, 2] and thus independent extremes are available. One

possible choice for the set B is a disc of radius r, meaning α(h)
.
= {1−|h|/(2r)}+,

which equals 0 when |h| > 2 r. One could consider B as a random set, which means

that the radius of the disk is random and all elliptical sets having the same major

axis are permissible as a generalization for B (Davison & Gholamrezaee, 2012).

Kabluchko et al. (2009) proposed an alternative specification for the Xi(·)
process, which requires weaker assumptions than second-order stationarity. Let

Xi(s) = exp
{

ei(s)− 1
2 σ

2(s)
}

where ei(s) is a Gaussian process with stationary in-

crements and σ2(s) = Var{e(s)}. Then the process, known as the Brown–Resnick

process, can be a very general class of max-stable processes which allows the use

of semivariogram from standard geostatistics. The bivariate cdf transformed to
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Figure 2: Realization of Gaussian extreme value process (left), extremal

Gaussian process (centre), and Brown–Resnick process (right)

from SpatialExtremes R package (Ribatet, 2011; R Develop-

ment Core Team, 2011).



154 D. Cooley et al.

unit Fréchet margins is the same as the so-called Smith model but instead of the

parameter a2 we have γ(·), the semivariogram of e(·), i.e.

Pr
{

Z(s1) ≤ z1, Z(s2) ≤ z2

}

=

= exp

{

− 1

z1
Φ

(

√

γ(h)

2
+

1
√

γ(h)
log

z2
z1

)

− 1

z2
Φ

(

√

γ(h)

2
+

1
√

γ(h)
log

z1
z2

)}

,

where Φ is the standard normal distribution function and h is the Euclidean

distance between location s1 and s2.

Realizations of the Gaussian extreme value process, the extremal Gaussian

process, and the Brown–Resnick process are shown in Figure 2. The left panel

shows a simulation from the Gaussian extreme value process with covariance

matrix (σ11 = σ22 = 9/8 and σ12 = 0), the central panel shows shows one from

the extremal Gaussian process with the Whittle–Matérn correlation function

(nugget = 0, range = 3 and smooth = 1), and the right panel shows one from the

Brown–Resnick process with parameter (range = 3, smooth = 0.5).

4.1.1. Inference for max-stable processes: composite likelihood approach

A barrier to fitting max-stable processes to data is that closed-form expres-

sions for the joint likelihood can only be written out in low dimensional settings.

The likelihood for the Smith model in R
2 can be written out for dimension d ≤ 3

(Genton et al., 2011), but the likelihood for all other max-stable processes can

only be written for dimension d ≤ 2 (and we write this section for the more general

case). This means that if the data are observed at d > 2 locations in space, the

joint likelihood cannot be written in closed form. Padoan et al. (2010) proceeded

with a likelihood-based approach to fitting max-stable processes by substituting

a composite likelihood for the unavailable joint likelihood. We first introduce

composite likelihoods, then show the connection to max-stable processes.

If f(z;ψ) is a statistical model and we have a set of marginal or conditional

events {Aj ⊆ F , j = 1, ..., J} where F is a sigma algebra on Z and each event Aj
has associated likelihood Lj(ψ; z) ∝ f(z ∈ Aj ;ψ), then a composite log-likelihood

is a weighted sum of log-likelihoods for each event (Lindsay, 1988; Varin, 2008):

ℓC(ψ; z) =
∑

j

wj · log f
(

z ∈ Aj ; ψ
)

,

where wj is a weight function on j th event. If the weights are all equal they

may be ignored, though non-equal weights may be used to improve the statistical

performance in certain cases. One example of a composite log-likelihood is the



A Survey of Spatial Extremes 155

pairwise log-likelihood, defined (in a spatial application) as

ℓC(ψ; z) =

m
∑

k=1

d−1
∑

j=1

d
∑

j′=j+1

log f
(

zk(sj), zk(sj′); ψ
)

,

where each term f
(

zk(sj), zk(sj′); ψ
)

is a bivariate marginal density function

based on observations at locations j and j′, and ψ is a spatial dependence pa-

rameter. The two inner summations sum over all unique pairs, while the outer

sums over the m i.i.d. replicates. Similar to the full likelihood function, the pa-

rameter which maximizes a composite log likelihood can be found, and is termed

a maximum composite likelihood estimate, or MCLE. When m→ ∞, the max-

imum composite likelihood estimator is consistent and asymptotically normal

(Lindsay, 1988; Cox & Reid, 2004), with

(4.1) ψ̂MCLE ∼ N (ψ, Ĩ−1) , Ĩ = H(ψ)J−1(ψ)H(ψ) ,

where H(ψ) = E(−Hψ ℓC(ψ;Z)) is the expected information matrix, J(ψ) =

V (Dψ ℓC(ψ;Z)) is the covariance of the score, Hψ is the Hessian matrix, Dψ

is the gradient vector, and V is the covariance matrix. When one has the full

likelihood, H(ψ) = J(ψ), but in the composite likelihood setting these matrices

are not equal.

Padoan et al. (2010) used the composite likelihood to model the joint spa-

tial dependence of extremes and accounted for regional effects with a regression

model on the GEV parameters. This approach is implemented in the R package

SpatialExtremes (Ribatet, 2011). The maximum composite likelihood estimator

ψ̂MCLE is found numerically. The variance is estimated using

Ĥ(ψ̂MCLE) = −
m
∑

k=1

d−1
∑

j=1

d
∑

j′=j+1

Hψ log f
(

zk(sj), zk(sj′); ψ̂MCLE

)

and

Ĵ(ψ̂MCLE) =

m
∑

k=1

{

d−1
∑

j=1

d
∑

j′=j+1

Dψ log f
(

zk(sj), zk(sj′); ψ̂MCLE

)

}

×
{

d−1
∑

j=1

d
∑

j′=j+1

Dψ log f
(

zk(sj), zk(sj′); ψ̂MCLE

)

}

T

.

The dependence parameter ψ is generic and stands in for the matrix Σ in the

Smith model, the Gaussian correlation function ρ(h;ψ) in the Schlather model,

and the semivariogram γ(h;ψ) in the Brown–Resnick model. For each of these

models the target parameter appears in the corresponding bivariate density func-

tions, and thus also in the pairwise log-likelihood.

Recently, there has been work which begins to explore the use of composite

likelihood methods within Bayesian inference, and much of this work has been
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driven by interest in spatial extremes. Both Pauli et al. (2011) and Ribatet et al.

(2011) seek to employ a pairwise likelihood, rather than the unattainable true

likelihood, to obtain a posterior distribution. The pairwise likelihood does not

accurately represent the information in the data, as it repeatedly uses each ob-

servation when pairing it with others. Pauli et al. (2011) adjust the pairwise

likelihood so that the first moment of the log-likelihood ratio corresponds to that

of the asymptotic χ2-distribution. Ribatet et al. (2011) suggest an adjustment

which ensures that the curvature of the likelihood surface agrees with the asymp-

totic covariance matrix given in Equation (4.1). Ribatet et al. (2011) apply the

likelihood within a spatial hierarchical model to study extreme precipitation in

Switzerland.

Erhardt & Smith (2011) used approximate Bayesian computing (ABC) to

obtain an approximate posterior distribution for the max-stable process depen-

dence parameters ψ. ABC methods have been successfully implemented for prob-

lems where the joint likelihood function is intractable, but simulations are possible

(Beaumont et al., 2002; Sisson & Fan, 2010). Given observed data Z and prior

π(ψ), the simplest ABC algorithm is: (1) Draw ψ′ ∼ π(ψ); (2) Simulate a new

dataset Z ′ conditional on ψ′; (3) If d(S(Z), S(Z ′)) ≤ ǫ for some summary statis-

tic S, distance function d, and threshold ǫ, then accept ψ′; otherwise, reject.

The method produces an i.i.d. sample from π
[

ψ | d{S(Z), S(Z ′)} ≤ ǫ
]

, which in

the limit as ǫ→ 0 equals π(ψ | S(Z)). Further, if S(Z) were a sufficient statistic,

this would be the exact posterior. In practice, computational costs often force

concessions like in-sufficient statistics S and a non-zero threshold ǫ. Erhardt &

Smith (2011) used tripletwise extremal coefficients in the construction of a sum-

mary statistic S, and then showed that the resulting ABC implementation can

outperform the composite likelihood approach when estimating the spatial depen-

dence of a max-stable process, though at an appreciably higher computational

cost.

4.1.2. Spatial prediction/interpolation for max-stable processes

Kriging is a central focus of geostatistics and there has been recent work

to perform spatial prediction for max-stable processes (§1.2). Wang & Stoev

(2011) and Dombry et al. (2011) have proposed computational solutions for the

prediction problem for max-stable processes.

Max-linear models are a subclass of the multivariate max-stable distri-

butions. Let Yi, i= 1, ..., n, be i.i.d. unit Fréchet random variables. Assume

Z =
(

Z(s1), ..., Z(sd)
)

T

is a max-linear combination of the Yi’s; that is,

Z(sj) =

n
∨

i=1

cj,i Yi , j = 1, ..., d ,
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where cj,i are non-negative constants. Z is multivariate max-stable, and further if
∑n

i=1 cj,i = 1 for all j, then Z has unit-Fréchet marginals. Any max-linear model

with finite n will have a discrete angular measure; however, max-linear mod-

els form a dense subclass of multivariate max-stable random vectors as n→ ∞
(Zhang & Smith, 2004). Wang & Stoev (2011) propose an algorithm for efficient

and exact sampling from the conditional distributions of a spectrally discrete

max-stable random field. The main idea is to first generate samples from the reg-

ular conditional probability distribution of Y |Z = z, where Y = (Y1, ..., Yn)
T

and Z is the vector of values at observed locations. Then, the conditional dis-

tribution of Z(s0) =
∨n
i=1 c0,iYi can be easily obtained for any given c0,i. The

performance of the algorithm was illustrated over the discretized Smith model

for spatial extremes.

Dombry et al. (2011) also take a computational approach to spatial predic-

tion. Specifically working with the Brown–Resnick process, Dombry et al. (2011)

establish a link between the conditional distribution of this process and the mul-

tivariate log-normal distribution. Like Wang & Stoev (2011), the computational

method of Dombry et al. (2011) considers different hitting-scenarios; that is,

the possible combinations of individual events which could yield the observed

maxima. Dombry et al. (2011) illustrate their method on precipitation data from

Switzerland.

4.2. Copula approaches

Copulas provide another framework for representing the dependence struc-

ture of a multivariate distribution with known marginals. Copulas are multivari-

ate distributions with standard uniform marginal distributions, and they char-

acterize the dependence structure of a multivariate distribution from univariate

marginal distributions by defining a joining mechanism (Nelsen, 2006; Joe, 1997).

Given a d-dimensional random vector Y = (Y1, ..., Yd)
T with corresponding

marginal cdfs Fi for j = 1, ..., d and joint distribution function F , a copula is

a function C : [0, 1]d −→ [0, 1] such that

(4.2) F (Y ) = C
(

F1(Y1), ..., Fd(Yd)
)

.

If the marginal cdfs of Y are all continuous, then the copula function C is uniquely

defined by (4.2). Conversely, for a copula C and continuous margins F1, ..., Fd,

the copula C corresponds to the distribution of F1(Y1), ..., Fd(Yd), i.e.,

(4.3) C
(

u1, ..., ud
)

= F
(

F−1
1 (u1), ..., F

−1
d (ud)

)

.

This follows from the multi-dimensional analog of Sklar’s theorem (Sklar, 1959),

which proves the existence of a copula in the bivariate case and uniqueness when

the marginals are continuous (Nelsen, 2006).
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The copula framework has appeal for modeling multivariate extremes, es-

pecially since the list of existing parametric subfamilies of the multivariate ex-

treme value distribution (MEVDs) is limited. When working with multivariate

block maximum data, extreme value theory suggests that each marginal should

be approximately GEV distributed. Equation (4.3) suggests one can combine

knowledge of the marginal distributions with a copula model to obtain a valid

cdf. Further, (4.2) says that one can obtain a copula model from any multivariate

distribution. While this approach allows one great flexibility to create multivari-

ate distributions with GEV marginals, these distributions will not correspond to

a MEVD as characterized in §1.1 unless one uses an extremal copula model (Joe,

1997), which essentially correspond to the existing parametric MEVD subfamilies.

Use of (nonextremal) copula models to describe extremes has been controversial,

and Mikosch (2006) and the associated discussion details much of the argument.

For spatial data which are typically observed at many locations, one would

need a copula which can handle high dimensions, and further, whose pairwise

dependence can be linked to distance. Two obvious choices are to use the mul-

tivariate Gaussian or multivariate Student t distributions to generate a copula.

Given a d-dimensional Gaussian random vector Y = (Y1, ..., Yd)
T, the Gaussian

copula is defined as

(4.4) CΣ

(

u1, ..., ud
)

= ΦΣ

(

Φ−1(u1), ...,Φ
−1(ud)

)

,

where ui ∈ [0, 1] for i = 1, ..., d, Φ is the cdf for a standard normal distribu-

tion, and ΦΣ is the joint cdf of the multivariate normal distribution with co-

variance matrix Σ. The multivariate Student t distribution copula is defined

similarly, except the marginal and joint distributions displayed in (4.4) are re-

placed by marginal and joint (with scale matrix Σ) Student t distributions , i.e.,

CΣ(u1, ..., ud) = Tν;Σ
(

T−1
ν (u1), ..., T

−1
ν (ud)

)

, where Tν;Σ and Tν are the joint and

marginal t distributions with ν degrees of freedom respectively.

The simplicity of the Gaussian and Student t copulas make them appeal-

ing, but they have some undesirable properties from the extreme value theory

viewpoint. Because neither copula is extremal, the resulting cdf will not be max-

stable. Additionally, the Gaussian copula is asymptotically independent, so it

may underestimate joint tail probabilities if the data are actually asymptotically

dependent.

Hüsler & Reiss (1989) devised an alternative approach which used the bi-

variate Gaussian distribution to create an extremal copula (equivalently a MEVD),

and this general approach can be used with either the multivariate Gaussian dis-

tribution or multivariate t distribution as described by Davison et al. (2012).

The approach is essentially the same as that which leads to the Smith (1990)

max-stable process model, albeit in the multivariate rather than process setting.

Thus, the drawback of the extremal Gauss or extremal t copulas is that the full

multivariate distribution cannot be written in closed form, and composite like-
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lihood methods must be employed. Davison et al. (2012) fit the Gaussian and

t copulas as well as the extremal Gauss and t copulas to data which are annual

maxima and conclude that the extremal copulas have improved ability to capture

the dependence found in this data. Padoan (2011) discusses some further copula

models potentially useful in spatial extremes.

In a desire to move away from the conditional independence assumption of-

ten made in hierarchical modeling, Sang & Gelfand (2010) use a Gaussian copula

to create a likelihood function in a model structured as (3.1). Suppose that Y (s)

is an extremal spatial process at location s, e.g., Y (s) is the annual maximum of

daily rainfall measurements at location s. Then Y (s) ∼ GEV
(

µ(s), σ(s), ξ(s)
)

.

Furthermore, Y (s) can be represented as

(4.5) Y (s) = µ(s) +
σ(s)

ξ(s)

(

Z(s)ξ(s) − 1
)

where Z(s) is unit-Fréchet. Focusing on the underlying unit-Fréchet process de-

fined at locations s1, ..., sd, Sang & Gelfand (2010) induced a dependence struc-

ture on the Z(si) for i = 1, ..., d using the Gaussian copula of (4.4). Suppose

that X(s) =
(

X(s1), ..., X(sd)
)

is a centered spatial Gaussian process with a

correlation structure defined by the function ρ(si, sj ;ψ) for i, j = 1, ..., d. The

unit-Fréchet process Z(s) is defined in terms of a transformed spatial Gaussian

process X(s) by

Z =
(

G∗−1
Φ
(

X(s1)
)

, ..., G∗−1(
Φ(X(sd)

)

)

,

where G∗ is the unit-Fréchet distribution function. Given the spatial Gaus-

sian process X(s), the corresponding copula is defined as CX(u1, ..., ud) =

FX,Σρ

(

Φ−1(u1), ...,Φ
−1(ud)

)

where u1, ..., ud ∈ [0, 1], FX,Σρ is the multivariate

Gaussian distribution function with a covariance matrix Σρ defined by some cor-

relation function ρ(si, sj ;ψ), i, j = 1, ..., d. Then the multivariate joint distribu-

tion of Z is

FZ(z1, ..., zd) = CX
(

G∗(z1), ..., G
∗(zd)

)

= FX
(

Φ−1G∗(z1), ...,Φ
−1G∗(zd)

)

,

where zj ∈ R, j = 1, ..., d. Sang & Gelfand (2010) considered this the first stage

of a hierarchical model, where the second stage deals with the characterizations

of µ(s), σ(s), and ξ(s) found in equation (4.5). While one could be critical of the

Gaussian copula that Sang & Gelfand (2010) employ, the approach does attempt

to account for the residual spatial dependence which remains in the data after

accounting for marginal effects, while a conditional independence assumption

ignores this dependence entirely.

An alternative copula approach for spatial extremes data is proposed by

Fuentes et al. (2011), who use a Dirichlet process (DP) copula model which is

a Bayesian, nonparametric generalization of the spatial Gaussian copula model.
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The DP copula model is flexible and capable of dealing with high dimensional

data, but when combined with GEV marginal distributions does not yield a

MEVD. The DP prior is a special case of the stick-breaking prior (Sethuraman,

1994). If a distribution function is such that

(4.6) F
d
=

m
∑

i=1

pi δψi
,

where δx denotes a Dirac measure at x, p1 = V1, pi = Vi
∏

j<i(1 − Vj) with

Vi
iid∼ Beta(1, ν), ν > 0 and ψ1, ..., ψm

iid∼ H0, which is a centering distribution.

In the spatial setting, the spatial DP copula introduces a latent process X such

that the joint density of X =
(

X(s1), ..., X(sd)
)

is almost surely of a countable

mixture of normals,

(4.7) f
(

X |Hd, τ2
)

=

∞
∑

i=1

pi φd
(

X |ψi, τ2Id
)

,

where φd( · |µ,Σ) denotes the d-dimensional multivariate normal density with

mean µ and covariance matrix Σ, pi has the same distribution as in (4.6), and

ψi =
(

ψi(s1), ..., ψi(sd)
)

with ψi |Hd iid∼ Hd and Hd d
= DP (νHd

0 ), where Hd
0
d
=

φd(· |0,Σ). Let FX be the cdf associated with the density in (4.7). Then the

multivariate joint distribution of Y given by the copula

F (Y ) = CX

(

G∗(y1), ..., G
∗(yd)

)

= FX

(

H−1
s1
G∗(y1), ..., H

−1
sd
G∗(yd)

)

,

where Hs is the cdf corresponding to the density in Equation (4.7) for Z(s).

As with the spatial Gaussian copula in Sang & Gelfand (2010), the unit-Fréchet

spatial process is the transformed process defined as Y (s) = G∗−1Hs(Z(s)) but

with space-dependent parameters. The joint distribution function given by a

spatial Gaussian copula can be expressed explicitly for any given set of locations,

whereas the DP copula represents the joint distribution implicitly in a Bayesian

framework.

5. DISCUSSION

The study of spatial extremes is young, as evidenced by the fact that the

majority of the work referenced in this survey article has been done in the last

10 years, and nearly all of it in the last 20 years. The study has a well-developed

foundation in probability theory, and the field has made great strides in develop-

ing realistic models based on this theory.

We anticipate further development of methods and models for spatial

extremes, and we imagine this work will follow similar themes to recent work



A Survey of Spatial Extremes 161

in geostatistics. It remains a challenge to fit max-stable process models to data

recorded at many locations, for example climate model output which has thou-

sands of locations. Interest in large data sets has spawned geostatistics work in

Gaussian Markov random fields (Rue & Held, 2005; Lindgren et al., 2011), fixed-

rank kriging (Cressie & Johannesson, 2008), and predictive processes (Banerjee

et al., 2008). Another interest in geostatistics has been space-time modeling

(Cressie & Wikle, 2011), an area which spatial extremes modeling is only begin-

ning to address (Huser & Davison, 2012). Likewise, models with nonstationary

dependence structure (e.g., Sampson & Guttorp, 1992), models which can han-

dle spatial misalignment (e.g., Berrocal et al., 2010), and models for multivariate

spatial data (e.g., Wackernagel, 2003) have been of interest in spatial statistics

for some time, but these topics are thus far unexplored for spatial extremes.

This article has largely focused on modeling data which are block maxima,

as the spatial extremes literature to date has concentrated on such data. There is

work in progress (Jeon, 2012) to extend max-stable process models to appropri-

ately model threshold exceedance data. Spatial threshold exceedance modeling

would address the first issue that when restricting one’s attention to block max-

imum data, one is likely to discard other extreme data which could be useful

in describing the spatial extent of extreme events. Although from the classical

extreme value theory point-of-view it is natural to consider vectors of componen-

twise maxima (see §1.1), practitioners can view these vectors as artificial since

they likely do not appear in the data record.

Finally, we would be remiss in this survey if we did not mention the available

software for analyzing spatial extremes data. The R package SpatialExtremes

(Ribatet, 2011) can be used both to estimate spatial dependence and to fit max-

stable process models. The RandomFields package (Schlather, 2011) is useful for

simulating max-stable processes. The conditional simulation method of Wang &

Stoev (2011) can be found in the package maxLinear (Wang, 2010).
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