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Abstract:

• The Garman–Klass unbiased estimator of the variance per unit time of zero-drift

Brownian Motion, is quadratic in the range-based financial-type data CLOSE−OPEN,

MAX−OPEN , OPEN−MIN reported on regular time windows. Its variance, 7.4
times smaller than that of the common estimator (CLOSE−OPEN )

2
, is widely be-

lieved to be the minimal possible variance of unbiased estimators. The current report

disproves this belief by exhibiting an unbiased estimator in which 7.4 becomes 7.7322.

The essence of the improvement lies in data compression to a more stringent suf-

ficient statistic. The Maximum Likelihood Estimator, known to be more efficient,

attains asymptotically the Cramér–Rao upper bound 8.471, unattainable by unbiased

estimators because the distribution is not of exponential type.

Beyond Brownian Motion, regression-fitted (mean-1) quadratic functions of the more

stringent statistic increasingly out-perform those of CLOSE−OPEN , MAX−OPEN ,

OPEN−MIN when applied to random walks with heavier-tail distributed increments.

Key-Words:

• Garman–Klass; Brownian Motion; volatility; estimation.

AMS Subject Classification:
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1. INTRODUCTION

Consider a mean-zero Brownian Motion with constant unknown unit-time

variance σ2
, monitored over disjoint regular intervals of time for each of which the

initial (OPEN ), final (CLOSE ), maximal (MAX ) and minimal (MIN ) values are

reported. The Garman–Klass [5] variance estimator, introduced three decades

ago, achieves the accuracy in estimating σ2
that the classical, natural estimator

average (CLOSE−OPEN )
2

does in 7.4 times the observation period. This un-

biased variance estimator is the minimum-variance unbiased quadratic function

of the spreads c = CLOSE−OPEN , h = MAX−OPEN , l = MIN−OPEN (for

close, high, low). As will be shown, range data S1 = (c, h, l) can be compressed

further without loss of sufficiency, yielding an unbiased variance estimator with

efficiency 7.73 with respect to c2
. There is not much room for further improve-

ment, as the Cramér–Rao bound makes 8.5 out of reach. Rogers & Satchell [9]

suggested another unbiased estimator of σ2
, with efficiency 6 with respect to c2

,

that is unbiased even for general unknown drift. We do not attempt here to

compress range data for non-zero drift.

As stressed repeatedly, volatilities change over time and past data should

be given decaying importance, as in GARCH-type estimators. The present paper

deals with constant volatility only, emphasizing efficiency as a means of making

do with short observed histories.

A coarser (but incomplete) sufficient statistic. Consider the triple

S2 = (C, H, L) where C = |c|, (H, L) = (h, l) if c > 0, while (H, L) = −(l, h) if

c < 0. Without loss of relevant information about the variance, the Brownian

Motion trajectory {B(t); t∈ (0, 1)} may be replaced by the flipped path {W (t);

t ∈ (0, 1)}, defined as W (t) = B(0) + [B(t) − B(0)] sign(B(1) − B(0)). That is,

the three interval lengths (−L, C, H−C), in fact the further compression
(

C, min(−L, H−C), max(−L, H−C)
)

, determined by (c, h, l), carry all relevant

information contained in (c, h, l) about σ2
, but do not determine (c, h, l). Al-

though intuitively clear after some thought, sufficiency of
(

C, min(−L, H−C),

max(−L, H−C)
)

can be formally inferred from Siegmund’s [11] representation

displayed as (A.1) in the sequel. The Rao–Blackwell theorem [3, 8] claims that un-

der these conditions, for every S1-based unbiased estimator of some arbitrary pa-

rameter there is an S2-based unbiased estimator with smaller variance — strictly

smaller unless the two coincide. As will be seen, the Garman–Klass estimator is

a function of S2, so the Rao–Blackwell improvement leaves it invariant. However,

the Garman–Klass estimator, best among the quadratic function of S1, is not best

possible as a function of S2. Had S2 been a complete minimal sufficient statistic,

Garman–Klass and the proposed estimator would have equally been the UMVUE

(uniformly minimum variance unbiased estimator) of the parameter. However,

C2
and 2 [(H − C)

2
+ L2

] are different unbiased estimators of σ2
. Hence, S2
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(whether minimal sufficient or not) is not complete. Loose some, win some:

we will only conjecture rather than claim optimality of the proposed S2-based

quadratic unbiased estimator of σ2
; on the other hand, the exchangeability prop-

erty under which (−L, C, H−C) and (H−C, C,−L) are identically distributed,

justifies searching for the best quadratic function of (−L, C, H−C) among those

that are linear combinations of four rather than six quadratic terms.

Four basic quadratic unbiased variance estimators. Consider

(1.1)

σ̂2
1 = 2

[

(H−C)
2
+L2

]

, σ̂2
2 = C2 ,

σ̂2
3 = 2(H−C−L)C , σ̂2

4 = −
(H−C)L

2 log(2)− 5
4

.

The rationale for the somewhat bizarre coefficients is that each of these four terms

is an unbiased estimator of σ2
, with respective variances

(1.2)

Var(σ̂2
1) = 0.797943 σ4 , Var(σ̂2

2) = 2σ4 ,

Var(σ̂2
3) = 0.504753 σ4 , Var(σ̂2

4) = 1.004876 σ4 .

The proposed variance estimator vis à vis Garman–Klass. The

proposed estimator σ̂2
=

∑4
1 αi σ̂

2
i assigns to these four terms respective weights

(1.3) α1 = 0.273520 , α2 = 0.160358 , α3 = 0.365212 , α4 = 0.200910 ,

and achieves variance Var(σ̂2
) = 0.258658 σ4

. The Garman–Klass estimator

(1.4) σ̂2
GK = 0.511(h − l)2 − 0.019

(

c(h + l) − 2 h l
)

− 0.383 c2

happens to pool these four basic estimators too, so the Rao–Blackwell theorem

does not rule out the possibility that it coincides with σ̂2
. However, as argued

earlier, the two do not agree, and σ̂2
GK =

∑4
1 βi σ̂

2
i pays a price for being quadratic

in (c, h, l). Its coefficients are given by

β1 =
0.511

2
= 0.2555 ,

β2 = 0.511 − 0.383 − 0.019 = 0.1090 ,

β3 = 0.511 −
0.019

2
= 0.5015 ,

β4 = 2
(

0.511 − 0.019
)

(

2 log(2) −
5

4

)

= 0.1340 ,

(1.5)

that achieve Var(σ̂2
GK) = 0.27 σ4

.

Maximum Likelihood variance estimators and Fisher information.

In principle, giving up on the requirement of unbiasedness, the computer-intensive

maximum likelihood estimator (MLE) of σ2
by Magdon-Ismail & Atiya [7] could

have been a competitor, since MLE’s are functions of any sufficient statistic.
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However, this estimator is based on (h, l) rather than on (c, h, l). Magdon-Ismail

& Atiya report that their estimator has variance slightly higher than Garman–

Klass’. Variance estimators other than Garman–Klass and Rogers–Satchell have

been suggested in the literature, some for unknown drift, range-based (based

on MAX and MIN but not on OPEN and CLOSE , e.g., Alizadeh, Brandt &

Diebold [1], Christensen, Podolskij & Vetter [4]) or otherwise (e.g., noisy or lattice

measurements), but not unbiased — the subject matter of this paper. There is

no theoretical limit as to how accurately can σ2
be estimated, as its value is

a.s. deterministically imprinted into the trajectory of B on any time interval of

positive length.

The joint generating function of (c, h, l) is presented by Garman & Klass

as an infinite series, from which these authors derived all pertinent second and

fourth degree moments.

Ball & Torous [2] developed an infinite-series formula for the joint density

of (c, h, l) and used it to construct numerically the MLE of σ2
. They report esti-

mated efficiency of the MLE for a selection of sample sizes, basing each value on a

simulation sample size of 1000 runs, a great achievement in 1984, but insufficient

for delicate comparisons. The Fisher information was numerically re-evaluated

via the formula by Siegmund quoted earlier, exhibited as (A.1) in the sequel. The

inverse of the Fisher information is the Cramér–Rao lower bound for the variance

per time-window of any unbiased estimator of σ2
, for any sample size. It is also

the asymptotic variance of the (not necessarily unbiased) MLE of σ2
. Its value

turns out to be 0.2361. This is the benchmark with which C2
’s 2, Garman–Klass’

0.27 and the proposed estimate’s 0.258658 variances should be compared.

For our problem, the Cramér–Rao bound 0.2361 is not attained by

unbiased variance estimators: disproving exponentiality of a family of

distributions. Under proper regularity assumptions (see Joshi [6]), the Cramér–

Rao bound is attained if and only if there is a linear relationship between the

estimator and the score function (derivative with respect to the parameter of the

logarithm of the density). However, for this to happen, there must exist a linear

relationship between the score functions evaluated at different values of the pa-

rameter. It was ascertained numerically that this is not the case. In other words,

the model is not of exponential type. We don’t know whether the sufficient statis-

tic S2, shown above not to be complete, is minimal sufficient. As a result of all

of these considerations, the proposed estimator may not be of minimal variance.

Since both the proposed and Garman–Klass’ estimators are averages over

time-windows, their variances per time-window are independent of sample size.

It is conceivable, and Ball & Torous have provided evidence in this direction,

that the MLE has variance per time-window that decreases as the sample size

increases, so for small sample sizes the proposed estimator has in practice no

competitor.
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Moreover, since the BM model doesn’t really hold in practice, a broader

contribution of this paper is the introduction of more efficient quadratic statistics

on which to base practical estimators. Simulation results for random walks with

t-distributed increments are reported in Section 3.

2. DERIVATION

Following the steps of Garman & Klass, all second and fourth order mo-

ments of (C, L, H) will be identified. Some of these will be quoted from Garman

& Klass, some will be derived once the joint densities of (C, H) and (C, L) are

explicitly presented, and some will require some additional argument. Although

it would perhaps be more natural to work only with the exchangeable variables

∆ = H−C and δ = −L, work will be performed on the variables H and L as

well, in order to link more easily with Garman & Klass’ triple (c, h, l).

2.1. The joint densities of C and each of H and L: four unbiased

estimators

Assume throughout the computations that the drift is 0 and the variance

per unit time is 1. Thus, E[C2
] = E[c2

] = 1.

By a common reflection argument, BM reaching at least as high as x > 0

and ending up at y = x−(x−y) ∈ (0, x) is tantamount to ending up at x+(x−y).

Or, P
(

H > x, C ∈ [y, y +dy]
)

= P
(

C ∈ [2x−y, 2x−y +dy]
)

= 2φ (2x−y) dy,

where φ(·) =
1√
2π

exp
{

−1
2(·)2

}

is the standard normal density function (see Sieg-

mund or expression (A.1) in the Appendix for a generalization to (C, H, L)).

Similarly, P
(

L < z, C ∈ [y, y + dy]
)

= P
(

C ∈ [2z − y, 2z − y + dy]
)

=

2φ(2z − y) dy. Hence, the joint density of H and C is

(2.1) fH,C(x, y) = 4(2x − y)φ(2x − y) , 0 < y < x ,

and that of L and C is

(2.2) fL,C(z, y) = 4(y − 2z)φ(y − 2z) , z < 0 < y .

These joint densities, essentially re-phrasings of a well known formula for

the joint density of (h, h− c) (see Yor [12]), lead to the first four of the following

five second moments. The fifth is taken from Garman & Klass. Details are

omitted. E[C2
] =1 by assumption.

(2.3)

E[H2
] =

7

4
, E[L2

] =
1

4
, E[CH] =

5

4
, E[CL] = −

1

4
, E[HL] = 1 − 2 log(2) .
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As a corollary,

Lemma 2.1. The variance estimators σ̂i, i = 1, 2, 3, 4 (see (1.1)) are un-

biased.

Seshadri’s [10] theorem that 2h(h − c) is exponentially distributed with

mean 1, and is independent of c, implies that 2H (H − C) is exponentially dis-

tributed with mean 1, and is independent of C. This is so, simply because the

conditional distribution of (h, c) given that c > 0 is the (unconditional) distribu-

tion of (H, C).

Of course, the same applies to 2 l(l−c) and 2L(L−C). However, 2H(H−C)

and 2L(L−C) are dependent (identities (2.5) yield correlation 1 +
7
2 ζ(3) −

8 log(2) = −0.3380 between the two), and dependent given C.

Otherwise, it would have been very easy to sample (C, H, L) triples. As

things stand, it is easy to sample pairs (c, h) (and (c, l)) or (C, H) (and (C, L)),

by independently sampling c and h(h − c). A practical approximate method to

sample (C, H, L) triples is to sample (C ′, H ′
) correctly, then make the wrong

choice L′
= C ′−H ′

, not on [0, 1] but on each of the N sub-intervals [
i−1
N

, i
N

].

The construction is correct except if H and L are attained in the same sub-

interval, the probability of which decreases fast as N increases. Instead of letting

L′
= C ′−H ′

, other copulas may be used, to better approximate features of the

joint distribution of (C ′, H ′, L′
).

2.2. The MLE’s of σ2 based on (C, H) and on (C, L) are unbiased

It may be of interest to notice that (2.1) (resp. (2.2)), reinterpreted as

fH,C(x, y; σ) = 4
2x−y

σ3 φ
(2x−y

σ

)

, identifies the MLE of σ2
based on (C, H) (resp.

(C, L)) as the average over the sample of
1
3 (2H−C)

2
=

1
3 C2

+
1
3 [4(H−C)

2
] +

1
3 [4C (H −C)] and

1
3(2L−C)

2
=

1
3 C2

+
1
3 [4L2

] +
1
3 [−4CL]. The average of the

two, the simple average of the first three unbiased estimators in (1.1), achieves

variance 0.3694, above Garman–Klass’.

2.3. The fourth moments of (C, H, L)

The following fourth moments are derived from the joint densities of (H, C)

and (L, C). E[C4
] = 3 is Gaussian kurtosis.

(2.4)

E[H4
] =

93

16
, E[L4

] =
3

16
, E[CH3

] =
147

32
, E[CL3

] = −
3

32
,

E[C3H] =
27

8
, E[C3L] = −

3

8
, E[C2H2

] =
31

8
, E[C2L2

] =
1

8
.



206 I. Meilijson

The following fourth moment information is taken from Garman & Klass.

ζ is Riemann’s zeta function, with ζ(3) =
∑∞

k=1
1
k3 ≈ 1.2020569.

E[H2L2
] = E[h2l2] = 3 − 4 log(2) ,

E[C2HL] = E[c2h l] = 2 − 2 log(2) −
7

8
ζ(3) ,

E[H3L] + E[HL3
] = E

[

h l(h2
+ l2)

]

= 6 − 6 log(2) −
9

4
ζ(3) ,

E[CH2L] + E[CHL2
] = E

[

c h l (h + l)
]

=
9

2
− 4 log(2) −

7

4
ζ(3) .

(2.5)

There is one more (C, H, L)-based fourth moment needed, whose value does

not follow from Garman & Klass’.

Lemma 2.2. E[CHL2
] = ζ(3)/16 − 2 log(2) +

47
32 ≈ 0.1575842.

A proof of Lemma 2.2 can be found in the Appendix. Large sample em-

pirical estimation of E[CHL2
] gave 0.15762, yielding Var(σ̂2

4) very close to 1.

Had E[CHL2
] been equal to log(2)(3 − 4 log(2)) ≈ 0.15763 (initial conjecture),

Var(σ̂2
4) would have been exactly 1.

From all the fourth moments above,

E[C4
] = 3 ,

E[δ4
] = E[L4

] =
3

16
,

E[Cδ3
] = −E[CL3

] =
3

32
,

E[C2δ2
] = E[C2L2

] =
1

8
,

E[C3δ] = −E[C3L] =
3

8
,

E[C2
∆δ] = E[C3L] − E[C2HL] = 2 log(2) +

7

8
ζ(3) −

19

8
,

E[C∆δ2
] = E[CHL2

] − E[C2L2
](2.6)

= E[CHL2
] −

1

8
=

ζ(3)

16
− 2 log(2) +

43

32
,

E[∆
2δ2

] = E[H2L2
] + E[C2L2

] − 2E[CHL2
] =

3

16
−

ζ(3)

8
,

2 E[∆
3δ] = E[∆

3δ] + E[∆δ3
]

= −
(

E[H3L] + E[HL3
]
)

+ E[C3L] + E[CL3
] − 3E[C2HL] + 3E[CH2L] ,

= 6 log(2) −
9

16
ζ(3) −

27

8
.
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2.4. The covariance matrix of the four basic estimators

Let Σ stand for the covariance matrix of the four basic estimators. Their

variances are on the diagonal, their covariances off the diagonal.

Applying the formulas of the previous sub-section, the variances of the basic

estimators σ̂2
i (see (1.1)) are

Σ(1, 1) = Var(σ̂2
1) = 8

(

E[δ4
] + E[∆

2δ2
]
)

− 1 = 2 − ζ(3) = 0.797943 ,

Σ(2, 2) = Var(σ̂2
2) = 3 − 1 = 2 ,

Σ(3, 3) = Var(σ̂2
3) = 8

(

E[C2δ2
] + E[C2

∆δ]
)

− 1(2.7)

= 8

[

log(4) +
7

8
ζ(3) −

9

4

]

− 1 = 0.504753 ,

Σ(4, 4) = Var(σ̂2
4) =

E[∆
2δ2

]
(

log(4)− 5
4

)2 − 1 =

3
16 − ζ(3)

8
(

log(4)− 5
4

)2 − 1 = 1.004876 .

The covariances of the basic estimators are

Σ(1, 2) = Cov(σ̂2
1, σ̂

2
2) = 4E[C2δ2

] − 1 = −
1

2
,

Σ(1, 3) = Cov(σ̂2
1, σ̂

2
3) = 8E[Cδ3

] + 8E[C∆δ2
] − 1

=
21 + ζ(3)

2
− 16 log(2) = 0.010674 ,

Σ(1, 4) = Cov(σ̂2
1, σ̂

2
4) =

4E[∆δ3
]

log(4) − 5
4

− 1

=
12 log(2) − 27

4 − 9
8 ζ(3)

log(4) − 5
4

− 1 = 0.580786 ,(2.8)

Σ(2, 3) = Cov(σ̂2
2, σ̂

2
3) = 4E[C3δ] − 1 =

1

2
,

Σ(2, 4) = Cov(σ̂2
2, σ̂

2
4) =

E[C2
∆δ]

log(4) − 5
4

− 1 =

7
8 ζ − 9

8

log(4) − 5
4

= −0.537074 ,

Σ(3, 4) = Cov(σ̂2
3, σ̂

2
4) =

4E[C∆
2δ]

log(4) − 5
4

− 1

=

ζ(3)
4 +

43
8 − 8 log(2)

log(4) − 5
4

− 1 = −0.043711 .
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2.5. Derivation of the proposed estimator

Letting α (see (1.3)) stand for the weights assigned to the basic estimators,

the weighted sum has variance αT
Σα and mean αT1. Using a Lagrange multiplier

to constrain the mean to be 1, minimal variance is achieved at α =
Σ−1

1

1T Σ−11
,

yielding the weights displayed in (1.3). The variance of the proposed estimator

is
1

1T Σ−11
= 0.258658, with corresponding efficiency 21T

Σ
−11 = 7.73221.

3. HEAVY TAILED RANDOM WALKS — SIMULATION RESULTS

If the logarithmic return process is not distributed as a mean-zero Brownian

Motion, variance estimators that are quadratic in S1 or S2 can only be compared

empirically, aided by simulation. Even the simplest non-Gaussian Lévy pro-

cess, Poisson process with drift, seems to defy analysis. This section illustrates

the empirical construction of quadratic estimators via Regression. We generate

power-law-tailed random walk data by assigning quite arbitrarily a t-distribution

to its increments. This will permit to monitor comparative performance of the

S1 and S2 statistics in term of tail thickness.

As is commonly observed in financial data, the logarithmic increments of

returns have power-law tails, at least in the visible range, with tail parameter

around 3. This means finite variance but infinite variance of the usual empirical

variance estimators. Suppose that the basic process on which (Open, Close, Min,

Max) data is reported per time window is a random walk with t-distributed

increments. A simulation analysis will now be reported, in which the number

of increments of the random walk per time window is 10, 30 and 50, and the

degrees of freedom (df) range from 1.5 to 5 with step size 0.5. Minimum sum-of-

squares quadratic functions with mean 1 of the S1 and S2 statistics were fitted

by Regression, with sample size 10
5
: the regression coefficients were identically

calibrated so that the predictor of unity has mean 1 in each such sample. Each

such Regression was repeated 100 times, and the averages of the corresponding

regression coefficients and overall “variances” were recorded. Of course, second

moments are finite only for df > 2 and fourth moments are finite only for df > 4,

but the empirical study seems instructive. A sample of size 10
5

from the sum of

N = 50 t{df=3}-distributed random variables typically displays lighter tails than

df = 3 would entail. Table 1 reports the empirical minimum variance of the

quadratic functions, and Table 2 reports the coefficients of the building blocks

of expression (1.1) that yield the minimum-variance quadratic function for each

case. These building blocks have expectation 1 for Brownian Motion but not for

random walk, so their coefficients need not add up to unity. Table 1 displays

performances similar to those derived for Brownian Motion for moderate df , fast
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deteriorating when df decreases, in which case S2 data progressively outperforms

S1 data. S2 data yields lower variances than S1 data throughout the range, as

well as for uniform and double exponentially distributed increments, although

the difference in variance in these light-tail cases is as small as for BM .

Table 1: Minimum variance of mean-1 quadratic functions of S1 and S2 data.

N = 10 N = 30 N = 50
df

S2 S1 S2 S1 S2 S1

1.5 16.2403 51.0366 8.3438 32.4697 6.5322 28.3950
2.0 4.8444 6.6039 2.6532 3.8327 2.1972 3.2252
2.5 2.5864 2.8365 1.4297 1.5529 1.1718 1.2627
3.0 1.7359 1.8038 0.9527 0.9782 0.7630 0.7788
3.5 1.2334 1.2746 0.6809 0.6991 0.5467 0.5624
4.0 0.9469 0.9776 0.5409 0.5585 0.4532 0.4686
4.5 0.7864 0.8124 0.4792 0.4957 0.4094 0.4239
5.0 0.7071 0.7296 0.4473 0.4629 0.3896 0.4037
∞ 0.4679 0.4826 0.3630 0.3765 0.3369 0.3496

∞, N=∞ 0.2587 0.27

It is of interest to observe how does S2 outperform S1 data for low df .

Table 2 shows that the role of C is downplayed or even dampened in favor of

those of H−C and −L, gradually incorporating C into the Regression as df

increases. The rationale for this is that the tail parameter of sums of i.i.d. data

is the same as that of the summands, whereas the tail parameter of extrema is

the sum of those of the summands.

Table 2: Coefficients of the minimum variance mean-1 quadratic function

of S2 data for N = 50 increments per time window.

N= 50

df
2
�
(H−C)2 +L2

�
C2 2(H−C−L)C

−(H−C)L

2 log(2)− 5/4

1.5 0.0209 −0.0000 0.0010 0.1724
2.0 0.1358 −0.0004 0.0352 0.1561
2.5 0.1745 −0.0034 0.1573 0.1215
3.0 0.1827 0.0140 0.2461 0.1149
3.5 0.2006 0.0666 0.2460 0.1228
4.0 0.2185 0.1081 0.2442 0.1317
4.5 0.2335 0.1271 0.2620 0.1399
5.0 0.2480 0.1395 0.2781 0.1473
∞ 0.3974 0.2321 0.4390 0.2245

∞, N=∞ 0.2736 0.1604 0.3652 0.2009
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This makes C theoretically as heavy tailed as each increment, but makes

H−C and −L have lighter tails than the increments. In contrast, the [h, c, l]

data of statistic S1 is less able to split variables into light tail and heavy tail

components. Although h − |c| − l = H−C−L, the insistence on resorting to

quadratic functions leaves it out of the S1 game. Still, both statistics seem to

work fairly well even under low df . In contrast to the variances 2.1972 or 3.2252

for df = 2, 0.7630 or 0.7788 for df = 3 and 0.4532 or 0.4686 for df = 4 (see N = 50

in Table 1), the calibrated C2
has respective empirical variance above 5000, 16

and 2.5, converging reasonably fast
(

2 +
6

(df−4)N

)

to 2 thereafter.

APPENDIX — PROOF OF LEMMA 2.2

For the sake of conciseness, the tedious integration to be presented will be

restricted to the identification of E[CHL2
], although, in principle, more general

joint moments and moment generating function of (C, H, L) could have been

identified.

Consider the infinitesimal event
{

BM (1) ∈ (ξ, ξ+dξ), BM (s) ∈ (a, b), ∀s ∈

[0, 1]
}

, where a < min(ξ, 0) ≤ 0 ≤ max(ξ, 0) < b. By Siegmund’s Corollary 3.43,

its probability Q(ξ, a, b) dξ is as follows

(A.1) Q(ξ, a, b) =

∞
∑

j=−∞

{

φ
(

ξ − 2j (b − a)
)

− φ
(

ξ − 2a − 2j (b − a)
)

}

.

The joint density fc,h,l(ξ, a, b) is (minus) the mixed second derivative of Q

with respect to a and b, on
{

ξ ∈ (a, b), a < 0, b > 0
}

. The joint density fC,H,L is

simply 2fc,h,l, restricted to
{

ξ ∈ (0, b), a < 0, b > 0
}

. The two terms in the j = 0

and second term in the j =1 summands vanish because they are independent of

at least one of a and b.

To calculate E[CHL2
], the contribution of each summand in (A.1) will be

integrated in three univariate steps. The first step will integrate over a ∈ (−∞, 0)

the product of a2
and the pertinent mixed second derivative.

∂
∂a

φ(ξ+Ka+Mb) da

is to be interpreted as the integration-by-parts element dφ(ξ +Ka+Mb), viewed

as a function of a.
∫ 0

−∞

∂

∂b
a2 ∂

∂a
φ (ξ + Ka + Mb) da =

=
2

K2

∂

∂b

[

φ(ξ + Mb) + (ξ + Mb) Φ(ξ + Mb)
]

(for K > 0)

=
2M

K2
Φ(ξ + Mb) (for K > 0)

=
2M

K2
Φ(ξ + Mb) −

2M

K2
(for K < 0) .(A.2)
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Now expression (A.2) will be multiplied by ξ and integrated over ξ ∈ (0, b).

For K > 0 (K < 0) it is convenient to integrate Φ
∗

(Φ). These terms appear in

(A.3) and (A.4). The free term in (A.2) contributes
2M
K2

b2

2 and cancels with the

corresponding b2
term in (A.4).

∫ b

0
ξ

∂

∂b

∫ 0

−∞
a2φ(ξ + Kda + Mb) dξ =

=
2M

K2

∫ (M+1)b

Mb

y Φ(y) dy −
2M2 b

K2

∫ (M+1)b

Mb

Φ(y) dy

=
M

K2

[

(M2b2
+1) Φ(Mb) −

(

(M2−1)b2
+ 1

)

Φ
(

(M +1)b
)

+ Mb φ(Mb) − (M −1)b φ
(

(M +1)b
)

]

= −
M

K2

[

(M2b2
+1) Φ

∗
(Mb) −

(

(M2−1)b2
+ 1

)

Φ
∗(

(M +1)b
)

(A.3)

+ Mb φ(Mb) − (M −1)b φ
(

(M +1)b
)

]

+
M

K2
b2 .(A.4)

Finally, expressions (A.3) and (A.4), multiplied by b and integrated over

b ∈ (0,∞), via

(A.5)

∫ ∞

0
b3

Φ
∗
(Ab) db =

3

8A4
,

∫ ∞

0
b Φ

∗
(Ab) db =

1

4A2
,

∫ ∞

0
b2 φ(Ab) db =

1

2A3
,

yield a rational function of j (with M = 2j and K =−2j or K =−2(j−1)) whose

sum contains only terms of the form −
∑∞

1 (−1)
j 1

j
= log(2) and

∑∞
1

1
j3 = ζ(3),

as in the statement of Lemma 2.2. Further details are omitted.
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1. INTRODUCTION

The Rayleigh distribution has a wide range of applications including life

testing experiments and clinical studies. One major application of this model is

used in analyzing wind speed data. This distribution is a special case of the two

parameter Weibull distribution with the shape parameter equal to 2. This statis-

tical model was first introduced by Rayleigh (Rayleigh (1880)). Siddiqui (1962)

discussed the origin and properties of the Rayleigh distribution. Several authors

have contributed to this model, namely, Sinha and Howlader (1983), Ariyawansa

and Templeton (1984), Howlader (1985), Howlader and Hossian (1995), Lalitha

and Mishra (1996) and Abd Elfattah et al. (2006).

The probability distribution function (PDF) of one-parameter Rayleigh dis-

tribution is:

(1.1) f(x|σ) =
x

σ2
exp

(

−
x2

2 σ2

)

, x ≥ 0, σ > 0 .

The objective of this article is to estimate the parameter and to obtain

the credible and highest posterior density (HPD) intervals of the parameter of

the Rayleigh distribution. We are proposing four different types of estimator.

Under squared error loss function, there are two estimators formed by using

Jeffreys prior and an extension of Jeffreys prior. The two remaining estimators

are derived using the same Jeffreys prior and extension of Jeffreys prior under a

new loss function introduced by Al-Bayyati (2002).

The article is organized as follows: Section 2 proposes two Bayes estimators

of σ and the estimation is based on the squared error loss function using Jeffreys

prior and an extension of Jeffreys prior information. Section 3 introduces the

remaining two Bayes estimators of σ based on a loss function introduced by

Al-Bayyati (2002) that uses Jeffreys and extension of Jeffreys prior. Section 4

presents the credible interval and the HPD interval for the Rayleigh parameter

using extended Jeffreys prior. Section 5 is devoted to illustrative examples using

both simulated and real life data sets, and Section 6 is the discussion.

2. PARAMETER ESTIMATION UNDER SQUARED ERROR

LOSS FUNCTION

In this section, two different prior distributions are used for estimating the

parameter of the Rayleigh distribution, namely; Jeffreys prior (Jeffreys (1961))

and extension of Jeffreys prior information.
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2.1. Using Jeffreys prior

Considering there are n realizations, x = (x1, x2, ..., xn) from (1.1). We

consider Jeffreys prior as g1(σ) ∝
√

I(σ), where

I(σ) = −n E

(

∂2
log f(x, σ)

∂σ2

)

=
n

σ2
.

Then the joint p.d.f. is given by

f(x, σ) =

n
∏

i=1

f(xi, σ) g1(σ) ,

and the corresponding marginal PDF of x is obtained as

p(x) =

∫ ∞

0
f(x, σ) dσ ∝

[

2
n−1

Γ(n)
√

n
]

∏n
i=1 xi

(
∑n

i=1 x2
i

)n .

The posterior PDF of σ has the following form

π1(σ|x) =

2

(

s2

2

)n

Γ(n)σ2n+1
exp

(

−
s2

2 σ2

)

,(2.1)

where s2
=

∑n
i=1 x2

i . By using a squared error loss function (L(σ̂, σ) = c(σ̂−σ)
2
),

for some constant c, the risk function is

R(σ̂) =

∫ ∞

0
L(σ̂, σ)π1(σ|x) dσ

= c σ̂2 − 2 c
Γ

(

2n−1
2

)

Γ(n)

√

s2

2
σ̂ +

c

(n−1)

s2

2
.

The Bayes estimator σ̂1 is the solution of the equation
∂R(σ̂)

∂σ̂
= 0, which results

in

σ̂1 =
Γ

(

2n−1
2

)

Γ(n)

(

s2

2

)1/2

.(2.2)

2.2. Using extension of Jeffreys prior

Al-Kutubi (2005) proposed an extension of Jeffreys prior in the following

form g2(σ) ∝ (I(σ))
c1

, c1 ∈ R+
, where I(σ) is the same as in Jeffreys prior.

Moving along similar path, posterior PDF of σ has the following form:

π2(σ|x) =

2

(

s2

2

)n+c1−0.5

Γ(n + c1− 0.5) (σ2)
n+c1

exp

(

−
s2

2σ2

)

.(2.3)
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By using squared error loss function, we obtain the risk function as

R(σ̂) =

∫ ∞

0
L(σ̂, σ)π2(σ|x) dσ

= c σ̂2 − 2 c
Γ(n + c1−1)

Γ(n + c1− 0.5)

√

s2

2
σ̂ + c

Γ(n + c1−1.5)

Γ(n + c1− 0.5)
·
s2

2
.

The Bayes estimator σ̂2 is the solution of the equation
∂R(σ̂)

∂σ̂
= 0, which

results in

σ̂2 =
Γ(n + c1−1)

Γ(n + c1− 0.5)

(

s2

2

)1/2

.(2.4)

Remark 2.1. Replacing c1 = 1/2 in (2.4), the same Bayes estimator is

obtained as in (2.2) corresponding to Jeffreys prior. By replacing c1 = 3/2 in (2.4),

Bayes estimator (2.4) becomes the estimator under Hartigan’s prior (Hartigan

(1964)).

3. PARAMETER ESTIMATION UNDER A NEW LOSS FUNC-

TION

This section uses a new loss function introduced by Al-Bayyati (2002).

Employing this loss function, we obtain Bayes estimators using Jeffreys and ex-

tension of Jeffreys prior information.

Al-Bayyati (2002) introduced a new loss function of the form

LA(σ̂, σ) = σc2(σ̂ − σ)
2 , c2 ∈ R .(3.1)

Here this loss function is used to obtain the estimator of the parameter of the

Rayleigh distribution.

3.1. Using Jeffreys prior

By using the loss function in the form given in (3.1), we obtain the following

risk function:

R(σ̂) =

∫ ∞

0
LA(σ̂, σ)π1(σ|x) dσ

= σ̂2 Γ
(

2n−c2
2

)

Γ(n)

(

s2

2

)

c2

2

− 2 σ̂
Γ

(

2n−c2−1
2

)

Γ(n)

(

s2

2

)

c2+1

2

+
Γ

(

2n−c2−2
2

)

Γ(n)

(

s2

2

)

c2+2

2

.
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The Bayes estimator σ̂3 is the solution of the equation
∂R(σ̂)

∂σ̂
= 0, which

results in

σ̂3 =
Γ

(

n−c2−1
2

)

Γ
(

n−c2
2

)

(

s2

2

)1/2

.(3.2)

Remark 3.1. Replacing c2 =−2 in (3.2), we get Bayes estimator under

quadratic loss function (QLF) with Jeffreys prior, and if c2 = 0 in (3.2), we get

the Bayes estimator under squared error loss function with Jeffreys prior that

reduces to (2.2).

3.2. Using extension of Jeffreys prior

Taking the posterior distribution (2.3) and the loss function in the form

given in (3.1), the corresponding risk function becomes

R(σ̂) =

∫ ∞

0
LA(σ̂, σ)π2(σ|x) dσ

= σ̂2 Γ
(

2n+2c1−c2−1
2

)

Γ
(

2n+2c1−1
2

)

(

s2

2

)

c2

2

− 2 σ̂
Γ

(

2n+2c1−c2−2
2

)

Γ
(

2n+2c1−1
2

)

(

s2

2

)

c2+1

2

+
Γ

(

2n+2c1−c2−3
2

)

Γ
(

2n+2c1−1
2

)

(

s2

2

)

c2+2

2

.

The Bayes estimator σ̂4 is the solution of the equation
∂R(σ̂,σ)

∂σ̂
= 0, which

results in

σ̂4 =
Γ

(

2n+2c1−c2−2
2

)

Γ
(

2n+2c1−c2−1
2

)

(

s2

2

)1/2

.(3.3)

Remark 3.2. Replacing c1 = 1/2 and c2 = 0 in (3.3), we get the Bayes

estimator under squared error loss function with Jeffreys prior which is same

as (2.2) and if c1 = 1/2 and c2 = −2 in (3.3), we get the Bayes estimator under

QLF with Jeffreys prior.

4. THE CREDIBLE INTERVAL AND THE HPD INTERVAL

USING EXTENDED JEFFREYS PRIOR

Earlier we derived the Bayesian point estimator of the unknown param-

eter, but it is important to account for posterior uncertainty. The purpose of
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this section is to derive the credible interval and HPD interval for the Rayleigh

parameter under extended Jeffreys prior. First, we will construct the credible

interval and then we will introduce the HPD interval.

From the expression (2.3), we see that
2s2

σ2 follows a Chi-Squared distribu-

tion with 2(n + c1− 0.5) degrees of freedom
[

χ2
(2(n+c1−0.5))

]

. So, to construct a

100(1− α)% credible interval for σ, we have

1 − α = P

[

χ2
(1−α

2
, 2(n+c1−0.5))

<
2 s2

σ2
< χ2

(
α

2
, 2(n+c1−0.5))

]

= P





2 s2

χ2
(

α

2
, 2(n+c1−0.5))

< σ2 <
2 s2

χ2
(1−α

2
, 2(n+c1−0.5))



 .

Therefore, we get the 100(1− α)% credible interval for σ as

(4.1)

[

CL(σ), CU (σ)

]

=







√

√

√

√

2 s2

χ2
(

α

2
, 2(n+c1−0.5))

,

√

√

√

√

2 s2

χ2
(1−α

2
, 2(n+c1−0.5))






.

The HPD interval is one of the most effective tool that helps to measure

posterior uncertainty. As discussed in Box and Tiao (1973), a HPD interval is

such that the posterior density for every point inside the interval is greater than

that for every point outside it, so that the intervals include the more probable

values of the parameter. For a given probability, say 1− α; the HPD interval is

of the shortest interval to offer a pertinent summary of the posterior knowledge

of the parameter.

Since the PDF (2.3) is unimodal, the HPD interval (H1, H2) with proba-

bility 1− α, for σ must satisfy the equations (4.2) and (4.3) simultaneously (see

Box and Tiao (1973)).

The 100(1−α)% HPD interval [H1, H2] for σ is derived from the following

equations:

(4.2)

∫ H2

H1

π2(σ|x) dσ = 1 − α

and

(4.3) π2(H1|x) = π2(H2|x) .

After simplification, the equations (4.2) and (4.3) take the following form:

∫ s
2

2H2
1

s2

2H2
2

1

Γ(n + c1− 0.5)
zn+c1−1.5e−z dz = 1 − α(4.4)
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and

(4.5)

(

H2

H1

)2n+2c1

= exp

[

s2

2H2
1

−
s2

2H2
2

]

.

The HPD interval [H1, H2] is the simultaneous solution of (4.4) and (4.5).

5. ILLUSTRATIVE EXAMPLES

This section presents the performance of four proposed estimators based

on a simulation study and real life data application.

5.1. Simulation study

In this section, we carry out a Monte Carlo simulation to study the per-

formance of the proposed Bayes estimators. The performance is evaluated based

on the bias and mean squared error (MSE) criteria for different sample sizes

(n = 10, 20, 30) and for different prior parameters. In computing the estimators,

we have generated samples from (1.1) with σ = 0.5 and 1, and repeated the pro-

cess for 10,000 times. The average bias and MSE’s are presented in Tables 1

and 2, respectively. In our simulation study, we have used c1 = 0.5, 1.0, 1.5, 2.0

and c2 = ±1,±2.

MSE of σ̂ is defined by MSE (σ̂) = E(σ̂−σ)
2

= Var(σ̂) + [Bias(σ̂)]
2
. Note

that 10,000 repetitions will provide accuracy in the order ±(10 000)
−0.5

= ±0.01

(Karian and Dudewicz (1999)), so results are reported to four decimal places.

Graphical depiction of data is often times a better representation of results.

The goal is to graphically present similar results to offer a thorough assessment of

the four estimators corresponding to their biases and MSE’s. Results in Figure 1

is obtained from a simulation study. Herein we sampled data from (1.1) with

σ = 1 with five different sample sizes (n = 10, 20, 30, 40, 50). Four estimators are

calculated based on these samples with the values of c1 = 0.5, 1.0, 1.5, 2.0 and

c2 = ±1,±2.

Figure 1 is a conditional plot for biases and MSE’s of four estimators,

conditioned by sample sizes obtained from the simulated study. In Figure 1, we

see that for σ̂1, bias and MSE are very consistent, irrespective of sample size and

both are approaching zero as sample size increases; whereas for the remaining

estimators, they are out of sync for different choices of c1 and c2. When sample

size increases from 10 to 50, the bias and MSE both decreases quite significantly.
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Figure 1: Conditional plot of bias and MSE of four estimators, conditioned on

sample size from a simulated study with σ = 1. In the plot “Estimator1”

stands for σ̂1, “Estimator2” for σ̂2, “Estimator3” for σ̂3 and “Estimator4”

for σ̂4, respectively. Results are based on 10,000 simulations.

5.2. A real life data example

Here we consider an example of a real life data set for comparing the per-

formances of four estimators with the maximum likelihood estimator (MLE)

of Rayleigh distribution. Based on the model (1.1), the MLE of σ is given

by σ̂MLE =

√

1
2n

∑n
i=1x2

i . We make use of a wind speed data set (Albuhairi

(2006)) of Taiz, located southwest of Yemen. Average monthly wind speed for

the year 2002 has been used for this analysis. Before performing estimation of

parameter, we have checked goodness of fit of this data by using three different

measures: Kolmogorov–Smirnov (KS) test, Anderson–Darling (AD) test and χ2

goodness of fit test. KS test (test statistic value = 0.35711 with p-value 0.07098),

AD test (test statistic = 1.9879) and χ2
test (test statistic value = 0.8251 with

p-value = 0.36369) suggest that one-parameter Rayleigh provides an adequate fit

to this data set. Based on this 12 data points, we find σ̂MLE = 3.1593. Table 3

presents the values of four estimators with choices of c1 = 0.5, 1.0, 1.5, 2.0 and

c2 = ±1.0, ±2.0.

An important issue is to determine whether these Bayes estimators give

better estimates than the MLE. To test this, we have computed Kolmogorov–

Smirnov (KS) distances between the empirical distribution and the fitted dis-
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tribution functions for MLE and other Bayes estimators. In all cases, the KS

distance for Bayes estimators are smaller than the distance using MLE (results

are not reported here).

Table 3: Four different estimators of the parameter σ based on wind speed data

with values of c1 = 0.5, 1.0, 1.5, 2.0 and c2 = ±1,±2.

c1 c2 σ̂1 σ̂2 σ̂3 σ̂4

−1 3.1946 3.1946 3.1779 3.1779

0.5
1 3.1946 3.1946 3.2117 3.2117

−2 3.1946 3.1946 3.1614 3.1614
2 3.1946 3.1946 3.2290 3.2290

−1 3.1946 3.1779 3.1779 3.1614

1.0
1 3.1946 3.1779 3.2117 3.1946

−2 3.1946 3.1779 3.1614 3.1451
2 3.1946 3.1779 3.2290 3.2117

−1 3.1946 3.1614 3.1779 3.1451

1.5
1 3.1946 3.1614 3.2117 3.1779

−2 3.1946 3.1614 3.1614 3.1291
2 3.1946 3.1614 3.2290 3.1946

−1 3.1946 3.1451 3.1779 3.1291

2.0
1 3.1946 3.1451 3.2117 3.1614

−2 3.1946 3.1451 3.1614 3.1133
2 3.1946 3.1451 3.2290 3.1779

Table 4 presents the 95% credible and the HPD intervals for σ under ex-

tended Jeffreys prior distribution. For comparison, we have calculated 95% confi-

dence interval using the asymptotic variance of the MLE as (2.2655, 4.0531). The

width of the HPD intervals are smaller than the width of the confidence inter-

val, corresponding to all choices of c1 values, whereas the 95% credible intervals

provide larger width compared to the HPD intervals and the confidence interval.

Table 4: The 95% Credible intervals and HPD intervals for wind speed data.

c1

Intervals
0.5 1.0 1.5 2.0

Credible (3.4887, 6.2155) (3.4332, 6.0429) (3.3805, 5.8827) (3.3304, 5.7336)
HPD (2.4909, 4.2542) (2.3664, 4.1413) (2.3134, 4.0362) (2.2819, 3.9381)
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6. DISCUSSION

From the simulation study, we establish that the estimators are asymp-

totically unbiased and consistent. For moderate or large sample sizes, all the

estimators with Hartigan’s prior along with QLF have minimal biases. We also

notice that, except σ̂1, other estimators underestimate when c1 = 1.5 and c2 =−2.

When we take into account Jeffreys prior with QLF, σ̂3 and σ̂4 underestimates,

whereas σ̂1 and σ̂2 overestimates. Finally, when comparing the functioning of

all the estimators, we illustrate that as far as biases are concerned, σ̂2 performs

better than σ̂1 in view of Hartigan’s prior. Using KS distance we find that four

Bayes estimators provide convincingly better estimates of σ than σ̂MLE based on

wind speed data.
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1. INTRODUCTION

When an ordering among parameters is known in advance, the problem

of estimating the smallest or the largest parameters arises in various practical

problems. For example, in estimating the mean lives of two components in which

one is produced by a standard factory and the other is produced by a local factory,

it is quite natural to assume an ordering among mean lives of the components

that produced by two factory.

Estimating the ordered parameters has been considered by several research-

ers. For a classified and extensively reviewed work in this area, see van Eeden

(2006). Suppose that an estimator is admissible when no information on the

ordering of parameters is given. Then a natural question of interest is: Does this

estimator remain admissible when it is assumed that the parameters are ordered?

A few researchers address this question for some well known distributions

under the Squared Error Loss (SEL) and scale-invariant SEL function. For ex-

ample, Katz (1963) introduced mixed estimators for simultaneous estimation of

two ordered binomial parameters and showed that they are better than the un-

restricted Maximum Likelihood Estimators (MLEs). Kumar and Sharma (1988)

considered mixed estimators for two ordered normal means and discussed the

minimaxity and inadmissibility of them. In estimating the ordered scale parame-

ters of two exponential distributions Kaur and Singh (1991), Vijaysree and Singh

(1991,1993), Kumar and Kumar (1993,1995), and Misra and Singh (1994) con-

sidered componentwise or simultaneous estimation of the ordered means of two

exponential distributions and discussed the admissibility and inadmissibility of

mixed estimators based on the sample means and the restricted MLEs. In es-

timating the ordered scale parameters of two gamma distributions, Misra et al.

(2002) derived a smooth estimator that improves upon the best scale equivariant

estimators, Chang and Shinozaki (2002) considered estimation of linear functions

of the ordered scale parameters and Meghnatisi and Nematollahi (2009) consid-

ered admissibility and inadmissibility of mixed estimators of the ordered scale

parameters when the shape parameters are arbitrary and known, see also Self

and Liang (1987).

Suppose that Xij , j = 1, 2, ..., ni, i = 1, 2, be two independent random

samples from gamma distribution with known shape parameter νi > 0 and

unknown scale parameter βi > 0, i = 1, 2, with probability density function (pdf)

fXij
(x) =

1

βνi

i Γ(νi)
xνi−1e−x/βi , x > 0, νi > 0, βi > 0 ,(1.1)

j = 1, ..., ni, i = 1, 2 .

We assume that 0 < β1 ≤ β2, and want to estimate β1 and β2 component-wise.
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It is interesting to note that in the literature, estimating the ordered param-

eters are often considered under the SEL and scale-invariant SEL function which

are symmetric about the parameter value and convex in estimator δ. In some es-

timation problems, over-estimation may be more serious than under-estimation.

For example, in estimating the average life of the components of an aircraft,

over-estimation is usually more serious than under-estimation. In such cases, the

usual methods of estimation, which are based on symmetric loss function may be

inappropriate. In this regard, Misra et al. (2004) used asymmetric LINEX loss

function to estimate the ordered parameters of two normal populations. As an

alternative to scale-invariant SEL, which is appropriate for estimating the scale

parameters β1 and β2, consider the entropy loss function given by

L(βi, δi) =
δi
βi

− ln
δi
βi

− 1 , i = 1, 2 ,(1.2)

which is also known as Stein’s loss. This loss is convex in δi and not symmetric,

also it penalizes heavily under-estimation. In estimating the ordered parameters

under the entropy loss function, Parsian and Nematollahi (1995) discussed the

admissibility of usual estimators of the ordered Poisson parameters and Chang

and Shinozaki (2008) compared the linear function of maximum likelihood and

unbiased estimators of ordered gamma scale parameters and its reciprocals. For a

review of the literature in using entropy loss, see Parsian and Nematollahi (1996)

and references cited therein. Under the loss (1.2), the best scale invariant and

admissible estimator of βi under the model (1.1) is δi =
∑ni

j=1Xij/niνi = Xi/νi,

i = 1, 2 (see Dey et al., 1987 and Nematollahi, 1995), and it is also the MLE of βi,

i = 1, 2.

In this paper we consider the class of mixed estimators of β1 and β2 under

the model (1.1) with the restriction 0 < β1 ≤ β2, and discuss the admissibility

and inadmissibility of the usual and mixed estimators of β1 and β2 under the

entropy loss (1.2). To this end, in Section 2, a subclass of mixed estimators of βi
that beats the usual estimators δi = Xi/νi, i = 1, 2, is obtained and the inad-

missible estimators in the class of mixed estimators are identified. In Section 3,

the admissible estimators in the class of mixed estimators are considered. The

asymptotic efficiency of mixed estimators relative to the usual estimators are

given in Section 4. In Section 5, the results are extended to a subclass of the

scale parameter exponential family and also the family of transformed chi-square

distributions introduced by Rahman and Gupta (1993).

2. INADMISSIBILITY RESULTS

Let Xi1, Xi2, ..., Xini
, i = 1, 2, be two independent random samples from

Gamma (νi, βi)-distribution, i = 1, 2, with pdf (1.1) where 0 < β1 ≤ β2 are un-

known and ν1, ν2 are known positive real valued shape parameters. Let γi = niνi
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and δi =

ni
∑

j=1
Xij/γi = Xi/νi, i = 1, 2. Then δ1 and δ2 are the ML, best scale

equivariant and admissible estimators of β1 and β2, respectively, when β1 and β2

are unrestricted. Consider the mixed estimators

δ1α = min
(

δ1, αδ1 +(1−α)δ2
)

, 0 ≤ α < 1 ,(2.1)

and

δ2α = max
(

δ2, αδ2 +(1−α)δ1
)

, 0 ≤ α < 1 ,(2.2)

of β1 and β2, respectively. When α = α1 =
γ1

γ1+γ2
, then δ1α is the MLE of β1 and

if α = α2 =
γ2

γ1+γ2
, then δ2α is the MLE of β2 when β1 ≤ β2, see Robertson et al.

(1988) and Chang and Shinozaki (2002) for more details.

In this section, we identify the values of α such that δiα is inadmissible

among the class of mixed estimators of βi and δiα dominates the usual estimator δi
of βi, i = 1, 2. Let R(β, δiα) = E

[

δiα
βi

− ln
δiα
βi

−1
]

and R(β, δi) = E
[

δi
βi
− ln

δi
βi
−1
]

be the risk functions of δiα and δi, i = 1, 2, respectively. Also, let y1 = β2/β1,

y2 = β1/β2 and z = γ1y1/(γ1y1+γ2). Since 0<β1 ≤ β2, we have y1 ≥ 1, 0<y2 ≤1

and 0< z < 1.

Theorem 2.1. With α1 =
γ1

γ1+γ2
, under the entropy loss function (1.2),

for α ∈ (α1, 1), γ1 > 1 and 0 < β1 ≤ β2,

R(β, δ1α1
) < R(β, δ1α) < R(β, δ1) .

Proof: Let T1 =
γ2δ2

γ1y1δ1+γ2δ2
and T2 =

γ1δ1
β1

+
γ2δ2
β2

. Then δ1 =
β1T2(1−T1)

γ1
,

δ2 =
β2 T1T2

γ2
and T1 and T2 are statistically independent with T1 ∼ Beta(γ2, γ1)

and T2 ∼ Gamma(γ1 + γ2, 1). Let ∆1 = R(β, δ1) −R(β, δ1α), then

∆1 = E

[

{

δ1
β1

− ln
δ1
β1

−
αδ1 + (1− α)δ2

β1

+ ln
αδ1 + (1− α)δ2

β1

}

I[0,∞)(δ1− δ2)

]

= E

[

{

(1− α)(δ1− δ2)

β1
+ ln

(

α+ (1− α)
δ2
δ1

)}

I[0,∞)(δ1− δ2)

]

= E

[

{

1− α

γ1γ2

(

γ2 − (γ1y1 + γ2)T1

)

T2

+ ln

(

α+ (1− α)
γ1y1T1

γ2(1− T1)

)}

I0,1−z](T1)

]

= E
[

f1α(T1) I[0,1−z](T1)

]

,

(2.3)
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where

f1α(x) =
(1− α) (γ1 + γ2)

γ1γ2

(

γ2 − (γ1y1 + γ2)x
)

+ ln

(

αγ2(1− x) + (1− α)γ1y1x

γ2(1− x)

)

.

(2.4)

From (2.4) and the distribution of T1, the expectation (2.3) exist whenever γ1 > 1.

Now using the fact that lnx ≥ 1 − 1
x

for x > 0, we have

f1α(x) ≥
(1− α)

(

γ2 − (γ1y1 + γ2)x
)

γ1γ2

(

αγ2 (1− x) + (1− α)γ1y1x
)

×

[

x(γ1 + γ2)

(

(1− α)γ1y1− αγ2

)

+ αγ2(γ1 + γ2) − γ1γ2

]

=
1− α

γ1γ2

[

αγ2(1− x) + (1− α)γ1y1x
] g1α(x) ,

(2.5)

where

g1α(x) = A1(y1, α)x2
+B1(y1, α)x+ C1(y1, α) ,(2.6)

and

A1(y1, α) = (γ1 + γ2) (γ1y1 + γ2)

(

αγ2 − (1− α)γ1y1

)

,

B1(y1, α) = γ2

[

(γ1y1 + γ2)

(

γ1− α(γ1 + γ2)

)

+ (γ1 + γ2)

(

(1− α)γ1y1− αγ2

)

]

,

C1(y1, α) = γ2
2

[

α(γ1 + γ2) − γ1

]

.

(2.7)

Note that C1(y1, α) > 0 for all y1 ≥ 1 and α > α1. When A1(y1, α) 6= 0, the

quadratic form (2.6) has the roots

x1 = 1 − z and x2 = 1 − z +
γ1γ

2
2 (y1−1)

A1(y1, α)
.

If A1(y1, α) > 0, then x1 = 1 − z is the smaller positive root and if A1(y1, α)< 0

then x1 =1−z is the only positive root when α∈ (α1,1). For the case A1(y1,α) = 0,

x1 = 1−z is the only root. So, from (2.5), f1α(x) > 0 for x ∈ [0, 1 − z], and

hence ∆1 > 0 for all 0 < β1 ≤ β2 when α ∈ (α1, 1), i.e., R(β, δ1α) < R(β, δ1) for

all α ∈ (α1, 1) when γ1 > 1.
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Now from (2.3) and (2.4), when γ1 > 1 we have

∂R(β, δ1α)

∂α
= −

∂∆1

∂α

= E

[

{

γ1 + γ2

γ1γ2

(

γ2 − (γ1y1 + γ2)T1

)

−
γ2(1− T1) − γ1y1T1

αγ2(1− T1) + (1− α)γ1y1T1

}

× I[0,1−z](T1)

]

= E





g1α(T1)

γ1γ2

{

αγ2(1− T1) + (1− α)γ1y1T1

} I[0,1−z](T1)



 ,

(2.8)

where g1α(x) is given by (2.6). For α ∈ (α1, 1) the above expectation is exist,

and using a similar argument after relation (2.7), we conclude that g1α(x) > 0 for

all α ∈ (α1, 1) and x ∈ [0, 1− z]. Therefore, from (2.8), R(β, δ1α) is an increasing

function of α for α ∈ (α1, 1), i.e., R(β, δ1α1
) < R(β, δ1α) for all α ∈ (α1, 1) and

γ1 > 1, which completes the proof.

To compare the risks of δ1α1
, δ1α and δ1, we use a Monte Carlo simulation

study. First note that
γiδi
βi

∼ Gamma(γi, 1), i = 1, 2, so the risk function of δi,

i = 1, 2, under the entropy loss function (1.2) is given by

R(βi, δi) = E

[

δi
βi

− ln
δi
βi

− 1

]

= 1 − E

[

ln
γiδi
βi

]

+ ln γi − 1

= −
Γ
′
(γi)

Γ(γi)
+ ln γi = ln γi − ψ(γi) , i = 1, 2 ,

(2.9)

where ψ(γi) =
Γ′(γi)
Γ(γi)

is the digamma function. Using similar argument as in proof

of Theorem 2.1, we have

R(β, δ1α) = E

[

δ1α
β1

− ln
δ1α
β1

− 1

]

= E

[

(

αδ1 + (1− α)δ2
β1

− ln
αδ1 + (1− α)δ2

β1
− 1

)

I[0,∞)(δ1− δ2)

+

(

δ1
β1

− ln
δ1
β1

− 1

)

I(0,∞)(δ2 − δ1)

]

= E

[(

δ1− (1− α) (δ1− δ2)

β1
− ln

(

δ1− (1− α) (δ1− δ2)

β1

)

− 1

)

× I[0,∞)(δ1− δ2) +

(

δ1
β1

− ln
δ1
β1

− 1

)

I(0,∞)(δ2 − δ1)

]

= E

[{

[

T2(1− T1)

γ1
−

1− α

γ1γ2

(

γ2 −
(γ1

y2
+ γ2

)

T1

)

T2

]

− ln

[

T2(1−T1)

γ1
−

1−α

γ1γ2

(

γ2−
(γ1

y2
+ γ2

)

T1

)

T2

]

−1

}

I(0,1−z](T1)

+

{

T2(1− T1)

γ1
− ln

(

T2(1− T1)

γ1

)

− 1

}

I(1−z,1)(T1)

]

.

(2.10)
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Similarly R(β, δ1α1
) is obtained with replacing α by α1 in (2.10). To calculate

R(β, δ1α) in (2.10), we generate a random sample of size m1 = 1000 from T1 ∼

Beta(γ2,γ1) and a random sample of size m2 = 1000 from T2 ∼Gamma(γ1+γ2,1)

for some values of γ1 and γ2. Then by using Monte Carlo integration, the esti-

mated risk of (2.10) is computed for α and α1. Tables 1 and 2 show the risk of δ1
and estimated risks of δ1α1

and δ1α for some values of γ1, γ2 and α. From these

tables we observe that R(β, δ1α1
) < R(β, δ1α) < R(β, δ1) for α ∈ (α1, 1), which is

proved analytically in Theorem 2.1.

Table 1: Estimated risks of δ1α1
and δ1α when γ1 = 1 in comparison of

R(β, δ1) = 0.5772.

γ2 = 1, α = 0.6 γ2 = 2, α = 0.5 γ2 = 3, α = 0.4
y2

R(β, δ1α1
) R(β, δ1α) R(β, δ1α1

) R(β, δ1α) R(β, δ1α1
) R(β, δ1α)

0.1 0.5481 0.5502 0.5474 0.5496 0.5256 0.5263
0.2 0.5419 0.5459 0.5209 0.5285 0.5273 0.5310
0.3 0.5515 0.5559 0.5261 0.5341 0.5012 0.5096
0.4 0.5643 0.5688 0.5087 0.5202 0.5103 0.5181
0.5 0.5080 0.5137 0.5306 0.5405 0.5050 0.5149
0.6 0.5192 0.5236 0.5100 0.5222 0.4724 0.4839
0.7 0.5051 0.5111 0.5424 0.5535 0.4652 0.4762
0.8 0.5430 0.5474 0.5258 0.5347 0.4743 0.4841
0.9 0.5341 0.5382 0.4586 0.4675 0.4603 0.4699
1.0 0.5123 0.5161 0.4914 0.4990 0.4581 0.4656

Table 2: Estimated risks of δ1α1
and δ1α when γ1 = 2 in comparison of

R(β, δ1) = 0.2704.

γ2 = 2, α = 0.7 γ2 = 3, α = 0.6 γ2 = 4, α = 0.5
y2

R(β, δ1α1
) R(β, δ1α) R(β, δ1α1

) R(β, δ1α) R(β, δ1α1
) R(β, δ1α)

0.1 0.2674 0.2685 0.2582 0.2589 0.2666 0.2668
0.2 0.2596 0.2619 0.2578 0.2602 0.2498 0.2514
0.3 0.2497 0.2542 0.2633 0.2674 0.2502 0.2538
0.4 0.2297 0.2369 0.2629 0.2685 0.2637 0.2679
0.5 0.2358 0.2433 0.2410 0.2485 0.2431 0.2500
0.6 0.2391 0.2468 0.2103 0.2194 0.2254 0.2317
0.7 0.2358 0.2451 0.2389 0.2481 0.2288 0.2371
0.8 0.2510 0.2589 0.2243 0.2338 0.2093 0.2155
0.9 0.2531 0.2618 0.2284 0.2352 0.2344 0.2392
1.0 0.2332 0.2395 0.2262 0.2338 0.2369 0.2412
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Theorem 2.2. With α2 =
γ2

γ1+γ2
= 1−α1, under the entropy loss function

(1.2), for α ∈ (α2, 1), γ2 > 1 and 0 < β1 ≤ β2,

R(β, δ2α2
) < R(β, δ2α) < R(β, δ2) .

Proof: Let ∆2 = R(β, δ2) − R(β, δ2α), then using similar argument as in

the proof of Theorem 2.1, we have

∆2 = E

[

{

(1− α)(δ2 − δ1)

β2
+ ln

(

α+ (1− α)
δ1
δ2

)}

I[0,∞)(δ1 − δ2)

]

= E

[

{

1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

+ ln

(

α+ (1− α)
γ2y2(1 − T1)

γ1T1

)}

I[0,1−z](T1)

]

= E
[

f2α(T1) I[0,1−z](T1)

]

,

(2.11)

where

f2α(x) =
(1− α)(γ1 + γ2)

γ1γ2

(

(γ1 + γ2y2)x− γ2y2

)

+ ln

(

αγ1x+ (1− α) γ2y2(1− x)

γ1x

)

.

(2.12)

From (2.12) and the distribution of T1, the expectation (2.11) exists whenever

γ2 > 1. Now from (2.12) and the inequality ln(x) ≥ 1 − 1
x

for x > 0, we have

f2α(x) ≥
1− α

γ1γ2

[

αγ1x+ (1− α) γ2y2(1− x)
] g2α(x) ,(2.13)

where

g2α(x) = A2(y2, α)x2
+B2(y2, α)x+ C2(y2, α) ,(2.14)

and

A2(y2, α) = (γ1 + γ2) (γ1 + γ2y2)

(

αγ1 − (1− α)γ2y2

)

,

B2(y2, α) = γ2

[

(γ1 + γ2y2)

(

(1− α) (γ1 + γ2)y2 − γ1

)

− (γ1 + γ2) y2

(

αγ1 − (1− α)γ2y2

)

]

,

C2(y2, α) = γ2
2 y2

[

γ1 − (1− α) (γ1 + γ2) y2

]

.

(2.15)



236 N. Nematollahi and Z. Meghnatisi

Note that C2(y2, α)> 0 and A2(y2, α)> 0 for all y2 ≤ 1 and α>α2. The quadratic

form (2.14) has the roots

x1 = 1 − z and x2 = 1 − z +
γ2

1γ2(1 − y2)

A2(y2, α)
,

and hence x1 = 1−z is the smallest positive root. Hence, from (2.13), f2α(x) > 0

for x ∈ [0, 1 − z], and ∆2 > 0 for all 0 < β1 ≤ β2 when α ∈ (α2, 1), which is

shown that R(β, δ2α) < R(β, δ2) for all α ∈ (α2, 1) when γ2 > 1.

Now, similar to the proof of Theorem 2.1, it is easy to show that for γ2 > 1,

∂R(β, δ2α)

∂α
= −

∂∆2

∂α

= E

[

{

γ1 + γ2

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

−
γ1T1 − γ2y2(1 − T1)

αγ1T1 + (1− α) γ2y2(1 − T1)

}

× I[0,1−z](T1)

]

= E





g2α(T1)

γ1γ2

{

αγ1T1 + (1− α) γ2y2(1 − T1)

} I[0,1−z](T1)



 ,

(2.16)

where g2α(x) is given by (2.14). Since g2α(x) > 0 for all x ∈ [0, 1 − z] and α ∈

(α2, 1), so from (2.16) R(β, δ2α) is an increasing function of α for α ∈ (α2, 1),

i.e., R(β, δ2α2
) < R(β, δ2α) for all α ∈ (α2, 1) and γ2 > 1, which completes the

proof.

Now we compare the risks of δ2α2
, δ2α and δ2. Similar to (2.10), we can

show that

R(β, δ2α) = E

[

δ2α
β2

− ln
δ2α
β2

− 1

]

= E

[{

[

T1T2

γ2
−

1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

]

− ln

[

T1T2

γ2
−

1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

]

− 1

}

× I(0,1−z](T1) +

{

T1T2

γ2
− ln

(

T1T2

γ2

)

− 1

}

I(1−z,1)(T1)

]

.

(2.17)

To calculate R(β, δ2α) in (2.17), we use a Monte Carlo simulation study similar

to the one used for computing (2.10). Tables 3 and 4 show the risk of δ2 and

estimated risks of δ2α2
and δ2α for some values of γ1, γ2 and α. From these tables

we see that R(β, δ2α2
) < R(β, δ2α) < R(β, δ2) for α ∈ (α2, 1), which is proved

analytically in Theorem 2.2.
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Table 3: Estimated risks of δ2α2
and δ2α when γ2 = 2 in comparison of

R(β, δ2) = 0.2704.

γ1 = 1, α = 0.8 γ1 = 2, α = 0.7 γ1 = 3, α = 0.6
y2

R(β, δ2α2
) R(β, δ2α) R(β, δ2α2

) R(β, δ2α) R(β, δ2α2
) R(β, δ2α)

0.1 0.2452 0.2469 0.2610 0.2634 0.2531 0.2538
0.2 0.2551 0.2629 0.2454 0.2499 0.2544 0.2610
0.3 0.2468 0.2557 0.2256 0.2354 0.2273 0.2377
0.4 0.2248 0.2378 0.2062 0.2204 0.2039 0.2184
0.5 0.2189 0.2303 0.1947 0.2126 0.1985 0.2141
0.6 0.2045 0.2185 0.1838 0.2025 0.1787 0.1962
0.7 0.2151 0.2281 0.1846 0.2009 0.1644 0.1796
0.8 0.2149 0.2272 0.1784 0.1938 0.1569 0.1718
0.9 0.1912 0.2017 0.1849 0.1968 0.1568 0.1672
1.0 0.1942 0.2002 0.1607 0.1723 0.1444 0.1539

Table 4: Estimated risks of δ2α2
and δ2α when γ2 = 3 in comparison of

R(β, δ2) = 0.1758.

γ1 = 2, α = 0.7 γ1 = 3, α = 0.6 γ1 = 4, α = 0.5
y2

R(β, δ2α2
) R(β, δ2α) R(β, δ2α2

) R(β, δ2α) R(β, δ2α2
) R(β, δ2α)

0.1 0.1706 0.1711 0.1655 0.1658 0.1689 0.1692
0.2 0.1719 0.1735 0.1644 0.1656 0.1610 0.1618
0.3 0.1567 0.1595 0.1628 0.1649 0.1623 0.1638
0.4 0.1568 0.1608 0.1458 0.1494 0.1527 0.1552
0.5 0.1419 0.1474 0.1325 0.1370 0.1362 0.1392
0.6 0.1340 0.1402 0.1371 0.1415 0.1276 0.1309
0.7 0.1359 0.1419 0.1174 0.1226 0.1155 0.1188
0.8 0.1281 0.1335 0.1208 0.1252 0.1031 0.1065
0.9 0.1194 0.1242 0.1159 0.1184 0.1024 0.1041
1.0 0.1220 0.1242 0.1035 0.1055 0.1007 0.1015

Remark 2.1. Theorem 2.1 shows that for α ∈ (α1, 1) the mixed estima-

tors (2.1) are inadmissible and are beaten by the MLE δ1α1
of β1 when γ1 > 1.

Also Theorem 2.2 show that for α ∈ (α2, 1) the mixed estimators (2.2) are in-

admissible and are beaten by the MLE δ2α2
of β2 when γ2 > 1. If γ1 = γ2 = γ,

i.e., n1ν1 = n2ν2, then α1 = α2 =
1
2 and the mixed estimators δ1α and δ2α are

inadmissible for α ∈ (
1
2 , 1) when γ > 1. Note that this is the case when n1 = n2

and ν1 = ν2.
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3. ADMISSIBILITY RESULTS

In this section, for the case γ1 = γ2 = γ and γ > 1, we discuss the admis-

sibility of δ1α and δ2α for β1 and β2 in the class of mixed estimators (2.1) and

(2.2), respectively. As noted in Remark 2.1, these estimators are inadmissible

when α ∈ (
1
2 , 1). So, we discuss their admissibility for α ∈ [0, 1

2 ] in the sequel.

(i) Admissibility of δ2α

For deriving admissible estimators in the class of mixed estimators (2.2),

we find values of α that minimizes the risk function R(β, δ2α). From (2.16) with

γ1 = γ2 = γ and γ > 1, we have

∂R(β, δ2α)

∂α
= E

[

{

2

(

(1+ y2)T1 − y2

)

−
(1+ y2)T1 − y2

α
{

(1+ y2)T1 − y2

}

+ y2(1− T1)

}

I[0, y2

1+y2
](T1)

](3.1)

which is a strictly increasing function of α, i.e., R(β, δ2α) for fixed β is a strictly

convex function of α. Therefore for α > 0, γ > 1 and fixed β, R(β, δ2α) will be

minimized at the point α given by
∂R(β,δ2α)

∂α
= 0 which reduces to

E

[

{

2

y1
−

1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)

}

×
{

(1+ y1)T1 − 1

}

I[0, 1

1+y1
](T1)

]

= 0 .

(3.2)

For y1 = 1, (3.2) reduces to

(

2α2 (1, γ) − 1

)

E

[

(2T1 − 1)
2

α2(1, γ) {2T1 − 1} + (1 − T1)
I[0, 1

2
](T1)

]

= 0 .(3.3)

Since the expectation in (3.3) is finite for α2(1, γ) > 0 and γ > 1, so (3.3) has the

root α2(1, γ) =
1
2 . From (3.2), α2(y1, γ) is a continuous function of y1 ≥ 1 but the

behavior of α2(y1, γ) can not be determined analytically. The graph of α2(y1, γ)

as a function of y1 ≥ 1 for different values of γ > 1 are shown in Figure 1. From

this figure we observe that α2(y1, γ) decreases as y1 or γ or both increases, and

for fixed γ, α2(y1, γ) → −∞ as y1 → ∞. Therefore for each α ∈ [0, 1
2 ] there is

a y1 for which R(β, δ2α) is minimum, which implies that for α ∈ [0, 1
2 ], δ2α is

admissible in the class of mixed estimators. So, we have the following conjecture.
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Figure 1: Graph of α2(y1, γ) for different values of γ.

Conjecture 3.1. For γ1 = γ2 = γ and γ > 1, under the entropy loss func-

tion (1.2), the estimator δ2α in the class of mixed estimators (2.2) is admissible

if and only if α ∈ [0, 1
2 ].

Remark 3.1. From (3.1) we have

∂R(β, δ2α)

∂α
= E

[{

2

y1
−

1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)

}

×
{

(1+ y1)T1 − 1

}

I[0, 1

1+y1
](T1)

]

,

and for y1 > 2,

2

y1
< 1 <

1

1 − T1
<

1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)
,

so,
∂R(β,δ2α)

∂α
> 0 when y1 > 2. Therefore the minimum value α2(y1, γ) of R(β, δ2α)

is attained when 1 ≤ y1 < 2, so we only need the graph of α2(y1, γ) for 1 ≤ y1 < 2

(see Figure 1).
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(ii) Admissibility of δ1α

Similarly, From (2.8) with γ1 = γ2 = γ and γ > 1, we have

∂R(β, δ1α)

∂α
= E

[

{

2

(

1−(1+y1)T1

)

−
1 − (1+ y1)T1

α
{

1 − (1+ y1)T1

}

+ y1T1

}

I[0, 1

1+y1
](T1)

]

,

which is a strictly increasing function of α, i.e., R(β, δ1α) for fixed β is a strictly

convex function of α. Therefore, for α > 0, γ > 1 and fixed β, R(β, δ1α) will be

minimized at the point α given by
∂R(β,δ1α)

∂α
= 0 which reduces to

E

[

{

2 −
1

α1(y1, γ)
{

1 − (1+ y1)T1

}

+ y1T1

}

×
{

1 − (1+ y1)T1

}

I[0, 1

1+y1
](T1)

]

= 0 .

(3.4)

Similar to part (i), for y1 = 1, (3.4) has the root α1(1, γ) =
1
2 . From (3.4),

α1(y1, γ) is a continuous function of y1 ≥ 1 but the behavior of α1(y1, γ) can

not be determined analytically. The graph of α1(y1, γ) as a function of y1 ≥ 1

for different values of γ > 1 are shown in Figure 2. From this figure we can

not determine the minimum value of α for each γ > 1. So, the admissibility or

inadmissibility of δ1α for α ∈ [0, 1
2) remain unsolved.

Figure 2: Graph of α1(y1, γ) for different values of γ.
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Remark 3.2. The above argument shows that for y1 = 1, R(β, δ1α) and

R(β, δ2α) minimized at α1(1, γ) =
1
2 and α2(1, γ) =

1
2 , respectively. So, for γ1 =

γ2 = γ and γ > 1, the MLEs δ1, 1
2

, δ2, 1
2

are admissible for β1 and β2 among the

class of mixed estimators (2.1) and (2.2), respectively.

4. EFFICIENCY OF MIXED ESTIMATORS

Let e(δiα, δi) = R(β, δi)/R(β, δiα) denote the efficiency of δiα relative to δi,

i = 1, 2. In Section 2, we derived conditions for which δiα, i = 1, 2, is more efficient

than δi, i = 1, 2. Since R(β, δi) and R(β, δiα) are positive, so e(δiα, δi) > 0 for

i = 1, 2. In this section, we compare the asymptotic efficiency of these mixed

estimators relative to usual estimators.

From (2.9), we have R(β, δi) = ln γi−ψ(γi), i = 1, 2. Note that for γi > 0,

1
2γi

< ln γi − ψ(γi) <
1
γi

, i = 1, 2.

Theorem 4.1. Let γ1 = γ2 = γ and γ > 1, then for 0 ≤ α < 1 and for

i = 1, 2,

(a) lim
y1→∞

e(δiα, δi) = 1 for all γ > 1.

(b) lim
γ→∞

e(δiα, δi) = 1 for all 0 < β1 < β2.

Proof: (a) For i = 1, from (2.3) and (2.9) with γ1 = γ2 = γ and γ > 1

we have

∣

∣

∣

∣

1−
R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

=
1

ln γ−ψ(γ)

∣

∣

∣
E[f1α(T1)] I[0, 1

1+y1
](T1)

∣

∣

∣
≤ A(γ, y1)

∫ z1

0
|f1α(x)| dx

where A(γ, y1) =
Γ(2γ) (z1(1−z1))γ−1

Γ2(γ) [ln γ−ψ(γ)]
, z1 =

1
1+y1

and f1α(x) is given by (2.4). Notice

that

|f1α(x)| =

∣

∣

∣

∣

2(1− α)

(

1 − (1+ y1)x
)

+ ln
α(1− x) + (1− α)y1x

1− x

∣

∣

∣

∣

≤ 2(1− α)

[

1 − (1+ y1)x
]

− ln
α(1− x) + (1− α)y1x

1− x
.

Now, if α = 0 then |f1α(x)| ≤ 2[1 − (1+ y1)x] − ln
x

1−x − ln y1 and

∣

∣

∣

∣

1 −
R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

≤ A(γ, y1)

{

−
[

1 − (1+ y1)x
]2

1+ y1
− x lnx

− (1− x) ln(1− x) − x ln y1

∣

∣

∣

1

1+y1

0

}

= A(γ, y1)B1(y1) ,

(4.1)
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where

B1(y1) =
1

1+ y1
+ ln

(

1+ y1

y1

)

.(4.2)

If 0 < α < 1, then using the fact lnx ≥ 1 − 1
x
, x > 0, we have

|f1α(x)| ≤ 2(1− α)

[

1− x(1+ y1)

]

+
(1− α)

[

1 − (1+ y1)x
]

α(1− x) + (1− α)y1x
,

and

∣

∣

∣

∣

1 −
R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

= A(γ, y1)

{

−(1− α)
[

1 − (1+ y1)x
]

1+ y1
−

[

(1− α) (1+ y1)

y1− α(1+ y1)

]

×

[

x−
α ln

(

α(1− x) + (1− α)y1x
)

y1− α(1+ y1)

−
ln
(

α(1− x) + (1− α)y1x
)

1+ y1

]

} ∣

∣

∣

∣

∣

1

1+y1

0

= A(γ, y1)B2(α, y1) ,

(4.3)

where

B2(α, y1) = (1− α)

[

1

1+ y1
−

1

y1− α(1+ y1)

×

{

1 −
y1

y1− α(1+ y1)
ln

(

y1

α(1+ y1)

)}

]

.

(4.4)

It is easy to verify that when α∈ (0, 1), B1(y1)→ 0 and B2(α, y1)→ 0 as y1→∞.

Also 0≤A(γ, y1)≤
Γ(2γ) ( 1

4
)γ

Γ2(γ) [ln γ−ψ(γ)]
. So from (4.1) and (4.3), lim

y1→∞

∣

∣

∣
1− R(β,δ1α)

R(β,δ1)

∣

∣

∣
= 0

for all α ∈ [0, 1), i.e., lim
y1→∞

e(δ1α, δ1) = 1 for all α ∈ [0, 1) and γ > 1, which com-

pletes the proof for i = 1. For i = 2, the proof is similar.

(b) For 0 < β1 < β2 (i.e., 0 < z1 < 1) we have

0 ≤ A(γ, y1) ≤
2 γ Γ(2γ)

Γ2(γ)

(

y1

(1+ y1)
2

)γ−1

=
γ2

Γ(2γ + 1)

Γ2(γ + 1)

(

z1(1 − z1)
)γ−1

.

Using Stirling’s approximation formula
(

Γ(γ + 1) ≃ γγ+
1

2 e−γ
√

2π
)

, we have

0 ≤ A(γ, y1) ≤
4

√
2π

γ
3

2

(

4z1(1 − z1)
)γ−1

which tends to zero as γ → ∞. Now from (4.1)–(4.4), lim
γ→∞

∣

∣

∣
1 − R(β,δ1α)

R(β,δ1)

∣

∣

∣
= 0,

i.e., lim
γ→∞

e(δiα, δi) = 1 for all 0 < β1 < β2 and α ∈ [0, 1), which completes the

proof for i = 1. For i = 2, the proof is similar.
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5. EXTENSION TO A SUBCLASS OF EXPONENTIAL FAMILY

Let Xi = (Xi1, Xi2, ..., Xini
), i = 1, 2, has the joint probability density func-

tion

f(xi, θi) = C(xi, ni) θ
−mi

i e−Ti(xi)/θi , i = 1, 2 ,(5.1)

where xi = (xi1, ..., xini
), C(xi, ni) is a function of xi and ni, θi = τ ri for some

r > 0, mi is a function of ni and Ti(xi) is a complete sufficient statistic for θi
with Gamma(mi, θi)-distribution. For example, Exponential(βi) with θi = βi,

Gamma(νi, βi) with θi = βi and known vi, Inverse Gaussian(∞, λi) with θi =
1
λi

,

Normal(0,σ2
i ) with θi=σ

2
i , Weibull(ηi,βi) with θi= ηβi

i and known βi, Rayleigh(βi)

with θi = β2
i , Generalized Gamma(αi, λi, pi) with θi = λpi

i and known pi and αi,

Generalized Laplace(λi, ki) with θi = λki

i and known ki belong to the family of

distributions (5.1). An admissible linear estimator of θi = τ ri in this family under

the entropy loss function can be found in Parsian and Nematollahi (1996).

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(mi, θi)-distribution, therefore we

can extend the results of Sections 2–4 to the subclass of exponential family (5.1)

by replacing γi = niνi, βi and

ni
∑

j=1
Xij = γiδi by mi, θi and Ti(Xi), respectively.

The results of Sections 2–4 can be extended to some other families of distri-

butions which do not necessarily belong to a scale families, such as Pareto or beta

distributions. A family of distributions that includes these distributions as spe-

cial cases, is the family of transformed chi-square distributions which is originally

introduced by Rahman and Gupta (1993). They considered the one parameter

exponential family

f(xi, ηi) = eai(xi)b(ηi)+c(ηi)+h(xi) , i = 1, 2 ,(5.2)

and showed that −2 ai(Xi)b(ηi) has a Gamma
(

ki

2 , 2
)

-distribution if and only if

2 c′(ηi)b(ηi)
b′(ηi)

= ki .(5.3)

When ki is an integer, −2 ai(Xi)b(ηi) follow a chi-square distribution with

ki degrees of freedom. They called the one parameter exponential family (5.2)

which satisfies (5.3), the family of transformed chi-square distributions. For ex-

ample, beta, Pareto, exponential, lognormal and some other distributions belong

to this family of distributions (see Table 1 of Rahman and Gupta,1993).

Now it is easy to show that if condition (5.3) holds then the one parameter

exponential family (5.2) is in the form of the scale parameter exponential family

(5.1) with mi =
ki

2 , Ti(Xi) = ai(Xi) and θi = −1/b(ηi) (see Jafari Jozani et al.,

2002). Hence with these substitutions, we can extend the results of Sections 2–4

to the family of transformed chi-square distributions.
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1. INTRODUCTION

The exponential distribution has been extensively used in life data analysis,

but it is suitable for those situations where hazard rate is constant. For mono-

tonic hazard rate, a number of distributions have been proposed and perhaps

the most widely used among these are Weibull and gamma distributions. Both

of these distributions have increasing/decreasing hazard rate depending on their

shape parameters. However, one major disadvantage of the gamma distribution

is that its distribution function and survival function can not be expressed in nice

closed forms, particularly, if the shape parameter is not an integer. Even if the

shape parameter is an integer, the hazard function involves the incomplete gamma

function which is difficult for further mathematical manipulations. Numerical in-

tegration is often used to obtain the distribution function, the survival function

or the hazard function. This may be one of the reasons that made the gamma

distribution unpopular in comparison to the Weibull distribution. Although

Weibull distribution has a nice closed form for hazard and survival function,

it has its own disadvantages. For example, Bain and Engelhardt [1] have pointed

out that the maximum likelihood estimators (MLE’s) for the parameters of the

Weibull distribution may not behave properly over the whole parameter space.

Gupta et al. [5] proposed the use of the exponentiated gamma distribution as an

alternative to gamma and Weibull distributions. The probability density function

(p.d.f.) of the exponentiated gamma (EG) distribution is given below

(1.1) f(t|θ) = θ t e−t
[

1 − e−t
(t + 1)

]θ−1
, t > 0, θ > 0 ,

where θ is the shape parameter of the distribution. The cumulative distribution

function (c.d.f.) and the reliability function, denoted as F (x) and R(x), of the

distribution having p.d.f. (1.1) are given as

F (x) =
[

1 − e−x
(x + 1)

]θ
(1.2)

and

R(x) = 1 −
[

1 − e−x
(x + 1)

]θ
.(1.3)

It may be noted here that the considered model is a simple generalization of

the Gamma distribution with known shape and scale parameters, namely G(2,1).

This distribution is parsimonious in parameters and, hence, simple to use. The

other advantage is that it has various shapes of hazard function for different values

of θ. It has increasing hazard function when θ > 1/2 and its hazard function takes

Bath-tub shape for θ ≤ 1/2. For other details about this distribution, we refer

Shawky and Bakoban [9].

For the estimation of the parameter of a distribution, it is most common

to use quadratic loss, defined as

(1.4) L1(θ, θ̂) = (θ̂ − θ)2 ,
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where θ̂ is the estimate of θ. It may be noted here that (1.4) defines a symmetric

loss function which may be suitable for estimation of location parameter. For

scale parameter, a modified form of this may be defined as follows

(1.5) L2(θ, θ̂) =

(

θ̂

θ
− 1

)2

.

One can criticize the use of the quadratic loss function L2 for the scale parameter

estimation, because it penalizes overestimation more heavily. An alternative loss

function may be defined on the basis of the Kullback–Leibler information number.

Kullback [7] described the entropy distance as the mean information from the

likelihood function f(t, θ) against f(t, θ̂), where t = (t1, t2, ..., tn), and, thus, the

loss function may be defined as

(1.6) L3(θ, θ̂) = E

[

ln
f(t, θ̂)

f(t, θ)

]

.

Accordingly, it reduces for the distribution (1.1) as

(1.7) L3(θ̂, θ) ∝

(

θ̂

θ

)

− ln

(

θ̂

θ

)

− 1 .

This loss function is known as Entropy loss function and it was first introduced

by James and Stein [6] for the estimation of the Variance-Covariance (i.e., Disper-

sion) matrix of the Multivariate normal distribution. Dey et al. [4] considered this

loss function for simultaneous estimation of scale parameters and their recipro-

cals, for p independent gamma distributions. Rukhin and Ananda [8] considered

the estimation problem of the variance of a Multivariate Normal vector under

the Entropy loss and Quadratic loss. The loss function (1.6) has also been used

by many other authors (see Yang [11], Wieczorkowski and Zielinski [10], etc.).

Calabria and Pulcini [2] defined General Entropy loss function (GELF) as

(1.8) L(θ, θ̂) ∝

(

θ̂

θ

)c1

− c1 ln

(

θ̂

θ

)

− 1 .

The constant c1 involved in (1.8) is its shape parameter. It reflects the departure

from symmetry. When c1 > 0, over estimation (θ̂ > θ) is considered to be more

serious than under estimation of equal magnitude and vice versa. Needless to

mention that the loss (1.8) is a generalization of the Entropy loss function (1.7).

The Bayes estimator θ̂G of θ under GELF (1.8) is given by

(1.9) θ̂G =
[

Eθ(θ
−c1)

](−1/c1)
,

provided that the expectation Eθ(θ
−c1) exists and is finite. Here, Eθ denote the

expectation w.r.t. the posterior p.d.f. of θ.

Note that if we put c1 = −1 in (1.9), it provides the Bayes estimator under

squared error loss function (SELF) L1, which associates equal importance to the

losses for over estimation and under estimation of equal magnitudes.
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In this paper, the MLE’s for the parameter θ of the EG distribution and its

reliability function R(x) for a specified x are derived in Section 2.1. In Section 2.2

Bayes estimators are obtained under GELF and SELF. Estimation of the param-

eters has been considered for a type II censored sample from p.d.f. (1.1). Finally,

numerical illustrations and comparisons are presented in Sections 3 and 4 respec-

tively.

2. CLASSICAL AND BAYESIAN ESTIMATION OF θ AND R

In a typical life test experiment, n identical objects are placed under test

and exact times of failure are recorded. Usually, life tests are time consuming

and costly. Therefore, at some predetermined fixed time τ or after predetermined

fixed number of failures r, the test may be terminated. In both cases, the data

collected consist of observations t = (t1, t2, ..., tr) and units survived, beyond the

time of termination τ in the former case and beyond the rth
failure tr in the

latter, remains unobserved. In a censored case, where τ is fixed and r is random,

the censoring is said to be type I. On the other hand, when r is fixed and time

of termination τ is random, the censoring is said to be type II. For both type I

and type II censoring, Cohen [3] gave the likelihood function as

(2.1) l(t|θ) =
n!

(n − r)!

r
∏

i=1

f(t(i)|θ)
[

1 − F (t0)
](n−r)

,

where f(t(i)|θ) and F (t0) are the density and distribution functions respectively.

For type I censoring t0 = τ and for type II censoring t0 = tr. Hence, expressions

for the estimators of parameters under type I censoring can easily be obtained

from the corresponding expressions of estimators for type II censoring just by

replacing τ in place of tr. Therefore, in the following Sections, we have considered

the problem of estimation under type II censoring only.

2.1. Maximum likelihood estimators

Let us consider that n identical items whose life time follow the p.d.f. (1.1),

are put on test. The test is terminated, as soon as, we observe r ordered failure

times, say t1 < t2 < · · · < tr. Naturally, t1, t2, ..., tr constitute type II censored

sample. Consider that the life time of the items follow distribution (1.1). Sub-

stituting f(t|θ) and F (t) from (1.1) and (1.2) in (2.1), the likelihood function is

obtained as

(2.2) l(t|θ) =
n!

(n − r)!
θre−T

(1 − V θ
)
n−r ,
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where

ui = 1−e−ti(ti +1), V = 1−e−tr(tr +1) and T =

r
∑

i=1

(

ti− ln ti−(θ−1) ln ui

)

.

It may be verified that the MLE θ̂M of θ is the solution of the following

equation

(2.3) θ̂M =
r

(n − r) lnV (V −θ̂M −1)−1 −
∑r

i=1 ln ui

.

It may be noted that this is an implicit equation in θ̂M , so it can not be solved

analytically. We propose to solve it by using numerical iteration method, partic-

ularly Newton–Raphson method.

Using the invariance property, the MLE R̂M of R may be obtained by

replacing θ by its MLE θ̂M in (1.3). The same is, therefore, given by

(2.4) R̂M = 1 −
[

1 − e−t
(t + 1)

]θ̂M .

2.2. Bayes estimators

2.2.1. Bayes estimator of θ

For Bayesian estimation, we need to specify a prior distribution for the

parameter. Consider a Gamma prior for θ having p.d.f.

(2.5) g(θ) =
δν

Γ(ν)
e−δθ θν−1 , θ > 0, δ > 0, ν > 0 .

Using Bayes theorem for combining (1.1) and (2.5), we get the posterior of θ

given t as follows

(2.6) h1(θ|t) =
(δ + q)ν+r

k Γ(ν + r)
e−(δ+q)θ θν+r−1

(

1 − V θ
)(n−r)

,

where

k =

n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)−(ν+r)

, w(j) = (−1)
j

(

n − r

j

)

,

u =

r
∏

i=1

[

1 − e−ti(ti +1)
]

, q = − lnu and p = lnV .
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Using (1.9), the Bayes estimator of θ under GELF for the posterior (2.6) is

obtained as

(2.7) θ̂G =
1

δ + q

(

Γ(ν + r − c1)

Γ(ν + r)

)−(1/c1)(k1

k

)−(1/c1)

,

provided ν + r > c1, where

k1 =

n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)−(ν+r−c1)

.

It can easily be verified that the Bayes estimator of θ under SELF for the

posterior (2.6) is

(2.8) θ̂S =
ν + r

δ + q
×

k11

k
,

where

k11 =

n−r
∑

j=0

w(j)

(

1 −
j p

δ + q

)−(ν+r+1)

.

2.2.2. Bayes estimator of R

The posterior p.d.f. of R, given t, can be obtained from the posterior p.d.f.

(2.6), using the transformation (1.3). After simplification, it reduces to

(2.9) h2(R|t1, t2, ..., tr) =
Qν+r

Γ(ν +r)k

(

φ1(R)
)ν+r−1

e−(Q−1)φ1(R)
(

1−V Zφ1(R)
)(n−r)

,

where

φ1(R) = ln(1−R)
−1, Q = Z(δ+q), Z = 1/ ln(z−1

), z = z(t) = 1−e−t
(t+1) .

Now, the Bayes estimator of R under GELF relative to the posterior (2.9)

is obtained as

(2.10)

R̂G =



1 +
1

k

n−r
∑

j=0

∞
∑

l=1

c1(c1 +1) · · · (c1 + l −1)

l
ω(j)

(

1 +
l − jZp

Q

)−(ν+r)




(−1/c1)

.

Putting c1 = −1 in (2.10), we get the Bayes estimator of R under SELF as

(2.11) R̂S =
1

k

n−r
∑

j=0

w(j) (k12 − k13) ,
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where

k12 =

(

1 −
jZ p

Q

)−(ν+r)

and k13 =

(

1 −
jZ p −1

Q

)−(ν+r)

.

It may be noted that the expression for R̂S obtained above is the same as

that obtained by Shawky and Bakoban [9].

3. COMPARISON OF ESTIMATORS

In this Section, we shall compare the estimators obtained under GELF with

the corresponding Bayes estimators under SELF and the MLE. The estimators

θ̂M and R̂M denote the MLE’s of the parameter θ and the reliability function

R(x) for a specified x respectively. (θ̂G, R̂G) and (θ̂S , R̂S) are the corresponding

Bayes estimators under GELF and SELF. The comparisons are based on the

risks(average loss over sample space) of the estimators of the parameters

θ and R of the considered model. The exact expressions for the risks can not

be obtained, therefore, the risks of the estimators are estimated on the basis of

Monte-Carlo simulation study of 5000 samples. It may be noted that the risks of

the estimators under type II censoring will be a function of sample size n, number

of observations r, parameters δ and ν of prior distribution, parameter θ of the

model, x and loss function parameter c1. In order to consider a variation of these

values, we have obtained the simulated risks for n = 15[5]25 and r = 8[2]14.

The various values of the hyper parameters considered here are δ = 1[1]7 and

ν = 1[1]7. We vary c1 = −3.0[0.5]3.0. θ and x are arbitrarily taken as 1.5 and 0.5

respectively. After an extensive study of results, conclusions are drawn regarding

the behavior of the estimators. It may be mentioned here that because of space

restriction, results for all the variations in the parameters are not shown here.

Only selected figures are included. In the figures RG(·) and RS(·) denote the risks

of (·) under GELF and SELF respectively.

Firstly, we observed the impact of variation of sample size n and number

of observations r under type II censoring on the risks of estimators θ̂G, θ̂S , θ̂M ,

R̂G, R̂S and R̂M , keeping the value of other parameters fixed. It is observed

that as n increases, the risks of all the estimators decrease in all the considered

cases; although the decrease is more for θ̂M and R̂M . For large sample sizes, the

difference between the risks of the estimators are negligibly small. It is further

observed that if we increase the value of r keeping the sample size n fixed, there

is a slight decrease in the risks of the estimators (to save the space corresponding

figures are not included in this paper). Keeping these points in mind, we have

presented the figures with (n, r) equal to (15, 12) only.

Let us now study the effect of variation of loss parameter c1 on the risks

of the estimators. It is re-iterated that the positive sign of the loss parameter c1
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indicates that over estimation is more serious than under estimation and the

magnitude of c1 indicates its intensity. It is observed that, in general, the risks of

the estimators under GELF increases, as c1 increases (see figure 1). The increase

in the risks is more for θ̂M as compared to the other estimators. For almost all

values of c1, the risk of θ̂G under GELF is found to be least among the considered

estimators. It is interesting to remark here that θ̂G has the least risk under SELF

also. It is further noted that for reliability estimation, R̂M has the smallest risk

under GELF (see figure 3). For negative values of c1, the behavior of risks of

estimators under GELF is more or less similar to the one obtained for positive c1

(see figure 2).

While studying the effect of variation in the value of ν, we observed that, in

general, under both loss functions, the risks of the estimators of θ (except for θ̂M )

increase as ν increases. It is also seen that θ̂G has smaller risk compared to the

risks of other estimators when ν ≤ 4; otherwise θ̂M has smaller risk (see figure 4).

The behavior of risks of the estimators of reliability are just reverse to those for

the estimators of θ. It decrease as ν increases except for R̂M . The smallest risk is

observed for R̂S as compared to the risks of others (under both the losses; namely

GELF and SELF), except when ν ≤ 2 for which R̂M has smaller risk (see figure 7).

For negative values of c1, the trend of risks as ν increases, is similar to that of

positive c1. Under GELF, the risk of θ̂M is found to be smaller than the risks of

other estimators, when ν ≥ 5 and for 2 ≤ ν < 5, θ̂S has smaller risk than others;

but for ν = 1, θ̂G has smaller risk. Under SELF, the risk of θ̂M is smaller than the

risk of other estimators for ν ≥ 3 and for ν < 3, θ̂S has smaller risk. The trend of

risks of the estimators of reliability is just reverse to those of the estimators of θ;

i.e., the risks, in general, decrease as ν increases. Under both the loss functions,

R̂G has a smaller risk than others for ν ≥ 3 and for ν < 3, under both the loss

functions, R̂M has the smallest risk (see figure 6).

While observing the effect of variation in the value of δ, it is noted that for

positive values of c1, as δ increases, risks of estimators increase, in general, for

fixed values of other parameters. θ̂M has smaller risk than the Bayes estimators

θ̂G and θ̂S for large value of δ ≥ 6, while for 2 ≤ δ < 6, θ̂S has the smallest risk,

but for δ = 1, θ̂G has smallest risk. The trend remains more or less the same

under both loss functions (see figure 5), and in case of estimators of reliability, it is

observed that the risk of the MLE, R̂M , is smaller than those of Bayes estimators

R̂G and R̂S (see figure 9). For negative values of c1, it is observed that as δ

increases, risks increase, in general, except for the MLE’s. This trend is similar

to that for positive c1. However, for δ ≤ 3, θ̂G has smaller risk under GELF

and for rest of the values of δ, θ̂M performs better than the other estimators.

For 3 ≤ δ ≤ 6, θ̂G performs better than others under SELF (see figure 8).

It is worthwhile to mention here that the risks of the estimators under

type I censored data were also obtained for θ = 1.5 and τ = 3, taking values of

c1 = −3[0.5]3, n = 15[5]25, δ = 1[1]7 and ν = 1[1]7. After an extensive study
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of the results, thus obtained, we observed that the risks of the estimators under

type I censored data behave similarly to the risks of the estimators under type II

censored data with little changes in the magnitude of the risks. Thus, we may infer

that censoring mechanism has no significantly different effect on the performance

of the proposed estimators so far as behavior of their risks are concerned.
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Figure 1: Risks of estimators of θ under GELF for fixed n = 15, r = 12,

θ = 1.5, δ = 1, ν = 1, for positive values of c1.
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Figure 2: Risks of estimators of θ under GELF for fixed n = 15, r = 12,

θ = 1.5, δ = 1, ν = 1, for negative values of c1.
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Figure 3: Risks of estimators of R under GELF for fixed n = 15, r = 12,

x = 0.5, θ = 1.5, δ = 1, ν = 1.
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Figure 4: Risks of estimators of θ under GELF (left) and SELF (right)

for fixed n = 15, r = 12, θ = 1.5, δ = 1, c1 = +2.0.
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Figure 5: Risks of estimators of θ under GELF (left) and SELF (right)

for fixed n = 15, r = 12, θ = 1.5, ν = 2, c1 = +2.0.
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Figure 6: Risks of estimators of R under GELF (left) and SELF (right)

for fixed n = 15, r = 12, t = 0.5, θ = 1.5, δ = 1, c1 = −2.0.
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Figure 7: Risks of estimators of R under GELF (left) and SELF (right)

for fixed n = 15, r = 12, x = 0.5, θ = 1.5, δ = 1, c1 = 2.0.
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Figure 8: Risks of estimators of θ under GELF (left) and SELF (right)

for fixed n = 15, r = 12, θ = 1.5, ν = 2, c1 = −2.0.
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Figure 9: Risks of estimators of R under GELF (left) SELF (right) for

fixed n = 15, r = 12, x = 0.5, θ = 1.5, ν = 2, c1 = +2.0.
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4. CONCLUSION

On the basis of the discussion given in the previous Section, we may con-

clude that the proposed estimator θ̂G performs better than θ̂S and θ̂M for small

values of δ and ν and c1 ≤−1.0 (when under estimation is more serious than over

estimation) in the sense of having smaller risk. Contrary to it, when over esti-

mation is more serious than under estimation, our proposed estimator performs

well when δ = 1, ν ≤ 4 and c1 ≥ 2. Thus, the use of the proposed estimator θ̂G

is recommended even under quadratic loss function. In case of estimation of re-

liability function, our proposed estimator R̂G performs better than R̂S and R̂M

when c1 = −2, δ = 1 and ν ≥ 3. In other cases, R̂G has slightly higher risk than

R̂S and R̂M . Therefore, the proposed estimator R̂G is recommended for use only

if under estimation is more serious and hyper parameter ν is large.
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