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Abstract:

• We use Lévy processes to develop a family of first-order autoregressive sequences of

random variables with values in R+, called C-AR(1) processes. We obtain various

distributional and regression properties for these processes and we establish a limit

theorem that leads to the property of stationarity. A connection between stationarity

of C-AR(1) processes and the notion of C-self-decomposability of van Harn and Steutel

(1993) is discussed. A number of stationary C-AR(1) processes with specific marginals

are presented and are shown to generalize several existing R+-valued AR(1) models.

The question of time reversibility is addressed and some examples are discussed.
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1. INTRODUCTION

In recent years, several authors proposed generalized first-order autoregres-

sive (or AR(1)) models with marginal distributions on R+ := [0,∞). Lewis et al.

(1989) constructed gamma AR(1) processes with random coefficients based on the

beta-gamma transformation. As an application, they analyzed inter-failure times

of a computer system. Sim (1990) introduced a generalized multiplication based

on a conditional compound Poisson distribution to construct a gamma AR(1)

processes. Al-Osh and Alzaid (1993) provided extensions of the gamma models

in Lewis et al. (1989) via the Gamma-Dirichlet transformation. Grunwald et al.

(2000) introduced the family of conditional linear AR(1) (CLAR(1)) models.

A CLAR(1) process is a Markov process (Xn, n ≥ 0) such that the conditional

expectation E(Xn|Xn−1) is linear affine. The authors fitted a CLAR(1) model to

rainfall data. Zhu (2002) introduced a class of generalized AR(1) (GAR(1)) pro-

cesses with marginal distributions on R+. As an application, Zhu (2002) fitted a

GAR(1) process with a gamma marginal distribution to ozone data. Darolles et al.

(2006) introduced a general class of compound autoregressive AR(1) (CAR(1))

processes for non-Gaussian time series. CAR(1) processes are specified in terms

of their conditional Laplace transforms.

The aim of this paper is to develop a class of AR(1) sequences of random

variables (rv’s) with values in R+ by way of Lévy processes, or processes with sta-

tionary independent increments. Our starting point is a continuous convolution

semigroup of cumulant generating functions denoted by C = (Ct, t ≥ 0) and its

related operator ⊙C (the definition is recalled below) introduced by van Harn and

Steutel (1993). The equation governing our models (equation (2.1)) is analogous

to the one describing the standard AR(1) process, with the operator ⊙C replac-

ing the standard multiplication. We obtain various distributional and regression

properties for these models and we discuss conditions that lead to stationarity

and time reversibility. A number of stationary C-AR(1) processes with specific

marginals are presented and are shown to generalize several existing models.

The paper is organized as follows. In Section 2 we introduce C-AR(1) processes

and give their representation in terms of independent sequences of R+-valued

Lévy processes. We describe their various properties and obtain a limit theorem

that leads to the property of stationarity for C-AR(1) processes. We also dis-

cuss a connection between the concept of C-self-decomposability of van Harn and

Steutel (1993) and stationarity of C-AR(1) processes. In Section 3 we present a

number of specific stationary solutions for C-AR(1) processes. Characterizations

of their marginal distributions are obtained and some examples are discussed.

The question of time reversibility of C-AR(1) processes is addressed in Section 4.

In the rest of this section we recall some definitions and results that are

needed in the sequel. For proofs and further details we refer to Hansen (1989),

van Harn and Steutel (1993), and Steutel and van Harn (2004).
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The Laplace–Stieltjes transform (LST) of an R+-valued rv X with distri-

bution function F (x) is denoted by φX :

φX(τ) =

∫ ∞

0
e−τx dF (x) (τ ≥ 0) .

C = (Ct; t ≥ 0) will denote a continuous composition semigroup of cumu-

lant generating functions (cgf’s): for every t ≥ 0, Ct = − lnLt for some infinitely

divisible LST Lt, Ct 6≡ 1, and δC = − ln(−L′
1(0)) > 0. For any τ ≥ 0,

(1.1) C0(τ) = τ ; Cs◦Ct(τ) = Cs+t(τ) (s, t≥ 0); lim
t↓0

Ct(τ) = τ ; lim
t→∞

Ct(τ) = 0 .

The infinitesimal generator U of the semigroup C is defined by

U(τ) = lim
t↓0

(

Ct(τ) − τ
)

/t (τ ≥ 0) ,

and satisfies U(0) = 0 and U(τ) < 0 for τ > 0. U admits the representation

U(τ) = aτ −
1

2
σ2 τ2 −

∫ ∞

0

(

e−τx − 1 + τ x/(1 + x2
)
)

dN(x) ,

where a is real, σ ≥ 0, andN(dx) is a Lévy spectral function such that
∫ y
0 x

2 dN(x)

<∞ for every y > 0. Moreover, the following non-explosion condition holds:

∣

∣

∣

∣

∫ y

0+

U(x)−1 dx

∣

∣

∣

∣

= ∞ for sufficiently small y > 0 .

A related function, called the A-function, is defined by

(1.2) A(τ) = exp

{
∫ 1

τ

(

U(x)
)−1

dx

}

(

τ ≥ 0; A(0) = 0
)

.

The functions U(τ) and A(τ) satisfy for every t ≥ 0 and τ ≥ 0,

(1.3)
∂

∂t
Ct(τ) = U

(

Ct(τ)
)

= U(τ)C ′
t(τ) and A

(

Ct(τ)
)

= e−tA(τ) .

Moreover,

(1.4) δC = −U ′
(0) and C ′

t(0) = e−δCt
(t ≥ 0) .

The infinite divisibility of Lt(τ) and the second part of (1.4) imply that for

any τ > 0 and t > 0,

(1.5) Ct(τ) < τ .
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For an R+-valued rvX and α ∈ (0, 1), the generalized multiplication α⊙CX

is defined by

(1.6) α⊙C X = Y (X) ,

where (Y (s), s ≥ 0) is an R+-valued Lévy process, independent of X, such that

φY (1)(τ) = exp(−Ct(τ)), t = − lnα. The LST of α⊙C X is given by

(1.7) φα⊙CX(τ) = φX

(

Ct(τ)
)

, t = − lnα .

If E(X) <∞, then

(1.8) E(α⊙C X) = αδCE(X) .

2. C -AR(1) PROCESSES

Definition 2.1. A sequence (Xn, n ∈ Z) of R+-valued rv’s is said to be

a C-AR(1) process if for any n ∈ Z,

(2.1) Xn = α⊙C Xn−1 + ǫn ,

where 0 < α < 1 and (ǫn, n ∈ Z) is an iid sequence of R+-valued rv’s that is

assumed independent of the Y variables that define the operator ⊙C (see below).

(ǫn, n ∈ Z) is called the innovation sequence of (Xn, n ∈ Z).

In the remainder of this paper we will at times refer to the single-ended

C-AR(1) processes (Xn, n ≥ 0) that arises when equation (2.1) is assumed to

hold only for n ≥ 0.

The generalized multiplication α ⊙C Xn−1 in (2.1) is performed indepen-

dently for each n. More precisely, we assume the existence of a sequence (Y (n)
(·),

n ∈ Z) of iid R+-valued Lévy processes, independent of (ǫn, n ∈ Z), such that

the LST of Y (n)
(1) is

(2.2) φY (n)(1)(τ) = exp
(

−Ct(τ)
)

, τ ≥ 0 ,

where t = − lnα, and (see (1.6))

α⊙C Xn−1 = Y (n−1)
(Xn−1) , n ∈ Z .

In terms of LST’s, equation (2.1) translates, by way of (1.7), into

(2.3) φXn
(τ) = φXn−1

(

Ct(τ)
)

φǫ(τ) , τ ≥ 0 ,

where φǫ(τ) is the marginal LST of (ǫn, n ∈ Z) and t = − lnα.

Some results on conditional and joint distributions of a C-AR(1) process

are given next.
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Proposition 2.1. Let (Xn, n ≥ 0) be a C-AR(1) process for some α ∈

(0, 1). Let t = − lnα. The following assertions hold for any n ≥ 1.

(i) The conditional LST of Xn given Xn−1 = x, x ≥ 0, is

(2.4) φXn|Xn−1=x(τ) = exp
(

−xCt(τ)
)

φǫ(τ) , τ ≥ 0 .

(ii) The bivariate joint LST of (Xn−1, Xn) is given by

(2.5) φ(Xn−1,Xn)(τ1, τ2) = φǫ(τ2)φXn−1

(

τ1 + Ct(τ2)
)

.

(iii) More generally, the joint LST of (X1, X2, ..., Xn) can be found recur-

sively by

(2.6) φ(X1,...,Xn)(τ1, ...,τn) = φǫ(τn)φ(X1,...,Xn−1)

(

τ1, ...,τn−2, τn−1+Ct(τn)
)

.

Proof: (i) follows from (2.1) and the fact that φY (n)(x)(τ) = exp(−xCt(τ)).

To show (ii), we recall that the joint LST φ(Xn−1,Xn)(τ1, τ2) of (Xn−1, Xn) is

defined by

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−(τ1Xn−1+τ2Xn)
)

, τ1 ≥ 0, τ2 ≥ 0 .

It can be rewritten as

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−τ1Xn−1E
(

e−τ2Xn |Xn−1

)

)

,

which, combined with (2.4), yields

φ(Xn−1,Xn)(τ1, τ2) = E
(

e−(τ1+Ct(τ2))Xn−1 φǫ(τ2)
)

,

which, in turn, implies (2.5). The exact same argument establishes (2.6). The

details are omitted.

We note, by definition, that any C-AR(1) process is necessarily a Markov

process. Moreover, by using (2.3) recursively (and the fact that (Ct, t ≥ 0) is

a semigroup), it can be shown that a C-AR(1) process (Xn, n ∈ Z) admits the

following representation for any k ≥ 1,

(2.7) Xn
d
= αk ⊙C Xn−k +

k−1
∑

i=0

αi ⊙C ǫn−i , n ∈ Z .

Basic regression properties of C-AR(1) processes are gathered in the fol-

lowing proposition.
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Proposition 2.2. Assume U ′′
(0) <∞. Let (Xn, n ∈ Z) be a C-AR(1)

process (for some 0 < α < 1) such that E(Xn) <∞ and E(X2
n) <∞ for any

n ∈ Z, µǫ = E(ǫ0) <∞ and σ2
ǫ = Var(ǫ0) <∞.

(i) The regression of Xn on Xn−1 is linear:

(2.8) E(Xn|Xn−1) = αδCXn−1 + µǫ , n ∈ Z .

(ii) The conditional variance of Xn given Xn−1 is linear:

(2.9) Var(Xn|Xn−1) = BXn−1 + σ2
ǫ , n ∈ Z .

where B =

(

1 − U ′′(0)
U ′(0)

)

αδC (1 − αδC ).

(iii) For any n∈Z and k≥0, the covariance at lag k, Γn(k)= cov(Xn−k, Xn)

of (Xn, n ∈ Z) is

(2.10) Γn(k) = αkδC Var(Xn−k) .

(iv) For any n ∈ Z and k ≥ 0,

(2.11) E(Xn) = αkδCE(Xn−k) + µǫ

k−1
∑

i=o

αiδC ,

and

(2.12) Var(Xn) = α2kδC Var(Xn−k) + B
k

∑

i=1

α2(i−1)δCE(Xn−i) + σ2
ǫ

k
∑

i=1

α2(i−1)δC ,

where the constant B is as in (2.9) above.

Proof: We note that for x ≥ 0

E(Xn|Xn−1 = x) = −φ′Xn|Xn−1=x(0) ,

where φXn|Xn−1=x(τ) is given by (2.4). By differentiating (2.4) and using (1.4)

we obtain (2.8). By differentiating twice (w.r.t. τ) the expression U(Ct(τ)) =

C ′
t(τ)U(τ) (t=− lnα) and letting τ ↓ 0, we obtain via (1.4), C ′′

t (0) =αδC (αδC−1)·

·U ′′
(0)/U ′

(0). Moreover,

E(X2
n|Xn−1 = x) = φ′′Xn|Xn−1=x(0) ,

and

Var(Xn|Xn−1 = x) = φ′′Xn|Xn−1=x(0) −
(

φ′Xn|Xn−1=x(0)
)2
.

Direct calculations, along with (1.4) and the formula for C ′′
t (0) found above,

leads to (2.9). Equation (2.10) is obtained by applying a conditioning argument

to (2.7). Finally, (2.11) and (2.12) are easily derived from (2.8) and (2.9).
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The following result demonstrates the existence of a stationary C-AR(1)

process.

Theorem 2.1. Let (Xn, n ≥ 0) be a single-sided C-AR(1) process with

coefficient α ∈ (0, 1). Then (Xn, n ≥ 0) admits a proper limit distribution as

n→ ∞ if and only if

(2.13)

∫ y

0

1 − φǫ(x)

x− Ct(x)
dx < ∞ , t = − lnα ,

for some y > 0, and therefore for all y > 0.

Proof: We combine a Poisson mixture argument due to van Harn and

Steutel (1993) and a convergence result for branching processes with immigration

due to Foster and Williamson (1971). An induction argument based on (2.3) leads

to

φXn
(τ) = φX0

(

Cnt(τ)
)

n−1
∏

j=0

φǫ

(

Cjt(τ)
)

, t = − lnα, τ ≥ 0, n ≥ 1 .

Therefore, the sequence (φXn
(τ), n ≥ 0) is decreasing for every τ ≥ 0. It follows

that

(2.14) φ(τ) = lim
n→∞

φXn
(τ)

exists for each τ ≥ 0.

Let λ>0. By van Harn and Steutel (1993), the functions F (λ)
=(F

(λ)
t ; t≥ 0)

defined by

(2.15) F
(λ)
t (z) = 1 −

1

λ
Ct

(

λ(1 − z)
)

(z ∈ [0, 1]) .

form a continuous composition semigroup of probability generating functions

(pgf’s), with

(2.16)
∂

∂z
F

(λ)
t (z)

∣

∣

∣

∣

z=1

= e−δct

for each t > 0.

Consider the branching process with immigration
(

Y
(λ)
n , n ≥ 0

)

(2.17) Y (λ)
n =

Y
(λ)
n−1
∑

i=1

W
(λ)
i + ǫ(λ)

n ,

where (W
(λ)
n , n≥1) and (ǫ

(λ)
n , n≥ 0) are independent sequences of iid Z+-valued

rv’s with respective marginal pgf’s F
(λ)
t (z) and Pǫ(λ)(z) = φǫ(λ(1 − z)), 0≤ z≤1



Autoregressive Sequences 89

and t=− lnα. Moreover, Y
(λ)
0 has pgf P

Y
(λ)
0

(z) = φX0(λ(1 − z)) and is indepen-

dent of (W
(λ)
n , n ≥ 1) and (ǫ

(λ)
n , n ≥ 0). By (2.3), 2.15), (2.17), and an induction

argument, we have

(2.18) P
Y

(λ)
n

(z) = φXn

(

λ(1 − z)
)

, n ≥ 0, 0 ≤ z ≤ 1 .

By (2.16), (Y
(λ)
n , n ≥ 0) is a sub-critical branching process.

Let’s now assume that (2.13) holds. Simple calculations show that

(2.19)

∫ 1

0

1 − Pǫ(λ)(x)

F
(λ)
t (x) − x

dx =

∫ λ

0

1 − φǫ(x)

x− Ct(x)
dx < ∞ , t = − lnα .

By the main Theorem of Foster and Williamson (1971), case (iii), (Y
(λ)
n , n ≥ 0)

has a proper limit distribution, as n→ ∞, whose pgf is (by (2.18))

(2.20) P (λ)
(z) = lim

n→∞
φXn

(

λ(1 − z)
)

, 0 ≤ z ≤ 1 .

It follows by (2.14) that for every λ > 0, φ(λ(1 − z)) = P (λ)
(z), 0 ≤ z ≤ 1.

Therefore, by Lemma A.6 in van Harn and Steutel (1993), φ(τ) is the LST of

a distribution on R+.

Conversely, assume that (Xn, n ≥ 0) admits a proper limit distribution as

n→∞. The limit LST φ(τ) is given by (2.14). Hence, for every λ>0, (Y
(λ)
n , n≥0)

has a proper limit distribution whose pgf is P (λ)
(z) of (2.20). We deduce by the

converse of the Theorem in Foster and Williamson (1971), case (iii), that (2.19)

holds for every λ > 0, which in turn implies (2.13).

Since a single-sided C-AR(1) process (Xn, n ≥ 0) is Markovian, it is sta-

tionary if and only if it is started with its limit distribution. By Theorem 2.1, such

a limit distribution exists if condition (2.13) holds. We note that a single-sided

process can be extended to a doubly-infinite stationary process (see the proof of

Theorem 2.2 below).

Next, we explore the relationship between self-decomposability and sta-

tionary C-AR(1) processes. A distribution on R+ with LST φ(τ) is said to be

C-self-decomposable (van Harn and Steutel, 1993) if for any t > 0, there exists

an LST φt(τ) such that

(2.21) φ(τ) = φ
(

Ct(τ)
)

φt(τ) , τ ≥ 0 .

Any C-self-decomposable distribution can arise as the marginal distribution

of a stationary C-AR(1) process. More precisely, we have the following result.
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Theorem 2.2. Let φ(τ) be the LST of a C-self-decomposable distribu-

tion. For any α ∈ (0, 1), there exists a stationary C-AR(1) process (Xn, n ∈ Z)

whose marginal distribution has LST φ(τ).

Proof: Let α ∈ (0, 1) and t = − lnα. By the Kolmogorov extension theo-

rem (Breiman, 1968), there exists a probability space (Ω,F , µ) on which one can

define an array (Y (n)
(·), n ≥ 0) of iid R+-valued Lévy processes such that Y (n)

(1)

has LST (2.2), a sequence of iid rv’s (ǫn, n ≥ 0) with common LST φǫ(τ) = φt(τ) of

(2.21), and a rvX0 with LST φ(τ), with the further property that (Y (n)
(·), n ≥ 0),

(ǫn, n ≥ 0), and X0 are independent. We then construct a single-ended INAR1

process (Xn, n ≥ 0) via equation (2.1). This implies that for every n ≥ 1, the

LST φXn
(τ) of Xn satisfies (2.3), with φX0(τ) = φ(τ). It follows by (2.3) and

(2.21) that φXn
(τ) = φ(τ) for every n ≥ 0. Therefore, the Xn’s are identically

distributed. Since (Xn, n ≥ 0) is a Markov process, its stationarity ensues. The

existence of the doubly infinite extension (Xn, n ∈ Z) follows from Proposition

6.5, page 105, in Breiman (1968).

Next, we state a representation theorem for stationary C-AR(1) processes.

The proof follows easily from (2.7) and is omitted.

Theorem 2.3. Any stationary C-AR(1) process (Xn, n ∈ Z) admits the

following (infinite order) moving average representation for some 0 < α < 1:

(2.22) Xn
d
=

∞
∑

i=0

αi ⊙C ǫn−i , n ∈ Z ,

where the convergence of the series is in the weak sense.

The mean, variance, and autocorrelation function (ACRF) of a stationary

C-AR(1) process follow straightforwardly from Proposition 2.2.

Proposition 2.3. Assume U ′′
(0) <∞. Let (Xn, n ∈ Z) be a stationary

C-AR(1) process (for some 0 < α < 1) such that E(X0) <∞, E(X2
0 ) <∞,

µǫ = E(ǫ0) <∞ and σ2
ǫ = Var(ǫ0) <∞. Then

(i) For any n ∈ Z,

E(Xn) = µǫ(1 − αδC )
−1 ,

and

Var(Xn) =

(

1 − U ′′(0)
U ′(0)

)

αδCµǫ + σ2
ǫ

1 − α2δC
.

(ii) For any k ≥ 0 and n ∈ Z, the correlation coefficient of (Xn−k, Xn) is

(2.23) ρ(k) = αkδC .
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We note that the ACRF of a stationary C-AR(1) process, as given by

(2.23), has the same form as that of the standard AR(1) process. It decays

exponentially at lag k. However, unlike the standard AR(1) case, ρ(k) remains

always positive.

3. STATIONARY C -AR(1) PROCESSES WITH SPECIFIC

MARGINAL DISTRIBUTIONS

In this section we present several stationary solutions for C-AR(1) pro-

cesses.

An R+-valued rv X is said to have a C-stable distribution with exponent

γ > 0 if there exists a sequence of iid R+-valued rv’s (Xi, i≥ 0), Xi
d
=X for all i,

such that for any n > 0,

X
d
= n−1/γ ⊙C

n
∑

i=1

Xi .

C-stable distributions are C-self-decomposable and exist only when 0 <

γ ≤ δC (van Harn and Steutel, 1993). Moreover, the LST φ(τ) of a C-stable

distribution with exponent γ ∈ (0, δC ] admits the canonical representation

(3.1) φ(τ) = exp
[

−λA(τ)γ
]

, τ ≥ 0

for some λ > 0, where A(τ) is given in (1.2).

It follows by Theorem 2.2 that for every 0 < α < 1, there exists a sta-

tionary C-AR(1) process (Xn, n ∈ Z) with a C-stable marginal distribution with

exponent γ (0<γ ≤ δC). The marginal distribution of the innovation sequence

(ǫn, n ∈ Z), obtained by solving for φǫ in (2.3) and by using (1.3), is also C-stable

with exponent γ and has LST

(3.2) φǫ(τ) = exp
[

−λ(1 − αγ
)A(τ)γ

]

.

Moreover, it can be shown (see van Harn and Steutel, 1993) that stationary

C-AR(1) processes whose marginal is C-stable with finite mean arise only in the

case γ = δC and A′
(0) <∞. The process has finite variance if A′′

(0) <∞.

We have shown via (3.2) (by letting α = e−t
) that the LST φ(τ) of the

marginal distribution of a stationary C-stable C-AR(1) process satisfies the fol-

lowing property: for any t > 0, there exist λ(t) > 0 such that

(3.3) lnφ(τ) = λ(t) lnφ[Ct(τ)] , τ ≥ 0 .

It turns out that this property characterizes such processes.



92 Nadjib Bouzar

Theorem 3.1. A function φ(τ) on R+ is the LST of a C-stable distri-

bution with some exponent γ ∈ (0, δC ] if and only if for any t > 0, there exists

λ(t) > 0 such that (3.3) holds for every τ ≥ 0. The function λ(t) is necessarily of

the form λ(t) = eγt.

Proof: The ‘only if’ part follows from the preceding discussion. We prove

only the ‘if’ part. Let ψ(τ) = lnφ(τ)/ lnφ(1). By (3.3), we have for any t > 0

and τ ≥ 0 (note λ(t) = 1/ψ(Ct(1))),

(3.4) ψ
(

Ct(τ)
)

= ψ
(

Ct(1)
)

ψ(τ) , τ ≥ 0 .

By differentiating (3.4) w.r.t. t, we obtain

∂

∂t
Ct(τ)ψ

′
(

Ct(τ)
)

=
∂

∂t
Ct(1)ψ′

(

Ct(1)
)

ψ(τ) , τ ≥ 0 .

Using
∂
∂tCt(τ) = U(Ct(τ)) and letting t ↓ 0, it follows by (1.1) that

ψ′
(τ)

ψ(τ)
=
U(1)

U(τ)
ψ′

(1) , τ ≥ 0 ,

whose solution is ψ(τ) = A(τ)γ
where γ = −ψ′

(1)U(1) > 0. Hence, φ(τ) has the

form (3.1). Since φ(τ) is an LST, γ must satisfy γ ≤ δF (it follows by adapting

to our case the argument in the proof of Lemma 4.2. in van Harn and Steutel

(1993)). The form of λ(t) results from its uniqueness and the ‘only if’ part.

Next, we present a stationary C-AR(1) process with a C-geometric stable

marginal distribution.

An R+-valued rv X is said to have a C-geometric stable distribution if for

any p ∈ (0, 1), there exists α(p) ∈ (0, 1) such that

X
d
= α(p) ⊙C

Np
∑

i=1

Xi ,

where (Xi, i ≥ 1) is a sequence of iid R+-valued rv’s, Xi
d
= X, Np has the geo-

metric distribution with parameter p, and (Xi, i ≥ 1) and Np are independent

(Bouzar, 1999). C-geometric stable distributions are C-self-decomposable and

their LST’s admit the canonical representation

(3.5) φ(τ) =
(

1 + λA(τ)γ
)−1

, τ ≥ 0 ,

for 0 < γ ≤ δC and λ > 0. We will refer to a distribution with LST (3.5) as

C-geometric stable with exponent γ.

By Theorem 2.2, for every α ∈ (0, 1), there exists a stationary C-AR(1)

process (Xn, n ∈ Z) with a C-geometric stable marginal distribution with LST
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(3.5). Its innovation sequence (ǫn, n ∈ Z) has marginal LST (obtained by solving

for φǫ(τ) in (2.3) and by using (1.3))

(3.6) φǫ(τ) = αγ
+ (1 − αγ

)
(

1 + λA(τ)γ
)−1

, τ ≥ 0 ,

where 0 < γ ≤ δC and λ > 0.

It follows from (3.6) that a stationary C-AR(1) process (Xn, n ∈ Z) with

a C-geometric stable marginal distribution can be written as

(3.7) Xn = α⊙C Xn−1 + InEn , n ∈ Z ,

where (In, n ∈ Z) and (En, n ∈ Z) are independent sequences of iid rv’s such that

In is Bernoulli(1 − αγ
) and En has the same distribution as Xn.

A stationary C-AR(1) process with a C-geometric stable marginal distri-

bution has finite mean only if γ = δF and A′
(0) < ∞. It has a finite variance if

A′′
(0) <∞.

We have in fact shown by the above argument (and by letting α = e−t
)

that the LST φ(τ) of the marginal distribution of a stationary C-geometric stable

C-AR(1) process satisfies the following property: for any t > 0 there exists c(t) ∈

(0, 1) such that

(3.8) φ(τ) = φ
(

Ct(τ)
)

(

c(t) +
(

1 − c(t)
)

φ(τ)
)

, τ ≥ 0 .

We show next that the converse is true.

Theorem 3.2. A function φ(τ) on R+ is the LST of a C-geometric stable

distribution with some exponent γ ∈ (0, δC ] if and only if for any t > 0 there

exists c(t) ∈ (0, 1) such that (3.8) holds. The function c(t) is necessarily of the

form c(t) = e−γt.

Proof: The ‘only if’ part was established in the preceding discussion. We

show the ‘if’ part. Rewriting φ(τ) = (1+ψ(τ))−1
, it follows by (3.8) that for any

t > 0, there exists c(t) ∈ (0, 1) such that

(3.9) ψ
(

Ct(τ)
)

= c(t)ψ(τ) , τ ≥ 0 .

Using the exact same argument as the one in the proof of Theorem 3.1 (following

(3.4)), we have ψ(τ) = λA(τ)γ
for some 0 < γ ≤ δC and λ > 0. The form of c(t)

follows from its uniqueness and the ‘only if’ part.

We define next a compound gamma distribution and construct the corre-

sponding stationary C-AR(1) process.



94 Nadjib Bouzar

Let 0 < γ ≤ δC , λ > 0, and r > 0. An R+-valued rv X is said to have a

C-compound gamma (γ, λ, r) distribution if its LST has the form

(3.10) φ(τ) =
(

1 + λA(τ)γ
)−r

, τ ≥ 0 .

Note that φ(τ) indeed results from the compounding of C-stable distributions

(with LST (3.1)) by a gamma distribution (with LST φ1(τ) = (1 + τ)−r
). The

special case r = 1 in (3.10) gives the C-geometric stable distribution. van Harn

and Steutel (1993) showed that C-compound gamma distributions are C-self-

decomposable (see also Proposition 3.1 below) and arise as solutions to stability

equations for R+-valued processes with stationary independent increments.

Let 0 < γ ≤ δC , λ > 0, and r > 0. By Theorem 2.2, for every α ∈ (0, 1),

there exists a stationary C-AR(1) process (Xn, n∈Z) with a C-compound gamma

(γ, λ, r) marginal distribution. Its innovation sequence (ǫn, n ∈ Z) has LST

(3.11) φǫ(τ) =

(

1 + λαγA(τ)γ

1 + λA(τ)γ

)r

, τ ≥ 0 .

It can be shown by a straightforward calculations that ǫn with LST (3.11) has

the representation

(3.12) ǫ
d
=

N
∑

i=1

(αUi) ⊙C Wi ,

where (Wi, i ≥ 0) is a sequence of iid C-geometric stable rv’s (with LST (3.5)),

(Ui, i ≥ 0) are iid uniform (0, 1) rv’s, and N is Poisson with mean −rγ lnα, with

all these variables being independent. This allows for a shot-noise interpretation

of the process that is similar to the one given by Lawrance (1982) for the gamma

AR(1) process. A shot-noise process is defined by

(3.13) X(t) =

N(t)
∑

m=N(−∞)

αt−τm ⊙C Wm ,

where (Wm, m≥0) are R+-valued iid rv’s (amplitudes of the shots) and (N(t), t≥0)

is a Poisson process with occurrence times at τm. If the Wm’s have their common

LST given by (3.5) and N(t) has rate −r γ lnα, then X(t) of (3.13) sampled at

n = 0,±1,±2, ... gives another representation of the stationary C-AR(1) process

(2.1) with a C-compound gamma (γ, λ, r) marginal distribution. The proof of this

fact is an adaptation of Lawrance’s (1982) argument and the details are omitted.

Other representations of the innovation variable ǫn for a C-AR(1) process

with a C-compound gamma (γ, λ, r) marginal distribution can be obtained by

adapting the ones derived by McKenzie (1987) for an integer-valued AR(1) pro-

cess and by Walker (2000) for the gamma AR(1) process of Gaver and Lewis

(1980).
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As in the previously seen models, a stationary C-AR(1) process with a

C-compound gamma (γ, λ, r) marginal distribution has finite mean only if γ = δC
and A′

(0) <∞. It has a finite variance if A′′
(0) <∞.

The C-self-decomposability of the C-geometric stable distributions (with

LST (3.5)) and the C-compound gamma distributions (with LST (3.10)) can be

derived from the following, more general, result.

Proposition 3.1. Let ϕ(τ) be the LST of a self-decomposable distri-

bution on R+ with respect to the usual multiplication. Then the compound

distribution on R+ with LST

(3.14) φ(τ) = ϕ
(

λA(τ)γ
)

, τ ≥ 0 ,

for some 0 < γ ≤ δC and λ > 0, is C-self-decomposable.

Proof: We note first that φ(τ) is indeed an LST. Specifically, it is the LST

of the R+-valued rv Y =X(T ) where (X(t), t ≥ 0) is an R+-valued Lévy process

such that X(1) has LST (3.1) and T is a rv (independent of (X(t), t ≥ 0)) with

LST ϕ(τ) (see Steutel and van Harn (2004), Chapter I, Section 3, for a discussion

on compound distributions of the type (3.14)). By self-decomposability with

respect to the usual multiplication, we have for every τ ≥ 0 and t > 0

(3.15) ϕ(τ) = ϕ(e−γt τ)ϕγ,t(τ) ,

for some LST ϕγ,t(τ). Combining equations (1.3), (3.14) and (3.15), yields for

every τ ≥ 0 and t > 0,

φ(τ) = ϕ
(

e−γtλA(τ)γ
)

ϕγ,t

(

λA(τ)γ
)

= ϕ
(

λA
(

Ct(τ)
))

ϕγ,t

(

λA(τ)γ
)

.

Therefore, (2.21) holds for φ(τ), with φt(τ) = ϕγ,t(λA(τ)γ
). The same argument

we used above to show that φ(τ) is an LST can be repeated to conclude φt(τ) is

also an LST.

The LST’s described by (3.5) and (3.10) are special cases of (3.14). In

this case, ϕ(τ) = (1 + τ)−r
(with r = 1 for (3.5)). Steutel and van Harn (2004),

Chapter 5, Section 9, offer a multitude of examples of LST’s ϕ(τ) from which one

can construct stationary C-AR(1) processes (by combining Proposition 3.1 and

Theorem 2.2).

Next, we present a random coefficient stationary C-AR(1) process with the

C-compound gamma marginal distribution of (LST) (3.10) and with an innova-

tion sequence that is simpler than (3.12) or (3.13).

Let B be a rv taking values in (0, 1) and X an R+-valued rv independent

of B. The random coefficient operator B ⊙C X is defined via its LST by the
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equation

(3.16) φB⊙CX(τ) =

∫ 1

0
φX

(

C− ln b/δC
(τ)

)

dF (b) ,

where F (b) is the distribution function of B.

Lemma 3.1. Let 0 < s < r, 0 < γ ≤ δC , and λ > 0. Define γ1 =
γ
δC

and

note γ1 ∈ (0, 1]. Assume that B has the probability density function

(3.17) f(b) =
γ1Γ(r)

Γ(s) Γ(r − s)
bγ1s−1

(1 − bγ1)
r−s−1 , 0 < b < 1 ,

and that X has the C-compound gamma (γ, λ, r) distribution. Then B⊙CX has

a C-compound gamma (γ, λ, s) distribution.

Proof: Using (3.16), (3.17), and the change of variablewγ
=

1− bγ1

1+ λA(τ)γbγ1
,

we obtain

φB⊙CX(τ) =

[

γ1Γ(r)

Γ(s) Γ(r − s)

∫ 1

0
(1 − wγ1)

s−1 wγ1(r−s)−1 dw

]

(

1 + λA(τ)γ
)−s

.

Since
γ1Γ(r)

Γ(s) Γ(r − s)

∫ 1

0
(1−wγ1)

s−1wγ1(r−s)−1 dw = 1, the conclusion follows.

An R+-valued stochastic process (Xn, n ≥ 0) is said to be a random coef-

ficient C-AR(1) process if it satisfies the equation

(3.18) Xn = Bn ⊙C Xn−1 + ǫn ,

where (Bn, n ≥ 1) is an iid sequence of rv’s with 0 < Bn < 1 and (ǫn, n ≥ 1) is

an iid sequence of R+-valued rv’s. Moreover, it is assumed that Bn, Xn−1, and

ǫn are mutually independent.

Theorem 3.3. Let 0 < s < r, 0 < γ ≤ δC , and λ > 0. Let (Xn, n ≥ 0)

be the random coefficient C-AR(1) process of (3.18) such that Bn has probability

density function (3.17) and ǫn has a C-compound gamma (γ, λ, r − s) distribu-

tion. If X0 has a C-compound gamma (γ, λ, r) distribution, then (Xn, n ≥ 0) is

stationary with a C-compound gamma (γ, λ, r) marginal distribution.

Proof: We have by (3.18) and Lemma 3.1,

φX1(τ) = φB1⊙CX0(τ)φǫ(τ) =
(

1+λA(τ)γ
)−s(

1+λA(τ)γ
)s−r

=
(

1+λA(τ)γ
)−r

.

An induction argument shows that Xn has a C-compound gamma (γ, λ, r) for all

n ≥ 1. Since (Xn, n ≥ 1) is a Markov process, stationarity ensues.
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We conclude the section by mentioning a family of semigroups of cgf’s. For

θ ∈ [0, 1), let

(3.19) C
(θ)
t (τ) =

θ e−θtτ

θ + θ(1 − e−θt)τ
, t, τ ≥ 0, θ = 1 − θ .

It is easy to verify that C
(θ)
t (τ) has a completely monotone derivative and hence

is a cgf. Moreover, straightforward calculations show that the properties in (1.1)

hold. Therefore, C(θ)
= (C

(θ)
t , t ≥ 0) is a continuous semigroup of cgf’s. In this

case

(3.20) U (θ)
(τ) = −τ(θ + θτ) , A(θ)

(τ) =

(

τ

θ + θτ

)1/θ

, δ
(θ)
C = θ .

The special case θ = 0 corresponds to the ordinary multiplication. The sta-

tionary C(0)
-AR(1) process with a C(0)

-stable marginal distribution corresponds

to the AR(1) process with the standard stable distribution on R+ as its marginal.

The stationary C(0)
-AR(1) process with a C(0)

-geometric stable marginal dis-

tribution reduces to the Mittag–Leffler AR(1) process of Jayakumar and Pillai

(1993). The stationary C(0)
-AR(1) process with a C(0)

-compound gamma (with

LST (3.10)) becomes the gamma AR(1) process of Gaver and Lewis (1980).

4. TIME-REVERSIBILITY OF STATIONARY C -AR(1)

PROCESSES

A stochastic process (Xn, n ∈ Z) is said to be time-reversible if for any

n ∈ Z and k ≥ 0, (Xn, Xn+1, ..., Xn+k) and (Xn+k, Xn+k−1, ..., Xn) have the same

joint distribution.

Let (Xn, n∈Z) be a C-AR(1) process. By the Markov property, (Xn, n∈Z)

is time-reversible if and only if for any n ∈ Z, (Xn−1, Xn) and (Xn, Xn−1) have

the same joint distribution. (Xn, n ∈ Z) is time-reversible if and only if for every

n ∈ Z,

(4.1) φ(Xn−1,Xn)(τ1, τ2) = φ(Xn−1,Xn)(τ2, τ1) , τ1 ≥ 0, τ2 ≥ 0 ,

where φ(Xn−1,Xn)(τ1, τ2) is the joint LST of (Xn−1, Xn).

By Proposition 2.2-(i), a time-reversibleC-AR(1) process (Xn, n ∈ Z) (such

that E(Xn) <∞ and E(ǫn) <∞) possesses the property of linear backward re-

gression. That is, there exist c > 0 and d ≥ 0 such that for any n ∈ Z,

(4.2) E(Xn−1|Xn) = d+ cXn .
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We show next that a stationary C-AR(1) process with finite mean and finite

variance has the property of linear backward regression only if its LST admits a

certain form.

Theorem 4.1. Let (Xn, n ∈ Z) be a stationary C-AR(1) process with

finite mean and finite variance with the property of linear backward regression

(4.2). Further, assume

(4.3) Ct(1) ∼ ae−δCt
(t→ ∞) ,

for some constant a > 0. Then the marginal distribution of (Xn, n ∈ Z) is in-

finitely divisible with LST φ(τ) of the form

(4.4) φ(τ) = exp

{

−

∫ τ

0

(

b− λA(x)δC
)

dx

}

,

for some b > 0 and λ > 0.

Proof: Let n ∈ Z and let φ(τ), τ ≥ 0, and g(τ1, τ2), τ1, τ2 ≥ 0, be the LST

of Xn and joint LST of (Xn−1, Xn), respectively. Recall that by the stationarity

assumption, both φ(τ) and g(τ1, τ2) are independent of n. By Proposition 2.1-(ii)

and equation (2.3), we have for any τ1, τ2 ≥ 0

(4.5) g(τ1, τ2) = φǫ(τ2)φ
(

τ1 + Ct(τ2)
)

=
φ
(

τ1 + Ct(τ2)
)

φ(τ2)

φ
(

Ct(τ2)
) .

Differentiating g with respect to τ1, then setting τ1 = 0 and τ2 = τ , it follows that

for any n ∈ Z,

(4.6) E(Xn−1e
−τXn) = −

φ(τ)

φ
(

Ct(τ)
) φ′

(

Ct(τ)
)

, τ ≥ 0 .

By the property of linear backward regression (see equation (4.2)), we have for

some c > 0 and d ≥ 0,

E(Xn−1e
−τXn) = E

(

e−τXnE(Xn−1|Xn)
)

= cE(Xne
−τXn) + dE(e−τXn) ,

for any n ∈ Z and τ ≥ 0. Noting that E(Xne
−τXn) = −φ′(τ), it follows that

(4.7) E(Xn−1e
−τXn) = dφ(τ) − c φ′(τ) , τ ≥ 0 .

Letting h(τ) = φ′(τ)/φ(τ) and combining (4.6) and (4.7) , we obtain

c h(τ) − d = h
(

Ct(τ)
)

, τ ≥ 0 .

It follows by differentiation that ch′(τ) = C ′
t(τ)h

′
(Ct(τ)). Noting that h′(0) =

Var(Xn) 6= 0 (and recalling that Ct(0) = 0), it follows that c = C ′
t(0) = e−δCt

,

with the second equation following from (1.4). This implies

h′(τ) = eδCtC ′
t(τ)h

′
(

Ct(τ)
)

, τ ≥ 0 .
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An induction argument yields for any n ≥ 1,

h′(τ) = enδCth′
(

Cnt(τ)
)

n−1
∏

j=0

C ′
t

(

Cjt(τ)
)

, τ ≥ 0 .

By the semigroup properties (1.1) and (1.3), we have

C ′
t

(

Cjt(τ)
)

= U
(

C(j+1)t(τ)
)

/U
(

Cjt(τ)
)

, j = 0, ..., n− 1 .

Therefore,

(4.8) h′(τ) = enδCt U
(

Cnt(τ)
)

U(τ)
h′

(

Cnt(τ)
)

, τ ≥ 0 .

Calling again on the semigroup properties (1.1) and (1.3), we have for any τ ≥ 0,

lim
n→∞

Cnt(τ) = 0 , lim
n→∞

U
(

Cnt(τ)
)

Cnt(τ)
= U ′

(0) = −δC .

By Lemma 3.2-(i) in Hansen (1989),

lim
n→∞

Cnt(τ)

Cnt(1)
= A(τ)δC , τ ≥ 0 .

Moreover, (4.3) implies

lim
n→∞

enδCtCnt(1) = a .

Therefore, by letting n→ ∞ in (4.8), we obtain

h′(τ) = −aδC h
′
(0)

A(τ)δC

U(τ)
, τ ≥ 0 .

Since by (1.2) 1/U(τ) = −A′
(τ)/A(τ), we have

h(τ) − h(0) =

∫ τ

0
h′(x) dx = ah′(0)

∫ τ

0
δC A

′
(x)A(x)δC−1 , τ ≥ 0 ,

which implies (note A(0) = 0)

h(t) = h(0) + ah′(0)A(τ)δC , τ ≥ 0 ,

or φ′(τ)/φ(τ) = h(0) + ah′(0)A(τ)δC . It follows

lnφ(τ) = h(0)τ + ah′(0)

∫ τ

0
A(x)δC dx , τ ≥ 0 .

The representation (4.4) follows by letting b = −h(0) and λ = ah′(0). To show

that φ(τ) of (4.4) is indeed the LST of an infinitely divisible distribution, let

ψ(τ) = b − λA(τ)δC , τ ≥ 0. By Theorem 4.2, Chapter III, Section 4, in Steutel

and van Harn (2004), it is enough to establish that ψ(τ) is completely monotone

on (0,∞). Since φ1(τ) = exp(−λA(τ)δC ) is the LST of a C-stable distribution,
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it is infinitely divisible (van Harn and Steutel, 1993). It follows that the function

ψ1(τ) = − lnφ1(τ) = λA(τ)δC has a completely monotone derivative on (0,∞)

(again by Theorem 4.2 in Steutel and van Harn, 2004, quoted above). Since

ψ′
(τ) ≤ 0 and for any n ≥ 2,

(−1)
n ψ(n)

(τ) = (−1)
n−1

(ψ′
1)

(n−1)
(τ) , τ > 0 ,

it follows that ψ(τ) is completely monotone on (0,∞).

We note that Theorem 4.1 remains valid if the property of linear backward

regression is replaced by the (stronger) assumption of time-reversibility.

For the family of semigroups (C(θ), θ ∈ [0, 1)) of (3.19), the condition (4.3)

is easily seen to be satisfied (by (3.19)–(3.20)) as C
(θ)
t (1) ∼ θe−θt

(t→∞). Ap-

plying Theorem 4.1 to the semigroup C(θ)
(θ ∈ [0, 1)), we obtain (via (3.20)) the

LST φ(θ)
(τ) of (4.4) to be, in the case θ = 0,

(4.9) φ(0)
(τ) = exp

{

−b τ +
λ

2
τ2

}

, τ ≥ 0 ,

for some b > 0 and λ > 0, and in the case 0 < θ < 1,

(4.10) φ(θ)
(τ) = e−cτ

(

1 +
θ

θ
τ

)−r

, τ ≥ 0 ,

for some c ≥ 0 and r > 0. We note that if a rv X has LST φ(θ)
(τ) given by (4.10),

for 0 < θ < 1, then X
d
= c+ Y , where Y admits a gamma distribution with LST

(4.11) ϕ(θ)
(τ) =

(

1 +
θ

θ
τ

)−r

, τ ≥ 0 .

It is a simple exercise to verify that φ(0)
(τ) of (4.9) is the LST of a C(0)

-

self-decomposable distribution. In this case, the LST φ
(0)
t (τ) in equation (2.21)

is

(4.12) φ
(0)
t (τ) = exp

{

−b (1 − e−t
) τ +

λ

2
(1 − e−2t

)τ2

}

, τ ≥ 0 .

Assume that (Xn, n ∈ Z) is a stationary C(0)
-AR(1) process with marginal

LSTφ(0)
(τ). The marginal LST of the innovation sequence (ǫn, n∈Z) of (Xn, n∈Z)

is given by (4.12). Combining (4.5) with (4.9) and (4.12), we obtain the joint LST

of (Xn−1, Xn) to be

g0(τ1, τ2) = exp

{

−b(t1 + τ2) +
λ

2
(τ2

1 + 2 e−tτ1τ2 + τ2
2 )

}

, τ1 ≥ 0, τ2 ≥ 0 .
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Since g0(τ1, τ2) = g0(τ2, τ1), it follows that (Xn−1, Xn)
d
= (Xn, Xn−1). Therefore,

(Xn, n ∈ Z) is time-reversible (and hence, has the property of linear backward

regression).

The case 0 < θ < 1 is slightly more involved. We need a lemma.

Lemma 4.1. Let 0 < θ < 1. A distribution µ on R+ with LST φ(θ)
(τ) of

(4.10) is C(θ)-self-decomposable if and only if c = 0 or, equivalently, if and only

if µ is a gamma distribution with LST ϕ(θ)
(τ) of (4.11).

Proof: Assume that µ has LST ϕ(θ)
(τ) of (4.11). Straightforward calcu-

lations show that for any t > 0 and τ ≥ 0,

(4.13) ϕ
(θ)
t (τ) =

ϕ(θ)
(τ)

ϕ(θ)
(

C
(θ)
t (τ)

)

=

(

1 +
θ

θ

(

1 − e−θt
)

τ

)−r

.

Clearly, ϕ
(θ)
t (τ) is the LST of a gamma distribution. Therefore, µ is C(θ)

-self-

decomposable. Conversely, assume that µ is C(θ)
-self-decomposable with LST

φ(θ)
(τ) of (4.10). By Theorem 5.4 in van Harn and Steutel (1993),

(4.14) lnφ(θ)
(τ) = −

∫ τ

0

ln f(x)

U (θ)(x)
dx , τ ≥ 0 ,

where f(τ) is the LST of an infinitely divisible distribution on R+. By differen-

tiating both sides of (4.14) and using (3.20), we deduce that for every τ ≥ 0,

− ln f(τ) = U (θ)
(τ)

d

dτ
lnφ(θ)

(τ) = c θτ2
+ (c θ + r θ)τ .

By Theorem 4.2, Chapter III, Section 4, in Steutel and van Harn (2004), the

function

−
d

dτ
ln f(τ) = 2 c θτ + c θ + r θ

must be a completely monotone function on (0,∞). This can only hold if c= 0.

Assume now that (Xn, n ∈ Z) is a stationary C(θ)
-AR(1) process with

marginal LST ϕ(θ)
(τ) of (4.11). The marginal LST of the innovation sequence

(ǫn, n ∈ Z) of (Xn, n ∈ Z) is given by (4.13). Using (4.5), along with (4.11) and

(4.13), we find the joint LST of (Xn−1, Xn) to be

gθ(τ1, τ2) =

(

1 +
θ

θ
(τ1 + τ2) +

θ2

θ
2 τ1 τ2

)−r

, τ1 ≥ 0 , τ2 ≥ 0 .

Since gθ(τ1, τ2) = gθ(τ2, τ1), it follows that (Xn−1, Xn)
d
= (Xn, Xn−1). Therefore,

(Xn, n ∈ Z) is time-reversible (and hence, has the property of linear backward

regression).
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We summarize our discussion in the following proposition.

Proposition 4.1. Let θ ∈ [0, 1). A stationary C(θ)-AR(1) process with a

C(θ)-self-decomposable marginal distribution has the property of linear backward

regression if and only if its marginal LST is given by (4.9), if θ = 0, or by (4.11),

if 0 < θ < 1.

The stationary C(θ)
-AR(1) process with the gamma marginal distribution

with LST (4.11) is equivalent to the gamma model developed by Sim (1990).

Sim makes use of a generalized multiplication based on a conditional compound

Poisson distribution. Sim’s operator is tailored to lead to a stationary gamma

AR(1) process and offers no other stationary solutions. On the other hand, and as

seen in Section 3, the ⊙C(θ)-multiplication leads to a variety of stationary models.

We conclude by noting that the extension of Proposition 4.1 to an arbitrary

semigroup of cgf’s C is an open question. Specifically, what kind of semigroups

will give rise to a C-self-decomposable distribution with LST of the form (4.4)?
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– Laboratoire de Mathématique, Orsay, France
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1. INTRODUCTION

This paper is devoted to electricity load forecasting via the disaggrega-

tion of the global signal. This disaggregation is based on customer clustering.

To clarify, let us split the introduction in two parts. The first paragraph is dedi-

cated to the general context and the second focuses on the specific application.

1.1. General context

Regular forecasting of the electrical load demand arises from a multiplicity

of sources such as consumer behavior linked to social activities, government reg-

ulations and conventions and meteorological factors. Forecasting demand using

statistical models with different types of explanatory variables provides accurate

results. Those models include different components. There is a trend as well

as daily, weekly and annual seasonal components. Calendar affects help take

into account public holidays. An additional term may account for the effect of

meteorological variables on the electricity load.

A recent special issue of the International Journal of Forecasting, devoted

to energy forecasting, presents domain-related papers (see the editorial presenta-

tion by Taylor, Espasa [22]). Six papers in this journal provide an overview of

the recent strategies for short-term or very short-term electricity load forecasting.

The following methodologies: multi-equation model, neural networks or switching

models are applied at national level in France, Spain, Australia, Brazil and Great

Britain. This paper presents another approach to energy forecasting: a forecast-

ing method based on signal disaggregation via the clustering of individual load

curves.

Our goal is twofold. We aim to improve the accuracy of the electricity load

forecast and to account for variability in the EDF’s customer portfolio. This vari-

ability is due to the opening up of the previously nationalized electricity market.

One way to deal with this difficulty is to disaggregate the global signal to improve

the forecasting performance. Therefore, we need to create customer clusters such

that the sum of disaggregated forecasts significantly improves the forecast of the

whole global signal. In this paper we propose an optimized clustering scheme

controlled through a cross-prediction dissimilarity index and based on a discrete

gradient type algorithm.

Clustering has already been used for forecasting in similar electricity cases.

Let us briefly present three examples.

The first example uses clustering for short-term peak load forecasting, pro-

posed in Goia et al. ([10]). For a given load curve, forecasting is based on a
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two-stage strategy. A functional clustering is created to classify the daily load

curves and then a functional linear regression model is used on each cluster. Next,

a new load curve is assigned to the clusters thanks to a functional discriminant

analysis.

The second example, proposed by Piao et al. ([20]), deals with the pre-

diction of customer load pattern in long duration load profiles. It also starts

with clustering based on three daily profiles characteristics and aims at creat-

ing classes of load pattern and extracting representative load profiles for each

class. Supervised learning methods can possibly be used when a new load curve

is treated.

The third example, provided by Espinoza et al. ([9]), uses the forecasting

step before clustering. Each individual load curve is first modeled using para-

metric periodic time series. Then, a typical daily profile is extracted from this

parametric model for each individual customer. Finally, customer segmentation

is obtained from the clustering these typical daily profiles.

The originality of our approach is the inclusion of an optimization step su-

pervised by the forecasting procedure combined with a specific clustering strategy.

To complete this introduction, let us present the industrial context of our work.

1.2. Industrial context

Load forecasting is a critical task for a company like EDF since it con-

tributes to production planning. Engineers provide at noon, on a daily basis, the

next day’s consumption forecast. Forecasting is not only useful for short term

decisions but also for optimizing production in dams or plants. Models similar to

the following simplified version are built. The load Pt is decomposed into three

components:

(1.1) Pt = Pit + Pdt + εt

where Pit is a weather independent component containing trend, seasonality and

calendar effects, Pdt a weather dependent component and εt an error term.

The parameters involved in the two first terms depend on the hour h, on

the position of the day d within the year and on the day-type. The weather

independent part is a linear combination of four sine and cosine terms whose

coefficients are mainly functions of d, the type of the day (7 types), and h:

(1.2) Pit = Πh,y

4
∑

m=1

ah,m cos

(

2πmd

c

)

+ bh,m sin

(

2πmd

c

)

where c = 326.25 and Πh,y is the load shape at the hour h for the year y, which
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depends on the day-type. The coefficients a and b also depend on the day-

type. The weather dependent component is composed of two parts. The first

part involves a cooling gradient and a smoothed summer temperature while the

second part involves a heating gradient and a smoothed winter temperature. This

smoothed temperature can be assimilated to the indoor temperature.

After some fine tuning of the parameters, the quality of the EDF model

measured by the Mean Absolute Percentage Error or MAPE, is considered as

good. While the quality is satisfactory, it is never good enough during holidays

such as Christmas. For instance, an estimation based on a five-year period such

as [2000–2005] gives an hour-MAPE around 1.2%. For that same period, the

one year forecast hour-MAPE is almost the same value. However, because of the

deregulation of the French electricity market the situation has changed since 2007.

EDF customers can now switch from one electricity provider to another, bringing

instability to the market. As a consequence, the data available for forecasting

is evolving. Before deregulation, a 5-year database was trademark for quality

forecasting. Because of the new legal and commercial context, only one to two

years of good enough quality data is now available to researchers.

1.3. Outline

This paper is organized as follows. After this introductory section, Section 2

is devoted to the problem and the data. Section 3 briefly recalls a wavelet based

procedure for clustering load curves. Section 4 proposes the optimized clustering

for forecasting by disaggregation. Section 5 contains experimental results on real

world data and Section 6 presents some perspectives for future work.

2. THE DATA AND THE PROBLEM

2.1. The data

The data considered in this paper is not the French half-an-hour load con-

sumption but individual commercial customer data. For obvious confidentiality

and industrial reasons the French database is partially undisclosed. Moreover,

the most recent data is not available. We worked on the [2000–2001] electric-

ity consumption period. Individual power electricity demand curves, anonymous

for confidentiality reasons are available for 2309 industrial customers during this

period. The sampling period is one hour, leading to 17520 samples.
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To highlight the differences among individual curves, let us examine four

customer load curves during [2000–2001] time period (see Figure 1).

Figure 1: Raw data: 4 customer load curves during the 2000–2001 period

(load in kW versus time in hours).

The long term shape of the curves differs a lot. It looks climate free for the

customer at the bottom right while we can see three different climatic sensitivities

on the other graphics. The same 4-customer load curves for one particular week

in 2000 are displayed in Figure 2.

Figure 2: Raw data: 4 customer load curves during one week of 2000

(load in kW versus time in hours).

The two customers on the main diagonal of the plot are different from

the others. Their graphics do not show any clear ‘social rhythm’, whereas the

global shape of the two other customers are similar and display a ‘social rhythm’.
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Weekends are easy to detect and the main differences appear in the middle of the

work days. The bottom left graphic, displays a bimodal shape instead of a single

peaked curve.

2.2. Aggregated versus disaggregated

The disaggregation based forecasting problem goes as follows. Let us denote

by Xi(t) the value of the load curve of the ith customer at time t and we consider

the aggregated electricity consumption signal:

(2.1) S(t) =

∑

Xi(t) .

The aggregated forecast is obtained by modeling and forecasting the signal:

(2.2) ̂Saggr(t) = ̂S(t) .

Associated with any partition of clustered individuals, we can define the con-

sumption of each cluster g:

(2.3) Sg(t) =

∑

i∈g

Xi(t) .

Then, the disaggregated forecast is obtained by modeling and forecasting the

signal within each cluster ̂Sg(t) and then summing over all clusters:

(2.4) ̂Sdis(t) =

∑

g

̂Sg(t) .

We restrict our attention to this particular form of aggregation (2.4) which

may not be the optimal combination. It could be interesting to consider a

weighted sum and optimize the weights. However, in this study we specifically

focus on the clustering issue and preserve the percentage of the load curve asso-

ciated with each cluster.

Our challenge is to find the best partition of individuals. This partition has

to be as accurate as possible from a forecasting perspective so that the latter will

perform significantly better than the aggregated forecast.

Why can we expect such a result? Let us present two useful results already

validated in narrower context.

A first indication is provided by the simplest statistical inference problem:

the estimation of the mean µ of a variable Y on a given population using the

random sample mean Y . It is an unbiased estimator of µ of variance σ2
(Y )/n

where n is the sample size. Using stratified representative sampling with respect
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to a given partition, the associated stratified estimator’s variance (which is the

disaggregated one) is reduced to the within variance over n: σ2
w(Y )/n, which is

always smaller than the variance of Y .

A second indication comes from a simple result stated for two clusters and

true for more clusters. Let us denote Xt and Yt, two sequences corresponding to

generic signal pairs Xi,t and Xj,t associated with two different clusters. Assume

that Xt and Yt are two sequences of stationary square integrable random variables

and define

(2.5) St = Xt + Yt .

Then denoting by

(2.6) ̂Zt = E(Zt | Zt−1, Zt−2, ..., Z1)

the conditional mean of Zt given its own past. Let us define the two error indices

(2.7) Erraggr = E(St − ̂St)
2

and

(2.8) Errdis = E(St − ̂Xt − ̂Yt)
2 .

So, if Xt and Yt are independent then

(2.9) Errdis ≤ Erraggr .

If signals corresponding to two different clusters are independent and the

conditional mean (in fact actually an accurate estimation) is used to predict,

then the disaggregated forecast is of better quality than the forecast on the whole

global signal.

Let us give a proof of that result. Starting from the definition of Erraggr

and since St = Xt + Yt, we get

(2.10) Erraggr ≥ E
(

St − E(St | Xt−1, Yt−1, ..., X1, Y1)
)2
.

Independence between the X’s and Y ’s leads to

(2.11) E
(

Xt − E(Xt | Xt−1, Yt−1, ..., X1, Y1)
)

= E
(

Xt − E(Xt | Xt−1, ..., X1)
)

as well as the equation obtained by permuting X and Y in (2.11). Adding up

these two equations and taking squares of both sides, we obtain

E
(

St − E(St | Xt−1, Yt−1, ..., X1, Y1)
)2

= E
(

St − ̂Xt − ̂Yt

)2
= Errdis .

Therefore, with (2.10) we obtain inequality (2.9).
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As a conclusion, the two previously stated results suggest that it may be

useful to disaggregate the global signal to significantly improve forecasting. Our

idea is to find a good tradeoff between homogeneity within clusters and quality of

the model’s estimation. Homogeneity increases while the quality decreases with

a higher number of clusters. Hence a three-step strategy:

1. Preprocessing individual customer data using wavelets;

2. Primary customer clustering with numerous homogeneous clusters;

3. Aggregation using stepwise optimization algorithm based on a dissim-

ilarity index linked to a cross-prediction error and a discrete gradient

type algorithm.

First, let us provide some additional information on the basic forecasting

model. Then, we will develop the three-step strategy.

2.3. Eventail-like forecasting model

The aim of this paragraph is to clarify the internal forecasting procedure to

the non-initiated reader while avoiding detailed information. Let us emphasize

the fact that the error reduction via the new scheme is solely due to clustering

optimization. Indeed, we do not perform ad-hoc adaptation of the model design

strategy to the obtained clusters.

We circumscribe this paper to a single ‘black-box’ method used to design the

forecasting model, starting from a given time series. Let us explain that we will

take full advantage of a fully automatic version of EDF operational model called

Eventail. Eventail is designed to predict the aggregated electricity consumption.

Bruhns et al. ([6]) give a detailed description of a non-linear forecasting model

of French electricity load in use at EDF. This model allows for different levels

of seasonality and weather dependence. As previously stated, daily, weekly and

annual components of the endogenous variable are considered, along with ex-

ogenous variables such as temperature, cloud cover, calendar events as well as

a long-term trend. The mid-term model is a highly parameterized climate-free

SARIMA model additively corrected with a weather dependent term. This model

delivers an accurate forecast.

Let us note some results. The forecasting performance on the sample of

2309 customers, measured by the long-term MAPE (for Mean Absolute Per-

centage Error) is about 4.06% for the global aggregated signal. Meanwhile, on

the same sample, the completely disaggregated forecasting performance reaches

2.94%.
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Remark 2.1. We will not provide comparisons of Eventail with other fore-

casting methods. This would be interesting (see for example Hippert et al. ([14])

for recent statistical time series tools for load forecasting), however since Eventail

is the current operational tool, it is regularly improved in order to take into ac-

count the new characteristics of the load curve. Let us mention that Bruhns et al.

([6]) describe the forecasting model already used at EDF for mid-term load fore-

casting and provide a comparative study of various alternatives. Also, a more

recent discussion on how to handle changes in customer behavior in a similar

context can be found in Dordonnat et al. ([8]) who describe a forecasting model

based on time-varying processes, specifically a periodic state space model.

3. CLUSTERING USING WAVELETS

The aim of the preliminary step is to build basic clusters (often called

super customers hereafter) based on our sensibly assembled customers. The key

idea is to take advantage of the hierarchical multiresolution structure of wavelet

decomposition (see Misiti et al. [18]) for clustering signals. Simply put, wavelets

allow us to write each individual signal as the sum of orthogonal signals: a coarser

approximation at large scale (low frequency) and additional details at different

resolutions, of decreasing scales. The approximation at level j roughly represents

the local mean signal on intervals of length 2
j

while the detail at level j contains

fluctuations around this local mean on the same corresponding intervals. Let n

be the common length of the p series individually denoted by X(i)
. Then, for a

given orthogonal wavelet ψ, each time series can be decomposed at level J (which

is at most the integer part of log2(n)). This leads to:

(3.1) X(i)
= A

(i)
J +

J
∑

j=1

D
(i)
j ,

whereA
(i)
k andD

(i)
k denote respectively the approximation and the detail, at level k,

of the signal X(i)
.

The procedure, described in Misiti et al. ([19]), is a hybrid scheme mixing

regularization and filtering approaches, according to James and Sugar’s ([15])

terminology. Let us describe this scheme. First, there is individual denoising

using a signal-adapted wavelet basis, then a projection on a one common wavelet

basis to get a huge dimensionality reduction effect (see Biau et al. [5]). Then each

customer is characterized by coefficients. The last step of the process is the clus-

tering of the customers using Ward’s method with squared Euclidean distances,

in order to preserve distances between signals through wavelet coefficients encod-

ing. We generate hierarchies of partitions corresponding to different numbers of

clusters and various wavelet representations, that are typically approximations of

decreasing resolution level.
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For the final step, considering any partition P obtained by clustering data Z

and for a given number of clusters, we can compute the following usual variance

ratio quality index:

(3.2) IZ(P ) =
Varb(Z,P )

Varw(Z,P )
,

where Varb(Z,P ) and Varw(Z,P ) denote respectively the variance between clus-

ters and within clusters. This quality index allows us to compare two partitions

based on two different signal representations but it depends heavily on the num-

ber of clusters. For instance, let us say P ′
is a finer partition obtained from P .

Then IZ(P ′
) ≥ IZ(P ). Since we have to compare partitions with different number

of clusters, we will choose the one leading to the best normalized variance ratio

index:

(3.3) IN
Z (P ) =

Varb(Z,P )

C(P ) · Varw(Z,P )
,

where C(P ) is the number of clusters within partition P .

This index is similar to the statistic of Calinski and Harabasz ([7]), consid-

ered as a ‘good competitor’ (see for example Tibshirani et al. [23]). It allows us

to select a convenient number of clusters as well as a critical level of wavelet de-

composition (simulated examples, electricity data processing and further details

can be found in Misiti et al. [19]).

In our electrical context, in an earlier study we obtained various partitions

using this clustering scheme but without taking into account the forecasting ob-

jective. The most interesting partitions are made of 15 to 19 clusters and highlight

wavelet approximation coefficients at level 6 (around 2 coefficients a week) and de-

tail coefficients at level 2 (around 5 coefficients a day). These partitions reached a

forecasting performance of 2.75% long-term MAPE which is better than the fully

aggregated or the fully disaggregated forecasts. However, partitions describes in

this paragraph cannot be improved with the optimization process described in

the next section.

Therefore, hereafter we will work from this initial pre-processing. We will

select wavelet approximation coefficients at level 6 in order to get the load curve’s

global shape. We will relax unsupervised clusters constraints. This means that

we will start with a large number of clusters and step by step aggregate them with

an optimization criterion supervised by predictability. According to the variance

ratio, 90 clusters are sufficient to assume strong homogeneity.
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4. OPTIMIZED CLUSTERING DIRECTED BY FORECASTING

4.1. A multistage procedure

The proposed optimized clustering scheme is as follows:

1. Wavelet preprocessing.

Customer characterization through wavelet representation of each signal

after standardization using approximation coefficients at level 6.

2. First clustering around numerous centroids.

A minimum of 90 clusters regrouping homogeneous customers. Each

cluster is represented by its aggregated signal.

3. Iterative optimization.

The starting point being the described initial partition, an optimization

process supervised through cross-prediction dissimilarity index is run.

A discrete gradient type procedure based on D matrix (defined in the

next section) explores the set of partitions.

4.2. Cross-prediction dissimilarity

To qualify a specific aggregation we use cross-prediction dissimilarity be-

tween elements. Those elements can be either individual or aggregated signals.

This dissimilarity index between Xk and Xj is based on the following idea. The

model fitted on past observations of Xj(t) is used to predict the future of Xk(t)

and vice-versa. In our specific electrical context, let us denote by

(4.1) forec2001
k|j = forecast

(

X2000
j , X2001

k

)

,

the forecasts of Xk on the year 2001 (the test period) obtained from the model

fitted on Xj on the year 2000 (the learning period). The fitted model is based on

the Eventail-like design tool. Then, the associated error is defined by:

(4.2) Ek|j = error
(

X2001
k , forec2001

k|j

)

.

Then a natural symmetric measure of dissimilarity is given:

(4.3) D = (Dj,k) =
(

(Ek|j + Ej|k)/2
)

.

To fairly rescale the Xk and Xj load curves for testing and for estimating

the index D is based on errors obtained from the l1-normalized versions (i.e.

signals summing to 1) .
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4.3. Zooming in on the optimization step

The iterative optimization of the initial partition is supervised through the

cross-prediction dissimilarity. It can be adapted to the forecast horizon as well

as to the error criterion. The iterative optimization is based on discrete gradient

via a neighborhood definition through dissimilarity between an element and a

cluster induced by the matrix D. The basic step is an iterative exploration of

elements. These elements are always candidates for cluster change, using nearest

D-neighbors. It should be noted that the partition evolves and that the basic step

consists of moving an element from one cluster to another. Therefore, this pro-

cess generates a non monotonic sequence of partitions, which is not a hierarchical

approach. This sequence of partitions evolves through element assignment modi-

fications. The number of clusters decreases slowly along the iterations. A cluster

disappears only when it is empty. The optimization scheme goes as follows:

1. Compute matrix D of dissimilarities between elements;

2. Compute dissimilarities between each element and the current clusters

using D and a linkage function (the minimum for example);

3. Select a neighbor: a couple (E,C), an element E candidate to move to

a cluster C;

4. Test the new affectation gain for the disaggregated forecast associated

to the resulting partition

• if the error does not decrease then

– if there are candidates then select the next one and go to step 4

– else end (no improvement by moving an element from a cluster

to another)

• if the error decreases then modify partition and go to step 2.

This scheme can be adapted to parallel computations simply through a

better organization of the candidates’ examination in the more internal loop.

Parallel capacities could also be used to explore multistart versions of the algo-

rithm. However, these aspects are out of the scope of this paper which focuses

on the question of the possible usefulness of disaggregation.

5. EXPERIMENTAL RESULTS

5.1. Performance results

Starting from 90 clusters, the optimized partition reaches the performances

measured by long-term and short-term MAPE, given by Table 1.
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Table 1: Performances of optimized partition starting from 90 clusters.

Aggregated Disaggregated Gain

MAPE long-term (LT) 4.06% 2.39% with 19 clusters 41.13%

MAPE short-term (ST) 2.47% 1.51% with 28 clusters 38.86%

The procedure can be stopped at any step of the optimization process,

therefore, improving the previous acceptable solution. The 195 step process with

an error rate gain of 41%, is illustrated on Figure 3. This error reduction largely

and obviously improves the optimization process, which starts with 90 clusters

and ends with 19 clusters.

90 84 78 72 68 62 58 54 49 44 41 40 39 38 36 35 34 34 32 30 29 28 26 26 26 24 22 2019

2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

Number of clusters

M
A

P
E

−
L
T

Figure 3: Optimization process: from 90 to 19 clusters

leading to a gain of 41%.

5.1.1. About wavelet preprocessing

The first step of the global procedure (wavelet preprocessing and initial

clustering using wavelets) is important. Indeed if one performs directly a hierar-

chical clustering of the original 2309 customers using the dissimilarity matrix D

and then optimizes the associated 90 clusters partition, the MAPE-LT error cri-

terion stabilizes around 2.7% instead of 2.5%.

5.1.2. About the optimization step

The optimization step is also important. Indeed, starting from the 90 cluster

partition, if one constructs the hierarchy of partitions (by hierarchical clustering

using D), it is difficult to select a critical number of clusters (see Figure 4) and

the MAPE-LT error criterion remains about 2.6% instead of 2.5%.
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Figure 4: Dendrogram: hierarchical clustering using D.

5.2. About the number of basic customers

Finally, let us mention that the number of initial clusters (taken here to be

equal to 90) is an important parameter, especially when the method is used for a

significantly large number of customers. Indeed, the actual performance is slightly

improved by increasing the number of clusters. The initial 2.39% performance

on 90 clusters reaches 2.31% with 200 clusters and even 2.26% for 500 clusters,

therefore increasing the reduction rate from 41.1 to 44.3%.

5.3. Clusters interpretation

In this paragraph, we will focus on the 19 clusters resulting from the final

optimized partition. For example, Figure 5 presents cluster 1 made up of 10

super customers. It superimposes the 10 super customers consumptions with the

average consumption of the cluster. The top graphic represents the year 2000

while the bottom graphic zooms in on the first quarter of that year (January,

February and March 2000).

Let us note that the extreme regularity and homogeneity of the final 19

average cluster curves is remarkable. This can be explained by the fact that

those curves are perfectly suited for forecast using the Eventail model. In other

words, the optimization algorithm produces curves well adapted to Eventail black

box forecast method.
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Figure 5: Cluster 1: average consumption (dark curve) and individual con-

sumption of the super customers (light curves). Top: the year 2000.

Bottom: zoom in on the first three months of 2000.

To get extra information on cluster 1, let us look at Figure 6 and its 11

graphics. It displays the 198 individual customer consumptions leading to the

10 super customers of the optimized partition. Each one of the ten first plots

displays a super customer consumption together with the average consumption.

The last plot displays the aggregated signal.

Cluster 1 − 10 super customers 
Representing  [ 28   7   8  49   4  15  10  15  58   4] customers

100 200 300 400 500 600 700 800 900 1000

Figure 6: For cluster 1, ten top plots representing individual consump-

tions (light curves), leading to 10 super customers (dark curves).

Bottom plot: total cluster consumption.
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So, despite a great heterogeneity of the customers within each cluster, the

signals associated with the final clusters are very stable and easy to predict using

Eventail.

5.4. Validation results

The optimization procedure can be modeled using the three following steps:

1. Starting from theN individual customers, performing a discrete wavelet

transform DWT at a given level j of the N = 2309 signals S, normal-

izing in l1-norm and clustering the resulting signals. As a result:

(K,PK) = MSC (N, j;S) ,

which leads to K super customers associated with a partition PK .

This multiscale clustering (MSC) step involves selecting level of decom-

position j (typically j = 6 or j = 4) as well as choosing K, the number

of clusters (usually K = 60, 90, 200, 500).

2. Computation of D(e, e′) (for elements e and e′) then computation of

Dc(e, c) (for an element e and a cluster c) and the optimization leads

to:

(k,˜Pk) = Opt(K,PK) .

3. Expansion of the k clusters of the K super customers over the N initial

individuals to produce:

(k, Pk) = Exp(k,˜Pk, S) .

Suppose now that, three years of observations are available for a subset of

customers. Then, we can select the parameters (choice of K in particular) and

estimate the quality according to the following validation principle. The first two

years are used to design the clusters and the last year is used as the test sample.

Unfortunately, a subset of only 1482 customers is available during the three

considered years. Quality estimations are as follows. On the learning set (year

2001), quality gain is about 23% since we go from 3.14% to 2.31%. On the test

set (year 2002) there is an 8% reduction, from 6.82% to 6.32%. Nonetheless,

the disaggregation procedure still provides significant gain. Of course this must

be considered with caution since the year 2002 seems to be much more difficult

to predict using Eventail: the MAPE forecast error of the aggregated predictor

increases from 3.14% to 6.82% and is perhaps not representative.
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6. FUTURE WORK

Let us briefly present some future possible developments.

First of all, alternatives to the current algorithm could be studied, the main

difficulty being to cope with the computational burden. A scheme better suited

for parallelism could be developed. A divisive strategy instead of data aggregation

could be used to optimize the forecasting objective. It would start with the whole

population and iteratively segment the current subgroup. Segmentation could be

completed according to a 2 or 3-means clustering using approximation coefficients.

Another line of work on electrical data could be to further develop forecast-

ing with wavelet methods (see Antoniadis et al. ([2]), Amin Ghafari, Poggi ([3])).

The aim would be to adapt the models to the clusters using a similar method to

the one described in Hathaway, Bezdek ([13]) or more recently clusterwise linear

models proposed in Gruen, Leisch ([11]).

Also, we could take advantage of external meteorological and economical

information as diagnostic and performance measurement tools. Eventually, the

whole procedure should integrate parameters’ data-driven choices: the wavelet

and the representation basis, the obtained partition and the adaptation of the

model to cluster specificities.

Last but not least, theoretically we could explore how to maximize the

profits of the disaggregation method in general conditions.
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1. INTRODUCTION

We consider the problem of estimating, under squared error loss, the lo-

cation parameter θ of a p-variate spherically symmetric distribution under the

constraint ‖θ‖ ≤ m, with m > 0 known. With several authors having obtained

interesting results relative to this problem, and more generally for restricted pa-

rameter space problems (see Marchand and Strawderman, 2004; van Eeden, 2006

for useful reviews), we focus on the determination of benchmark estimators such

as the maximum likelihood estimator (MLE), the minimum risk equivariant es-

timator (MRE), and the linear minimax estimator (LMX). In this regard, Marc-

hand and Perron (2001) provide for the multivariate normal case improvements

on the (always) inadmissible MLE for all (m, p). These include Bayesian im-

provements, but conditions are then required on (m, p). Complementary findings

for the multivariate normal and parallel findings for other spherically symmet-

ric distributions, including in particular multivariate student distributions, were

obtained respectively by Fourdrinier and Marchand (2010) and Marchand and

Perron (2005); but again conditions for the studied priors π (typically boundary

uniform, uniform on spheres, and fully uniform) of the form m ≤ cπ(p) for the

Bayes estimator δπ to dominate the MLE are necessitated. Hence, the prob-

lem of finding a Bayesian or an admissible improvement for any (m, p), for any

given spherically symmetric distribution remains unsolved (even for p = 1 or the

multivariate normal distribution).

Alternatively, for the objective of passing the minimum test of improving

upon the minimum risk equivariant estimator, positive findings for the univariate

case (p = 1) were obtained by Marchand and Strawderman (2005), as well as

by Kubokawa (2005). The former establish a general dominance result for the

fully uniform prior Bayes estimator, which actually applies more generally for a

wider not necessarily symmetric class of location model densities and location

invariant losses. The latter provides on the other hand a large class of priors

which lead to Bayesian improvements for the univariate version of our problem

of symmetric densities and squared error loss. A key feature of these dominance

results is the use of Kubokawa’s (1994) Integral Expression of Risk Difference

(IERD) technique.

For multivariate settings, a lovely result by Hartigan (2004) tells us that

for multivariate normal distributions, the fully uniform Bayes procedure improves

upon the minimum risk equivariant estimator. The result is actually more gen-

eral and applies for convex restricted parameter spaces with non-empty interiors.

However, Hartigan’s result does require normality and hence a spherically sym-

metric analog remains an open question. Moreover, Hartigan’s result does not

apply to the benchmark linear minimax estimator, which represents itself a simple

improvement on the minimum risk equivariant estimator.
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With the above background, our motivation here resides in extending the

univariate dominance results to the multivariate case, extending Hartigan’s result

for balls to spherically symmetric distributions, and considering improvements

upon the linear minimax procedure as well. We provide preliminary results in

this direction in terms of sufficient conditions for dominating either the mini-

mum risk equivariant estimator, the linear minimax estimator, or both. Our

treatment possesses the interesting feature of being unified with respect to the

dimension p and the given spherically symmetric distribution. Moreover, we ar-

rive at our dominance results through a novel multivariate variant of Kubokawa’s

IERD technique. The main dominance results are presented in Section 2, and

various examples or illustrations are pursued in Section 3. These include uni-

variate distributions, the multivariate normal distribution, and scale mixture of

multivariate normal distributions.

2. MAIN RESULTS

Let X be a p-variate random vector with spherically symmetric density

(2.1) f
(

‖x − θ‖2
)

,

where the location parameter θ is constrained to a ball centered at the origin and

of radius m, say Θm. We seek improvements on the minimum risk equivariant

(MRE) estimator δ0(X) = X, and the linear minimax estimator δLMX(X) =

m2

m2+pσ2 X under squared error loss L(θ, d) = ‖d − θ‖2
, where Eθ(‖X− θ‖2

) =

p σ2 < ∞. Hereafter, we denote the norms of X, x, and θ by R, r, and λ respec-

tively. Our results bring into play the orthogonally invariant in θ and nonnegative

quantities H(t, λ) =
Eθ(θTX| ‖X‖≥t)

Eθ(XTX| ‖X‖≥t)
and H∗

(t, λ) =
λEθ(‖X‖‖X‖≥ t)

Eθ(|XTX‖X‖≥ t)
, t≥ 0, λ≥ 0.

We will make use of the inequality H(t, λ) ≤ H∗
(t, λ) for all t ≥ 0, λ ≥ 0, which

follows as a simple application of the Cauchy–Schwartz inequality. Now, we

present the main dominance results of this paper.

Theorem 2.1. For a model as in (2.1), δg(X) = g(‖X‖)X dominates g(0)X,

whenever:

(i) g is absolutely continuous, nonconstant, and nonincreasing;

(ii) and g(r) ≥ supλ∈[0,m]H(r, λ) for all r ≥ 0.

Moreover, if conditions (i) and (ii) are satisfied, and

(iii) g(0) ∈
[

m2−pσ2

m2+pσ2 , 1

)

,

then δg(X) = g(‖X‖)X also dominates δ0(X) = X.
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Remark 2.1. By virtue of the inequality H(t, λ) ≤ H∗
(t, λ) for all t ≥ 0,

λ ≥ 0, condition (ii) of Theorem 2.1 can be replaced by the weaker, but never-

theless useful, condition

(ii ′) and g(r) ≥ supλ∈[0,m]H
∗
(r, λ) for all r ≥ 0.

Proof of the Theorem: It is straightforward to verify that g(0)X domi-

nates X under condition (iii), so that conditions for which δg(X) dominates

g(0)X, such as (i) and (ii), are necessarily conditions for which δg(X) = g(‖X‖)X

also dominates δ0(X) = X. Now, using Kubokawa’s IERD technique, the risk dif-

ference between the estimators δg(X) and g(0)X can be written as

1

2
∆(θ) =

1

2

[

R
(

θ, g(‖X‖)X
)

− R
(

θ, g(0)X
)

]

=
1

2

[

Eθ

∥

∥g(‖X‖)X − θ
∥

∥

2
−
∥

∥g(0)X − θ
∥

∥

2
]

=
1

2
Eθ

(
∫ ‖X‖

0

∂

∂t

∥

∥g(t)X − θ
∥

∥

2
dt

)

=

∫

Rp

∫ ‖x‖

0
g′(t)

[

g(t)x − θ
]T

xf
(

‖x − θ‖2
)

dt dx

=

∫ ∞

0
g′(t)

∫

{x∈Rp: ‖x‖≥t}

[

g(t)xT x − θT x
]

f
(

‖x − θ‖2
)

dx dt .

Now, observe that conditions (i) and (ii) imply that ∆(θ) ≤ 0 for all θ ∈ Θm,

establishing the result.

Here are some further remarks and observations in relationship to Theorem 2.1.

The nonincreasing property of condition (i) is not necessarily restrictive.

Indeed, for the multivariate normal case, Marchand and Perron (2001, theorem5)

establish that the nonincreasing property holds for all Bayesian estimators asso-

ciated with symmetric, logconcave prior densities on [−m, m]. The conditions

of Theorem 2.1 suggest the bounds (ii) and (ii
′
) themselves supλ∈[0,m]H(r, λ)

and supλ∈[0,m]H
∗
(r, λ) as candidate g functions. These functions are of the form

H(r, λ(r)) and H∗
(r, λ(r)), where λ(·) is some function taking values on [0, m].

All such functions lead to range preserving estimators δg; i.e., ‖δg(x)‖ ≤ m for

all x ∈ R
p
; since for all r ≥ 0 and ‖θ‖ = λ(r) :

0 ≤ H(r, λ(r)) ≤ H∗
(r, λ(r)) =

λ(r)Eθ

(

‖X‖‖X‖ ≥ r
)

Eθ

(

|XTX ‖X‖ ≥ r
) ≤

λ(r)

r
≤

m

r
,

and since ‖δg(x)‖ ≤ m for all x ∈ R
p

whenever 0 ≤ g(r) ≤ m
r for all r > 0.

Finally, as a consequence of the above, observe that the projection of δ0(X)

onto Θm, given by δgp with gp(r) =
m
r ∧1, satisfies the conditions of Theorem2.1.

We now focus on related implications for the estimators δH(X)=H(‖X‖,m)X

and δH∗(X) = H∗
(‖X‖, m)X, which will turn out in several cases to be the small-

est possible g’s satisfying respectively conditions (ii) and (ii
′
) of Theorem 2.1.
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Corollary 2.1.

(a) If H(r, λ) increases in λ ∈ [0, m] for all r ≥ 0, and decreases in r ∈

[0,∞] for all λ ∈ [0, m], then δH(X) = H(‖X‖, m)X dominates both

the linear minimax estimator δLMX(X) and the MRE estimator δ0(X);

(b) If H∗
(r, λ) increases in λ ∈ [0, m] for all r ≥ 0, then δH∗(X) =

H∗
(‖X‖, m)X dominates the MRE estimator δ0(X).

Proof: Part (a) follows as a direct application of Theorem 2.1 as H(0, m) =

Eθ(θTX)

Eθ(XTX)
=

m2

m2+pσ2 ∈
[m2−pσ2

m2+pσ2 , 1
)

, for ‖θ‖= m. Part (b) follows for two reasons.

First, for any positive random variable Y with density gY , and its biased version

W with density proportional to wgY (w), the ratio
E(Y 2|Y >t)

E(Y |Y >t)
= E(W |W > t) is

increasing in t, which implies that H∗
(·, m) is a decreasing function on [0,∞).

Secondly, for ‖θ‖ = m, H∗
(0, m) = m

Eθ(‖X‖)

Eθ(‖X‖2)
=

Eθ(‖X/m‖)

Eθ(‖X/m‖2)
<

Eθ(‖X/m‖)
2

Eθ(‖X/m‖2)
< 1,

since Eθ(‖X‖) > ‖Eθ(X)‖ = m.

3. EXAMPLES

The following subsections are devoted to applications of Corollary 2.1, with

the key difficulty arising in checking the monotonicity conditions relative to H

and H∗
. We focus on general univariate cases (subsection 3.1), the multivariate

normal distribution (subsection 3.2.), and scale mixtures of multivariate normal

distributions (subsection 3.3).

3.1. Univariate spherically symmetric distributions

We express the symmetric univariate densities in (2.1) as

(3.1) fθ(x) = e−q(x−θ) ,

and restrict ourselves to cases where

q ∈ Q∗
=

{

q : q(·) is increasing and convex on (0,∞),

and q′(·) is concave on (0,∞)

}

.

Examples of such distributions include normal, Laplace, exponential power den-

sities with q(y) = α yβ
+ c, α > 0, 1 ≤ β ≤ 2; Hyperbolic Secant, Logistic, Gen-

eralized logistic densities with q(y) = −y +
2
α log(1 + eαy

) + c, α > 0; and Cham-

pernowne densities with q(y) = log(cosh(y) + β), β ∈ [0, 2], (also see Marchand
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and Perron, 2009; Marchand et al., 2008). The next theorem establishes for such

densities the applicability of part (a) of Corollary 2.1 and dominance of δH(X)

over both the linear minimax estimator, δLMX(X), and the MRE estimator δ0(X).

Theorem 3.1. For model densities as in (3.1) with q ∈ Q∗, the estimator

δH(X) = H(‖X‖, m)X dominates both the linear minimax estimator δLMX(X)

and the MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H(r, λ) decreases

in r ∈ [0,∞) for all λ ∈ [0, m], and increases in λ ∈ [0, m] for all r ≥ 0. First,

H(r, λ) can be written as

H(r, λ) = λ

Z ∞

r
x
(

f0(x−λ) − f0(x+λ)
)

dxZ ∞

r
x2
(

f0(x−λ) + f0(x+λ)
)

dx

= λ2Eλ





tanh

(

(

q(Y +λ) − q(Y−λ)
)

/2

)

λY



 ,

where Y is a random variable with density proportional to y2
(f0(y−λ)+f0(y+λ))·

·1[r,∞)(y). Such a family of densities with parameter r has increasing monotone

likelihood ratio in Y . Furthermore, since q ∈ Q∗
, a result of Marchand et al.

(2008) (Lemma 1, part e) tells us that the inner function of the above expecta-

tion in Y is nonincreasing. Hence, we conclude that, for all λ ∈ [0, m], H(λ, ·)

decreases on [0,∞). Turning to the monotonicity of H(·, r), begin by writing

H(r, λ) = λ

Z ∞

r
x
(

f0(x−λ) − f0(x+λ)
)

dxZ ∞

r
x2
(

f0(x−λ) + f0(x+λ)
)

dx

= λ

Z ∞

r−λ
(y +λ)f0(y) dy −

Z ∞

r+λ
(y−λ)f0(y) dyZ ∞

r−λ
(y +λ)2f0(y) dy +

Z ∞

r+λ
(y−λ)2f0(y) dy

= λ
A(r, λ)

B(r, λ)
,

where A(r, λ) and B(r, λ) are the numerator and denominator of the above frac-

tion, respectively. Manipulations yield:

B2
(r, λ)

∂H(r, λ)

∂λ
= A(r, λ)B(r, λ) + λA′

(r, λ)B(r, λ) − λA(r, λ)B′
(r, λ)

=

[

l(r, λ) + A1(r, λ)

]

·
[

B1(r, λ) + rλ
(

λf0(r−λ) + λf0(r+λ) − rf0(r−λ) + rf0(r+λ)
)

]

+

[

rλ
(

f0(r−λ) + f0(r+λ)
)

+ A1(r, λ)

] [

B1(r, λ) + λ l(r, λ)

]

= rλ G(r, λ)f0(r−λ) + 2 A1(r, λ)B1(r, λ) + rλ2f0(r+λ) l(r, λ)

+ r2λf0(r+λ) l(r, λ) + rλf0(r+λ)B1(r, λ) + rλ2f0(r+λ) l(r, λ) ,
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where

G(r,λ) = 2λ

∫ r+λ

r−λ
yf0(y)dy − r

∫ r+λ

r−λ
yf0(y)dy +

∫ ∞

r−λ
y2f0(y)dy +

∫ ∞

r+λ
y2f0(y)dy ,

l(r, λ) =

∫ r+λ

r−λ
yf0(y) dy ,

A1(r, λ) = λ

(
∫ ∞

r−λ
f0(y) dy +

∫ ∞

r+λ
f0(y) dy

)

,

B1(r, λ) =

∫ ∞

r−λ
y2f0(y) dy +

∫ ∞

r+λ
y2f0(y) dy .

Now, observe that for all r ≥ 0, λ ∈ [0, m], the quantities B1(r, λ), A1(r, λ), and

(r, λ) are nonnegative. Hence, to show the positivity of
∂H(r,λ)

∂λ , it will suffice to

show the positivity of G(r, λ). But, we have

G(r, λ) ≥

∫ r+λ

r−λ
yf0(y) (2 λ − r + y) dy

≥

∫ r+λ

0
λ y f0(y) dy 1[λ,∞)(r) +

∫ λ−r

r−λ
y f0(y) (2 λ − r + y) dy 1[0,λ)(r)

≥

∫ λ−r

0
2 y2f0(y) dy 1[0,λ)(r) ≥ 0 ,

which completes the proof.

3.2. Multivariate normal distributions

We consider here multivariate normal models in (2.1) X ∼ Np(θ, σ
2
) with

‖θ‖ ≤ m. We take σ2
= 1 without loss of generality (since

X
σ ∼ Np(θ

′
=

θ
σ , Ip)

with ‖θ′‖ ≤ m′
=

m
σ ). We require the following key properties relative to ρ(λ, r) =

Eθ

(

θT X
‖X‖ | ‖X‖= r

)

, where λ = ‖θ‖. These properties involve modified Bessel func-

tions Iv of order v, and more specifically ratios of the form ρv(t) = Iv+1(t)/Iv(t),

t > 0.

Lemma 3.1 (Watson, 1983; Marchand and Perron, 2001).

(i) We have ρ(λ, r) = λρp/2−1(λ r);

(ii) ρp/2−1(·) is increasing and concave on [0,∞), with ρp/2−1(0) = 0 and

lim
t→∞

ρp/2−1(t) = 1;

(iii) ρp/2−1(t)/t is decreasing in t with lim
t→0+

ρp/2−1(t)/t = 1/p ;

(iv) ρp/2(t) = ρ−1
p/2−1(t) − p/t.
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Denoting fp(·, λ) and F̄p(·, λ) as the probability density and survival func-

tions of R = ‖X‖ ∼
√

χ2
p(λ

2), we will also require the following useful properties.

Lemma 3.2.

(i) We have fp(r, λ) = r
(

r
λ

)p/2−1
Ip/2−1(rλ) exp

{

− r2+λ2

2

}

;

(ii) r2fp(r, λ) = λ2fp+4(r, λ) + pfp+2(r, λ);

(iii) rfp(r, λ) ρp/2−1(λr) = λfp+2(r, λ);

(iv) the ratio
F̄p+2(r,λ)

F̄p(r,λ)
decreases in λ ∈ [0,∞), for all p ≥ 1 and r > 0.

Proof: Parts (ii) and (iii) follow directly from (i), while (i) consists of a well

known Bessel function representation of the noncentral chi-square distribution.

Part (iv) follows from the identity 2
∂
∂λ F̄p(r, λ) = F̄p+2(r, λ) − F̄p(r, λ), and the

logconcavity of F̄p(r, ·) on [0,∞) (see Das Gupta and Sarkar, 1984; Finner and

Roters, 1997).

We now seek to apply part (a) of Corollary 2.1.

Theorem 3.2. For multivariate normal densities, the estimator δH(X) =

H(‖X‖, m)X dominates both the linear minimax estimator δLMX(X) and the

MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H(r, λ) decreases

in r ∈ [0,∞) for all λ ∈ [0, m], and increases in λ ∈ [0, m] for all r ≥ 0. Making

use of Lemmas 3.1 and 3.2, we obtain

H(r, λ) =

Eθ

(

‖X‖Eθ

(

θT X
‖X‖ | ‖X‖≥ r

))

Eθ

(

‖X‖2 | ‖X‖≥ r
)

=

Z r

∞
y Eθ

(

θT X
‖X‖ | ‖X‖= y

)

fp(y, λ) dyZ ∞

r
y2fp(y, λ) dy

=

Z r

∞
y λρp/2−1(λy)fp(y, λ) dyZ ∞

r
y2fp(y, λ) dy

(3.2)

=

Z r

∞
λ2fp+2(y, λ) dyZ ∞

r
y2fp(y, λ) dy

=







p

λ2
+

Z ∞

r
fp+4(y, λ) dyZ ∞

r
fp+2(y, λ) dy







−1

=

{

p

λ2
+

F̄p+4(r, λ)

F̄p+2(r, λ)

}−1

.



134 Éric Marchand and Amir T. Payandeh Najafabadi

The monotonicity property of H(r, ·) on [0, m] for all r ≥ 0 now follows from the

above expression and part (iv) of Lemma 3.2.

Now, to show that H(r, λ) decreases in r, make use of (3.2) to write

H(r, λ) = λ Er





EY

(

θT X
‖X‖ | ‖X‖= Y

)

Y





= λ Er

(

ρp/2−1(λY )

Y

)

,

where Y has density proportional to y fp(y, λ)1[r,∞)(y). Since this family of

densities with parameter r has increasing monotone likelihood ratio in Y , we

conclude indeed that H(r, λ) decreases for r ≥ 0 for all λ∈ [0, m] by making use

of part (iii) of Lemma 3.1.

3.3. Scale mixtures of multivariate normal distributions

We consider here in this subsection scale mixtures of multivariate normal

distributions where X admits the representation: X|Z = z ∼ Np(θ, zIp), Z hav-

ing Lebesgue density g on R
+
. The corresponding density in (2.1) is of the form

∫ ∞

0
(2πz)

−p/2
exp

{

−
‖x − θ‖2

2 z

}

g(z) dz ;(3.3)

and we further assume that g is logconcave on either R
+

or some open interval

(a, b) of R
+
. Uniform densities on (a, b) are included. With such a representation,

since X/
√

Z |Z = z ∼ Np

(

θ/
√

z, Ip

)

, we infer from part (i) of Lemma 3.2 that the

density function of R = ‖X‖ is given by

∫ ∞

0

y

z

(

y

λ

)p/2−1

Ip/2−1

(

λy

z

)

exp

{

−
y2

+ λ2

2 z

}

g(z) dz .(3.4)

We now seek to apply part (a) of Corollary 2.1.

Theorem 3.3. For scale mixtures of multivariate normal densities as in

(3.3) with g logconcave, the estimator δH∗(X) = H∗
(‖X‖, m)X dominates the

MRE estimator δ0(X).

Proof: By virtue of Corollary 2.1, it suffices to show that H∗
(r, ·) is non-

decreasing on [0, m] for all r ≥ 0 under the given logconcave assumption on g.
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Starting from the definition of H∗
and making use of 3.4, we obtain

H∗
(r, λ) =

λ Eθ

(

R |R≥ r
)

Eθ

(

R2|R≥ r
)

=

λ
Z ∞

r

Z ∞

0
y

p

2
+1 g(z)

z I p

2
−1

(yλ
z

)

e−
y2+λ2

2z dz dyZ ∞

r

Z ∞

0
y

p

2
+2 g(z)

z I p

2
−1

(yλ
z

)

e−
y2+λ2

2 z dz dy

=

Z ∞

r/λ

Z ∞

0
x

p

2
+1 g(λ2 t)

t I p

2
−1

(

x
t

)

e−
1+x2

2 t dt dxZ ∞

r/λ

Z ∞

0
x

p

2
+2 g(λ2 t)

t I p

2
−1

(

x
t

)

e−
1+x2

2 t dt dx
,

with the change of variables (y, z) = (λx, λ2t). Simple differentiation leads to

∂
∂λH∗

(r, λ) =
1

B2 {A1 −A2 + A3 −A4}, where B is the above denominator of H∗
,

A1 = 2 λ

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
x

p

2
+1 g′(λ2 t) I p

2
−1

(

x

t

)

e−
1+x2

2 t dt dx ,

A2 = 2 λ

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
x

p

2
+2 g′(λ2 t) I p

2
−1

(

x

t

)

e−
1+x2

2 t dt dx ,

A3 =
r

λ2

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

0

g(λ2 t)

t

(

r

λ

)
p

2
+1

I p

2
−1

(

r

λt

)

e−
λ2+r2

2λ2 t dt ,

A4 =
r

λ2

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

0

g(λ2 t)

t

(

r

λ

)
p

2
+2

I p

2
−1

(

r

λt

)

e−
λ2+r2

2λ2 t dt ,

with M(x, t) =
g(λ2 t)

t x
p

2
+1

I p

2
−1

(

x
t

)

e−
1+x2

2t . Obviously, A3 − A4 ≥ 0, because

x≥ r
λ on the domain of integration. Furthermore, by setting h(z) =

(

−g′(z)/g(z)
)

·

·1{z:g(z)>0}(z), we have

A1 − A2 = 2 λ

∫ ∞

r/λ

∫ ∞

0
M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
h(λ2 t) xt M(x, t) dt dx

− 2 λ

∫ ∞

r/λ

∫ ∞

0
x M(x, t) dt dx

∫ ∞

r/λ

∫ ∞

0
h(λ2 t) t M(x, t) dt dx .

Now, since h is increasing with the logconcavity of g, the FKG’s inequality (see

Lemma A.1 in the Appendix) implies that A1 − A2 is nonnegative whenever

M(x1, t2)M(x2, t1) − M(x1, t1)M(x2, t2) ≤ 0, for 0 ≤ x1 ≤ x2 and 0 ≤ t1 ≤ t2.

From the definition of M , manipulations yield for non-zero values of M(x1, t2)·
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·M(x2, t1) − M(x1, t1)M(x2, t2):

t1 t2 e(1/t1+1/t2)

(x1x2)
p/2+1 g(λ2 t1) g(λ2 t2)

{

M(x1, t2)M(x2, t1) − M(x1, t1)M(x2, t2)
}

=

= I p

2
−1

(

x1

t2

)

I p

2
−1

(

x2

t1

)

− I p

2
−1

(

x1

t1

)

I p

2
−1

(

x2

t2

)

exp

{

−(x2
1−x2

2)(1/t1−1/t2)
}

= I p

2
−1

(

x1

t2

)

I p

2
−1

(

x2

t2

)

[

I p

2
−1

(

x2
t1

)

I p

2
−1

(

x2
t2

) −
I p

2
−1

(

x1
t1

)

I p

2
−1

(

x1
t2

) exp

{

−(x2
1−x2

2)(1/t1−1/t2)
}

]

≤ I p

2
−1

(

x1

t2

)

I p

2
−1

(

x2

t1

)(

t2
t1

)p/2−1[

1 − exp

{

(x2
2 − x2

1 + x1)(1/t1−1/t2)
}

]

≤ 0 ,

where the former inequality follows from the Ross inequality applications

(see Lemma A.2 in Appendix):
Ip/2−1(x2/t1)

Ip/2−1(x2/t2) ≤ (t2/t1)
p/2−1

and
Ip/2−1(x1/t1)

Ip/2−1(x1/t2) ≥

(t2/t1)
p/2−1

exp
{

x1/t1 −x1/t2
}

, and where the latter inequality follows from the

fact that (x2
2 − x2

1 + x1) (1/t1 − 1/t2) ≥ 0, for 0 ≤ x1 ≤ x2 and 0 ≤ t1 ≤ t2.

APPENDIX

The FKG inequality due to Fortuin, Kasteleyn, and Ginibre (1971) is useful

for Theorem 3.3.

Lemma A.1 (FKG inequality). Suppose a p-variate random variable X

is distributed with probability density function ξ and with positive measure ν.

For two points y = (y1, ..., yp) and z = (z1, ..., zp), in the sample space of X, we

define y ∧ z = (y1∧z1, ..., yp∧zp) and y ∨ z = (y1∨z1, ..., yp∨zp), where a∧ b =

min(a, b), a∨ b = max(a, b). Suppose that ξ satisfies ξ(y) ξ(z) ≤ ξ(y∨z) ξ(y∧z)

and that α(y), β(y) are nondecreasing in each argument and α, β and α β are

integrable with respect to ξ. Then
∫

αβξ dν ≥
∫

αξ dν
∫

βξ dν.

The following lemma, referred to as the Ross inequality is due to Joshi

and Bissu (1991) and establishes useful bounds for a ratio of modified Bessel

functions.

Lemma A.2. Suppose Iv(x) and Iv(y) are two modified Bessel functions.

Moreover, suppose that y ≥ x and v ≥ −1
2 . Then

ex−y

(

x

y

)v

≤
Iv(x)

Iv(y)
≤

(

x

y

)v

.
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1. INTRODUCTION

Extreme Value Theory (EVT) is an important tool for many applied sci-

ences whenever we are faced with modeling high values of certain phenomena.

Ocean wave modeling, wind engineering, thermodynamics of earthquakes, risk

assessment on financial markets are some examples. The first results were develo-

ped considering independent observations but, more recently, models for extreme

values have been constructed under the more realistic assumption of temporal de-

pendence. Among these models, stationary Markov chains are very interesting,

specially because they may have a somewhat simple treatment in what concerns

extremal properties. The max-autoregressive moving average processes MARMA

(Davis and Resnick [7]), and also the particular case MAR(1) or ARMAX, given

by,

Xi = kXi−1 ∨Wi ,

with 0 < k < 1 and {Wi}i∈Z
i.i.d. (Alpuim [2]; Canto e Castro [6]; Ancona-

Navarrete and Tawn [3]; Beirlant et al. [4]; Lebedev [12]) are some examples.

Heavy tailed MARMA and ARMA are both good choices for modeling time se-

ries data with sudden large peaks, although the former are more convenient for

analysis as their finite-dimensional distributions can easily be written explicitly.

More recently, some careful attention has been given to the statistical mode-

ling of the tail dependence between consecutive pairs from a stationary first-order

Markov chain, since it is important to distinguish asymptotic dependence from

asymptotic independence. More precisely, according to Bortot and Tawn ([5]), a

Markov chain {Yi} is said to be asymptotically tail dependent or independent,

whenever b > 0 or b = 0, respectively, in the limit below:

lim
y→y∗

P
(

Y2 >y |Y1 >y
)

= b ,

where y∗ is the right-endpoint of Y1, i.e., y∗ = sup{y : P (Y1 ≤ y) < 1}. For asymp-

totically tail independent Markov chains, the dependence between exceedances of

y gradually decreases as y → y∗, which leads to an extremal feature increasingly

resembling an i.i.d. sequence at high levels. As pointed out in Bortot and Tawn

([5]), this phenomenon has been noticed in a number of data and theoretical ap-

plications. In these cases, procedures as in Smith et al. ([16]) assuming that the

limiting behavior of the chain is exact above a fixed high threshold, and hence

the dependence structure between consecutive random variables (r.v.’s) above the

threshold can be modeled through a bivariate extreme value distribution, are not

suitable. This problem is overcome by setting the way how P
(

Y2 >y |Y1 >y
)

converges to zero, as y → y∗, which involves the coefficient of asymptotic tail

dependence η (Ledford and Tawn [13], [14]). This is a nontrivial class, including

many commonly studied processes, such as Gaussian Markov chains (Sibuya [15]).
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Coefficient η characterizes the asymptotic tail dependence behavior, i.e., η = 1

corresponds to tail dependence whilst η < 1 means asymptotic tail independence,

with η = 1/2 occurring for the (almost) independent case. The ARMAX process,

which has unit η, is in the group of tail dependent Markov chains (Ferreira and

Canto e Castro [8]) and hence is not suitable to model data series expressing the

described phenomenon.

Ferreira and Canto e Castro ([8]) introduced the power max-autoregressive

process (in short, pARMAX), defined as,

Xi = Xc
i−1 ∨ Zi , 0 < c < 1, i ∈ Z ,

with {Zi} i.i.d., for which η is a function of the model parameter c, under

the very mild assumption of heavy tailed innovations. More precisely, we have

η = max(1/2, c) and hence pARMAX is an asymptotic tail independent process,

even almost independent in cases c ≤ 1/2. Hence, it is a suitable model to de-

scribe the above mentioned phenomenon of time series exhibiting asymptotic tail

independence. In Figure 1, the similarity between the sample paths of heavy tailed

pARMAX and AR(1) processes, in this case based on marginal d.f.’s Pareto(1/γ),

with shape parameter γ > 0, given by

K(x) = 1 − x−1/γ , x ≥ 1 ,(1.1)

indicate that the former can be considered as an alternative for data modeling,

particularly with respect to extreme values. The pARMAX process has easily

derived extremal properties and also easily explicited finite-dimensional distri-

butions (Ferreira and Canto e Castro [8], [9]). Moreover, a generalization of

pARMAX has also been applied in modeling financial data (Ferreira and Canto

e Castro [10]). Based on the estimation procedure for the Ledford and Tawn

coefficient η, Ferreira and Canto e Castro ([9]) presented consistent and asymp-

totically normal estimators for the process parameter c, which applies only in

cases where c > 1/2. Following a similar procedure to that of Lebedev ([12]) to

estimate the parameter of unit Fréchet ARMAX, an estimator for the pARMAX

parameter c is derived, this time covering all values of c ∈ (0, 1). From a Klotz’s

result (Klotz [11], Theorem 1), consistence and asymptotic normality are easily

stated.
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Figure 1: 5000 realizations of pARMAX, Xi =Xc
i−1

∨Zi, on the left, and of AR(1),

Xi = cXi−1 +Zi, on the right, with, from top to bottom, c = 0.7, 0.8, 0.9,

respectively, and with marginal Pareto(0.7).

2. THE pARMAX PROCESS

Consider {Zi} a sequence of i.i.d. copies of a r.v., Z, having real nonnegative

support and marginal d.f. FZ . A sequence {Xi} is said to be a pARMAX process

if,

Xi = Xc
i−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ...(2.1)

with Xi independent of Zj , for all integer i < j. The sequence {Zi} is also known

as the innovations sequence of the process.

In the sequel we consider that {Zi} has support in [1, ∞[, a necessary

condition for stationarity.

Let K be the marginal distribution function (d.f.) of the process. Hence K

is a solution of the equation

K(x) = K(x1/c
)FZ(x) .(2.2)

(See Ferreira and Canto e Castro [8], [9] for details). An example of a stationary

pARMAX process is given below.
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Example 2.1. Consider {Zi} with common d.f.,

FZ(x) = c1{x=1} +
1 − x−1/γ

1 − x−1/(cγ)
1{x>1} ,

where 1{·} is the indicator function. Hence, the Pareto(1/γ) d.f. given in (1.1)

satisfies (2.2), being, therefore, a stationary distribution for Xi.

The k-step transition probability function (t.p.f.) from x to ]−∞, y], given

by,

Qk
(

x, ]−∞, y]
)

:= P
(

Xn+k ≤ y |Xn = x
)

=
K(y)

K(y1/ck
)
1n

x≤y1/ck
o ,(2.3)

where the last step is due to (2.2), will be used in the forward results.

2.1. Parameter estimation

Now we will present an estimator for the pARMAX parameter (c) based

on a similar procedure as in Lebedev ([12]) for unit Fréchet max-autoregressive,

Xi = max
(

cXi−1, (1− c)Zi

)

. In the pARMAX case, Pareto marginals will be

considered.

Set, for each k ≥ 1,

pk = P
(

Xk+1 ≤X1

)

.(2.4)

The following result states a relation between pk and parameter c, more precisely,

ck. For sake of simplicity, from now on consider ak := ck.

Proposition 2.1. Let {Xi} be a stationary pARMAX process as defined

in (2.1) with marginal d.f. K satisfying (1.1). Then the equality,

pk = ak

(

ψ(2 ak) − ψ(ak)
)

,(2.5)

holds where ψ is the well-known digamma function, i.e., ψ(z) = Γ
′
(z)/Γ(z) with

Γ(z) =
∫ ∞
0 tz−1e−tdt the Euler Gamma function.

Proof: Just observe that, using (2.3), we have,

pk =

∫

P
(

Xk+1≤ x |X1 = x
)

dK(x)

=

∫

Qk
(

x, ]−∞, x]
)

dK(x)(2.6)

=

∫

K(x)

K(x1/ck
)
dK(x) , k ≥ 1 .

where after some algebra (see for instance Abramowitz and Stegun [1]) and no-

tation ak = ck, expression (2.5) can be derived.
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Note that pk does not depend on the marginal d.f. parameter γ. There exist

simple estimates for the above probabilities:

p̂k =
1

n−k

n
∑

j=k+1

1{Xj≤Xj−k} , k ≥ 1 .(2.7)

The next result states consistency and asymptotic normality for estimators

âk (= ̂ck), obtained from equation (2.5) by plugging in the empirical estimates p̂k.

More precisely, we have the following result.

Proposition 2.2. Let {Xi} be a stationary pARMAX process as defined

in Proposition 2.1. Then, for each positive integer k,

n1/2
(âk − ak)

D
→ N

(

0, σ2
k/g

′
(ak)

2
)

(2.8)

where g(x) = x
(

ψ(2x) − ψ(x)
)

and

σ2
k = pk(1 − pk) (1 − 2 pk + λk)/(1 − λk) ,(2.9)

with pk given in (2.5) and λk = p−1
k

Z ∞

1

1
2

[

K(x)K(x1/ak−1 )

K2(x1/ak )
+

K2(xa1 )

K(x)K(x1/ak−1 )

]

K(dx).

Proof: Observe that p̂k is the mean of Bernoulli trials with Markov de-

pendence. From Theorem 1 in Klotz ([11]), convergence n1/2
(p̂k −pk)

D
→ N(0, σ2

k)

holds for σ2
k given in (2.9), where λk = P

(

Xj ≤Xj−k |Xj−1 ≤Xj−k−1

)

with

max
(

0, (2 pk −1)/pk

)

≤ λk ≤ 1. Hence, the result (2.8) is straightforward by the

Delta Method.

In order to obtain the variance in (2.9) we must compute λk. First note that,

λk =
P

(

Xj ≤Xj−k , Xj−1 ≤Xj−k−1

)

pk
,(2.10)

in which, using successive conditioning on the numerator lead us to,

P
(

Xj ≤Xj−k , Xj−1 ≤Xj−k−1

)

=

=

∫ ∞

1

∫ ∞

1

∫ x

1
Q

(

w, ]−∞, y]
)

Qk−1
(y, dw)Q(x, dy)K(dx) .

Now considering (2.3), the following development holds:

P
(

Xj ≤Xj−k, Xj−1 ≤Xj−k−1

)

=

=

∫ ∞

1

∫ ∞

1

∫ min(x,y1/c)

1
FZ(y) Qk−1

(y, dw)Q(x, dy)K(dx)

=

∫ ∞

1

[

∫ xc

1
FZ(y)Qk−1

(

y, ]−∞, y1/c
]
)

+

∫ ∞

xc

FZ(y)Qk−1
(

y, ]−∞, x]
)

]

Q(x, dy)K(dx)

=

∫ ∞

1

[

∫ xc

1
FZ(y)

K(y1/c
)

K(y1/ck
)

+

∫ x1/ck−1

xc

FZ(y)
K(x)

K(x1/ck−1
)

]

Q(x, dy)K(dx) .
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If d.f. FZ admits density fZ , the transition density of (2.3) is given by q(x, y) =

fZ(y)1{xc<y} + FZ(xc
)1{xc=y}. Thus, the first term in the last integral is null

and hence,

P
(

Xj ≤Xj−k, Xj−1 ≤Xj−k−1

)

=

=

∫ ∞

1

K(x)

K
(

x1/ck−1
)

F 2
Z

(

x1/ck−1
)

−F 2
Z

(xc)

2
K(dx) +

∫ ∞

1

K(x)

K
(

x1/ck−1
) F 2

Z
(xc

)K(dx) .

(2.11)

Now the result follows from equation (2.2) and notation ak = ck.

Note that pk ∈ (1/2, 1) (see Figure 2 and Table 1) and no definite results

can be obtained for p̂k < 1/2.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Plot of (from top to bottom) p1, ..., p5 given in (2.5).

Table 1: Values of pk computed from (2.5), for Pareto marginal pARMAX
processes with parameter values: c = 0.1, 0.2, ..., 0.9.

c k = 1 k = 2 k = 3 k = 4 k = 5

0.1 0.513472 0.500161 0.500002 0.5 0.5

0.2 0.545531 0.502419 0.500103 0.500004 0.5

0.3 0.588572 0.511114 0.501132 0.500106 0.50001

0.4 0.63855 0.531074 0.505905 0.501021 0.500169

0.5 0.693147 0.565986 0.52013 0.505648 0.501503

0.6 0.750948 0.617901 0.551814 0.521466 0.50849

0.7 0.811047 0.687525 0.609375 0.561751 0.533835

0.8 0.872845 0.77475 0.699936 0.643619 0.601832

0.9 0.935927 0.879101 0.828815 0.784424 0.74534
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However, the probability of such events goes to zero as n→ ∞ and hence,

this may be an indication of an inconsistency in our choice of the model. In what

concerns the lag k, it can be chosen in order to obtain the smallest variance (σ2
k)

provided that the estimate, p̂k, takes value in (1/2, 1), which means as small as

possible (see, for instance, Table 2).

Table 2: True values of λk and respective estimates, ̂λk in (2.12) and ˜λk

in (2.13), considering n= 5000 realizations of process pARMAX
for cases c = 0.3, 0.5, 0.7, 0.9, with marginal Pareto(1).

k = 1 k = 2 k = 3 k = 4 k = 5

c = 0.3

λk 0.4805 0.5744 0.6070 0.6122 0.6128λk 0.4778 0.5751 0.5991 0.6032 0.6071fλk 0.4782 0.5754 0.5995 0.6035 0.6075

c = 0.5

λk 0.6393 0.6756 0.7047 0.7195 0.7250λk 0.6461 0.6686 0.7057 0.7238 0.7236fλk 0.6461 0.6687 0.7058 0.7239 0.7237

c = 0.7

λk 0.7930 0.8021 0.8119 0.8210 0.8283λk 0.7973 0.8083 0.8114 0.8269 0.8277fλk 0.7975 0.8083 0.8116 0.8270 0.8277

c = 0.9

λk 0.9341 0.9348 0.9356 0.9364 0.9373λk 0.9334 0.9334 0.9342 0.9363 0.9362fλk 0.9334 0.9334 0.9341 0.9362 0.9361

We remark that this procedure allows to estimate any value of c ∈ (0, 1),

and not only the case c ∈ (1/2, 1) as in the method considered in Ferreira and

Canto e Castro ([9]), which is based on the estimation of Ledford and Tawn tail

dependence coefficient η. On the other hand, there is no explicit form for ak in

(2.5) and so it must be obtained numerically. Table 1 presents some computed

values.

2.2. An illustrative example

An illustration is now presented. We consider 5000 realizations from pAR-

MAX process in (2.1), for cases c = 0.3, 0.5, 0.7, 0.9, with marginal distribution

Pareto(1).
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In order to obtain an estimate for the variance, we can replace in (2.9),

p by p̂k stated in (2.7) and λk by the empirical counterpart

̂λk =
1

n− k − 1

n
∑

k+2

1{Xj≤Xj−k , Xj−1≤Xj−k−1}

/

p̂k(2.12)

or alternatively, use the estimator proposed by Klotz ([11]),

˜λk =
r− bqk(2s− t) + (n−1) bpk +

��
r− bqk(2s− t) + (n−1) bpk

�2
+ 4r (1− 2bpk) (n−1) bpk

�1/2

2(n−1) bpk

(2.13)

where q̂k = 1 − p̂k, r =
∑n

i=2 xi xi−1, s =
∑n

i=1 xi and t = x1 + xn, which is

asymptotically equivalent to the maximum likelihood estimator. Again by Theo-

rem 1 in Klotz ([11]), we have that ˜λk is consistent, more precisely,
√
n(λk−˜λk)

D
→

N
(

0, λ(1−λ)/p
)

. See the very close estimates obtained for λk in Table 2. Results

of estimation are summarized in Table 3.

Table 3: True values of ak (= ck) and estimates obtained from (2.5), consider-

ing n = 5000 realizations of process pARMAX in (2.1), with marginal

Pareto(1), for cases c = 0.3, 0.5, 0.7, 0.9; estimates ĉ were obtained by

taking âk
1/k

; IC(λ),IC(bλ) and IC(eλ) are 95% confidence intervals obtained,

respectively, with true σ2
and estimated σ2

using ̂λ given in (2.12) and ˜λ
given in (2.13); non filled cells mean that a p̂k less than 0.5 was obtained.

k = 1 k = 2 k = 3 k = 4 k = 5

ak 0.3 0.09 0.027 0.0081 0.00243
IC(λ) (0.2778, 0.3222) (0.0203, 0.1598) (−0.1840,0.2380) (−0.6627, 0.6789) (−2.1955, 2.2004)ak 0.295616 0.093871 — — —

IC(bλ) (0.2734,0.3178) (0.0262,0.1615) — — —
IC(eλ) (0.2734, 0.3179) (0.0262, 0.1616) — — —bc 0.295616 0.306384 — — —

ak 0.5 0.25 0.125 0.0625 0.03125
IC(λ) (0.4810, 0.5190) (0.2088, 0.2912) (0.0526,0.1974) (−0.0672, 0.1922) (−0.2100, 0.2725)ak 0.500694 0.258363 0.137758 0.062246 0.081734

IC(bλ) (0.4814, 0.5200) (0.2184, 0.2983) (0.0701,0.2054) (−0.0678, 0.1923) (−0.0244, 0.1880)

IC(eλ) (0.4814, 0.5200) (0.2184, 0.2983) (0.0701,0.2054) (−0.0678, 0.1923) (−0.0245, 0.1879)bc 0.500694 0.508294 0.516463 0.499491 0.606011

ak 0.7 0.49 0.343 0.2401 0.16807
IC(λ) (0.6838, 0.7162) (0.4563, 0.5237) (0.2947,0.3913) (0.1760, 0.3042) (0.0843, 0.2519)ak 0.682445 0.469803 0.334072 0.222017 0.149248
IC(bλ) (0.6661, 0.6989) (0.4355, 0.5041) (0.2850,0.3831) (0.1543, 0.2897) (0.0589, 0.2396)

IC(eλ) (0.6660, 0.6990) (0.4355, 0.5042) (0.2850,0.3832) (0.1543, 0.2897) (0.0589, 0.2396)bc 0.682445 0.685422 0.693873 0.686430 0.683568

ak 0.9 0.81 0.729 0.6561 0.59049
IC(λ) (0.8896, 0.9104) (0.7862, 0.8338) (0.6937,0.7643) (0.6106, 0.7016) (0.5357, 0.6452)ak 0.896950 0.803367 0.721969 0.653779 0.583686
IC(bλ) (0.8862, 0.9077) (0.7790, 0.8277) (0.6862,0.7577) (0.6080, 0.6995) (0.5286, 0.6388)

IC(eλ) (0.8862, 0.9077) (0.7790, 0.8277) (0.6863,0.7577) (0.6081, 0.6995) (0.5286, 0.6388)bc 0.896950 0.896307 0.897097 0.899203 0.897916
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