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Abstract:

• In this paper, we consider the problem of estimating the parameters of a subset se-

lected from p (p ≥ 2) left-truncated Poisson distributions under Stein loss function.

Two problems of estimations are considered; average worth and simultaneous estima-

tion. For the average worth, the natural estimator is shown to be positively biased

with respect to Stein loss function and the Unique Minimum Risk Unbiased Estimator

UMRUE is obtained. For the simultaneous estimation problem, we have shown that

the natural estimator is positively biased with respect to Stein loss function and the

UMRUE is obtained. The inadmissibility of the natural estimator of the simultane-

ous estimation is also proved and a class of dominating estimators is obtained. Monte

Carlo simulation is undertaken to compute the biases and risks of the two problems

of estimation.
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1. INTRODUCTION

Estimating the parameter of the selected population is an important prac-

tical problem which arises in various disciplines such as agriculture, medicine and

industry. Say, we wish to select the most productive machine from p different

types of machines and then estimate the mean of the production of the selected

machine. The problem of estimation after selection has received considerable

attention from many researchers. Some references in this area include, Sackro-

witz and Samuel-Cahn (1984), Kumar and Gangopadhyay (2005), Misra, van der

Meulen and Branden (2006a, 2006b), Sill and Sampson (2007) and Vellaisamy

and Jain (2008). All these studies considered the problem of estimation when the

selection rule selects only one population. However sometimes we are interested

to select a subset of good populations (including the best) rather than only one

population (the best) and then estimating the parameters of the selected subset.

The problem of estimation after subset selection was initially formulated and

studied by Jayaratnam and Panchapakesan (1984) for two normal populations.

They proposed three classes of estimators for the average worth of the selected

subset and compared numerically their biases and mean squared errors. Jayara-

tnam and Panchapakesan (1986) considered the case of two independent exponen-

tial populations and they proved that the natural estimator of the average worth

of the selected subset is positively biased. They suggested an adjusted estimator

by adjusting the bias of the natural estimator and compared the bias and mean

squared error of the natural estimator with the adjusted estimator. Vellaisamy

(1992) considered the average worth estimation and simultaneous estimation of

the subset selected from independent gamma population with unknown scale

parameters and common known shape parameter. He proved that the natural

estimator of the average worth is positively biased and inadmissible and also, he

obtained the UMVUE of it using the UV method of Robbins (1988). Also, he

observed similar results for the simultaneous estimation of the selected subset.

Misra (1994) derived the UMVUE of the average worth of the selected subset

from p independent gamma populations with common known shape parameter

and unknown scale parameters. He also proved the inadmissibility of the natural

estimator of the average worth under squared error loss function by constructing

improved estimators. Vellaisamy (1996) considered the case of subset selection

from uniform populations. He proved for the simultaneous estimation of the pa-

rameters associated with the selected populations, the natural estimators as well

as the unbiased estimator are inadmissible under the squared error loss function

and the dominating ones were obtained. The problem of estimating the average

worth of the selected subset from exponential populations with a common un-

known location parameter and unknown scale parameters has been investigated

by Gangopadhyay and Kumar (2005). They derived the UMVUE of the average

worth of the selected subset and they also, compared, numerically, the bias and

the mean squared error of the UMVUE, BAEE and MLE of the average worth.
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They observed that the natural estimator dominates the unbiased estimator and

the natural estimator itself is inadmissible. The literatures, so far, deal with the

problem of estimating the parameters (average worth or simultaneous estimation)

of a selected subset containing the best population when the distributions of pop-

ulations are continuous. In this paper, we take up the problem of estimating the

parameters of the selected subset under the asymmetric loss function when the

distributions of populations are discrete. The loss function considered here is

Stein loss function defined as

L(θ, d) =
d

h(θ)
− log

(

d

h(θ)

)

− 1 ,(1.1)

where d is an estimate of h(θ) and log denotes the natural logarithm. The loss

function (1.1) was first introduced in James and Stein (1961) for estimation of the

multinormal covariance matrix. Also, it was considered by Dey and Srinivasan

(1985) and Dey and Chung (1991) for simultaneous estimation. In Section 2,

we introduce some notations, definitions and lemmas and formulate the problem.

In Section 3, the natural estimators of the average worth and simultaneous esti-

mation of the selected subset are shown to be positively biased with respect to

Stein loss function. In Section 4, the UMRUE’s of the average worth and simul-

taneous estimation are derived. In Section 5, the inadmissibility of the natural

estimator of the simultaneous estimation is proved by solving certain difference

inequality and a class of improved estimators is constructed. In Section 6, Monte

Carlo simulation is undertaken to compute the biases and risks of the estimators

under the two problems of estimation.

2. NOTATIONS, DEFINITIONS AND FORMULATION OF THE

PROBLEM

Let Π1, ...,Πp be p (p≥2) independent populations such that the random

variable Xi represents the population Πi has left-truncated Poisson p.d.f.

P (Xi = xi) =
θxi

i

xi! f(θi, t)
, xi = t, t+1, ...; t > 0; θi > 0; i = 1, ..., p ,

where f(θi, t) = eθi −∑t−1
k=o θ

k
i /k!. We assume that θ1, ..., θp are unknown param-

eters. Suppose from each population Πi we have a random sample Xi1, ..., Xin

and let Zi =
∑n

j=1Xij . It is well-known (see for example, Jani (1977)) that the

distribution of Zi is given by

P (Zi = zi) =
n! S(zi, n, t) θ

zi

i

zi! fn(θi, t)
, zi = nt, nt+1, ... ,
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where S(zi, n, t) is the Stirling number of the second kind and the UMVUE of θi

is given by

(2.1) δ(Zi) =

{

Zi S(Zi−1, n, t)/S(Zi, n, t), if Zi ≥ nt+1 ;

0, otherwise .

Without loss of generality, we consider the case n = 1. So that the UMVUE,

defined in (2.1), reduces to

(2.2) δ(Xi) =

{

Xi, if Xi ≥ t+1 ;

0, otherwise .

Let χ =
{

x : x= (x1, ..., xp), xi ≥ t, i= 1, ..., p
}

and Ω =
{

θ : θ = (θ1, ..., θp),

θi > 0, i = 1, ..., p
}

denote the sample space and the parameter space, respec-

tively, and let θ[1] ≥ θ[2] ≥ · · · ≥ θ[p] represent the ordered parameters and X(1) ≥
X(2) ≥ · · · ≥ X(p) represent the ordered values of X1, ..., Xp (use arbitrary order-

ing if some of the θi’s (Xi’s) are equal). The population associated with θ[1] is

called the best population. In the subset selection approach, we want to select a

non-empty subset from the p populations so that the best population is included

in the selected subset with a minimum pre-assigned probability P ∗
(1/p < P ∗ < 1)

(Gupta (1965)). To select such a subset, we consider, in this paper, the following

modified selection rule which was suggested by Gupta and Huang (1975).

(2.3) R : Choose Πi in the subset iff Xi + 1 ≥ cX(1) ,

where c = c(p, P ∗
) (0< c < 1) is some suitable constant satisfying the basic prob-

ability requirement

inf
θ∈Ω

Pθ

(

CS |R
)

= P ∗ ,

and CS stands for “Correct Selection” (i.e. the selection contains the best popula-

tion). Let X(1)i ≥ X(2)i ≥ · · · ≥ X(p−1)i denote the ordered values of X1, ..., Xi−1,

Xi+1, ..., Xp. Note that

{

Xi +1 ≥ cX(1)

}

=
{

Xi +1 ≥ cX(1)i

}

.

Suppose a subset (of random size) is selected using the rule R. The problems

that we are interested here are the estimation of the average worth M and the

simultaneous estimation of Q, defined by

M =

p
∑

i=1
θi Ii(X)

p
∑

i=1
Ii(X)

and

Q =
(

θ1I1(X), ..., θp Ip(X)
)

,

where Ii(X) = I
(

Xi +1 ≥ cX(1)i

)

and I(A) denotes the indicator function of an

event A. It can be seen that the dimension of the estimand M is random, as it
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varies with X, unlike in the case of classical estimation problem. The natural

analogues of M and Q for the selection problem are as follows

M̂1(X) =

p
∑

i=1
δ(Xi) Ii(X)

p
∑

i=1
Ii(X)

(2.4)

and

Q̂1(X) =
(

δ(X1)I1(X), ..., δ(Xp)Ip(X)
)

,(2.5)

and we will call them, the natural estimators of M and Q, respectively, where δ

is as in (2.2). The loss function (1.1) can be written for the case of estimating M

and Q as in the following

L(M,M̂) =
M̂

M
− log

(

M̂

M

)

− 1

and

L(Q, Q̂) =

p
∑

j=1

[

dj

θj

− log

(

dj

θj

)

− 1

]

Ij(X) ,

where M̂ is an estimate of M, dj is an estimate of θj and Q̂ = (d1, ..., dp). The

loss function is well defined in our problem, since we considered distributions

truncated at zero. Now, we introduce the following lemmas which will be used in

the next sections. The following lemma is from Chou (1991).

Lemma 2.1. Let f1 be a real-valued function defined on p-fold Cartesian

product of I
+, the set of positive integers, such that Eθ|f1(X)|<∞ and f1(x) = 0

if xi ≤ t. Then

Eθ f1(X)/θi = Eθ

(

f1(X+ ei)/δ(Xi +1)
)

,

where ei is the p-dimensional vector whose i-th coordinate is 1 and the rest are

zeros and δ is as in (2.2).

Lemma 2.2. Let f2 be a real-valued function defined on p-fold Cartesian

product of I
+ such that Eθ|f2(X)| <∞. Then

Eθ f2(X)θi = Eθ f2(X− ei)δ(Xi) ,

where δ is as in (2.2)

Lemma 2.3. If |w| ≤ 1/2, then log(1 + w) ≥ w − w2.
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Proof: Similar to the proof of Lemma 2.2 of Dey and Srinivasan (1985),

we observe that

log(1 + w) = w − w2

2
+
w3

3
− w4

4
+ · · ·

≥ w − w2

2
− |w|3

2
− |w|4

2
− · · ·

= w − w2

2

(

1 + |w| + |w|2 + · · ·
)

= w − w2

2
(

1 − |w|
)

≥ w − w2 ,

since |w| ≤ 1/2.

3. ESTIMATION OF M AND Q

In this section, the natural estimators ofM andQ are shown to be positively

biased with respect to Stein loss function. First of all we need to impose a

condition on the estimator δ to be unbiased under Stein loss function using the

definition of the risk-unbiasedness of Lehmann (1951).

Definition 3.1. An estimator η(Y ) of g(θ) is said to be risk-unbiased if

it satisfies

Eθ L
(

θ, η(Y )
)

≤ Eθ L
(

θ′, η(Y )
)

∀ θ′ 6= θ .(3.1)

Following Nematollahi and Motamed-Shariati (2009), the estimator η of θ

is said to be unbiased under Stein loss function if Eθ η(Y ) = θ, ∀ θ ∈ Ω, other-

wise, it is biased and its bias is Bθ(η) = Eθ

(

η(Y )− θ
)

. Clearly, this is the same

definition of the usual unbiasedness (unbiasedness under the squared error loss

function). Consider first the estimation problem of the average worth M . The es-

timator M̂ of M is said to be unbiased under Stein loss function if EθM̂ = EθM ,

otherwise, it is biased and its bias is Bθ(M̂,M) = Eθ(M̂ −M). Without loss of

generality, consider p = 2. Then, the average worth M can be written as

M =











θ1, if X1 > c−1
(X2 + 1) ,

θ2, if X1 < cX2 − 1 ,

1
2(θ1 + θ2), if cX2 − 1 ≤ X1 ≤ c−1

(X2 + 1) ,

(3.2)

and hence the natural estimator of M is

M̂1 =











δ(X1), if X1 > c−1
(X2 + 1) ,

δ(X2), if X1 < cX2 − 1 ,

1
2

(

δ(X1) + δ(X2)
)

if cX2 − 1 ≤ X1 ≤ c−1
(X2 + 1) ,

(3.3)

where δ is as in (2.2).
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Theorem 3.1. The natural estimator M̂1 of M is positively biased under

Stein loss function.

Proof: Without loss of generality consider p = 2. From (3.2) and (3.3),

it follows

Bθ(M̂1,M) = Eθ(M̂1−M)

= Eθ

(

δ(X1)− θ1
)

I
(

X1> c
−1

(X2 +1)
)

+ Eθ

(

δ(X2)− θ2
)

I
(

X1< cX2−1
)

+ 0.5 Eθ

(

δ(X1)− θ1 + δ(X2)− θ2
)

I
(

cX2 −1 ≤X1≤ c−1
(X2 +1)

)

.

Since δ(Xi) is unbiased estimator for θi, i= 1, 2, and

I
(

cX2 −1 ≤X1 ≤ c−1
(X2 +1)

)

= 1 − I
(

X1 > c−1
(X2 +1) − I(X1 < cX2 −1)

)

.

Then

Bθ(M̂1,M) = 0.5 Eθ

[

(

δ(X1)− θ1
)

−
(

δ(X2)− θ2
)

]

I
(

X1 > c−1
(X2 +1)

)

+ 0.5 Eθ

[

(

δ(X2)− θ2
)

−
(

δ(X1)− θ1
)

]

I
(

X2 > c−1
(X1 +1)

)

= 0.5A(θ1, θ2) + 0.5A(θ2, θ1) ,

where

A(θ1, θ2) = Eθ

(

δ(X1)−θ1
)

I
(

X1> c
−1

(X2+1)
)

−Eθ

(

δ(X2)−θ2
)

I
(

X1> c
−1

(X2+1)
)

,

and A(θ2, θ1) follows by interchanging the role of (X1, θ1) and (X2, θ2) in A(θ1, θ2).

Consider the term A(θ1, θ2).

A(θ1, θ2) = Eθ δ(X1) I
(

X1 > c−1
(X2 +1)

)

− θ1Eθ I
(

X1 > c−1
(X2 +1)

)

− Eθ δ(X2) I(X2 < cX1−1) + θ2Eθ I(X2 < cX1−1)

and by using Lemma 2.2 we get

A(θ1, θ2) = Eθ δ(X1) I
(

X1 > c−1
(X2 +1)

)

− Eθ δ(X1) I
(

X1 > c−1
(X2 +1) +1

)

− Eθ δ(X2) I(X2 < cX1−1) + Eθ δ(X2) I(X2 < cX1)

= Eθ δ(X1) I
(

c−1
(X2 +1)<X1 ≤ c−1

(X2 +1) +1
)

+ Eθ δ(X2) I
(

cX1−1≤X2 < cX1

)

> 0 .

This completes the proof.

Consider next the problem of estimatingQ. The estimator Q̂= (q1I1(X), ...,

qp Ip(X)) of Q is said to be unbiased under Stein loss function if Eθ qiIi(X) =

Eθ θiIi(X) ∀i, otherwise, it is biased and its bias is

Bθ(Q̂,Q) = Eθ

p
∑

i=1

(qi − θi) Ii(X) .
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Theorem 3.2. The natural estimator Q̂1 of Q is positively biased under

Stein loss function.

Proof: Observe that

Bθ(Q̂,Q) =

p
∑

i=1

Eθ δ(Xi) I
(

Xi +1≥ cX(1)i

)

−
p
∑

i=1

Eθ θiI
(

Xi +1≥ cX(1)i

)

=

p
∑

i=1

Eθ δ(Xi) I
(

Xi +1≥ cX(1)i

)

−
p
∑

i=1

Eθ δ(Xi) I
(

Xi ≥ cX(1)i

)

(using Lemma 2.2)

=

p
∑

i=1

Eθ δ(Xi) Ii
(

cX(1)i −1≤Xi < cX(1)i

)

> 0

since P
(

cX(1)i −1≤Xi < cX(1)i

)

> 0 for some i. This completes the proof.

4. THE UMRUE’s OF M AND Q

In this section we derive the UMRUE′s of M and Q using the UV method

of estimation of Robbins (1988) and the generalization of Misra (1994) of the

Lehmann–Scheffe theorem. These estimators are also the UMVUE′s since the

definition of risk-unbiasedness under Stein loss function coincides with the defini-

tion of usual unbiasedness. First, consider the UMRUE of the average worth M.

Let

Ui(X) =
I
(

Xi +1 ≥ cX(1)i

)

p
∑

j=1
I
(

Xj +1 ≥ cX(1)j

)

, i = 1, ..., p ,

thenM=
∑p

i=1 θiUi(X). From Lemma2.2, we have Eθ θiUi(X)=Eθ δ(Xi)Ui(X−ei).
Let M̂2 =

∑p
i=1Vi(X) and Vi(X) = δ(Xi)Ui(X−ei). Then, EθM = EθM̂2 and

hence M̂2 is an unbiased estimator of M . Let Y1 ≥ Y2 ≥ · · · ≥ Yp denote the

ordered values of X1, ..., Xp and Y = (Y1, ..., Yp). It is easy to see that

p
∑

i=1

Vi(X) =

p
∑

i=1

V ∗
i (Y ) .

Now, since

U∗
1 (Y ) =

I(Y1 +1 ≥ cY2)

I(Y1 +1 ≥ cY2) +

p
∑

j=2
I(Yj +1 ≥ cY1)

and

U∗
i (Y ) =

I(Yi +1 ≥ cY1)

I(Y1 +1 ≥ cY2) + I(Yi +1 ≥ cY1) +

p
∑

j=2,j 6=i

I(Yj +1 ≥ cY1)

, i= 2, ..., p ,
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we get

V ∗
1 (Y ) = δ(Y1)U

∗
1 (Y−e1)

=
δ(Y1) I(Y1≥ cY2)

I(Y1≥ cY2) +

p
∑

j=2
I
(

Yj +1 ≥ cmax(Y1−1, Y2)
)

=
δ(Y1)

1 + I(Y1 = Y2)

p
∑

j=2
I(Yj +1 ≥ cY1) + I(Y1>Y2)

p
∑

j=2
I
(

Yj +1 ≥ c(Y1−1)
)

and

V ∗
i (Y ) = δ(Yi)U

∗
i (Y −ei)

=
δ(Yi) I(Yi ≥ cY1)

1 + I(Yi ≥ cY1) +

p
∑

j=2,j 6=i

I(Yj +1 ≥ cY1)

, i = 2, ..., p .

To find an explicit form of V ∗
(Y ), we need the following definitions. Let

S0 = empty set , Si =
{

Yj , j = 1, ..., p : Yj = Y1+mi

}

,

and mi =
∑i−1

j=1 #(Sj) where i= 1, ..., r, and 1≤ r ≤ p. Note that
∑r

i=1 #(Si) = p

and the subsets {Si}r
i=1 represent a partition of the set of variables Y = (Y1, ..., Yp).

LetW1, ...,Wr+1 be random variables such thatWi ∈ Si, i=1, ..., r andWr+1 =−1.

It is obvious that Wi+1<Wi andWi = Y1+mi
= Y2+mi

= · · · = Ymi+1
for i= 1, ..., r.

Define the following partition of χ

χ =

(

r−2
⋃

l=1

l+1
⋃

k=l

χ1,l,k

)

⋃

χ1,r−1,r−1

⋃

(

r−1
⋃

l=1

l
⋃

k=l−1

χ2,l,k

)

⋃

χ2,r,r−1

where

χ1,l,k =

{

X∈χ : Wl+1< cW1≤Wl+1 +1 , Wk+2 +1< c(W1−1) ≤Wk+1 +1

}

for l = 1, ..., r− 2; k = l, l+1 and l = r−1; k = l ,

and

χ2,l,k =

{

X∈χ : Wl+1 +1< cW1≤Wl , Wk+2 +1< c(W1−1) ≤Wk+1 +1

}

for l = 1, ..., r−1; k = l−1, l and l = r; k = l−1 .

Note that if Wl =Wl+1 +1 for some l = 1, ..., r, then χ2,l,k = empty set for all

k = l−1, l.

Case I: When X∈ χ1,l,k .

In this case we have

I
(

Wj ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ cW1

)

= 1 for j = 1, ..., l+1 ,

I
(

Wj +1 ≥ c(W1−1)
)

= 1 for j = 1, ..., k+1 ,
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then

I
(

Yj ≥ cY1

)

= 1 for j = 1, ...,ml+1 ,

I
(

Yj +1 ≥ cY1

)

= 1 for j = 1, ...,ml+2 ,

I
(

Yj +1 ≥ c(Y1−1)
)

= 1 for j = 1, ...,mk+2 .

So that

V ∗
1 (Y ) =

δ(Y1)

ml+2 I(Y1 = Y2) + mk+2 I(Y1> Y2)

and

V ∗
i (Y ) =

δ(Yi)

ml+2
, i= 2, ...,ml+1 .

Case II: When X∈ χ2,l,k .

Similar to the Case I, we obtain

I
(

Wj ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ c(W1−1)
)

= 1 for j = 1, ..., k+1 ,

then

V ∗
1 (Y ) =

δ(Y1)

ml+1 I(Y1 = Y2) + mk+2 I(Y1> Y2)

and

V ∗
i (Y ) =

δ(Yi)

ml+1
, i= 2, ...,ml+1 .

Since (X1, ..., Xp) is sufficient and complete statistic for (θ1, ..., θp), the following

theorem is now established.

Theorem 4.1. The UMRUE of M is M̂2 =
∑ml+1

i=1 V ∗
i (Y ) where

V ∗
1 (Y ) =

δ(Y1)

mu I(Y1 = Y2) + mk+2 I(Y1> Y2)
,

V ∗
i (Y ) =

δ(Yi)

mu

, i = 2, 3, ...,ml+1 ,

and

u =

{

l + 2, if X ∈ χ1,l,k ,

l + 1, if X ∈ χ2,l,k .
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Consider next the UMRUE of the simultaneous estimation Q. Observe that

EθQ = Eθ

p
∑

i=1

θi I
(

Xi +1 ≥ cX(1)i

)

=

p
∑

i=1

Eθ θi I
(

Xi +1 ≥ cX(1)i

)

=

p
∑

i=1

Eθ δ(Xi) I
(

Xi ≥ cX(1)i

)

(using Lemma 2.2)

= Eθ

p
∑

i=1

δ(Xi) I
(

Xi ≥ cX(1)i

)

= Eθ Q̂2 (say) .

Hence the following theorem.

Theorem 4.2. The UMRUE of Q is Q̂2 whose the i-th component equals

to δ(Xi) I(Xi ≥ cX(1)i).

5. INADMISSIBILITY OF THE NATURAL ESTIMATOR OF Q

In this section, we prove the inadmissibility of the natural estimator Q1 of

the simultaneous estimation Q using the technique of Stein (1973). The basic

idea of Stein is to find an unbiased estimator ∆(X) of the risk difference ∆(θ) =

R(θ, δ+ψ) −R(θ, δ) and then finding a function ψ such that ∆(X) ≤ 0 ∀x and

∆(x) < 0 for some x. This technique has been used extensively in the simulta-

neous estimation problem when no selection involved (see for example Hudson

(1978), Hwang (1982) and Chou (1991)). Consider the following rival estimator

of Q̂1,

Q̂3 = Q̂1 +
(

φ1(X) I1(X), ..., φp(X) Ip(X)
)

(5.1)

=

(

(

δ(X1) +φ1(X)
)

I1(X), ...,
(

δ(Xp) +φp(X)
)

Ip(X)

)

,

where φi is any real-valued functions satisfying the conditions of Lemma 2.1.

First, we find an unbiased estimator of the risk difference of estimators Q̂3 and Q̂1.
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An unbiased estimator of the risk difference of Q̂3 and Q̂1 is

∆(θ) = R(Q, Q̂3) −R(Q, Q̂1)

= Eθ

p
∑

i=1

(

δ(Xi) +φi(X)

θi

− log

(

δ(Xi) +φi(X)

θi

)

−1

)

Ii(X) I(Xi ≥ t+1)

− Eθ

p
∑

i=1

(

δ(Xi)

θi

− log

(

δ(Xi)

θi

)

−1

)

Ii(X) I(Xi ≥ t+1)

= Eθ

p
∑

i=1

(

φi(X)

θi

− log

(

1 +
φi(X)

δ(Xi)

)

)

Ii(X) I(Xi ≥ t+1) .

Applying Lemma 2.1, we get

∆(θ) = Eθ

p
∑

i=1

(

φi(X+ei)

δ(Xi +1)
Ii(X+ei) I(Xi ≥ t)− log

(

1+
φi(X)

δ(Xi)

)

Ii(X) I(Xi ≥ t+1)

)

.

So that the following lemma is now established.

Lemma 5.1. An unbiased estimator of the risk difference of the estimators

Q̂3 and Q̂1 is given by

D(X) =

p
∑

i=1

(

φi(X+ei)

δ(Xi +1)
Ii(X+ei) I(Xi ≥ t) − log

(

1 +
φi(X)

δ(Xi)

)

Ii(X) I(Xi ≥ t+1)

)

.

(5.2)

Following Peng (1975) and Hudson (1978), we introduce the following

notations. Let

l = X(1) (the largest observation) ,

m = X(p) (the smallest observation) ,

Ni = #{j : Xj = i}, i=m, ..., l and j = 1, ..., p ,

N = (Nm, ..., Nl) .

If Xi = r, let

ψi(X) = ζr(N) ,

δ(Xi) =

{

r, r ≥ t+1 ,

0, r < t+1 ,

I(Xi ≥ t+1) = I(r ≥ t+1) ,

Ii(X) = I(r+1≥ c l) = Jr (say) .
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Then, we have

φi(X+ ei) = ζr+1(N− er + er+1) ,

δ(Xi +1) =

{

r +1, r ≥ t ,

0, r < t ,

I(Xi ≥ t) = I(r ≥ t) ,

Ii(X+ ei) = Jr+1 .

Define

⌊x⌋ge = smallest integer greater than or equal to x ,

[a]+ = max(0, a) .

Now, using the above notations, the unbiased estimator (5.2) becomes

D(X) =

l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r + 1

I(r≥ t)Jr+1 − log

(

1+
ζr(N)

r

)

I(r≥ t+1)Jr

)

.

(5.3)

Next, we consider a solution of a general difference inequality that will be use-

ful for constructing a class of improved estimators of the natural estimator Q̂1.

Consider the following general difference inequality

η(X) =

l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r + 1

I(r≥ t)Jr+1 −
(

ζr(N)

r
− ζ2

r (N)

r2

)

I(r≥ t+1)Jr

)

(5.4)

≤ 0 .

In the following theorem, we solve the general difference inequality (5.4) borrow-

ing some ideas from Dey and Chung (1991).

Theorem 5.1. Consider the difference inequality (5.4). The function

ζr(N) = − b r2

d+ w

represents a solution of the inequality where

(1) w =

l
∑

s=⌊cl−1⌋

Nss
2 ,

(2) d ≥ 9

l
∑

s=⌊cl−1⌋

Ns ,

(3) 0 < b ≤





l
∑

r=⌊cl−1⌋

Nr I(r≥ t+1) − 47

18





+

.
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Proof: It is clear that

η(X) =

l
∑

r=m

Nr

(

− b(r+1)

d+w+2r+1
I(r≥ t)Jr+1 +

(

b r

d+w
+

b2 r2

(d+w)2

)

I(r≥ t+1)Jr

)

≤ b
l
∑

r=⌊cl−1⌋ge

Nr

(

r

d+w
− (r+1)

d+w+ 2r+1
+

b r2

(d+w)2

)

I(r≥ t+1)

(

since Jr+1 I(r≥ t) ≥ Jr I(r≥ t+1)
)

≤ b
l
∑

r=⌊cl−1⌋ge

Nr(2r
2
+ r− d−w)

(d+w) (d+w+ 2r+1)
I(r≥ 2) +

b2w

(d+w)2

≤ 2 bw

(d+w)2
+

3b
l
∑

r=⌊cl−1⌋ge

Nr r

(d+w)2
+

b
l
∑

r=⌊cl−1⌋ge

Nr

(d+w)2
−
b

l
∑

r=⌊cl−1⌋ge

Nr I(r≥ t+1)

(d+w)
+

b2w

(d+w)2
.

Since

w

d+w
≤ 1 ,

l
∑

r=⌊cl−1⌋ge

Nr

d+w
≤

l
∑

r=⌊cl−1⌋ge

Nr

d
≤ 1

9
(from assumption (2))

and

l
∑

r=⌊cl−1⌋ge

Nr r

d+w
≤

√

l
∑

r=⌊cl−1⌋ge

Nr

√

l
∑

r=⌊cl−1⌋ge

Nr r2

d+w
≤

√

l
∑

r=⌊cl−1⌋ge

Nr

√
w

2
√
d
√
w

≤ 1

6

it follows that

η(X) ≤
b

(

47/18 −
l
∑

r=⌊cl−1⌋ge

Nr I(r≥ t+1) + b

)

d+ w
.

Clearly, η(X) ≤ 0 if b ≤∑l
r=⌊cl−1⌋ge

Nr I(r≥ t+1) − 47/18. This completes the

proof of the theorem.

Now, we are in a position to construct classes of dominating estimators of

Q̂1 by solving the inequality D(x) ≤ 0 ∀x ∈ χ using Theorem 5.1, where D is as

in (5.3). In the following theorem, we construct a class of improved estimators of

the natural estimator Q̂1.

Theorem 5.2. Consider the rival estimator Q̂3 given in (5.1) where

φi(X) = ζr(N) = − b r2

d +

l
∑

s=⌊cl−1⌋ge

Nss2
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if Xi = r. Assume further,

(1) d ≥ 9

l
∑

s=⌊cl−1⌋ge

Ns ,

(2) 0 < b ≤



min

(

√
d ,

l
∑

s=⌊cl−1⌋ge

Ns I(s≥ t+1) − 47/18

)





+

.

Then, Q̂3 dominates Q̂1 in terms of risk where Q̂1 is as in (2.5).

Proof: Clearly, the ζr’s satisfy the conditions of Lemma 2.1. It is easily

seen that

∣

∣

∣

∣

ζr(N)

r

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−b r
d +

∑l
s=⌊cm−1⌋ge

Nss2

∣

∣

∣

∣

∣

≤ b r

d+ r2
≤ b r

2 r
√
d

≤ 1

2
,

since b ≤
√
d. Then using Lemma 2.3 in (5.3) gives us

D(X) ≤
l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r+1

I(r≥ t)Jr+1−
(

ζr(N)

r
− ζ2

r (N)

r2

)

I(r≥ t+1)Jr

)

= η(X) .

Applying Theorem 5.1 in the above inequality completes the proof the theorem.

The class of estimators in Theorem 5.2 dominates the natural estimator Q̂1,

so that the natural estimator (2.5) is inadmissible.

6. SIMULATION RESULTS

In this section, we compute the biases and risks of the estimators M̂1, M̂2,

Q̂1, Q̂2 and Q̂3 using the Monte Carlo simulation technique. Also, we compute

the percentages of the risk improvement of the estimator Q̂3 over the estimators

Q̂i, i= 1, 2. We follow the simulation procedure used by Tsue and Press (1982).

First the value of p is chosen and then a set of {θ1, ..., θp} of parameter values are

chosen at random within the range (c, d). In the second step, an observation Xi

is randomly chosen from zero-truncated Poisson distribution TP (θi), 1≤ i≤ p.

In step 3, the selection rule R, defined in (2.3), is used to select the subset.

To estimate the parameters associated with the selected populations, we com-

pute the biases of the estimators M̂1, Q̂1 and Q̂3 and the risks of the estimators
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M̂1, M̂2, Q̂1, Q̂2 and Q̂3. The above procedure is repeated 4 000 times and the

averages of the biases and risks are calculated. Then the percentage improve-

ments of the estimator Q̂3 over Q̂i, i= 1, 2, namely

RPI(Q̂i, Q̂3) =
R(Q, Q̂i) −R(Q, Q̂3)

R(Q, Q̂i)
× 100 , i = 1, 2 ,

are obtained. The above procedure is repeated a number of times with different

sets of parameters in (c, d) and then the percentages of risk improvement and av-

erages of biases are calculated and presented in Table 1 and Table 2, respectively.

The simulation is carried out using Matlab version 7.4 and considering the values

d = 9
∑l

s=⌊cl−1⌋ge
Ns and b =

[

min
(
√
d ,
∑l

s=⌊cl−1⌋ge
Ns I(s≥ 2)− 47/18

)]+
with

the number of populations p = 3, 5, 7, 10.

We observe the following facts from the simulation results. From Table 1,

the risks of the estimators decrease as the range of θi’s increases. For the per-

centages of the risk improvement, the two percentages increase for small values of

θi’s while decrease for large values and the highest values appear when all the θi’s

are in the interval (1.5, 3). From Table 2, clearly, the biases of M1, Q1 and Q3

are positive and gradually increasing as the range of θi’s increases. Also, Q1 has

bias less than Q3 and the bias of both of theme gradually increase as p increases.

Table 1: The risks of the estimators M1 and M2 and the percentage

improvement of Q3 over Q1 and Q2.

Range of θi’s

(0.0, 0.5) (0.5, 1.5) (1.5, 3.0) (3.0, 6.0) (6.0, 15.0)

p = 3

M1 1.23 0.60 0.42 0.34 0.32
M2 3.44 0.61 0.40 0.33 0.32

RPI
�
Q̂1, Q̂3

�
0.28 2.65 4.46 3.42 1.90

RPI
�
Q̂2, Q̂3

�
0.27 2.08 4.28 3.15 1.83

p = 5

M1 1.02 0.60 0.42 0.34 0.32
M2 2.81 0.60 0.37 0.32 0.31

RPI
�
Q̂1, Q̂3

�
1.07 9.72 16.89 12.34 6.43

RPI
�
Q̂2, Q̂3

�
1.07 8.97 16.53 12.05 6.30

p = 7

M1 0.93 0.57 0.42 0.34 0.32
M2 2.68 0.53 0.36 0.31 0.31

RPI
�
Q̂1, Q̂3

�
2.03 15.85 22.77 16.95 8.29

RPI
�
Q̂2, Q̂3

�
2.02 14.50 22.27 16.68 8.15

p = 10

M1 0.88 0.53 0.37 0.32 0.31
M2 3.04 0.62 0.36 0.31 0.30

RPI
�
Q̂1, Q̂3

�
2.79 19.33 27.36 20.75 10.08

RPI
�
Q̂2, Q̂3

�
2.79 19.32 27.32 20.52 10.07
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Table 2: The biases of the estimators M1, Q1 and Q3.

Range of θi’s

(0.0, 0.5) (0.5, 1.5) (1.5, 3.0) (3.0, 6.0) (6.0, 15.0)

p = 3
M1 0.44 1.42 2.56 4.67 9.95
Q1 1.31 4.17 7.56 13.84 29.68
Q3 1.30 4.08 7.31 13.50 29.31

p = 5
M1 0.43 1.33 2.59 4.80 10.62
Q1 2.15 6.54 12.70 23.61 52.68
Q3 2.12 5.96 11.09 21.52 50.39

p = 7
M1 0.44 1.43 2.60 4.64 10.85
Q1 3.10 9.78 17.85 32.12 75.44
Q3 3.00 8.39 14.80 28.24 71.21

p = 10
M1 0.41 1.31 2.55 4.42 10.56
Q1 4.07 13.11 25.48 44.17 105.55
Q3 3.89 10.79 20.17 37.52 98.31
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1. MOTIVATION

The study of extremes has grown steadily since the pioneering work of

Fisher & Tippett (1928). One of the most famous approaches in Extreme Value

Theory is the Peaks-Over-Threshold (POT) method which can be described as

follows. Let ℵ := {X1, ..., Xn} be a sample of independent random variables from

an unknown distribution function F and consider the Nun
exceedances above

a fixed threshold un, that is Y1, ..., YNun
where Yj := Xij − un, when Xij > un.

According to Pickands (1975), for a large class of underlying distributions F ,

as the threshold un increases, the distribution of the exceedances Fun
given

by Fun
(t) := P

(

X− un ≤ t |X > un

)

asymptotically converges to a Generalized

Pareto Distribution (GPD) defined as

Gγ,σn
(x) =

{

1 −
(

1 + γ x/σn

)−1/γ
if γ 6= 0 ,

1 − exp
(

−x/σn

)

if γ = 0 ,

where σn = σ(un) > 0 and x ≥ 0 if γ ≥ 0 and 0 ≤ x <−σn/γ if γ < 0. This result

leads to the so-called POT estimator of a high quantile xp := F←(1− p) with

F← the inverse function of F

(1.1) x̂p(un) = un +
σ̂

γ̂

{

(

p

1−Fn(un)

)−bγ
− 1

}

,

where (̂γ,σ̂) are some estimators of the parameters (γ,σn) and Fn(x) :=
1
n

n
∑

i=1
1l{Xi≤x}

denotes the empirical distribution function.

Recently, You et al. (2010) proposed a so-called folding procedure to im-

prove the estimation of xp. This approach is inspired by perfect sampling tech-

niques used in simulation studies (Corcoran & Schneider, 2003) and the idea is

to connect the lower and upper parts of a distribution. More precisely the ex-

plicit formulation of this folding transformation and its fundamental property are

encapsulated in their Proposition 1 which is recalled below.

Proposition 1.1. Let X be a random variable with an absolutely con-

tinuous distribution function F , u a real number such that u < τF where τF =

sup
{

x ∈ R : F (x) < 1
}

is the right endpoint of F and H another absolutely con-

tinuous distribution function with the same support as F and such that H(u) ≥
F (u). Define the following random variable

(1.2) X(H,F )
(u) :=











H←
(

F (u)

F (u)
F (X) + F (u)

)

if X < u ,

X if X≥ u ,

where F := 1−F and H← is the inverse function of H. Then

(1.3) P
(

X(H,F )
(u) > x

)

= P
(

X > x|X > u
)

+
F (u)

F (u)

(

H(x)−F (x)
)

, x > u .
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A very important special case occurs when H is chosen to be equal to F in

(1.2). In this context, the random variable X(F,F )
(u) has the same probability dis-

tribution as the conditional variable
[

X|X > u
]

, the latter being the variable of in-

terest for the aforementioned POT method. We call X(F,F )
(u) the folded transfor-

mation of X and we denote it as X(F )
(u) := X(F,F )

(u). In practice, F is unknown

and the folding transformation cannot be applied directly. One must substitute

the unknown F by suitable proxies. The choice of a proxy is especially sensitive

for the inverse function F←. This explains the introduction of H in the definition

of X(H,F )
(u). To study the effect of choosing the proxy H instead of F in the

folding procedure, we introduce the difference ∆
(H,F )
u (x) :=

∣

∣P
(

X(H,F )
(u) ≤ x

)

−
P
(

X(F,F )
(u)≤ x

)∣

∣ for x > u. According to Proposition 1.1, we can write

∆
(H,F )
u (x) =

F (u)

F (u)

∣

∣H(x)−F (x)
∣

∣ .

Second-order extreme value theory (e.g. de Haan & Ferreira, 2006) provides the

necessary tools to characterize the behavior of ∆
(H,F )
u (x) for a specific H.

Proposition 1.2. Assume that F satisfies the following second-order con-

dition. There exists some positive function a(·) and some positive or negative

function A(·) with lim
t→∞

A(t) = 0 such that

(1.4) lim
t→∞

1

A(t)

(

U(tx) − U(t)

a(t)
− Dγ(x)

)

= B(x) , x > 0 ,

where U := (1/F )
←, Dγ(x) :=

xγ−1
γ

if γ 6= 0 and log x if γ = 0, and B is some

function that is not a multiple of Dγ . If the tail distribution H(x) := 1−H(x)

is chosen to behave as a GPD tail such that

(1.5) H(x) = F (u) Gγ,σ(u)(x − u) ,

with x > u and σ(u) = a
(

1/F (u)
)

, then for all y satisfying 1 + γy > 0, we have

lim
u→τF

1

|α(u)| ∆
(H,F )
u

(

u + σ(u) y
)

= lim
u→τF

∣

∣

∣

∣

1

α(u)

(

F
(

u + σ(u) y
)

F (u)
− Gγ(y)

)
∣

∣

∣

∣

(1.6)

=
(

Gγ(y)
)1+γ ∣

∣Bγ,ρ

(

1/Gγ(y)
)∣

∣

where Gγ := Gγ,1, α(u) := A
(

1/F (u)
)

and

Bγ,ρ(x) :=























































1

ρ

(

xγ+ρ−1

γ + ρ
− xγ −1

γ

)

if γ 6= 0, ρ 6= 0 ,

1

γ

(

xγ
log x − xγ −1

γ

)

if ρ = 0 6= γ ,

1

ρ

(

xρ−1

ρ
− log x

)

if ρ 6= 0 = γ ,

1

2
(ln x)

2 if ρ = γ = 0 .
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The first equality in (1.6) tells us that choosing H as a GPD approximation,

see (1.5), implies that the rate of convergence of ∆
(H,F )
u towards zero is identical

to the one obtained by working with exceedances. The second equality in (1.6)

simply restates the result derived by de Haan & Ferreira (2006, p. 48) about

the relationship between the rate of convergence and the second-order auxiliary

function A(·). The main consequence of Proposition 1.2 is that a GPD can

be viewed as the appropriate choice for the distribution function H. In real

applications, we do not know the parameters of such a GPD and a first estimation

has to be given before implementing our folding procedure. This also means that

any reasonable GPD estimation procedure can be used to initialize our algorithm,

the better the estimation of σ(u) and γ, the better the efficiency of the folding

procedure. Still, our main goal in this paper is not to compare all existing GPD

estimation methods (e.g., Smith, 1987; Greenwood et al., 1979) and to find the

best one (if one could do that). Instead, our aim is to study our folding approach

with a specific estimation method for which we have experience with (Diebolt et

al., 2004, 2007).

At this stage, our approach can be viewed as the mixing of two elements,

the folding procedure described by Proposition 1.1 and the POT method. Each

element is associated with a particular threshold choice. For the sake of sim-

plicity, You et al. (2010) considered that both thresholds were equal. This is

not necessary. One threshold could be chosen for computing the preliminary

GPD parameters estimates and another one for the folding transformation itself.

In this paper, we follow this path. We propose and study a novel folding approach

based on two thresholds un and u′n such that un = o(u′n). Compared to a conven-

tional approach and to our past folding procedure, simulations clearly indicate

that this new double-threshold folding approach significantly reduces the mean

squared error of extreme quantile estimates, particularly for small and moderate

sample sizes (see Section 4). Asymptotic properties of our GPD parameters es-

timators are derived (see Section 3). The proof of our results are postponed to

the appendix. Results presented in Sections 3 and 4 solely focus on heavy tailed

distributions because our previous study (You et al., 2010) indicated that the

folding gain is the strongest for this type of tails.

2. A NEW FOLDING PROCEDURE WITH TWO THRESHOLDS

Suppose that the variable
[

X− un|X > un

]

approximatively follows a

GPD(γ, σn) for some large threshold un. The thresholding stability property

of the GPD basically means that
[

X− u′n|X > u′n] can also be approximated

by a GPD
(

γ , σn + γ(u′n− un)
)

for any u′n > un. In other words, the tail

F (t) = F u′n
(t−u′n)F (u′n) can be approximated by Gγ,σn+γ(u′n−un)(t−u′n)F (u′n).

In terms of inverse distributions, this approximation can be expressed as F
←

(t)≃
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G
←
γ,σn+γ(u′n−un)

(

t

F (u′n)

)

+ u′n. According to Proposition 1.1, the folded variable

X(F )
(u′n) can be rewritten as

X(F )
(u′n) = F

←
(

F (u′n)

[

1− F (X)

F (u′n)

])

, if X < u′n .

By plugging the approximation for F
←

in the expression of X(F )
(u′n), it is natural

to define the following folded variables

(2.1) ̂X
(F )
i (u′n) =











G
←bγ,bbσ′(1− Fn(Xi)

Fn(u′n)

)

+ u′n , if Fn(Xi) < Fn(u′n) ,

Xi , if Fn(Xi) ≥ Fn(u′n) ,

where ̂σ̂
′
:= σ̂ + γ̂(u′n− un) and (γ̂, σ̂) are estimated from the exceedances

(Y1, ..., YNun
). Note that the folding transformation given by (2.1) does not de-

pend on the numerical values of the observations Xi when Xi < u′n but only on

their ranks because nFn(Xi) is equal to the rank of the observation Xi.

Equation (2.1) allows us to describe our new folding procedure as follows:

Step 1. Select one threshold un and estimate (γ̂, σ̂) of the GPD param-

eters (γ, σn) from the exceedances above un. Select a second

threshold u′n > un and calculate ̂σ̂
′
:= σ̂ + γ̂(u′n− un).

Step 2. Build the folded version ℵ(F )
:=

{

̂X
(F )
1 (u′n), ..., ̂X

(F )
n (u′n)

}

using

transformation (2.1).

Step 3. Estimate the GPD parameters
(

γ̂(F ), σ̂(F )
)

from the folded sam-

ple ℵ(F )
.

Step 4. Compute the POT extreme quantile estimator x̂
(F )
p (u′n) (accord-

ing to (1.1)) with the estimates
(

γ̂(F ), σ̂(F )
)

.

In steps 1 and 3, any reasonable GPD estimator of (γ, σn) could be used.

Here we implement the generalized probability-weighted moments (GPWM)

(Diebolt et al., 2004, 2007). This is an extension of the classical probability-

weighted moments method (Greenwood et al., 1979) and it can be described as

follows. Let ω be a continuous function, null at zero, and which admits a right

derivative at zero. The GPWM is defined as νω = E
[

Zω
(

Gγ,σ(Z)
)]

where Z fol-

lows a GPD(γ, σ) with γ < 2. If we denote by W the primitive of ω null at zero,

then an integration by parts allows us to write νω as νω =
∫∞
0 W

(

Gγ,σ(x)
)

dx.

Diebolt et al. (2004, 2007) proposed and studied ν̂ω,n =
∫∞
0 W

(

Fn,un
(x)
)

dx as an

estimator of νω, where Fn,un
corresponds to the exceedances empirical survival

function defined by Fn,un
(x) =

1
Nun

∑Nun

i=1 1l
{

Xi − un > x
}

. To estimate (γ, σn)

by implementing a method-of-moments approach, two GPWMs are needed.

In this work, the two functions ω1 and ω2 are equal to ω1(x) = x and ω2(x) = x3/2

(see Diebolt et al., 2004, for a justification of these choices).
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3. ASYMPTOTIC NORMALITY

Before stating our main result, we need to prove the asymptotic normality

of the pair (γ̂, ̂σ̂
′
/σ′n).

Lemma 3.1. Let F be three times differentiable such that its inverse

F← exists. Let V and M be two functions defined as V (t) = F
←

(e−t
) and M(t) =

V ′′(ln t)
V ′(ln t) − γ. Suppose the following conditions hold

(3.1) M is of constant sign at ∞
and

∃ ρ < 0 : |M | ∈ RVρ with a normalized slowly varying function

(see Bingham et al., 1987) .
(3.2)

Then, for γ ∈ (0, 3/2) and for all C1-functions ω1 and ω2, null at 0, conditionally on

{Nun
= kn} and {Nu′n

= k′n} with un = o(u′n), and for all intermediate sequences

kn > k′n → ∞ such that
√

kn an → λ ∈ R, we have that

√

kn

(

γ̂ − γbbσ′
σ′n

− 1

)

d−→ N
(

λ

(

1
1
γ

)

B1 ,

(

1
1
γ

)

Σ1,1

(

1
1
γ

)′
)

,

where


































































an := M
(

eV ←(un)
)

, σ′n := V ′
(

V ←(u′n)
)

,

B :=

(

B1

B2

)

= AC where A := DT(ω1,ω2)(ν
1
ω1

, ν1
ω2

) ,

C :=

(

C1

C2

)

=





φ1(γ+ρ)−φ1(γ)
ρ

φ2(γ+ρ)−φ2(γ)
ρ



 where φj(γ) :=

∫ 1

0
Wj(u)u−γ−1du, j ∈ {1,2} ,

Σ :=

(

Σ1,1 Σ1,2

Σ1,2 Σ2,2

)

= A ΓAT ,

and Γ is the variance-covariance matrix of the pair (Yω1
, Yω2

) defined as

Yω1
=

∫ 1

0
t−γ−1ω1(t) B(t) dt and Yω2

=

∫ 1

0
t−γ−1ω2(t) B(t) dt

with B a Brownian bridge on [0, 1].

The case ρ = 0 is excluded from Lemma3.1. This corresponds to M(t)=ℓ(t),

a slowly varying function, since in that case the limiting distribution depends

explicitely on ℓ(·), and the two sequences un and u′n. Also this restriction is not

really a problem since most of the classical distributions in the Fréchet domain

of attraction have a second order parameter ρ < 0 (except the loggamma).
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Now, we can establish our main asymptotic result which shows that, in

the case where γ ∈ (0, 3/2), the estimators based on the double-threshold folding

approach have a similar asymptotic normality as the one derived in You et al.

(2010) in case of one threshold.

Theorem 3.1. Under the same assumptions stated in Lemma 3.1, we have

√

kn













ν̂
(F )
ω1,n

σ′n
− ν1

ω1

ν̂
(F )
ω2,n

σ′n
− ν1

ω2













d−→ N
(

λB1F, F Σ1,1F
′
)

where

F :=











− 1

λ

∫ 1

0
u−γ

lnu ω1(u) du

− 1

λ

∫ 1

0
u−γ

lnu ω2(u) du











and

ν1
ωj

=

∫ ∞

0
Wj

(

Gγ,1(x)
)

dx for j = 1, 2 .

Note that this convergence in distribution does not hold in case γ ≤ 0.

4. A SIMULATION STUDY

The aim of this section is to illustrate the superiority of the double-threshold

folding over the conventional (Diebolt et al., 2007) and the simple folding ap-

proaches (You et al., 2010), in particular in terms of the mean squared er-

ror for small and moderate sample sizes. Simulations were performed for four

sample sizes n = 100, 500, 1 000 and 5 000 from a Burr (1, 2, 0.5) distribution de-

fined by F (x) = (1 + x2
)
−1/2

and from a standard Fréchet distribution defined

by F (x) = 1− e−1/x
, respectively. For these two distributions, γ = 1 and ρ < 0.

For each value of n, 5 000 samples were generated and kn was chosen such that

the condition
√

kn an → λ was satisfied, which corresponds to kn ≃ c1n4/5
for the

Burr distribution and to kn ≃ c2 n2/3
for the Fréchet distribution. The thresh-

old un was chosen from un = F←
(

1− kn

n

)

. Three return levels for three return

periods, t = 100, 200 and 1 000, were computed. Concerning the choice of the sec-

ond threshold for our double-threshold folding method, we selected k′n = c3 n3/5

for the Burr distribution and k′n = c4 n1/2
for the Fréchet distribution such that

un = o(u′n). Tables 1–3 and 4–6 display the bias and the root mean squared error

(RMSE) of the quantile xp for the Burr and Fréchet distributions, respectively.
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Table 1: Burr(1, 2, 0.5) distribution — Bias (RMSE) of the return level estimates

corresponding to a return period t = 100.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 35.7 (240.4) 10.7 (183.0) 1.6 (103.8)

500 288 42 16.4 (195.4) 4.0 (106.2) 1.5 (46.7)

1 000 502 63 8.5 (78.8) 2.3 (54.1) 1.3 (35.3)

5 000 1 820 166 2.6 (21.1) 1.1 (16.8) 0.3 (16.9)

Table 2: Same as Table 1 but for the return period t = 200.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 117.0 (840.1) 45.6 (626.3) 11.2 (299.2)

500 288 42 54.2 (752.4) 15.9 (395.7) 6.9 (140.9)

1 000 502 63 27.1 (297.9) 8.1 (192.9) 5.1 (112.7)

5 000 1 820 166 6.7 (67.1) 2.1 (49.4) 0.8 (40.3)

Table 3: Same as Table 1 but for the return period t = 1000.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 80 16 1 877.5 (16 252.5) 998.0 (11 748.4) 346.5 (3 785.8)

500 288 42 955.4 (17 449.2) 385.8 (8 783.8) 167.4 (2 029.8)

1 000 502 63 468.8 (6 702.8) 199.6 (3 890.0) 119.1 (1 820.5)

5 000 1 820 166 73.9 (990.5) 22.2 (589.4) 19.1 (504.8)

Table 4: Standard Fréchet distribution — Bias (RMSE) of the return level estimates

corresponding to the return period t = 100.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 48.8 (173.2) 15.4 (112.1) 15.0 (93.9)

500 188 33 17.2 (70.9) 7.5 (50.6) 8.5 (47.1)

1 000 300 47 12.2 (48.5) 6.8 (38.0) 6.8 (36.2)

5 000 877 106 3.5 (17.3) 2.5 (15.7) 1.6 (13.9)
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Table 5: Same as Table 4 but for the return period t = 200.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 158.0 (581.7) 56.4 (353.3) 46.3 (286.3)

500 188 33 55.9 (242.7) 25.5 (156.0) 27.7 (140.8)

1 000 300 47 39.5 (163.3) 22.3 (117.2) 23.0 (111.0)

5 000 877 106 11.8 (57.6) 8.6 (49.6) 6.8 (42.0)

Table 6: Same as Table 4 but for the return period t = 1000.

n kn k′n Conventional
Folding with Folding with
one threshold two thresholds

100 64 15 2 304.7 (10 052.4) 935.6 (5 396.5) 638.6 (3 214.3)

500 188 33 785.8 (4 459.5) 367.6 (2 206.0) 370.6 (1 845.0)

1 000 300 47 536.3 (2 789.3) 298.5 (1 580.8) 309.6 (1 480.8)

5 000 877 106 151.0 (899.2) 110.1 (664.6) 99.4 (549.3)

These tables clearly show that the double-threshold folding improves con-

siderably the RMSE, compared to the single-threshold folding and the conven-

tional approach. This gain is emphasized for small and moderate sample sizes

and for large return periods.

APPENDIX: DETAILED PROOFS

Proof of Proposition 1.2: The proof is mainly a consequence of Theo-

rem 2.3.8 in de Haan & Ferreira (2006), which states that, if (1.4) holds, then

lim
u→τF

1

α(u)

(

F
(

u + σ(u) y
)

F (u)
− Gγ(y)

)

=
(

Gγ(y)
)1+γ

Bγ,ρ

(

1

Gγ(y)

)

for all y such that 1+ γ y > 0.

From (1.5), it follows that

lim
u→τF

∆
(H,F )
u

(

u + σ(u) y
)

|α(u)| = lim
u→τF

F (u) × lim
u→τF

∣

∣

∣

∣

∣

1

α(u)

(

Gγ(y)− F
(

u + σ(u) y
)

F (u)

)
∣

∣

∣

∣

∣

=
(

Gγ(y)
)1+γ

∣

∣

∣

∣

Bγ,ρ

(

1

Gγ(y)

)∣

∣

∣

∣

.
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Proof of Lemma 3.1: First, note that the assumption
√

kn an → λ ∈ R

can be rewritten as

√

kn M

(

1

F (un)

)

−→ λ ∈ R .(A.1)

Now, let σn = V ′
(

V ←(un)
)

. We have

√

kn

(

̂σ̂
′

σ′n
−1

)

=

√

kn

(

σ̂ + γ̂(u′n− un)

σ′n
− 1

)

=

√

kn

(

σ̂

σn

−1

)

σn

σ′n
+

[

γ

γ̂

√

kn

(

σn

γun

−1

)

−
√

kn

γ̂
(γ̂ − γ)

]

γ̂ un

σn

σn

σ′n

+

√

kn

(

γ u′n
σ′n

−1

)

γ̂

γ
+

1

γ

√

kn (γ̂ − γ)

=: Q1,n + Q2,n + Q3,n +
1

γ

√

kn (γ̂ − γ) .

We know that
√

kn

( bσ
σn

−1
)

is asymptotically normal (Diebolt et al., 2007) and

σn

σ′n
∼ γ un

γ u′n
−→ 0 .(A.2)

Therefore, it is clear that

Q1,n
P−→ 0 .(A.3)

Now, remark that

√

kn

(

σn

γ un

− 1

)

=

√

kn

(

V ′
(

− lnF (un)
)

γ V
(

− lnF (un)
) − 1

)

=
1

γ

√

kn M

(

1

F (un)

)







M
(

1
F (un)

)

V ′(− ln F (un))

V (− ln F (un))
− γ







−1

.

To conclude with this term, we have to use the following lemma.

Lemma A.1 (Worms, 2000, p. 19). Suppose that M(t)→ 0 and tM ′(t)
M(t) →ρ

as t →∞. Then

(i) if γ > 0, we have

lim
t→∞

M(et
)

/

[

V ′(t)

V (t)
− γ

]

=
γ +ρ

γ

and

lim
t→∞

M(et
)

/

[

V (t)

V ′(t)
− 1

γ

]

= −γ(γ +ρ) ;
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(ii) if γ < 0, we have

lim
t→∞

[

V (∞) − V (t)

V ′(t)
+

1

γ

]

/

M(et
) =

1

γ(γ +ρ)

and

lim
t→∞

[

V ′(t)

V (∞) − V (t)
+ γ

]

/

M(et
) = − γ

γ +ρ
.

Indeed by (A.1), we deduce that

√

kn

(

σn

γ un

− 1

)

−→ λ

γ +ρ
.

Combining this convergence with (A.2) and the fact that
√

kn(γ̂ − γ) is asymp-

totically normal (Diebolt et al., 2007), we deduce that

Q2,n
P−→ 0 .(A.4)

Similarly

√

kn

(

γ u′n
σ′n

− 1

)

= γ
√

kn

(

V
(

− lnF (u′n)
)

V ′
(

− lnF (u′n)
) − 1

γ

)

= γ
√

kn M

(

1

F (un)

) M
(

1
F (u′n)

)

M
(

1
F (un)

)







M
(

1
F (u′n)

)

V (− ln F (u′n))

V ′(− ln F (u′n))
− 1

γ







−1

.

Now since γ > 0 and |M | ∈ RVρ with ρ < 0

M
(

1
F (u′n)

)

M
(

1
F (un)

) −→ 0 .(A.5)

Consequently, using again the abovementioned lemma in Worms (2000), we

deduce that

Q3,n
P−→ 0 .(A.6)

Finally, going back to (A.3), (A.4) and (A.6), we get

√

kn

(

̂σ̂
′

σ′n
−1

)

=
1

γ

√

kn (γ̂ − γ) + oP(1) .

Lemma 3.1 then follows from Diebolt et al. (2007).
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Proof of Theorem 3.1: It is a direct application of the proof of Theo-

rem1 in You et al. (2010) combining with our Lemma 3.1 and using the following

decomposition: conditionally on {Nun
= kn} and {Nu′n

= k′n}, we have

√

kn

(

ν̂
(F )
ω,n

σ′n
−
∫ ∞

0
W
(

Gγ(x)
)

dx

)

=

=

√

kn

(

ν̂
(F )
ω,n

σ′n
− 1

σ′n

∫ ∞

0
W

(

˜F
(F )

n,u′n
(x)

)

dx

)

+

(

1− k′n
n

)

√

kn

∫ ∞

0

(

Gbγ,
bbσ′
σ′n

(x) − Gγ(x)

)

ω
(

Gγ(x)
)

dx

+
k′n
n

√

kn

∫ ∞

0

(

Fn,u′n
(σ′nx) − Gγ(x)

)

ω
(

Gγ(x)
)

dx

+

√

kn

∫ ∞

0

∫ 1

0
(1− t)

(

(

1− k′n
n

)(

Gbγ,
bbσ′
σ′n

(x)−Gγ(x)

)

+
k′n
n

(

Fn,u′n
(σ′nx)−Gγ(x)

)

)2

× ω′



Gγ(x) +

(

(

1− k′n
n

)(

Gbγ,
bbσ′
σ′n

(x)−Gγ(x)

)

+
k′n
n

(

Fn,u′n
(σ′nx)−Gγ(x)

)

)

t



dt dx ,

where
˜F

(F )

n,u′n
(x) =

(

1− k′n
n

)

Gbγ,bbσ′(x) +
k′n
n

Fn,u′n
(x).

All the details of the proof are given on the web page http://www-irma.u-

strasbg.fr/∼guillou/Proof_folding_thm3-1.pdf. Now, we will prove that our

theorem does not hold in case γ ≤ 0. Indeed if γ < 0, then

√

kn

(

̂σ̂
′

σ′n
−1

)

=
σn

σ′n

{

√

kn

(

σ̂

σn

−1

)

− 1

γ

√

kn (γ̂ − γ)
−γ
(

V (∞) − un

)

σn

+ γ
√

kn

(

V (∞) − un

σn

+
1

γ

)

}

+

√

kn

(−γ̂
(

V (∞) − u′n
)

σ′n
−1

)

=:
σn

σ′n
T1,n + T2,n .

Clearly T1,n tends in distribution to a normal distribution, but

σn

σ′n
≃ V (∞) − un

V (∞) − u′n
= 1 +

u′n
(

1 + o(1)
)

V (∞) − u′n
→ ∞ .

Therefore
σn

σ′n
T1,n tends to infinity, whereas T2,n can be rewritten as

T2,n =

√

kn(γ − γ̂)
V (∞) − u′n

σ′n
−

√
kn

γ + ρ
M
(

eV ←(un)
) M

(

eV ←(u′n)
)

M
(

eV ←(un)
)

(

1 + o(1)
)

by Lemma 1.2 (ii) in Worms (2000). This implies that T2,n tends to a normal

distribution, since it is the case for the first part of this term, whereas the second

one tends to 0.
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Now, in case γ = 0, we can easily find a counter-example of our Lemma 3.1.

First, note that

√

kn

(

̂σ̂
′

σ′n
−1

)

=

√

kn

(

σ̂ + γ̂(u′n− un)

σ′n
−1

)

=

√

kn

(

σ̂

σn

−1

)

σn

σ′n
+

√

kn (γ̂ − γ)
u′n− un

σ′n
+

√

kn
σn

σ′n
−
√

kn

=: ˜Q1,n + ˜Q2,n + ˜Q3,n −
√

kn .

Now, if we consider an exponential random variable with parameter 1, then σ′n =

σn = 1 and
u′n−un

σ′n
= u′n

(

1 + o(1)
)

by assumption. This implies that ˜Q1,n is asymp-

totically normal, ˜Q2,n
P−→ ∞ and ˜Q3,n−

√
kn = 0. Therefore Lemma 3.1 is not

valid.
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1. INTRODUCTION

Recently, it has been recognized the potential of optimal alarm systems

in detecting and warning the occurrence of catastrophes or some other related

events; see for example Monteiro et al. ([24]) and the references therein. Concep-

tually, the simplest way of constructing an alarm system is to predict Xt+h by

a predictor say, X̂t+h,t, which is usually chosen so that the mean square error is

minimized, providing

X̂t+h,t = E
[

Xt+h|Xs, −∞ < s ≤ t
]

.

An alarm is given every time the predictor exceeds some critical level. This alarm

system, however, does not have a good performance on the ability to detect the

events, locate them accurately in time and give as few false alarms as possible.

Lindgren ([18],[19],[20],[21]) and de Maré ([8]) set the principles for the construc-

tion of optimal alarm systems and obtain some basic results regarding the optimal

prediction of level crossings. Svensson et al. ([27]) applied these principles in the

prediction of level crossings in the sea levels of the Baltic sea. It is worth to

mention that the alarm system introduced by Lindgren and de Maré, ignores the

sampling variation of the model parameters. Giving heed to this issue, Ama-

ral Turkman and Turkman ([1]) suggested a Bayesian approach and particular

calculations were carried out for an autoregressive model of order one. Further

extensions and generalizations were proposed by Antunes et al. ([2]) and more

recently by Monteiro et al. ([24]).

The spectrum of applications of optimal alarm systems is wide and yet to

be explored. One major area of applications is environmental economics. Atmos-

pheric concentrations of air pollutants like ozone, carbon monoxide or sulfur

dioxide constitute time series that can be analyzed under the perspective of the

upcrossings of some critical levels, usually related with public health (e.g. Smith

et al., [26]; Koop and Tale, [17]; Tobias and Scotto, [30]). Another area of po-

tential application of optimal alarm systems is econometrics and in particular

in risk management. The implementation of probabilistic models for the assess-

ment of market risks or credit risks is mandatory. Examples can be found in the

forecasting of financial risk of lending to costumers (Thomas, [29]), the arrivals

forecast of guests at hotels (Weatherford and Kimes, [32]) and in forecasting

daily stock volatility, which has direct implications in option pricing, asset al-

location or value-at-risk (Fuentes et al., [14]). All the above referred references,

however, are not directly applicable to calculate in advance the probability of

future up/downcrossings. It is in this context that the implementation of an

alarm system reveals to be useful. A related interesting problem, which has not

been addressed yet, is to develop optimal alarm systems for financial time series.

This article aims to give a contribution towards this direction.
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The analysis of financial time series like log-return series of foreign exchange

rates, stock indices or share prices, has revealed some common features: sample

means not significantly different from zero, sample variances of the order 10
−4

or

smaller and sample distributions roughly symmetric in its center, sharply peaked

around zero but with a tendency to negative asymmetry. In particular, it has

usually been found that the conditional volatility of stocks responds asymmetri-

cally to positive versus negative shocks: volatility tends to rise higher in response

to negative shocks as opposed to positive shocks, which is known as the leverage

effect. Another common feature of series of log-returns is that the sample au-

tocorrelation function is negligible at all lags, (except perhaps for the first) but

the sample autocorrelation functions for the absolute values or the squares of the

log-returns are different from zero for a large number of lags and stay almost

constant and positive for large lags. This last feature is known, in this context,

as long memory or long range dependency. Several models have been proposed in

order to describe these stylized facts about log-return series. We mention here the

ARCH models, introduced by Engle ([11]) and some of the subsequent general-

izations: GARCH, (Bollerslev, [4]), EGARCH (Dellaportas et al., [9]), APARCH

(Ding et al., [10]), FIGARCH (Baillie et al., [3]) and FIAPARCH (Tse, [31]).

For a survey of ARCH-type models see Teräsvirta ([28]).

The rest of the paper is organized as follows: in Section 2, basic theo-

retical concepts related to optimal alarm systems are presented. Furthermore,

an optimal alarm system for FIAPARCH processes is implemented. Expressions

for some alarm characteristics of the alarm system are given. Estimation of the

model FIAPARCH(1, d, 1) by classical and Bayesian methodology is covered in

Section 3. In Section 4, the results are illustrated through a simulation study.

A real-data example is given in Section 5.

2. OPTIMAL ALARM SYSTEMS AND THEIR APPLICATION

TO FIAPARCH PROCESSES

Let {Xt, t ∈ N} be a discrete time stochastic process. The time sequel

{1, 2, ..., t−1, t, t +1, ...} is divided into three sections, namely the data or

informative experience, Dt = {X1, ..., Xt−r}, the present experiment, X2 =

{Xt−r+1, ..., Xt} and the future experiment, X3 = {Xt+1, ...}. Any event of

interest, say Ct,j , in the σ-field generated by X3 is defined as a catastrophe.

Throughout this work a catastrophe will be considered as the upcrossing event

Ct,j =

{

Xt+j−1 ≤ u < Xt+j

}

,

for some j ∈ N. Moreover, any event At,j in the σ-field generated by X2, predictor

of Ct,j , will be an alarm region. It is said that an alarm is given at time t, for

the catastrophe Ct,j , if the observed value of X2 belongs to the alarm region.
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In addition, the alarm is said to be correct if the event At,j is followed by the

event Ct,j , so, the probability of correct alarm is defined as the probability of

catastrophe conditional on the alarm being given. Conversely, a false alarm is

defined as the occurrence of At,j without Ct,j . If an alarm is given when the

catastrophe occurs, it is said that the catastrophe is detected and the probability

of detection is defined as the probability of an alarm being given conditional on

the occurrence of the catastrophe. Furthermore, the alarm region At,j is said to

have size αt,j if αt,j = P
(

At,j |Dt

)

. The alarm region At,j is optimal of size αt,j if

(2.1) P
(

At,j |Ct,j , Dt

)

= sup
B∈σX2

P
(

B|Ct,j , Dt

)

with P
(

B|Dt

)

= αt,j .

Definition 2.1. An optimal alarm system of size {αt,j} is a family of

alarm regions {At,j} in time, satisfying (2.1).

Lemma 2.1. The alarm system {At,j} with alarm region given by

At,j =

{

x2 ∈ R
r
: P

(

Ct,j |x2, Dt

)

≥ kt,j P
(

Ct,j |Dt

)

}

,

for a fixed kt,j : P
(

X2 ∈ At,j |Dt

)

= αt,j , is optimal of size αt,j .

This lemma ensures that the alarm region defined above renders the high-

est detection probability. Moreover to enhance the fact that the optimal alarm

system depends on the choice of kt,j , it is important to stress that in view of the

fact that P
(

Ct,j |Dt

)

does not depend on x2, the alarm region can be rewritten

in the form

(2.2) At,j =

{

x2 ∈ R
r
: P

(

Ct,j |x2, Dt

)

≥ k
}

,

where k = kt,j P
(

Ct,j |Dt

)

is chosen in some optimal way to accommodate condi-

tions over the following operating characteristics of the alarm system:

• P
(

At,j |Dt

)

– Alarm size,

• P
(

Ct,j |At,j , Dt

)

– Probability of correct alarm,

• P
(

At,j |Ct,j , Dt

)

– Probability of detecting the event.

Most models for financial time series used in practice are given in the multiplica-

tive form

Xt = σtZt ,(2.3)

where {Zt} forms an i.i.d. sequence with zero mean and unit variance, {σt} is a

stochastic process such that σt and Zt are independent for fixed t. Moreover,

it is also assumed that Zt is independent of the past values of the process
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(Xt−1, Xt−2, ...). In general, conditions ensuring the strict stationarity of the

process {Xt} are known. Motivation for considering this particular choice of

simple multiplicative model comes from the fact that

(a) in practice, the direction of price changes is well modeled by the sign of

Zt, whereas σt provides a good description of the order of magnitude

of this change;

(b) the volatility σ2
t represents the conditional variance of Xt given σt.

This representation expresses the belief that the direction of price changes can

not be modeled, only their magnitude (e.g. Mikosch, [23]).

The FIAPARCH(p, d, q) model of Tse ([31]) is a special case of (2.3) with

σδ
t =

ω

1− β(B)
+ λ(B) g(Xt) ,(2.4)

where g(Xt) = (|Xt| − γXt)
δ

with |γ| < 1 and δ ≥ 0, and

λ(B) = 1 −
(

1− β(B)
)−1

φ(B)(1−B)
d

=

∞
∑

i=1

λiB
i , λ(1) = 1 ,(2.5)

for every 0 < d < 1, with λi ≥ 0, for i ∈ N, and ω > 0 for the conditional variance

to be well defined, so that it is positive almost surely for all t. Furthermore, in

order to allow for long memory the fractional differencing parameter d is con-

strained to lie in the interval 0 < d < 1/2. Moreover, the polynomials 1− β(B)

and φ(B) are assumed to have all their roots lying outside the unit circle. The

fractional differencing operator (1−B)
d

is most conveniently expressed as

(1 − B)
d

=

∞
∑

k=0

(

d
k

)

(−1)
kBk .

The FIAPARCH model nests two major classes of ARCH-type models: the

APARCH and the FIGARCH models of Ding et al. ([10]) and Baillie et al. ([3]),

respectively. When d = 0 the process reduces to the APARCH(p, q) model,

whereas for γ = 0 and δ = 2 the process reduces to the FIGARCH(p, d, q) model.

The FIGARCH representation includes the GARCH (when d = 0) and the

IGARCH (Engle and Bollerslev, [12]) when d = 1 with the implications in terms

of impact of a shock on the forecasts of future conditional variances. Considering

all the features involved in this specification, Conrad et al. ([7]) point out some

advantages of the FIAPARCH(p, d, q) class of models, namely

(a) it allows for an asymmetric response of volatility to positive and nega-

tive shocks, so being able to traduce the leverage effect. If γ > 0, neg-

ative shocks have stronger impact on volatility than positive shocks,

as would be expected in the analysis of financial time series. If γ < 0,

the reverse happens;
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(b) in this particular class of models it is the data that determines the

power of returns for which the predictable structure in the volatility

pattern is the strongest;

(c) the models are able to accommodate long memory in volatility, depend-

ing on the differencing parameter d.

It is important to mention here that necessary and sufficient condition for

the existence of a stationary solution of the APARCH(p, q) model can be easily

obtained from the results derived by Liu ([22]). This author introduced a family

of GARCH processes, which can be regarded as a class of non-parametric GARCH

processes, which includes as a special case the APARCH(p, q) model. Liu ([22])

obtained necessary and sufficient condition for the existence of a stationary solu-

tion of this new family of GARCH processes. Furthermore, Liu ([22]) also derived

an explicit expression for the stationary solution. In contrast, however, the sta-

tistical properties of the general FIGARCH(p, d, q) process remain unestablished.

Namely, stationarity is not a certainty as well as the source of long memory on

volatility or even its existence are nowadays controversial. For the FIAPARCH

process, Tse ([31]) also leaves these issues as open questions.

The simplest version of the FIAPARCH(p, d, q) model, which appears to be

particularly useful in practice, is the FIAPARCH(1, d,1) for which the volatility σt

takes the form as in (2.4) with λ(B) as in (2.5) with β(B) = βB and φ(B) = φB

with |β|< 1. Necessary and sufficient conditions for the non-negativity of the

conditional variance for the FIAPARCH(1, d, 1) resemble the ones obtained by

Conrad and Haag ([6]) for the FIGARCH(1, d, 1), namely

• Case I: 0 < β < 1, either λ1 ≥ 0 and φ ≤ h2 or for i > 2 with hi−1 <

φ ≤ hi it holds that λi−1 ≥ 0,

• Case II: −1 < β < 0, either λ1 ≥ 0, λ2 ≥ 0 and φ ≤ h2(β+h3)/(β+h2)

or λi−1 ≥ 0, λi−2 ≥ 0 and hi−2(β+hi−1)/(β+hi−2) < φ ≤ hi−1(β+hi)/

(β + hi−1) with i > 3,

where hi = (i−1−d)/i, for i = 2, 3, .... Furthermore, the infinite series coefficients

can be obtained recursively as

λi =

{

φ − β + d , i = 1 ,

βλi−1 + [hi −φ]δi−1 , i ≥ 2 ,

with δ1 = d and δi = δi−1hi for i ≥ 2.

The application of the alarm system to the FIAPARCH(1, d, 1) model will

be done for the particular case r = 1 and j = 2 in Lemma 2.1. The event of

interest (i.e. the catastrophe) is defined as the upcrossing of some fixed level u

two steps ahead, that is

(2.6) Ct,2 =

{

Xt+1 ≤ u < Xt+2

}

.
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The alarm region of optimal size αt,2 is given by

At,2 =

{

xt ∈ R :
P

(

Ct,2|xt, Dt

)

P
(

Ct,2|Dt

) ≥ kt,2

}

(2.7)

=

{

xt ∈ R : P
(

Ct,2|xt, Dt

)

≥ k
}

,

where k = kt,2P
(

Ct,2|Dt

)

.

The first step in the construction of the alarm system consists on the calcu-

lation of the probability of catastrophe conditional on Dt and xt, i.e. P
(

Ct,2|xt,Dt,θ)

and P
(

Ct,2|Dt, θ
)

with θ = (ω, β, φ, γ, δ, d). In doing so, note that

P
(

Ct,2|xt, Dt, θ
)

= P
(

Xt+1≤ u < Xt+2 |x1, ..., xt, θ
)

=

∫

Ct,2

fXt+1,Xt+2|x1,...,xt, θ(xt+1, xt+2) dxt+1 dxt+2

with the integration region, Ct,2, being the catastrophe region as in (2.6). If

Zt ∼N(0,1) then

(2.8) P
(

Ct,2|xt, Dt, θ
)

=

∫ +∞

u

∫ u

−∞

2
∏

k=1

1√
2π σ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt+1dxt+2 .

Moreover

P
(

Ct,2|Dt, θ
)

= P
(

Xt+1≤ u < Xt+2 |x1, ..., xt−1, θ
)

=

∫

Ct,2

∫

fXt,Xt+1,Xt+2|x1,...,xt−1, θ(xt, xt+1, xt+2) dxt dxt+1 dxt+2 .

Again, by assuming Zt ∼ N(0,1) it follows that

P
(

Ct,2|Dt, θ
)

=

∫ +∞

u

∫ u

−∞

∫ +∞

−∞

2
∏

k=0

1√
2πσ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt dxt+1 dxt+2 .

(2.9)

Having calculated these probabilities it is then possible to determine the alarm

region and calculate the alarm characteristics of the alarm system.

1. Alarm size

αt,2 = P
(

At,2|Dt

)

=

∫

At,2

1√
2πσ2

t

exp

{

− x2
t

2σ2
t

}

dxt

with At,2 being the alarm region which depends on the value of kt,2

chosen.

2. Probability of correct alarm

P
(

Ct,2|At,2, Dt

)

=
P

(

Ct,2 ∩ At,2|Dt

)

P
(

At,2|Dt

) ,
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where

P
(

Ct,2 ∩ At,2|Dt

)

=

= P
(

Xt+1≤ u < Xt+2 ∩ Xt ∈ At,2|Dt

)

=

∫ +∞

u

∫ u

−∞

∫

At,2

2
∏

k=0

1√
2πσ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt dxt+1 dxt+2 .

Thus

P
(

Ct,2|At,2, Dt

)

=

=

∫ +∞

u

∫ u

−∞

∫

At,2

2
∏

k=0

1√
2πσ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt dxt+1 dxt+2

∫

At,2

1√
2πσ2

t

exp

{

− x2
t

2σ2
t

}

dxt

.

3. Probability of detecting the event

P
(

At,2|Ct,2, Dt

)

=

=
P

(

At,2 ∩ Ct,2|Dt

)

P
(

Ct,2|Dt

)

=

∫ +∞

u

∫ u

−∞

∫

At,2

2
∏

k=0

1√
2πσ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt dxt+1 dxt+2

∫ +∞

u

∫ u

−∞

∫ +∞

−∞

2
∏

k=0

1√
2πσ2

t+k

exp

{

−
x2

t+k

2σ2
t+k

}

dxt dxt+1 dxt+2

.

3. ESTIMATION PROCEDURES

In this section we consider the estimation of the operating characteristics

of the alarm system. From the classical framework the method considered is the

well-known Quasi-Maximum Likelihood Estimation procedure (QMLE) assuming

conditional normality. The QMLE estimates are obtained maximizing the condi-

tional log-likelihood function with respect to θ = (ω, β, φ, γ, δ, d), recurring to a

routine available within the OxMetrics5 program. The robust standard errors by

Bollerslev and Wooldrige ([5]) were also calculated. According to these authors

this estimator is generally consistent, has a normal limiting distribution and pro-

vides asymptotic standard errors that are valid under non-normality. Neverthe-

less, the authors state that the QMLE estimator is not asymptotically efficient

under non-normality and care should be taken, since as Engle and Gonzalez-

Rivera ([13]) proved, GARCH estimates are consistent but asymptotically ineffi-

cient with the degree of inefficiency increasing with the degree of departure from
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normality. The impact of violations in conditional normality, however, remains

unknown for the FIGARCH and FIAPARCH case. Baillie et al. ([3]) suggested

that the FIGARCH estimates obtained via QMLE are consistent and asymptoti-

cally normal
1
. Furthermore, they also demonstrated the suitability of the QMLE

procedure in the estimation of samples with sizes of 1 500 and 3 000.

From the Bayesian perspective we need to start with a prior distribution for

the vector of parameters θ. Assuming independence between all the parameters

involved the prior distribution of θ, say h(θ), will be proportional to

h(θ) ∝ I{ω>0} I{−1<β<1} I{φ>0} I{−1<γ<1} I{δ>0} I{0<d<1/2} .

The posterior distribution h
(

θ|Dt

)

is given by

h
(

θ|Dt

)

∝ L
(

Dt|θ
)

h
(

θ
)

∝
t−1
∏

n=2

1√
2π σn

exp

{

− x2
n

2σ2
n

}

× I{ω>0} I{−1<β<1} I{φ>0} I{−1<γ<1} I{δ>0} I{0<d<1/2} .

Hence, the probability of catastrophe conditional on Dt and x2 = {xt}, takes the

form

(3.1) P
(

Ct,2|xt, Dt

)

=

∫

Θ
P

(

Ct,2|xt, Dt, θ
)

h
(

θ|Dt

)

dθ

with Θ being the parameter space. On the other hand, the probability of catas-

trophe conditional on Dt, will be given by

(3.2) P
(

Ct,2|Dt

)

=

∫

Θ
P

(

Ct,2|Dt, θ
)

h
(

θ|Dt

)

dθ ,

where P
(

Ct,2|xt, Dt, θ
)

and P
(

Ct,2|Dt, θ
)

are calculated through (2.8) and (2.9),

respectively. However, due to the complexity of expressions (2.8) and (2.9) ana-

lytical calculations are not possible. Nonetheless, since by (3.1) and (3.2)

P
(

Ct,2|xt, Dt

)

= Eθ|Dt

[

P
(

Ct,2|xt, Dt, θ
)]

and P
(

Ct,2|Dt

)

= Eθ|Dt

[

P
(

Ct,2|Dt, θ
)]

,

their respective Monte Carlo approximations can be used, that is

̂P
(

Ct,2|xt, Dt

)

=
1

m

m
∑

i=1

P
(

Ct,2|xt, Dt, θi

)

and ̂P
(

Ct,2|Dt

)

=
1

m

m
∑

i=1

P
(

Ct,2|Dt, θi

)

,

where the observations θi = (ωi, βi, φi, γi, δi, di) with i = 1, 2, ..., m constitute a

sample of the posterior distribution h
(

θ|Dt

)

. A similar procedure is applied to

approximate the operating characteristics.

1In fact, the consistency and asymptotic normality of the QMLE estimator had been formally
established for the IGARCH(1,1) process. Baillie et al. ([3]) followed a dominance-type argument
to extend this result to the FIGARCH(1, d, 0) case and refer the need for a formal proof of
consistency and asymptotic normality for the general IGARCH(p, q) and FIAGARCH(p, d, q)
cases.
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4. SIMULATION RESULTS

In this section we present a simulation study to illustrate the performance of

the alarm system constructed for the FIAPARCH(1, d, 1) model. In particular we

consider the set of parameters θ = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30). The choice

of the parameters is very similar to those appearing in the real-data example

presented in Section 5. Figure 1 below shows a simulated sample path for this

specific FIAPARCH model.

Figure 1: Simulated sample path of a FIAPARCH(1, d, 1) process

with θ = (0.40, 0.28, 0.10, 0.68, 1.27, 0.30).

Parameter estimates, θ̂, and their corresponding standard errors were ob-

tained for this sample, following the QMLE procedure of Bollerslev and Wooldrige

([5]). Robust standard errors are estimated from the product A(θ̂)
−1B(θ̂)A(θ̂)

−1
,

where A(θ̂) and B(θ̂) denote the Hessian and the outer product of the gradients

evaluated at θ̂, respectively.

Moreover, Bayesian estimates of θ were also obtained for this single sample.

Since the standard Gibbs methodology is difficult to implement to FIAPARCH

models partially due to the non-standard forms of the full conditional densities,

the Metropolis-Hastings algorithm was implemented in the software Matlab. In

addition, a multivariate t-distribution was used as the proponent one. The sam-

pler algorithm ran 100 000 iterations including a burn-in period of 40 000 observa-

tions which are discarded for the posterior analysis, as suggested by Dellaportas

et al. ([9]). Furthermore, only every twentieth iteration is stored in order to

obtain an, approximately, independent and identically distributed sample. The

estimates were taken as the means of the posterior distribution. The convergence

of the Markov chain was analyzed through the R criterium of Gelman and Rubin

([15]), the Z-score test of Geweke ([18]) and by graphical methods.
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The analysis of the alarm system is carried out at t = 2000, i.e., x2 =

{x2000}. The event of interest is the two step ahead catastrophe defined by the

upcrossing of the fixed level u, at time t + 2:

C2000,2 =

{

(x2001, x2002) ∈ R
2
: x2001 ≤ u < x2002

}

.

In a first stage, two values of u were chosen, accordingly to the sample quantiles,

namely the 90
th

percentile (Q0.90), and the 95
th

percentile (Q0.95). The choice of

these values is justified by the fact that we are interested in relatively rare events.

For both fixed levels of u, the probabilities P
(

Ct,2|xt, Dt, θ
)

and P
(

Ct,2|Dt, θ
)

were numerically approximated as described in the previous section. In order

to compute the optimal alarm region for each case, one has to obtain the re-

gion for several values of k, accordingly to expression (2.7) and then, for each

value of k, compute the operating characteristics of the alarm system, i.e., the

size of the region, αt,2, the probability of correct alarm, P
(

Ct,2|At,2, Dt

)

and

the probability of detection, P
(

At,2|Ct,2, Dt

)

. For every fixed value of k the

region has to be obtained through a systematic search in a three dimensional

region for (xt, xt+1, xt+2). We considered a thin grid of values of xt in [−100, 100]

and determined, for each value of xt, whether P
(

Ct,2|xt, Dt

)

exceeds k. This

procedure is repeated for k ranging from P
(

Ct,2|Dt

)

to P
(

Ct,2|Dt

)

+ n×0.005,

with n ∈ R
+
. This procedure is repeated for both the classical (using the true

values of the parameters and their QMLE estimates) and the Bayesian approach.

The results are shown in Table 1 below.

Considering the true values of the parameters, the probability of the alarm

being correct, does not exceed 5.6% in the u = Q0.95 case, or 9.7% in the u = Q0.90

case. The probability of detection for this sample, ranges from 2.4% to 49.0% for

u = Q0.95, or from 1.7% to 53.4% for u = Q0.90. The results obtained with the

QMLE estimates do not differ considerably, in particular in what concerns the

probability of correct alarm. Regarding the probability of detecting the event, we

can say the alarm system behaves better in this case since the detection proba-

bility reaches 54.5% for u = Q0.95 and 60.6% for u = Q0.90. Considering now the

Bayesian approach, the probability of detection is the lowest obtained. It does

not even reach 22%. On the other hand, the estimation procedure involved in

the Bayesian approach seems to be able to produce higher probabilities of cor-

rect alarm, depending on an accurate choice of k. The probability of correct

alarm ranges from lower values than in the classical approach to more than the

double of these values, with increasing k, reaching 24.7% in the u = Q0.90 case.

Furthermore, note that as the probability of correct alarm increases, the probabil-

ity of detecting the event decreases, as expected. This can be justified by the fact

that as k increases, the size of the alarm region decreases, which implies that the

number of alarms should decrease, so as the probability of detection, P
(

At,2|Ct,2

)

.

However, as the number of alarms decreases, the probability of false alarms also

decreases and therefore the probability of the alarm being correct, P
(

Ct,2|At,2

)

,

increases.
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As already discussed, it is not possible, in general, to maximize both prob-

abilities, P
(

Ct,2|At,2

)

and P
(

At,2|Ct,2

)

, simultaneously. Hence, a compromise

should be reached by the proper choice of k. In doing so, several criteria have

been already proposed. Svensson et al. ([27]), for example, suggested that k should

be chosen so that the probability of correct alarm and the probability of detect-

ing the event are approximately equal, P
(

Ct,2|At,2

)

≃ P
(

At,2|Ct,2

)

. On the other

hand, Antunes et al. ([2]) suggested that k should be chosen so that the alarm

size is about twice the probability of having a catastrophe given the past values of

the process, P
(

Ct,2|Dt

)

≃ 1
2 P

(

At,2|Dt

)

, stating that in this situation the system

will be spending twice the time in the alarm state than in the catastrophe region.

We analyzed both criteria in this work and from hereafter, the former criterion

will be designated by Criterion 2 and the last by Criterion 1.

In order to test the alarm system, three extra values of the series were simu-

lated: (x2, x3) = (xt, xt+1, xt+2). This procedure was repeated 10 000 times with

the same informative experience, Dt. With the alarm regions calculated before

for u = Q0.90 = 2.293 and for the two criteria already mentioned, we observed,

for each of the 10 000 samples, whether an alarm was given or not and whether

a catastrophe occurred or not. Results are given in Table 2.

Table 2: Results at time point t = 2000. Percentages in parenthesis.

Approach Criterion
Alarms Catastrophes

False Total Detected Total

True Parameters
1 1112 (0.8330) 1335 223 (0.2059) 1083
2 651 (0.8314) 783 132 (0.1273) 1037

QMLE Approach
1 1163 (0.8526) 1364 201 (0.1963) 1024
2 380 (0.8260) 460 80 (0.0771) 1037

Bayesian Approach
1 1161 (0.8401) 1382 221 (0.2103) 1051
2 668 (0.8477) 788 120 (0.1204) 997

Finally, we illustrate how the online prediction performs in practice. The

event to predict is

Ct,2 =

{

(xt+1, xt+2) ∈ R
2
: xt+1 ≤ u < xt+2

}

,

for t = 2000, ...,2010, again with u = Q0.90 = 2.293. Alarm regions and respective

operating characteristics are presented in Table 3 for Criterion 1 and in Table 4

for Criterion 2.

Overall, Criterion 1 provides better estimates for the operating character-

istics. The probability of detection, for instance, reaches values around 0.22 in

some cases for the classical approach whereas with Criterion 2 this probability is

nearly only half the former.
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Table 3: Operating characteristics at different time points with Criterion 1.

Approach t P
�
Ct,2|Dt

�
k Alarm Region α2 P

�
Ct,2|At,2

�
P
�
At,2|Ct,2

�
2000 0.0827 0.1100 [−∞, −2.0] ∪ [9.0, +∞] 0.1377 0.0852 0.1420

2001 0.1047 0.1047 [−∞, −1.5] ∪ [5.5, +∞] 0.1848 0.1093 0.1929

2002 0.0936 0.0936 [−∞, −2.0] ∪ [9.5, +∞] 0.1209 0.0980 0.1265

2003 0.0923 0.1073 [−∞, −1.5] ∪ [7.5, +∞] 0.2167 0.0947 0.2224

2004 0.0897 0.0977 [−∞, −1.5] ∪ [8.0, +∞] 0.2076 0.0914 0.2116
True 2005 0.0879 0.0979 [−∞, −1.5] ∪ [7.5, +∞] 0.2036 0.0893 0.2069

Parameters 2006 0.0803 0.0953 [−∞, −2.0] ∪ [9.0, +∞] 0.1311 0.0831 0.1356

2007 0.0687 0.0887 [−∞, −2.0] ∪ [8.5, +∞] 0.1286 0.0716 0.1340

2008 0.0573 0.0873 [−∞, −2.0] ∪ [9.5, +∞] 0.1194 0.0614 0.1279

2009 0.0508 0.0758 [−∞, −2.0] ∪ [8.5, +∞] 0.1045 0.0522 0.1075

2010 0.0545 0.0845 [−∞, −2.0] ∪ [8.5, +∞] 0.0924 0.0566 0.0960

2000 0.0844 0.1200 [−∞, −2.0] ∪ [10.5, +∞] 0.1413 0.0864 0.1446

2001 0.1097 0.1047 [−∞, −1.5] ∪ [6.0, +∞] 0.1867 0.1123 0.2002

2002 0.0969 0.0969 [−∞, −2.0] ∪ [9.5, +∞] 0.1230 0.1005 0.1276

2003 0.0946 0.1096 [−∞, −1.5] ∪ [7.5, +∞] 0.2202 0.0972 0.2262

2004 0.0919 0.1019 [−∞, −1.5] ∪ [7.5, +∞] 0.2110 0.0943 0.2165

QMLE 2005 0.0900 0.1000 [−∞, −1.5] ∪ [7.5, +∞] 0.2066 0.0917 0.2104

2006 0.0821 0.0971 [−∞, −2.0] ∪ [8.5, +∞] 0.1340 0.0843 0.1376

2007 0.0697 0.0897 [−∞, −2.0] ∪ [8.5, +∞] 0.1314 0.0723 0.1363

2008 0.0594 0.0894 [−∞, −2.0] ∪ [9.0, +∞] 0.1217 0.0619 0.1269

2009 0.0506 0.0756 [−∞, −2.0] ∪ [8.0, +∞] 0.1059 0.0528 0.1104

2010 0.0544 0.0844 [−∞, −2.0] ∪ [8.5, +∞] 0.0930 0.0566 0.0966

2000 0.0693 0.0950 [−∞, −2.0] ∪ [8.5, +∞] 0.1211 0.0717 0.1252

2001 0.0911 0.0911 [−∞, −1.5] ∪ [6.0, +∞] 0.1685 0.0939 0.1736

2002 0.0820 0.0820 [−∞, −2.0] ∪ [9.5, +∞] 0.1047 0.0845 0.1078

2003 0.0794 0.0994 [−∞, −2.0] ∪ [9.0, +∞] 0.1297 0.0820 0.1340

2004 0.0764 0.0914 [−∞, −2.0] ∪ [9.0, +∞] 0.1218 0.0797 0.1271

Bayesian 2005 0.0715 0.0915 [−∞, −2.0] ∪ [9.0, +∞] 0.1176 0.0779 0.1282

2006 0.0680 0.0830 [−∞, −2.0] ∪ [9.0, +∞] 0.1144 0.0711 0.1196

2007 0.0576 0.0776 [−∞, −2.0] ∪ [9.0, +∞] 0.1121 0.0598 0.1165

2008 0.0498 0.0748 [−∞, −2.0] ∪ [9.0, +∞] 0.1038 0.0513 0.1068

2009 0.0419 0.0669 [−∞, −2.0] ∪ [9.0, +∞] 0.0902 0.0441 0.0948

2010 0.0447 0.0747 [−∞, −2.0] ∪ [9.5, +∞] 0.0790 0.0467 0.0825

Table 4: Operating characteristics at different time points with Criterion 2.

Approach t P
�
Ct,2|Dt

�
k Alarm Region α2 P

�
Ct,2|At,2

�
P
�
At,2|Ct,2

�
2000 0.0827 0.1200 [−∞, −2.5] ∪ [11.5, +∞] 0.0864 0.0862 0.0901

2001 0.1047 0.1247 [−∞, −2.0] ∪ [10.5, +∞] 0.1153 0.1088 0.1198

2002 0.0936 0.1036 [−∞, −2.5] ∪ [12.0, +∞] 0.0717 0.1001 0.0767

2003 0.0923 0.1223 [−∞, −2.5] ∪ [12.0, +∞] 0.0958 0.0949 0.0985

2004 0.0897 0.1147 [−∞, −2.5] ∪ [12.0, +∞] 0.0872 0.0924 0.0899
True 2005 0.0879 0.1129 [−∞, −2.5] ∪ [11.5, +∞] 0.0835 0.0906 0.0862

Parameters 2006 0.0803 0.1053 [−∞, −2.5] ∪ [11.5, +∞] 0.0805 0.0831 0.0832

2007 0.0687 0.0987 [−∞, −2.5] ∪ [11.5, +∞] 0.0783 0.0726 0.0827

2008 0.0573 0.1023 [−∞, −2.5] ∪ [13.0, +∞] 0.0705 0.0630 0.0774

2009 0.0508 0.0908 [−∞, −2.5] ∪ [12.0, +∞] 0.0582 0.0531 0.0608

2010 0.0545 0.0945 [−∞, −2.5] ∪ [11.0, +∞] 0.0487 0.0593 0.0530

2000 0.0844 0.1300 [−∞, −3.0] ∪ [13.5, +∞] 0.0535 0.0905 0.0573

2001 0.1047 0.1297 [−∞, −2.0] ∪ [10.5, +∞] 0.1174 0.1104 0.1238

2002 0.0969 0.1069 [−∞, −2.5] ∪ [12.0, +∞] 0.0735 0.1027 0.0780

2003 0.0946 0.1246 [−∞, −2.5] ∪ [11.5, +∞] 0.0992 0.0974 0.1021

2004 0.0919 0.1169 [−∞, −2.5] ∪ [11.5, +∞] 0.0904 0.0947 0.0932

QMLE 2005 0.0900 0.1150 [−∞, −2.5] ∪ [11.0, +∞] 0.0863 0.0929 0.0891

2006 0.0821 0.1121 [−∞, −2.5] ∪ [12.5, +∞] 0.0831 0.0850 0.0860

2007 0.0697 0.0997 [−∞, −2.5] ∪ [11.0, +∞] 0.0808 0.0731 0.0847

2008 0.0594 0.0994 [−∞, −2.5] ∪ [11.5, +∞] 0.0723 0.0637 0.0776

2009 0.0506 0.0956 [−∞, −2.5] ∪ [13.0, +∞] 0.0593 0.0529 0.0619

2010 0.0544 0.0994 [−∞, −2.5] ∪ [11.5, +∞] 0.0491 0.0590 0.0533

2000 0.0693 0.1100 [−∞, −2.5] ∪ [12.5, +∞] 0.0718 0.0730 0.0757

2001 0.0911 0.1011 [−∞, −2.0] ∪ [8.5, +∞] 0.1002 0.0943 0.1037

2002 0.0820 0.0820 [−∞, −2.0] ∪ [9.5, +∞] 0.1047 0.0845 0.1078

2003 0.0794 0.1094 [−∞, −2.5] ∪ [12.0, +∞] 0.0793 0.0835 0.0835

2004 0.0764 0.1014 [−∞, −2.5] ∪ [12.0, +∞] 0.0724 0.0813 0.0771

Bayesian 2005 0.0715 0.1065 [−∞, −2.5] ∪ [13.5, +∞] 0.0689 0.0794 0.0766

2006 0.0680 0.0930 [−∞, −2.5] ∪ [11.5, +∞] 0.0663 0.0726 0.0707

2007 0.0576 0.0876 [−∞, −2.5] ∪ [11.5, +∞] 0.0643 0.0619 0.0692

2008 0.0498 0.0848 [−∞, −2.5] ∪ [12.0, +∞] 0.0576 0.0536 0.0619

2009 0.0419 0.0769 [−∞, −2.5] ∪ [11.5, +∞] 0.0470 0.0461 0.0517

2010 0.0447 0.0847 [−∞, −2.5] ∪ [11.5, +∞] 0.0388 0.0476 0.0413
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5. EXPLORING THE IBOVESPA RETURNS DATA SET

In this section, we model the data set IBOVESPA which contains daily re-

turns of the S. Paulo Stock Market during the period 04/07/1994 to 02/10/2008

(www.ipeadata.gov.br). Data consists on the closing rates of stocks, It, being the

log-returns calculated as yt = ln(It/It−1), t =1, ..., n. The results obtained from

this procedure were then multiplied by 100 just to ensure the stability of poste-

rior calculations. Sáfadi and Pereira ([25]) proved that the FIAPARCH(1, d, 1)

provides a good fit for this kind of data sets. To fit a FIAPARCH(1, d, 1) model

for the log-returns we proceeded as follows: first, the AR(10) model yt = 0.0689 +

0.0645 yt−10 + xt, is fitted, using the least squares method, in order to eliminate

serial dependence. The time series plot of both the IBOVESPA daily returns and

the residuals (xt), hereafter designated by x-returns, are exhibited in Figure 2

below. This is, indeed, the set of data reported to show the common features

of financial time series mentioned in Section 1, that is weak dependence without

any evident pattern on the series level and significative dependence on squared

and absolute returns.

Figure 2: Plot of the IBOVESPA daily returns (left) and the x-returns (right)

from 04/07/1994 to 02/10/2008.

The FIAPARCH(1, d, 1) model was fitted to the series of x-returns by

means of the QMLE procedure and the Bayesian approach described in Section 3.

In both cases the adequacy of the fit was checked through the analysis of the stan-

dardized residuals. Table 5 presents the estimates obtained for both procedures.

Table 5: Parameter estimates. Standard deviations in parenthesis.

QMLE Bayesian Estimates

ω 0.3903 (0.1092) 0.4227 (0.0576)
φ 0.0957 (0.1334) 0.1289 (0.0397)
γ 0.6782 (0.1363) 0.7813 (0.1108)
β 0.2794 (0.1693) 0.3246 (0.0568)
δ 1.2744 (0.1274) 1.2218 (0.1008)
d 0.2952 (0.0642) 0.3020 (0.0258)
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Since the IBOVESPA x-returns are related to the daily changes of the stock

indexes of S. Paulo Stock Market, we considered that the event of interest is

given by

Ct,2 =

{

(xt+1, xt+2) ∈ R
2
: xt+1 ≥ u > xt+2

}

,

with t = 3450, ..., 3516, corresponding to July, August and September of 2008,

and u = Q0.25 = −1.219. Note that, the downcrossing event Ct,2 can be view as

related with a stock market crash. Moreover, the choice of k was done according

only to Criterion 1: P
(

Ct,2|Dt

)

≃ 1
2 P

(

At,2|Dt

)

. Two reasons justify this choice.

First, Criterion 2 is difficult to implement since P
(

Ct,2|At,2, Dt

)

may never get so

close to P
(

At,2|Ct,2, Dt

)

or when it does, some operating characteristics may show

not so good results (at least as compared with those obtained with Criterion 1).

Secondly, Criterion 1 results in better estimates of the operating characteristics.

For the time period considered, the total number of alarms, the total number

of catastrophes, the number of false alarms and the number of detected events

was counted. Results are presented in Table 6. A closer look to Table 6 reveals

that the estimate of the probability of the alarm being correct is 50% in July

and August and raises to 100% in September. In addition, the estimate of the

probability of detecting a catastrophe remains around 20% during the time period

considered. We noticed that this online prediction system exhibits an adaptive

behavior, that is, as long as the available information is integrated within the

informative experience, the system adapts itself in order to produce the minimum

number of false alarms. This fact explains on one hand the high estimate of the

probabilities of the alarm given being correct and on the other hand that the

system produces few alarms, so the probability of detection can not be very high.

Table 6: Results of the alarm system with u = −1.219.

Percentages in parenthesis.

Month
Alarms Catastrophes

False Total Detected Total

July 1 (0.50) 2 1 (0.16) 6
August 1 (0.50) 2 1 (0.20) 5
September 0 (0.00) 3 3 (0.27) 11

Trimester 2 (0.28) 7 5 (0.22) 22
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1. INTRODUCTION

1.1. Aim of errors in variables modelling

Given a set of variables, a common statistical procedure is to try and find

relationships between them. A technique that may aid with this is regression,

which can provide an estimate of the formulaic relationship between these vari-

ables. The relationships between these variables, if they exist, may be linear or

non-linear. Commonly the variables are split into dependent and independent

variables, and regression analyses are concerned with writing the dependent vari-

ables in terms of some function of the independent variables. Standard regression

procedures assume that the independent variables are measured without error,

and that the error inherent in the model is associated with the dependent vari-

ables only. The theory of fitting such models is plentiful, and is well documented

in the literature. An obvious extension to this model is to assume that there is

error also present in the independent variables. This has become known as the

errors in variables situation. There are errors in the measurement of both the

independent and dependent variables, and so usually a different tack is called for.

Indeed, in [9] Casella and Berger wrote that the errors in variables model “is so

fundamentally different from the simple linear regression (...) that it is probably

best thought of as a different topic.”

1.2. Common applications

Errors in variables models have been successfully applied to a number of

different subject areas over the years. Indeed, different ways of solving the prob-

lem of having errors in variables have become associated with different subject

areas. For example, the method of using instrumental variables had its origins

in the economic literature, but this technique is not restricted to economic appli-

cations. Use of errors in variables methodology has proved fruitful in areas as

diverse as astrostatistics, as a method to cope with astronomical measurement

error, in fisheries statistics, as a way of looking at fish stocks, in medical statistics,

commonly in method comparison studies when a number of methods of measure-

ment are compared and much more. The errors in variables problem is also one

that is inherently interesting theoretically, and a number of theoretical develop-

ments in their own right have been made. In particular, numerical analysts have

been interested in the development and study of particular types of numerical

algorithms to solve the errors in variables problem.
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Errors in variables models tend to be appropriate when all variables are ex-

perimentally observed. Each variable is then subject to its own inherent measure-

ment error. Despite their common application, errors in variables methodology

is still quite neglected in practice. This could be for a number of reasons. Firstly,

the literature on errors in variables topics is widely scattered, appearing in a

range of journals, in a number of different contexts. Secondly, the notation used

for errors in variables models varies tremendously. Thus it is sometimes difficult

to read papers from different sources. Finally, there are a number of different

approaches to fit an errors in variables model. Some of these will be described

in this paper. The aim of this paper is to bring ideas from this widely scattered

literature together, and to explain the development of key methodologies and

links between them.

For brevity, this paper will focus on the linear structural model which is

a commonly fitted errors in variables type model. Section 2 describes the linear

structural model. Section 3 outlines the main approaches that have been adopted

to estimate the parameters of the linear structural model.

2. AN INTRODUCTION TO THE LINEAR STRUCTURAL

MODEL

Consider two variables, ξ and η which are linearly related in the form

ηi = α+ β ξi , i= 1, ..., n .

However, instead of observing ξi and ηi, we observe

xi = ξi + δi ,

yi = ηi + εi = α+ β ξi + εi ,

where δi and εi are considered to be random error components, or noise.

It is assumed that E[δi] = E[εi] = 0 and that Var[δi] = σ2
δ , Var[εi] = σ2

ε for

all i. Also the errors δi and εi are mutually uncorrelated. Thus

Cov[δi, δj ] = Cov[εi, εj ] = 0 , i 6= j ,

Cov[δi, εj ] = 0 , ∀ i, j .

It is possible to rewrite the above model as

yi = α+ βxi + (εi − βδi) , i= 1, ..., n .

This highlights the difference between this problem and the standard regression

model. The error term is clearly dependent on β. In addition to this term (ε−βδ)
is correlated with x. Indeed,

Cov[x, ε− βδ] = E
[

x(ε− βδ)
]

= E
[

(ξ+ δ)(ε− βδ)
]

= −β σ2
δ
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and is only zero if β = 0 or σ2
δ = 0. If σ2

δ = 0, the model is equivalent to standard

y on x regression, and the usual results apply. See [16] for details on standard

regression models.

There have been several reviews of errors in variables methods, notably [9],

[10], [20], [37] and [55]. Unfortunately the notation has not been standardised.

This paper closely follows the notation set out by Cheng and Van Ness in [10]

but for convenience, it has been necessary to modify parts of their notation.

All notation will be carefully introduced at the appropriate time.

Errors in variables modelling can be split into two general classifications de-

fined in [35], and [36], as the functional and structural models. The fundamental

difference between these models lies in the treatment of the ξi’s:

The functional model – This assumes the ξi’s to be unknown, but fixed

constants µi.

The structural model – This model assumes the ξi’s to be a random

sample from a random variable with mean µ and variance σ2
. The linear struc-

tural model is thus the linear model described above, with the ξi’s taken in a

structural setting.

Due to the wealth of literature available this paper will focus mainly on the

linear structural model. It will however prove prudent at times to mention the

linear functional model at certain places in the text. Further information on the

linear functional model is provided in [26].

3. AN OVERVIEW OF ERRORS IN VARIABLES MODELLING

3.1. Origins and beginnings

The author first associated with the errors in variables problem was Adcock

([1], [2]). In the late 1800s he considered how to make the sum of the squares of

the errors at right angles to the line as small as possible. This enabled him to

find what he felt to be the most probable position of the line. Using ideas from

basic geometry, he showed that the errors in variables line must pass through

the centroid of the data. However, Adcock’s results were somewhat restrictive in

that he only considered equal error variances (σ2
δ = σ2

ε ). These ideas are linked

to what is commonly referred to as orthogonal regression. Orthogonal regression

minimises the orthogonal distances (as opposed to vertical or horizontal distances

in standard linear regression) from the data points onto the regression line.
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Adcock’s work was extended a year later by Kummel in [38]. Instead of

assuming equal error variances, he assumed that the ratio λ =
σ2
ε

σ2
δ

was known

instead. Kummel derived an estimate of the line which clearly showed the relation

between his and Adcock’s work. Kummel argued that his assumption of knowing λ

was not unreasonable. He suggested that most experienced practitioners have

sufficient knowledge of the error structure to agree a value for this ratio. Use

of the orthogonal regression line has been questioned by some authors on the

grounds that if the scale of measurement of the line is changed, then a different

line would be fitted. However, this is only going to be true if λ is not modified

along with the scale of measurement. If λ is modified along with the scale of

measurement, the same line is fitted.

The idea of orthogonal regression was included in a book by Deming in

[15], and so orthogonal regression is sometimes referred to as Deming regression,

particularly in the medical literature. He noted that just as the orthogonal pro-

jections from the data to the regression line may be taken, so can any other

projection. This would then take account of unequal error variances. The least

squares method can then be used to minimise this residual error. This assumes

that the error structure is homoscedastic, otherwise this method cannot be used.

Lindley in [39] found that adding a weighting factor when minimising the sum of

squares of the orthogonal projections, allowed one to minimise projections other

than orthogonal.

Another early paper on this subject was by Pearson ([49]). He extended the

ideas of previous authors to allow the fitting of lines and hyperplanes of best fit.

Pearson was able to show that the orthogonal regression line lies between the

y on x, and x on y regression lines.

3.2. Grouping methods

A different approach was suggested by Wald in [62]. Wald described a

method that did not make an assumption regarding the error structure. He

stressed that there was no justification in making assumptions such as λ = 1,

and that the regression line would not be invariant under transformations of the

coordinate system (this criticism has been dealt with in the previous section).

Wald suggested splitting the observations into two groups, G1 and G2, where G1

contains the first half of the ordered observations
(

x(1), y(1)

)

, ...,
(

x(m), y(m)

)

and

G2 contains the second half
(

x(m+1), y(m+1)

)

, ...,
(

x(n), y(n)

)

. An estimate of the

slope is then

β̃W =

(

y(1) + · · · + y(m)

)

−
(

y(m+1) + · · · + y(n)

)

(

x(1) + · · · + x(m)

)

−
(

x(m+1) + · · · + x(n)

) .
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A problem here is that the grouping must be based on the order of the true values,

otherwise, in general, the groups are not independent of the error terms δ1, ..., δn.

Wald countered this by proving that, at least approximately, grouping with re-

spect to the observed values is the same as grouping with respect to the true

values. Properties of this estimator for finite samples, as well as approximations

of the first four moments can be found in [29].

The idea of grouping the observations was further developed by Bartlett

in [6]. Instead of separating the ordered observed values into two groups, he

suggested that greater efficiency would be obtained by separating the ordered

observations into three groups, G1, G2 and G3. G1 and G3 are the outer groups,

and G2 is the middle group. (Nair and Banerjee [44]) show that for a functional

model, Bartlett’s grouping method provided them with a more efficient estimator

of the slope than Wald’s method. In Bartlett’s method the slope is found by

drawing a line through the points (x̄G1
, ȳG1

) and (x̄G3
, ȳG3

), where (x̄G1
, ȳG1

)

and (x̄G3
, ȳG3

) are the mean points of the observations in G1 and G3 respectively.

In effect, the observations in G2 are not used after the data are grouped. In [25]

advice on how to place the data into these three groups to obtain the most efficient

estimate of the slope is given. How the data should be grouped depended on the

distribution of ξ. A table summarising their results for a variety of distributions

of ξ can be found in the review paper [40].

Neyman and Scott in [46] suggested another grouping method. The method-

ology they used is as follows. They suggested fixing two numbers, a and b

such that a 6 b. The numbers a and b must be selected so P [x6 a] > 0 and

P [x > b] > 0. The observations xi are then divided into three groups, G1, G2 and

G3. If xi 6 a those observations are put into G1, if a < xi 6 b those observations

are put into G2, and if xi > b those observations are put into G3. A further two

numbers −c and d are then found such that P [−c 6 δ 6 d] = 1. An estimator of

the slope is then given by

β̃NS =
ȳG3

− ȳG1

x̄G3
− x̄G1

and is a consistent estimator of β if

P
[

a− c < ξ 6 a+ d
]

= P
[

b− c < ξ 6 b+ d
]

= 0 .

However, whether this condition is one that is obtainable in practice is open to

debate.

Grouping methods, in particular Wald’s method, have been criticised by

Pakes in [47]. He claimed that the work of in [29] is unnecessary as Wald’s

estimate is, strictly speaking, inconsistent. Letting β̃W denote Wald’s estimate

for the slope, Pakes showed

∣

∣p lim β̃W

∣

∣ = |β|
∣

∣

∣

∣

(x̄G2
− x̄G1

)

(x̄G2
− x̄G1

) + E
[

δ|x ∈G2

]

− E
[

δ|x ∈G1

]

∣

∣

∣

∣

∣

< |β| ,
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which shows that, in general, Wald’s estimate will underestimate the value of the

true slope.

However, this expression derived by Pakes offers a similar conclusion to

that of Neyman and Scott ([45]). As long as the error δ is bounded (or not too

significant) so that the ranks of ξ are at least approximately equal to the ranks

of x, then grouping methods should provide a respectable estimator for the slope

as the expression E
[

δ|x ∈G2

]

− E
[

δ|x ∈G1

]

should be negligible.

3.3. Instrumental variables

Extensive consideration of this method has appeared in the econometrics

literature. Essentially, the instrumental variables procedure involves finding a

variable w that is correlated with x, but is uncorrelated with the random error

component, δ. The estimate for the slope is then

β̃IV =
syw

sxw

,

where, syw and sxw are the usual second order sample moments defined as

sab =
1

n

n
∑

i=1

(ai− ā)(bi − b̄) ,

and ā = n−1
∑n

i=1 ai is the sample mean. In practice however, it is difficult to

obtain a good instrumental variable which meets the aforementioned criteria.

The method of grouping can be put into the context of instrumental vari-

ables. In [41] it was showed that Wald’s grouping method is equivalent to using

the instrumental variable

wi =

{

1 if xi > median(x1, ..., xn) ,

−1 if xi < median(x1, ..., xn) ,

and similarly Bartlett’s grouping method is equivalent to using

wi =















1 for the largest
n
3 observations ,

−1 for the smallest
n
3 observations ,

0 otherwise .

An idea using the ranks of the xi was proposed by Durbin in [19]. He suggested

an estimator of the form

β̃D =

∑n
i=1 i y(i)

∑n
i=1 i x(i)
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where
(

x(1), y(1)

)

,
(

x(2), y(2)

)

, ...,
(

x(n), y(n)

)

are the ordered observations. However,

as with grouping methods, it is unlikely that the ranks of the observed data

will match the ranks of the true data. So as in Wald’s method this estimate is

inconsistent.

3.4. Geometric mean

Other than grouping the data, or looking for an instrumental variable,

another approach is to simply take the geometric mean of the y on x regression

line, and the reciprocal of the x on y regression line. This leads to the estimate

β̃GM = sign(sxy)

√

syy

sxx

.

There is a geometric interpretation of the line having this slope — it is the line

giving the minimum sum of products of the horizontal and vertical distances of

the observations from the line (Teissier [58]). However, for the estimate to be

unbiased (see [32] for example), one must assume that

(3.1) λ = β2
=
σ2
ε

σ2
δ

.

This is due to

β̃GM −→
√

β2σ2 + σ2
ε

σ2 + σ2
δ

6= β .

A technical criticism of the use of this estimator is that it may have infinite

variance (Creasy [13]). This happens when the scatter of the observations is so

great that it is difficult to determine if one line or another perpendicular to it

should be used to represent the data. As a result, it may be difficult to construct

confidence intervals of a respectable finite width. Geometric mean regression

has received much attention, primarily in the fisheries literature. Ricker in [50]

examined a variety of regression methods applied to fish biology, and promoted

the use of geometric mean regression. He claimed that in most situations it is

superior to grouping methods, and the geometric mean regression line is certainly

one of the easiest to fit. In addition, Ricker also warned that regression theory

based on assuming that the data are from a normal distribution may not apply

to non-normally distributed data. Great care must be taken by the statistician

to ensure the proper conclusions are obtained from the data.

Jolicoeur in [32], again in the fisheries literature, discussed the paper by

Ricker. He stated that as geometric mean regression is equivalent to the assump-

tion in equation (3.1) it is difficult to interpret the meaning of the slope, as the

error variances σ2
δ and σ2

ε only contaminate and cannot explain the underlying
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relationship between ξ and η. Ricker replied to the paper by Jolicoeur in a letter,

and claimed that the ratio (3.1) may not be linked to the presence or the strength

of the underlying relationship, but the correlation coefficient will always give an

idea as to the strength. Ricker reiterated that geometric mean regression is an

intuitive approach, and as long as the assumption (3.1) holds, is a perfectly valid

regression tool.

Further discussion on this estimate was initiated by Sprent and Dolby ini-

tially in [57]. They discouraged the use of geometric mean regression, due to the

unrealistic assumption of (3.1). They both however sympathised with practition-

ers, especially those in fish biology, who do not have any knowledge regarding λ.

In addition, they commented that the correlation coefficient might be mislead-

ing in an errors in variables model, due to each of the observations containing

error. They did however suggest that a correlation coefficient may be useful in

determining if a transformation to linearity has been successful.

An alternative way of looking at geometric mean regression was provided

by Barker et al. in [4]. Instead of looking at it as a geometrical average, it can be

derived in its own right by adopting a so-called least triangles approach. This is

where the sum of the areas of the right-angled triangles formed from the horizontal

discrepancies from the data point to the regression line, the vertical discrepancies

from the data point to the regression line, and the regression line itself, are mini-

mised. They also showed a connection between geometric mean regression and

the correlation coefficient, thus refuting the claim by Sprent and Dolby made in

[57] that the correlation coefficient has little value in errors in variables modelling.

3.5. Cumulants

Another method of estimation that has been used in errors in variables

modelling is the method of moments. A closely related approach to this is using

cumulants, which were proposed by Geary in the series of papers [21], [22], [24],

[23]. Cumulants can be defined as follows. Assume that X and Y are jointly

distributed random variables. Then, provided the expansions are valid in the

given domain, the natural logarithm of the joint characteristic function can be

written as

(3.2) ψ(t1, t2) = ln
[

φ(t1, t2)
]

= ln
[

E
(

eit1X+ it2Y
)]

=

∞
∑

r,s=0

κ(r, s)
(it1)

r

r!

(it2)
s

s!
.

Here, ψ is the so-called joint cumulant generating function, and, if r 6= 0 and

s 6= 0 then κ(r, s) is called the r, s product cumulant of X and Y. The slope can

be estimated via the method of cumulants as follows.

If the true values ξ and η are centred with respect to their true mean, then
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the intercept vanishes, and we can write the structural relationship in the form

(3.3) βξ − η = 0 .

Letting κ(x,y) denote the cumulants of (x, y), and κ(ξ,η) denote the cumulants of

(ξ, η) we have

κ(x,y)(r, s) = κ(ξ,η)(r, s) .

This follows from the following important properties of bivariate cumulants (see,

for example [10], [48]):

• The cumulant of a sum of independent random variables is the sum of

the cumulants.

• The bivariate cumulant of independent random variables is zero.

The joint characteristic function of (ξ, η) is

(3.4) φ(t1, t2) = E
[

eit1ξ+ it2η
]

.

It follows from (3.3) and (3.4) that

β
∂φ

∂ it1
− ∂φ

∂ it2
= E

[

(βξ− η)eit1ξ+ it2η
]

= 0 .

If we replace the joint characteristic function φ by the cumulant generating func-

tion ψ we obtain

(3.5) β
∂ψ

∂ it1
− ∂ψ

∂ it2
=

1

φ

(

β
∂φ

∂ it1
− ∂φ

∂ it2

)

= 0

and it follows from (3.2) and (3.5), for all r, s > 0

βκ(r+1, s) − κ(r, s+1) = 0 .

If κ(r+1, s) 6= 0 an estimate for the slope is then

β̃C =
κ(r, s+1)

κ(r+1, s)
.

In reality, the cumulants κ(r, s) will have to be replaced by their sample equiva-

lents K(r, s). Details of how these sample cumulants may be computed as func-

tions of sample moments are included in [21].

3.6. Method of moments

Instead of tackling the problem via cumulants, the method of moments

can be used. Briefly, this is where a set of estimating equations are derived

by equating population moments with their sample equivalents. The method of
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moments approach is considered in detail in [27], and so only a brief survey of the

existing literature is given here. Kendall and Stuart in [37] derived the five first

and second order moment equations for the structural errors in variables model.

However, there are six parameters, µ, α, β, σ2
x , σ

2
δ and σ2

ε for the structural model.

So in order to proceed with the method of moments, some information regarding a

parameter must be assumed known, or more estimating equations must be derived

by going to the higher moments. Details on the various assumptions that can

be made are included in [10], [18], and [37], as well as others. Dunn in [18] gave

formulae for many of the estimators of the slope that are included in [27]. However

he did not give any information regarding estimators based on higher moments.

Neither did he give information about the variances of these estimates. Work on

the higher order moment estimating equations has been done in [17], and more

recently in [48], [61], [60] and [12]. Drion, in a paper that is infrequently cited [17],

looked at an estimate that could be derived through the third order non-central

moment equations for a functional model. Drion computed the variances of all

the sample moments that he used, and showed that his estimate of the slope is

consistent. Prior to this work, Scott in [52] considered the structural model, and

also found an estimate based on the third moments. Scott was able to show that

if the third central moment of ξ exists, and is non-zero, then the equation

Fn,1(b) =
1

n

n
∑

i=1

[

yi− ȳ − b(xi− x̄)
]3

= 0

has a root b̂ which is a consistent estimate of β. This is because the stochastic

limit of Fn,1(b) is (β− b)3µξ3, where µξ3 denotes the third central moment of ξ.

The estimate of the slope is then a function of the third order sample moments.

Scott was able to generalise this result. If the random variable ξ has central

moments up to and including order 2m+1 and if at least one of the first m odd

central moments µξ,2k+1 (k = 1, 2, ...,m) differs from zero, then the equation

Fn,m(b) =
1

n

n
∑

i=1

[

yi− ȳ − b(xi− x̄)
]2m+1

= 0

has a root b̂ which is a consistent estimate of β. Scott did warn however, that

estimates based on the lower order moments are likely to be more precise than

those based on higher order moments. Unfortunately, Scott did not provide a

method of extracting the root which will provide the consistent estimate.

More recently, Pal in [48] further examined the possibilities of the mo-

ment equations in a structural model. He stated that in economics, the errors in

variables situation cannot be ignored, and as a result, least squares estimation

is the wrong way to proceed. Pal derived six possible estimators of the slope,

but showed that three of these are functions of the other slope estimates, and

concluded that there must be infinitely many consistent estimates which can be

obtained by taking different functions of the slope estimates he derived. For each
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of the six estimates, Pal found their asymptotic variances when the error terms

were assumed to follow a normal distribution. He then went on to consider a va-

riety of regression scenarios, such as
σ2
δ

σ2 = 0, to offer advice as to which estimator

has the smallest variance. The asymptotic efficiency of a particular estimate with

respect to the least squares estimate was also provided, for different distributions

of ξ. A brief review of the method of cumulants, and how errors in variables

modelling might be extended to a multiple linear regression model was included

towards the end of the paper.

Van Montfort et al. in [61] gave a detailed survey on estimators based on

third order moments. They provided an optimal estimate of the slope which is

a function of three slope estimates. In order to obtain this optimal estimate, the

variance-covariance matrix if not known, has to be estimated. By replacing the

variance-covariance matrix with its estimate, the optimal estimator is no longer

a function of moments up to order three since moments of order lower than three

appear in the estimation of the variance-covariance matrix. Van Montfort et al.,

through a simulation study, demonstrated that the optimal estimate behaves well

for a sample size of 50, and is superior to any other third moment estimator. The

same study was replicated for a sample size of 25. For this sample size, they stated

that the third moment estimates performed badly. A standard assumption is to

assume that the errors δ and ε are independent. Van Montfort et al. showed that

even if δ and ε are linearly related, then their optimal estimator of the slope is

still optimal for all consistent estimators of β which are functions of the first,

second and third order moments. In addition, the asymptotic properties of the

slope estimate are not altered.

A detailed account of alternative approaches to errors in variables mod-

elling was written by Van Montfort in [60]. This text included estimation based

on third order moments, extensions to polynomial regressions, using characteristic

functions and links to the factor analysis model. More details on the asymptotic

variances and covariances of the third order moment slope estimates were pro-

vided. This text is an extension of the details included in [61].

The most recent account on using higher moments was that by Cragg in

[12]. He extended the work on the moment equations to include those of the fourth

order. A problem with moment based estimators however, is stability. It is well

known that as the order of the moment increases they become progressively more

difficult to estimate and larger sample sizes will be needed to obtain a reliable

estimate. Cragg applied a minimum χ2
approach to the second, third and fourth

moments in order to obtain an efficient general moment estimator. This approach

again involves finding an estimated variance-covariance matrix. As Cragg noted,

this may be difficult as it will involve the eighth order moments. He suggested

avoiding this problem by replacing the variance-covariance matrix with some

weighting matrix. This will result in less asymptotic efficiency however. In his

simulations Cragg used a diagonal weighting matrix with elements
1
2 ,

1
15 and

1
96
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depending on whether the moment equations are based on the second, third or

fourth moments respectively. This may be deemed inappropriate as these values

correspond to the theoretical variances of the second, third and fourth powers of

a normally distributed variable with zero mean and unit variance, even though a

normal distribution will not be applicable for every structural model.

A somewhat different use of the method of moments was suggested by

Dagenais and Dagenais in [14]. They proposed a consistent instrumental variable

estimator for the errors in variables model based on higher moments. In addition,

they showed how a regression model may be tested to detect the presence of

errors in both variables. Dagenais and Dagenais illustrated their ideas through a

number of numerical simulations and showed that their estimator is superior to

the ordinary least squares estimate.

3.7. Maximum likelihood

The vast majority of the papers available on errors in variables modelling

have adopted a maximum likelihood approach to estimate the parameters. Only

a selection of the large number of papers shall be mentioned here. These papers

assumed that the pairs of observations (xi, yi) are jointly normally and identically

distributed. Lindley was one of the first authors to use maximum likelihood

estimation for the errors in variables model in [39]. Lindley commented that the

likelihood equations are not consistent, unless there is some prior information

available on the parameters. He suggested that the most convenient assumption

to make is to assume that the ratio λ is known. Estimates of all the relevant

parameters are then derived and discussed.

Kendall and Stuart again in [37] reviewed the topic of estimation in an errors

in variables model, but concentrated their efforts on the maximum likelihood

principle. They commented that the sample means, variances and covariances

form sufficient statistics for a bivariate normal distribution. As a result, the so-

lutions of the method of moment estimating equations for the unknown parame-

ters µ, α, β, σ2
x , σ

2
δ are also maximum likelihood solutions, provided that these

solutions give admissible estimates (namely, positive estimators for the variances

in the model). The conditions to obtain admissible estimates are then outlined.

Further details on these conditions, and estimating using the method of moment

estimating equations is included in [27]. More detail was given on the problem of

having five moment estimating equations, and six parameters to estimate. They

suggested various ‘cases’, each of which consist of a different assumption regarding

a subset of the parameters. Estimates for the parameters are derived for each

of these ‘cases’, and advice is given on how to construct confidence intervals.

A brief survey on cumulants, instrumental variables and grouping methods was

also included in their work.
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A disadvantage of the likelihood method in the errors in variables prob-

lem is that it is only tractable if all the distributions describing variation in the

data are assumed to be normal. In this case a unique solution is only possible if

additional assumptions are made concerning the parameters of the model, usu-

ally assumptions about the error variances. Nevertheless, maximum likelihood

estimators have certain optimal properties and it is possible to work out the

asymptotic variance-covariance matrix of the estimators. These were given for a

range of assumptions by Hood et al. in [30]. In addition, Hood et al. conducted

a simulation study in order to determine a threshold sample size to successfully

estimate their variance-covariance matrix. They concluded that this threshold

was approximately 50.

Other papers on the likelihood approach have tended to focus on a partic-

ular aspect of the problem. For example, Wong in [63] considered the likelihood

equations when the error variances were assumed to be known, and equal. This

case has attracted much attention, as if both error variances are known, the

problem is overidentified — there are four parameters to be estimated from five

estimating equations (be it likelihood equations, or moment equations). To sim-

plify the procedure, Wong used an orthogonal parameterisation in which the slope

parameter is orthogonal to the remaining parameters. Approximate confidence

intervals for the parameters, information on testing hypotheses about regarding

the slope, and the density function for the slope are also included. Prior to

this, Barnett also commented on the inherent difficulties in using the maximum

likelihood technique in [5].

Again for the structural model, Birch in [7] showed that the maximum

likelihood estimate for the slope is the same when both error variances are known,

and when the ratio of the error variances, λ is known. He also commented that the

maximum likelihood estimates provided by Madansky in [40] are inconsistent, and

as a result need to be modified. Some discussion on the admissability conditions

was also included.

A key author in this area was Barnett ([5]). His paper on the fitting of

a functional model with replications commented on the importance of errors in

variables modelling in the medical and biological areas. The paper adopted the

maximum likelihood technique for estimating the parameters, but no closed form

solution could be found. He mentioned that the maximum likelihood method

tends to run into computational problems due to the awkward nature of the

likelihood equations. Barnett also considered alternative error structures which

might be applicable to biological and medical areas.

Solari in [54] found that the maximum likelihood solution for the linear

functional model discussed by many authors was actually a saddle point, and

not a maximum. She said that although the point was purely academic, it was

still one worth making. A detailed analysis of the form of the likelihood surface
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was given, and and she concluded that a maximum likelihood solution for the

linear functional model does not exist, unless one has some prior distribution

to place on a parameter. Solari commented that this problem might appear in

other estimation problems. Detailed consideration must be given to see if the

maximum likelihood solution is indeed a maximum. Sprent considered Solari’s

work and further noted the practical implications of her findings in [56].

Copas in [11] extended the work of Solari [54]. He showed that when

‘rounding-off’ errors for the observations are considered, then the likelihood sur-

face becomes bounded. This allows for a different consideration of the likelihood

surface. An estimate for the model can be found, which is approximately maxi-

mum likelihood. In other words, a point close to the global supremum was used

instead. Copas’ solution for the slope is equivalent to using either the x on y

estimate or the y on x estimate. The y on x regression estimate is used if the line

corresponding to the geometric mean estimate lies within 45
◦

of the x-axis. The

x on y estimate is used if the geometric mean estimate lies within 45
◦
of the y-axis.

A numerical example was provided to illustrate his suggested methodology, and

the likelihood surface for this example was drawn.

Essentially, Copas introduced a modified likelihood function

L =

∏

i

Pi(xi)Qi(yi)

where Pi(x) = P
(

x− h
2 ≤ ξi < x+

h
2

)

and Qi(x) = P
(

y− h
2 ≤ βξi < y+

h
2

)

(note

that Copas’ model did not include an intercept). The value h was introduced to

allow a discrepancy when (ξi, β ξi) were recorded or measured. The saddle point

noted by Solari, according to Copas, is a direct consequence of the likelihood

function having singularities at all points within the sets

A =

{

β, σδ, σε, ξ :

∑

(xi− ξi)
2
= 0, σδ = 0

}

and

B =

{

β, σδ, σε, ξ :

∑

(yi− βξi)
2
= 0, σε = 0

}

.

Copas showed that within these sets A and B his modified likelihood function

reduces to the likelihood function for y on x regression and x on y regression

respectively. This however is to be expected as set A essentially assumes that

there is no horizontal error (δ) present and set B essentially assumes that there is

no vertical error (ε) present. In addition, Copas’ analyses assume that h is small,

which will also imply that the simple linear regression techniques such as y on x

and x on y regression are appropriate.

In summary, Copas’ method is equivalent to using y on x regression if it

appears that ξi is close to xi, and x on y regression if βξi is close to yi. The

choice of which regression to use depends on the location of the geometric mean
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regression line. Copas admitted that the y on x and x on y regression estimators

do not maximise his likelihood function L. So, as it is well known that y on x

and x on y regression are biased, and can only offer a crude approximation to the

true line, the method proposed by Copas must be questioned.

3.8. Total least squares

Total least squares is a method of estimating the parameters of a general

linear errors in variables model and was introduced by Golub and Van Loan in

[28], which is frequently cited in the computational mathematics and engineering

literature. Broadly speaking, total least squares may be viewed as an optimisation

problem with an appropriate cost function. The standard formulation of the total

least squares problem is as follows. Consider a linear measurement error model

AX ≃ B

where A = A0 +Ã and B = B0 + B̃. It is assumed that the underlying physical

relationship A0X0 = B0 exists.

In total least squares estimation, a matrix D = [AB] is constructed which

contains the measured data, and the parameter matrix X is to be estimated.

There is an assumption that there exists a true unknown value of the data D0 =

[A0B0] and a true value of the parameters X0 such that A0X0 = B0. However,

the measured data D depends on some additive error D̃ = [ÃB̃] so that D =

D0 + D̃.

The ordinary least squares method gives a solution X such that the Euclid-

ean norm ‖AX − B‖ is minimised. The total least squares technique applies

a small correction (measured by the Euclidean norm) ∆D = [∆A ∆B] to the

matrix D such that the equations (A+∆A)X = B+∆B are readily solved.

Solutions for this system of equations are obtained by computing its singular

value decomposition, and this is the precise topic of the paper [28] mentioned

earlier.

The total least squares methodology has been extended to generalised total

least squares (where the errors are allowed to be correlated), and more recently

element-wise total least squares (which deals with non-identically distributed er-

rors). For a brief review of total least squares and its related methods, see for

example [42]. A complete monograph on the topic has been written and is con-

tained in [59]. Cheng and Van Ness in [10] noted that total least squares is in its

most simple version, orthogonal regression. Hence, this methodology may not be

appropriate when there is some different information available on a parameter.
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3.9. LISREL

As well as total least squares, another method of estimation which had

its origins from computational mathematics is LISREL (which stands for Linear

Structural Relationships). LISREL is an example of a structural equation model,

and computer software to implement such a model was created by Joreskog and

Sorbom (see for example [33]). To use their notation, the LISREL model is

formulated as follows:

η = Bη + Γξ + ζ ,(3.6)

Y = Λy η + ε ,(3.7)

X = Λx ξ + δ ,(3.8)

where η is a (m×1) vector, B is a square (m×m) matrix, Γ is a (m×n) matrix,

ξ is a (n×1) vector, ζ is an (m×1) vector, Y is a (p×1) vector, Λy is a (p×m)

matrix, ε is a (p×1) vector, X is a (q×1) vector, Λx is a (q×n) matrix, and δ is a

(q×1) vector. At a first glance, the LISREL model combines two factor analysis

models, (3.7) and (3.8) into the structural setting of equation (3.6).

The linear structural model outlined in Section 2 may be fitted into a

LISREL format as follows. Take m = n = p = q = 1, B = 0, ζ = 0, Γ = β and

Λx = Λy = 1. The standard assumption of the LISREL model is to take E[ξ] =

E[η] = 0. This constrains us to take µ = α = 0 for our model in Chapter 1. The

remaining parameters to be estimated are β, σ2, σ2
δ and σ2

ε .

A LISREL model usually cannot be solved explicitly, and in this scenario

an iterative procedure to estimate the parameters is adopted. Essentially, this

involves constructing a set of estimating equations for the parameters. The usual

methodology is to set the sample variance-covariance matrix equal to the the-

oretical variance-covariance matrix. The elements of the theoretical variance-

covariance matrix are nonlinear functions of the model parameters Λx, Λy, Γ and

the variance-covariance matrices of ξ, ζ, δ and ε.

The LISREL model, (as in factor analysis), implies a particular structure

for the theoretical variance-covariance matrix. Johnson and Winchern in [31]

gave details of the structure, and stated the following identities (they took B = 0

to simplify proceedings)

E
[

Y Y T
]

= Λy

(

Γ ΦΓ
T

+ ψ
)

Λ
T
y + Θε ,

E
[

XXT
]

= ΛxΦΛ
T
x + Θδ ,

E
[

X Y T
]

= Λy Γ ΦΛ
T
x ,

where E
[

ξ ξT
]

= Φ, E
[

δ δT
]

= Θδ, E
[

ε εT
]

= Θε and E
[

ζ ζT
]

= ψ. It is assumed
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that the variables ζ, δ and ε are mutually uncorrelated. Also ζ is uncorrelated

with ξ, ε is uncorrelated with η and δ is uncorrelated with ξ.

The iteration procedure mentioned above begins with some initial param-

eter estimates, to produce the theoretical variance-covariance matrix which ap-

proximates the sample theoretical variance-covariance matrix. However, for this

estimation procedure to occur, there must be at least as many estimating equa-

tions as parameters. Indeed Johnson and Winchern state that if t is the number

of unknown parameters then the condition

t ≤ 1

2
(p+ q) (p+ q +1)

must apply to allow estimation of the parameters. For our model of Section 2,

t = 4 (β, σ2
, σ2

δ and σ2
ε ) and

1
2 (p+ q)(p+ q +1) = 3 and so we cannot use the

LISREL environment to estimate our parameters unless we assume something

further is known. This ties in with the thoughts of Madansky who stated in [40]

that

“To use standard statistical techniques of estimation to estimate β,

one needs additional information about the variance of the estimators.”

Also, comparisons may be drawn between LISREL, the method of moments and

maximum likelihood, as both of the latter methods also assume that there is some

parameter known to allow identifiability of the model.

Applying the LISREL methodology to the linear structural model of Sec-

tion 2, we get

E
[

Y Y T
]

= β2σ2
+ σ2

ε ,

E
[

XXT
]

= σ2
+ σ2

δ ,

E
[

X Y T
]

= βσ2 ,

since for our model Φ = σ2
, ψ = 0, Θδ = σ2

δ and Θε = σ2
ε . We can now equate the

theoretical variance-covariance matrix to the sample variance-covariance matrix

to construct the following three equations

σ2
+ σ2

δ =
1

n

n
∑

i=1

(xi − x̄)2 = sxx ,(3.9)

β2σ2
+ σ2

ε =
1

n

n
∑

i=1

(yi − ȳ)2 = syy ,(3.10)

βσ2
=

1

n

n
∑

i=1

(xi − x̄)(yi − ȳ) = sxy ,(3.11)

which are identical to the method of moment estimating equations (and subse-

quently the maximum likelihood estimating equations) outlined in [27].
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The first order moment equations µ= x̄ and α+βµ= ȳ are missing as the

LISREL model assumes the data are centred, so µ and α are taken as known in

the assumption E[ξ] = E[η] = 0. There are three equations (3.9), (3.10), (3.11)

and four parameters to be estimated. Hence, in order to solve these equations

explicitly we need to restrict the parameter space by assuming something known

(e.g. assume σ2
δ is known). So LISREL for our model is identical to the method

of moments, and thus maximum likelihood. As stated earlier, the method of

moments is discussed in [27].

3.10. Review papers and monographs

Over the years several authors have written review articles on errors in

variables regression. These include [35], [36], [19], [40], [43] and [3]. Riggs et al.

in [51] performed simulation exercises comparing some of the slope estimators that

have been described in the literature. There are two texts devoted entirely to the

errors in variables regression problem, Fuller in [20] and Cheng and Van Ness

with [10]. Casella and Berger in their general text [9] has an informative section

on the topic, [55] contains chapters on the problem, as do [37] and [18]. Draper

and Smith in [16] on the other hand, in their book on regression analysis, devoted

only 7 out of a total of almost 700 pages to errors in variables regression. The

problem is more frequently described in econometrics texts, for example [34].

In these texts the method of instrumental variables is often given prominence.

The text [8] described errors in variables models for non linear regression, and

Seber and Wild in [53] included a chapter on this topic.

3.11. Conclusion

The papers described in this presentation are definitive papers that dictated

the path of further research in the topic. The sporadic nature of the literature

can be seen by looking at the journals from which the papers in this presentation

came. Procedures for fitting errors in variables models have been developed in

the medical literature, economics literature and statistics literature. There are

a plethora of papers available on the linear structural model, and even more on

errors in variables in general. The list of references given in this paper are by

no means exhaustive, but it is hoped that consolidating some of the key ideas

involved in errors in variables modelling into this paper will help stimulate further

research into a problem that has existed since the 1800s, and that has interested

people in a variety of academic disciplines.
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