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Abstract:

• This paper is concerned with the estimation under squared-error loss of a normal

mean θ based on X∼ N (θ, 1) when |θ| ≤ m for a known m > 0. Nine estimators

are compared, namely the maximum likelihood estimator (mle), three dominators of

the mle obtained from Moors, from Charras and from Charras and van Eeden, two

minimax estimators from Casella and Strawderman, a Bayes estimator of Marchand

and Perron, the Pitman estimator and Bickel’s asymptotically-minimax estimator.

The comparisons are based on analytical as well as on graphical results concerning

their risk functions. In particular, we comment on their gain in accuracy from using

the restriction, as well as on their robustness with respect to misspecification of m.
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1. INTRODUCTION

The problem considered in this paper is the estimation under squared-error

loss of a normal mean θ based on X∼ N (θ, 1) when |θ| ≤ m for a known m > 0.

This estimation problem is considered by Casella and Strawderman (1981),

by Marchand and Perron (2001), by Bickel (1981) and by Gatsonis, MacGibbon

and Strawderman (1987). Casella and Strawderman show that, when 0<m≤mo

≈ 1.056742, there exists a unique minimax estimator of θ with respect to a sym-

metric two-point least-favourable prior on {−m,m}. They give an explicit ex-

pression for it and show that it dominates the maximum likelihood estimator

(mle) when m ≤ 1. They also give a class of minimax estimators for the case

where 1.4 ≤ m ≤ 1.6. These estimators are Bayes with respect to a symmetric

three-point prior on {−m, 0,m}. Bickel gives an estimator which is asymptoti-

cally minimax as m→ ∞ and Gatsonis, MacGibbon and Strawderman graphi-

cally compare these estimators and the Pitman estimator for several values of m.

Marchand and Perron consider the problem of estimating θ when X∼ Nk(θ, I)

with ‖θ‖ ≤ m and give conditions on m, k and the prior for Bayes estimators to

dominate the mle. An example of their results is that the Bayes estimator with

respect to the uniform prior on the boundary of the parameter space dominates

the mle when m ≤
√
k, generalizing the Casella–Strawderman result to k > 1.

Dominators for the mle can also be obtained from results of Charras (1979), of

Moors (1981, 1985) and of Charras and van Eeden (1991). These authors con-

sider estimation in restricted parameter spaces in a very general setting, give

conditions for inadmissibility for squared-error loss and either give methods of

constructing dominators (Moors and Charras and van Eeden) or prove the exis-

tence of dominators within a given class of estimators (Charras). Their conditions

are satisfied for the bounded-normal-mean problem and one of the purposes of

this paper is to find explicit expressions for these dominators and compare their

risk functions, analytically as well as graphically, with those of the mle, the

Casella–Strawderman minimax estimators, Bickel’s asymptotically minimax esti-

mator, the Pitman estimator and one of the Marchand–Perron Bayes estimators.

In these comparisons, questions of an estimator’s gain in accuracy obtained from

using the restriction are looked at, as well as how this gain depends on m and

how robust the estimators are with respect to misspecification of m.

One of our analytical results shows that, if and only if m ≤ 1, Moors’ dom-

inator of the mle of a bounded normal mean is the Casella–Strawderman min-

imax estimator, implying (by the Casella–Strawderman result for m ≤ 1) that

this Moors dominator of the mle is admissible when m ≤ 1. Another analytical

result we have is that the dominators in the Charras–van Eeden class are all

inadmissible. We also show, again analytically, that the estimator δo(x) ≡ 0

(which we call the “trivial estimator”) dominates the mle if and only if 0 < m ≤
m1 ≈ 0.5204372. Marchand and Perron (2001) show, as a special case of their
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results for a k ≥ 1-dimensional restricted normal mean, that (when k = 1) every

symmetric estimator dominates the mle when m ≤ mo ≈ .4837. Finally we find,

numerically, that the Marchand–Perron Bayes estimator considered by us has a

risk function which is, on the whole interval [−m,m], very close to that of one of

the Casella–Strawderman minimax estimators.

Explicit expressions for the estimators are presented in Section 2. Our nu-

merical comparisons are presented in the form of graphs and discussed in Section 3.

The proofs of the lemmas and theorems are given in Appendix A.

We know of only one other family of distributions for which Charras’s (1979)

and Moors’ (1981, 1985) dominators have been obtained and compared. These

results can be found in Perron (2003). He compares the mle with its Charras

and its Moors dominators, as well as with the Pitman estimator and the Bayes

estimator with respect to a prior proportional to
(

p(1− p)
)−1

for the case where

X∼ Bin(n, p) when p ∈ [a, 1− a] for a given a ∈ (0, 1/2). He gives an algorithm

for finding the Charras dominator.

2. THE ESTIMATORS

The problem of estimating a bounded normal mean based on X∼ N (θ, 1)

is a special case of the following problem: (X ,A) is a measurable space and

P = {Pθ, θ ∈D} is a family of probability measures on (X ,A) where D ⊂ R
k

is

a subset of the set of θ for which Pθ is such a probability measure. Further, D

is convex and closed. The problem is to find, for a given loss function, “good”

estimators of θ based on a random vector X ∈ R
n

defined on (X ,A), where δ(X)

is an estimator of θ if it satisfies Pθ

(

δ(X) ∈D
)

= 1 for all θ ∈D. Many analytical

results concerning admissibility and minimaxity for such models have, for various

loss functions, been obtained (see e.g. van Eeden (2006)).

The present section contains explicit expressions for each of the estimators

of a bounded normal mean considered in this paper. It also contains their known,

as well as our, analytical properties.

The maximum likelihood estimator

The mle of θ for our problem of estimating a bounded normal mean is given

by

δmle
(X) =











−m if X ≤ −m
X if −m < X < m

m if X ≥ m .

It is well-known that this estimator is inadmissible for our problem.
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Casella and Strawderman’s minimax estimators

Casella and Strawderman (1981) give conditions for a Bayes estimator to

be minimax for estimating a bounded normal mean based on X ∼ N (θ, 1) with

squared-error loss. They show that a two-point symmetric prior on {−m,m} is

least favourable if m ≤ m0 ≈ 1.056742, implying that the corresponding Bayes

estimator is minimax. This m0 is the solution of R(0, δcs.2
) −R(m, δcs.2

) = 0,

where δcs.2
is the Bayes estimator which is given by

δcs.2
(X) = m tanh(mX) .

The authors show that this minimax estimator dominates the mle when

m ≤ 1. They also give a class of minimax estimators for symmetric three-point

priors as follows: for a three-point prior π(0) = α and π(−m) = π(m) = (1−α)/2,

the Bayes estimator under squared-error loss is given by

(2.1) δcs.3
(X) =

(1− α) m tanh(mX)

1− α+ α exp(m2/2)/ cosh(mX)
.

Casella and Strawderman show that, if α and m satisfy

(2.2) (m2 − 1)
(

m2 − 1 + exp(m2/2)
)−1 ≤ α ≤ 2

(

2 + exp(m2/2)
)−1

,

and α is such that R(0, δcs.3
)−R(m, δcs.3

) = 0, then δcs.3
is minimax for estimating

θ when |θ| ≤ m. They find numerically that these two conditions are satisfied

when 1.4 ≤ m ≤ 1.6.

A Bayes estimator of Marchand and Perron

Marchand and Perron (2001) consider the estimation, for squared-error loss,

of θ based on X ∼ Nk(θ, I) when ‖θ‖ ≤ m for a known m > 0. The purpose of

their paper is finding dominators of the mle. One of their classes of dominators

consists of Bayes estimators with respect priors of the form π(θ) = Ke−h(‖θ‖2)
,

where K is a normalizing constant. Their Corollary 4 gives sufficient conditions

on the triple (m,h, k) for the resulting Bayes estimator to dominate the mle.

For our case where k = 1, taking m>
√
k = 1, h(θ2

) = −a θ2/2 and a the unique

solution to (see their Example 3 on the lines 4–16 of their page 1088)

(2.3)

∫ m

0
t2 e

a−1
2

t2 dt =

∫ m

0
e

a−1
2

t2 dt

assures that the first and second conditions of their Corollary 4 are satisfied.



208 Yiping Dou and Constance van Eeden

But, it shows that the third condition of Corollary 4 is not satisfied for this triple

(m,h, k) by using Corollary 4 on the authors’ page 1090 together with the fact

(see their Table 1 and the Remark 2 on their page 1088) that ∆E(p) is empty

when k = 1. So, this Bayes estimator might not dominate the mle. In order to

get some insight into this question of domination, we compare (in Section 3) this

Bayes estimator with a satisfying (2.3), with our other estimators for m = 1.5,

as well as for m = 1.8.

Marchand and Perron (2001) show that (2.3) has a unique solution and

that the corresponding Bayes estimator is given by

(2.4) δE
(X) =

X

|X|

∫ m

0
t

3
2 I1/2(t|X|) e

(a−1)t2

2 dt
∫ m

0
t

1
2 I−1/2(t|X|) e

(a−1)t2

2 dt

,

where Iν(t) is the modified Bessel function of order ν (see e.g. Robert (1990)).

The following theorem gives an alternate expression for the estimator valid

for the case when a ∈ (0, 1). The theorem also gives an equality which is equiva-

lent to, and easier to solve than, (2.3) when a ∈ (0, 1).

Theorem 2.1. When a ∈ (0, 1), an alternate expression for the estimator

is

(2.5) δE
(X) =

X

|X|
1√

1− a

∫ m
√

1−a

0
u sinh

(

u
|X|√
1− a

)

e−u2/2 du

∫ m
√

1−a

0
cosh

(

u
|X|√
1− a

)

e−u2/2 du

.

Moreover, when a ∈ (0, 1), (2.3) is equivalent to

(2.6) a

(

Φ
(

m
√

1− a
)

− 1

2

)

= m
√

1− a φ
(

m
√

1− a
)

,

where Φ(t) and φ(t) are the standard normal distribution function and density

function.

Moors’ dominating estimator of the mle

Moors (1981, 1985) considers the problem described in the beginning of

this section and gives sufficient conditions for “boundary estimators” to be inad-

missible for squared-error loss. Here, a boundary estimator is an estimator which

takes values on or near the boundary of D with positive probability for some

θ ∈ D. He assumes that the problem is invariant with respect to a finite group
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G= (g1, ..., gp) of measure preserving transformations from X to X and that the

induced group G̃ is commutative and satisfies

g̃(ad1 + bd2) = ag̃(d1) + bg̃(d2) for all d1, d2 ∈ D, all g̃ ∈ G̃ .

He then constructs random, closed, convex subsets DX of D with the prop-

erty that an estimator δ for which Pθ

(

δ(X) /∈DX

)

> 0 for some θ ∈ D is inad-

missible. These sets DX are defined as follows. Let pθ be the density of Pθ with

respect to a σ-finite measure ν defined on (X ,A) and let

α
(

X, ḡj(θ)
)

=
pḡj(θ)(X)

S(X; θ)
, j = 1, ..., p ,

where S(X; θ) =
∑p

j=1 pḡj(θ)(X) > 0. Further, he defines

hX(θ) =















p
∑

j=1

α
(

X, ḡj(θ)
)

ḡj(θ) when S(X; θ) > 0

θ when S(X; θ) = 0 .

ThenDX is the convex closure of the range of hX(θ) for θ ∈D and boundary

estimators δ(X), i.e. estimators δ(X) for which Pθ

(

δ(X) /∈DX

)

> 0 for some

θ ∈D, are inadmissible and are dominated by their projection unto D.

For the problem of estimating a bounded normal mean under squared-error

loss, Moors’ conditions are satisfied with p= 2, g1(x) = x and g2(x) = −x which

gives hX(θ) = θ tanh(θX), because pθ(x) = exp
(

−(x−θ)2/2
)

/
√

2π. So the subset

DX is given by

DX =
(

−m tanh(m|X|), m tanh(m|X|)
)

,

which implies by Moors that any estimator δ for which

Pθ

(

δ(X) /∈
(

−m tanh(m|X|), m tanh(m|X|)
)

> 0 for some θ ∈D

is inadmissible and is dominated by its projection unto D. Hence, Moors’ domi-

nator of the mle is given by

(2.7) δmr
(X) =











−m tanh(m|X|) if X ≤ −m tanh(m|X|)
X if −m tanh(m|X|) <X < m tanh(m|X|)
m tanh(m|X|) if X ≥ m tanh(m|X|) .

The following theorem shows that, for m≤ 1, Moors’ dominating estimator

of the mle is Casella and Strawderman’s minimax estimator. We also obtain there

a more explicit expression for this dominator for the case where m > 1. The proof

of the theorem is given in Appendix A.
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Theorem 2.2. Moors’ dominator of the mle can also be written as

(i) if 0 < m ≤ 1 then δmr
(X) = m tanh(mX);

(ii) if m > 1, then

δmr
(X) =

{

m tanh(mX) if X ≥ ξ(m) or X ≤ −ξ(m)

X if − ξ(m) <X < ξ(m) ,

where ξ(m), r(m) < ξ(m) < m, is the unique root of u(x) = x−
m tanh(mx) = 0 for x > 0 and r(m) =

1
m ln

[

m+
√
m2 − 1

]

.

Charras’s and Charras and van Eeden’s dominators of the mle

Charras (1979) considers the problem as described in the beginning of this

section. He gives, for squared-error loss, conditions for boundary estimators to be

non-Bayes as well as conditions for them to be inadmissible, where a boundary

estimator is, for him, an estimator δ for which Pθ

(

δ(X) ∈ B
)

> 0 for some θ ∈D
and B is the boundary of D. For the case where k = 1 and θ ∈ [a, b] for known

−∞ < a < b <∞, he gives conditions for the existence of classes of dominators

of his boundary estimators and ways to construct them.

The inadmissibility results of Charras (1979) are published in Charras and

van Eeden (1991), but his dominators are only mentioned there. Instead, Char-

ras and van Eeden study a different class of dominators (proposed by a referee

of this Charras and van Eeden paper) of Charras’ boundary estimators. The

authors construct, for squared-error loss, a class of dominators δcve
for boundary

estimators δ(X) of θ when θ ∈ [a, b] with −∞ < a < b <∞, where they suppose

that these boundary estimators δ satisfy

Pθ

(

δ(X) = a
)

> 0

Pθ

(

δ(X) = b
)

> 0

}

for all θ ∈ [a, b] .

They further suppose that, for each θo ∈ D,

(2.8) lim
θ→θo

∫

X
|pθ − pθo

| dν = 0 ,

where pθ is the density of Pθ with respect to the σ-finite measure ν.

The authors then show that there exists estimators of the form

(2.9) δcve
(X) =











a+ ε1 if δ(X) ≤ a

δ(X) if a < δ(X) < b

b− ε2 if δ(X) ≥ b

where ε1 > 0, ε2 > 0 and ε1 + ε2 ≤ b− a, which dominate δ.
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This Charras–van Eeden result with a = −m and b = m clearly applies to

our problem of dominating the mle of a bounded normal mean, where because

of the symmetry of the problem, one can take 0 < ε1 = ε2 = ε ≤ m. This gives

a class of dominators of the mle of a bounded normal mean for squared-error

loss and using the results of Charras and van Eeden (1991) one finds that ε ∈
(0, εo], where εo = min

(

m
(

8Φ(−2m)/(1 + 2φ(−2m))
)

, m
)

, gives a dominator of

the mle. However, each of these dominators is inadmissible. This follows from

Brown (1986)’s necessary condition for admissibility for squared-error loss in the

estimation of the mean of an exponential-family distribution. He shows that an

admissible estimator has to be non-decreasing and our estimator δcve
(X) is clearly

not non-decreasing, while the N (θ, 1) is an exponential-family distribution. This

inadmissibility result is summarized in the following theorem:

Theorem 2.3. Let X∼ N (θ, 1) with |θ| ≤ m for a known positive m.

Then the Charras–van Eeden dominators (2.9) of the mle are inadmissible for

squared-error loss.

We have not been able to find dominators for these inadmissible dominators

and so will not consider them any further in this paper.

We now present Charras’s (1979) method of obtaining dominators for his

boundary estimators and use it to find dominators of the mle in the bounded-

normal-mean problem.

Let δ be a Charras boundary estimator, then Charras considers the follow-

ing class of estimators

(2.10) δt
(X) =











a(t) if δ(X) ≤ a(t)

δ(X) if a(t) < δ(X) < b(t)

b(t) if δ(X) ≥ b(t) ,

where a(t) and b(t), t ∈ [0, 1], take values in [a, b] with a(0) = a, b(0) = b,

a(1) = b(1), a(t) is non-decreasing and b(t) is non-increasing. He then gives

sufficient conditions on the functions a(t) and b(t), on the distribution of X and

of δ(X) and on the loss function, for δt
to dominate δ. These conditions are

given in Appendix A. Here we give this domination result for the special case of

the bounded normal mean when a(t) = −m(1− t) and b(t) =m(1− t), t ∈ [0, 1].

Obviously, Charras’s conditions are satisfied in the bounded-normal-mean case

and his dominator of the mle can then be written as follows:

δch
(X) =











−m(1− t) if X ≤ −m(1− t)

X if −m(1− t) < X < m(1− t)

m(1− t) if X ≥ m(1− t) .
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For simplicity of the proof we let ε = mt ∈ [0,m] and rewrite this dominator as

follows:

δch
(X) =











−(m− ε) if X ≤ −(m− ε)

X if −(m− ε) < X < m− ε

m− ε if X ≥ m− ε .

Then the following theorem holds:

Theorem 2.4. LetX∼N (θ,1) with |θ| ≤m for a known m> 0. Then, for

squared-error loss, {δch
: 0< ε≤ εm} is a class of dominating estimators of the mle,

where εm is the unique root to ψm(x) = 0, with ψm(x) = g(2m− x) + g(x) − 2x

and g(x) = 2xΦ(−x).

The proof of this theorem is given in Appendix A. It is Charras’s proof

applied to our special case.

The trivial estimator

For the estimator δo(X) ≡ 0 the following theorem holds. Its proof is in

Appendix A.

Theorem 2.5. Let m1 be the unique positive solution to u(2m) + 1/2−
m2

= 0, where u(x) = x2
Φ(−x)−Φ(−x)− xφ(x). Then, for squared-error loss,

the estimator δo dominates the mle if and only if 0 < m ≤ m1 ≈ 0.5204372.

A related result can be found in Marchand and Perron (2001). They present

dominators of the mle of θ when X∼ Nk(θ, I) with k ≥ 1, ‖θ‖ ≤ m and squared-

error loss. One of their results says that, when k = 1, any symmetric estimator

dominates the mle when m ≤ mo ≈ .4837.

The Pitman estimator

The Pitman estimator of θ for our problem is defined as the Bayes estimator

with respect to a uniform prior on [−m,m] and squared-error loss. This Bayes

estimator is the posterior mean of θ given X. Since the marginal density of X is

given by

p(X) =

∫ m

−m
pθ(X)π(θ) dθ =

1

2m

[

Φ(m−X) − Φ(−m−X)
]

,
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the posterior density of θ given X is given by

p(θ|X) =
pθ(X)π(θ)

p(X)

=
1

Φ(m−X) − Φ(−m−X)

1√
2π

exp

{

−(θ−X)
2

2

}

1{|θ|≤m} .

Hence the Pitman estimator of θ is given by

δp
(X) = E(θ|X) = X +

∫ m−X

−m−X
z φ(z) dz

Φ(m−X) − Φ(−m−X)

= X − φ(m−X) − φ(m+X)

Φ(m−X) − Φ(−m−X)
.

Bickel’s asymptotically minimax estimator

Bickel (1981) constructs, for squared-error loss, a class of asymptotically

minimax estimators for estimating a bounded normal mean. He constructs this

class in the following way:

Let, for |x| < 1, ψ̄ = π tan(
π
2 x) and let

ψm(x) =







ψ̄(x) if |x| ≤ 1− a2
m

(

ψ̄(1− a2
m) + ψ̄′

(1− a2
m)
(

x2 − (1− a2
m)
)

)

sgnx if |x| > 1− a2
m .

He then shows that an asymptotically minimax estimator δb
is given by

δb
(X) = X − 1

n
ψm

(

X

n

)

,

where n = m(1− am)
−1

, am < 1 and mam → ∞ as m→ ∞. Bickel (1981) sug-

gests taking am = m
1
8 which gives the following expression for ψm(x):























π tan

(

π

2
x

)

if |x| ≤ g(m)

[

π tan

(

π

2
g(m)

)

+
π2

2
sec

2

(

π

2
g(m)

(

x− g(m)
)

)

]

sgnx if |x| > g(m) ,

where g(m) = 1 −m−1/4
.

Then Bickel’s asymptotically minimax estimator of θ is given by

δb
(X) = X − 1−m

1
8

m
ψm

(

(1−m− 1
8 )X

m

)

and the minimax value is given by 1 − π2

m2 + o(m2
) as m→ ∞.
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3. NUMERICAL COMPARISONS

Appendix B contains graphs of the risk functions for squared-error loss of

the estimators δmle
, δcs.2

, δcs.3
, δE

, δmr
, δch

, δp
and δb

for several values of m. For

the estimator δcs.3
the value α = .341 (see (2.1)) is used, while for δch

, ε = εm
(see Theorem 2.4) is used. For the estimator δE

a value of m> 1 is needed.

Because of their symmetries, the risk functions are plotted only on the

positive part of the parameter space. Moreover to check the robustness of the

estimators with respect to misspecification of m, the risk functions are plotted

on a somewhat wider interval, namely the interval [0, 5m/4].

Figure 1 gives the risk functions for m = .5, .8, 1.0 and 1.5, while Figure 2

gives them for m = 1.8, 3, 5 and 10. The values of εm for these m (needed for

the estimator δch
) are given in Table 1, while the values of a needed for δE

are

given in Table 2.

Table 1: Values of εm for δch
.

m .5 .8 1.0 1.5 1.8 ≥ 3

εm .276 .195 .101 .008 .001 .000

Table 2: Values of a for δE
.

m 1.5 1.8 3 5 10

a 2.02 0.82 0.03 1.48×10
−5

6.91×10
−17

From the graphs one sees that

1. For m = .5, .8 and 1, δmr
has the same risk function as Casella and

Strawderman’s minimax estimator δcs.2
. This is in accordance with

our Theorem 2.2 which says that, for m ≤ 1, these estimators are the

same estimator.

2. Our Theorem 2.4 says that δch
dominates δmle

. This is clearly visible

in the graphs for m = .5, .8 and 1. For larger m there is little differ-

ence between the risk functions of these two estimators and, in fact,

little difference between the risk functions of δmle
, δmr

and δch
, veri-

fying the intuitively obvious result that, as m→ ∞, the differences
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between these estimators converge almost surely to zero. This asymp-

totic result also holds for the estimators δmle
, δp

and δb
, but for these

estimators it takes a larger m for the risk functions to be close.

3. From the graph for m= 1.5 it is seen that, risk-functionwise, there is

very little difference between δE
and δcs.3

. But δE
is computationally

more complicated — two numerical integrations are needed to find a

and two more to compute the estimator, while δcs.3
is easily com-

putable from (2.1). For m = 1.8, no minimax estimator is available,

but for this value ofm, δE
behaves relative to δP

, as it does form = 1.5

— better for the smaller values of |θ|, worse for values of |θ| closer to m

with a fairly constant risk function. But the computational problems

with this estimator relative to the others might, for a user, well be the

determining factor concerning the question of which estimator to use.

4. In each of the graphs form≥ 3, each of δmle
, δmr

, δch
and δp

are close to

being minimax with a minimax value ≈ 1. This is another example of

the above-mentioned asymptotic result because, for the unrestricted

case, the minimax value equals 1. Further, from the graphs for m ≤ 3

one sees that, for these estimators, the maximum value of the risk

function increases with m.

5. If one does not use the information that |θ| ≤ m, the best estimator

of θ is X. Its risk function (for squared-error loss) is constant and

equal to 1. From the graphs one can observe the gain in accuracy

with which one can estimate θ when the restriction on θ is used in

the construction of the estimator. One also sees that this gain (of

course) decreases as m increases. For m= .5, e.g., one can get a min-

imum gain (over Θ) of about 80.1%, for m = .8 this is about 62.6%,

for m= 1 about 55.0%, for m = 1.5 about 42.4%, for m = 1.8 about

28.7%, and for m = 3 about 3.9%. For the other values of m, this

minimum gain is about 0 for all the restricted estimators except the

Bickle’s asymptotic estimator δb
. The risk function of Bickle’s estima-

tor is, for large m, parallel to the one for the unrestricted estimator,

X, under the squared-error loss. For m= 5, the minimum gain is

about 39.5% and for m= 10 about 9.9% for δb
. So, it is “worth the

trouble” to use the information that |θ| ≤ m at least for values of m

that are not too large. Of course this increase in accuracy also occurs

in other restricted-parameter-space models, but there are not many

cases where numerical results about the gain in accuracy have been

obtained (see e.g. van Eeden (2006), Chapter 7, which also contains

robustness results for models other than the present one).

6. The graph for m= .5 gives an example of our Theorem 2.5, where it is

shown that, for m ≤ m1 ≈ 0.5204372, the trivial estimator dominates

δmle
: in the graph the risk function of δmle

is, on the whole interval

[−m,m], > than θ2
.
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7. In each of the graphs we see that δp
dominates each of the other

estimators, except δb
, on the middle part of the parameter space, but

not near the endpoints.

8. For the estimator δb
, the graph of its risk function is given for m= 5

and for m= 10. For those m, it dominates all the other estimators on

the middle part of the parameter space, but not near the endpoints.

9. Graphs of the risk functions of δmle
, δcs.2

, δp
and δcs.3

for m = .5, .75,

1.5 and 2 can be found in Gatsonis, MacGibbon and Strawderman

(1987).

10. The robustness of the domination results with respect to miss-specifi-

cation of the parameter space can be observed by studying the be-

haviour of the risk functions for values of θ in the neighbourhood of

the value of m used to construct the estimators. For δmle
, δmr

and δch
,

for instance, one sees that, for those m for which the risk functions

are not too close (i.e. for m = .5, .8 and 1), the domination results

hold on a small interval outside the parameter space.

11. The graphs for m= .5, .8 and1 seem to indicate that δmr
dominates δch

.

We do not know whether this holds in general.

APPENDIX

A. PROOFS OF THE RESULTS IN SECTION 2

In this section proofs are given for the results in Section 2.

A.1. Proofs for the Marchand–Perron estimator

Proof of Theorem 2.1: From Berry (1990) we have, for ν ≥ 0,

Iν(t) =

(

t

2

)ν ∞
∑

k=0

(

1
2 t
)2k

k! Γ(ν + k + 1)

and

(A.1) I1/2(t) =

√

2t

π

sinh(t)

t
.
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Further,

I3/2(t) = I−1/2(t)−
1

t
I1/2(t) and I3/2(t) = −

√

2t

π

sinh(t)

t2
+

√

2t

π

cosh(t)

t

give

(A.2) I−1/2(t) = I3/2(t) +
1

t
I1/2(t) =

√

2t

π

cosh(t)

t
.

Then, using (A.1) and (A.2) and putting, when a ∈ (0, 1), t = u(
√

1− a)−1
in

(2.4), gives (2.5).

For the proof of (2.6), note that, when a ∈ (0, 1), the right-hand side of

(2.3) can be written as

(A.3)

√

2π

1− a

{

Φ
(

m
√

1 − a
)

− 1

2

}

and the left-hand side of (2.3) as

(A.4)

√
2π

(1− a)3/2

{

Φ
(

m
√

1− a
)

− 1

2
−m

√
1− a φ

(

m
√

1− a
)

}

.

The result then follows from (A.3) and (A.4).

A.2. Proofs for Moors’ dominator δmr

The following lemma is needed for the proof of Theorem 2.2.

Lemma A.1. Let u(x) = x−m tanh(mx) and v(x) = x+m tanh(mx).

Then

(a) For 0 < m ≤ 1, u(x) and v(x) are increasing in x and have the same

sign as x.

(b) For m > 1, let r(m) =
1
m ln

[

m+
√
m2 − 1

]

.

Then:

(i) u(x) increases in x for x > r(m) and for x <−r(m). It decreases

for −r(m) < x < r(m).

(ii) 0 < r(m) < m.

(iii) u
(

r(m)
)

< 0.

(iv) There exists a unique ξ(m), r(m) < ξ(m) < m such that

u
(

−ξ(m)
)

= u
(

ξ(m)
)

= 0.
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Proof:

(a) For 0 < m ≤ 1, since u′(x) = 1−m2
sech

2
(mx), we have

u′(x)> 0 ⇔ exp(2mx)− 2m exp(mx) +1 = (emx−m)
2
+1−m2 > 0 .

Consequently, when 0<m< 1, u′(x)> 0 for x ∈ (−∞,∞) and, when

m = 1, u′(x) > 0 for x 6= 0 and u′(0) = 0. So, u(x) increases in x

and u(x) has the same sign as x because u(0) = 0. Since v′(x) =

1 + m2
sech

2
(mx) > 0 for x ∈ (−∞,∞), we have v(x) increases in x

and v(x) has the same sign as x because v(0) = 0.

(b) (i) Since u′(x) = 1 −m2
sech

2
(mx), we have

u′(x) > 0 ⇔
∣

∣exp(mx) −m
∣

∣ >
√

m2 −1

⇔
{

x > r(m) > 0 if exp(mx) > m

x < −r(m) < 0 if exp(mx) < m .

So, u(x) increases in x when x > r(m) and when x < −r(m).

It decreases in x when −r(m) < x < r(m).

(ii) Let p(x) = x− ln
[

x+
√
x2−1

]

/x for x>1. Then p(m) =m−r(m)

for m> 1. Further, note that

(A.5) p(x) =
1

x
ln

(

exp(x2
)

x+
√
x2 −1

)

>
1

x
ln

(

exp(x2
)

2x

)

> 0 .

Since x > 1, x+
√
x2 −1 < 2x. So the first inequality in (A.5)

holds. Let q(x) = exp(x2
) − 2x. Because q(1) = e− 2 > 0 and

q′(x) = 2
(

x exp(x2
) −1

)

> 0 for x > 1, we have q(x)> 0, which

shows that the second inequality in (A.5) also holds for x > 1.

Hence, p(x) > 0 for x > 1 and so 0 < r(m) < m for m > 1.

(iii) Since

u
(

r(m)
)

= r(m) −m tanh
(

mr(m)
)

=
1

m
ln
(

m+

√

m2 −1
)

−
√

m2 −1 ,

we have

u
(

r(m)
)

< 0 ⇔ m
√

m2 −1 > ln
(

m+

√

m2 −1
)

⇔ f(m) > 0 ,

where f(x) = x
√
x2 −1 − ln

(

x+
√
x2 −1

)

for x > 1. Since

f(1) = 0 and

f ′(x) =

√

x2 −1 +
x2

√
x2 −1

− 1

x+
√
x2 −1

(

1 +
x√
x2 −1

)

=

√

x2 −1 +
x2

√
x2 −1

− 1√
x2 −1

= 2

√

x2 −1 > 0 ,
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for x > 1, we have f(x) increases in x and f(x) > f(1) = 0 for

x > 1. That is, u
(

r(m)
)

< 0 for m > 1.

(iv) By (i), u(x) increases for x > r(m) and for x < −r(m). It de-

creases for −r(m) < x < r(m). Since u
(

r(m)
)

< 0 (by (iii)) and

u(m)> 0 by the continuity and monotonicity of u(x), there ex-

ists a unique ξ(m), r(m)< ξ(m)<m, such that u
(

ξ(m)
)

= 0.

Proof of Theorem 2.2:

(i) When 0 < m ≤ 1, it follows from Lemma A.1 that

x ≤ −m tanh
(

m|x|
)

⇔ x ≤ 0

and

x ≥ m tanh
(

m|x|
)

⇔ x ≥ 0

and this shows that, when m ≤ 1, we can rewrite (2.7) as δmr
(x) =

m tanh(mx) for x ∈ (−∞,∞).

(ii) When m > 1, let u(x) = x−m tanh(mx). By Lemma A.1, u(x) in-

creases in x when x > r(m) and when x < −r(m). It decreases in x

when −r(m)<x< r(m). Moreover, ξ(m) is the unique root of u(x) = 0

in [r(m),m]. Hence, u(0) = u
(

−ξ(m)
)

= u
(

ξ(m)
)

= 0, u(x)> 0 when

−ξ(m) < x < 0 and when x > ξ(m) and u(x) < 0 when x < −ξ(m)

and when 0 < x < ξ(m). So, when m > 1,

|x| < m tanh
(

m|x|
)

when |x| < ξ(m)

and

|x| > m tanh
(

m|x|
)

when |x| > ξ(m) .

This proves the result for the case where m > 1.

A.3. Proofs for the Charras dominator δch

Charras (1979) (see also Charras and van Eeden (1991)) gives conditions

for estimators of the form (2.10) to dominate a boundary estimator δ, i.e. an

estimator δ satisfying

(A.6)

Pθ

(

δ(X) = a
)

> 0

Pθ

(

δ(X) = b
)

> 0

}

for all θ ∈ [a, b] .

Charras’ conditions on a(t) and b(t) for (2.10) to dominate δ are

(a) a(t) and b(t) are continuous.
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(b) a(t) and b(t) have continuous right derivatives which are bounded in

absolute value on [0, 1].

(c) a(0) = a, b(0) = b and a(1) = b(1).

(d) For all t ∈ [0, 1], a′+(t) =
da(t)

dt+
> 0 and b′+ < 0.

His conditions on the distributions of X and δ(X) are

(1) Condition (2.8) is satisfied.

(2) The loss function L(θ, d) has, for all θ in a neighbourhood N of [a, b],

a partial derivative ∂L/∂d with respect to d which is, on N×N , con-

tinuous in d and in θ.

Moreover,

∂L(θ, d)

∂d











< 0 when d < θ

= 0 when d = θ

> 0 when d > θ .

(3) The estimator δ to be dominated satisfies (A.6).

(4) The estimator δ has, for each θ ∈ [a, b], a Lebesgue density on (a, b),

i.e. there exists a function f(y, θ) such that, for all (α, β) with a < α <

β < b,

Pθ

(

α < δ(X)< β
)

=

∫ β

α
f(y, θ) dy .

Moreover, that density is bounded on (a, b)×[a, b].

Clearly, these Charras conditions are satisfied for our bounded-normal-

mean problem.

Remark. Charras also has results for the case where δ has a discrete

distribution.

Our proof of Theorem 2.4 is a special case of Charras’ proof for his general

case and we need the following lemmas A.2, A.3 and A.4 for our proof. The

proofs of the lemmas A.2 and A.3 are straightforward and omitted.

Lemma A.2. Let u(x) = x2
Φ(−x) − Φ(−x) − xφ(x). Then:

(i) The risk function of δmle is given by

R(θ, δmle
) = 1 + u(m+ θ) + u(m− θ) .(A.7)

(ii) The risk function of δch is given by

R(θ, δch
) = 1 + u(m− ε+ θ) + u(m− ε− θ) .(A.8)
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Lemma A.3. Let g(x) = u′(x) = 2xΦ(−x). Then g′(x) = 2
(

Φ(−x)−xφ(x)
)

,

g′′(x) = 2(x2 − 2)φ(x) and the following properties of these functions hold:

(i) g′′(x) ≥ 0 if and only if |x| ≥
√

2 and g′′(x) → 0 as x→ ±∞.

(ii) g′(x) increases in x if and only if |x|>
√

2 ; g′(x) attains its maximum

at x=−
√

2, its minimum at x=
√

2 and g′(0) = 1. There is a unique

root η0 of g′(x) = 0, η0 ∈ (0,
√

2), g′(x) → 2 as x→−∞ and g′(x) → 0

as x→ ∞.

(iii) g(x) has the same sign as x for x ∈ (−∞,∞); g(x) increases in x if

x < η0 and decreases otherwise; g(x) attains its maximum at x = η0

and the unique root of g(x) = 0 is x = 0; g(x) → −∞ as x→ −∞
and g(x) → 0 as x→ ∞.

Lemma A.4. Let h(x, θ) = g(x+ θ) + g(x− θ), where (see the lemmas

A.2 and A.3) g(x) = u′(x) = 2xΦ(−x) and u(x) = x2
Φ(−x) − φ(−x) − xφ(x).

Then

(i) For fixed ε ∈ (0,m)

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m) = g(2m− ε) + g(ε) − 2 ε .

(ii) Let ψm(x) = g(2m− x) + g(x) − 2x for x ∈ [0,m]. Then ψ′
m(x)< 0,

ψm(0)> 0 and ψm(m)< 0, so there exists a unique root εm ∈ (0,m)

of ψm(x) = 0 with ψm(x) > 0 for 0 ≤ x < εm and ψm(x) < 0 for

εm < x ≤ m.

Proof:

(i) Consider

∂

∂θ
h(m− ε, θ) = g′(m− ε+ θ) − g′(m− ε− θ) .

For θ ∈ (m− ε,m] we have m− ε+ θ > 0 and m− ε− θ < 0. So (see

Lemma A.3) g′(m− ε+ θ) < g′(0) = 1 and g′(m− ε− θ) > g′(0) = 1.

Hence g′(m− ε+ θ) − g′(m− ε− θ) < 0 and so
∂
∂θh(m − ε, θ) < 0.

In other words, h(m− ε, θ) decreases as θ increases in (m− ε,m],

which implies that

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m) .

(ii) Note that h(m−ε,m) = g(2m−ε)+ g(ε)−2ε = ψm(ε). Since ψ′
m(x)=

−2−g′(2m−x)+g′(x), with (see Lemma A.3) g′(2m−x)>g′(
√

2)>−1

and g′(x)< 1, we have ψ′
m(x)< 0 for x ∈ [0,m].
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Proof of Theorem 2.4: First of all it is clear that, for all ε ∈ (0,m], δch

dominates δmle
on [−m+ ε,m− ε]. Further, by symmetry, it is sufficient to look

at the behaviour of the risk functions on (m− ε,m].

Let

∆(θ, ε) = R(θ, δmle
) −R(θ, δch

) ,

then, by Lemma A.2,

∂

∂ε
∆(θ, ε) = − ∂

∂ε

[

u(m− ε+ θ) + u(m− ε− θ)
]

= u′(m− ε+ θ) + u′(m− ε− θ)

= g(m− ε+ θ) + g(m− ε− θ)

= h(m− ε, θ) ,

where h(x, θ) and g(x) are defined in Lemma A.4.

Then, by Lemma A.4 (i), we have

min
θ∈(m−ε,m]

h(m− ε, θ) = h(m− ε,m) = ψ(ε) > 0 ,

for ε ∈ (0, εm), where εm is given by (ii) in Lemma A.4, implying that, for

0 ≤ ε ≤ εm,

∂

∂ε
∆(θ, ε) ≥ h(m− ε,m) = ψ(ε) ≥ 0 .

But, ∆(m− ε, θ) > 0 for all ε ∈ (0,m], which proves the theorem.

A.4. Proof of Theorem 2.5

By Lemma A.2

∆o(θ,m) = R(θ, δmle
) −R(θ, δo) = u(m+ θ) + u(m− θ) + 1 − θ2 .

So, it needs to be shown that u(2m)+1/2−m2
= 0 has a unique positive

root m1 and that

u(m+ θ) + u(m− θ) + 1 − θ2

{≥ 0 for all θ ∈ [0,m]

> 0 for some θ ∈ [0,m]

if and only if 0 < m < m1.

First note that (see Lemma A.3)

∆o(0,m) = 2u(m) + 1 > 0 for m > 0 .
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Further, with g(x) = u′(x) = 2xΦ(−x),

∂

∂θ
∆o(θ,m) = g(m+ θ) − g(m− θ) − 2 θ

and

∂2

∂θ2
∆o(θ,m) = g′(m+ θ) + g′(m− θ) − 2 ,

so that
∂

∂θ
∆o(θ,m)

∣

∣

θ=0
= 0 for all m > 0

and (see Lemma A.3)

∂2

∂θ2
∆o(θ,m) < 0 for all 0 ≤ θ ≤ m, m > 0 ,

implying that ∆o(θ,m) is, for each m > 0, decreasing in θ ∈ [0,m].

A necessary and sufficient condition for δo to dominate δmle
for a given

m > 0 is therefore that ∆o(m,m) ≥ 0. But

∆o(m,m) = u(2m) + u(0) + 1 −m2
= u(2m) + 1/2 −m2

and this function has the following properties:

(1) ∆o(0, 0) = u(0) + 1/2 = 0;

(2)
d

dm
∆o(m,m) = 2

(

g(2m)−m
)

= 2m
(

4Φ(−2m)− 1
)

.

So

d

dm
∆o(m,m)







>
=

<







0 ⇐⇒ m







<
=

>







1

2
Φ
−1

(

3

4

)

.

Further, ∆o(
√

2/2,
√

2/2) = u(
√

2)< 0 and thus there exists a unique m1> 0

with

∆o(m1,m1) = 0 and ∆o(m,m) > 0 for 1<m<m1 ,

which, together with the fact that ∆o(θ,m) is decreasing in θ for θ ∈ [0,m],

proves the result. Numerically we found m1 ≈ 0.5204372.
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B. GRAPHS FOR SECTION 3
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Figure 1: Risk functions of various estimators as a function of θ
for m = 0.5, 0.8, 1.0 and 1.5.
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Figure 2: Risk functions of various estimators as a function of θ
for m = 1.8, 3, 5 and 10.
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Lúısa Canto e Castro

– CEAUL and FCUL, University of Lisbon, Portugal

luisa.loura@fc.ul.pt

Received: February 2009 Revised: October 2009 Accepted: October 2009

Abstract:

• In large-scale systems the study of the exact reliability function can be an intricate

problem. In these cases it is better to admit that the number of system components

goes to infinity so as to find asymptotic models that give a good interpretation of the

reliability. In this paper we will use some results of extreme value theory to obtain the

asymptotic distribution of the reliability of a regular and homogeneous series-parallel

system.

Key-Words:

• reliability; series-parallel systems; extreme value theory; domains of atraction.

AMS Subject Classification:

• 60K10, 60G70.



228 Paula Reis and Lúısa Canto e Castro
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1. INTRODUCTION

When we study the reliability of some technological systems, we frequently

find very complex structures due to large numbers of system components and the

way the operating process uses such components. Indeed, there are situations

that cannot be modelled as a simple parallel (or series) system and are best

described as a series-parallel or parallel-series system. Examples of large systems

with complex structures arise in transport networks of gas, oil, water and other

fluids; also on telecommunication and electrical energy distribution networks and

on charge and discharge networks.

The asymptotic theory of extremes, established by Gnedenko ([5]) in 1943,

immediately leads to the identification of limit models for the reliability of sys-

tems with a large number of components in series or in parallel. Posterior results,

such as those by Smirnov ([8]), Chernoff and Teicher ([3]) and Kolowrocki ([6]

and [7]), have dealt with the same problem for homogeneous series-parallel (or

parallel-series) systems. In turn, our approach will use the characterization of

domains of attraction for minima for the known generalized extreme value distri-

butions, as developed by Balkema and de Haan ([1]). In this initial work, we will

restrict ourselves identifying limit laws in regular and homogeneous series-parallel

systems, whenever the lifetime distribution function of each component belongs

to some domain of attraction for minima.

1.1. Some basic notions of extreme value theory

Given a sequence of independent and identically distributed (i.i.d.) random

variables, {Xi}, i ≥ 1, with distribution function F , the random variable Mn =

max(X1, X2, ..., Xn), with n ≥ 1, has a known distribution function, given by

FMn
(x) =

[

F (x)
]n

.

If there exists a pair of sequences (an, bn) where an > 0 and bn∈R ,∀n∈N,

and a nondegenerate distribution function G, such that, for all x where G is

continuous,

(1.1) P
[

Mn ≤ anx + bn

]

=
[

F (anx + bn)
]n −→

n→∞
G(x) ,

then G must be a Gumbel, a Fréchet or a Weibull distribution, whose standard

forms are

Gumbel: Λ(x) = exp(−e−x
), x ∈ R

Fréchet: Φα(x) = exp(−x−α
), α > 0, x ≥ 0

Weibull: Ψα(x) = exp
(

−(−x)
−α
)

, α < 0, x ≤ 0 .
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These distributions can be represented uniquely in a parametric form, called the

von Mises–Jenkinson form or generalized extreme value distribution (GEV),

(1.2) Gγ(x) =

{

exp
(

−(1 + γx)
−1/γ

)

, 1 + γx ≥ 0, γ 6= 0

exp(−e−x
), x ∈ R, γ = 0 .

It is easy to see that

Gγ(x) =











Λ(x), γ = 0

Φ1/γ(1 + γx), γ > 0

Ψ−1/γ

(

−(1 + γx)
)

, γ < 0 .

Whenever the sequences an and bn exist on the above described conditions, or in

other words, verifying (1.1), we will say that the distribution function F belongs

to or is in the domain of attraction of G (for maxima) and we write F ∈ D(G).

The characterization of domains of attraction is closely related to the study

of regular variation. Our approach about the asymptotic behaviour of the distri-

bution function or of the reliability function for a series-parallel system, lies in

known results which involve regular varying functions. We say that a real valued

function, R, is regularly varying, with index ρ, at infinity and we write, R ∈ Rρ,

if it is positive and measurable in [a,+∞[, for some a > 0 and if ∀x > 0,

(1.3) lim
t→∞

R(tx)

R(t)
= xρ ,

for some ρ ∈ R. When ρ = 0, R is called a slowly varying function.

Gnedenko (1943), Balkema and de Haan (1972) established a relation be-

tween regular variation and the characterization of domains of attraction for

Weibull and Fréchet laws, described in the following Theorem:

Theorem 1.1.

(1) A distribution function F is in the domain of attraction of a Weibull

law, Ψα, iff the right end point1 xF <∞ and 1−F
(

xF − 1
x

)

∈ R−α,

when x → ∞. In this case, taking δn such that n
(

1−F (δn)
)

−→
n→∞

1,

we will have

Fn
(

xF
+ (xF − δn)x

)

−→ Ψα(x) , x < 0 .

(2) A distribution function F is in the domain of attraction of a Fréchet

law, Φα, iff 1−F ∈ R−α. In this case

Fn
(anx) −→ Φα(x) , x > 0 ,

with an such that n
(

1−F (an)
)

−→
n→∞

1.

1Given a distribution function F , absolutely continuous, the right end point of its support is
x

F ≡ sup{x : F (x) < 1}.
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It must be noted that only distribution functions with infinite right end

point can be in D(Φα).

For the domain of attraction of a Gumbel law, we will use the characteri-

zation established by Balkema and de Haan ([1]):

Theorem 1.2. A distribution function F belongs to D(Λ) iff there exist a

positive function w satisfying lim
x→xF

w(x) = 1 and a differentiable, positive function

g such that

− lnF (x) = w(x) exp

{

−
∫ x

z0

1

g(u)
du

}

,

for some z0 and where we have lim
x→xF

g′(x) = 0.

The results developed for asymptotic extreme value theory for maxima are

readily adapted for minima, since mn = min
1≤i≤n

(Xi) = − max
1≤i≤n

(−Xi) = − max
1≤i≤n

(Yi).

If the sequence max
1≤i≤n

(−Xi) = max
1≤i≤n

(Yi) can be normalized, so as to admit a non

degenerate limit Z, then the distribution function Z will be of the same type as

Gγ , for some γ ∈ R. Hence the limit law for minima, conveniently normalized,

will verify

F−Z(x) = P
[

−Z ≤ x
]

= P
[

Z ≥ −x
]

= 1 − Gγ(−x) =: Hγ(x) .

Therefore, we say that the distribution function F of a random variable X is in

the domain of attraction for minima of Hγ , if the distribution function of −X is

in the domain of attraction (for maxima) of Gγ . In this case, there exists a pair

of sequences (an, bn) where an > 0 and bn ∈ R, ∀n∈N, such that

(1.4) 1 −
(

1 − F (anx + bn)
)n −→

n→∞
Hγ(x) .

Remark 1.1. In most applications involving lifetimes the limit laws in

(1.4) are restricted to the case γ ≤ 0. In fact, a lifetime T is always nonnegative,

thus −T is a random variable with finite right end point and can only be in the

max-domain of attraction of a Weibull (γ < 0) or a Gumbel (γ = 0) (see Theorem

1.1 and Theorem 1.2). However, because there are systems with large durability,

we will also study the case γ > 0.

1.2. Regular and homogeneous series-parallel system

In reliability studies, we classify a system as being series-parallel if it is

composed by subsystems with components in series and if those subsystems are

organized in parallel (see Figure 1).
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Figure 1: Scheme of a regular homogeneous series-parallel system.

Let Eij , with i = 1, 2, ..., k and j = 1, 2, ..., li, be the components of a Series-

Parallel System S, formed by k subsystems in parallel of li components in series.

Let Xij be the lifetime of Eij , i.e., Xij represents the lifetime of the j-th compo-

nent of the i-th subsystem. We will assume that all Xij ’s are independent. The

lifetime T of the whole system is given by

T = max
1≤i≤k

(

min
1≤j≤li

Xij

)

.

The system S is called regular whenever

l1 = l2 = ... = lk = l ,

and it is homogeneous whenever the components Eij have the same reliability

function R(x) = P (Xij > x) = 1−F (x), with x ∈ ]−∞, +∞[, i.e., if the random

variables Xij have the same distribution function F (x) = P (Xij ≤ x).

Suppose now that k = kn and l = ln, i.e., (kn) and (ln) are sequences of

real numbers such that at least one of them has a limit equal to infinity when n

goes to infinity. Then we obtain sequences of regular systems whose families of

reliability functions, in the case of an homogeneous system, are defined by (see

in [6])

Rn(x) = 1 −
[

1 −
(

R(x)
)ln
]kn

, for x ∈ ]−∞, +∞[ and each n ∈ N ,

or in terms of the sequence of distribution functions,

Fn(x) = 1 −
(

1 −
[

1 −
(

R(x)
)ln
]kn

)

(1.5)
=

[

1 −
(

1 − F (x)
)ln
]kn

, for x ∈ ]−∞, +∞[ and each n ∈ N .

Assuming that F is in the domain of attraction of a law for minima, Hγ , our

purpose will be to analyse the asymptotic behaviour of the functions Rn(x) and

Fn(x) defined above. Although our goal is to treat this problem in its maximum

generality, in this paper we will only treat the case where kn goes to infinity.

More precisely, we will suppose that kn = n and investigate which should be the

asymptotic behaviour of ln, so that, using a suitable normalization, we can find

a nondegenerate limit for Fn.
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2. CHARACTERIZATION OF THE DOMAINS OF ATTRACTION

From (1.5), it follows that Fn(x) is the distribution function of the maxima

of kn i.i.d. random variables, each one with distribution function given by Hn(x) =
[

1−
(

1−F (x)
)ln]

, and we want to determine in which domain of attraction for

maxima belongs Hn(x). Now, assuming that F is in the domain of attraction for

minima of a law Hγ(x) = 1−Gγ(−x), then the asymptotic behaviour of the right

tail of Hn must be similar to the right tail of the minima law Hγ . In the next

paragraphs we will analyse the right tail behaviour of Hγ , for γ < 0, γ = 0 and

γ > 0, in order to identify the max-stable law to which it is attracted.

2.1. Case γ < 0 (Weibull for minima)

The function Hγ(x) is defined, for all x ∈ R, by

Hγ(x) = 1 − Gγ(−x)

=







1 − exp

(

−(1 − γx)
−1/γ

)

, 1 − γx ≥ 0

0, 1 − γx < 0

(2.1)

=







1 − exp

(

−(1 − γx)
−1/γ

)

, x ≥ 1
γ

0, x < 1
γ .

Since the right end point is infinite, we will first check whether or not Hγ is in

the Fréchet max-domain of attraction. By Theorem 1, and using (1.3) and (2.1),

we have

lim
t→+∞

1 − Hγ(tx)

1 − Hγ(t)
= lim

t→+∞
e−(1−γtx)−1/γ

e−(1−γt)−1/γ

= lim
t→+∞

exp

{

(

−(1 − γ tx)
−1/γ

)

[

1 −
(

1 − γ t

1 − γ tx

)−1/γ
]}

= lim
t→+∞

exp







(

−(1 − γ tx)
−1/γ

)



1 −
(

1
γt −1

1
γt − x

)−1/γ










=

{

0, x1/γ < 1

+∞, x1/γ > 1 .

It follows that 1−Hγ is not a regularly varying function at infinity and therefore

cannot belong to the Fréchet max-domain of attraction. We claim, however, that

Hγ ∈ D(Λ). In fact, since

lnHγ(x) = ln

(

1 −
(

1 − Hγ(x)
)

)

∼ −
(

1 − Hγ(x)
)

,
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when x → xHγ , we get − ln Hγ(x)
1−Hγ(x) −→

x→xHγ

1. Without loss of generality, let us sup-

pose w(x) = − ln Hγ(x)
1−Hγ(x) > 0, for all x, to get

− lnHγ(x) =

(

− lnHγ(x)

1 − Hγ(x)

)

(

1 − Hγ(x)
)

= w(x) exp

(

−(1 − γx)
−1/γ

)

= w(x) exp

{

−
∫ x

1/γ

1

g(u)
du

}

,

for x > 1
γ and where g(x) = (1 − γx)

1/γ+1 > 0 is such that

lim
x→+∞

g′(x) = lim
x→+∞

[

−(γ + 1) (1− γx)
1/γ
]

= 0 .

Consequently, by Theorem 1.2, Hγ(x) is in the Gumbel max-domain of attraction.

In this case, the attraction constants can be defined by (see [4])















bn : Hγ(bn) = exp

(

− 1

n

)

an : an =
1

k(bn)
,

where

k(bn) = −
H ′

γ(bn)

Hγ(bn) lnHγ(bn)
.

Now,

Hγ(bn) = exp

(

− 1

n

)

⇐⇒ (1 − γ bn)
−1/γ

= − ln

[

1 − exp

(

− 1

n

)]

⇐⇒ 1 − γ bn =

(

− ln

[

1 − exp

(

− 1

n

)])−γ

⇐⇒ bn =

1 −
(

− ln

[

1 − exp
(

− 1
n

)

])−γ

γ
.

On the other hand,

an =
1

k(bn)

= −
exp
(

− 1
n

)

ln

(

exp
(

− 1
n

)

)

(1 − γ bn)−1/γ−1
(

1 − exp
(

− 1
n

)

)

=
1

n
(

exp
(

1
n

)

− 1

)

(1 − γ bn)−1/γ−1

=
1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])γ+1 .



Limit Model for the Reliability of a Series-Parallel System 235

It follows that

(2.2)































an =
1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])γ+1 ,

bn =

1 −
(

− ln

[

1 − exp
(

− 1
n

)

])−γ

γ
, γ < 0 .

2.2. Case γ > 0 (Fréchet for minima)

Let us suppose that the distribution function of the lifetime of each com-

ponent belongs to the domain of attraction of a Fréchet for minima. We have,

for x ∈ R,

Hγ(x) = 1 − Gγ(−x)

=







1 − exp

(

−(1 − γx)
−1/γ

)

, x ≤ 1
γ

1 , x > 1
γ .

(2.3)

In this case, since xHγ =
1
γ , Hγ(x) cannot be in the Fréchet domain of

attraction for maxima, but it can, however, be in the max-domain of attraction

of a Weibull or a Gumbel. Now,

1 − Hγ

(

xHγ − 1

x

)

= exp

(

−
(

1 − γ

(

1

γ
− 1

x

))−1/γ
)

= exp

(

−
(

γ

x

)−1/γ
)

= e−γ−1/γ x1/γ

, γ > 0, x > 0 ,

so applying Theorem 1.2 and (2.3) we get

lim
t→∞

e−γ−1/γ (tx)1/γ

e−γ−1/γ t1/γ
= lim

t→∞
e−γ−1/γ t1/γ (x1/γ−1)

=

{

0 , x1/γ > 1

+∞ , x1/γ < 1 .

We conclude therefore that the function Hγ is not in the domain of attraction for

maxima of a Weibull. Following the same reasoning as in the previous case, we

now prove that Hγ verifies the representation given by Theorem 1.2, and so Hγ
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is in the Gumbel max-domain of attraction. In fact, with w(x) =− ln Hγ(x)
1−Hγ(x) , we

have

− lnHγ(x) = w(x) exp

(

−(1 − γx)
−1/γ

)

= w(x) exp

{

−
∫ x

−∞

1

g(u)
du

}

,

for x < 1
γ and where g(x) = (1 − γx)

1/γ+1 > 0 is such that

lim
x→ 1

γ

g′(x) = lim
x→ 1

γ

[

−(γ +1) (1 − γx)
1/γ
]

= 0 .

The possible attraction constants are defined by (see [4])















bn : Hγ(bn) = exp

(

− 1

n

)

an : an =
1

k(bn)
.

Calculations similar to the case γ < 0 yield

(2.4)































an =
1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])γ+1 ,

bn =

1 −
(

− ln

[

1 − exp
(

− 1
n

)

])−γ

γ
, γ > 0 .

2.3. Case γ = 0 (Gumbel for minima)

Finally we analyse the case where the lifetime of the components is in the

domain of attraction of a Gumbel for minima. The function H0(x) is defined, for

all x ∈ R, by

H0(x) = 1 − G0(−x) = 1 − exp
(

− exp(x)
)

,

so that

− lnH0(x) = w(x) exp

{

−
∫ x

−∞
eu du

}

,

with w(x) defined as in the previous cases. Once again, the conditions of Theorem

1.2 are verified, considering g(x) = e−x > 0, ∀x ∈ R, and therefore the distribu-

tion function H0(x) is in the max-domain of attraction of a Gumbel law. The

sequences (an) and (bn) are now given by

(2.5)



















an =
1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

]) ,

bn = ln

(

− ln

[

1 − exp
(

− 1
n

)

])

,



Limit Model for the Reliability of a Series-Parallel System 237

since

H0(bn) = exp

(

− 1

n

)

⇐⇒ exp(−ebn) = 1 − exp

(

− 1

n

)

⇐⇒ ebn = − ln

[

1 − exp

(

− 1

n

)]

⇐⇒ bn = ln

(

− ln

[

1 − exp

(

− 1

n

)])

and

an =
1

k(bn)

= −

(

1 − exp
(

− exp(bn)
)

)

ln

(

1 − exp(− exp
(

bn)
)

)

exp(bn) exp
(

− exp(bn)
)

=

exp
(

− 1
n

)

ln

(

exp
(

− 1
n

)

)

ln

(

1 − exp
(

− 1
n

)

)(

1 − exp
(

− 1
n

)

)

=
1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

]) .

We can sum up the results derived in the last three paragraphs by saying

that for all γ ∈ R there are sequences (an) and (bn), with an > 0 and bn ∈ R, such

that

(2.6) Hn
γ (anx + bn) −→

n→∞
Λ(x) ,

i.e., all stable laws for minima are in the Gumbel max-domain of attraction.

3. LIMIT MODEL FOR THE RELIABILITY OF A REGULAR

AND HOMOGENEOUS SERIES-PARALLEL SYSTEM

Using the above results it is possible to obtain the limit behaviour for the

reliability of a regular series-parallel system, with a large number of components,

whose lifetimes are i.i.d. and belong to the domain of attraction of a stable law

for minima, which in turn allows us to establish the following result:

Theorem 3.1. Let F be a distribution function in the domain of attrac-

tion of Hγ(x), i.e., assume that there are sequences (an) and (bn), with an > 0

and bn ∈ R, ∀n ∈ N, such that

(3.1) 1 −
(

1 − F (anx + bn)
)n

= Hγ(x) + εn(x) = 1 − Gγ(−x) + εn(x) ,
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with εn(x) → 0, ∀x ∈ R and where Gγ(x) is defined in (1.2). Given a sequence

of integers such that ln
n n

n
ln en = o(1), with en = sup

x∈R

|εn(x)|, then for all γ ∈R,

there exist αn > 0 and βn ∈ R, ∀n∈N such that, for the sequence of distribution

functions, conveniently normalized, the following holds

(3.2) Fn(αnx + βn) =

[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

for all x ∈ R, i.e., for a regular homogeneous series-parallel system, constituted

by n parallel subsystems of ln components in series, the sequence of reliability

functions,conveniently normalized, verifies

Rn(αnx + βn) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) ,

for all x ∈ R. Further we can consider αn = ana∗n, βn = anb∗n + bn with

(3.3) a∗n =
1 − γ b∗n

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])

and

(3.4) b∗n =



































−1

γ









ln

n
(

− ln

[

1 − exp
(

− 1
n

)

])





γ

− 1



 , γ 6= 0

− ln





ln

n
(

− ln

[

1 − exp
(

− 1
n

)

])



 , γ = 0 .

Proof: Given the sequences (an) and (bn) for which (3.1) is valid and

taking (αn) and (βn) such that αn = ana∗n and βn = anb∗n + bn, we have

(

1 − F (αnx + βn)
)ln

=
(

1 − F (ana∗nx + anb∗n + bn)
)ln

=

[

(

1 − F
(

an(a∗nx + b∗n) + bn

)

)n
]

ln
n

(3.5)

=

(

1 − Hγ(a∗nx + b∗n) + εn(a∗nx + b∗n)

)
ln
n

=
(

1 − Hγ(a∗nx + b∗n)
)

ln
n + ρn(x) .

First, we will analyse the component
(

1 − Hγ(a∗nx + b∗n)
)

ln
n and later we will

prove that nρn(x) → 0, ∀x ∈ R, where (ln), (a∗n) and (b∗n) satisfy the previously

mentioned conditions. Now, for γ 6= 0 we have, successively,

(

1 − Hγ(a∗nx + b∗n)
)

ln
n =

[

Gγ

(

−(a∗nx + b∗n)
)

]
ln
n

= exp







−
(

(

ln
n

)−γ

− γ

((

ln
n

)−γ

a∗nx +

(

ln
n

)−γ

b∗n

)

)−1/γ






(3.6)

= exp

{

−
(

1 − γ(α∗
nx + β∗

n)
)−1/γ

}

= 1 − Hγ(α∗
nx + β∗

n) ,
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with

(3.7)



















α∗
n =

(

ln
n

)−γ

a∗n

β∗
n =

(

ln
n

)−γ(γb∗n − 1

γ

)

+
1

γ
.

Hence for αn = ana∗n, βn = anb∗n + bn and for α∗
n and β∗

n given by (3.7), we can

write

(3.8)
(

1 − F (αnx + βn)
)ln

= 1 − Hγ(α∗
nx + β∗

n) + ρn(x) .

Using (3.3), (3.4) and (3.7) the sequence α∗
n verifies

α∗
n =

(

ln
n

)−γ

a∗n

=

(

ln
n

)−γ









1 +

(

ln

n
(

− ln
[

1−exp(− 1
n)
])

)γ

− 1

n
(

exp
(

1
n

)

−1

)(

− ln

[

1 − exp
(

− 1
n

)

])









=

(

ln
n

)−γ




(

ln
n

)γ

n
(

exp
(

1
n

)

−1

)(

− ln

[

1 − exp
(

− 1
n

)

])(

− ln

[

1 − exp
(

− 1
n

)

])γ





=
1

n
(

exp
(

1
n

)

−1

)(

− ln

[

1 − exp
(

− 1
n

)

])γ+1 .

Moreover, given (3.4) for γ 6= 0, ln = n
(

− ln
[

1 − exp
(

− 1
n

)])

(1 − γb∗n)
1/γ

and it

follows that

β∗
n =

(

ln
n

)−γ(γb∗n − 1

γ

)

+
1

γ

=

n−γ
(

− ln

[

1 − exp
(

− 1
n

)

])−γ
(1 − γb∗n)

−1
(γb∗n −1)

γ n−γ
+

1

γ

= −

(

− ln

[

1 − exp
(

− 1
n

)

])−γ
(1 − γb∗n)

−1
(1 − γb∗n)

γ
+

1

γ

=

1 −
(

− ln

[

1 − exp
(

− 1
n

)

])−γ

γ
.

This means that (α∗
n) and (β∗

n) verify (2.2) and (2.4) and consequently are a suit-

able choice of sequences for the convergence of Hn
γ to the Gumbel law. To prove

that ρ(x) in (3.8) is such that nρ(x) goes to zero, we start by observing that since

n
(

exp
(

1
n

)

−1
)

∼ 1 and − ln
(

1− exp
(

− 1
n

))

∼ lnn, as n →∞, the constants (α∗
n)

and (β∗
n) are asymptotically given by

α∗
n ∼ 1

(lnn)γ+1
and β∗

n ∼ 1 − (ln n)
−γ

γ
,
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and so using (3.7) we get,

a∗nx + b∗n =

(

ln
n

)γ

α∗
nx +

(

ln
n

)γ(γβ∗
n −1

γ

)

+
1

γ
(3.9)

∼
(

ln
n lnn

)γ( x

lnn
− 1

γ

)

+
1

γ
.

Moreover, from (3.6), (3.7) and (3.9) we obtain

(

1 − Hγ(a∗nx + b∗n)
)

ln
n
−1 ∼

exp

{

−
(

1 − γ
(

1
(ln n)γ+1 x +

1−(ln n)−γ

γ

)

)−1/γ
}

exp

{

−
(

1 − γ
(

(

ln
n ln n

)γ ( x
ln n − 1

γ

)

+
1
γ

)

)−1/γ
}

∼
exp

{

− lnn
(

1 − γ x
ln n

)−1/γ
}

exp

{

−n ln n
ln

(

1 − γ x
ln n

)−1/γ
}(3.10)

∼ exp

{

(

n

ln
−1

)

lnn

(

1 − γ

lnn
x

)−1/γ
}

∼ n
n
ln

−1 ,

when n → ∞ and ∀x ∈ R. Now, since Hγ is a continuous distribution function

on R, the convergence of εn(x) in (3.1) is naturally the uniform convergence and

we can write lim
n→∞

en = lim
n→∞

[

sup
x∈R

|εn(x)|
]

= 0. Furthermore, taking into account

that a∗nx + b∗n converges to xHγ , we also have εn(a∗nx + b∗n) → 0, uniformly in R,

when n →∞. These results, together with (3.10) and
ln
n n

n
ln en → 0, when n →∞,

allow us to obtain the following approximation for ρn(x) in (3.5),

ρn(x) =
ln
n

εn(a
∗
nx + b∗n)

(

1 − Hγ(a∗nx + b∗n)
)

ln
n
−1

+ o(ξn)

∼ ln
n2

εn(a∗nx + b∗n)n
n
ln + o(ξn) ,

with ξn =
ln
n2 n

n
ln en, so that nρn(x) → 0. To derive the main result in (3.2) for

γ 6= 0, observe that, using (3.8), we have

[

1 −
(

1 − F (αnx + βn)
)ln
]n

=

=
[

Hγ(α∗
nx + β∗

n) + ρn(x)
]n

=
[

Hγ(α∗
nx + β∗

n)
]n
[

1 +
ρn(x)

Hγ(α∗
nx + β∗

n)

]n

=
[

Hγ(α∗
nx + β∗

n)
]n
[

1 +
n ρn(x)

Hγ(α∗
nx + β∗

n)
+ o

(

nρn(x)

Hγ(α∗
nx + β∗

n)

)]

,
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where (α∗
n) and (β∗

n) are normalizing sequences for the convergence of
[

Hγ(α∗
nx +

β∗
n)
]n

to Λ(x). So since Hγ(α∗
nx + β∗

n) → 1, when n goes to infinity, we finally

obtain

Fn(αnx + βn) =

[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

or in other words,

Rn(αnx + βn) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) .

In the case γ = 0, we can also write

(3.11)
[

1 − H0(a
∗
nx + b∗n)

]
ln
n = 1 − H0(α

∗
nx + β∗

n) ,

where

(3.12)











α∗
n = a∗n

β∗
n = b∗n + ln

(

ln
n

)

.

Using (3.3), (3.4) and (3.12) it now follows that

α∗
n =

1

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

]) ,

and moreover

β∗
n = b∗n + ln

(

ln
n

)

= − ln





ln

n
(

− ln

[

1 − exp
(

− 1
n

)

])



+ ln

(

ln
n

)

= ln







ln
n
ln

n
(

− ln
[

1−exp(− 1
n)
])






= ln

(

− ln

[

1 − exp

(

− 1

n

)])

.

This means that the sequences (α∗
n) and (β∗

n) verify (2.5) and therefore are a

suitable choice of sequences for the convergence of Hn
0 to the Gumbel law. Given

that α∗
n ∼ 1

ln n and β∗
n ∼ ln(lnn) and given (3.12), we have the approximation

a∗nx + b∗n = α∗
nx +

(

β∗
n − ln

(

ln
n

))

∼ x

lnn
+ ln

(

n lnn

ln

)

.

Once again we can show that
(

1−H0(a
∗
nx + b∗n)

)
ln
n ∼ n

n
ln and nρn(x) → 0, when

n →∞, ∀x ∈ R, yielding

Fn(αnx + βn) =

[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

i.e.,

Rn(αnx + βn) −→
n→∞

1 − Λ(x) ,

which proves the result.
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Example 3.1. Let be X y Exp(1).

Observe that

(

1 − F

(

x

n

))n

=
(

e−
x
n

)n
= e−x

= Ψ1(−x) = 1 − H−1(x) .

The conditions of theorem 3 are satisfied, setting an =
1
n , bn = 0 and εn(x) = 0,

∀x ∈ R. For any sequence ln, by now considering































a∗n =
1 + b∗n

n
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])

b∗n =





ln

n
(

− ln

[

1 − exp
(

− 1
n

)

])





−1

− 1

and


























αn =
1 + b∗n

n2
(

exp
(

1
n

)

− 1

)(

− ln

[

1 − exp
(

− 1
n

)

])

βn =

(

− ln

[

1 − exp
(

− 1
n

)

])

ln
− 1

n
,

we obtain

Fn(x) =

[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

i.e.,

Rn(x) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) .

Remark 3.1. Note that if the sequence (ln) is constant and (kn) goes to

infinity then the limit models for the reliability of the system are the usual models

for maxima.

ACKNOWLEDGMENTS

Paper partly supported by FCT/POCTI/FEDER – Project ERAS.



Limit Model for the Reliability of a Series-Parallel System 243

REFERENCES

[1] Balkema, A.A. and de Haan, L. (1972). On R. von Mises condition for the

domain of attraction of exp(−e−x
), Annals Math. Statist., 43, 1352–1354.

[2] Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and

Life Testing. Probability Models, Holt Rinehart and Winston, Inc., New York.

[3] Chernoff, H. and Teicher, H. (1965). Limit distributions of the minimax of

independent identically distributed random variables, Proc. Americ. Math. Soc.,

116, 474–491.

[4] Gomes, M.I. and Pestana, D. (1986). Nonstandard domains of attraction and

rates of convergence (English), New perspectives in theoretical and applied statis-

tics, Sel. Pap., 3rd Int. Meet. Stat., Bilbao/Spain 1986, 467–477 (1987). MSC2000:

62E20, 60F05.

[5] Gnedenko, B.W. (1943). Sur la distribution limite du terme maximum d’une
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Abstract:

• In many areas of application, a typical requirement is to estimate a high quantile

χ1−p of probability 1−p, a value, high enough, so that the chance of an exceedance

of that value is equal to p, small. The semi-parametric estimation of high quantiles

depends not only on the estimation of the tail index γ, the primary parameter of

extreme events, but also on an adequate estimation of a scale first order parameter.

The great majority of semi-parametric quantile estimators, in the literature, do not

enjoy the adequate behaviour, in the sense that they do not suffer the appropriate

linear shift in the presence of linear transformations of the data. Recently, and for

heavy tails (γ > 0), a new class of quantile estimators was introduced with such a

behaviour. They were named PORT-quantile estimators, with PORT standing for

peaks over random threshold. In this paper, also for heavy tails, we introduce a new

class of PORT-quantile estimators with the above mentioned behaviour, using the

PORT methodology and incorporating Hill and moment PORT-classes of tail index

estimators in one of the most recent classes of quantile estimators suggested in the

literature. Under convenient restrictions on the underlying model, these classes of

estimators are consistent and asymptotically normal for adequate k, the number of

top order statistics used in the semi-parametric estimation of χ1−p.
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methodology; asymptotic behaviour.
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1. INTRODUCTION

A model F is said to have a heavy right-tail whenever the right tail function,

F := 1 − F , is a regularly varying function with a negative index of regular vari-

ation α =−1/γ, i.e., for every x > 0, limt→∞ F (tx)/F (t) = x−1/γ
. Then we are

in the domain of attraction for maxima of an extreme value (EV ) distribution

function (d.f.),

EVγ(x) = exp
(

−(1 + γx)
−1/γ

)

, x > −1/γ, γ > 0 ,

and we write F ∈ DM(EVγ>0). The parameter γ is the tail index, one of the

primary parameters of rare events.

In a context of heavy tails, and with the notation U(t) := F←(1−1/t), t ≥1,

F←(y) := inf{x : F (x) ≥ y} the generalized inverse function of the underlying

model F , the first order parameter (or tail index) γ (> 0) appears, for every

x > 0, as the limiting value, as t → ∞, of the quotient
(

lnU(tx) − lnU(t)
)

/ lnx

(de Haan, 1970). Indeed, with the usual notation RVα for the class of regularly

varying functions with an index of regularly variation α, i.e., positive measurable

functions g such that g(tx)/g(t) → xα
, as t →∞ and for all x > 0, we can further

say

(1.1) F ∈ DM(EVγ>0) iff U ∈RVγ iff 1−F ∈RV−1/γ (Gnedenko, 1943).

Heavy-tailed distributions have recently been accepted as realistic models for

various phenomena in economics, ecology, bibliometrics and biometry, among

others. See, for instance, the recent books on the topic by Markovich (2007) and

Resnick (2007).

For small values of p, we want to extrapolate beyond the sample, estimating

a typical parameter in many areas of application, a high quantile χ1−p, i.e., a value

such that F (χ1−p) = 1 − p, or equivalently,

(1.2) χ1−p = U(1/p) , p = pn → 0, npn → K as n →∞, K ∈ [0, 1] .

We are going to base inference on the largest k + 1 order statistics, and

as usual in semi-parametric estimation of parameters of extreme events, we shall

assume that k is an intermediate sequence of integers in [1, n[, i.e.,

(1.3) k = kn → ∞, k/n → 0 , as n → ∞ .

In order to derive the asymptotic non-degenerate behaviour of semi-para-

metric estimators of parameters of extreme events, we need more than the first-

order condition, U ∈ RVγ , provided in (1.1). A convenient condition is the fol-

lowing second-order condition, which guarantees that

(1.4) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1

ρ
,
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which we assume to hold for every x > 0, being ρ ≤ 0 the “shape” or, more

properly, the generalized shape second order parameter. The limit function in

(1.4) is necessarily of this given form and |A| ∈ RVρ (Geluk and de Haan, 1987).

Sometimes, only for the sake of simplicity, we shall assume to be working in a

sub-class of Hall-Welsh class of models (Hall and Welsh, 1985), where there exist

γ > 0, ρ < 0, C > 0 and β 6= 0, such that, as t → ∞,

(1.5) U(t) = C tγ
(

1 +
A(t)

ρ

(

1 + o(1)
)

)

, with A(t) = γβ tρ .

Typical heavy-tailed models, such as the Fréchet, the Generalized Pareto

and the Student-tν belong to such a class. Then, the second-order condition in

equation (1.4) holds, with A(t) = γβ tρ, β 6= 0, ρ < 0. The parameters β and ρ are

the so-called generalized scale and shape second-order parameters, respectively.

If condition (1.5) holds, U(t) ∼ Ctγ , as t → ∞, and from (1.2), we have

χ1−p = U(1/p) ∼ Cp−γ , as p → 0 .

An obvious estimator of χ1−p is thus ̂Cp−γ̂
, with ̂C and γ̂ any consistent

estimators of C and γ, respectively.

Given a sample (X1, X2, ..., Xn), let us denote (X1:n ≤ X2:n ≤ ··· ≤ Xn:n)

the set of associated ascending order statistics. Denoting Y a standard Pareto

model, i.e., a model such that F
Y
(y) = 1 − 1/y, y > 1, the universal uniform

transformation and the fact that Yn−k:n
p∼ (n/k) for intermediate k, enables us

to write Xn−k:n
p∼ C(n/k)

γ
, as n →∞, where the notation Xn

p∼ Yn means that

Xn/Yn converges in probability to one, as n → ∞. Consequently, an obvious

estimator of C, proposed in Hall (1982), is

̂C ≡ Ck,n,γ̂ := Xn−k:n(k/n)
γ̂

and

Qk,pn,γ̂ = ̂C p−γ̂
n = Xn−k:n(k/npn)

γ̂

is the obvious quantile-estimator at the level p (Weissman, 1978). The semi-

parametric estimation of high quantiles depends thus strongly on the estimation

of the tail index γ, the primary parameter of extreme events.

In the classical approach, we often consider for γ̂ either the Hill estimator

(Hill, 1975) or the moment estimator (Dekkers et al., 1989), both based on the

k +1 top order statistics, denoted Xk := (Xn−k:n, ···, Xn:n). The Hill estimator

is the average of the log-excesses,

(1.6) Hk,n ≡ Hn(Xk) ≡ γ̂k,n,H :=
1

k

k
∑

i=1

(lnXn−i+1:n − lnXn−k:n) ,
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and the moment estimator has the functional expression,

(1.7) Mk,n ≡ Mn(Xk) ≡ γ̂k,n,M := M
(1)
k,n + 1 − 1

2

{

1 −
(

M
(1)
k,n

)2
/M

(2)
k,n

}−1
,

with M
(α)
k,n defined by

(1.8) M
(α)
k,n ≡ M (α)

n (Xk) :=
1

k

k
∑

i=1

(lnXn−i+1:n − lnXn−k:n)
α , α = 1, 2 .

Under the second order framework in (1.4) and for any intermediate se-

quence k, i.e. whenever (1.3) holds, we have for the Hill estimator H, in (1.6),

and for the moment estimator M , in (1.7), generally denoted by T , the validity

of the following asymptotic distributional representation,

(1.9) γ̂k,n,T
d
= γ +

σ
T

Pk,T√
k

+ b
T

A(n/k)
(

1 + op(1)
)

,

where Pk,T is asymptotically standard normal and

(1.10) σ2
H

:= γ2, b
H

:=
1

1− ρ
, σ2

M
:= 1 + γ2

and b
M

:=
γ(1− ρ) + ρ

γ(1− ρ)2
.

Most of the semi-parametric quantile estimators in the literature, like the

ones in Gomes and Figueiredo (2006), Gomes and Pestana (2007), Beirlant et al.

(2008), Caeiro and Gomes (2008), as well as in other papers on semi-parametric

quantile estimation prior to 2005 (see also, de Haan and Ferreira, 2006), do not

enjoy the adequate behaviour in the presence of linear transformations of the

data, a behaviour related with the fact that for any quantile χ1−p we have

(1.11) χ1−p(s + δX) = s + δ χ1−p(X)

for any model X, real s and positive δ.

Recently, and for γ > 0, Araújo Santos et al. (2006) provided quantile es-

timators with the linear property in (1.11), based upon a sample of excesses over

a random threshold Xnq :n, denoted

(1.12) X(q)
:=
(

Xn:n−Xnq :n, · · · , Xnq+1:n−Xnq :n

)

, nq := [nq] + 1 ,

where [x] denotes, as usual, the integer part of x, with:

• 0 < q < 1, for distributions with a left endpoint, x
F

:= inf{x : F (x) > 0},
finite or infinite (the random threshold Xnq :n is an empirical quantile);

• q = 0, for distributions with a finite left endpoint x
F

(the random thresh-

old is the minimum, X1:n).

Such estimators were named PORT-quantile estimators, with PORT standing

for peaks over random threshold, and are based on the PORT-Hill and PORT-

moment estimators, generically denoted T (q) ≡ Tk,n(q) := Tn(X(q)
) for T = H
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or M , k < n − nq, and with Hn(Xk) and Mn(Xk) provided in (1.6) and (1.7),

respectively. They are given by

(1.13) Qk,pn,T (q) :=
(

Xn−k:n − Xnq :n

)

(

k

npn

)T (q)

+ Xnq :n ,

where T (q) can more generally be any consistent estimator of the tail index γ,

made location/scale invariant by using any of the transformed samples X(q)
, in

(1.12). The PORT-Hill and the PORT-moment estimators have been studied by

simulation in Gomes et al. (2008a).

The class of estimators suggested here is also a function of the sample of the

excesses X(q)
in (1.12). We use the PORT methodology and incorporate Hill and

moment PORT-classes of tail index estimators in one of the classes of quantile

estimators suggested in Caeiro and Gomes (2008), slightly modified in order to

satisfy the linear property in (1.11). More specifically, we shall consider quantile

estimators of the type,

(1.14) ˜Qk,pn,T (q) :=
Xn−[k/2]:n − Xn−k:n

2T (q) − 1

(

k

npn

)T (q)

+ Xnq :n .

Under convenient restrictions on the underlying model, these classes of estimators

are consistent and asymptotically normal for adequate k, the number of top order

statistics used in the semi-parametric estimation of χ1−p .

In Section 2 of this paper, we shall present a few introductory technical

details and asymptotic preliminary results associated with the PORT method-

ology. The asymptotic behaviour of the PORT-classes of tail index estimators

under study, together with the asymptotic comparison of the PORT-Hill and the

PORT-moment estimators at optimal levels, will be derived in Section 3. In Sec-

tion 4, we derive the asymptotic behaviour of the new classes of PORT-quantile

estimators. Finally, in Section 5, we draw some overall conclusions.

2. TECHNICAL DETAILS RELATED WITH THE PORT

METHODOLOGY

2.1. The second order framework for heavy-tailed models under a real

shift

If we introduce a deterministic shift, i.e. a new location, s 6= 0, in the under-

lying model X, with quantile function U
X
(t), the transformed random variable (r.v.)

Y = X+s has an associated quantile function given by Us(t) ≡ U
Y
(t) = U

X
(t) + s
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and condition (1.4) can be rewritten as

(2.1) lim
t→∞

lnUs(tx) − ln Us(t) − γ lnx

As(t)
=

xρs − 1

ρs
,

for all x > 0, with |As| ∈ RVρs
.

Let F be a model with quantile function U(t) ≡ U
X
(t), given in (1.5). Then

U
Y
(t) = C tγ

(

1 +
A(t)

ρ
+ s C−1 t−γ

+ o(tρ)

)

, as t → ∞ .

Therefore both Us(t) = U
Y
(t) and U(t) = U

X
(t) are asymptotically equivalent to

C tγ , but

ρs =

{

ρ if ρ > −γ

−γ if ρ ≤ −γ .

The function As(t) in (2.1) can be chosen as

As(t) :=























− γs

U(t)
, if ρ < −γ

A(t) − γs

U(t)
, if ρ = −γ

A(t), if ρ > −γ .

2.2. Asymptotic preliminary results in the PORT methodology

In this subsection we begin with the presentation of the asymptotic re-

sults for the statistics M
(α,q)
k,n ≡ M

(α)
n

(

X(q)
)

, k < n − nq, based on the sample of

excesses X(q)
, 0 ≤ q < 1, in (1.12) and with M

(α)
n (Xk) provided in (1.8).

In the following, χq denotes the q-quantile of F : F (χq) = q (by convention

χ0 = x
F
, whenever finite) so that,

(2.2) Xnq :n
p−→

n→∞
χq for 0 ≤ q < 1 .

We present, without proof, the following Lemma:

Lemma 2.1 (Araújo Santos et al., 2006). If the second order condition

(1.4) holds, if k = kn is an intermediate sequence, i.e. (1.3) holds, then, for any

real q, 0 ≤ q < 1, with F (χq) = q (χ0 = x
F
, whenever finite), and for α = 1, 2,

M
(α,q)
k,n − 1

k

k
∑

i=1

(

ln
Xn−i+1:n − χq

Xn−k:n − χq

)α

= op

(

1

U(n/k)

)

.
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Remark 2.1. Note that if q ∈ (0, 1), Xnq :n − χq = Op

(

1/
√

n
)

and we

can assure that
√

k
(

M
(α,q)
k,n − 1

k

∑k
i=1

(

ln(Xn−i+1:n− χq) − ln(Xn−k:n− χq)
)α
)

=

Op

(
√

k/n
/

U(n/k)
)

= op(1), for α = 1, 2.

Proposition 2.1. If the second order condition (1.4) holds and k = kn

is an intermediate sequence, i.e. (1.3) holds, the statistics M
(α,q)
k,n = M

(α)
n (X(q)

),

with k < n − nq, M
(α)
n (Xk) given in (1.8) and X(q) given in (1.12), satisfy for

α = 1, 2,

M
(1,q)
k,n

d
= M

(1)
k,n +

γ χq

(1 + γ) U(n/k)

(

1 + op(1)
)

,(2.3)

M
(2,q)
k,n

d
= M

(2)
k,n +

2 γ2
(2 + γ) χq

(1 + γ)2 U(n/k)

(

1 + op(1)
)

.(2.4)

Proof: The first moment of the log-excesses can be rewritten as

M
(1,q)
k,n =

1

k

k
∑

i=1

ln

(

Xn−i+1:n − Xnq :n

Xn−k:n − Xnq :n

)

= M
(1)
k,n +

1

k

k
∑

i=1

ln





1 − Xnq :n

Xn−i+1:n

1 − Xnq :n

Xn−k:n



 .

Since ln(1 + x) ∼ x, as x → 0,

1

k

k
∑

i=1

ln





1 − Xnq :n

Xn−i+1:n

1 − Xnq :n

Xn−k:n





p∼ 1

k

k
∑

i=1

(

Xnq :n

Xn−k:n
− Xnq :n

Xn−i+1:n

)

=

(

Xnq :n

Xn−k:n

)

1

k

k
∑

i=1

(

1 − Xn−k:n

Xn−i+1:n

)

.

If k = kn is intermediate, i.e. (1.3) holds, and {Yi}i=1,...,k is a sequence

of independent and identically distributed (i.i.d.) standard Pareto r.v.’s, then

Yn−k:n
p∼ (n/k) and

M
(1,q)
k,n = M

(1)
k,n +

χq

U(n/k)

1

k

k
∑

i=1

(

1 − Xn−k:n

Xn−i+1:n

)

d
= M

(1)
k,n +

χq

U(n/k)

1

k

k
∑

i=1

(

1− Y −γ
i

) (

1 + op(1)
)

.

Given that E(Y −γ
) = 1/(1 + γ) and by the weak law of large numbers we get

(2.3).
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For α = 2 and using similar developments, we have

M
(2,q)
k,n

d
=

1

k

k
∑

i=1

(

ln
Xn−i+1:n

Xn−k:n
+

χq

U(n/k)

(

1− Y −γ
i

) (

1 + op(1)
)

)2

d
= M

(2)
k,n +

2 χq

U(n/k)

1

k

k
∑

i=1

(

ln
Xn−i+1:n

Xn−k:n

)

(

1− Y −γ
i

) (

1 + op(1)
)

d
= M

(2)
k,n +

2 χq

U(n/k)

(

M
(1)
k,n − 1

k

k
∑

i=1

(

γ lnYi Y −γ
i

) (

1 + op(1)
)

)

.

Since E(lnY Y −γ
) = 1/(1 + γ)

2
and by the weak law of large numbers we get

(2.4).

Remark 2.2. It has been proved in Gomes and Martins (2001) that, under

the second order framework, in (1.4), and for levels k such that (1.3) holds, we

get for M
(α)
k,n = M

(α)
n (Xk), in (1.8), an asymptotic distributional representation of

the type

M
(1)
k,n

d
= γ +

γZ
(1)
k√
k

+
A(n/k)

1− ρ

(

1 + op(1)
)

,

M
(2)
k,n

d
= 2 γ2

+
2
√

5 γ2Z
(2)
k√

k
+

2 γ
(

1 − (1− ρ)
2
)

ρ(1− ρ)2
A(n/k)

(

1 + op(1)
)

,

where, with {Ei}i≥1 a sequence of i.i.d. standard exponential r.v.’s,

Z
(α)
k =

√
k

√

Γ(2α + 1) − Γ2(α + 1)

(

1

k

k
∑

i=1

Eα
i − Γ(α + 1)

)

, α = 1, 2 ,

is asymptotically standard normal. Moreover, the covariance structure of Z
(α)
k

is given by

Cov
(

Zα
k , Zβ

k

)

=
Γ(α + β +1) − Γ(α +1) Γ(β +1)

√

Γ(2α +1) − Γ2(α +1)
√

Γ(2β +1) − Γ2(β +1)
.

3. ASYMPTOTIC BEHAVIOUR OF THE PORT-CLASSES OF

TAIL INDEX ESTIMATORS

In this section we present, under the validity of the second order condition in

(1.4), the asymptotic distributional representations of the PORT-Hill estimators,

Hk,n(q) := Hn(X(q)
), and the PORT-moment estimators, Mk,n(q) := Mn(X(q)

),
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with functional expressions given by

Hk,n(q) ≡ γ̂k,n,H(q) =
1

k

k
∑

i=1

ln

(

Xn−i+1:n − Xnq :n

Xn−k:n − Xnq :n

)

and

Mk,n(q) ≡ γ̂k,n,M(q) = M
(1,q)
k,n + 1 − 1

2

{

1 −
(

M
(1,q)
k,n

)2
/M

(2,q)
k,n

}−1
,

respectively, k < n − nq, M
(α,q)
k,n = M

(α)
n

(

X(q)
)

, M
(α)
n (Xk) and X(q)

provided in

(1.8) and (1.12), respectively.

The following theorem has been proved in Araújo Santos et al. (2006).

Theorem 3.1 (Araújo Santos et al., 2006). If the second order condition

(1.4) holds, k = kn is an intermediate sequence of positive integers, i.e. (1.3) holds,

and for any real q, 0 ≤ q < 1, we have for Tk,n(q), with T denoting either H or M ,

an asymptotic distributional representation of the type

(3.1) T (q) ≡ Tk,n(q)
d
= γ +

σ
T

Pk,T√
k

+

(

b
T
A(n/k) + c

T

χq

U(n/k)

)

(

1 + op(1)
)

,

where Pk,T , given in (1.9), is asymptotically standard normal, σ2
T

and b
T

are

provided in (1.10),

(3.2) c
H

:=
γ

1 + γ
and c

M
:=

γ2

(1 + γ)2
.

For simplicity of notation, let us now distinguish the following regions:

• R1 := γ + ρ < 0 ∧ χq 6= 0.

• R2 := γ + ρ > 0 ∨ (γ + ρ ≤ 0 ∧ χq = 0).

• R3 := γ + ρ = 0 ∧ χq 6= 0.

Corollary 3.1 (Araújo Santos et al., 2006). Under the conditions of Theo-

rem 3.1, the following results hold:

• In R1, Tk,n(q)
d
= γ + σ

T
Pk,T/

√
k + c

T
χq

(

1+op(1)
)/

U(n/k). Consequently,

if
√

k
/

U(n/k) → λ1 finite, then

√
k
(

Tk,n(q) − γ
) d−→

n→∞
Normal

(

λ1cT
χq, σ

2
T

)

.

• In R2, Tk,n(q)
d
= γ + σ

T
Pk,T /

√
k + b

T
A(n/k)

(

1 + op(1)
)

. Consequently,

if
√

k A(n/k) → λ2 finite, then

√
k
(

Tk,n(q) − γ
) d−→

n→∞
Normal

(

λ2bT
, σ2

T

)

.
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• In R3, Tk,n(q)
d
= γ + σ

T
Pk,T/

√
k +

(

b
T
A(n/k) + c

T
χq

/

U(n/k)
)(

1 + op(1)
)

.

Consequently, if
√

k
/

U(n/k) → λ1 and
√

k A(n/k) → λ2, with λ1 and λ2

both finite, then

√
k
(

Tk,n(q) − γ
) d−→

n→∞
Normal

(

λ1cT
χq + λ2bT

, σ2
T

)

.

3.1. Asymptotic comparison at optimal levels

We now proceed to an asymptotic comparison of the estimators at their

optimal levels in the lines of de Haan and Peng (1998), Gomes and Martins (2001),

Gomes et al. (2005, 2007b) and Gomes and Neves (2008). Suppose that γ̂k,n,•(q),
now denoted γ̂•(q)(k), is a general semi-parametric PORT-tail index estimator,

with distributional representation,

(3.3) γ̂•(q)(k) = γ +
σ•√
k

Pk,• +

(

b•A(n/k) + c•
χq

U(n/k)

)

(

1 + op(1)
)

,

which holds for any intermediate k, and where Pk,• is an asymptotically standard

normal r.v. Given the results presented in Corollary 3.1, the Asymptotic Mean

Square Error (AMSE) of γ̂•(q)(k) is

AMSE
(

γ̂•(q)(k)
)

:=



































σ2
•
k

+ c2
•

(χq)
2

U2(n/k)
, in R1

σ2
•
k

+ b2
•A

2
(n/k) , in R2

σ2
•
k

+

(

b• + c•
χq

Cγβ

)2

A2
(n/k) , in R3 ,

where Var∞
(

γ̂•(q)(k)
)

:= σ2
• /k and

Bias∞
(

γ̂•(q)(k)
)

:=



























c•
χq

U(n/k)
=: d

(1)
•
/

U(n/k) , in R1

b•A(n/k) =: d
(2)
• A(n/k) , in R2

(

b• + c•
χq

Cγβ

)

A(n/k) =: d
(3)
• A(n/k) , in R3 .

Let k0,•(q) := arg mink AMSE
(

γ̂•(q)(k)
)

be the so-called optimal level for

the estimation of γ through γ̂•(q)(k), i.e., the level associated with a minimum

asymptotic mean squared error, and let us denote γ̂n0,•(q) := γ̂•(q)
(

k0,•(q)
)

, the

estimator computed at its optimal level. The use of regular variation theory

enabled Dekkers and de Haan (1989) to prove that, whenever d
(i)
• 6= 0, i = 1, 2, 3

in this study, there exists a function ϕ(n) = ϕ(n; ρ, γ), dependent only on the

underlying model, and not on the estimator, but dependent here on i = 1, 2, 3,
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such that limn→∞ ϕ(n)AMSE
(

γ̂n0,•(q)
)

=: LMSE
(

γ̂n0,•(q)
)

exists, with LMSE

standing for limiting mean-squared error. Moreover,

(3.4) LMSE
(

γ̂n0,•(q)
)

=



































1 + 2 γ

2 γ

(

σ2
•
)

2γ

1+2γ

(

(

d
(1)
•
)2
)

1
1+2γ

, in R1

2ρ − 1

2ρ

(

σ2
•
)− 2ρ

1−2ρ

(

(

d
(2)
•
)2
)

1
1−2ρ

, in R2

2ρ − 1

2ρ

(

σ2
•
)− 2ρ

1−2ρ

(

(

d
(3)
•
)2
)

1
1−2ρ

, in R3 .

It is then sensible to consider the following:

Definition 3.1. Given γ̂n0,T1(q)= γ̂
T1(q)

(

k0,T1(q)

)

and γ̂n0,T2(q)= γ̂
T2(q)

(

k0,T2(q)

)

,

two biased PORT-estimators γ̂
T1(q)

and γ̂
T2(q)

for which distributional representa-

tions of the type (3.3) hold with constants
(

σ
T1

, d
T1

)

and
(

σ
T2

, d
T2

)

, d
T1

, d
T2
6= 0,

respectively, both computed at their optimal levels, the Asymptotic Root Effi-

ciency (AREFF ) of γ̂
T1(q)

relatively to γ̂
T2(q)

is

AREFF
T1(q) |T2(q)

≡ AREFFγ̂
T1(q)

| γ̂
T2(q)

:=

√

LMSE
(

γ̂n0,T2(q)

)

LMSE
(

γ̂n0,T1(q)

) ,

with LMSE given in (3.4).

Remark 3.1. Note that this measure was devised so that the higher the

AREFF measure is, the better the first estimator is.

Remark 3.2. The optimal levels k0,T (q) for the estimation of γ through

γ̂
T (q)

(k), with T denoting either H or M are denoted by k0,H(q) and k0,M(q) and

are given in Table 1.

Table 1: Optimal levels for the estimation of γ through PORT-Hill and

PORT-moment estimators.

Region k0,H(q) k0,M(q)

R1

(

C (1+ γ)nγ

|χq|
√

2 γ

)2/(1+2γ)
(

C
√

1+ γ2 (1+ γ)
2 nγ

γ2 |χq|
√

2 γ

)2/(1+2γ)

R2

(

(1− ρ)n−ρ

|β|√−2ρ

)2/(1−2ρ)
(

√

1+ γ2 (1− ρ)
2 n−ρ

|γ(1− ρ) + ρ| |β|√−2ρ

)2/(1−2ρ)

R3

(

C (1− ρ)n−ρ

|βC + χq|
√−2ρ

)2/(1−2ρ)
(

C
√

1+ ρ2 (1− ρ)
2 n−ρ

ρ2 |βC + χq|
√−2ρ

)2/(1−2ρ)
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Proposition 3.1. The AREFF-indicator of γ̂
M(q)

relatively to γ̂
H(q)

is:

AREFF
M(q) |H(q)

=















































(

γ2

1+ γ2

)

γ

1+2γ
(

1+ γ

γ

)
1

1+2γ

, in R1

(

γ2

1+ γ2

)

−ρ

1−2ρ
(

γ(1− ρ)

γ(1− ρ) + ρ

)
1

1−2ρ

, in R2

(

ρ2

1+ ρ2

)

−ρ

1−2ρ
(

1− ρ

|ρ|

)
1

1−2ρ

, in R3 .

This AREFF -measure is presented in Figure 1, where we can see that the

gain in efficiency for the PORT-moment estimator happens for a large region of

values of (γ, ρ).
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AREFFM (q )|H(q ) > 1.5
1< AREFFM (q )|H(q ) " 1.1 1.1< AREFFM (q )|H(q ) " 1.5

Figure 1: Asymptotic efficiency of γ̂
M(q)

relatively to γ̂
H(q)

in the (γ, ρ)-plane

whenever χq 6= 0.

4. ASYMPTOTIC BEHAVIOUR OF THE PORT-QUANTILE

ESTIMATORS

We first present the following result, proved in Ferreira et al. (2003), on the

asymptotic behaviour of intermediate order statistics:
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Proposition 4.1 (Ferreira et al., 2003). Under the second order frame-

work in (1.4) and for intermediate sequences of positive integers k, i.e. if (1.3)

holds,

Xn−k:n
d
= U(n/k)

(

1 +
γBk√

k
+ op

(

A(n/k)
)

)

,

where Bk is asymptotically standard normal, and

Cov(Bi, Bj) =
√

ij

(

1 − j/n

j −1

)

, i < j .

We shall now consider and study the new PORT-quantile estimator, in

(1.14). We can state the following result:

Theorem 4.1. Let us assume that the second order condition in (1.4)

holds, with A(t) = γβ tρ, that k is an intermediate sequence of integers, i.e. (1.3)

holds, and that ln(npn)/
√

k → 0, as n →∞, with pn given in (1.2). Then, for

any real q, 0 ≤ q < 1, and with T denoting either H or M ,

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

− 1

)

d
=(4.1)

d
= σ

T
Pk,T +

√
k

(

b
T

A(n/k) + c
T

χq

U(n/k)

)

(

1 + op(1)
)

−







√
k A(n/k)

ln

(

k
npn

)

(

b
T

2
γ
ln 2

2γ−1
− 2

γ+ρ−1

ρ(2γ−1)

)

+

√
k χq

U(n/k) ln

(

k
npn

)

2
γ
ln 2

2γ−1







(

1+ op(1)
)

,

with (b
T
, σ

T
) and c

T
given in (1.10) and (3.2), respectively, and where Pk,T is

asymptotically standard normal.

Proof: The PORT-quantile estimator in (1.14) can be written as

˜Qk,pn,T (q) := Xn−k:n

{

(

Xn−[k/2]:n

Xn−k:n
− 1

)

1

2T (q) − 1

(

k

npn

)T (q)

+
Xnq :n

Xn−k:n

}

.

Therefore,

˜Qk,pn,T (q)−χ1−pn

Xn−k:n
=

(

Xn−[k/2]:n

Xn−k:n
−1

)

1

2T (q)−1

(

k

npn

)T(q)

+
Xnq :n

Xn−k:n
− χ1−pn

Xn−k:n
.

As (2.2) holds, we can say that Xnq :n/Xn−k:n = op(1), and using the second

order condition in (1.4), we can guarantee that

Xn−[k/2]:n

Xn−k:n
=

U
(

2
n
k

)

U
(

n
k

)

d
= 2

γ

(

1 +
2

ρ−1

ρ
A(n/k)

(

1 + o(1)
)

)

.
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Since χ1−pn
= U(1/pn), the result in Proposition 4.1 enables us to write

χ1−pn

Xn−k:n
=

U
(

n
k

k
npn

)

U
(

n
k

)

U
(

n
k

)

Xn−k:n

d
=

(

k

npn

)γ(

1 − A(n/k)

ρ

(

1 + o(1)
)

)(

1 − γBk√
k

+ op

(

A(n/k)
)

)

=

(

k

npn

)γ (

1 − γBk√
k

− A(n/k)

ρ

(

1 + op(1)
)

)

,

and the use of the delta method leads us to

(

k
npn

)T (q)

2T (q) −1

d
=

(

k
npn

)γ

2γ −1

(

1 +
(

T (q)− γ
)

(

ln

(

k

npn

)

− 2
γ
ln 2

2γ −1

)

(

1 + op(1)
)

)

.

Therefore

˜Qk,pn,T (q) − χ1−pn

d
=

d
=

(

k

npn

)γ

Xn−k:n

{

(

T (q) − γ
)

(

ln

(

k

npn

)

− 2
γ
ln 2

2γ −1

)

(

1 + op(1)
)

+
γBk√

k
+

A(n/k) (2
γ+ρ−1)

ρ(2γ −1)

(

1 + op(1)
)

}

d
=

(

k

npn

)γ

U(n/k)

(

1 +
γBk√

k
+

A(n/k)

ρ

(

1 + op(1)
)

)

×
{

(

T (q) − γ
)

(

ln

(

k

npn

)

− 2
γ
ln 2

2γ −1

)

(

1 + op(1)
)

+
γBk√

k
+

A(n/k) (2
γ+ρ−1)

ρ(2γ −1)

(

1 + op(1)
)

}

,

using also the result presented in Proposition 4.1. Since

(

γBk/
√

k +
(

A(n/k)
/

ρ
) (

1 + op(1)
)

)

= op

(

1/
√

k
)

,

then

˜Qk,pn,T (q) − χ1−pn

d
=

d
=

(

k

npn

)γ

U(n/k)

{

(

T (q) − γ
)

(

ln

(

k

npn

)

− 2
γ
ln 2

2γ −1

)

(

1 + op(1)
)

+
γBk√

k
+

A(n/k) (2
γ+ρ−1)

ρ(2γ −1)

(

1 + op(1)
)

}

.
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Notice that χ1−pn
= U(1/pn) =

(

k/(npn)
)γ

U(n/k), and then

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d
=

√
k
(

T (q) − γ
)

−
√

k

ln

(

k
npn

)

(

T (q) − γ
) 2

γ
ln 2

2γ −1

+
γBk

ln

(

k
npn

) +

√
k

ln

(

k
npn

)

A(n/k) (2
γ+ρ−1)

ρ(2γ −1)
.

Using the distributional representation of T (q) in (3.1) and since ln
(

k/(npn)
)

→∞,

(4.1) follows.

Corollary 4.1. Under the conditions of Theorem 4.1, the following results

hold:

• In R1, i.e. for values of γ + ρ < 0 and χq 6= 0,

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d
= σ

T
Pk,T +

√
k

(

c
T

χq

U(n/k)

)

(

1 + op(1)
)

−
√

k χq

U(n/k) ln

(

k
npn

)

2
γ
ln 2

2γ −1

(

1 + op(1)
)

.

If
√

k
/

U(n/k) → λ1 finite, then

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d−→
n→∞

Normal
(

λ1cT
χq, σ

2
T

)

.

• In R2, i.e. for values of γ + ρ > 0 or γ + ρ ≤ 0 and χq = 0,

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d
=

d
= σ

T
Pk,T +

√
k
(

b
T

A(n/k)
)(

1 + op(1)
)

−
√

k A(n/k)

ln

(

k
npn

)

(

b
T

2
γ
ln 2

2γ −1
− 2

γ+ρ−1

ρ(2γ −1)

)

(

1 + op(1)
)

,

If
√

k A(n/k) → λ2 finite, then

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d−→
n→∞

Normal
(

λ2bT
, σ2

T

)

.
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• In R3, i.e. for values of γ + ρ = 0 and χq 6= 0,

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d
=

d
= σ

T
Pk,T +

√
k

(

b
T

A(n/k) + c
T

χq

U(n/k)

)

(

1 + op(1)
)

−







√
k A(n/k)

ln

(

k
npn

)

(

b
T

2
γ
ln2

2γ−1
− 2

γ+ρ−1

ρ(2γ−1)

)

+

√
k χq

U(n/k) ln

(

k
npn

)

2
γ
ln2

2γ−1







(

1+op(1)
)

,

If
√

k
/

U(n/k) → λ1 and
√

k A(n/k) → λ2, with λ1 and λ2 both finite,

then

√
k

ln

(

k
npn

)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d−→
n→∞

Normal
(

λ1cT
χq + λ2bT

, σ2
T

)

.

Remark 4.1. Notice that, under a second order framework, the mean

value and the variance of the r.v.
√

k
(

γ̂k,n,T (q)− γ
)

, provided in Corollary 3.1,

are equal to the ones of
√

k
(

˜Qk,pn,T (q)/χ1−pn
− 1
)/

ln
(

k/(npn)
)

.

Since ln
(

k/(npn)
)

goes to infinity very slowly, we can state a pre-asymptotic

distributional representation, for moderate k and n:

Corollary 4.2. Under the conditions of Theorem 4.1 and for moderate

values of k and n, the following pre-asymptotic results hold:

• In R1, if
√

k
/

U(n/k) → λ1, finite, and with

µ1 := λ1 c
T

χq

(

1 − 2
γ

ln 2

2γ −1

1

c
T

ln
(

k/(npn)
)

)

,

√
k

ln
(

k/(npn)
)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d≈ Normal

(

µ1, σ
2
T

(

1+
γ2

σ2
T

ln
2
(

k/(npn)
)

))

.

• In R2, if
√

k A(n/k) → λ2, finite, and with

µ2 := λ2 b
T

(

1 +
1

ln
(

k/(npn)
)

(

2
γ

ln 2

2γ −1
− 2

γ+ρ−1

ρ(2γ −1)b
T

)

)

,

√
k

ln
(

k/(npn)
)

(

˜Qk,pn,T (q)

χ1−pn

−1

)

d≈ Normal

(

µ2, σ
2
T

(

1+
γ2

σ2
T

ln
2
(

k/(npn)
)

))

.
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• In R3, if
√

k
/

U(n/k) → λ1 and
√

k A(n/k) → λ2, with λ1 and λ2 both

finite, then, with

µ1 + µ2 = λ1 c
T
χq

(

1− 2
γ

ln 2

2γ −1

1

c
T

ln
(

k/(npn)
)

)

+ λ2 b
T

(

1+
1

ln
(

k/(npn)
)

(

2
γ

ln 2

2γ −1
− 2

γ+ρ−1

ρ(2γ −1)b
T

)

)

,

√
k

ln
(

k/(npn)
)

(

˜Qk,pn,T(q)

χ1−pn

−1

)

d≈ Normal

(

µ1+µ2, σ
2
T

(

1+
γ2

σ2
T

ln
2
(

k/(npn)
)

))

.

5. CONCLUSIONS

The new PORT-quantile estimator, defined in (1.14), is asymptotically

equivalent to the PORT-quantile estimator in (1.13), studied in Araújo Santos

et al. (2006). Consequently, and for finite sample sizes, we do not expect a much

better behaviour of this new estimator comparatively to the one in (1.13). How-

ever, the use, in (1.14), of a PORT-version of a minimum-variance reduced-bias

extreme value index estimator, like the ones in Caeiro et al. (2005), Gomes et al.

(2007a) and Gomes et al. (2008b), leads to quantile estimators which overpass

the estimator in Caeiro and Gomes (2008) and enjoy the adequate behaviour

in the presence of linear transformations of the data. Also, the use of subsam-

pling procedures, similar to the ones in Hall and Scotto (2008), can improve this

estimation procedure. These are however topics out of the scope of this paper.
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1. INTRODUCTION

Patents are one of the main sources of technological information. A patent

is an exclusive right granted to inventors by a state only when the invention fulfils

three basic requirements: the invention is new, it involves an inventive activity

and it is useful for industry. Until now research involving patent data has been

associated with the analysis of information contained in the patent document,

such as backward and forward citations or number of claims, and the relationship

between patents and research and development (R&D), innovation or economic

growth. In recent years, patent indicators have been used to study the economical

value of patents. In most cases, analytical approaches have been based on stan-

dard econometric analysis techniques such as probit or logit models, and survey

analysis. However, patent value may be seen as a complex construct depending on

a variety of elements. General and specific market conditions, countries’ legal

frameworks, geographic proximity or accumulated scientific and technological

knowledge are different dimensions that have shown to affect patent value.

This paper proposes that a holistic and multidimensional model may offer

a robust understanding of the different variables that determine patent value.

For the moment, and considering patent document information, two path models

are built considering five dimensions represented by five constructs. They are:

patent value, technological usefulness of the invention, knowledge stock used by

the company to create the technology, technological scope of the invention, and

international scope of protection. The models are strongly based on the the-

ory developed by the technological change scientific community and a thorough

review of the literature on patent valuation. Each construct is associated with

a set of observable variables. So, they can be estimated by these indicators.

Manifest variables are mainly built from information contained in patent docu-

ments. A set of patents granted in the United States (U.S.) in the area of renew-

able energies was retrieved from Delphion database. The proposed path models

are replicable because they could be repeated for different technological fields or

countries. Moreover, the models may allow one to distinguish between: (a) those

variables related to patent value at the time of application, i.e. those variables

that could deliver a measure of potential value of patents, and (b) those that

determine the value after the patent’s application.

In the literature, research that addresses patent value using a structural

equation model (SEM) approach is quite scarce. Moreover, rather traditional

methods based on multivariate normal distribution assumption have been imple-

mented. The advantage of SEM is flexibility in working with theory and data,

approaching the whole phenomenon, and a more complete representation of the

complex theory. Additionally, and contrary to a covariance-based approach such

as the linear structural relation model (LISREL), PLS path modelling is theory-
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building-oriented and causal-predictive-oriented. Therefore, the exploratory na-

ture of this procedure allows for the first formulation of a structural model of

patent value. Finally, the PLS path modelling algorithm is a powerful technique

for the analysis of skewed or long-tail data, such as patent data. Therefore, we

also attempt to show the benefits of PLS path modelling as a tool for exploration

and prediction of skewed data.

In this research, the models specification is made from a PLS perspective.

So, we are posing PLS models. Section 2 provides background on patent indica-

tors and constructs, and section 3 reviews the PLS path modelling procedure for

hierarchical component models with repeated manifest variables and formative

constructs. Section 4 addresses the first- and second-order model formulation,

while also postulating on the indicators, latent variables (LVs) and causal rela-

tionships among variables. In particular, formative and reflective relationships

among manifest and latent variables are justified. A description of patent data is

given in Section 5. Section 6 reports the results, and shows the performance and

effectiveness of PLS path modelling when working with patent data characterized

by long tails. Finally, section 7 gives final remarks and some directions for future

research.

2. PATENT INDICATORS AND CONSTRUCTS

Patent indicators have been used by scientific communities to study phe-

nomena such as technological change or the growth of science and technology.

Forward citations, i.e. the number of times that each patent has been cited by

another patent, are the most widely used indicator to measure the value or im-

portance of patents. Nevertheless, other indicators have also been introduced as a

measure of value, such as family size, number of claims, number of international

patent classification (IPC) codes where the patent is classified, and backward

citations. Here, family size refers to the number of countries where a patent is

sought for the same invention [27]. As a general patenting strategy, companies

protect their inventions in their local countries first and then in other jurisdictions.

Patents with a large family size tend to be more valuable or important [21], al-

though Guellec et al. reported that this relationship might sometimes be inaccu-

rate and “may reflect a lack of maturity of the applicant” [18, p. 114]. Even so,

family size may be proposed as a proxy variable for the international scope of

patent rights, and as a measure of patent value. The number of backward cita-

tions or references in a patent represents “all of the important prior art upon

which the issued patent improves” [35, p. 318], and allows one to demonstrate

that the invention is genuinely new. Claims are made in a special section in the

patent document, where the thing that is being protected is specified. The claims

section consists of a numbered list. Therefore, the number of claims is in fact
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the number of inventions protected [42, p. 134]. Patents with a large number of

claims have a higher likelihood of being litigated, so they can be considered more

valuable [22, 28, 38]. International patent classification classes were introduced

as a proxy variable for the scope of protection by Lerner [31]. An invention with

a larger technological scope should be more valuable due to its broader potential

applications. The number of inventors and the number of applicants have also

been used as indicators of the patent value [38].

Most patent indicators have been used to explain a conceptual variable or

a construct. The relationship between patent citations and patent value has been

deeply studied [1, 4, 18, 20, 21, 37, 38, 43]. Carpenter et al. [4], Albert et al. [1]

and Harhoff et al. [20] have successfully shown that those patents that are related

to important technological developments are most highly cited. Harhoff et al. [21]

was the first to use backward and forward citations together as proxy variables

for patent value, and Trajtenberg [43] established the role of citations as an in-

dicator of the value of innovations. Patent citations and patent value have also

been associated with market value and/or the R&D expenditures of companies

[10, 15, 19, 31]. The relationship among patent value and patenting strategy,

technological diversity (through the IPC), domestic and international R&D col-

laborations and/or co-applications (analyzing the country of residence of the au-

thors) and the mix of designated states for protection (through the family size),

have been studied by Guellec and van Pottelsberghe [18]. Reitzig [37, 38] studied

the factors that determine an individual patent value. Analyzing the results of a

questionnaire, he found that novelty and inventive activity are the most impor-

tant factors in patents that are used as “bargaining chips”. Connolly et al. [10]

showed that patent statistics are significantly related to companies’ market value.

In addition, Griliches [15] found a significant relation among companies’ market

value, the book value of R&D expenditures and the number of patents. He based

his research on a time-series cross-section analysis of United States firm data.

Lerner [31] reported that patent scope has a significant impact on the valuation

of firms, while Hall et al. [19] investigated the trend in US patenting activities

over the last 30 years, finding that the ratios of R&D to asset stock, patents to

R&D, and citations to patents significantly affect companies’ market value.

On the other hand, some of these indicators have been related to other

constructs. The number of inventors and applicants, backward citations and

the number of claims have been related to patent novelty, i.e. the technological

distance between a protected invention and prior art. A patent’s protection level

or its technological scope or breadth can be measured by the number of claims or

number of IPC classes into which the patent is classified [31]. Furthermore, patent

stocks or knowledge stocks have been associated with the economic growth of a

country as well as the economical activity [16], research and development results

[29] and the value of innovation [40] and technological performance [42]. In this

last case, the researchers found that the number of claims is a better indicator

than the number of patents in the national technological capacity.
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Finally, little research has reported on the structural relationship among

latent variables which influence patent value using a multidimensional approach.

The recent investigations of Harhoff [21, 22] and Reitzig [37, 38] used a large

number of indicators of patent value aimed mainly at estimating the probability

of opposition to a patent. In most cases, analytical approaches have been based

on standard econometric analysis techniques (probit or logit models) or survey

analysis. One reason that could explain why a multidimensional and structural

approach has not been applied to technology/patent valuation is that more gen-

eral structural models are based on maximum likelihood estimation and the mul-

tivariate normal distribution of data. Patent indicators are very heterogeneous

and asymmetric, and, in general, they exhibit a large variance and skew. Conse-

quently, assuming that this type of data has a multivariate normal distribution

may lead to biased results. As seen below, PLS path modelling overcomes this

drawback because it is an iterative algorithm that makes no assumptions about

data distribution. Moreover, unlike other methods such as probit or logit models,

it allows researchers to depict the relationship among a set of latent variables.

Thus, we have the possibility of modelling the patent value as an unobservable

variable.

2.1. Patent value

Patents are intellectual assets that do not necessarily have an immediate

return. A patent may protect a product that can be manufactured and sold. But

a patent may also protect technologies which, together with other technologies,

enable the manufacture of a final product. In both cases, to obtain an economic

value from patents may be extremely difficult. In studying patent value, different

approaches have been taken throughout the literature. Some of the approaches

focus on the private value of a patent while others concentrate on a patent’s

social value. Lanjouw et al. [27, p. 407] defined the private value of a patent

in terms of “the difference in the returns that would accrue to the innovation

with and without patent protection”. The magnitude of this difference would

be crucial in applying or renewing the protection. Reitzig [38] also focused on

the private value of patents, and specifies the need to consider the patent value

as a construct. Technical experts were surveyed and, according to them, the

research showed that the factors that determine patent value are: state of the

art (existing technologies), novelty, inventiveness, breadth, difficulty of inventing,

disclosure and dependence on complementary assets
1
. Additionally, Trajtenberg

[43] showed that patent data was highly correlated with some indicators of the

social benefits of innovations. Guellec et al. [18] presented a value scale proposing

1We attempt to consider these variables as constructs in the proposed structural model.
However, recall that in this research, the manifest variables are mainly obtained from the patent
document. So, latent and manifest variables are subject to this constraint.
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that technology increases its own value as it passes through different stages: from

invention to application, examination, publication and decision to grant, and

finally to the high value stage if the patent is granted. The distinction is made

between the intrinsic value of the patent simply for being granted (and thereby

having proven novelty, inventive activity and applicability) and the potential

value of technology (dependent on its potential for generating future returns).

Some patent indicators have been used to directly infer the patent’s value,

such as forward citations or family size (see Table 1). Even though this may be

useful and may give an approximation of the patent value, many elements may

affect the invention and protection process. We consider some of these factors

based on the presented background, and represent their interactions proposing a

multidimensional analysis of the problem. It is worth noting that this research

does not seek to determine the value of an individual patent or to obtain a

monetary value of the assets. Rather, the patent value is proposed in terms of

the technological usefulness of the inventions. This model, however, allows us to

compare and rank the value of a company’s patent portfolios. We address the

question of what variables determine the patent value and how they relate to

each other. These variables are modeled as unobserved variables. So, they and

their relationships set up a structural equation model.

Table 1: Brief summary of different approaches used to study the patent value.

Author Construct Indicators
Dependent

Method
variable

Trajtenberg (1990)
Social value of Patent count weighted Consumer surplus Multinomial
innovations by citations logit model

Guellec et al. (2000)

Patent value, Number of IPC, Probability that Probit model
patenting strategy, family size, a EPO patent
technological diversity, dummy variables, application is
R&D collaboration etc. granted

Reitzig (2003)

Patent value, novelty,

—

‘present patent Survey,
inventive activity, value’ probit model
invent around,
disclosure

Harhoff et al. (2003)

Private value of Survey of patent- Patent right as Survey,
patents, value of holders, backward a price to sell probit model
renewed patent and forward citations, the patent right
protection and asset family size, IPC,
value of patent right outcome of opposition

proceedings

Hall et al. (2005)
Market value Patent citations, Tobin’s q Tobin’s Q

R&D expenditures, equation
total assets
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3. THE PLS PATH MODELLING APPROACH FOR MODEL

FORMULATION

PLS path modelling is a component-based procedure for estimating a se-

quence of latent variables developed by the statistician and econometrician Her-

man Wold [45, 46, 47]. During the last few years, it has proved to be useful

for estimating structural models, in marketing and information system research

in particular, and in the social sciences in general [6, 12, 23, 24, 33, 41]. Some

of its features have encouraged its use, such as: (1) it is an iterative algorithm

that offers an explicit estimation of the latent variables, and their relationships,

(2) it works with few cases and makes no assumptions about data distribu-

tion — in contrast with LISREL that makes strong assumptions about data

distribution and where hundreds of cases are necessary for its application, and

(3) it overcomes the identification problems when formative measurement mod-

els are included. Wold [47] emphasizes that “using prior knowledge and intuition

the investigator is free to specify the LVs, to design the inner relations, and to

compile a selection of indicators for each LV” [p. 582]. The path model “is usually

tentative since the model construction is an evolutionary process. The empiri-

cal content of the model is extracted from the data, and the model is improved

by interactions through the estimation between the model and the data and the

reactions of the researcher” [45, p. 70].

In a PLS path modelling approach, the structural model or inner model —

also called the inner relations and substantive theory — depicts the relationship

among latent variables as multiple regressions:

(3.1) ξj = βj0 +

∑

i

βji ξi + νj

where ξj and ξi are the endogenous and exogenous latent variables, respectively,

and βji are called path coefficients and measure the relationship among con-

structs. The arrangement of the structural model is strongly supported by theory

at the model specification stage. So, PLS path modelling is used to explore if

these relationships hold up or whether other theory-based specifications, that may

be proposed, help in providing a better explanation for a particular phenomenon.

The condition imposed is E(ξj/ξi) =
∑

i βji ξi. There is no linear relationship

between predictor and residual, E(νj/∀ξi) = 0 and cov(νj , ξi) = 0.

The measurement model or outer model — also called the outer relations —

describes the relationship between latent (ξi) and manifest (xih) variables in two

different ways: mode A and mode B. “Mode A is often used for an endogenous

LV and mode B for an exogenous one. Mode A is appropriate for a block with

a reflective measurement model and mode B for a formative one” [41, p. 268].

Reflective relationships seek to represent variance and covariances between the
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manifest variables that are generated or caused by a latent variable. So, observed

variables are treated as an effect of unobserved variables [2, 9]. In a reflective

measurement model, the manifest variables are measured with error. Alterna-

tively, formative relationships are used to minimize residuals in the structural

relationships [14], and here, manifest variables are treated as forming the unob-

served variables. MacCallum and Browne [32] said that observed variables in a

formative model are exogenous measured variables. In a formative outer model

the manifest variables are presumed to be error-free and the unobserved variable

is estimated as a linear combination of the manifest variables plus a disturbance

term, so they are not true latent variables (as in the traditional factorial ap-

proach). As in this case all variables forming the construct should be considered,

the disturbance term represents all those non-modeled causes.

In mode A or in reflective relationships, manifest and latent variables rela-

tionships are described by ordinary least square regressions:

(3.2) xih = πih0 + πih ξi + ǫih .

The parameters πh are called loadings. The condition imposed is E(xh/ξ) =

πh0 + πh ξ, ǫh with zero mean and uncorrelated with ξ. Loadings indicate the

extent to which each indicator reflects the construct, and represent the correlation

between indicators and component scores.

In mode B or in formative relationships, unobserved variables are generated

by their own manifest variables as a linear function of them and a residual:

(3.3) ξi =

∑

h

wih xih + δi .

The parameters wh are called weights, and allow us to determine the extent

to which each indicator contributes to the formation of the constructs. Each

block of manifest variables may be multidimensional. The condition imposed is

E(ξ/xh) =
∑

h whxh. This implies that the residuals δi have zero mean and they

are uncorrelated with the manifest variables xi.

Wold’s basic-design of PLS path modelling [45, 46, 47] does not consider

higher-order latent variables. Therefore, in Wold’s algorithm each construct must

be related to a set of observed variables in order to be estimated. However,

Lohmöller [30] proposed a procedure for the case of hierarchical constructs; that

is to say, for cases where there is a construct that does not have a block of mea-

surement variables, or more simply: it is only related to other constructs. In

hierarchical component modelling, manifest variables of first-order latent vari-

ables are repeated for the second-order latent variable. So, a set of “auxiliary”

variables is introduced for estimation purposes. After that, the model is esti-

mated using PLS path modelling in the usual way. Hence, the specification of

PLS has an additional equation that Lohmöller [30] called the cross-level relation:

(3.4) yjl = πjl0 + πjl ξj + ǫjl .
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The condition imposed is E(ξj ǫjl) = 0. We are interested in this type of model

because, as seen below, the patent value construct may be modeled as a second-

order latent variable, i.e. the value can only be estimated through linear relations

with other latent variables.

Reliability of reflective measurement models is evaluated by examining load-

ings. A rule of thumb generally accepted is 0.7 or more. This implies that “there

is more shared variance between construct and variable than error variance” [24,

p. 198]. A low value in a loading factor suggests that the indicator has little rela-

tion to the associated construct. All indicators of a block of variables must reflect

the same construct. Therefore, there should be high collinearity within each block

of variables. Thus, the internal consistency of a reflective measurement model

is related to the coherence between constructs and their measurement variables.

The unidimensionality of the block of variables may be assessed by using Cron-

bach’s alpha coefficient (should be > 0.7), and composite reliability (should be

> 0.7). According to Chin [6, p. 320] “alpha tends to be a lower bound estimate

of reliability whereas composite reliability is a closer approximation under the

assumption that the parameter estimates are accurate”.

To represent the extent to which measures of a given construct differ from

measures of other constructs (discriminant validity), the average variance ex-

tracted (AVE) may be calculated. Therefore, as suggested by Fornell and Larcker

[13], the percentage of variance captured by the construct in relation to the vari-

ance due to random measurement error is computed (should be > 0.5). Likewise

when models have more than two reflective constructs, cross loadings may be ob-

tained by calculating the correlations between component scores and indicators

associated with other reflective constructs. If an indicator has higher correlation

with another latent variable instead of the associated latent variable, its position

should be reconsidered in the model. Therefore, each indicator has to be more

related to its construct than another one in the same model. To assess the sig-

nificance of loadings, weights and path coefficients, standard errors and t-values

may be computed by bootstrapping (200 samples; t-value>1.65 significant at the

0.05 level; t-value> 2 significant at the 0.01 level).

The inner model is assessed by examining the path coefficients among la-

tent variables. The value of path coefficients provides evidence regarding the

strength of the association among latent variables. Moreover, the coefficient of

determination (R-square) of each endogenous variable gives the overall fit of the

model or the percentage of variance explained by the model. In this research,

PLS path modelling and bootstrapping were carried out in SmartPLS [39] with

a centroid weighting scheme.
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3.1. A brief overview of formative and reflective outer models

The distinction between reflective and formative measurement models for

structural equation models is an issue that has been addressed by several scientific

communities. Major contributions have been made by researchers from statistics

[9], psychology and sociology [2, 3], information science [36], and business and

marketing research [11, 14]. There are some decision rules criteria to determine

if a relationship should be modeled as formative or reflective (mode B or mode A

in the Wold’s PLS approach). The guidelines can be summarized in five points

as follows [9, 14, 34]. (1) The strong theory and the previous knowledge of a phe-

nomenon under study should help to clarify the generative nature of the construct.

When a formative relationship is considered, manifest variables must cover the

entire scope of construct. (2) Correlations among manifest variables. In a reflec-

tive outer model, manifest variables have to be highly correlated; in contrast this

condition must not be applied in a formative outer model. (3) Within-construct

correlations versus between-construct correlations. This is a common practice

in the model specification stage by means of cross-validation; the applied rule is

that the former should be greater than the latter. However, Bollen and Lennox

[2] show that this may lead to an incorrect indicator selection for reflective and

formative outer models, because this rule may have exceptions. So, the condition

must be applied with caution. (4) Sample size and multicollinearity affect the

stability of indicator coefficients, and they are a frequent problem in multiple

regressions. So, multicollinearity will influence the quality of the estimates in

formative relationships. (5) Interchangeability. This concept refers to whether or

not the manifest variables share the same concept [11, 25]. All manifest variables

in a reflective model explain the same construct. So, removing an indicator from

the block of variables should not have a significant effect on the construct. The

situation is completely different when considering formative outer models. The

indicators do not have to be interchangeable or share the same concept. That is

what [2] called “sampling facets of a construct”; in other words manifest variables

of a formative block of variables should represent all the aspects that form the

concept. Finally, Gudergan et al. [17] recently proposed a procedure based on

tetrad analysis to distinguish between a reflective and formative measurement

model in a component-based approach. However, when an outer model has less

than four observed variables, this procedure requires adding manifest variables

from other outer models. Therefore, the discussion on the reflective and formative

nature of the constructs studied here is based mainly on the five rules presented

previously.
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4. PATENT VALUE MODELS

Two models were tested. First of all, we are interested in knowing the

relationships among patent indicators, patent value, and different constructs

which up to now have been studied and identified as patent value determinants
2
.

In previous research, these constructs have not been modeled as unobservable

variables, such as in a structural equation model approach. So, the model for-

mulation began by defining the patent value as an endogenous latent variable,

since it is the primary variable to be estimated in the model. Summarizing the

results of previous researchers, three unobserved variables related to the depen-

dent variable were identified as exogenous: the knowledge stock of the patent, the

technological scope of the invention, and the international scope of the protection

(see Figure 1). We took into account all of the measurement variables found in

the state of the art, and which can be computed from information contained in

the patent document. Nevertheless, indicators constructed from the patent text,

such as from the abstract or technical description, are excluded from this study.

Figure 1: First-order model of patent value; patent value is an endogenous

latent variable; knowledge stock, technological scope, and inter-

national scope are formative exogenous constructs.

The knowledge stock represents the base of knowledge that was used by the

applicant to create an invention. This would be the content domain. This existing

knowledge encourages the inventive activity and may come from within or outside

the company. We would like to find those indicators that are value determinants,

and that companies may use to make decisions. Since we are considering the

patent document as the main data source, the applicants and inventors — that

have contributed their knowledge to the creation of the invention — may be

considered as forming this construct. The same applies to the backward citations.

2It is worth noting that we are not interested in explaining the variance and covariance among
manifest variables as in a covariance-based approach, at least not at this stage.
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The previous works, cited in the patent document, are the scientific and technical

knowledge units that must exist before the creation of an invention, and they may

be used as knowledge inputs within the invention process. Moreover, backward

citations represent the prior art, and demonstrate that the invention had not been

protected before. These three indicators have been related to the patent value

for other authors (see for instance [38]). However, they still have not been used

to estimate an unobserved variable as they are in a structural equation model.

From a theoretical standpoint, the knowledge stock is an exogenous latent

variable, and affects the value of a patent. Keeping in mind the backward cita-

tions, it seems reasonable to think that an invention that is protected in an area

where a lot of inventions are applied — hence with a large knowledge stock — will

have less value than a potential radical innovation or a breakthrough invention,

and therefore having a smaller knowledge stock. The number of inventors and

applicants are revealed first in time, and cause a change on the knowledge stock,

and not vice-versa. Additionally, it is not difficult to see that there is no covari-

ance among backward citations, and the number of inventors and applicants. For

instance, a patent may contain a large number of references, but the invention

may be created only by one inventor or by one applicant. So, a reflective approach

would fail to meet the unidimensionality condition. For this construct, however,

multicollinearity would not be a problem. Hence, a formative mode is suitable

for modelling the relationship between the indicators and the knowledge stock.

The technological scope of the invention is related to the potential utility

of an invention in some technological fields. So, the manifest variables for this

construct are the number of four-digit IPC classes where the patent is classified,

and the number of claims of the patent. The IPC classes allow us to know the

technical fields related to the invention, and therefore the number of potential ap-

plication fields. This does not mean that an invention ultimate use is restricted to

a determined area. A company may protect an invention for strategic purposes,

for example to prevent its being used by a competitor. Here, the underlying issue

is that the larger the number of classification codes, the larger the number of

potential application fields, and hence, the greater the technological scope of the

patent. On the other hand, and according to Tong and Frame [42, p. 134], “each

claim represents a distinct inventive contribution, so patents are, in effect, bun-

dles of inventions”. Claims are a description of what the inventors actually claim

to have invented and describe the potential application of the invention. As seen

in the literature review, the number of claims should reflect the inventive activity

of the invention. So, under the assumption that a highly sophisticated invention

will require much inventiveness, the patent will also have a considerable amount

of claims. Thus, this variable will also give information about the technological

scope of the patents. It is arguable that this is not always so. Probably there

are sophisticated inventions that have not required a large number of claims to

be protected. But this may be unusual in the renewable energy field. As seen
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in Table 1 below, the number of claims is a skewed variable (skewness = 4.29,

kurtosis = 43.65), with median 14. Following the rules presented before to dis-

tinguish between formative and reflective outer models, in this case, the manifest

variables are revealed first, and cause a change in the technological scope of the

inventions. When defining the manifest variables determining the technological

scope. Probably, inventors have an idea of the applicability of the invention long

before the time of protecting it. But, it is the patent value, therefore the protected

invention, that is being analyzed here. So, a formative relationship is modeled

between the indicators and the constructs. Additionally, as with the knowledge

stock, there is no collinearity among manifest variables, and the block of variables

is not one-dimensional.

The international scope refers to the geographic zones where the invention

is protected. Inventions are usually protected in the local country first and then

in others, as part of the companies’ patenting strategy. All the patents considered

in the sample are granted in the U.S. So, we defined two dummy variables that

consider whether the invention had been protected in Japan (priority JP) or in

Germany (priority DE) during the priority period. Japan and Germany are large

producers of renewable energy technologies. Hence, it is interesting to examine

whether these variables affect the patent value. Variables indicating whether

inventions have been protected through the European Patent Office (EPO) or

by the World Intellectual Property Organization (WIPO) have been excluded

from the analysis because they provide little information. This means that for

the international scope, not all the variables that could form the construct are

being considered. So, higher disturbance terms are expected in this case. The

international scope is clearly caused by the manifest variables. Here, again there

is no collinearity among manifest variables, the block of variables is not one-

dimensional. Therefore, formative relationships are considered in this block of

variables.

On the other hand, the importance of a patent for future technological

developments will be reflected in the number of times that the patent is cited,

since the patent is useful for the development of other technologies [18], and in

the patenting strategy pursued by the company over time. The latter is mea-

sured by taking into account the size of the patent family or the number of

countries where the protection is sought. For the block of variables of patent

value, a reflective relationship is considered between manifest and latent variables.

As in this case all the indicators should explain the same construct (aside from

the variables that have traditionally been used to infer the patent value), dummy

variables are defined by considering whether the patent has been protected in

Japan (JP), Germany (DE) or through the European Patent Office (EP). So,

in this research, the first analyzed case is a first-order model composed by four

constructs: knowledge stock, technological scope, international scope, and patent

value (Figure 1).
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It is worth noting that the first three constructs — knowledge stock, techno-

logical scope, and international scope — give an a priori value of patents. Thus,

the intrinsic characteristics of the patent at the time of its application, along

with the patenting strategy of the company in the priority period, may give a

preliminary idea of patent value. In contrast, patent value estimated through

forward citations and family size gives an a posteriori value for patents. This

value (recognized value) is obtained over time and is given by others through the

number of times that the patent is cited and the number of countries where the

protection is sought. Estimating the patent value only through these manifest

variables seems too ambitious. Rather, it is reasonable to think that the patent

value is jointly given by those variables that determine the a priori and the

a posteriori patent value. Using this approach, the influence of the a posteriori

relative to the a priori patent value may also be assessed. Hence, the indicators

that were initially related to the patent value are also associated with a fifth

underlying latent variable related to the potential usefulness of the patent. The

more useful a patent is, the more it is cited by others and the more important it

is to the company’s patenting strategy. We call this latent variable “technolog-

ical usefulness”. From a methodological standpoint, this means that the patent

value is not directly related to a block of observed variables. So, this construct

is regarded as a second-order latent variable that is influenced by all of the other

constructs in a second-order model. The proposed model is shown in Figure 2.

We explore the veracity of the assumptions with PLS path modelling.

Figure 2: Hierarchical component model of patent value; patent value is an

endogenous second-order latent variable; technological usefulness

is a reflective endogenous latent variable; knowledge stock, tech-

nological scope, and international scope are formative exogenous

constructs.
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5. PATENT DATA

Renewable energy patents include wind, solar, geothermal, wave / tide,

biomass, and waste energy. To select suitable patent data, we use the IPC classes

for renewable energies listed by Johnstone et al. [26]. The sample comprises a

total of 2,901 patents (sample 1), published in 1990–1991, 1995–1996, 1999–2000

and 2005–2006, and granted in the U.S. (source: Delphion database). We re-

trieved these data, and the indicators described above were computed. The num-

ber of claims was collected manually for each patent.

Table 2 provides descriptive statistics for patent indicators. The results

indicate that some variables are very heterogeneous and asymmetric, and they

also exhibit large variance. So, normality is not a good assumption. Positive

values of skewness indicate positive/right skew (notice how the medians are always

smaller than the means). Likewise, positive kurtosis indexes show distributions

that are sharper than the normal peak.

Table 2: Descriptive statistics of patent data.

Manifest
Mean

Standard
Minimum Mediam Maximum Skewness Kurtosis

Variable Deviation

Number of applicants 1.04 0.29 1 1 9 12.85 260.81
Number of inventors 2.21 1.58 1 2 14 1.76 4.23
Backward citations 15.36 18.97 0 11 327 5.54 50.79

Number of IPC 6.28 4.52 1 5 48 2.09 7.71
Number of claims 17.02 15.08 1 14 279 4.29 43.65

Priority JP 0.19 0.39 0 0 1 1.54 0.37
Priority DE 0.08 0.27 0 0 1 3.09 7.55

Forward citations 5.63 10.16 0 2 158 5.3 46.83
Family size 8.53 11.62 1 6 202 5.58 51.27
Dummy JP 0.44 0.49 0 0 1 0.23 −1.95
Dummy DE 0.32 0.46 0 0 1 0.75 −1.44
Dummy EP 0.43 0.49 0 0 1 0.25 −1.94

Additionally, the priority countries of these patents are U.S. (59%), Japan

(19%), Germany (9%), Great Britain (2%), France (1%) and so on. Patents be-

long to 1,581 applicants. Patents have been granted to companies (69%), individ-

uals (25%) and universities, research centers or governmental institutions (6%).

Due to the manner in which the sample was selected, the sample is homogenous

in terms of technological area and the country where the patents were granted.

However, the sample is heterogeneous in terms of the type of applicant or the

industry in which the companies are classified, and this heterogeneity could af-

fect the results. This also means that there are companies belonging to different

industries that are interested in developing renewable energy innovations. At any

rate, it is worth noting that at this stage, the patent value model is being tested

in general at the level of renewable energy technologies. We estimate the model

using the total sample (2,901 patents, sample 1). However, providing that time
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is an important factor that may affect the findings, three additional samples were

taken. Patent indicator matrices were selected in the following application years:

1990–1991 (N = 129, sample 2), 1995–1996 (N = 128, sample 3) and 1999–2000

(N = 536, sample 4). So, in order to analyze whether it is possible to find a pattern

in the parameter estimates, the proposed models were estimated with all data,

and with time-period data (notice that cases are different in each time-period).

6. RESULTS

The internal consistency of reflective outer models, technological usefulness

and patent value was assessed by using Cronbach’s alpha and composite reliabil-

ity. For the first-order, the Cronbach’s alpha coefficients for patent value are 0.68,

0.79, 0.76 and 0.68 for samples 1, 2, 3 and 4, respectively. Moreover, composite

reliability coefficients are 0.77, 0.85, 0.84 and 0.79 for each sample, respectively.

So, the patent value is unidimensional. AVE scores are 0.48, 0.56, 0.54 and 0.48

for patent value and for samples 1, 2, 3 and 4, respectively. So, the constructs

capture on average more than 50% of the variance in relation to the amount

of variance due to measurement error. In the second-order model, technological

usefulness has the same Cronbach’s alpha and composite reliability coefficients

that patent value has in the first-order model. Cronbach’s alpha coefficients for

the patent value are 0.59, 0.68, 0.7 and 0.58 for samples 1, 2, 3 and 4, respec-

tively. Composite reliability coefficients are 0.72, 0.76, 0.79 and 0.71 for each

sample, respectively. Therefore, both technological usefulness and patent value

are unidimensional. The technological usefulness captures on average a 54% of

the variance in relation to the amount of variance due to measurement error (see

the AVE scores for patent value in the first-order model). However, AVE scores

for patent value (second-order latent variable) are quite different, 0.24, 0.29, 0.3

and 0.22 for samples 1, 2, 3 and 4, respectively. So, this block of variables is uni-

dimensional, and the latent variable captures on average a 26% of the variance

in relation to the amount of variance due to measurement error. This low per-

centage may be because reflective and formative indicators have been repeated

for the second-order latent variable.

Table 3 reports the cross loadings for the reflective block of variables in the

second-order model of patent value in the three analyzed time-periods. Forward

citations, family size and dummy variables JP, DE and EP are slightly more cor-

related in the three time-periods, with the technological usefulness of the patents

rather than the patent value itself. In regards to other indicators, quite the op-

posite happens: the correlation between indicators and patent value are always

higher than the correlation between indicators and technological usefulness. This

is adequate even though patent value indicators are used as auxiliary variables

in order to estimate the model. It is worth noting that cross loadings of some
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variables are very similar over time, suggesting a pattern. This phenomenon is

interesting because it indicates that the number of inventors; the number of IPC

classes; dummy variables JP, DE and EP; forward citations and family size are

strongly and constantly correlated with the patent value and its technological

usefulness throughout time. This empirical evidence supports the relationships

between latent and manifest variables as proposed in the models.

Table 3: Cross loadings between indicators for reflective block of variables.

Manifest
1990–1991 1995–1996 1999–2000

Variable Patent Technological Patent Technological Patent Technological
Value Usefulness Value Usefulness Value Usefulness

Number of inventors 0.572 0.279 0.611 0.424 0.492 0.135
Backward citations 0.064 0.129 0.092 0.067 0.141 0.091

Number of IPC 0.587 0.387 0.465 0.357 0.495 0.228
Number of claims −0.074 −0.027 0.403 0.257 0.131 0.048

Dummy priority JP 0.527 0.258 0.391 0.253 0.414 0.162
Dummy priority DE 0.205 0.127 0.103 0.127 0.154 0.136
Forward citations 0.229 0.292 0.295 0.29 0.085 0.085

Family size 0.775 0.894 0.741 0.825 0.714 0.859
Dummy JP 0.816 0.836 0.818 0.833 0.727 0.774
Dummy DE 0.692 0.775 0.754 0.808 0.559 0.681
Dummy EP 0.666 0.818 0.739 0.799 0.658 0.809

Tables 4 and 5 present the standardized loadings and weights by PLS es-

timation and t-values by bootstrapping for the first- and second-order models,

respectively. Loadings and weights reveal the strength of the relationship be-

tween manifest and latent variables. The number of inventors, the number of

IPC classes and the dummy priority variables JP and DE are strongly and signif-

icantly related to their constructs in all cases in the first- and in the second-order

models. Some authors [5, 7, 44] have studied the performance of the PLS path

modelling algorithm using Monte Carlo simulations. Among others, the factors

analyzed have been the sample size and the number of manifest variables per la-

tent variable. In general, researchers agree and recommend having at least three

indicators per construct. However, only Chin et al. [8] considered in their study

the case of two observed variables per latent variables in their study of interaction

effects with reflective outer models. However, as a result of their simulation study,

Vilares et al. [44, p. 13] reported that “PLS always produces good estimates for

perceived value loadings [a latent variable with two indicators, the author]. This

is an interesting result, since PLS is presented as being ’consistent at large’ ...”.

In the formative outer models analyzed here, there are few indicators available

per construct. However, the magnitudes of the weights are large enough to infer

that there may be a formative relationship between indicators and constructs.

Additionally, these results suggest that the patent value and the technological

usefulness are evident since the patent is applied. Therefore, the value can be

assessed at an early stage. The number of claims shows a weaker association with

the technological scope than the number of IPC classes. Perhaps this indicator is

more related to the “quality” of the invention, not in the sense of how inventions
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have an impact on different technological fields (scope) but rather on how im-

portant this impact is in a given technological field. Regarding the international

scope, this variable seems to be formed by its indicators. The manifest variables

are statistically significant in all cases in the two analyzed models. So, this could

mean that in the renewable energy field, besides protecting the invention in the

U.S., it is important as a value determinant for early protection of the inventions

which originate in the other two largest producers of these technologies: Japan

and Germany.

Table 4: Standardized loadings and weights for outer models for the

first-order model of the patent value, t-values in parenthesis,

* at the 0.01 significance level, ** at the 0.05 significance level.

Construct Indicator Sample 1 1990–1991 1995–1996 1999–2000

Knowledge
Backward citations

0.541* 0.420* 0.128 0.499*
(1.860) (1.688) (0.791) (1.670)

stock
Number of inventors

0.807** 0.920** 0.988** 0.872**
(3.054) (4.937) (9.086) (2.794)

Technological
Number of IPC

0.966** 0.997** 0.803** 0.985**
(5.935) (13.746) (5.455) (4.502)

scope
Number of claims

0.176 −0.058 0.529 0.103**
(0.756) (0.364) (1.432) (0.354)

International
Priority JP

0.802** 0.909** 0.904** 0.847**
(3.662) (5.492) (7.844) (3.630)

scope
Priority DE

0.725** 0.512** 0.502** 0.660**
(2.814) (2.043) (2.479) (2.422)

Patent

Forward citations
−0.108 0.274** 0.299* 0.096
(0.940) (2.041) (1.693) (0.524)

Family size
0.840** 0.893** 0.813** 0.845**

(9.464) (36.017) (15.126) (5.297)

Dummy JP
0.777** 0.843** 0.841** 0.802**

value (6.593) (19.572) (21.277) (4.549)

Dummy DE
0.690** 0.777** 0.811** 0.671**

(5.530) (11.126) (18.389) (4.087)

Dummy EP
0.780** 0.808** 0.794** 0.786**

(7.921) (11.975) (12.513) (5.272)

On the other hand, patent value and technological usefulness are always

strongly and significantly reflected in their explanatory variables. Forward cita-

tions, patent family and dummy variables constantly reflect patent value in the

first-order model and technological usefulness in the second-order model. The

forward citations are not significant in the models evaluated in 1999–2000. But,

this may be due to the fact that in recent years patents have been cited less, and

the variable is less informative than in previous years. Moreover, loadings for the

relationship between forward citations and technological usefulness are smaller
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Table 5: Standardized loadings and weights for outer models for the

second-order model of the patent value, t-values in parenthesis,

* at the 0.01 significance level, ** at the 0.05 significance level.

Construct Indicator Sample 1 1990–1991 1995–1996 1999–2000

Knowledge
Backward citations

0.439 0.248 0.122 0.357
(1.619) (1.103) (0.991) (1.114)

stock
Number of inventors

0.871** 0.976** 0.989** 0.938**
(3.828) (8.060) (24.728) (3.214)

Technological
Number of IPC

0.952** 0.995** 0.761** 0.974**
(6.544) (18.078) (4.633) (4.140)

scope
Number of claims

0.220 −0.078 0.584** 0.150
(1.028) (0.546) (3.139) (0.516)

International
Priority JP

0.867** 0.931** 0.947** 0.915**
(4.090) (10.601) (7.863) (4.096)

scope
Priority DE

0.639** 0.465** 0.401* 0.548*
(2.422) (2.709) (1.701) (1.943)

Technological

Forward citations
0.762** 0.836** 0.834** 0.774**

(6.833) (22.739) (24.167) (5.177)

Family size
0.795** 0.818** 0.799** 0.809**

(10.667) (11.800) (18.126) (11.499)

Dummy JP
0.705** 0.775** 0.809** 0.681**

usefulness (7.983) (11.891) (18.318) (6.256)

Dummy DE
−0.052 0.292** 0.290** 0.085
(0.488) (2.280) (2.190) (0.616)

Dummy EP
0.853** 0.894** 0.825** 0.859**

(13.577) (36.226) (21.104) (11.526)

Patent

Backward citations
0.232 0.064 0.092 0.141

(1.511) (0.564) (1.005) (0.735)

Number of inventors
0.476** 0.572** 0.611** 0.492**

(3.477) (5.964) (8.825) (3.016)

Number of IPC
0.549** 0.587** 0.465** 0.495**

(5.909) (7.837) (4.820) (3.420)

Number of claims
0.185 −0.074 0.403** 0.131

(1.296) (0.748) (3.193) (0.810)

Priority JP
0.387** 0.527** 0.391** 0.414**

(2.723) (5.466) (3.604) (2.461)

Priority DE
0.202** 0.205** 0.103 0.154

value (5.318) (2.262) (1.269) (1.191)

Forward citations
−0.085 0.229* 0.295** 0.085
(0.861) (1.944) (2.453) (0.659)

Family size
0.730** 0.775** 0.741** 0.714**

(8.250) (15.351) (11.612) (5.952)

Dummy JP
0.711** 0.816** 0.818** 0.727**

(6.083) (20.264) (18.295) (4.349)

Dummy DE
0.586** 0.692** 0.754** 0.559**

(5.318) (8.318) (11.977) (4.349)

Dummy EP
0.672** 0.666** 0.739** 0.658**

(7.196) (6.650) (13.752) (6.341)
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than, for instance, loadings for the relationship between family size and techno-

logical usefulness. These results may mean that the longitudinal nature of this

variable — citations that are received throughout the time — is an important

factor that should be taken into account when considering this indicator in the

models. The quality of each outer model is measured through the communality

index, i.e. the proportion of variance in the measurement variables accounted

for by the latent variable. For the second-order model, communality indexes for

patent value are 0.29, 0.30 and 0.22 for the 1990–1991, 1995–1996 and 1999–2000

models, respectively. Therefore, indicators have approximately 30% of the vari-

ance in common with its latent variable. As seen above, this low percentage may

be because reflective and formative indicators have been repeated for the second-

order latent variable. The communality indexes for technological usefulness are

0.57, 0.55 and 0.49 for each time-period, also giving evidence of an important

percentage of shared variance.

Tables 6 and 7 show the findings for the inner relationships (standardized

beta coefficients, significance levels and coefficients of determination) for the first-

and second-order models respectively. Path coefficient of knowledge stock, tech-

nological scope and international scope as related to patent value are significant

at 0.01 levels in almost all cases. Therefore, the patent value may be formed by

constructs estimated from reliable patent indicators. The first-order model allows

us to obtain an estimate of the patent value “in time equal to zero”. As showed

in the second-order model, the knowledge stock, the technological scope and the

international scope are also related to technological usefulness. Moreover, tech-

nological usefulness and patent value are significantly related, indicating how the

former is an important variable in the prediction of the latter. The second-order

model allows us to obtain the patent value as the sum of the value in time equal

to zero, and the value given by others, that is the technological usefulness.

Table 6: Standardized path coefficients for the first-order model of patent

value, t-values in parenthesis, * at the 0.01 significance level,

** at the 0.05 significance level.

Latent Variable Sample 1 1990–1991 1995–1996 1999–2000

Knowledge stock to
Patent value

0.115 0.202* 0.306** 0.091
(1.248) (1.987) (2.263) (1.040)

Technological scope to
Patent value

0.238** 0.314** 0.335** 0.200**
(2.892) (4.221) (3.084) (2.278)

International scope to
Patent value

0.243** 0.154* 0.251** 0.220**
(3.199) (1.998) (3.044) (2.420)

R2 of patent value 0.161 0.234 0.35 0.114
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Table 7: Standardized path coefficients for the second-order model of

patent value, t-values in parenthesis, * at the 0.01 significance level,

** at the 0.05 significance level.

Latent Variable Sample 1 1990–1991 1995–1996 1999–2000

Knowledge stock to
Patent value

0.280** 0.226** 0.229** 0.293**
(9.979) (9.510) (12.349) (8.281)

Technological scope to
Patent value

0.278** 0.227** 0.226** 0.271**
(8.811) (10.737) (8.870) (7.620)

International scope to
Patent value

0.212** 0.232** 0.166** 0.236**
(5.505) (11.314) (7.659) (5.160)

Knowledge stock to
Technological usefulness

0.104 0.180* 0.299** 0.072
(1.162) (1.752) (3.771) (0.783)

Technological scope to
Technological usefulness

0.237** 0.315** 0.334** 0.207**
(2.686) (3.290) (3.387) (2.133)

International scope to
Technological usefulness

0.225** 0.142 0.236** 0.200**
(2.486) (1.376) (3.042) (2.252)

Technological usefulness
to Patent value

0.683** 0.668** 0.697** 0.698**
(14.511) (16.951) (20.558) (11.207)

R2 of patent value 0.998 0.998 0.999 0.997

R2 of usefulness 0.148 0.219 0.338 0.103

The determination coefficient for patent value is 0.9 in the second-order

models, i.e. the model fit the data in an acceptable way. This result is not surpris-

ing; it confirms the aforementioned findings and indicates how the data is better

explained by second-order models as compared with first-order models. However,

we must consider this result carefully, because the patent value is estimated con-

sidering all the measurement variables of the models. Another explanation for

this is that in the second-order models, the contribution of the recognized value of

patents (technological usefulness) is considered, and this would help fit the data

better. Unlike patent value, technological usefulness has a moderate coefficient of

determination. Perhaps other indicators should help to better explain the model,

or again the longitudinal nature of the forward citations is an important factor

to be considered. However, we think that the results are acceptable, taking into

account the literature review and the goodness of fit obtained using other models

in the analysis of patent data. It is worth noting that the structural relationships

are significant.
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7. FINAL REMARKS

This research relates manifest variables that come from information con-

tained in the patent document with latent variables into a single replicable model.

The magnitude of this relationship and the importance of each construct are

known, including the influence of knowledge stock, the technological and interna-

tional scope in the value of the technology. In the first-order model, the variables

that most affect the patent value are the technological and the international scope.

In the second-order model, the technological usefulness is also important.

A distinction between two patent values can be made: an a priori and in-

trinsic value, which the patent has at the moment of its application (the potential

value of the patent); and an a posteriori value that the patent acquires over time

through the actions of a company or others (the value that is recognized). The po-

tential value depends on the characteristics of the patent at the time of application

-such as the patenting strategy of a company, the technological applicability of the

patents in different technological fields and the base of knowledge that is neces-

sary for the creation of a new invention. As time passes, the patent potentiality is

recognized and reflected in the number of times that it is cited and in the number

of countries where it is protected. This recognition is a reflection of its technolog-

ical usefulness. Even though companies can assess the importance or impact of

their inventions, these results and the procedure for obtaining them are becom-

ing a tool for improving the strategy of developing new products and inventions,

improving intellectual property policy and for comparing technologies with other

competitors. The stability of results over time augur that this may be possible.

In order to assess companies’ patent portfolios using a model that can be

replicated, a follow-up to this research will study patent value evolution as well as

the market-patent relationship and its implications. Furthermore, there are other

indicators related to patent value that have been previously studied, but they

cannot be computed from the information contained in the patent documents,

such as the number of renewals and the number of opposition cases. Nevertheless,

these variables could be related to another latent variable in the model, or be

a reflection of the technological usefulness of an invention. Finally, PLS path

modelling has proven to be a suitable approach for analyzing patent data.
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