


REVSTAT

STATISTICAL JOURNAL



 

           Catalogação Recomendada 
 

REVSTAT. Lisboa, 2003-     
Revstat : statistical journal  / ed. Instituto Nacional 
de Estatística. - Vol. 1, 2003-         . - Lisboa I.N.E.,  
2003-        . - 30 cm 
Semestral. - Continuação de : Revista de Estatística = 
ISSN 0873-4275. - edição exclusivamente em inglês 

            ISSN 1645-6726 

 
 

CREDITS 

- EDITOR-IN-CHIEF 
- M. Ivette Gomes 

- CO-EDITOR 
- M. Antónia Amaral Turkman 

- ASSOCIATE EDITORS 
- Barry Arnold 
- Helena Bacelar- Nicolau 
- Susie Bayarri 
- João Branco 
- M. Lucília Carvalho 
- David Cox 
- Edwin Diday 
- Dani Gamerman 
- Marie Husková 
- Isaac Meilijson 
- M.Nazaré Mendes-Lopes 
- Stephan Morgenthaler 
- António Pacheco 
- Dinis Pestana 
- Ludger Rüschendorf 
- Gilbert Saporta 
- Jef Teugels 

- EXECUTIVE EDITOR 
- Maria José Carrilho 

- SECRETARY 
- Liliana Martins 

- PUBLISHER 
- Instituto Nacional de Estatística, I.P. (INE, I.P.) 

Av. António José de Almeida, 2 
1000-043 LISBOA 
PORTUGAL 
Tel.: + 351 21 842 61 00 
Fax: + 351 21 842 6364 
Web site: http://www.ine.pt 
Customer Support Service 
 (National network) : 808 201 808 
Other networks: + 351 22 605 07 48 

- COVER DESIGN 
- Mário Bouçadas, designed on the stain glass 

window at INE by the painter Abel Manta 

- LAYOUT AND GRAPHIC DESIGN 
- Carlos Perpétuo 

- PRINTING 
- Instituto Nacional de Estatística, I.P. 

- EDITION 
- 350 copies 

- LEGAL DEPOSIT REGISTRATION 
- N.º 191915/03 

 

 

PRICE 

[VAT  5% included] 

- Single issue …………………………………………………. € 10 
- Annual subscription (No. 1 Special Issue, No. 2 and No.3)… € 24 
- Annual subscription (No. 2, No. 3) …………………………. € 16 

 
 

© INE, Lisbon. Portugal, 2009* Reproduction authorised except for commercial purposes by indicating the source. 
 



INDEX

A Method of Trend Extraction Using Singular Spectrum Analysis

Theodore Alexandrov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The SVM Approach for Box–Jenkins Models

Saeid Amiri, Dietrich von Rosen and Silvelyn Zwanzig . . . . . . . . . . . . . 23

Prewhitening-Based Estimation in Partial Linear Regression
Models: A Comparative Study
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Abstract:

• The paper presents a new method of trend extraction in the framework of the Singular

Spectrum Analysis (SSA) approach. This method is easy to use, does not need spec-

ification of models of time series and trend, allows to extract trend in the presence

of noise and oscillations and has only two parameters (besides basic SSA parame-

ter called window length). One parameter manages scale of the extracted trend and

another is a method specific threshold value. We propose procedures for the choice

of the parameters. The presented method is evaluated on a simulated time series

with a polynomial trend and an oscillating component with unknown period and on

the seasonally adjusted monthly data of unemployment level in Alaska for the period

1976/01– 2006/09.
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1. INTRODUCTION

Trend extraction is an important task in applied time series analysis, in

particular in economics and engineering. We present a new method of trend

extraction in the framework of the Singular Spectrum Analysis approach.

Trend is usually defined as a smooth additive component containing infor-

mation about time series global change. This definition is rather vague (which

type of smoothness is used? which kind of information is contained in the trend?).

It may sound strange, but there is no more precise definition of the trend accepted

by the majority of researchers and practitioners. Each approach to trend extrac-

tion defines trend with respect to the mathematical tools used (e.g. using Fourier

transformation or derivatives). Thus in the corresponding literature one can find

various specific definitions of the trend. For further discussion on trend issues we

refer to [2].

Singular Spectrum Analysis (SSA) is a general approach to time series anal-

ysis and forecast. Algorithm of SSA is similar to that of Principal Components

Analysis (PCA) of multivariate data. In contrast to PCA which is applied to

a matrix, SSA is applied to a time series and provides a representation of the

given time series in terms of eigenvalues and eigenvectors of a matrix made of

the time series. The basic idea of SSA has been proposed by [5] for dimension

calculation and reconstruction of attractors of dynamical systems, see historical

reviews in [10] and in [11]. In this paper we mostly follow the notations of [11].

SSA can be used for a wide range of tasks: trend or quasi-periodic com-

ponent detection and extraction, denoising, forecasting, change-point detection.

The present bibliography on SSA includes two monographs, several book chap-

ters, and over a hundred papers. For more details see references at the website

SSAwiki: http://www.math.uni-bremen.de/∼theodore/ssawiki.

The method presented in this paper has been first proposed in [3] and is

studied in detail in the author’s unpublished Ph.D. thesis [1] available only in

Russian at http://www.pdmi.ras.ru/∼theo/autossa.

The proposed method is easy to use (has only two parameters), does not

need specification of models of time series and trend, allows one to specify desired

trend scale, and extracts trend in the presence of noise and oscillations.

The outline of this paper is as follows. Section 2 introduces SSA, formu-

lates properties of trends in SSA and presents the already existing methods of

trend extraction in SSA. Section 3 proposes our method of trend extraction.

In Section 4 we discuss the frequency properties of additive components of a time

series and present our procedure for the choice of first parameter of the method,
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a low-frequency boundary. Section 5 starts with investigation of the role of the

second method parameter, the low-frequency contribution, based on a simulation

example. Then we propose a heuristic strategy for the choice of this parameter.

In Section 6, applications of the proposed method to a simulated time series with

a polynomial trend and oscillations and on the unemployment level in Alaska are

considered. Finally, Section 7 offers conclusions.

2. SINGULAR SPECTRUM ANALYSIS

Let us have a time series F = (f0, ..., fN−1), fn ∈ R, of length N , and we

are looking for some specific additive component of F (e.g. a trend). The central

idea of SSA is to embed F into high-dimensional euclidean space, then find a

subspace corresponding to the sought-for component and, finally, reconstruct a

time series component corresponding to this subspace. The choice of the subspace

is a crucial question in SSA. The basic SSA algorithm consists of decomposition

of a time series and reconstruction of a desired additive component. These two

steps are summarized below; for a detailed description, see page 16 of [11].

Decomposition. The decomposition takes a time series of length N and

comes up with an L×K matrix. This stage starts by defining a parameter L

(1 < L < N), called the window length, and constructing the so-called trajectory

matrix X ∈ R
L×K

, K = N − L + 1, with stepwise taken portions of the original

time series F as columns:

(2.1) F = (f0, ..., fN−1) → X = [X1 : ... : XK ] , Xj = (fj−1, ..., fj+L−2)
T .

Note that X is a Hankel matrix and (2.1) defines one-to-one correspondence

between series of length N and Hankel matrices of size L×K. Then Singular

Value Decomposition (SVD) of X is applied, where j-th component of SVD is

specified by j-th eigenvalue λj and eigenvector Uj of XXT
:

X =

d
∑

j=1

√

λj Uj Vj
T , Vj = XTUj

/

√

λj , d = max
{

j : λj > 0
}

.

Since the matrix XXT
is positive-definite, their eigenvalues λj are positive.

The SVD components are numbered in the decreasing order of eigenvalues λj .

We define j-th Empirical Orthogonal Function (EOF) as the sequence of elements

of the j-th eigenvector Uj . The triple (
√

λj , Uj , Vj) is called j-th eigentriple,
√

λj

is called the j-th singular value, Uj is the j-th left singular vector and Vj is the

j-th right singular vector.
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Reconstruction. Reconstruction goes from an L×K matrix into a time

series of length N . This stage combines (i) selection of a subgroup J ⊂ {1, ..., L}
of SVD components; (ii) hankelization (averaging along entries with indices

i+ j = const.) of the L×K matrix from the selected J components of the SVD;

(iii) reconstruction of a time series component of length N from the Hankel ma-

trix by the mentioned one-to-one correspondence (like in (2.1) but in the reverse

direction, see below the exact formulae). The result of the reconstruction stage

is a time series additive component:

XJ =

∑

j∈J

√

λj UjVj
T → G = (g0, ..., gN−1) .

For the sake of brevity, let us describe the hankelization of the matrix XJ

and the subsequent reconstruction of a time series component G as being applied

to a matrix Y =
{

yij

}i=L,j=K

i,j=1
as it is introduced in [11]. First we introduce

L∗
= min{L, K}, K∗

= max{L, K} and define an L∗×K∗
matrix Y∗

as given by

Y∗
= Y if L 6 K and Y∗

= YT
if L > K. Then the elements of the time series

G = (g0, ..., gN−1) formed from the matrix Y are calculated by averaging along

cross-diagonals of matrix Y∗
as

(2.2) gn =























































1

n+1

n+1
∑

m=1

y∗m,n−m+2 , 0 6 n < L∗−1 ,

1

L∗

L∗

∑

m=1

y∗m,n−m+2 , L∗−1 6 n < K∗ ,

1

N−n

N−K∗+1
∑

m=n−K∗+2

y∗m,n−m+2 , K∗ 6 n < N .

Changing the window length parameter and, what is more important, the

subgroup J of SVD components used for reconstruction, one can change the

output time series G. In the problem of trend extraction, we are looking for G

approximating a trend of a time series. Thus, the trend extraction problem in

SSA is reduced to (i) the choice of a window length L used for decomposition and

(ii) the selection of a subgroup J of SVD components used for reconstruction.

The first problem is thoroughly discussed in section 1.6 of [11]. In this paper,

we propose a solution for the second problem.

Note that for the reconstruction of a time series component, SSA considers

the whole time series, as its algorithm uses SVD of the trajectory matrix built

from all parts of the time series. Therefore, SSA is not a local method in contrast

to a linear filtering or wavelet methods. On the other hand, this property makes

SSA robust to outliers, see [11] for more details.
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An essential disadvantage of SSA is its computational complexity for the

calculation of SVD. This shortcoming can be reduced by using modern [9] and

parallel algorithms for SVD. Moreover, for trend revision in case of receiving new

data points, a computationally attractive algorithm of [12] for updating SVD can

be used.

It is worth to mention here that the similar ideas of using SVD of the

trajectory matrix have been proposed in other areas, e.g. in signal extraction

in oceanology [8] and estimation of parameters of damped complex exponential

signals [13].

2.1. Trend in SSA

SSA is a nonparametric approach which does not need a priori specification

of models of time series and trend, neither deterministic nor stochastic ones. The

classes of trends and residuals which can be successfully separated by SSA are

characterized as follows.

First, since we extract any trend by selecting a subgroup of all d SVD

components, this trend should generate less than d SVD components. For an

infinite time series, a class of such trends coincides with the class of time series

governed by finite difference equations [11]. This class can be described explicitly

as linear combinations of products of polynomials, exponentials and sines [6].

An element of this class suits well for representation of a smooth and slow varying

trend.

Second, a residual should belong to a class of time series which can be sep-

arated from a trend. The separability theory due to [14] helps us determine this

class. In [14] it was proved that (i) any deterministic function can be asymp-

totically separated from any ergodic stochastic noise as the time series length

and window length tend to infinity; (ii) under some conditions any trend can be

separated from any quasi-periodic component, see also [11]. These properties of

SSA make this approach feasible for trend extraction in the presence of noise and

quasi-periodic oscillating components.

Finally, as trend is a smooth and slow varying time series component, it gen-

erates SVD components with smooth and slow varying EOFs. Eigenvectors rep-

resent an orthonormal basis of a trajectory vector space spanned on the columns

of trajectory matrix. Thus each EOF is a linear combination of portions of the

corresponding time series and inherits its global smoothness properties. This idea

is considered in detail in [11] for the cases of polynomial and exponential trends.
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2.2. Existing methods of trend extraction in SSA

A naive approach to trend extraction in SSA is to reconstruct a trend from

several first SVD components. Despite its simplicity, this approach works in many

real-life cases for the following reason. An eigenvalue represents a contribution of

the corresponding SVD component into the form of the time series, see section

1.6 of [11]. Since a trend usually characterizes the shape of a time series, its

eigenvalues are larger than the other ones, that implies small order numbers of

the trend SVD components. However, the selection procedure fails when the

values of a trend are small enough as compared with a residual, or when a trend

has a complicated structure (e.g. a high-order polynomial) and is characterized

by many (not only by the first ones) SVD components.

A smarter way of selecting trend SVD components is to choose the compo-

nents with smooth and slow varying EOFs (we have explained this fact above).

At present, there exist only one parametric method of [15] which follows this

approach. In [15] it was proposed using the Kendall correlation coefficient for

testing for monotonic growth of an EOF. Unfortunately, this method is far from

perfect since it is not possible to establish which kinds of trend can be extracted

by its means. This method seems to be aimed at extraction of monotonic trends

because their EOFs are usually monotonic. However, even a monotonic trend can

produce non-monotonic EOF, especially in case of noisy observations. An exam-

ple could be a linear trend which generates a linear and a constant EOFs. If there

is a noise or another time series component added, then this component is often

mixed with trend components corrupting its EOFs. Then, even in case of very

small corruption, the constant EOF can be highly non monotonic. Naturally, the

method using the Kendall correlation coefficient does not suit for non monotonic

trends producing non monotonic EOFs. For example, a polynomial of low order

which is often used for trend modelling usually produces non monotonic EOFs,

for details see e.g. [11].

3. PROPOSED METHOD FOR TREND EXTRACTION

In this section, we present our method of trend extraction. First, follow-

ing [11], we introduce the periodogram of a time series.

Let us consider the Fourier representation of the elements of a time series

X of length N , X = (x0, ..., xN−1), see e.g. section 7.3 of [7]:

xn = c0 +

∑

16k6N−1

2

(

ck cos(2πnk/N) + sk sin(2πnk/N)

)

+ (−1)
n cN/2 ,
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where k ∈ N, 0 6 n 6 N −1, and cN/2 = 0 if N is an odd number. Then the

periodogram of X at the frequencies ω ∈ {k/N}⌊N/2⌋
k=0 is defined as

(3.1) IN
X (k/N) =

N

2



















2c2
0 , k = 0 ,

c2
k + s2

k , 0 < k < N/2 ,

2c2
N/2 , if N an even number and k = N/2 .

Note that this periodogram is different from the periodogram usually used

in spectral analysis, see e.g. [4] or [7]. To show this difference, let us denote the

k-th element of the discrete Fourier transform of X as

Fk(X) =

N−1
∑

n=0

e−i2πnk/Nxn ,

then the periodogram IN
X (ω) at the frequencies ω ∈ {k/N}⌊N/2⌋

k=0 is calculated as

IN
X (k/N) =

1

N







2
∣

∣Fk(X)
∣

∣

2
, if 0 < k < N/2 ,

∣

∣Fk(X)
∣

∣

2
, if k = 0 or N is even and k = N/2 .

One can see that in addition to the normalization different from that in [4] and [7],

the values for frequencies in the interval (0, 0.5) are multiplied by two. This is

done to ensure the following property:

(3.2) ‖X‖2
2 =

N−1
∑

n=0

x2
n =

⌊N/2⌋
∑

k=0

IN
X (k/N) .

Let us introduce the cumulative contribution of the frequencies [0, ω] as

πN
X (ω) =

∑

k:0≤k/N≤ω IN
X (k/N), ω ∈ [0, 0.5]. Then, for a given ω0 ∈ (0, 0.5), we

define the contribution of low frequencies from the interval [0, ω0] to X ∈ R
N

as

(3.3) C(X, ω0) = πN
X (ω0)/πN

X (0.5) .

Then, given parameters ω0 ∈ (0, 0.5) and C0 ∈ [0, 1], we propose to select those

SVD components whose eigenvectors satisfy the following criterion:

(3.4) C(Uj , ω0) > C0 ,

where Uj is the corresponding j-th eigenvector. One may interpret this method as

selection of SVD components with EOFs mostly characterized by low-frequency

fluctuations. It is worth noting here that when we apply C, π or I (defined above

for a time series) to a vector, they are simply applied to a series of elements of

the vector.

Having the trend SVD components selected using (3.4), one reconstructs the

trend according to Section 2. The question is how to select ω0 and how to define

the threshold C0. These issues are discussed in Sections 4 and 5, respectively.
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4. THE LOW-FREQUENCY BOUNDARY ω0

The low-frequency boundary ω0 manages the scale of the extracted trend:

the lower is ω0, the slower varies the extracted trend. Selection of ω0 can be done

a priori based on additional information about the data thus prespecifying the

desired scale of the trend.

For example, if we assume to have a quasi-periodic component with known

period T , then we should select ω0 < 1/T in order not to include this component

in the trend. For extraction of a trend of monthly data with possible seasonal

oscillations of period 12, we suggest to select ω0 < 1/12, e.g. ω0 = 0.075.

In this paper we also propose a method of selection of ω0 considering a time

series periodogram. Since a trend is a slow varying component, its periodogram

has large values close to zero frequency and small values for other frequencies.

The problem of selecting ω0 is the problem of finding such a low-frequency value

that the frequencies corresponding to the large trend periodogram values are

inside the interval [0, ω0]. At the same time, ω0 cannot be too large because

then an oscillating component with a frequency less than ω0 can be included in

the trend produced. Considering the periodogram of a trend, we could find the

proper value of ω0 but for a given time series its trend is unknown.

What we propose is to choose ω0 based on the periodogram of the original

time series. The following proposition substantiates this approach.

Proposition 4.1. Let us have two time series G = (g0, ..., gN−1) and

H = (h0, ..., hN−1) of length N , then for each k : 0 ≤ k ≤ ⌊N/2⌋ the following

inequality holds:

(4.1)
∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ 6 2

√

IN
G (k/N) IN

H (k/N) .

Proof of Proposition 4.1: Let us first consider the case when 0 <k < N/2.

We denote as ck,X and sk,X the coefficients of Fourier representation of a time

series X used in the periodogram definition (3.1). Then, by this definition,

IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N) =

=
N

2

(

c2
k,G+H + s2

k,G+H − c2
k,G − s2

k,G − c2
k,H − s2

k,H

)

.

Since ck,G+H =
2
N ℜFk(G+H) = ck,G + ck,H (where ℜz denotes a real part of

a complex number z) and, analogously, sk,G+H = sk,G + sk,H , we have

(4.2) IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N) = N

(

ck,Gck,H + sk,Hsk,H

)

.
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Let us consider the periodograms multiplication used in the right part of (4.1):

(4.3) IN
G (k/N) IN

H (k/N) =
N2

4

(

c2
k,G + s2

k,G

) (

c2
k,H + s2

k,H

)

.

Since for all real a, b, c and d it holds that (a2
+ b2

) (c2
+ d2

) = (|ac| + |bd|)2 +

(|ad| − |bc|)2, then

IN
G (k/N) IN

H(k/N) =(4.4)

=
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

+
(

|ck,G sk,H| − |ck,H sk,G|
)2

.

Finally, taking the square of (4.2), dividing it by four and taking into account (4.4),

we have

1

4

(

IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

)2
=

=
N2

4

(

ck,G ck,H + sk,G sk,H

)2

6
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

6
N2

4

(

|ck,G ck,H| + |sk,G sk,H|
)2

+
(

|ck,G sk,H| − |ck,H sk,G|
)2

= IN
G (k/N) IN

H (k/N)

and the inequality in (4.1) holds 0 < k < N/2.

Second, we consider the case when k = 0 or k = N/2. Again, by the defi-

nition of the periodogram

2

√

IN
G (k/N) IN

H (k/N) = 2

√

N2 c2
k,G c2

k,H = 2N |ck,G ck,H | .

At the same time,

∣

∣IN
G+H(k/N)− IN

G (k/N)− IN
H (k/N)

∣

∣ = N
∣

∣c2
k,G+H − c2

k,G − c2
k,H

∣

∣ = N
∣

∣2 ck,G ck,H

∣

∣

which leads for k = 0 or k = N/2 to

∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ = 2

√

IN
G (k/N) IN

H (k/N)

and the result in (4.1) holds with equality.

Corollary 4.1. Let us define for a time series F of length N the frequency

support of the periodogram IN
F as a subset of frequencies {k/N}⌊N/2⌋

k=0 such that

IN
F (k′/N) > 0 for k′/N from this subset. If the frequency supports of two time

series G and H are disjoint then IN
G+H(k/N) = IN

G (k/N) + IN
H (k/N).
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Let us demonstrate that when supports of periodograms of time series G

and H are nearly disjoint, the periodogram of the sum G+H is close to the sum

of their periodograms.

The fact that the periodograms of G and H are very different at k/N can

be expressed as

IN
G (k/N)

/

IN
H (k/N) = d ≫ 1 ,

since without loss of generality we can assume IN
G (k/N) > IN

H (k/N). Then using

Proposition 4.1 we have that

∣

∣IN
G+H(k/N) − IN

G (k/N) − IN
H (k/N)

∣

∣ 6

6 2

√

IN
G (k/N) IN

H (k/N) =
2√
d

IN
G (k/N) ≪ IN

G (k/N) ,

that means that the difference
∣

∣IN
G+H(k/N)−IN

G (k/N)−IN
H (k/N)

∣

∣ is significantly

smaller than the value of the largest periodogram (of IN
G , IN

H ) at the point k/N .

In many applications, the given time series can be modelled as made of

a trend with large periodogram values at low-frequency interval [0, ω0], oscilla-

tions with periods smaller than 1/ω0, and noise whose frequency contribution

spreads over all the frequencies [0, 0.5] but is relatively small. In this case the

periodogram supports of the trend and the residual can be considered as nearly

disjoint. Therefore, from Corollary 4.1, we conclude that the periodogram of the

time series is approximately equal to the sum of the periodograms of the trend,

oscillations and noise.

For a time series X of length N , we propose to select the value of the

parameter ω0 according to the following rule:

(4.5) ω0 = max
k/N, 06k6N/2

{

k/N : IN
X (0), ..., IN

X (k/N) < MN
X

}

,

where MN
X is the median of the values of periodogram of X. The modelling of

a time series as a sum of a trend, oscillations and a noise (let us suppose to

have a normal noise) motivates this rule as follows. Since the frequency supports

of the trend and oscillating components do not overlap, only the values of the

noise periodogram can mix with the values of the trend periodogram. First,

the values of the noise periodogram for neighboring ordinates are asymptotically

independent (see e.g. section 7.3.2 of [7]). Second, supposing a relatively long

time series and narrow frequency supports of trend and oscillating components,

the median of values of the time series periodogram gives an estimation of the

median of the values of the noise periodogram. Since a trend is supposed to have

large contribution to the shape of the time series (i.e. a large L2-norm) compared

to the noise and its frequency support is quite narrow compared to the whole

interval [0, 0.5], its periodogram values are relatively larger than the median of

the noise periodogram values due to (3.2). Therefore, the condition used in (4.5)
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is fulfilled only for such a frequency ω0 that the trend periodogram values is

close to zero (outside the trend frequency interval). Large noise periodogram

values in this frequency region can lead to selecting larger than necessary ω0.

But remember that we compare the periodogram values with their median and

the noise periodogram values are independent (asymptotically). Hence, with

probability approximately equal to 1− 0.5m
(e.g. this value is equal to 0.9375 for

m = 4) we select the m-th point (of the grid {k/N}) located to the right side of

the trend frequency interval (where the trend peridogram values are larger then

the noised periodogram median).

Note that the lengths N of the time series and L of eigenvector are dif-

ferent (L < N) which causes different resolution of their periodograms. Having

estimated ω0 after consideration of the periodogram of the original time series,

one should select

(4.6) ω′
0 = ⌈L ω0⌉/L .

Dependence of ω0 on the time series resolution. Let us define the

resolution ρ of the original time series as ρ = (τn+1− τn)
−1

, where τn is the time

of n-th measurement. If one have estimated ω0 for the data with resolution ρ

and there comes the same data but measured with higher resolution ρ′= mρ

(m ∈ R) thus increasing the data length in m times, then in order to extract the

same trend, one should take the new threshold value ω′
0 = ω0/m. In a similar

manner, after decimation of the data reducing the resolution in m times, the

value ω′
0 = mω0 should be taken.

Example 4.1 (The choice of ω0 for a noised exponential trend). Let us

consider an example of selection of the threshold ω0 for an exponential trend and

a white Gaussian noise which also demonstrates Proposition 4.1. Let the time

series F = G + H be of length N = 120, where the components G and H are

defined as gn = Ae0.01n
, hn = Bεn, εn∼ iidN(0, 1) and A, B are selected so that

‖G‖2
= ‖H‖2

=
∑N−1

n=0 gn =
∑N−1

n=0 hn = 1. The normalization is done to ensure

that
∑60

k=0 IN
G (k/N) =

∑60
k=0 IN

H (k/N) = 1. Figure 1 shows a) the simulated time

series F , b) its components, c) the periodograms of the components, d) the pe-

riodograms zoomed together with a line corresponding to the median of the noise

periodogram values equal to 0.0126, e) the periodogram IN
F of F and a kind of

“confidence”interval of its estimation IN
G +IN

H calculated according Proposition 4.1

and a line corresponding to the median M120
F of the time series periodogram values

(used for estimating ω0), and f) the discrepancy, the difference between IN
F and

IN
G +IN

H together with the values of this difference estimated in the right side

of (4.1). Note tha the median of the periodogram values of F is equal to 0.0141,

which is close to the median of the noise periodogram values equal to 0.0126. The

value of ω0 estimated according to the proposed rule (4.5) is equal to 6/120 = 0.05.



A Method of Trend Extraction Using SSA 13
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Figure 1: The choice of ω0 for an exponential trend and Gaussian noise;

The value C(ω) used in the legends is equal to 2

√

IN
G(ω) IN

H(ω).

5. THE LOW-FREQUENCY CONTRIBUTION C0

Before suggesting a procedure for selection of the second parameter of the

proposed method, the low-frequency threshold C0, we investigate the effect of the

choice of C0 on the quality of the trend extracted. For this aim, we consider a time

series model with a trend that generates SVD components with known numbers.

Then, for a sufficient number of simulated time series, we compare our trend

extraction procedure with a SSA-based procedure which simply reconstructs the

trend using the known trend SVD components.

5.1. A simulation example: an exponential trend plus a Gaussian noise

The model considered is the same as in example above. Let the time series

F = (f0, ..., fN−1) consist of an exponential trend tn plus a Gaussian white noise

rn:

(5.1) fn = tn + rn , tn = eαn , rn = σeαnεn, εn ∼ iidN(0, 1) .
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According to [11], for such a time series with moderate noise the first SVD com-

ponent corresponds to the trend. We considered only the noise levels when this

is true (empirically checked). Note that the noise rn has a multiplicative model

as its standard deviation is proportional to the trend.

In the following, we consider the following properties. First, we calculate

the difference between the trend t̂n(C0) resulted from our method with C0 used

and the reconstruction t̃n of the first SVD component exploiting the weighted

mean square error (MSE) because this measure is more relevant for a model with

a multiplicative noise than a simple MSE:

(5.2) D
(

t̂n(C0), t̃n
)

=
1

N

N−1
∑

n=0

e−2αn
(

t̂n(C0) − t̃n
)2

.

This measure compares our trend and the ideal SSA trend. Second, we calcu-

late the weighted mean square errors between t̂n(C0), t̃n and the true trend tn
separately:

(5.3) D
(

t̂n(C0)
)

=
1

N

N−1
∑

n=0

e−2αn
(

tn− t̂n(C0)
)2

, D(t̃n) =
1

N

N−1
∑

n=0

e−2αn
(

tn− t̃n
)2

.

5.1.1. Scheme of estimation of the errors using simulation

The errors (5.2), (5.3) are estimated using the following scheme. We simu-

late S realizations of the time series F according to the model (5.1) and calculate

the mean of D
(

t̂n(C0), t̃n
)

for all values of C0 from the large grid 0:0.01:1:

(5.4) D
(

t̂n(C0), t̃n
)

=
1

S

S
∑

s=1

D
(

t̂(s)n (C0), t̃
(s)
n

)

,

where t̂
(s)
n (C0) and t̃

(s)
n denote trends of the s-th simulated time series. The mean

errors D
(

t̂n(C0)
)

, D(t̃n) between the true trend tn and the extracted trends t̂n(C0)

and t̃n, respectively, are calculated similarly. Let us also denote the minimal

values of the mean errors as

(5.5) Dmin
(t̂n, t̃n) = min

C0

D
(

t̂n(C0), t̃n
)

, Dmin
(t̂n) = min

C0

D
(

t̂n(C0)
)

and the value of C0 providing the minimal mean error between the extracted

trend and the ideal SSA trend as

Copt
0 = arg min

C0

D
(

t̂n(C0), t̃n
)

,

so that Dmin
(t̂n, t̃n) = D

(

t̂n(Copt
0 ), t̃n

)

.
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The simulated time series are of length N = 47. In order to achieve the

best separability [11] we have selected the SSA window length L = ⌈N/2⌉ = 24.

The estimates of the mean errors are calculated on S = 10
4

realizations of the

time series.

We consider different values of the model parameters α and σ. The values

of α are 0 (corresponding to a constant trend), 0.01 and 0.02 which correspond to

the increase of trend values (from t0 to tN−1) in 1, 1.6 and 2.5 times, respectively.

The levels of noise are 0.2 6 σ 6 1.6. It was empirically checked that for such

levels of noise the first SVD component corresponds to the trend.

Moreover, we estimated the probability of the type I error of not selecting

the first SVD component as the ratio of times when the first component is not

identified as a trend component by our procedure to the number of repetitions S.

Choice of ω0. In order to select the low-frequency threshold ω0, we consid-

ered several simulated time series with different α and the maximal noise σ = 1.6.

Two examples of their periodograms for α = 0 and α = 0.02 are depicted in

Figure 2. The median values for the periodograms depicted in Figure 2 are 2.936

and 2.924 which leads to ω0 = 0 for α = 0 and ω0 = ⌈1/N ·L⌉/L = 1/24 ≅ 0.042

for α = 0.02 estimated using (4.6). We decided to take the same ω0 = 0.042 (the

largest one) for all α considered.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

ω

Periodograms of the simulated time series

 

 

IF (ω), α = 0

IF (ω), α = 0.02

this line corresponds to 
the medians of the time series 
periodogram values, equal to 

2.936 for α=0 and 

2.924 for α=0.02

Figure 2: The periodograms of two time series of the model (5.1)

with σ = 1.6 and α = 0, 0.02.

5.1.2. Simulation results

Figure 3 shows the evolution of the square roots of the mean errors and Copt
0

as a function of σ. The values α = 0 and α = 0.02 are used. The square roots of

the mean errors (i.e. standard deviations) are taken for better comparison with σ

which is the standard deviation multiplier of the noise.
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The plots of the minimal mean error Dmin
(t̂n, t̃n) and the optimal Copt

0 for

α = 0.02 are depicted in Figure 3, where the values for α = 0 are also shown in

gray color. The estimates for α = 0.01 are not reported here.
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Figure 3: The square roots of the mean errors Dmin
(t̂n, t̃n) (top left)

Dmin
(t̂n) (bottom left) and D(t̃n) (bottom right) as well as the

optimal C0 value providing a minimal mean error Dmin
(t̂n, t̃n)

between the extracted trend and the ideal SSA trend (top right);

all for α = 0 and α = 0.02.

The interpretation of the produced results is as follows. First, the trend

extracted with the optimal C0 is very similar to the ideal SSA trend, reconstructed

by the first SVD component since Dmin
(t̂n, t̃n)≪ Dmin

(t̂n) (the error between our

trend and the ideal trend is much smaller than the error of the ideal trend itself),

especially when σ 6 0.8. Moreover, the estimated probability of the type I error

(i.e. the probability of not selecting the first SVD component) is less than 0.05 for

σ 6 1.4. All this allows us to conclude that in case of an exponential trend and

a white Gaussian noise the proposed method of trend extraction with an optimal

C0 with high probability selects the required first SVD component corresponding

to the trend.

The trend t̂n(Copt
0 ) extracted with an optimal C0 estimates the true trend

quite good when comparing the deviation

√

Dmin
(t̂n) with the noise standard
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deviation σ. For example, for σ = 1.6 the value of

√

Dmin
(t̂n) is approximately

equal to 0.5.

Note that for different α the mean errors Dmin
(t̂n) are very similar though

the used optimal values of C0 are quite different (Figure 3). This shows that the

method adapts to the change of the model parameter α.

Let us consider the dependence of inaccuracy of the proposed trend extrac-

tion method on the value of C0. As above, the inaccuracy is measured with the

minimal mean error Dmin
(t̂n, t̃n) between the extracted trend and the ideal SSA

trend. Figure 4 shows the graphs of this error as a function of C0 for different

exponentials α and noise levels σ.
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α = 0, σ = 0.8
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α = 0.02, σ = 1.4

Figure 4: The error D
(

t̂n(C0), t̃n
)

as a function of C0

for different combinations of α = 0, 0.02 and σ = 0.8, 1.4.

One can see that it is crucial not to select too large C0 since in this case the

trend component can be not included in the reconstruction (that is also confirmed

by the estimated probability of the type I error which is not reported here). At the

same time without significant loss of accuracy one can choose C0 smaller than Copt
0

(corresponding to the best accuracy). This is true due to the small contribution

of each of noise components which can be erroneously included for C0 < Copt
0 .

5.2. Heuristic procedure for the choice of C0

Based on the observations of Section 5.1, we propose the following heuristic

procedure for choosing the value of the method low-frequency threshold C0.

As discussed, trend EOFs vary slow. First we show that this property

is inherited by the trend elementary reconstructed components, the time series

components each reconstructed from one trend SVD component.
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Proposition 5.1. Let (
√

λ, U, V ) be an eigentriple of SSA decomposition

of a time series F , U = (u1, ..., uL)
T, V = (v1, ..., vL)

T, and G be a time series

reconstructed by this eigentriple. If it is true that

∃ δ1, δ2 ∈ R : ∀ k, 1 6 k 6 L−1 : |uk+1− uk| < δ1 , |vk+1− vk| < δ2 ,

then for the elements of G = (g0, ..., gN−1) the following holds:

∃ ǫ(δ1, δ2) : ∀n, L∗−1 6 n < K∗
: |gn+1− gn| < ǫ(δ1, δ2) ,

where L∗
= min{L, K}, K∗

= max{L, K}.

Proof of Proposition 5.1: One can easily prove this proposition taking

into account how the elementary reconstructed component G is constructed from

its eigentriple (
√

λ, U, V ), see Section 2. First, the matrix Y =
√

λ U V T
is con-

structed. Second, the hankelization of Y is performed.

Let us show how to calculate ǫ using (2.2) for δ1, δ2 when L 6 K. For other

cases ǫ(δ1, δ2) is calculated similarly.

|gn+1 − gn| =

√
λ

L

∣

∣

∣

∣

∣

L
∑

m=1

(

um vn−m+3 − um vn−m+2

)

∣

∣

∣

∣

∣

<

√
λ

L

L
∑

m=1

|um| |vn−m+3 − vn−m+2|

<

√
λ

L
δ2

L
∑

m=1

|um| < δ2

√
λ

L

(

u1 + (L − 1) δ1

)

.

Let us have a time series F and denote its trend extracted with the method

with parameters ω0, C0 as T (ω0, C0). In order to propose the procedure selecting

C0, we first define the normalized contribution of low-frequency oscillations in the

residual F − T (ω0, C0) as:

RF,ω0
(C0) = C

(

F − T (ω0, C0), ω0

)

C(F, ω0)
−1 ,

where C is defined in equation (3.3).

Based on Proposition 5.1, we expect that the elementary reconstructed

components corresponding to a trend have large contribution of low frequencies.

Thus, the maximal values of C0 which lead to selection of trend-corresponding

SVD components should generate jumps of RF,ω0
(C0).

Exploiting this idea, we propose the following way of choosing C0:

(5.6) CR
0 = min

{

C0 ∈ [0, 1] : RF,ω0
(C0 +∆C) −RF,ω0

(C0) ≥ ∆R
}

,
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where ∆C is a search step and ∆R is the given threshold. On one hand, this

strategy is heuristic and requires selection of ∆R, but on the other hand, the

simulation results and application to different time series showed its ability to

choose reasonable C0 in many cases. Based on this empirical experience, we

suggest using 0.05 ≤ ∆R ≤ 0.1. The step ∆C is to be chosen as small as

possible to discriminate identifications occurring at different values of C0. To

reduce computational time, we commonly take ∆C ≥ 0.01 and suggest a default

value of ∆C = 0.01.

6. EXAMPLES

Simulated example with polynomial trend. The first example illus-

trates the choice of parameters ω0 and C0. We simulated a time series of length

N = 300, shown in Figure 5, containing a polynomial trend, an exponentially-

modulated sine wave, and a white Gaussian noise, whose n-th element is expressed

as fn = 10
−11

(n−10)(n−70)(n−160)
2
(n−290)

2
+ exp(0.01n) sin(2πn/12)+ εn,

εn is iidN(0, 52
). The period of the sine wave is assumed to be unknown.
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Figure 5: Simulated example with a polynomial trend: original time series (top left);

the original trend and an extracted one with L = 180, ∆C = 0.01, and

∆R= 0.05 (top right); zoomed time series periodogram inside ω ∈ [0, 0.25]

(bottom left); the values of RF,ω0
(C0+∆C)−RF,ω0

(C0) used for the choice

of C0 resulted in a value CR0 = 0.53 (bottom right).

We have chosen the window length L = N/2 = 150 for achieving better

separability of trend and residual. The value ω0 = 6/N = 0.02 was selected
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using (4.5), where the calculated median value is MN
X ≅ 37.06. The search for C0

using (5.6) has been done with step ∆C = 0.01 and ∆R = 0.05. As shown in

Figure 5, despite of the strong noise and oscillations, the extracted trend ap-

proximates the original one very well. The achieved mean square error is 0.79.

For example, the ideal low pass filter with the cutoff frequency 0.02 pro-

duced the error of 3.14. This superiority is achieved mostly due to better ap-

proximation at the first and last 50 points of the time series. All the calcula-

tions were performed using our Matlab-based software AutoSSA available at

http://www.pdmi.ras.ru/∼theo/autossa.

Trends of the unemployment level. Let us demonstrate extraction

of trends of different scale. We took the data of the unemployment level (unem-

ployed persons) in Alaska for the period 1976/01–2006/09 (monthly data, season-

ally adjusted), provided by the Bureau of Labor Statistics at http://www.bls.gov

under the identifier LASST02000004 (Figure 6). This time series is typical for

economical applications, where data contain relatively little noise and are subject

to abrupt changes. Economists are often interested in the “short” term trend

which includes cyclical fluctuations and is referred to as trend-cycle.
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Figure 6: Unemployment level in Alaska: original data (left-hand side panel),

zoomed periodogram (right-hand side panel).

The length of the data is N = 369. For achieving better separability of

trend and residual we selected L close to N/2 but divisible by the period T = 12

of probable seasonal oscillations: L = 12⌊N/24⌋= 180.

We extracted trends of different scales using the following values of ω0:

0.01, 0.02, 0.05, 0.075 and 0.095, see Figure 7 for the results. The value 0.095 ≅

⌈33/369 · 180⌉/180 was selected according to (4.6), where MN
X ≅ 5.19 · 10

5
. The

value 0.075 is the default value for monthly data (Section 4). Other values (0.01,

0.02 and 0.05) were considered for better illustration of how the value of ω0

influences the scale of the extracted trend. The search for C0 was performed

as described in Section 5 in the interval [0.5, 1] with the step ∆C = 0.01 and

∆R = 0.05.
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Figure 7: Unemployment level in Alaska: extracted trends of different scales with

ω0 = 0.01, 0.02, 0.05, 0.075 and 0.095 (L=180, ∆C= 0.01 and ∆R= 0.05).

7. CONCLUSIONS

SSA is an attractive approach to trend extraction because it: (i) requires

no model specification of time series and trend, (ii) extracts trend of noisy time

series containing oscillations of unknown period. In this paper, we presented a

method which inherits these properties and is easy to use since it requires selection

of only two parameters.
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1. INTRODUCTION

Time series analysis is the study of observations made sequentially in time.

It is a complicated field in statistics because of direct and indirect effects of time

on the variables in the model. The essential difference between the modeling via

time series and ordinary method is that data points taken over time may have an

internal relation that should be accounted for. It can be a correlation structure,

a trend, seasonality and so on.

Time series can be studied in the time domain and in the time frequency

domain. The time domain is more known among researchers in sciences whereas

the frequency domain has many applications in engineering. Time domain is

modeled by two main approaches. The traditional approach has been given in

Box and Jenkins (1970) in their influential book, includes a systematic class of

models called autoregressive integrated moving average (ARIMA) (see, for ex-

ample, Shumway and Stoffer (2000) and Pourahmadi (2001)). A defining feature

of these models is that they are multiplicative models, meaning that observed

data are assumed to result from the products of factors involving differential or

difference equation operators responding to a white noise input.

Other approaches use additive models or structural models. In this ap-

proach, it is assumed that the observations include sum of components, each of

which deals with a specified time series structure. None of them have inferential

tools such as the Box–Jenkins model, for example model selection, parameter

estimation and model validation. ARIMA model can therefore be considered as a

benchmark model in evaluating the performance of new method. Support Vector

Machine is one of the new methods in modeling that has good performance in

classification and regression analysis. A few papers have tried to use it for time

series, see Müller (1997) and Murkharejee (1997). They have considered dynamic

models e.g., the Mackey class equation was used to show the efficiency of SVM.

We are motivated to use SVM because of its ability in dealing with sta-

tionary as well as non-stationary series. Moreover, contrary to the traditional

methods of time series analysis (autoregressive or structural models that assume

normality and stationarity of the series), SVM makes no prior assumptions about

the data.

The paper contains five sections and is organized as follows. In Section 2,

the necessary theoretical background is provided and the SVM modeling is con-

cisely described. In Section 3, it is shown that the approach of time series model-

ing can be written as a SVM model. Section 4 includes the discussion of the data

and also present the results. Finally some conclusions are given in Section 5.
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2. SUPPORT VECTOR MACHINE

During the last decades many researchers have been working on SVM in a

variety of fields and it has in fact been a very active field. SVM has impacted on

improving the statistical learning method and has been used to solve problems

in classification. The SVM approach has improved the modeling, especially for

nonlinear models. The review of Burges (1998), Cristianini and Shaw-Taylor

(2000) and Bishop (2006) help to understand the concept of SVM. For more

details see Vapnik (1995) and Vapnik (1998). Let us briefly consider the SVM

regression approach.

In statistics, the aim of modeling is often to find a function f(x) which

predicts y in a model y = f(x) + error . It is not easy to find f(x). It can be in-

terpolated by using mathematical methods and approximated by using statistical

methods. Via some statistical criteria like sum of squares or maximum likelihood,

ML, the model can be exploited. To evaluate the procedure, one needs a criterion

or loss function. It is defined as “ignoring observation which error is less than ǫ”,

L(x, y, f) =
∣

∣y − f(x)
∣

∣

ǫ
= max

(

0,
∣

∣y−f(x)
∣

∣− ǫ
)

.

It is called “ǫ-insensitive error function”. Another loss function is Huber’s loss

function which is the squared distance between the observations and the function,

see Cristianini and Shaw-Taylor (2000) and Hasti et al. (2001). In Figure 1, the

points outside the tube around the function are called slack variables which is

shown by ξ1i and ξ2j for above and below the tube, respectively. The value of

the points inside the tube is zero and outside is nonzero. To find ξ1i and ξ2j , one

should estimate parameters by the error function as below,

minimize

N
∑

i=1

(ξ1i + ξ2i) +
λ

2
‖W‖2

,

subject to yi ≤ f + ǫ + ξ1i ,

yi ≥ f − ǫ − ξ2i ,

ξ1i, ξ2j ≥ 0 .

By using the Lagrange multiplier to find parameters and optimize by the Karush–

Kuhn–Tucker condition, f(x) can be shown to equal

(2.1) f(x) =

N
∑

i=1

αi k(x, xi) ,

where αi are support vectors, i.e. those points that contribute in the prediction.

All points within the tube have αi = 0 and a few of αi are nonzero. In (2.1),

k(x, xi) is the kernel function, which is an inner product of variables, i.e.,

(2.2) k(x, xi) =
〈

φ(x), φ(xi)
〉

.
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Figure 1: SVM regression with insensitive tube,

slack variables ξ1, ξ2 and observations.

The following are some kernels:

Linear kernel k(x, x′
) = 〈x, x′〉,

Polynomial kernel k(x, x′
) =

(

a〈x, x′〉 + k
)d

,

Radial Basis Function kernel (RBF) k(x, x′
) = exp

(

−σ‖x−x′‖2
)

,

Laplacian kernel k(x, x′
) = 〈x, x′〉 exp

(

−σ‖x−x′‖
)

.

Other kernels are the hyberbolic tangent kernel, the spline kernel, the Bessel

and the ANOVA RBF kernel. The number of kernels is unlimited and new kernels

can be found by combining existing ones (for more information see Burges (1998),

Shaw-Taylor (2000) and Karatzoglou et al. (2007)). There are several advantages

and disadvantages; SVM is based on the kernel, hence the suitable kernel selection

is most important step. However, in practice one needs to study only a few kernel

functions (Burges (1998)). The key in SVM is the transformation of a nonlinear

problem to a higher dimensional linear space using the kernel function. SVM is

not based on any assumptions about the distribution.

3. TIME SERIES ANALYSIS

The Box–Jenkins approach involves identifying an appropriate ARMA pro-

cess by a mathematical model for forecasting. This model is a combination of

AR and MA models. AR(p) is defined as bellow,

(3.1) xt+1 =

p
∑

j=1

φj xt+1−j + ǫt+1 .

If one considers the series to be deterministic as linear dynamic systems, a

method based on the linear measure such as ARMA model can be used for analysis

of the series. However, observed real data are rarely normally distributed and
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tend to have marginal distributions with heavier tails. It has been shown that

most of the financial time series are nonlinear (see, for example, Soofi and Cao

(2002)). Based on the second scenario, we should use the method which has

the capability to capture both the linearities and the nonlinearities of the series

(see, for example, Hassani et al. (2009a) and Hassani et al. (2009b)). Here the

nonlinear model can be written as

xt+1 =

p
∑

j=1

φj hj(xt+1−j) + ǫt+1 , ǫt+1 ∼ N(0, σ2
) ,(3.2)

xt+1 =
(

h1(xt), ..., hp(xt+1−p)
)







φ1
.
.
.

φp






,(3.3)

x = H φ ,(3.4)

where H =
(

h1(·), ..., hp(·)
)

and φ = (φ1, ..., φp)
T
. If H is known, the parame-

ters can be estimated. To simplify assume xt = (xt, xt−1, ..., xt+1−p), p < t. The

parameters of the model can be estimated by the conditional ML:

L(φ, σ|xp) = f(xp+1|xp) f(xp+2|xp+1) · · · f(xt|xt−1)

=

t−1
∏

i=p

f(xi+1|xi)

(3.5)

=

t−1
∏

i=p

1√
2π σ

exp −
(

xi+1 −
∑p

j=1 φj h(xi+1−j)
)2

2 σ2

=

(

1

2πσ2

)(t−p)/2

exp −
t−1
∑

i=p

(

xi+1 −
∑p

j=1 φj h(xi+1−j)
)2

2 σ2
.

Thus, one needs to minimize,

(3.6) SS =

t−1
∑

i=p

(

xi+1 −
p
∑

j=1

φj hj(xi+1−j)

)2

=

t−1
∑

i=p

(xi+1− Hiφ)
2 .

To improve the accuracy of the estimation procedure, one can use a penalty

function,

(3.7) SS2 =

t−1
∑

i=p

(xi+1− Hiφ)
2
+ λ‖φ‖ = (x − Hφ)

T
(x − Hφ) + λ‖φ‖ ,

∂SS2

∂φ
= 0 =⇒ −HT

(x − Hφ) + λ φ = 0 ,

which implies that

(3.8) Hφ = (HHT
+ λ I)

−1HHTx ,



The SVM Approach for Box–Jenkins Models 29

where HHT
is a matrix of inner product of the observations. It is quite straight-

forward to show that (3.8) can be written as an inner product. Therefore, the

nonlinear equation can be written as a kernel function,

(3.9) xt+1 = f(xt)+et+1 =

p
∑

i=1

φi hi(xt+1−i)+et+1 =

t
∑

i=1

αi k(xt, xi)+et+1 .

Another formula that can be considered is the use of time index, as inde-

pendent, in the model. This is a reasonable variable as the time series data are

collected during time,

(3.10) xt =

t
∑

i=1

αi k(xt, i) .

Let us now consider the moving average model of order q, MA(q),

(3.11) xt =

q
∑

j=0

θj wt−j , wt ∼ N(0, σ2
) .

The previous procedure follows by using a nonlinear function,

xt =

q
∑

j=0

θj h(wt−j) .

It is difficult to decide about the distribution of h(·) beforehand. With the as-

sumption h(wt−j) ∼ N(µn, σ2
n), there is no improvement for modeling. However,

if the model is invertible, we can write MA as AR and follow the previous model.

Hence, there are two problems: the distribution of h(·) and the invertibility of the

model which make the behavior of MA a bit unclear for using kernel. The similar

problem exists for ARMA(p, q). There are two viewpoints: first, ignorance of MA

in the model and considering ARMA(p, q) as AR, and second, if ARMA(p, q) is

invertible, then ARMA can be written as AR directly. At any rate, the procedure

of AR process can be used.

Let us now consider a unit root process:

(3.12) xt = µ+xt−1+wt = µ+µ+xt−2 +wt−1+wt = · · · = tµ+x0 +

t
∑

i=0

wi .

This is a problem for the Box–Jenkins approach as it violates the stationarity

condition, and therefore one can not formulate the Box–Jenkins model (see, for

example, Brockwell and Davis (1991)). The modeling of the unit root has been

discussed extensively in the literature. There exist some statistical tests for di-

agnosis and also modeling in the special conditions. Equation (3.12) tells us that

the unit root has a regression form of time but because of dependency between
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observations, the common regression can not be used for it. In this case, one can

use SVM, using the previous discussion and rewriting it as kernel formula. It is

not based on the distribution and hence the dependency does not affect on it.

It should be noted that, if µ = 0 then this model has major drawback and behaves

randomly.

4. APPLICATIONS

In this section, the applicability of SVM for time series analysis is consid-

ered. In order to performs the comparison, two different criteria are used: sum of

squared residuals (SSR) and Akaike Information Criterion (AIC). AIC is calcu-

lated based on ln σ̂2
k +

2k
n , where σ̂2

k =
SSR

n , k and n are the number of parameters

and observations, respectively. In the following, the SVM approach is used in the

modeling of AR(2), MA(1) and ARMA(2, 1) process.

4.1. AR

Here we use the series that has been used in Brockwell and Davis (1991),

Example 9.2.1. The series includes 200 observations. Table 1 shows SSR and

AIC of AR(2) and SVM with different kernels. SVM has been calculated using

equation (3.9). In the table, the results of a few kernels are presented as SSR

of other kernels were larger than AR(2). The results show the efficiency of the

Laplacian kernel in comparison with the Box–Jenkins modeling. It should be

noted that RBF with σ = 50 fitted fairly well.

Table 1: SSR and AIC of AR(2) and SVM with different kernels.

Model SSR AIC

AR(2) 176.99 −0.102

RBF
1

171.73 −0.136

RBF
2

144.33 −0.368

Bessel
1

161.16 −0.176

Bessel
2

194.46 0.009

Laplacian
1

100.83 −0.664

Laplacian
2

202.68 0.330

linear 177.75 −0.102

poly
3

176.43 −0.085

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.
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The calculations in Table 2 are based on equation (3.10). This model uses

the time as an independent variable. The table shows how much fitting has been

improved. The Laplacian kernel and Bessel kernel have smaller SSR than AR,

but other kernels have greater SSR than AR. These values show the Bessel kernel

has been fitted well, but its variation is very large. The variation of Laplacian

kernel is small in comparison with the Bessel kernel, and hence it seems to be

more reliable to use. The Laplacian kernel, for this model, is better than the

previous models.

Table 2: Modeling directly based on time for AR(2) with different kernels.

Model SSR AIC

Laplacian
1

56.60 −1.252

Laplacian
2

21.55 −2.217

Bessel
1

29.50 −1.830

Bessel
2

980.17 1.619

1
Fitted by σ = 10.

2
Fitted by σ = 50.

Moreover, consider AR(2) with xt = xt−1 − 0.9 xt−2 + ωt. This model is

stationary and hence the Box–Jenkins model fits very well. To compare the Box–

Jenkins model with SVM, the simulation of this model is performed 1000 times

with 100 observations. The results for the Box–Jenkins model and different ker-

nels are shown in Table 3. The first two columns include the results of using (3.9)

Table 3: Percent and order of model in simulation of AR.

Model
model based on xt model based on t

percent order percent order

AR(2) 0.020 6.93 0.006 2.93

RBF
1

0.283 3.67 0.00 9.18

RBF
2

0.000 4.43 0.00 6.00

Bessel
1

0.023 3.77 0.00 7.90

Bessel
2

0.000 5.85 0.994 1.00

tangent
1

0.000 12.51 0.000 12.63

tangent
2

0.000 12.49 0.000 12.53

splinedot 0.000 14.51 0.000 14.42

spline1 0.000 14.48 0.000 14.36

Laplacian
1

0.540 2.17 0.000 3.92

Laplacian
2

0.003 6.27 0.000 2.14

linear 0.020 6.36 0.000 10.21

poly
3

0.110 5.52 0.000 10.22

ANOVA
1

0.000 10.98 0.000 7.52

ANOVA
2

0.000 10.01 0.000 4.99

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.
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and the second two columns include the results of using (3.10). The order column

is the mean of orders of models in all of the simulations and the percent shows how

many times the model has the smallest SSR in the simulations. As it appears

from Table 3, the Laplacian kernel in 54% time has minimum SSR using xt,

but Bessel kernel has minimum SSR using time as explanatory variable. The

results of Table 3 is similar to those obtained in Table 1. Therefore, the Bessel

and Laplacian kernel are suitable for AR. Table 2 also shows that the fitted model

based on the time index as an explanatory variable has better performance than

a model based on xt.

4.2. MA

The Example 10.4.2 of Brockwell and Davis (1991) is a MA(1) process with

160 observations. Here we use the same series to examine the performance of the

SVM modeling. The results are presented in Table 4.

Table 4: SSR and AIC of MA(1) and SVM with different kernel.

Model SSR AIC

MA(1) 147 −0.072

Bessel
1

227.373 0.388

Bessel
2

198.415 0.252

Laplacian
1

178.720 0.123

Laplacian
2

79.282 −0.689

1
Fitted by σ = 10.

2
Fitted by σ = 50.

The results show that the Laplacian kernel with large σ has been fitted

very well to MA(1) and also SSR of using Bessel kernel is close to MA(1), but

other kernels have not good performance. As it is mentioned above, SVM has

a better performance for a AR(p) model than a MA model. For a AR model,

the Laplacian kernel with small σ has smallest SSR, but for MA, the Lapla-

cian kernel with larger σ has smallest SSR. For more clarification, see Table 5

which shows the result of the simulation yt = ωt + 0.5 ωt−1 with 100 observations.

This includes the order and the percent of different models in comparison

with the Box–Jenkins model. The results confirm the previous results that indi-

cate the Laplacian kernel with large σ has fitted better, almost 88%, than other

methods.
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Table 5: Percent and order of model in simulation of MA.

Model percent order

MA(1) 0.000 8.08

RBF
1

0.000 8.54

RBF
2

0.000 5.00

Bessel
1

0.000 6.512

Bessel
2

0.112 2.90

tangent
1

0.000 12.59

tangent
2

0.000 12.44

Spline
1

0.000 14.50

Spline
2

0.000 14.46

Laplacian
1

0.000 3.00

Laplacian
2

0.888 1.11

linear 0.000 10.68

poly
3

0.000 13.68

ANOVA
1

0.000 6.89

ANOVA
2

0.000 4.00

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.

4.3. ARMA

Next we consider ARMA(2, 1) with 200 observations from Brockwell and

Davis (1991), Example 9.2.3. Table 6 shows SSR and AIC of ARMA(2, 1) and

different kernels. The first two columns include the results of using (3.9) and the

second two columns include the results of using (3.10). It admits the efficiency

of Laplacian kernel for the ARMA model. As it appears from the results, the

Laplacian kernel has the smallest SSR in both cases.

Table 6: SSR and AIC of ARMA and SVM with different kernels.

Model
model based on xt model based on t

SSR AIC SSR AIC

ARMA(2, 1) 197.16 0.0157

RBF
1

244.16 0.209 1536.55 2.048

RBF
2

176.26 −0.008 1216.10 1.815

Bessel
1

201.50 0.037 1460.53 2.018

Bessel
2

195.39 0.006 56.82 −1.228

Laplacian
1

116.96 −0.526 350.00 0.569

Laplacian
2

200.14 0.010 46.76 −1.443

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.
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To simulate ARMA(2, 1), consider xt = 0.4 xt−1 + 0.5 xt−2 + ωt + 0.2 ωt−1.

The simulation results are based on 1000 replications of 100 observations. The

results of ARMA(2, 1) using the Box–Jenkins and SVM, using different kernels,

were presented in Table 7. The results are similar to those obtained in Table 6,

which is based on a time series data. As it appears from the table, in both mod-

els, equation (3.9) and (3.10), the Laplacian kernel has better performance than

others. The Laplacian kernel, using xt and time as explanatory variables, with

σ = 10 has the smallest SSR in 92.3% and 66% of the simulations, respectively.

Table 7: Percent and order of model in simulation of ARMA(2, 1).

Model
model based on xt model based on t

percent order percent order

ARMA(2, 1) 0.000 8.80 0.000 9.00

RBF
1

0.020 5.14 0.000 7.99

RBF
2

0.000 3.33 0.000 4.93

Bessel
1

0.000 4.23 0.000 6.47

Bessel
2

0.002 3.86 0.044 2.33

tangent
1

0.000 12.56 0.000 12.60

tangent
2

0.000 12.46 0.000 12.39

Spline
1

0.000 14.56 0.000 14.47

Spline
2

0.000 14.40 0.000 14.52

Laplacian
1

0.923 1.14 0.660 1.48

Laplacian
2

0.045 3.81 0.296 2.39

Linear 0.000 9.51 0.000 10.87

Poly
3

0.000 8.67 0.000 10.12

ANOVA
1

0.000 9.64 0.000 6.48

ANOVA
2

0.000 7.83 0.000 3.90

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.

4.4. Unit root

Let us now consider the application of SVM for a unit root process. The

model xt = xt−1 + ωt with 100 observations is simulated 1000 to study the SVM

performance. The results of SVM modeling for the simulated series are presented

in Table 8. For a better understanding of the SVM performance in modeling, the

order of the model is presented in comparison with the other competitive methods

and also the percent. In this case, modeling by ARMA model is impossible

because of the non stationarity property of the series. Nonstationarity can often
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be associated with different trends in the signal or heterogeneous segments with

different local statistical properties. Table 8 indicates that the Laplacian kernel

has been fitted very well to the series.

Table 8: Percent and order of the model in simulation of a unit root process.

Model percent order

RBF
1

0.00 7.68

RBF
2

0.019 4.08

Bessel
1

0.000 6.23

Bessel
2

0.036 2.77

tangent
1

0.000 11.63

tangent
2

0.000 11.36

spline
1

0.000 13.57

spline
2

0.000 13.42

Laplacian
1

0.915 1.14

Laplacian
2

0.002 5.68

linear 0.000 9.87

poly
3

0.000 9.08

ANOVA
1

0.002 5.75

ANOVA
2

0.024 2.85

1
Fitted by σ = 10.

2
Fitted by σ = 50.

3
With 2 degrees.

5. CONCLUSION

Although the Box–Jenkins model is still one of the most applied model in

time series analysis, there are several major drawbacks; the Box–Jenkins models

are based on the stationarity, but this is often not sufficient, for example modeling

unit root process using ARMA approach is impossible.

The results of this study show that the ARMA models can be expressed as

SVM. The performance of the SVM modeling is studied in comparison with the

Box–Jenkins modeling. Particularly, the Laplacian kernel is superior to others.

It is therefore concluded that the use of SVM for the ARMA model is of great

interest and should be considered (see Section 3). Moreover, the use of time index,

as explanatory variable, in modeling will improve the accuracy of the results (see

Tables 3, 6 and 7). To clarify the performance of the SVM for time series analysis,

several examples and simulated series are used. The empirical results confirm our

theoretical results. Our findings also show that the SVM based on the Laplacian

kernel works very well for the unit root process.
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1. INTRODUCTION

Linear regression modelling is a nice form for linking variables because in

general the parameters have some kind of meaning or interpretation. Neverthe-

less, it is known that the main drawback of the linear regression models is their

lack of flexibility. In practice, this fact causes that some interesting relationships

can not be modelled by means of this class of models.

A way to avoid that drawback is to add to the linear regression function

a nonparametric component. The resulting model, known as a partial linear

regression (PLR) model, was introduced by Engle et al. (1986) to study the effect

of weather on electricity demand. Another interesting feature of the PLR models

is that they also avoid the “curse of dimensionality” (assuming low dimension for

the explanatory variable that enters in a nonparametric way). From a theoretical

point of view that dimension can be high, but usually is 1. Thus, we can say

that the PLR models are flexible models that, in practice, can handle multiple

variables.

Since the pioneer work of Engle et al. (1986), several papers have been

published on this class of models in the setting of i.i.d. data (see, e.g., Speckman,

1988, Robinson, 1988, or Linton, 1995) as well as for dependent data (see, e.g.,

Gao, 1995, or Aneiros-Pérez et al., 2004). In these papers, one can find asymptotic

results (consistency, asymptotic normality) on estimators for each component in

the PLR model, as well as on bandwidth selectors for those estimators, and even

on testing of hypotheses. In addition, PLR models have demonstrated their

usefulness in many field of applied sciences, such as economics, environmental

studies, medicine... (see Härdle et al., 2000, for a monograph and applications of

the PLR model). A common feature in all these publications is that they study

the same type of estimator, regardless of the data are independent or not.

In a recent paper, Aneiros-Pérez and Vilar-Fernández (2008) proposed a

new estimator for the nonparametric component in a PLR model under random

design and dependence conditions. To construct their estimator, these authors

took into account the dependence structure in the errors of the model. Specifi-

cally, this dependence structure was used to transform the PLR model with de-

pendent errors into a PLR model with uncorrelated errors (say, into a “whitened

model”). Then, the estimator of the nonparametric component was based on this

whitened model. Aneiros-Pérez and Vilar-Fernández (2008) obtained the asymp-

totic normality of both the estimator based on the original PLR model and the

estimator based on the whitened model. As a consequence, they noted that the

second estimator is asymptotically more efficient than the first estimator.

The aim of this paper is to illustrate, in practice, both the competitiveness

of the PLR model and the usefulness of the prewhitening transformation.
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Our paper is organized as follows. The PLR model is presented in Section 2,

and estimators of both linear and nonparametric components of the model are

motivated and defined. Then, a comparative study on the behavior of those

estimators is deeply carried out in Section 3. For this, three real datasets in the

context of economics and finance were analyzed. Concluding remarks are given

in Section 4.

2. MOTIVATION AND CONSTRUCTION OF THE ESTIMATORS

2.1. The partial linear regression model

The class of the PLR models assumes that the regression function is the

sum of a linear and a nonparametric component. This can be mathematically

expressed through the regression model

(2.1) Yi = XT
i β + m(Ti) + εi (i = 1, ..., n) ,

where Xi = (Xi1, ..., Xid0
)
T

and Ti = (Ti1, ..., Tid1
)
T

(d0 ≥ 1, d1 ≥ 1) are vectors

of explanatory variables, β = (β1, ..., βd0
)
T

is a vector of unknown real parameters,

m is an unknown smooth real function and {εi} are the random errors satisfying

(2.2) E(εi |Xi,Ti) = 0 (i = 1, ..., n) .

In this paper, we focus on estimation of m in (2.1) when both Xi and Ti are ran-

dom (random design) and, in addition, the errors εi are dependent. Specifically,

we assume that these errors follow the invertible linear process

(2.3) εi =

∞
∑

j=0

cj ei−j , where c0 = 1 and ei are i.i.d. with E(ei) = 0 .

In general, estimators proposed in the statistical literature to estimate m in (2.1)

do not have into account the dependence structure in the errors. However, it

seems natural to think that incorporate such information in the construction of

the estimator can be helpful. Aneiros-Pérez and Vilar-Fernández (2008) proposed

to use that dependence structure in the following way. Let us denote c(L)=
∑∞

j=0 cj Lj
, where L is the lag operator, and

(2.4) a(L) = c(L)
−1

= a0 −
∞

∑

j=1

aj Lj
with a0 = 1 .
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Applying a(L) to the PLR model (2.1) and rewriting the corresponding equation,

we obtain the new PLR model

(2.5) Y i = XT
i β + m(Ti) + ei (i = 1, ..., n) ,

where Y i = Yi −
∑∞

j=1 aj

(

Yi−j −XT
i−j β −m(Ti−j)

)

= Yi −
∑∞

j=1 aj εi−j . As we

see, the regression function in the PLR models (2.1) and (2.5) is the same, but

in (2.5) the errors are i.i.d. Now, it should be noted that an estimator for m

based on the PLR model (2.5) takes into account the dependence structure of the

errors εi (through Y i). From now on, we will name “original PLR model” and

“whitened PLR model” to the models (2.1) and (2.5), respectively.

2.2. The estimators

Aneiros-Pérez and Vilar-Fernández (2008) studied and compared (from an

asymptotic point of view) two estimators for m(t), one (say m̂(t)) based on the

original PLR model (2.1) and the other (say m̂(t)) based on the whitened PLR

model (2.5). Specifically, these authors proved that, under suitable conditions,

the asymptotic distribution of these estimators (properly normalized) is Gaussian.

In summary, from that result one can observe that both estimators asymptotically

have the same bias but different variances, the variance of m̂(t) relative to the

variance m̂(t) being σ2
ε/σ2

e =
∑∞

j=0 c2
j ≥ 1 (the equality holding if and only if {εi}

is i.i.d.). Thus, we have that the estimator based on the whitened PLR model

is asymptotically more efficient than the estimator based on the original PLR

model.

Now, we motivate and construct both estimators m̂(t) and m̂(t). We begin

with m̂(t). Let us assume that we have a root-n consistent estimator for β (say

̂βh0
). Then, from the original PLR model (2.1) we can write

Yi − XT
i

̂βh0
≈ m(Ti) + εi (i = 1, ..., n) ,

and, assuming that m is a smooth function, we proceed to estimate m(t) by

means of the nonparametric estimate

(2.6) m̂h0,h1
(t) =

n
∑

j=1

wh1,j(t)
(

Yj − XT
j

̂βh0

)

,

where wh1,j(t) are weight functions depending on t and the design points Ti, and

both h0 and h1 are smoothing parameters or bandwidths that typically appear in

any setting of nonparametric or semiparametric estimation. The weight functions

considered in Aneiros-Pérez and Vilar-Fernández (2008) were local p-order poly-

nomial type weights (for local polynomial estimation see, e.g., Fan and Gijbels,

1996, or Francisco-Fernández and Vilar-Fernández, 2001).
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As we see, the estimator (2.6) is based on the original PLR model (2.1),

but similar steps could be used to construct an estimator for m(t) based on

the whitened PLR model (2.5). Because in practice the response variable Y i in

(2.5) is unknown (depends on ai, β and m), the first step in constructing such

an estimator should be to propose a “reasonable” approximation for Y i. In this

way, Aneiros-Pérez and Vilar-Fernández (2008) proposed to use the residuals

ε̂i = Yi−XT
i

̂βh0
−m̂h0,h0

(Ti) of the original PLR model to construct an estimate

of AT = (a1, ..., aT )
T
, T being a truncation parameter large enough to avoid

problems with the bias. Specifically, this estimator for AT is constructed by

means of the ordinary least squares (OLS) method applied to the model

(2.7) ε̂i = a1 ε̂i−1 + · · · + aT ε̂i−T + residual i (i = T +1, ..., n) .

In this way, the estimator

(2.8) ̂AT =
(

ε̂T
T ε̂T

)−1
ε̂T
T ε̂

is obtained, where ε̂ = (ε̂T +1, ..., ε̂n)
T

and ε̂T = (ε̂i,j)1≤i≤n−T
1≤j≤T

with ε̂i,j = ε̂i−j+T .

Now, using ̂AT together with ̂βh0
and m̂h0,h0

, we define

(2.9) ̂Y T ,i = Yi−
T

∑

j=1

âj

(

Yi−j −XT
i−j

̂βh0
−m̂h0,h0

(Ti−j)

)

(i = T+1, ..., n) .

Finally, from (2.5) and (2.9), we can write

̂Y T ,i − XT
i

̂βh0
≈ m(Ti) + εi (i = T +1, ..., n) ,

and, as in (2.6), we construct the estimator

(2.10) m̂T ,h0,h1
(t) =

n
∑

i=T +1

wh1,i(t)
(

̂Y T ,i − XT
i

̂βh0

)

.

In summary, the steps taken to construct the estimator (2.10) are:

Step 1: Construct a root-n consistent estimator ̂βh0
for β.

Step 2: Construct the residuals ε̂i.

Step 3: Use ε̂i (i = T +1, ..., n) to construct an estimator âj for aj

(j = 1, ..., T ).

Step 4: Use âj (j = 1, ..., T ), ̂βh0
and m̂h0,h0

to construct an approximation

̂Y T ,i for Y i (i = T +1, ..., n).

Step 5: Use ̂βh0
and ̂Y T ,i to construct the estimator (2.10).
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Finally, we motivate the root-n consistent estimator ̂βh0
for β used in

Aneiros-Pérez and Vilar-Fernández (2008). If we subtract E(Yi |Ti) on both

sides of equality (2.1), we get the linear regression model

(2.11) Yi − E(Yi |Ti) =
(

Xi − E(Xi |Ti)
)T

β + εi (i = 1, ..., n) .

Then, replacing the response and explanatory variables in (2.11) (that is, Yi −
E(Yi |Ti) and Xi − E(Xi |Ti), respectively) by the corresponding residuals

obtained when Y and X are nonparametrically adjusted for T, we can write

(in matricial form)

(2.12) ˜Yh0
≈ ˜XT

h0
β + εi (i = 1, ..., n) ,

where, for both the n-dimensional vector A = Y and the (n×d0)-matrix A = X,

and for any real number h0 > 0, we have denoted ˜Ah0
= (I − Wh0

)A with

Wh0
=

(

wh0,j(Ti)
)

i,j
. Now, using OLS in (2.12), one obtains

̂βh0
=

(

˜XT
h0

˜Xh0

)−1
˜XT

h0

˜Yh0
.

At this time, four facts should be clear. First, we dispose of two estimators for m

in (2.1): m̂h0,h1
(t) and m̂T ,h0,h1

(t). Second, m̂h0,h1
(t) does not take into account

the dependence structure in the errors of the PLR model (2.1). Third, m̂T ,h0,h1
(t)

takes into account the dependence structure in the errors of the PLR model

(2.1). Fourth, Aneiros-Pérez and Vilar-Fernández (2008) proved that m̂T ,h0,h1
(t)

is asymptotically more efficient than m̂h0,h1
(t).

3. APPLICATIONS TO REAL DATA

The main goal of this section is to compare the behavior of the estima-

tors m̂h0,h1
(t) and m̂T ,h0,h1

(t) when they are applied to real data. In addition,

in order to make more general the study and not only confined to the PLR

model, in a first attempt we will consider a set of regression models together with

their conventional estimators. Then, the accuracy of these models/estimators will

be compared with that of the PLR model/estimators m̂h0,h1
(t) and m̂T ,h0,h1

(t).

In a second attempt, we will take into account the fact that the prewhitening

transformation (2.4) can also be applied to that set of regression models. Thus,

we will include in the study the estimators based on the corresponding whitened

regression models. Then, when the study is completed, we will have shown both

the competitiveness of the PLR model and the usefulness of the prewhitening

transformation.
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Three real datasets will be analyzed, all related to the field of economics

and finance. Specifically, the first example deals with market shares and prices

of two dentifrices, while the second dataset is related to the building industry.

Finally, in the third study we consider relationships between stock indices.

3.1. Models

In the three datasets we will study, we have a response variable (say Y )

and two explanatory variables (say X and T ). Thus, we will consider four classes

of regression models linking Y with X and/or T . Now, we quickly present each

one of these classes and give a short motivation of them:

Linear models. Maybe, the first class that comes to mind is that of the clas-

sical linear regression models. These models allow easy interpretation of the

effect of each explanatory variable on the response variable. Nevertheless,

it is known than its main handicap is the lack of flexibility.

Nonparametric models. In order to avoid the handicap named in the previ-

ous kind of models, the second class to be considered is that of nonparamet-

ric models. A problem of this class is the known as“curse of dimensionality”,

which is based on the fact that, when the number d of real explanatory

variables is greater than 1, large sample sizes are required to obtain good

estimates (these sample sizes increase exponentially with d). In view of this

problem, we will restrict to the class of nonparametric models with only a

real explanatory variable.

Partial linear models. This class was presented in a general setting in

Section 2. In this practical study, we will consider PLR models that include

one real variable in a linear form and another one in a nonparametric form

(that is, d0 = d1 = 1 in (2.1)). Note that this class overcomes the curse of

dimensionality.

Additive models. The last class is composed by the additive models with

two explanatory variables, that is, nonparametric models whose regression

function is the sum of two nonparametric components. It is interesting to

observe that, as the previous class, this class avoids the curse of dimension-

ality (in fact, this is achieved in both classes by means of the same method:

to express the regression function as the sum of two components).

The wide range of models named above can be seen in Table 1.
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Table 1: Regression models.

Models Notation

Linear models

Y = α + Xβ + ε L1

Y = α + Tβ + ε L2

Y = α + Xβ1 + Tβ2 + ε L3

Nonparametric models

Y = m(X) + ε NP1

Y = m(T ) + ε NP2

Partial linear models

Y = Xβ + m(T ) + ε PL1

Y = Tβ + m(X) + ε PL2

Additive model

Y = µ + m1(X) + m2(T ) + ε ADD

3.2. Estimators

Now we indicate, for each regression model in Table 1, the kind of estimator

considered. OLS estimators were used to estimate the parameters corresponding

to the linear models, while the local linear polynomial estimator was considered

to estimate the regression function in the nonparametric models. Both the para-

metric and the nonparametric component in the PLR models were estimated by

means of the estimators presented in Section 2. Finally, for the additive model,

a backfitting algorithm was considered (see Hastie and Tibshirani, 1990). In the

last two classes of models, the weight functions were local linear polynomial type

weights (as for the nonparametric case).

3.3. Choosing the parameters of the estimates

In practice, as usual in both nonparametric and semiparametric settings,

it is necessary to choose some parameters related to the estimates. Specifically,

we refer to the kernel and the bandwidths. In addition, for the cases where the

prewhitening transformation is considered, we must give a value for the truncation

parameter T .

On the one hand, the Epanechnikov Kernel K(u) = 0.75(1− u)
2 I[−1,1](u)

and the truncation parameter T = 2 were used in the estimates. On the other

hand, the bandwidths were chosen by means of the cross-validation procedure.
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In short, this bandwidth selector proposes to choose the value ̂hCV that minimizes

to the function

CV (h) = n−1
n

∑

i=1

(

Yi − r̂ i
h(Xi, Ti)

)2
ω(Ti) ,

where r̂ i
h(·, ·) denotes the estimator of the regression function (of each model

considered) constructed without using the i-th observation, and ω(·) is a weight

function included to avoid boundary effects. Note that for both the PLR and the

additive models h is a vector (say h = (h0, h1)
T

and h = (h1, h2)
T
, respectively).

The good (asymptotic) properties of the cross-validation selector are based on

the fact that CV (h) is (asymptotically) equivalent (except for a constant) to

the average squared error (see Aneiros-Pérez and Quintela-del-Ŕıo 2001 for some

results on this selector in the setting of PLR models).

3.4. Measure of accuracy

To compare the accuracy of the different models/estimators, we considered

the Relative Cross-Validation (RCV)

RCV =
CV

(

̂hCV

)

Var{Yi}
,

where Var{Yi} denotes the variance corresponding to the sample of responses.

Observe that RCV gives a global measure of the accuracy of each model/estimator.

3.5. The dentifrice data

The first dataset analyzed consists of weekly market shares of Crest and

Colgate dentifrice, together with the price of Crest dentifrice, during the period

January 1, 1958 to April 30, 1963 (276 data). This dataset was used in Wichern

and Jones (1977) to asses the impact of market disturbances, and can be found

on the website http://www.alianzaeditorial.es (Book title: Análisis de Series

Temporales; Author: Peña, D., Section: Ejercicios prácticos). The graphics of

these time series are shown in Figure 1.

From Figure 1, we clearly observe the presence of trend in the three series.

These trends were eliminated by differentiating. Then, using the transformed

data, we seek in Table 1 an adequate regression model to link the data corre-

sponding to the market share of Crest dentifrice (Y ) with those of market share

of Colgate dentifrice (X) and price of Crest dentifrice (T ).
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Figure 1: The market shares of Crest (left) and Colgate (middle) dentifrice,

and the price of Crest dentifrice (right).

The RCV’s of the models/estimates considered, as well as comparisons

between them, are displayed in Table 2. From the third column in this table, we

can say that the prewhitening transformation has proved useful in all the models.

In addition, the fourth column indicates that the best model is the PLR model

that includes the effect of market share of Colgate dentifrice and price of Crest

dentifrice in a linear and a nonparametric way, respectively (that is, the PLR

model PL1).

Table 2: Values of the criterion error and ratios (
a
original model,

b
whitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1

a
0.8347

b
0.8313

0.9959
1.0370

1.0328

L2
0.9793

0.9748
0.9953

1.2167

1.2110

L3
0.8161

0.8108
0.9935

1.0139

1.0073

NP1
0.8359

0.8308
0.9939

1.0385

1.0321

NP2
0.9802

0.9751
0.9948

1.2177

1.2114

PL1
0.8090

0.8049
0.9950

1.0050

1.0000

PL2
0.8118

0.8077
0.9949

1.0086

1.0034

ADD
0.8219

0.8147
0.9912

1.0211

1.0121
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Finally, we give some information on the estimates of the parameter β and

the function m in the best model (PL1). The estimates of β using the conventional

and the prewhitened-based estimators were −0.4146 and −0.4220, respectively.

The corresponding estimates of m are shown in Figure 2 (from now on, in the

graphics corresponding to the estimates of m, “Estimator 1” and “Estimator 2”

are referred to as m̂h0,h1
and m̂T ,h0,h1

, respectively).
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Figure 2: Estimates of the nonparametric component m
in the PLR model PL1.

3.6. The building industry data

The building industry data is the second example we analyze. We have

monthly observations corresponding to the number of buildings started, quan-

tity of cement produced and number of buildings completed in Galicia (an au-

tonomous community located in northwestern Spain) during the period January

1987 to December 2000 (168 data). These time series are available on the website

http://www.ige.eu. Figure 3 displays these data.

Our goal is to get a model to analyze the effect of both the quantity of

cement produced (X) and the number of buildings completed (T ) on the number

of buildings started (Y ). Because, as in the previous example, our time series

contain trend (see Figure 3) and therefore they are not stationary, we have worked

with the differenced data.
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Figure 3: Number of buildings started (left), quantity of cement produced (middle)

and number of buildings completed (right) in Galicia.

Table 3 shows interesting information on the accuracy of the models con-

sidered, as well as on the behavior of the different estimators. From this table, we

note that the prewhitening transformation does not always improve the original

model (see column 3), but there are improvements for the best two models (PL1

and ADD). Finally, the prewhitened-based estimator applied on the PLR model

PL1 gives the best accuracy (see column 4).

Table 3: Values of the criterion error and ratios (
a
original model,

b
whitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1

a
0.9613

b
0.9616

1.0003
1.0704

1.0707

L2
0.9872

0.9879
1.0007

1.0992

1.0999

L3
0.9488

0.9458
0.9969

1.0564

1.0531

NP1
0.9409

0.9472
1.0067

1.0476

1.0547

NP2
0.9610

0.9492
0.9877

1.0700

1.0569

PL1
0.9071

0.8981
0.9901

1.0100

1.0000

PL2
0.9170

0.9176
1.0006

1.0210

1.0216

ADD
0.9055

0.9001
0.9940

1.0082

1.0022
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Focusing on the PLR model PL1, we have that the estimates of β using

the conventional and the prewhitened-based estimators were 21.91 and 21.16,

respectively. The corresponding estimates of m are shown in Figure 4.
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Figure 4: Estimates of the nonparametric component m
in the PLR model PL1.

3.7. The stock data

Finally, we present an analysis on stock data. Specifically, our time se-

ries collect Banca Commerciale Index (Milan), FT-SE 100 Index (London) and

General Index (Madrid) for each month during the period January 1988 to De-

cember 2000 (156 data). These data, which can be obtained on the website

http://www.ec.europa.eu/eurostat, are shown in Figure 5.

From a first analysis of the data, we found the presence of both hetero-

scedasticity and trend. Thus, the data have been transformed using logarithms

and then differentiated to achieve stationarity. Now, using the transformed data,

we are interested in the construction of an adequate regression model to link the

Banca Commerciale Index (Y ) with the FT-SE 100 Index (X) and the General

Index (T ).
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Figure 5: Banca Commerciale Index (left), FT-SE 100 Index (middle)

and General Index (right).

The RCV’s obtained for the different models considered, as well as compar-

isons between them, are given in Table 4. Some conclusions can be obtained from

this table. First, only in the models L1 and NP2 the prewhitening transformation

does not improve the original model (see column 3). Second, the best model is

the PLR model that includes the effect of FT-SE 100 Index and General Index

in a linear and a nonparametric way, respectively (that is, the PLR model PL1).

Third, the prewhitened-based estimator applied on this PLR model gives the best

accuracy.

Table 4: Values of the criterion error and ratios (
a
original model,

b
whitened model).

Model RCV RCVb/RCVa RCV/minRCV

L1

a
0.7027

b
0.7041

1.0019
1.0226

1.0246

L2
0.9859

0.9843
0.9984

1.4347

1.4324

L3
0.7129

0.7119
0.9986

1.0374

1.0360

NP1
0.7058

0.7044
0.9980

1.0271

1.0251

NP2
0.9768

0.9797
1.0029

1.4215

1.4257

PL1
0.6911

0.6872
0.9944

1.0057

1.0000

PL2
0.7004

0.6994
0.9986

1.0192

1.0178

ADD
0.7040

0.6978
0.9912

1.0245

1.0155
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We complete the analysis showing the estimates of the parameter β and

the function m in the best model (PL1). The estimates of β using the conven-

tional and the prewhitened-based estimators were 0.4713 and 0.4666, respectively.

The corresponding estimates of m are displayed in Figure 6.
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Figure 6: Estimates of the nonparametric component m
in the PLR model PL1.

4. CONCLUDING REMARKS

In this paper, partial linear regression modelling in time series was dealt

from a practical point of view. For this, we divided the paper into two parts.

In the first part, some theory was shown. Specifically, we motivated and pre-

sented the PLR model. Then, we carefully constructed the estimator proposed in

Aneiros-Pérez and Vilar-Fernández (2008), which is based on a whitened version

of the original PLR model. By this motive, the estimator takes into account the

dependence structure in the random errors (this fact is crucial for its good asymp-

totic behavior). The second part contains the main contribution of our work.

It analyzes several real time series concerning economics and finance. Specifically,

these time series were modelled by means of a wide range of regression models,

including PLR models. Then, the corresponding regression functions were esti-

mated. For this, both conventional and whitened-model based estimators were

used. Finally, the performance of the corresponding estimators was measured.
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In all the time series studied, the PLR model (estimated using the estimator

proposed in Aneiros-Pérez and Vilar-Fernández, 2008) gave the best results.

We are aware that the improvement on the point-estimates is small. In fact,

from the theoretical results, it is expected that a greater improvement is obtained

on comparing confidence intervals (as noted in Subsection 2.2, the asymptotic dif-

ference between the conventional and the whitened-model based estimators is in

their variances). Nevertheless, it should be noted that to construct confidence

intervals one needs to estimate those variances, and the variability of the corre-

sponding estimators could mask the theoretical result. For this reason, we have

preferred to compare the point-estimates.
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54 Germán Aneiros-Pérez and Juan Manuel Vilar-Fernández

[7] Gao, J.T. (1995). Asymptotic theory for partly linear models, Communications

in Statistics: Theory and Methods, 24, 1985–2009.
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1. INTRODUCTION

Fuel poverty is defined as “the inability to afford adequate warmth in the

home” and is related to poor energy efficiency of homes as well as householders’

incomes. In the U.K. a household is defined as suffering from fuel poverty if more

than 10% of their income is spent on fuel. In 2008, 4.5 millions people were defined

as “fuel poor”. It is projected that 5.8 million will be “fuel poor” in 2009. Older

households are the group most vulnerable to fuel poverty, and are also particularly

susceptible to cold-related health effects. The significant numbers recognised as

fuel poor have as yet unrecognised implications for costs to public services.

Conventionally, research has referred to effects of cold homes in terms of

excess winter deaths (e.g. Wilkinson et al. (2001)). These deaths are known to

be associated with outdoor winter temperatures, but direct evidence of links to

low indoor temperatures is limited. Mortality statistics disguise the full extent

of potentially long-term chronic conditions exacerbated by cold. Hence we have

concentrated on measuring excess winter morbidity (illness) in relation to fuel

poverty, rather than mortality, because of the consequent implications for winter

pressures on health services.

We have previously demonstrated links between fuel poverty risk and excess

winter hospital episodes among older people in Newham, using this excess as a

measure of associated morbidity (e.g. Rudge and Gilchrist (2007)). In this paper

we refer to that work and describe the means by which this measure could be

developed as a costing element for a health impact assessment tool. The results

could contribute to the debate regarding the case for increased energy efficiency

investment on public health grounds, in addition to the accepted environmental

grounds. Our methodology is closely related to the models that have been used

for insurance claims. The two stage aspect of our modelling, firstly estimating the

probability of being an emergency respiratory admission, followed by estimating

the probability of dying after admission, gives a model for the effect of fuel poverty

on this form of mortality.

2. SUBSTANTIVE BACKGROUND TO FUEL POVERTY AND

POOR HEALTH

The U.K. Department of Health (2001) recognises that fuel poverty affects

health inequalities, particularly among older people. The potential benefits of

energy efficiency investment for older fuel poor households involve improvements

in comfort, health and well being. Identifying cost savings associated with such

benefits is complicated by the many confounding factors involved in showing

direct causal links between housing characteristics and health.
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There are no current precise methods of calculating the cost to the health

services of cold-related disease arising from poor housing. The newly prevail-

ing emphasis on dealing with climate change and carbon emissions may deflect

attention from the needs of the fuel poor, who cannot afford to use energy ex-

travagantly. Energy-saving targets tend to skew energy-efficiency investment in

favour of fuel-rich households. However, public health implications demand that

such investment should also be health-driven.

3. DATA AND STATISTICAL METHODOLOGY

The main source of data here considered is our existing database for

Newham hospital admissions over 1993-96. These data are anonymised with

respect to individuals, having been provided at enumeration district (ED) level.

Our previous work examined the excess morbidity for different ages and

genders in terms of a range of explanatory variables. We now propose extend-

ing this work by analysing daily episodes by length of stay and investigating the

associated costs for such episodes. Our proposed methodology is based upon

the modelling of the propensity for an individual to be an emergency respiratory

hospital admission, together with the duration of stay in hospital for such admis-

sions. This approach is similar to that used for insurance claims (see e.g. Heller,

et al. (2007)) in which the probability of a claim and the size of a claim are both

modelled. Having modelled the probability of being a hospital respiratory admis-

sion and the length of the consequential stays in hospital, we could use data on

the average cost of such hospital admissions, adjusted for the duration of stay, to

give a model for the cost of the Newham admissions. The effect of FPR will be

determined by considering the excess cost in winter over that in summer.

Our methodology utilises the R-based GAMLSS package (see Rigby and

Stasinopoulos (2005) and www.gamlss.com). GAMLSS is a suite of programs writ-

ten in R (see www.r-project.org). We consider the probability of being admitted

as following a Beta Binomial distribution, this being a more flexible extension

of the more traditional Binomial distribution. Our “default” approach is to use

logistic regression. We also noted that some of the elderly people die after admis-

sion to hospital. We model this probability of death also using the Beta Binomial.

The corresponding length of episode is modelled from a selection of continuous

distributions.

The GAMLSS package allow us easily to find the the maximum likelihood

estimates of the several parameters of a wide range of distributions and to in-

corporate random effects and smoothing terms. We can make use of the many

facilities of R, such as automatic model selection, and we can easily access the

wide range of diagnostics available in R. Up to 4-distributional parameters can be

modelled in terms of the risk factors. The potential risk factors are shown in the
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accompanying Table 1. We utilise nominal factors ED, gender and age to allow

differing parameters to be fitted for the differing numbers of “at risk” males and

females, of differing ages, in each enumeration district. The definition of the fuel

poverty index FPR is discussed further below. Potential confounding factors are

considered, using 1991 Census data, including pensioners with limiting long term

illness and ethnic composition. Daily weather data were obtained for 1993–1997.

Table 1: Explanatory variables and factors.
∗∗

SAP35 is energy rating, or

measure of energy efficiency, on a scale of 0–100, where 0 is poorest.
#

denotes component of FPR.

Variable Description

hh1
#

% households with one or more pensioner(s)

hh2 % small households (one or two persons households)

undoc
# % households under-occupied

(1 person with > 4 rooms; 2 persons with > 5 rooms)

lowsap
#

% dwellings with poor energy efficiency (below SAP35
∗∗

)

ctb
#

% households in receipt of Council Tax Benefit (indicator of low income)

tow Townsend deprivation score

ch % households with no central heating

pens % lone pensioner households with no central heating

pre % dwellings built before 1945

pensm Total male pensioners as % of total population

pensf Total female pensioners as % of total population

penswh % of white pensioners in the ED

FPR Fuel Poverty Risk Index = (hh1∗undoc∗ lowsap∗ ctb)∗ 10
−3

pwh White pensioners (% total pensioners)

mmeant Monthly mean air temperature,
◦
C

mmaxt Monthly maximum air temperature,
◦
C

mmint Monthly minimum air temperature,
◦
C

mrain Monthly rainfall totals, mm

msun Monthly sunshine hours

mmwd Monthly mean wind speed

msol Monthly solar radiation, W hr m-2

mtdif Difference from previous month mean temperatures,
◦
C

dwigs Total number of dwellings

house Total number of households

pop % population 65 years old or more

age (1) 65–74, (2) 75–84, (3) 85+

nage Age with 2 levels only: (1) 65–84, (2) 85+

sex (1) Male, (2) Female

q
Season factor with 3 levels:

(1) “Summer”, (2) November, January, February, (3) December

nq Season factor with 2 levels: (1) Not December, (2) December

z Factor with 48 levels denoting month

E Factor with 450 levels specifying enumeration district (ED)
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The lagged influence of weather is considered, together with maximum, minimum

and mean monthly temperature and average monthly rainfall, wind speed, hours

of sunshine, and solar radiation levels.

The chance of a repeat admission of an individual appears to be low, al-

though this is not easy to determine precisely as the original data predated inclu-

sion of patient identifier codes. Hence, although an assumption of independence

of the observed admissions and of the observed lengths of episode is not too unrea-

sonable, some correlation between occurrences might be expected, and perhaps

some correlation between lengths of episode. GAMLSS makes it possible to incor-

porate a possible random effect in our linear predictor to allow for over-dispersion

caused by the unknown correlation. Moreover, the Beta Binomial distribution is

itself a form of over dispersed Binomial distribution; i.e. a Binomial distribution

with a Beta distributed random effect.

4. DEFINITION OF THE FUEL POVERTY RISK INDEX

Our population-based study of the London Borough of Newham involved

creating a Fuel Poverty Risk Index (FPR), derived from known risk factors, to

compare with a cold-related health indicator, based on excess winter emergency

respiratory hospital admissions (see Rudge and Gilchrist (2005)). Our data level

was limited to small areas, rather than individuals, for patient anonymity reasons.

Datasets were collated for enumeration districts (EDs), which contain, on

average, about 220 households: we collected data on household age, size and

tenure from the 1991 Census; Council Tax Benefit (CTB) for 1998; estimated

energy ratings for dwellings, based on classification by tenure (census data), size

and type (from a drive round survey and census) and building age; numbers of

emergency episodes for all respiratory diagnoses for patients aged above 64 years

for August ’93 to July ’97 from Hospital Episode Statistics (HES). (Emergency

admissions are more likely to reflect seasonal effects than elective admissions.)

The FPR was calculated for EDs as a product of the following (unweighted)

factors, all as percentages of total households or total dwellings:

• households with one or more pensioners;

• households in receipt of CTB (indicating low income);

• dwellings with poor energy efficiency (i.e. below the 1991 national aver-

age energy rating);

• under occupancy (small households occupying relatively large homes).
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5. A STATISTICAL MODEL FOR THE EXPECTED TOTAL

DURATION OF EMERGENCY RESPIRATORY HOSPITAL

ADMISSIONS

We here develop a model to explain the observed illness counts in each ED,

in each month, in terms of the potential explanatory variables, and notably FPR.

We model the counts for males and females, and for the three age categories.

We consider data for each of 48 months. Our particular interest is in the difference

between the counts observed in summer and winter, and whether we can explain

this difference in terms of the explanatory variables. To examine this we model

the probability pijkl of an individual of gender i, in age group j, in ED k, being

ill in month l, i= 1, 2, ; j = 1, .., 3; k= 1, .., 450, l= 1, .., 48.

Our count data consists of the number of people who are ill in a given

month, as a proportion of the total number at risk. Perhaps the most natu-

ral model for such data is the Binomial distribution, with the observed counts

restricted by a “Binomial Denominator”. We here use a logistic Beta-Binomial

assumption which can allow for potential “over-dispersion” in our counts.

Thus we assume we have observed numbers Yijkl of emergency respira-

tory admissions of gender i, age j, in ED k, in month l, i= 1, 2; j = 1, 2, 3;

k= 1, .., 450; l= 1, .., 48. The number of people at risk in each “cell” is nijkl.

We assume that Yijkl follows a Beta Binomial distribution, BB(nijkl, pijkl, σijkl).

Our basic assumption is that we have a logit link, i.e. pijlk = 1/(1+ exp(−ηijkl)),

where ηijkl is a linear predictor based upon the explanatory variables in Table 1.

5.1. Distributional assumption

In defining the probability function, we drop the suffices i, j, k, l for clarity

of exposition. The probability function of a random variable, Y which follows

the Beta Binomial distribution denoted here as BB(n, p, σ), is given by

pY (y|p, σ) =
Γ(n+1)

Γ(y+1)Γ(n−y+1)

Γ
(

1
σ

)

Γ
(

y+
p
σ

)

Γ

[

n+
(1−p)

σ − y
]

Γ
(

n+
1
σ

)

Γ
( p

σ

)

Γ
(1−p

σ

)

for y= 0, 1, 2, ..., n, where 0<p< 1 and σ > 0 (and n is a known positive integer).

Note that E(Y ) = np = µ, say, and Var(Y ) = np (1− p)
[

1 +
σ

1+σ (n−1)

]

.

Here σ may be viewed as a random effect parameter.
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For our modelling we have a r.v. Yijkl, where we model pijlk and σijkl

in terms of our explanatory variables and factors. We assume that the dura-

tion dijkl of observed stays of patients for cell i, j, k, l are such that dijkl ∼
D(ψijkl, αijkl, βijkl, γijkl) where D is one of the many 4-parameter distributions

available in GAMLSS. (We here restrict ourselves to distributions with a closed

form for the mean and variance, as this is more convenient for derivation of the

expectation and variance of the cost to the NHS of fuel poverty). Our default

approach is to assume a log link, i.e. E(dijkl) = ψijkl = exp(ζijkl), where ζijkl is

a linear predictor based on the explanatory variates in Table 1.

5.2. A model for the probability of dying after admission

A proportion of the emergency respiratory admission die whilst in hospital.

We model the probability of dying using the Beta Binomial with logit link, in a

similar way to the modelling of the probability of being admitted. The full range

of possible covariates and factors was considered.

5.3. Modelling the length of stay in hospital

The length of stay in hospital is different for those who survived and those

who died. We model each distribution using a range of continuous densities

available in GAMLSS, such as the Gamma, Generalised (3 parameter) Gamma,

Inverse Gaussian and a Generalised (3 parameter) Inverse Gaussian.

5.4. Model selection strategy

We illustrate our selection strategy for the 2-parameter Beta Binomial.

(We extended this naturally for distributions with more parameters). We initially

used the step Akaike criterion to select a model for µijkl = nijkl ∗ pijkl, keeping

σijkl constant. We then used a step Akaike approach to fit σijkl, for the current

“best” linear predictor for µijkl (with any remaining parameters constant for the

more general case). Using the current “best” linear predictors for σijkl, the model

for µijkl was refitted, and so on. We finally removed the terms whose removal

was not significant on a χ2
scale. We combined levels of factors where this did

not result in significant deterioration in scaled deviance.



An Insurance Type Model 63

6. RESULTS

6.1. The probability of being an emergency respiratory admission

From the 1991 Census, there were about 25,000 people in Newham over

64 years old. The total count of emergency respiratory episodes amongst this

age group was 3378 (over 4 years), 16% of which ended in death. Respiratory

episodes far outnumber those for other possible cold-related diagnoses.

We fitted Beta Binomial models to explain morbidity counts in terms of

the wide range of explanatory variables, removing any that were not statistically

significant. We attempted to avoid a so-called ecological fallacy by using a wide

range of explanatory variables. Investigation of the monthly data for 450 EDs

determined that “winter” was better defined as November–February, rather than

the traditional UK use of December–March.

The accompanying Table 2 shows our “best” model, using a logit link, for

the probability of being an emergency respiratory hospital admission, and a log

link for the σ coefficient. The linear predictor for pijkl has an interaction between

“season”and FPR, showing that morbidity counts rise with increasing fuel poverty

risk index in “winter”, with a notably large effect in December. This is over and

above the underlying effect of winter itself, irrespective of FPR. Effects are evident

for age, with higher counts for older people, and sex, with lower counts for women.

Table 2: Best fitting BB model. Logit link for p, using log link for σ.

age2 represents age level 2, etc., mmaxtt[z] denotes mmaxtt

indexed over months z, hh1[E] denotes hh1 indexed over enu-

meration districts E, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −6.802 e+00 1.724 e−01 −39.462 0.000 e+00

age2 6.971 e−01 3.966 e−02 17.574 4.958 e−69

age3 1.803 e+00 5.004 e−02 36.022 2.701 e−282

sex2 −7.115 e−01 3.582 e−02 −19.861 1.311 e−87

q2 1.878 e−01 5.790 e−02 3.244 1.179 e−03

q3 4.647 e−01 8.970 e−02 5.180 2.223 e−07

mmaxt[z] −1.245 e−02 5.162 e−03 −2.413 1.584 e−02

hh2[E] 1.019 e−02 1.976 e−03 5.157 2.521 e−07

lowsap[E] −1.996 e−03 9.576 e−04 −2.085 3.711 e−02

ctb[E] 8.214 e−03 1.163 e−03 7.062 1.655 e−12

ch[E] 2.602 e−02 2.883 e−03 9.026 1.807 e−19

pens[E] −4.041 e−02 4.919 e−03 −8.215 2.148 e−16

pre[E] −2.538 e−03 8.277 e−04 −3.067 2.164 e−03

fpr06[E] −5.392 e−05 4.175 e−05 −1.291 1.966 e−01

fpr06[E]:nq2 1.692 e−04 7.009 e−05 2.414 1.578 e−02
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There was a strong month effect. To understand this further, we considered

monthly weather-related factors. Of all these, maximum temperature was most

significant, with a higher maximum leading to lower morbidity counts. Having

allowed for the maximum temperature effect, other weather related variables were

not significant. The log link proved most convenient and as before, we considered

all possible covariates and factors.

The σ coefficient (a random effect) depends only upon the age of the people

and their gender; see Table 3. (The linear predictor of the σ coefficient is always

negative; it is larger for the over 84 year olds than for the over 64 year olds,

and is larger for men than women. As a log link is used, the actual value of σ

is calculated from the exponential of the linear predictor).

Table 3: The linear predictor for the sigma parameter in the best fitting

BB model for the probability of admission (log link).

nage2 represents the 85+ years old.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −4.567 1.362 e−01 −33.517 6.690 e−245

nage2 3.315 1.777 e−01 18.654 1.600 e−77

sex2 −1.175 1.777 e−01 −6.612 3.800 e−11

6.2. Modelling the probability of a patient dying after admission

We fitted the Beta Binomial with logit link and found that only age was

significant in explaining the probability π of death of admitted emergency respi-

ratory patients. Older patients were more likely to die; the probabilities of dying

were 0.12, 0.16 and 0.24, respectively, for ages 65–74, 75–84 and 85+. The ran-

dom effect parameter, which we will call λ, did not depend upon the covariates

(its value being 1.76).

Table 4: Best fitting Beta Binomial model for probability π of an indi-

vidual’s death, using a logit link for π and log link for λ.

The best fit λ is constant. age2 represents age level 2, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) −1.944 9.710 e−02 −20.02 2.42 e−84

age2 0.263 1.154 e−01 2.278 2.28 e−02

age3 0.780 1.227 e−01 6.355 2.36 e−10
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6.3. Modelling the length of stay (episode)

We found that, for both those who died and those who survived, the Inverse

Gaussian distribution with log link gave the best fit (smallest AIC) amongst

the distributions we considered. Our best model for the survivors had a linear

predictor for the mean depending only upon age (older people staying longer),

with the dispersion decreasing with age. For those who died, the length of stay

depended upon gender, with women staying longer. The dispersion parameter

was a constant.

Table 5: Linear predictor for length of stay of survivors (Inverse Gaussian, log link).

age2 represents age level 2, etc.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) 1.965 4.30 e−02 45.790 0.000 e+00

age2 0.233 6.10 e−02 3.830 1.32 e−04

age3 0.530 8.52 e−02 6.230 5.49 e−10

Table 6: Linear predictor for length of stay of those who died in hospital

(Inverse Gaussian, log link). S2 represents female.

Variable Estimate Std. Error t value Pr(>‖t‖)

(Intercept) 2.547 1.31 e−01 19.46 0.000 e+00

S2 0.672 2.36 e−01 3.830 1.32 e−04

7. CONCLUSION

We model both the propensity to be ill and the probability of survival

after hospital emergency respiratory admission by the Beta Binomial distribution.

We model the subsequent probability of dying in hospital and the length of stay

in hospital, thereby providing a potential model for the cost of excess winter

morbidity attributable to fuel poverty. Our approach is similar to that used in

modelling the probability and cost of insurance claims. The GAMLSS software

enables us not only to use the Beta Binomial in modelling the probabilities of

admission and survival, but also to use a wide range of continuous distributions

to model the length of time that a patient stays in hospital. It may be noted that



66 Robert Gilchrist, Alim Kamara and Janet Rudge

mortality due to fuel poverty is a topical issue in the UK. Our emphasis has been

on morbidity. With 16% dying, the determining of a direct relationship between

mortality and“fuel poverty”would require substantially more data than our 2835

admissions. However, we could give an estimate of the mortality (after emergency

respiratory admission)attributable to FPR by combining the probability of being

admitted and the subsequent probability of dying (the latter only depending on

age).
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1. INTRODUCTION

For the researcher, interactions between two persons, e.g., spouses or

brothers and sisters may only partly be observable, due to measurement

problems. Respondents may not wish to reveal the influence of the other person

or may not be aware of them. In order to detect the neglected or non-observable

interactions between the respective decision processes a bivariate probit model

is recommendable (Jaenicke, 2004).

The identification of discrete choice models with social interactions is stud-

ied by Brock and Durlauf (2001, 2007). They show that it is possible to overcome

Manski’s (1993) famous reflection problem discussed in the context of reference

group behaviour by using discrete choice models. In order to account for the ne-

glected or non-observable interactions between discrete decisions in the respective

decision processes, a bivariate probit model is a useful empirical description of

this process. In this model, an endogenous dummy variable represents the binary

decision of the peer that may have an influence on the second person. The bivari-

ate probit model with an endogenous dummy variable is introduced by Maddala

and Lee (1976) and belongs to a general class of simultaneous equation models

discussed by Heckmann (1978), Maddala (1983), Wilde (2000, 2004), and Greene

(2008).

In some applications of the bivariate probit model, e.g. Dean (1995), and

Greene (1998) only small samples with 76 or 132 observations are available.

However, even in data sets with 500, 1,000 or 2,000 observations, parameter

tests may be crucial, as shown by Monfardini and Radici (2008).

Our intention is to find out for different sample sizes whether, in the pres-

ence of social interactions, it is possible to detect these interactions in a bivariate

probit model with an endogenous dummy regressor. Hence we analyze the distri-

bution of the estimated parameters and size and power of the usual z-coefficient

test concerning the parameters of the observable and non-observable interactions,

i.e. the endogenous dummy variable and the residual covariance between both

equations of this bivariate probit model.

2. A BIVARIATE PROBIT MODEL OF SOCIAL INTERACTIONS

The maximum likelihood estimation of a bivariate probit model involves

the numerical problem of the evaluation of double integrals over the normal dis-

tribution. This estimation procedure is implemented in several statistic software

packages and widely used in practice. We use a two equation binary choice model

with an endogenous dummy regressor, first proposed by Maddala and Lee (1976).
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The regression equations of the individual I and the peer P are

Y ∗
I = XI β1 + YP β2 + uI , YI = 1 if Y ∗

I > 0, 0 otherwise ,

Y ∗
P = XP γ1 + uP , YP = 1 if Y ∗

P > 0, 0 otherwise ,

[uI , uP ] ∼ Φ2(0, 0, 1, 1, ρ) ,

with the observable discrete choice behavior Y , latent variables Y ∗
I , and exoge-

nous variables X. The residual vector [uI , uP ] is bivariate normal distributed

with E(ui) = 0, var(ui) = 1, i = I, P , and cov(uI , uP ) = ρ. As a condition of

identification, we only need exclusion restrictions if there is no variation of the

exogenous regressors (Wilde, 2000).

In our model, the observable part of the social interactions, the influence

of the decision of the peer P on the behavior of the individual I is tested by

the hypothesis H0 : β2 = 0. The non-observable part of the social interactions

may be revealed through the residual covariance structure. A residual covariance

cov(uI , uP ), i.e. ρ, significantly different from zero, may serve as an indicator of

unobserved social interactions between the two decisions or as an indicator of si-

multaneously neglected third-party effects. Restricting residual correlation of the

bivariate probit model to zero may result in biased and inconsistent estimations

(Murphy, 1995). Fitting separate probit models for the first- and the second

decision equation can involve significant endogeneity biases in the estimation

(Lollivier, 2001). The joint estimation of the two equations provides substantial

efficiency gains compared to separate estimation based on two-stage technique.

3. MONTE CARLO RESULTS FOR THE BIVARIATE PROBIT

MODEL

In a small Monte Carlo study, we analyze the size and the power of the

usual z-coefficient tests concerning the parameters of the observable and non-

observable social interactions, β2 and ρ. The test statistics are z(β2) = β̂2/se(β̂2)

and z(ρ) = ρ̂/se(ρ̂) and their squares result in the standard Wald test (Greene

2008, p. 820).

The non-observable influences stem from missing variables. These may

be uncorrelated, weakly or strongly correlated or identically for the two per-

sons. To create the non-observable interactions, we use an omitted variable vec-

tor [vI , vP ] ∼ Φ2(0, 0, 1, 1, r) with r ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0] in one set of

experiments. In this case, the residuals ui, i = I, P , are the sum ui = vi + εi

with [εI , εP ] ∼ Φ2(0, 0, 1, 1, 0), therefore [uI , uP ] ∼ Φ2(0, 0, 2, 2, r
2). Because the

assumption of the unit residual variance var(ui) is not met, we expect some prob-

lems resulting from the misspecification of the model.
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In the experiments with the extended model, we include vi as additional

explanatory variables. In this case, the residuals are ui = εi and are independent

normal distributed. Because of the independence of the residuals, ρ = 0, the

model is overparametrized. Two single equation models would be more efficient.

Anyway, since we do not know the true parameter set in the empirical research

situation, in the simulation experiments we continue with bivariate probit models.

The variables Xi, i = I, P , are standard normal distributed, Xi ∼ N(0, 1),

i = I, P . All parameters β and γ in the omitted variable model and in the ex-

tended model are set equal to one. We use the econometric software package

Limdep 7.0. It performs well in nonlinear estimation benchmark tests (Mc-

Cullough, 1999). We estimate the bivariate models with the default settings

of the procedure (algorithm: BFGS; maximum iterations: 100). The Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm is rather time consuming, but it

shows a convergence rate of between 99.5 percent (in small data sets with 100

observations) and 100 percent (in data sets with 10,000 observations) in our

Monte Carlo study. The number of replications in the Monte Carlo experiment

is N = 1,000. The number of observations varies systematically from T = 100

to T = 2,000. In some experiments, we estimate data sets up to T = 10,000 and

in one up to T = 40,000 observations. Due to the nonlinear estimation problem,

experiments with these huge data sets are computational intensive, e.g., some

experiments need around 84 hours on a Pentium(R), 3.2GHz to estimate two

bivariate probit models 1,000 times.

The estimated parameters ρ̂ show no severe bias. Figure 1 presents the

density estimation with the Epanechnikov kernel function in the case that the

true parameter ρ = 0. With increasing sample size from T = 200 to T = 1,000,
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Figure 1: Kernel estimation, ρ = 0.
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the dispersion of the estimated parameters becomes smaller. The parameters

are distributed more or less symmetrically (with skewness ST between −0.083

and −0.040) and means (with ρ̂T between −0.001 and 0.003) very close to the

theoretical value zero.

The picture changes if we assume with ρ = 0.5 strong residual correlation

between both decision equations in small data sets. In the case of T = 200,

we find with ρ̂200 = 0.485 some deviations from the theoretical parameter value.

In all three cases, the distribution of the estimated parameters ρ̂200 is left skewed

with a skewness ST between −0.568 and −0.403. In the T = 200 case, some ρ̂200

are very close the theoretical limit of 1. In Figure 2, we present a Kernel density

estimation for ρ = 0.5 and T = 200, T = 500 and T = 1,000.
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Figure 2: Kernel estimation, ρ = 0.5.

Looking at the z-statistics in the case ρ = 0, we find some indication

that the z-statistics may not be normally distributed in small samples. To ana-

lyze this problem graphically, we compare the quantiles of these statistics with

the standard normal distribution in Figure 3 for T = 200, 500, 1000 observations.

Especially in the case of ρ = 0, T = 200 observations, we find some deviation from

normality.

We start our analysis studying possible size distortions of the zρ-parameter

test in the bivariate probit model with an endogenous dummy variable. The

parameter describing the influence of the endogenous dummy variable is set equal

to one, β2 = 1. In Table 1 (see Appendix), we present percentiles of the simulated

zρ-statistic, some descriptive statistics like mean, standard deviation, skewness,

kurtosis, and the size of the test statistic with the nominal significance level equal

to 1, 5 and 10 percent.
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From Table 1, we see severe size distortions for the zρ-parameter test in

small data sets. In the case of T = 100, 150 observations, the test statistic is

excessively liberal. E.g., in the case of a nominal 5-percent level, the empirical size

is more than twice as high. The deviations from the nominal level become stronger

with a higher significance level. E.g., on the 1 percent level, the empirical size is

7 percent in the extreme case of T = 100 and 5 percent in the case of T = 150

observations. In these two cases the zρ-parameter test shows strong deviations

from normality. The distribution is negatively skewed and reveals strong excess

kurtosis. As expected, deviations from normality are not pronounced in the case

of medium size or huge data sets.

In Table 2, we present a set of experiments using our bivariate probit model

with an endogenous dummy variable but restricting the data generating mecha-

nism to β2 = 0, i.e., there is no endogenous dummy variable in the true model.

The results are generally in line with the ones of Table 1, but with stronger

deviations from normality in the small sample cases.

Using different correlation structures in Table 3 (r = 0) and Table 4 (r = 1),

we analyse the small sample behaviour of the test concerning the observable

interactions, the zβ2
-parameter test. We find again some size distortions for data

sets with T ≤ 200 observations but no systematic influence of the correlation r.

How will the size of the test statistic be affected if it is possible to include

the omitted variable vector [vI , vP ] as additional regressors? Does the correla-

tion r have an influence on the outcome of the test? Comparing Tables 2 and 5,

we see that the inclusion of additional explanatory variables makes the size dis-

tortions decrease only slightly. The comparison of Tables 5 and 6 makes clear

that correlation between explanatory variables negatively affects the size of the

zρ-test. In the case of r = 1, the empirical p-value of 10 percent is shifted to

23 percent in the T = 100 observation case. In this strong correlation case,

we need more than T = 2,000 observations to obtain good size properties of the

zρ-test. Summarizing Table 1 to 6, we find that in all small sample cases the test

statistic is too liberal.

In the next simulation experiments, we have a look at the power proper-

ties of the test statistic. To answer the question whether it is possible to detect

non-observable social interactions, we run 57 different Monte Carlo experiments.

In the case of low residual correlation, the probability of finding significant inter-

actions lies below one half in small or medium sized data sets. E.g., in the case

of r = 0.2 and T = 2,500, only 35 percent of the zρ-tests are significant at the

10 percent level and in small data sets, e.g. r = 0.2 and T = 100, only 17 percent

of the zρ-tests are significant at the 10 percent level. Taking into account the

size distortions of the test statistic, the results will become even more unsatis-

factionary. As expected, with more observations, and stronger correlation, the

power increases. A power of at least 90 percent (at the nominal 10 percent level)

can be found in the cases of r = 0.2 and T = 15,000 or r = 1 and T = 2,500.
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The power properties of the zβ2
-test, presented in Table 8, are (at the

10 percent level) around one third in the small sample case and nearly 100 percent

in T ≥ 1,000 data sets. The changing of the correlation r has more or less no

influence on the Monte Carlo results.

The power can be dramatically increased if it is possible to include the

neglected variable vector [vI , vP ]. The results of these Monte Carlo experiments

are presented in Table 9. The inclusion of these additional explanatory variables

will shift the power properties significantly towards more than 50 percent even in

the T = 100 case. With 250 observations, the power is close to the 90 percent level

or higher. This is true although the extended model is overparametrized, because

the true correlation-coefficient is zero in this model. In line with the results

from Table 8, the results are nearly robust regarding the correlation structure r.

Nevertheless, we have to take into account the too liberal behavior of our test in

small samples.

4. CONCLUSIONS

In our paper, we find that the power of z-parameter tests concerning the

residual correlation between the two decision equations in the bivariate probit

model is very low in small samples. This is is especially true for weak correlations.

The power of the parameter test concerning the endogenous dummy variable is

around one third in small samples. If it is possible to find omitted variables,

the power of this test can be increased notedly.

Additionally, our simulation results reveal severe over-rejection rates in

small samples. Using a likelihood ratio test may result in better size behavior at

least in medium sized samples (Monfardini and Radici, 2008).

From an empirical point of view, we may often fail to find significant social

interactions in the data sets although they exist. An extensive search for omit-

ted variables may therefore be essential to prove social interactions in empirical

models.
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Abstract:

• This paper gives an account of some techniques of linear filtering which can be used

for extracting the business cycle from economic data sequences of limited duration.

It is argued that there can be no definitive definition of the business cycle. Both the

definition of the business cycle and the methods that are used to extract it must be

adapted to the purposes of the analysis; and different definitions may be appropriate

to different eras.
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1. INTRODUCTION

In recent years, there has been a renewed interest amongst economists in

the business cycle. However, compared with the economic fluctuations of the

nineteenth century, the business cycle in modern western economies has been

a tenuous affair. For many years, minor fluctuations have been carried on the

backs of strongly rising trends in national income. Their amplitudes have been

so small in relative terms that they have rarely resulted in absolute reductions in

the levels of aggregate income. Usually, they have succeeded only in slowing its

upward progress.

Faced with this tenuous phenomenon, modern analysts have also had diffi-

culties in reaching a consensus on how to define the business cycle and in agree-

ing on which methods should be used to extract it from macroeconomic data

sequences. Thus, the difficulties have been both methodological and technical.

This paper will deal with both of these aspects, albeit that the emphasis will be

on technical matters.

It seems that many of the methodological difficulties are rooted in the

tendency of economists to objectify the business cycle. If there is no doubt

concerning the objective reality of a phenomenon, then it seems that it must be

capable of a precise and an unequivocal definition.

However, the opinion that is offered in this paper is that it is fruitless to seek

a definitive definition of the business cycle. The definition needs to be adapted

to the purposes of the analysis in question; and it is arguable that it should also

be influenced by the behaviour of the economy in the era that is studied.

It is also argued that a clear understanding of the business cycle can be

achieved only in the light of its spectral analysis. However, the spectral ap-

proach entails considerable technical difficulties. The classical theory of statistical

Fourier analysis deals with stationary stochastic sequences of unlimited duration.

This accords well with the nature of the trigonometrical functions on which spec-

tral analysis is based. In business cycle analysis, one is faced, by contrast, with

macroeconomic sequences that are of strictly limited durations and that are liable

to be strongly trended.

In order to apply the methods of spectral analysis to the macroeconomic

data, two problems must be addressed. First, the data must be reduced to sta-

tionarity by an appropriate method of detrending. There are various ways of

proceeding; and a judicious choice must be made. Then, there is the short du-

ration of the data, which poses the problem acutely of how one should treat the

ends of the sample.
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One way of dealing with the end-of-sample problem is to create a circular

sequence from the detrended data. By travelling around the circle indefinitely,

the infinite periodic extension of the data sequence is generated, which is the

essential object of an analysis that employs the discrete Fourier transform.

Such an analysis is liable to be undermined whenever there are radical dis-

junctions in the periodic extension at the points where the end of one replication

joins the beginning of the next. Therefore, a successful Fourier analysis depends

upon a careful detrending of the data. It seems that it was the neglect of this fact

that led one renowned analyst to declare that spectral analysis was inappropriate

to economic data. (See Granger 1966.)

2. INTERACTION OF TREND AND BUSINESS CYCLE

The business cycle has no fixed duration. In a Fourier analysis, it can be

represented as a composite of sinusoidal motions of various frequencies that fall

within some bandwidth. We shall consider one modern convention that defines

the exact extent of this bandwidth; but it seems more appropriate that it should

be determined in the light of the data.

If they are not allowed to overlap, it may be crucial to know where the low

frequency range of the trend is deemed to end and where the higher range of the

business cycle should begin. However, in this section, we shall avoid the issue by

assuming that the business cycle is of a fixed frequency and that the trend is a

simple exponential function.

In that case, the trend can be described by the function T (t) = exp{rt},
where r > 0 is constant rate of growth. The business cycle, which serves to

modulate the trend, is described by an exponentiated cosine function C(t) =

exp{γ cos(ωt)}. The product of the two functions, which can regarded as a

model of the trajectory of aggregate income, is

(2.1) Y (t) = β exp
{

rt+ γ cos(ωt)
}

.

The resulting business cycles, which are depicted in Figure 1, have an asymmetric

appearance. Their contractions are of lesser duration than their expansions; and

they become shorter as the growth rate r increases.

Eventually, when the rate exceeds a certain value, the periods of contraction

will disappear and, in place of the local minima, there will be only points of

inflection. In fact, the condition for the existence of local minima is that ωγ > r,

which is to say that the product of the amplitude of the cycles and their angular

velocity must exceed the growth rate of the trend.
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Figure 1: The function Y (t) = β exp{rt+ γ cos(ωt)} as a model of the business cycle.

Observe that, when r > 0, the duration of an expansion exceeds the duration

of a contraction.

Next, we take logarithms of the data to obtain a model, represented in

Figure 2, that has additive trend and cyclical components. This gives

(2.2) ln
{

Y (t)
}

= y(t) = µ+ rt+ γ cos(ωt) ,

where µ = ln{β}. Since logs effect a monotonic transformation, there is no dis-

placement of the local maxima and minima. However, the amplitude of the

fluctuations around the trend, which has become linear in the logs, is now con-

stant.
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Figure 2: The function ln{Y (t)} = ln{β}+rt+γ cos(ωt) representing the logarithmic

business cycle data. The duration of the expansions and the contractions

are not affected by the transformation.

The final step is to create a stationary function by eliminating the trend.

There are two equivalent ways of doing this in the context of the schematic model.

On the one hand, the linear trend ξ(t) = µ+ rt can be subtracted from y(t)

to create the pure business cycle γ cos(ωt).
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Figure 3: The function µ + γ cos(ωt) representing the detrended business cycle.

The duration of the expansions and the contractions are equal.

Alternatively, the function y(t) can be differentiated to give dy(t)/dt=

r− γ ω sin(ωt). When the latter is adjusted by subtracting the growth rate r, by

dividing by ω and by displacing its phase by −π/2 radians — which entails replac-

ing the argument t by t−π/2 — we obtain the function γ cos(ωt) again. Through

the process of detrending, the phases of expansion and contraction acquire equal

duration, and the asymmetry of the business cycle vanishes.

There is an enduring division of opinion, in the literature of economics, on

whether we should be looking at the turning points and phase durations of the

original data or at those of the detrended data. The task of finding the turning

points is often a concern of analysts who wish to make international comparisons

of the timing of the business cycle.

However, since the business cycle is a low-frequency component of the data,

it is difficult to find the turning points with great accuracy. In fact, the pinnacles

and pits that are declared to be the turning points often seem to be the products

of whatever high-frequency components happen to remain in the data after they

have been subjected to a process of seasonal adjustment.

If the objective is to compare the turning points of the cycles, then the

trends should be eliminated from the data. The countries that might be compared

are liable to be growing at differing rates. From the trended data, it will appear

that those with higher rates of growth have shorter recessions with delayed onsets,

and this can be misleading.

The various indices of an expanding economy will also grow at diverse

rates. Unless they are reduced to a common basis by eliminating their trends,

their fluctuations cannot be compared easily. Amongst such indices will be the

percentage rate of unemployment, which constitutes a trend-stationary sequence.

It would be difficult to collate the turning points in this index with those within a

rapidly growing series of aggregate income, which might not exhibit any absolute

reductions in its level. A trenchant opinion to the contrary, which opposes the

practice of detrending the data for the purposes of describing the business cycle,

has been offered by Harding and Pagan (2003).
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3. BANDPASS DEFINITION OF THE BUSINESS CYCLE

The modern definition of the business cycle that has been alluded to in the

previous section is that of a quasi cyclical motion comprising sinusoidal elements

that have durations of no less than one-and-a-half years and not exceeding eight

years.

This definition has been proposed by Baxter and King (1999) who have

declared that it was the definition adopted by Burns and Mitchell (1947) in their

study of the economic fluctuations in the U.S. in the late nineteenth century

and in the early twentieth century. However, it is doubtful whether Burns and

Mitchell were so firm in their definition of what constitutes the business cycle.

It seems, instead, that they were merely speaking of what they had discerned in

their data.

The definition in question suggests that the data should be filtered in order

to extract the components that fall within the stated range, which is described

as the pass band. Given a doubly infinite data sequence, this objective would

be fulfilled, in theory, by an ideal bandpass filter comprising a doubly infinite

sequence of coefficients.

The ideal bandpass filter that transmits all elements within the frequency

range [α, β] and blocks all others has the following frequency response:

(3.1) ψ(ω) =

{

1, if |ω| ∈ (α, β) ,

0, otherwise .

The coefficients of the corresponding time-domain filter are obtained by applying

an inverse Fourier transform to this response to give

(3.2) ψk =

∫ β

α
eikω dω =

1

πk

{

sin(βk)− sin(αk)
}

.

In practice, all data sequences are finite, and it is impossible to apply a

filter that has an infinite number of coefficients. However, a practical filter may

be obtained by selecting a limited number of the central coefficients of an ideal

infinite-sample filter. In the case of a truncated filter based on 2q + 1 central

coefficients, the elements of the filtered sequence are given by

xt = ψq yt−q + ψq−1 yt−q+1 + · · ·+ ψ1yt−1 + ψ0 yt + ψ1yt+1(3.3)

+ · · ·+ ψq−1yt+q−1 + ψq yt+q .

Given a sample y0, y1, ..., yT−1 of T data points, only T − 2q processed values

xq, xq+1..., xT−q−1 are available, since the filter cannot reach the ends of the

sample, unless it is extrapolated.



94 D.S.G. Pollock

If the coefficients of the truncated bandpass or highpass filter are adjusted

so that they sum to zero, then the z-transform polynomial ψ(z) of the coefficient

sequence will contain two roots of unit value. The adjustments may be made

by subtracting
∑

k ψk/(2q + 1) from each coefficient. The sum of the adjusted

coefficients is ψ(1) = 0, from which it follows that 1− z is a factor of ψ(z).

The condition of symmetry, which is that ψ(z) = ψ(z−1
), implies that 1− z−1

is

also a factor. Thus the polynomial contains the factor

(3.4) (1− z) (1− z−1
) = −z−1

(1− z)2 ,

within which ∇2
(z) = (1− z)2 corresponds to a twofold differencing operator.

Since it incorporates the factor ∇2
(z), the effect of applying the filter to a

data sequence with a linear trend will be to produce an untrended sequence with

a zero mean. The effect of applying it to a sequence with a quadratic trend will

be to produce an untrended sequence with a nonzero mean.

The usual effect of the truncation will be to cause a considerable spectral

leakage. Thus, if the filter is applied to trended data, then it is liable to trans-

mit some powerful low-frequency elements that will give rise to cycles of high

amplitudes within the filtered output. The divergence of the frequency response

function from the ideal specification of (3.1) is illustrated in Figure 4.
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0.5
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1

1.25

0

0 π/4 π/2 3π/4 π

Figure 4: The frequency response of the truncated bandpass filter of 25 coefficients

superimposed upon the ideal frequency response. The lower cut-off point

is at π/15 radians (11.25
◦
), corresponding to a period of 6 quarters, and

the upper cut-off point is at π/3 radians (60
◦
), corresponding to a period

of the 32 quarters.

An indication of the effect of the truncated filter is provided by its appli-

cation to a quarterly sequence of the logarithms of consumption in the U.K. that

is illustrated in Figure 5. The filtered sequence is in Figure 6, where the loss of

the data from the ends is indicated by the vertical lines.
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Figure 5: The quarterly sequence of the logarithms of consumption in the U.K.,

for the years 1955 to 1994, together with a linear trend interpolated

by least-squares regression.
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Figure 6: The sequence derived by applying the truncated bandpass filter of

25 coefficients to the quarterly logarithmic data on U.K. Consumption.

An alternative filter that is designed to reach the ends of the sample has

been proposed by Christiano and Fitzgerald, (2003). The filter is described by

the equation

xt = Ay0 + ψt y0 + · · ·+ ψ1yt−1 + ψ0 yt + ψ1yt+1(3.5)

+ · · ·+ ψT−1−t yT−1 + ByT−1 .

This equation comprises the entire data sequence y0, ..., yT−1; and the value of t

determines which of the coefficients of the infinite-sample filter are entailed in

producing the current output. Thus, the value of x0 is generated by looking

forwards to the end of the sample, whereas the value of xT−1 is generated by

looking backwards to the beginning of the sample.

If the process generating the data is stationary and of zero mean, then it is

appropriate to set A = B = 0, which is tantamount to approximating the extra-

sample elements by zeros. In the case of a data sequence that appears to follow

a first-order random walk, it has been proposed to set A and B to the values of

the sums of the coefficients that lie beyond the span of the data on either side.
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Since the filter coefficients must sum to zero, it follows that

(3.6) A = −
(

1

2
ψ0 +ψ1+ · · ·+ψt

)

and B = −
(

1

2
ψ0 +ψ1+ · · ·+ψT−t−1

)

.

The effect is tantamount to extending the sample at either end by constant se-

quences comprising the first and the last sample values respectively.

For data that have the appearance of having been generated by a first-

order random walk with a constant drift, it is appropriate to extract a linear

trend before filtering the residual sequence. In fact, this has proved to be the

usual practice in most circumstances.

It has been proposed to subtract from the data a linear function f(t)=

α+βt interpolated through the first and the final data points, such that α= y0

and β = (yT−1− y0)/T . In that case, there should be A=B = 0. This procedure

is appropriate to seasonally adjusted data. For data that manifest strong seasonal

fluctuations, such as the U.K. consumption data, a line can be fitted by least

squares through the data points of the first and the final years. Figure 7, shows

the effect of the application of the filter to the U.K. data adjusted in this manner.
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Figure 7: The sequence derived by applying the bandpass filter of Christiano and

Fitzgerald to the quarterly logarithmic data on U.K. Consumption.

The filtered sequence of Figure 7 has much the same profile in its middle

section as does the sequence of Figure 6, which is derived by applying truncated

bandpass filter. (The difference in the scale of the two diagrams tends to conceal

this similarity.) However, in comparing filtered sequence to the adjusted data, it

seems fair to say that it fails adequately to represent the prominent low-frequency

fluctuations. It is also beset by some noisy high-frequency fluctuations that would

not normally be regarded as part of the business cycle.
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4. POLYNOMIAL DETRENDING

The problems besetting the filtered sequence can be highlighted with ref-

erence to the periodogram of the residuals that are obtained by interpolating a

polynomial trend line thorough the logarithmic data. Therefore, it is appropriate,

at this juncture, to derive a formula for polynomial regression.

Therefore, let LT = [e1, e2, ..., eT−1, 0] be the matrix version of the lag oper-

ator, which is formed from the identity matrix IT = [e0, e1, e2, ..., eT−1] of order T

by deleting the leading column and by appending a column of zeros to the end

of the array. The matrix that takes the p-th difference of a vector of order T is

(4.1) ∇p
T = (I − LT )

p .

We may partition this matrix so that ∇p
T = [Q∗, Q]

′
, where Q′

∗ has p rows. If y

is a vector of T elements, then

(4.2) ∇p
T y =

[

Q′
∗

Q′

]

y =

[

g∗

g

]

;

and g∗ is liable to be discarded, whereas g will be regarded as the vector of the

p-th differences of the data.

The inverse matrix, which corresponds to the summation operator, is par-

titioned conformably to give ∇−p
T = [S∗, S]. It follows that

(4.3)

[

S∗ S
]

[

Q′
∗

Q′

]

= S∗Q
′
∗ + SQ′

= IT ,

and that

(4.4)

[

Q′
∗

Q′

]

[

S∗ S
]

=

[

Q′
∗S∗ Q′

∗S

Q′S∗ Q′S

]

=

[

Ip 0

0 IT−p

]

.

If g∗ is available, then y can be recovered from g via y = S∗g∗ + Sg.

The lower-triangular Toeplitz matrix ∇−p
T = [S∗, S] is completely charac-

terised by its leading column. The elements of that column are the ordinates

of a polynomial of degree p− 1, of which the argument is the row index t =

0, 1, ..., T−1. Moreover, the leading p columns of the matrix ∇−p
T , which consti-

tute the submatrix S∗, provide a basis for all polynomials of degree p−1 that are

defined on the integer points t = 0, 1, ..., T−1.

A polynomial of degree p−1, represented by its ordinates in the vector f ,

can be interpolated through the data by minimising the criterion

(4.5) (y − f)
′
(y − f) = (y − S∗f∗)′ (y − S∗f∗)
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with respect to f∗. The resulting values are

(4.6) f∗ = (S′
∗S∗)

−1S′
∗ y and f = S∗(S

′
∗S∗)

−1S′
∗ y .

An alternative representation of the estimated polynomial is available, which

is provided by the identity

(4.7) S∗ (S′
∗S∗)

−1S′
∗ = I −Q(Q′Q)

−1Q′ .

It follows that the polynomial fitted to the data by least-squares regression can

be written as

(4.8) f = y −Q(Q′Q)
−1Q′y .

A more general method of curve fitting, which embeds polynomial regres-

sion as a special case, is one that involves the minimisation of a combination of

two sums of squares. Let f denote the vector of fitted values. Then, the criterion

for finding the vector is to minimise

(4.9) L = (y − f)
′
(y − f) + f ′QΛQ′f .

The first term penalises departures of the resulting curve from the data, whereas

the second term imposes a penalty for a lack of smoothness in the curve. The

second term comprises d=Q′f , which is the vector of p-th-order differences of f.

The matrix Λ serves to generalise the overall measure of the curvature of the

function that has the elements of f as its sampled ordinates, and it serves to

regulate the penalty for roughness, which may vary over the sample.

Differentiating L with respect to f and setting the result to zero, in accor-

dance with the first-order conditions for a minimum, gives

(4.10) y − f = QΛQ′f = QΛ d .

Multiplying the equation by Q′
gives Q′

(y − f) = Q′y − d = Q′QΛ d, whence

Λ d = (Λ
−1

+Q′Q)
−1Q′y. Putting this into the equation f = y −QΛ d gives

(4.11) f = y −Q(Λ
−1

+Q′Q)
−1Q′y .

If Λ
−1

= 0 in (4.11), and if Q′
is the matrix version of the twofold difference

operator, then the least-squares interpolator of a linear function is derived in the

form equation (4.8). The sequence of regression residuals will be given by the

vector r = Q(Q′Q)
−1Q′y; and it is notable that these residuals contain exactly

the same information as the vector g = Q′y of the twofold differences of the

data. However, whereas the low-frequency structure would be barely visible in

the periodogram of the differenced data, it will be fully evident in the periodogram

of the residuals of a polynomial regression.
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The periodogram of the residual sequence obtained from a linear detrending

of the logarithmic consumption data is presented in Figure 8. Superimposed

upon the figure is a highlighted band that spans the interval [π/16, π/3], which

corresponds to the nominal pass band of the filters applied in the previous section.
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Figure 8: The periodogram of the residual sequence obtained from

the linear detrending of the logarithmic consumption data.

A band, with a lower bound of π/16 radians and an upper

bound of π/3 radians, is masking the periodogram.

Within this periodogram, the spectral structure extending from zero fre-

quency up to π/8 belongs to the business cycle. The prominent spikes located

at the frequency π/2 and at the limiting Nyquist frequency of π are property

of the seasonal fluctuations. Elsewhere in the periodogram, there are wide dead

spaces, which are punctuated by the spectral traces of minor elements of noise.

The highlighted pass band omits much of the information that might be used in

synthesising the business cycle.

5. SYNTHESIS OF THE BUSINESS CYCLE

To many economists, it seems implausible that the trend of a macroeco-

nomic index, which is the product of events within the social realm, should be

modelled by polynomial, which may be described as a deterministic function.

A contrary opinion is represented in this paper. We deny the objective reality of

the trend. Instead, we consider it to be the product of our subjective perception

of the data. From this point of view, a polynomial function can often serve as a

firm benchmark against which to measure the fluctuations of the index. Thus, the

linear trend that we have interpolated through the logarithms of the consumption

data provides the benchmark of constant exponential growth.

It is from the residuals of a log-linear detrending of the consumption data

that we wish to extract the business cycle. The appropriate method is to extract
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the Fourier components of the residual sequence that lie within the relevant fre-

quency band. Reference to Figure 8 suggests that this band should stretch from

zero up to the frequency of π/8 radians per quarter, which corresponds to a cycle

with a duration of 4 years. In Figure 9, the sequence that is synthesised from

these Fourier ordinates has been superimposed upon the sequence of the residuals

of the linear detrending.
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Figure 9: The residual sequence from fitting a quadratic trend to

the logarithmic consumption data. The interpolated line,

which represents the business cycle, has been synthesised

from the Fourier ordinates in the frequency interval [0, π/8].

To provide a symbolic representation of the method, we may denote the

matrix of the discrete Fourier transform and its inverse by

U = T−1/2
[

exp{−i 2πtj/T}; t, j = 0, ..., T−1
]

,
(5.1)

Ū = T−1/2
[

exp{i 2πtj/T}; t, j = 0, ..., T−1
]

.

Then, the residual vector r = Q(Q′Q)
−1Q′y and its Fourier transform ρ are

represented by

(5.2) r = T 1/2 Ūρ ←→ ρ = T−1/2 U r .

Let J be a matrix of which the elements are zeros apart from a string of

units on the diagonal, which serve to select from ρ the requisite Fourier ordinates

within the band [0, π/8]. Then, the filtered vector that represents the business

cycle is given by

(5.3) x = T 1/2 ŪJρ = {ŪJ U} r = Ψ r .

Here, ŪJ U = Ψ =
[

ψ◦
|i−j|; i, j = 0, ..., T−1

]

is a circulant matrix of the filter

coefficients that would result from wrapping the infinite sequence of the ideal

bandpass coefficients around a circle of circumference T and adding the overlying

elements. Thus

(5.4) ψ◦
k =

∞
∑

q=−∞

ψqT+k .
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Applying the wrapped filter to the finite data sequence via a circular convolution

is equivalent to applying the original filter to an infinite periodic extension of the

data sequence. In practice, the wrapped coefficients would be obtained from the

Fourier transform of the vector of the diagonal elements of the matrix J .

The Fourier method can also be exploited to create a sequence that repre-

sents a combination of the trend and the business cycle. There are various ways

of proceeding. One of them is to add the vector x to that of the linear or polyno-

mial trend that has generated the sequence of residuals. An alternative method

is to obtain the trend/cycle component by subtracting its complement from the

data vector.

The complement of the trend/cycle component is a stationary component.

Since a Fourier method can be applied only to a stationary vector, we are con-

strained to work with the vector g = Q′y, obtained by taking the twofold differ-

ences of the data.

Since the twofold differencing entails the loss of two points, the vector g may

be supplemented by a point at the beginning and a point at the end. The resulting

vector may be denoted by q. The relevant Fourier ordinates are extracted by

applying the selection matrix I−J to the transformed vector γ = Uq. Thereafter,

they need to be reinflated to compensate for the differencing operation.

The frequency response of the twofold difference operator, which is obtained

be setting z = exp{−iω} in equation (3.4), is

(5.5) f(ω) = 2− 2 cos(ω) ,

and that of the anti-differencing operation is the inverse 1/f(ω). The Fourier

ordinates of a differenced vector will be reinflated by pre-multiplying their vec-

tor by the diagonal matrix V = diag{v0, v1, ..., vT−1}, which comprises the values

vj = 1/f(ωj); j = 0, ..., T−1, where ωj = 2πj/T .

The matrix that is to be applied to the Fourier ordinates of the differenced

data is therefore H = V (I− J). The resulting vector is transformed back to the

time domain via the matrix Ū to produce the vector that is to be subtracted from

the data vector y. The resulting estimate of the trend/cycle component is

(5.6) z = y − ŪHUq .

This is represented in Figure 10.



102 D.S.G. Pollock

10

10.5

11

11.5

1960 1970 1980 1990

Figure 10: The trend/cycle component of U.K. Consumption determined

by the Fourier method, superimposed on the logarithmic data.

6. MORE FLEXIBLE METHODS OF DETRENDING

Methods of detrending may be required that are more flexible than the

polynomial interpolations that we have we considered so far. For a start, there

is a need to minimise the disjunctions that occur in the periodic extension of the

data sequence where the end of one replication joins the beginning of the next.

This purpose can be served by a weighted version of a least-squares polynomial

regression. If extra weight is given to the data points at the beginning and the

end of the sample, then the interpolated line can be constrained pass through

their midst; and, thereby, a major disjunction can be avoided.

The more general method of trend estimation that is represented by equa-

tion (4.11) can also be deployed. By setting Λ
−1

= λ−1I, a familiar filtering device

is obtained that has been attributed by economists to Hodrick and Prescott (1980,

1997). In fact, an earlier exposition this filter was provided by Leser (1961), and

its essential details can be found in a paper of Whittaker (1923).

The effect of the Hodrick–Prescott (H–P) filter depends upon the value of

the smoothing parameter λ. As the value of the parameter increases, the vector f

converges upon that of a linear trend. As the value of λ tends to zero, f converges

to the data vector y. The effect of using the more flexible H–P trend in place of a

linear trend is to generate estimates of the business cycle fluctuations that have

lesser amplitudes and a greater regularity.

The enhanced regularity of the fluctuations is a consequence of the removal

from the residual sequence of a substantial proportion of the fluctuations of lowest

frequency, which can cause wide deviations from the line. This enhancement

might be regarded as a spurious. However, it can be argued that such low-

frequency fluctuations are liable to escape the attention of many economic agents,

which is a reason for excluding them from a representation of the business cycle.
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Whereas the H–P filter employs a globally constant value for the λ, it is

possible to vary this parameter over the course of the sample. This will allow

the trend to absorb the structural breaks or disturbances that might occasionally

interrupt the steady progress of the economy. If it can be made to absorb the

structural breaks, then the trend will not be thrown off course for long; and,

therefore, it should serve as a benchmark against which to measure the cyclical

variations when the economy resumes its normal progress. At best, the resid-

ual sequence will serve to indicate how the economy might have behaved in the

absence of the break.

Figure 11 shows a trend function that has been fitted, using a variable

smoothing parameter, to the logarithms of a sequence of annual data on real

U.K. gross domestic product that runs from 1873 to 2001. Only the breaks after

the ends of the first and second world wars have been accommodated, leaving the

disruptions of the 1929 recession to be expressed in the residual sequence. The

effect has been achieved by attributing a greatly reduced value to the smoothing

parameter in the vicinity of the post-war breaks. In the regions that are marked by

shaded bands, the smoothing parameter has been given a value of 5. Elsewhere,

it has been given a high value of 100,000, which results in trend segments that

are virtually linear.
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Figure 11: The logarithms of annual U.K. real GDP from 1873 to 2001

with an interpolated trend. The trend is estimated via a filter

with a variable smoothing parameter.

This example serves to illustrate the contention that the trend and the

accompanying business cycle are best regarded as subjective concepts. The in-

tention of the example is to remove from the residual sequence — and, therefore,

from the representation of business cycle — the effects of two major economic

disruptions. For the purpose of emphasising the extent of these disruptions, the

contrary approach of fitting a stiff polynomial trend line through the data should

be followed.
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1. INTRODUCTION

In the recent past, the high-order statistics (HOS) have been widely applied

in several fields. By HOS it is meant the moments and cumulants of order higher

than two, in the time domain, and the corresponding multidimensional Fourier

transform (polyspectrum), in the frequency domain. In this work, the time do-

main approach is considered. The HOS comprise information about stochastic

processes such as the degree of nonlinearity and deviations from Gaussianity that

is not contained in the second-order statistics.

Let {Xt} be a k-th-order stationary stochastic process. The k-th-order

joint moment of Xt, Xt+s1
, ..., Xt+sk−1

, for s1, ..., sk−1 ∈ R, is a function of k −1

variables defined by

µX(s1, ..., sk−1) = E[Xt Xt+s1
... Xt+sk−1

] ,

with µX = E[Xt]. For a stationary stochastic process, the moments have the

following symmetry properties:

µX(m) = µX(−m) , m > 0 ,

µX(m, n) = µX(n, m) = µX(−n, m − n) = µX(n − m,−m) , m, n > 0 .

Then, it follows that the third-order moments over the entire plane may be ob-

tained from the values of the third-order moments over the infinite wedge bounded

by the straight lines m = 0 and m = n, m, n > 0.

Recently, the integer-valued autoregressive process has been proposed in the

literature to model time series of counts. The p-th-order integer-valued autoregres-

sive, INAR(p), process is defined as a discrete time non-negative integer-valued

stochastic process, {Xt}, that satisfies the following equation (Latour, 1998):

(1.1) Xt = α1 ◦ Xt−1 + α2 ◦ Xt−2 + · · · + αp ◦ Xt−p + et ,

where

1. {et}, designated the innovation process, is a sequence of independent

and identically distributed (i.i.d.) non-negative integer-valued random

variables with E[et] = µe, Var[et] = σ2
e and E[e3

t ] = γe;

2. the symbol ◦ represents the thinning operation (Steutel and Van Harn,

1979; Gauthier and Latour, 1994), defined by

αi ◦ Xt−i =

Xt−i
∑

j=1

Yi,j , for i = 1, ..., p ,

where {Yi,j}, designated the counting series, is a set of i.i.d. non-negative

integer-valued random variables such that E[Yi,j ]= αi, Var[Yi,j ]= σ2
i and

E[Y 3
i,j ] = γi. All the counting series are assumed independent of {et};
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3. 0 ≤ αi < 1, i = 1, ..., p −1, and 0 < αp < 1. Note that the stationarity

condition for the INAR(p) process is that
∑p

k=1 αk < 1.

A special case is the Poisson INAR process with binomial thinning operation,

where {et} has a Poisson distribution with parameter λ and the counting series,

{Yi,j}, are a set of Bernoulli randomvariables with P (Yi,j =1)=1−P (Yi,j = 0)= αi.

Since the INAR models are non-Gaussian, the HOS can provide addi-

tional information in the characterization of these processes. Thus, an estimation

method for the parameters of an INAR model that uses HOS is proposed in this

work. This approach applies the Least Squares estimation method to minimize

the errors between the third-order moment of the observations and of the fitted

model.

This work is organized as follows: in Section 2 the third-order characteriza-

tion of INAR(p) models is provided and the proposed Least Squares Estimation

method based on HOS (LS HOS) is described. In Section 3 the results of a sim-

ulation study to assess the small sample properties of the proposed estimator are

given and the method is applied to a set of observations concerning the number

of plants within the industrial sector in Section 4. Finally, some remarks are

presented in Section 5.

2. PARAMETER ESTIMATION BASED ON HOS

2.1. Third-order characterization of INAR(p) models

The third-order characterization, in terms of moments and cumulants, of

INAR models has been obtained by Silva and Oliveira (2004, 2005) and Silva

(2005). In particular, the third-order moments of an INAR(p) process, defined

by (1.1), satisfy a set of Yule–Walker type equations similar to those satisfied by

the bilinear process, that can be written as:

µX(0, 0) =

p
∑

i=1

p
∑

j=1

p
∑

k=1

αiαj αk µX(i− j, i−k)

+ 3

p
∑

i=1

p
∑

j=1

αj σi
2µX(i− j) + 3µX(σ2

e +µe
2
)

p
∑

i=1

αi

(2.1)

+ 3 µe

p
∑

i=1

p
∑

j=1

αiαj µX(i− j) + 3µX µe

p
∑

i=1

σi
2

+ µX

p
∑

i=1

(γi − 3 αi σi
2− α3

i ) + γe ,
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µX(0, k) =

p
∑

i=1

αi µX(0, k− i) + µe µX(0) , k > 0 ,(2.2)

µX(k, k) =

p
∑

i=1

p
∑

j=1

αiαj µX(k− i, k− j) +

p
∑

i=1

σi
2µX(k− i)

(2.3)
+ 2 µe µX(k) − µX(µe

2−σe
2
) , k > 0 ,

µX(k, m) =

p
∑

i=1

αi µX(k, m− i) + µe µX(k) , m > k > 0 ,(2.4)

where

(2.5) µX(0) =

p
∑

i=1

αi µX(i) + µe µX + Vp ,

is the second-order moment of {Xt}, with

Vp = σe
2
+ µX

p
∑

i=1

σi
2 ,

which represents the variance of the one-step-ahead prediction error (Silva, 2005).

These equations indicate that the INAR processes have a non-linear struc-

ture, therefore the first- and second-order moments are not sufficient to describe

the dependence structure of the process. In the next section, is described an esti-

mation method for the parameters of an INAR(p) process that uses the additional

information provided by the HOS.

2.2. Least squares estimation based on HOS

Let {x1, x2, ..., xn} be a realization of a non-negative integer-valued station-

ary stochastic process with third-order moments µ(0, k), k > 0. The approxi-

mating model considered is an INAR(p) process (order known) with parameters

α1, ..., αp, µe, σ2
e and third-order moments µX(0, k), k > 0, satisfying (2.2), which

can be represented in the following matrix form

(2.6) µ3,X = M3,X α + µe µX(0)1p ,

where µ3,X is defined as

µ3,X =
[

µX(0, 1) · · · µX(0, p)
]T

,
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M3,X is the p×p non-symmetric Toeplitz matrix of the third-order moments of

the INAR(p) process

M3,X =















µX(0, 0) µX(1, 1) · · · µX(p−1, p−1)

µX(0, 1) µX(0, 0) · · · µX(p−2, p−2)

.

.

.
.
.
.

. . .
.
.
.

µX(0, p − 1) µX(0, p − 2) · · · µX(0, 0)















,

with µX(·, ·) given in (2.1) to (2.4), α = [ α1 · · · αp ]
T

is the vector of coefficients,

µX(0) is the second-order moment of the INAR(p) process given in (2.5) and 1p

is a p×1 vector of ones.

Defining

H =
[

M3,X µX(0)1p

]

and θ =
[

α1 · · · αp µe

]T
,

equation (2.6) can be rewritten as

µ3,X = Hθ ,

suggesting that θ may be estimated by least squares, i.e., minimizing the squared

error between the third-order moments of the fitted INAR(p) model, µ3,X , and

the third-order moments of the data,

µ3 =
[

µ(0, 1) · · · µ(0, p)
]T

.

Thus, θ̂, the Least Squares estimator of θ based on HOS (LS HOS) satisfies

θ̂ = min
θ

{

L∗
(θ)

}

where

L∗
(θ) = (µ3 − Hθ)

T
(µ3 − Hθ) .

In practice, the estimator is calculated by substituting the moments in µ3

and H by their sample counterparts, using the usual estimators of the moments

µ̂X(0) =
1

N

N
∑

t=1

Xt
2, µ̂X(0, k) =

1

N

N−k
∑

t=1

Xt
2Xt+k , µ̂X(k, k) =

1

N

N−k
∑

t=1

Xt Xt+k
2 .

Thus,

θ̂ = min
θ

{

L̂∗
(θ)

}

= min
θ

{

(µ̂3− Ĥθ)
T

(µ̂3− Ĥθ)
}

.

Note that an estimator for σ2
e can be obtained by

σ̂2
e = V̂p − X

p
∑

i=1

σ̂2
i ,
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where X is the sample mean of the observations, σ̂2
i is an estimator of the counting

series variance for the i -th thinning operation, αi ◦ Xt−i, i = 1, ..., p, and V̂p =

R̂(0)−∑p
i=1 α̂i R̂(i), with R̂(i) =

1
N

∑N−i
t=1 (Xt−X) (Xt+i−X), representing the

sample autocovariance function. The estimation of σ̂2
i depends on the distribution

of the counting series, for instance, in the case of the binomial thinning operation

(when the counting series are Bernoulli distributed), σ̂2
i = α̂i(1− α̂i), for i =

1, ..., p.

The asymptotic distribution of the LS HOS estimator depends on the sixth-

order moments and cumulants of the processes, and therefore is too complex

and not useful in practice. So, the finite sample properties of the estimator are

investigated by a simulation study, which results are presented in the next section.

3. MONTE CARLO RESULTS

The aim of the simulation study presented in this section is twofold: to

examine the small sample properties of the estimator previously described and

compare its performance with other estimation methods for the parameters of an

INAR process.

Thus, 1000 realizations of Poisson INAR(p) processes (et ∼ Po(λ)) with

binomial thinning operation are generated, for p = 0, ..., 3. The sample size, N ,

and parameters values considered are:

• N = 50, 200, 500 and 1000 observations,

• λ ∈ {1.0, 3.0},
• for p = 1, α1 ∈ {0.1, 0.4, 0.6, 0.9},
• for p = 2, (α1, α2) ∈

{

(0.1, 0.6), (0.6, 0.1), (0.3, 0.4), (0.4, 0.3), (0.1, 0.1),

(0.4, 0.4)
}

,

• for p = 3, (α1, α2, α3) ∈
{

(0.1, 0.1, 0.4), (0.1, 0.4, 0.1), (0.4, 0.1, 0.1),

(0.3, 0.3, 0.3)
}

.

For each realization, the estimation methods used to obtain θ̂=[α̂1,...,α̂p,µ̂e]
T

are Yule–Walker estimation (YW), Conditional Least Squares estimation (CLS),

Whittle estimation (WHT) and unconstrained and constrained Least Squares

estimation based on HOS (LS HOS and LS HOS C). For a detailed description

of the YW, CLS and WHT estimation methods see Silva (2005). The constraints

considered are 0 < αi < 1, i =1, ..., p,
∑p

i=1αi < 1 and σe
2 > 0. The initial values

of the iterative methods are the YW estimates.

The unconstrained minimizations necessary in the methods CLS, WHT and

LS HOS are performed through the MATLAB function fminunc, which finds a

minimum of a scalar unconstrained multivariable function by using the BFGS
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Quasi-Newton method with a mixed quadratic and cubic line search procedure

(MathWorks (2004)). The constrained minimization of the method is accom-

plished by the MATLAB function fmincon, which finds a minimum of a scalar

constrained nonlinear multivariable function by using a Sequential Quadratic

Programming method (MathWorks (2004)).

For each case, the following sample statistical measures are evaluated:

• mean bias: Bias(θ̂i) =
1

N

N
∑

j=1

(θ̂
(j)
i − θi) ,

• variance: Var(θ̂i) =
1

N−1

N
∑

j=1

(θ̂
(j)
i − θi)

2
,

• mean square error: MSE(θ̂i) =
1

N−1

N
∑

j=1

(θ̂
(j)
i − θi)

2
,

where θ̂
(j)
i represents the parameters estimates, α̂1, ..., α̂p, µ̂e, in the j-th repeti-

tion, for j =1, ..., N =1000, and θi =
1
N

∑N
j=1 θ̂

(j)
i is its sample mean.

With respect to the small sample properties of the LS HOS and LS HOS C

estimators, the following conclusions can be drawn from the analysis of all the

simulations. In general, the sample bias, variance and mean square error decrease

as the sample size increases, indicating that the distribution of the estimators is

consistent and symmetric. However, for a small sample size there is evidence of

departure from symmetry in the marginal distributions, specially for values of

the parameters near the non-stationary region.

Table 1 presents numerical results for two INAR(1) processes, with parame-

ter values θ = (α1, λ) = (0.1, 3.0) and θ = (0.6, 3.0), respectively, and two differ-

ent sample sizes: N = 50 and 500. As expected, the results for the unconstrained

and constrained estimations only differ when the value of the coefficient is near

of the non-admissible region, specially when it presents a small value (α1 = 0.1).

Figure 1 presents the boxplots of the sample bias for the parameter estimates

of an INAR(2) processes, with parameter values θ = (α1, α2, λ) = (0.6, 0.1, 1.0),

obtained by LS HOS and LS HOS C, for the four different sample sizes. As can

be seen, the boxplots indicate that the marginal distributions of the estimators

are, generally, symmetric.

When the several estimation methods are compared it is found that the

LS HOS provides similar results, in terms of the smallest values of sample bias,

variance and mean square error, to the other methods. It is also verified that,

in general, the proportion of non-admissible estimates of the methods is less

for LS HOS, followed by WHT and CLS. The results show that, in general, the

sample mean bias of α̂i is negative, indicating that αi is underestimated, while λ is

overestimated, since the sample mean bias of the parameter estimate is positive.
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Table 1: Sample statistical measures for the parameters estimates

of Poisson INAR(1) processes.

Measure N θ = (α1, λ)
θ̂1 = α̂1 θ̂2 = λ̂

LS HOS LS HOS C LS HOS LS HOS C

Bias(θ̂i)

50
(0.1, 3.0) −0.0411 −0.0041 0.0949 −0.0897

(0.6, 3.0) −0.0893 −0.0826 0.5208 0.4611

500
(0.1, 3.0) −0.0019 −0.0003 0.0029 −0.0050

(0.6, 3.0) −0.0094 −0.0099 0.0532 0.0584

Var(θ̂i)

50
(0.1, 3.0) 0.0190 0.0099 0.2623 0.1566

(0.6, 3.0) 0.0158 0.0149 0.9229 0.8841

500
(0.1, 3.0) 0.0021 0.0020 0.0286 0.0270

(0.6, 3.0) 0.0014 0.0014 0.0787 0.0772

MSE(θ̂i)

50
(0.1, 3.0) 0.0206 0.0100 0.2711 0.1645

(0.6, 3.0) 0.0238 0.0217 1.1933 1.0958

500
(0.1, 3.0) 0.0021 0.0020 0.0286 0.0270

(0.6, 3.0) 0.0015 0.0015 0.0815 0.0805
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Figure 1: Boxplots of the sample bias for the estimates obtained by (a): LS HOS

and (b): LS HOS C, in 1000 realizations of the Poisson INAR(2) model:

Xt = 0.6 ◦ Xt−1 + 0.1 ◦ Xt−2 + et, where et ∼ Po(1).
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In order to illustrate some of these conclusions, Figure 2 shows the boxplots of

the sample bias for the estimates obtained from 50 and 200 observations of the

INAR(1) process with parameter values θ = (α1, λ) = (0.9, 1.0). Note that the

value of α1 is near the non-stationary region, however, even for N = 50 observa-

tions the LS HOS estimates presents the best results.
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Figure 2: Boxplots of the sample bias for the estimates obtained in 1000 reali-

zations of 50 and 200 observations of the Poisson INAR(1) model:

Xt = 0.9 ◦ Xt−1 + et, where et ∼ Po(1).

4. APPLICATION TO REAL DATA

In this section, the proposed estimation method is applied to a real dataset

concerning the number of Swedish mechanical paper and pulp mills, from 1921 to

1981 (see Figure 3). This dataset was used by Brännäs (1995) and Brännäs and

Hellström (2001), and these authors fitted an INAR(1) process to this dataset

using some explanatory variables (the industrial gross profit margin and GNP).

Here, an INAR(1) process, with binomial thinning operation, where the inno-

vations are i.i.d. random variables with mean µe and variance σ2
e is considered.

Since the mean of the data is 20.40 and its variance is 155.16, a Poisson innovation

process is not assumed but then the method does not require that or any other

assumption on the distribution of the innovations.
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Figure 3: The number of Swedish mechanical paper and pulp mills, from

1921 to 1981 (Brännäs (1995) and Brännäs and Hellström (2001)),

and the fitted values considering the LS HOS and CLS estimates.

Table 2 presents the parameter estimates obtained by CLS and LS HOS

estimation methods. The fit of both models, based on LS HOS and CLS esti-

mates, are also shown in Figure 3. As can be observed, the two fits are very

similar and similar to the dataset. The mean square errors (MSE) between the

observations and the fitted values are also exhibited in Table 2. It can be seen

that the MSE is slightly smaller for the LS HOS fit than for CLS fit.

Table 2: The parameter estimates of the number of Swedish

mechanical paper and pulp mills, from 1921 to 1981.

Method α̂ µ̂e σ̂2
e MSE µ̂x σ̂2

x

CLS 0.9591 0.2017 15.2268 8.5494 4.9315 192.2764

LS HOS 0.9269 1.3635 19.2253 7.4465 18.6525 145.4513

The last two columns of the Table 2 present the mean and variance of the

estimated models:

µ̂x =
µ̂e

1− α̂1
and σ̂2

x =
µ̂e α̂1 + σ̂2

e

1− α̂2
1

.

It is noticeable that the model estimated by LS HOS presents mean and variance

closer to the sample values.



116 Isabel Silva and M. Eduarda Silva

The goodness-of-fit of both fitted models is investigated by the residuals.

The analysis of the sample autocorrelation and sample partial autocorrelation

functions, as well as the usual tests of randomness, do not reject the hypothesis

of uncorrelated random variables for the residual series from both fitted models.

5. FINAL REMARKS

The principal advantage of HOS is the capability to detect and characterize

the deviations from Gaussianity and non-linearity of the processes. Thus in this

work a new estimation method for the parameters of INAR processes based on

HOS is proposed. This method uses the Least Squares estimation to minimize

the errors between the third-order moment of the observations and of the fitted

model. Note that this estimation method does not assume any particular discrete

distribution to the counting series and to the innovation process. A Monte Carlo

study indicates that this estimation method provides good results in small sam-

ples, in terms of sample bias, variance and mean square error. Moreover, when

used in the context of a non-Poisson real dataset the LS HOS estimates provide

a model with mean, variance and autocorrelations closer to the sample values.
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Authors: Nélia Silva
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• In this work we consider the problem of forecasting integer-valued time series,

modelled by the INAR(1) process introduced by McKenzie (1985) and Al-Osh and

Alzaid (1987). The theoretical properties and practical applications of INAR and

related processes have been discussed extensively in the literature but there is still
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pared with their classic counterparts. The proposed approaches are illustrated with a

simulation study and a real example.

Key-Words:

• INAR models; Bayesian prediction; integer prediction; Markov Chain Monte Carlo

algorithm.



120 Nélia Silva, Isabel Pereira and M. Eduarda Silva



Forecasting in INAR(1) Model 121

1. INTRODUCTION

In applications we are frequently faced with time series whose characteris-

tics are not compatible with a continuous modelling approach. Discrete variate

time series occur in many contexts, often as counts of events or individuals in

consecutive intervals or at consecutive points in time. Examples of these are the

number of costumers waiting to be served, the daily number of absent workers

in a firm, the number of busy lines in a telephone network noted every hour, the

number of accidents in a manufacturing plant each month, etc. Several models

that take the discreteness of the data explicitly into account have been developed

in the literature. Cox (1981) proposed dividing them into two categories: obser-

vation-driven and parameter-driven models. MacDonald and Zucchini (1997),

Cameron and Trivedi (1998) and the review by McKenzie (2003) provide an

excellent overview of the literature in this area.

In this work we are interested in a special class of observation-driven models,

the so-called integer-valued autoregressive (INAR) process introduced by McKen-

zie (1985) and Al-Osh and Alzaid (1987). The theoretical properties and practical

applications of INAR and related processes have been discussed extensively in the

literature. Silva et al. (2005) consider independent replications of count time se-

ries modelled by INAR(1) and proposed several estimation methods using the

classical and Bayesian approaches in time and frequency domains. Nevertheless,

there is still little consensus on which processes or model classes are best used

in practice in contrast to the role played by the Box-Jenkins Gaussian ARMA

methodology for continuous variables. This is partly due to the lack of reliable

techniques for estimation, testing and prediction. In particular, the lack of fore-

casting methods that are coherent in the sense of producing only integer-valued

predictions, seems to render useless the effort of using more complex models.

Usually forecasts are obtained from the conditional expectations, which

have the optimality property but rarely will generate integer values. In order to

produce coherent forecasts Freeland and McCabe (2003) use the median of the

k-step-ahead conditional distribution to emphasize the intention of preserving

the integer structure of the data in generating the forecasts. McCabe and Martin

(2005) develop a general methodology for producing coherent predictions of low

count data. In contrast to the usual applications of the model INAR(1), in

which the arrival process is usually Poisson, they allow the arrivals to follow

any distribution in the integer class. The forecasts are based on an estimate of

the k-step–ahead predictive probability mass function. To eliminate unwanted

values from the conditioning set of the predictive function, Bayesian methods are

used. Jung and Tremayne (2006) extend some of the ideas used by Freeland and

McCabe in higher order dependence structure by proposing a computer intensive

method for generating coherent, integer out-of-sample predictions, particularly
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obtaining the h-step-ahead predictor for the INAR(2). They propose a Monte

Carlo approach using bootstrap methods to estimate the sampling distributions

as a mean of generating one and multi-step ahead forecasts which respect the

integer structure of the data.

The purpose of this paper is to obtain coherent forecasts for the Poisson

INAR(1) process. Bayesian methodology is used to obtain point predictions as

well as credibility intervals for future values of the process which are compared

with their classic counterpart.

The remainder of the paper is divided into four main sections. Section 2

provides the theoretical results in order to obtain the point forecasts. Section 3

presents methods for producing confidence intervals or highest posterior predic-

tive density intervals for forecasts. In Section 4 we conduct a simulation study to

compare the performance of the classical and Bayesian approaches, considering

point and interval predictions. Section 5 gives an example of forecasting a count

data series using PoINAR(1) model. The data are the number of claimants re-

ceiving wage loss benefits due to injuries from burns, supplied by the Workers

Compensation Board of the Province of British Columbia, Canada. The proposed

methodology presented in this work is applied to this data set and compared with

classical inference and forecasting procedures from Freeland (1998).

2. POINT PREDICTION

Consider a non negative integer-valued random variable X and α ∈ [0, 1],

the generalized thinning operation, hereafter denoted by ‘◦’, is defined as

(2.1) α ◦ X =

X
∑

j=1

Yj ,

where {Yj}, j =1, ..., X, is a sequence of independent and identically distributed

non-negative integer-valued random variables, independent of X, with finite mean

α and variance σ2. This sequence is called the counting series of α ◦ X. When

{Yj} is a sequence of Bernoulli random variables, the thinning operation is called

binomial thinning operation and was defined by Steutel and van Harn (1979).

The well-known INAR(1) process {Xt; t = 0,±1,±2, ...} is defined on the

discrete support N0 by the equation

Xt = α ◦ Xt−1 + ǫt ,

where 0 < α < 1, {ǫt} is a sequence of independent and identically distributed

integer-valued random variables, with E[ǫt] = µǫ and Var[ǫt] = σ2
ǫ .
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In this paper we consider only Poisson INAR(1) process, i.e., {ǫt} is a se-

quence of independent Poisson distributed variables with parameter λ, indepen-

dent of all counting series {Yj}. Note that, assuming ǫt ⌢ Po(λ) it is straight-

forward to show that Xt ⌢ Po
(

λ/(1− α)
)

. The Poisson INAR(1) process will

henceforth be denoted PoINAR(1).

Given that we have observed the series up through time n, i.e., xn =

(x1, x2, ..., xn) is known, the most common procedure for constructing predic-

tions in time series models is to use conditional expectations. The following

theorem states and important result in this context.

Theorem 2.1 (Freeland, 1998, pp. 30). The moment generation function

of Xn+h given Xn is

(2.2) ϕXn+h|Xn
(s) =

[

αhes
+ (1− αh

)
]Xn

exp

[

λ
1− αh

1− α
(es−1)

]

.

Expression (2.2) shows that the distribution of Xn+h|Xn is a convolution

of a binomial distribution with parameters αh
and Xn and a Poisson distribution

with parameter λ(1− αh
)/(1− α). That is, the probability function of Xn+h|Xn

is given by

f(xn+h|xn) = P
(

Xn+h = xn+h |Xn = xn

)

= exp

{

−λ
1− αh

1− α

} Mh
∑

i=0

1

(xn+h− i)!
(2.3)

×
(

λ
1 − αh

1 − α

)xn+h−i(xn

i

)

(αh
)
i
(1− αh

)
xn−i , xn+h = 0, 1, ... ,

where Mh = min(Xn+h, Xn). Consequently, we have the following corollary:

Corollary 2.1. The INAR(1) model satisfies the properties

a) E
[

Xn+h|Xn

]

= αh

[

Xn − λ

1− α

]

+
λ

1− α
, h = 1, 2, 3, ...,

b) Var
[

Xn+h|Xn

]

= αh
(1− αh

)Xn + λ
1− αh

1− α
, h = 1, 2, 3, ...,

c) As h → +∞, Xn+h |Xn is a Poisson distribution with parameter

λ/(1− α).

So, we can conclude that for α constant,

lim
h→+∞

E
[

Xn+h|Xn

]

= lim
h→+∞

Var
[

Xn+h|Xn

]

= λ/(1− α) ,

i.e., as h → ∞ and 0 < α < 1, the mean and the variance of Xn+h|Xn remain

equal and approach the mean of the process.
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2.1. Classical methodology

The h-step-ahead predictor based on the conditional expectation of INAR(1),

(2.4) X̂n+h|xn = E
[

Xn+h|Xn

]

= αh

[

Xn −
λ

1− α

]

+
λ

1− α
, h = 1, 2, 3, ...

was obtained by Brännäs (1994) and Freeland and McCabe (2003), but it will

hardly produce integer-valued forecasts. In order to obtain coherent predictions

for Xn+h Freeland and McCabe (2003) suggest using the value which minimizes

the expected absolute error given the sample, i.e., the value that minimizes

E
[

|Xn+h−X̂n+h|
∣

∣Xn

]

. So, they concluded that X̂n+h = m̂n+h is the median

of the h-step-ahead conditional distribution f(xn+h|xn).

2.2. Bayesian methodology

The Bayesian predictive probability function is based on the assumption

that, both, the future observation, Xn+h and the vector of unknown parameters

θ = (α, λ) are random. As we know the information about θ is given by the

observed sample xn and quantified in the posterior predictive, π(θ|xn).

Definition 2.1. Let θ ∈ Θ be the vector of unknown parameters. The

h-step-ahead Bayesian posterior predictive distribution is given by

(2.5)

f(xn+h|xn) =

∫

Θ
f(xn+h; θ|xn) dθ

=

∫

Θ
f(xn+h|xn; θ)π(θ|xn) dθ ,

where π(θ|xn) is the posterior probability function of θ and f(xn+h|xn; θ) is the

predictive distribution (classical) given by (2.3).

The h-step-ahead predictive distribution of Xn+h|xn given by expression

(2.5) can be viewed as having all information about the future values. Once

f(xn+h|xn) is obtained, the Bayesian h-step-ahead predictor can be given by the

expected valued, the median or the mode of Xn+h given xn.

Since beta and gamma are conjugate of binomial and Poisson distributions,

respectively, we use them for prior distributions of the parameters to INAR(1)

model, α ⌢ Beta(a, b), a, b > 0 and λ ⌢ Gamma(c, d), c, d > 0. Considering in-

dependence between α and λ, the prior distribution of (α, λ) is given by

(2.6) p(α, λ) ∝ λc−1
exp(−dλ)αa−1

(1− α)
b−1 , λ > 0, 0 < α < 1 ,
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where a, b, c and d are known parameters. Note that, as a → 0, b → 0, c → 0 and

d → 0 we have a vague prior distribution.

The posterior distribution of (α, λ) can be written as

p(α, λ|xn) ∝ L(xn, α, λ|x1) p(λ, α)

= exp

[

−
(

d + (n−1)
)

λ
]

λc−1αa−1
(1− α)

b−1

×
n
∏

t=2

Mt
∑

i=0

λxt−i

(xt− i)!

(

xt−1

i

)

αi
(1− α)

xt−1−i ,

where L(xn|x1) is the conditional likelihood function and Mt = min(Xt, Xt−1).

Consequently for the PoINAR(1) model, the Bayesian predictive function

of Xn+h given xn is given by

f(xn+h|xn) ∝
∫

α

∫

λ

Mh
∑

i=0

(

xn

i

)

(αh
)
i
(1− αh

)
xn−i 1

(xn+h− i)!

× exp

(

−λ
1− αh

1− α

)(

λ
1− αh

1− α

)xn+h−i

exp
[

−(d+n)λ
]

λc−1
(2.7)

× αa−1
(1− α)

b−1
n
∏

t=2

Mt
∑

i=0

λxt−i

(xt − i)!

(

xt−1

i

)

αi
(1− α)

xt−1−i dα dλ .

The complexity of f(xn+h|xn) does not allow us to work with it directly.

In order to estimate Xn+h, we can adapt to the integer case the Tanner (1996)

composition method. That is, to sample (Xn+h,1, Xn+h,2, ..., Xn+h,m), we can use

the following algorithm:

Algorithm 2.1

1. From the sample (X1, X2, ..., Xn), calculate (through the classical method)

a starting estimate for α, denoted by α0;

2. Using the adaptive rejection Metropolis sampling (ARMS) within Gibbs

methodology (see Gilks et al., 1995), calculate from the full conditional

distributions of the parameters α and λ, a sample (α1, λ1), (α2, λ2), ...,

(αm, λm);

3. For each i (i =1, ..., m) sample Xn+h,i from f(xn+h|xn, αi, λi), using

the inverse transform method adapted to integer variables, that is,

(a) sample u from uniform U(0, 1),

(b) calculate the least integer-valued s :
∑s

i=0 f(xn+h|xn, αi, λi) ≥ u ,

(c) consider Xn+h,i = s.
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After sampling Xn+h,1, Xn+h,2, ..., Xn+h,m, the h-step-ahead predictor of

Xn+h, can be calculated from the sample mean (X̂n+h), the median (m̂n+h) or

the mode (m̂on+h).

But we can also calculate E(Xn+h|xn) using an appropriate property of

mathematical expectation. As we know E
[

g(Xn+h)|xn

]

=E
[

E[g(Xn+h)|xn, θ]|xn

]

;

thus,

E(Xn+h|xn) = E
[

E(Xn+h|θ,xn)
∣

∣xn

]

= E

[

αhXn +
1− αh

1− α
λ
∣

∣

∣
xn

]

= Xn E
[

αh |xn

]

+ E

[

1− αh

1− α
λ
∣

∣

∣
xn

]

.

These expected values can be estimated through Markov Chain Monte Carlo

(MCMC) algorithms. We perform Metropolis algorithm in conjunction with

Adaptive Rejection Sampling Method (ARMS) in order to sample values from

full conditional distributions of α and λ; let them be noted by (α1, α2, ..., αm),

(λ1, λ2, ..., λm), respectively (see Silva et al., 2005). We have

Ê
[

αh |xn

]

=
1

m

m
∑

i=1

αh
i ,

Ê

[

1− αh

1− α
λ
∣

∣

∣
xn

]

=
1

m

m
∑

i=1

1− αh
i

1− αi
λi .

Consequently the predictor can be written as

(2.8) X̃n+h = Xn

(

1

m

m
∑

i=1

αh
i

)

+

(

1

m

m
∑

i=1

1− αh
i

1− αi
λi

)

.

3. INTERVAL PREDICTION

In this section we obtain interval predictions for the h-step-ahead observa-

tion, using the classical framework and Bayesian methodology.

3.1. Classical methodology

A confidence interval for the predictor X̂n+h, can be calculated through the

probability function of the h-step-ahead prediction error, given by

en+h|xn = Xn+h|xn − X̂n+h|xn .
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Replacing X̂n+h|xn given by (2.4), we obtain

en+h|xn = Xn+h − αhxn − λ
1− αh

1− α
.

Since en+h|xn is a function of discrete random variable Xn+h, we have

en+h|xn = k − αhxn − λ
1− αh

1− α
, k = 0, 1, 2, ... .

So,

(3.1)

P

(

en+h = k − αhxn − λ
1−αh

1−α

∣

∣

∣
xn

)

=

= P
(

Xn+h = k |Xn = xn

)

= exp

{

−λ
1−αh

1−α

} Mh
∑

i=0

1

(k− i)!

(

λ
1−αh

1−α

)k−i(
xn

i

)

(αh
)
i
(1−αh

)
xn−i .

From the expression (3.1) we obtain a γ level confidence interval for Xn+h

(3.2)
(

X̂n+h + et1 , X̂n+h + et2

)

,

where X̂n+h is given by (2.4), et1 is the largest value of en+h such as P (en+h≤ et1)

≤ (1−γ)/2 and et2 is the smallest value of en+h such as P (en+h≤ et2) ≥ (1+γ)/2.

3.2. Bayesian methodology

We propose an adaptive generalization of the method used to obtain Highest

Posterior Density (HPD) intervals of the model parameters, in which we consider

the predictive distribution instead of the posterior.

Definition 3.1. A 100γ% predictive interval for Xn+h is given by

P
(

XL ≤Xn+h ≤XR

)

=

XR
∑

xn+h=XL

f(xn+h|xn) .

However, since f(xn+h|xn) is not always symmetric
1
, the intervals with

a maximum posterior predictive probability are more desirable than predictive

intervals (Chen et al., 2000).

1
We made a previous study with some samples from PoINAR(1) and we verified that many

were neither symmetric nor unimodal.
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Definition 3.2. R(γ) = (XL, XR) is a 100γ% HPD interval for Xn+h if

(3.3) P
(

XL ≤Xn+h ≤XR) =

XR
∑

xn+h=XL

f(xn+h|xn) ≥ Kγ ,

where Kγ is the largest constant such that P
[

Xn+h ∈ R(γ)
]

≥ γ.

Due to the complexity of the predictive probability function given by (2.7)

it is not possible to calculate the exact HPD interval for Xn+h; we can give an

approximation for R(γ) by using the Chen and Shao (1999) algorithm, because

this method does not require the knowledge of the closed form of f(xn+h|xn).

The Chen and Shao algorithm can be described as:

Algorithm 3.1

1. Obtain an MCMC sample (Xn+h,1, Xn+h,2, ..., Xn+h,m) (Algorithm 2.1);

2. Consider
(

X(n+h,1) ≤ X(n+h,2) ≤ ... ≤ X(n+h,m)

)

;

3. Compute the 100γ% credible intervals

Ri(γ) =
(

X(n+h,i), X(n+h,i+[mγ])

)

, 1 ≤ i ≤ m− [mγ] ,

where [mγ] is integer part of mγ ;

4. The 100γ% HPD interval to Xn+h is the one, denoted by R̂(γ), with

the smallest amplitude among all credible intervals.

Under certain regularity conditions, R̂(γ) → R(γ) a.s. as n → ∞, where

R(γ) is defined in (3.3) (Chen et al., 2000).

Sometimes we obtain more than one interval. For this situation, we consider

for R̂(γ) the interval with greater absolute frequency, among the intervals width

smaller with. When the interval is still not unique we take the one with the

smallest lower limit.

4. A SIMULATION STUDY

For the simulation study we consider samples with size n = 40, 90, 190

generated by INAR(1) models with the parameters values α = 0.2, 0.5, 0.8 and

λ = 1, 3, and considering the hyperparameters a = b = c = d = 10
−4

.
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4.1. Point prediction

From the various simulated samples we conclude that large values of α and

λ are related with high dispersion values. Consequently the increase in α and λ

provides large values of |xn+h − xn|, h > 1. As we can see in Figure 1, indepen-

dently of the prediction methodology used, the forecasts performance depends on

two basic aspects: one is the difference between xn and xn+h, h > 1; the other is

the approximation between xn and λ̂/(1− α̂), in particular when h increases (note

that Ê(Xn+h|Xn) → λ̂/(1− α̂), h→∞). These findings are illustrated in Table 1

where point predictions for 10 steps ahead for a particular model are given.

The table includes the h-step ahead simulated and predicted values and the square

of the deviations between x190 and x190+h, h = 1, ..., 10. The last line contains the

classical limiting distribution.

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

x classical

x Bayes

0 0        0       1        1     2     3    3     4  4

hnhn
xx̂

hnn
xx

Figure 1: Values of |x̂n+h − xn+h| for a PoINAR(1) sample

with α = 0.8, λ = 3, n = 190 and h = 1, 2, ..., 10.

To confront classical and Bayesian methodologies we use the mean square

error (MSE) to compare means, the mean absolute deviation (MAD) to com-

pare medians and the “everything or nothing” lost function (FPTN), given by

1/n
∑

I(xn+h) where

I(xn+h) =

{

1 if |x̂n+h− xn+h| > δ ,

0 if |x̂n+h− xn+h| ≤ δ ,

to compare modes. In this situation we consider δ =1 since we have integer values.

Table 2 shows the MSE, MAD and FPTN values from 10 one-step-ahead

predictions. Values of MSE(X̃n+h) are obtained considering the Bayesian pre-

dictors given by (2.8) (values of MSE(X̂n+h) are similar). Values of MAD and

FPTN were calculated, respectively, through medians and modes. The indices“C”

or “B” indicate which methodology is used (classical or Bayesian, respectively).
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Table 1: Point predictions considering two samples of size n = 190 with parameters

(λ = 1, α = 0.2, x190 = 0) and (λ = 3, α = 0.8, x190 = 16), respectively.

(λ = 1, α = 0.2; x190 = 0)

h x190+h jump
classical approach Bayesian approach

x̂190+h (x190+h− x̂190+h)
2 x̂190+h (x190+h− x̂190+h)

2

1 2 2 1.068 0.869 1.090 0.828

2 0 0 1.247 1.555 1.292 1.670

3 0 0 1.277 1.631 1.340 1.796

4 0 0 1.282 1.643 1.342 1.801

5 5 5 1.283 13.816 1.288 13.779

6 0 0 1.283 1.646 1.302 1.695

7 1 1 1.283 0.080 1.210 0.044

8 1 1 1.283 0.080 1.348 0.121

9 1 1 1.283 0.080 1.248 0.061

10 2 2 1.283 0.514 1.298 0.493

∞ 1.283

(λ = 3, α = 0.8; x190 = 16)

h x190+h jump
classical approach Bayesian approach

x̂190+h (x190+h− x̂190+h)
2 x̂190+h (x190+h− x̂190+h)

2

1 16 0 15.477 0.274 15.530 0.221

2 16 0 15.084 0.839 15.010 0.980

3 16 0 14.787 1.471 14.678 1.748

4 20 4 14.564 29.550 14.574 29.441

5 19 3 14.396 21.197 14.408 21.086

6 17 1 14.270 7.453 14.516 6.170

7 18 2 14.175 14.631 14.128 14.992

8 19 3 14.103 23.981 14.182 23.213

9 20 4 14.049 35.414 14.066 35.212

10 17 1 14.008 8.952 13.986 9.084

∞ 13.884

As we can see, when α = 0.8 Bayesian methodology provides smaller values

than classical methodology, so the Bayesian predictions seems to have a better

performance than classical predictions.

In order to study and compare the estimates given by the sample mean,

sample median and sample mode we use the minimum absolute percentual error

(MAPE), given by

1/H
H
∑

h=1

|X̂n+h−Xn+h|/Xn+h ,

where H represents the number of predictions realized. This criteria does not

benefit any measure (mean, median or mode) in particular. The results are
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Table 2: Values of MSE, MADE and FPTN considering 10 one-step-ahead predictions

for the model xt = α ◦ xt−1 + ǫt, ǫt ⌢ P(3) and sample sizes 40, 90 and 190.

α 0.2 0.8

n 40 90 190 40 90 190

MSE
X̂n+h,C 6.68 2.01 5.56 12.98 3.82 16.17

X̂n+h,B 6.46 1.93 6.06 5.22 3.05 3.57

MAD
m̂n+h,C 2.27 1.18 2.00 3.18 1.45 3.81

m̃n+h,B 2.00 1.18 2.05 1.82 1.27 1.68

FPTN
m̂on+h,C 0.45 0.45 0.45 0.73 0.55 1.00

m̃on+h,B 0.55 0.36 0.64 0.36 0.36 0.55

illustrated in Table 3 for three samples with sizes 40, 90 and 190 of the model

xt = α ◦xt−1+ ǫt, ǫt ⌢ P (3). MAPE minimum is always obtained with Bayesian

approach. Similar results are obtained for λ = 1.

Table 3: Values of MAPE considering 10 one-step-ahead predictions for the model

xt = α ◦ xt−1+ ǫt, ǫt ⌢ P(3) and sample sizes 40, 90 and 190. The indices “C”

or“B”indicate which methodology is used (classical or Bayesian, respectively).

α 0.2 0.8

n 40 90 190 40 90 190

X̂n+h,C 0.714 0.573 0.870 0.707 0.564 0.919

X̃n+h,B 0.178 0.137 0.260 0.110 0.109 0.0811

m̂n+h,C 0.652 0.588 0.631 0.606 0.561 0.831

m̃n+h,B 0.187 0.120 0.209 0.115 0.103 0.091

m̂on+h,C 0.619 0.464 0.929 0.625 0.506 0.831

m̃on+h,B 0.187 0.127 0.231 0.086 0.125 0.098

4.2. Interval prediction

Prediction intervals for future observations were calculated using expres-

sion (3.2) for classical methodology and Chen and Shao algorithm for Bayesian

methodology. The performance of the intervals (with 95% of confidence or cred-

ibility) obtained by each approach is measured by the amplitudes and coverage

probabilities, from 100 replicates. The simulation results for the case λ = 1, 3,

γ = 0.95 and n = 100, are presented in Tables 4 and 5 respectively.
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Table 4: Coverage probability estimates and mean amplitudes of the intervals for

the h-step-ahead future values, in INAR(1) model with n = 100 and λ = 1.

h

α = 0.2 α = 0.8

cov. prob. estimates mean amplitude cov. prob. estimates mean amplitude

classical Bayes. classical Bayes. classical Bayes. classical Bayes.

1 0.43 0.99 2.56 4.17 0.96 0.98 6.01 4.72

2 0.32 0.98 2.74 4.22 0.95 0.94 7.79 6.18

3 0.36 1.00 2.75 4.22 0.96 0.92 8.20 6.87

4 0.36 0.99 2.75 4.16 0.94 0.92 8.81 7.35

5 0.34 1.00 2.75 4.19 0.96 0.93 9.05 7.57

6 0.38 0.99 2.75 4.21 0.97 0.90 9.43 7.83

7 0.29 0.98 2.75 4.19 0.98 0.92 9.55 7.85

8 0.28 0.99 2.75 4.22 0.94 0.91 9.49 8.04

9 0.38 0.99 2.75 4.22 0.94 0.90 9.78 8.00

10 0.34 1.00 2.75 4.15 0.97 0.92 9.78 8.11

Table 5: Coverage probability estimates and mean amplitudes of the intervals for

the h-step-ahead future values, in INAR(1) model with n = 100 and λ = 3.

h

α = 0.2 α = 0.8

cov. prob. estimates mean amplitude cov. prob. estimates mean amplitude

classical Bayes. classical Bayes. classical Bayes. classical Bayes.

1 0.68 0.96 6.34 7.34 0.97 0.96 10.18 9.53

2 0.78 0.99 7.16 7.79 0.96 0.94 12.63 12.00

3 0.98 0.99 8.00 7.88 0.95 0.93 13.89 13.29

4 0.99 0.94 8.00 7.77 0.95 0.89 14.81 14.31

5 0.98 0.98 8.00 7.78 0.95 0.87 15.36 14.67

6 0.96 1.00 8.00 7.86 0.96 0.92 15.58 14.92

7 0.96 0.99 8.00 7.79 0.96 0.91 15.78 14.97

8 0.95 0.99 8.00 7.79 0.92 0.94 15.83 15.30

9 0.96 0.96 8.00 7.77 0.93 0.93 15.95 15.47

10 0.93 0.98 8.00 7.84 0.96 0.91 15.97 15.54

Tables 4 and 5 indicate that when α = 0.2 the Bayesian intervals have large

coverage probability, specially when λ = 1; it can be noted that, when h > 2

and for small values of α and λ the classic intervals have small amplitudes and

they coincide with those obtained from the asymptotic distribution. Moreover,

it is worthwhile to mention that when α ≥ 0.5 the mean amplitude of the pre-

diction intervals obtained by Bayesian methodology are lower than their classic

counterpart.
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5. ANALYSIS OF BURN CLAIMS DATA

We apply the proposed methodology to a data set analysed by Freeland

(1998) comprising 120 monthly counts of workers collecting Wage Loss Benefits

(WLB) for burn injuries. All the descriptive details of the data set can be found in

Freeland (1998) who concludes that PoINAR(1) is a plausible choice for modelling

the data. In order to evaluate and compare the different prediction methodolo-

gies, h-step ahead forecasts (h = 1, 2, 3, 4, 5, 6) are produced for the time period

from July to December 1994, for which we know the observed values. The point

forecasts based on the mean, median and mode and the observed values are pre-

sented in Table 6. In general, it can be noted that MAPE values of classic point

predictions are smaller than those of Bayesian predictions. This result is expected

in view of the simulation results presented in the last section since the estimated

value for alpha is 0.4.

Interval predictions for the period July to December 1994 are obtained using

the two approaches proposed given by (3.2). The intervals obtained, presented

in Table 6, are analogous, although the Bayesian have smaller width.

Table 6: h-step ahead predictions of monthly claims from July to December 1994.

h
year/

month

claims

of

point prediction interval prediction

classical Bayesian

classical Bayesian
x̂ m̂ m̂0 x̂ m̂ m̂0

1 94/07 11 7.89 8 7 7.67 7 7 (2.1,13.0) (3.0,13.1)

2 94/08 12 8.24 8 8 8.01 8 7 (2.0,14.0) (3.0,14.0)

3 94/09 11 8.38 8 8 8.14 8 7 (2.0,14.0) (3.0,14.0)

4 94/10 12 8.44 8 8 8.21 8 7 (2.0,15.0) (3.0,14.0)

5 94/11 7 8.46 8 8 8.22 8 7 (2.0,15.0) (3.0,14.0)

6 94/12 11 8.47 8 8 8.22 8 7 (2.0,15.0) (3.0,14.0)

MAPE 0.26 0.27 0.27 0.27 0.27 0.32

6. FINAL REMARKS

Forecasting low integer values of time series of counts remains an open

problem. Although conditional means do not preserve coherently the integer

nature of the data, it seems there is no advantage in using median or mode values

of the predictive distribution. Simulations indicate that the performance of the

different approaches depend on the parameters of the model and that Bayesian

methodology provides the best results when MAPE statistic is used.
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