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tors of such discrete models. A characterization of distributions by mixtures is also
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This article adopts a novel singular notation and representation. Singular represen-
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simpler to extend and generalize theoretical results and greatly facilitates numerical
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1. INTRODUCTION AND NOTATION

This article presents important properties of the distributions used for cat-

egorical data analysis. Regardless of the population size being known or un-

known, or the specific observational stopping rule, the Bernoulli Processes gen-

erates the sampling distributions considered. On the other hand, the Gamma

distribution generates the prior and posterior distributions obtained: Gamma,

Gamma-Poisson, Dirichlet, and Dirichlet-Multinomial. The Poisson Processes as

generator of sampling distributions is also considered.

The development of the theory in this article is self contained, seeking

a unified treatment of a large variety of problems, including finite and infinite

populations, contingency tables of arbitrary dimension, deficiently categorized

data, logistic regressions, etc. These models also present a way of introducing

non parametric solutions.

This article adopts a singular notation and representation, first used in

Pereira and Stern (2005). Singular representations are unusual in statistical

texts. Nevertheless, the singular notation makes it simpler to extend and gen-

eralize theoretical results and greatly facilitates numerical and computational

implementation.

The generation form of the discrete sampling distributions presented in

Section 2 is, in fact, a characterization method of such distributions. If one

recalls that all the distribution classes being mixed are complete classes and

are Blackwell sufficient for the Bernoulli processes, the mixing distributions are

unique. This characterization method is completely described in Basu and Pereira

(1983).

Section 9 describes the Reny–Aczel characterization of the Poisson distri-

bution. Although it could be thought as a de Finetti type characterization this

characterization is based on alternative requirements. While de Finetti charac-

terization is based on a permutable infinite 0-1 process, Reny–Aczek characteri-

zation is based on a homogeneous Markov process in a finite interval, generating

finite discrete Markov Chains. Using Reny–Aczel characterization, together with

Theorem 3.1, one can obtain a characterization of Multinomial distributions.

Section 7 describes the Dirichlet of Second Kind. In this section we also

show how to use a multivariate normal approximation to the logarithm of a

random vector distributed as Dirichlet of Second Kind, and a log-normal ap-

proximation to a Gamma distribution, see Aitchison and Shen (1980). In many

examples of the authors’ consulting practice these approximations proved to be

a powerful modeling tool, leading to efficient computational procedures.
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Let us first define some matrix notation. The operator f : s : t, to be read

from f to t with step s, indicates the vector
[
f, f +s, f +2s, ..., t

]
or the cor-

responding index domain. f : t is a short hand for f : 1 : t. Usually we write a

matrix, A, with subscript row index and superscript column index. Hence, Aj
i

is the element in the i-th row and j-th column of matrix A. Index vectors can

be used to build a matrix by extracting from a larger matrix a given sub-set of

rows and columns. For example, A
n/2:n
1:m/2 is the northeast block, i.e. the block with

the first rows and last columns, from A. Alternatively, we may write a matrix

with row and column indices in parenthesis. Hence, we may write the northeast

block as A(1 :m/2, n/2 :n). The next example shows a more general case of this

notation:

A =




11 12 13

21 22 23

31 32 33


 , r =

[
1 3

]
, s =

[
3 1 2

]
,

As
r = A(r, s) =

[
13 11 12

33 31 32

]
.

V > 0 is a positive definite matrix. The Diagonal operator, diag, if applied

to a square matrix, extracts the main diagonal as a vector, and if applied to

a vector, produces the corresponding diagonal matrix:

diag(A) =




A1
1

A2
2
.
.
.

An
n


 , diag(a) =




a1 0 ... 0

0 a2 ... 0

.

.

.
.
.
.

. . .
.
.
.

0 0 ... an


 .

A list of matrices can be indexed with left subscript or superscript indices.

In case of block matrices, these left indices indicate the row and column block

position, like in the following example:

A =




1
1A

2
1A ... s

1A
1
2A

2
2A ... s

2A
.
.
.

.

.

.
. . .

.

.

.
1
rA

2
rA ... s

rA


 .

Hence,
s
rA

j
i is the element in the i-th row and j-th column of the block situated

at the r-th block of rows and s-th block of columns of matrix A. Alternatively,

we may write block indices in braces, that is, we may write
s
rA

j
i as A{r, s}(i, j).

The Vec operator stacks the columns of the argument matrix in a single

vector. The Kronecker product, also known as direct or tensor product, is defined
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as follows:

Vec(U1 :n
) =




u1

u2

.

.

.

un


 , A⊗B =




A1
1B A2

1B ... An
1B

A1
2B A2

2B ... An
2B

.

.

.
.
.
.

. . .
.
.
.

A1
mB A2

mB ... An
mB


 .

We now introduce some concepts and notations related to the permutation

and partition of indices. Let 1 :m be an index domain or, in this article context,

a classification index. Let p = σ(1 :m) be a permutation of these indices. The

corresponding (Row) Permutation Matrix is

P = Ip =



Ip(1)

.

.

.

Ip(m)


 , hence , P




1

.

.

.

m


 =



p(1)

.

.

.

p(m)


 .

A permutation vector, p, and a termination vector, t, define a partition of

the m original classes in s super-classes:




p(1)

.

.

.

p
(
t(1)

)


 ,



p
(
t(1)+1

)
.
.
.

p
(
t(2)

)


 , ... ,



p
(
t(s−1) + 1

)
.
.
.

p
(
t(s)

)


 ,

where t(0) = 0 < t(1) < ... < t(s− 1) < t(s) = m .

We define the corresponding permutation and partition matrices, P and T , as

P = Ip(1 :m) =




1P

2P
.
.
.

sP


 , rP = Ip(t(r−1)+1 : t(r))

,

Tr = 1′
(rP ) and T =



T1
.
.
.

Ts


 .

These matrices facilitate writing functions of a given partition, like

• The class indices in the super-class r

rP (1 :m) = rP




1

.

.

.

m


 =



p
(
t(r−1) + 1

)
.
.
.

p
(
t(r)

)


 ;

• The number of classes in the super class r

Tr 1 = t(r) − t(r−1) ;
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• A sub-matrix with the row indices in super-class r

rP A =




Ap(t(r−1)+1)
.
.
.

Ap(t(r))


 ;

• The summation of the rows of a submatrix with row indices in super-

class r

Tr A = 1′
(rP A) ;

• The rows of a matrix, added over each super-class

T A =



T1A

.

.

.

TsA


 .

Note that a matrix T represents a partition of m-classes into s-super-classes

if T has dimension s×m, T j
h ∈ {0, 1} and T has orthogonal rows. The element T j

h

indicates if the class j ∈ 1 :m is in super-class h ∈ 1 : s.

We introduce the following notation for observation matrices, and respec-

tive summation vectors:

U =
[
u1, u2, ...

]
, U1 :n

=
[
u1, u2, ..., un

]
, xn

= U1 :n 1 =

∑n

j=1
uj .

The tilde accent indicates some form of normalization like, for example, x̃ =

(1/1′x)x.

Lemma 1.1. If u1, ..., un are i.i.d. random vectors,

x = U1 :n 1 =⇒ E(x) = nE(u1
) and Cov(x) = nCov(u1

) .

Proof: The first result is trivial. For the second result, we only have

to remember the transformation properties for the expectation and covariance

operators by a linear operation on their argument,

E(AY + b) = AE(Y ) + b , Cov(AY + b) = ACov(Y )A′ ,

and write

Cov(x) = Cov
(
U1 :n 1

)

= Cov

((
1′⊗ I

)
Vec
(
U1 :n

))
=
(
1′⊗ I

) (
I ⊗ Cov(u1

)
) (

1 ⊗ I
)

=
(
1′⊗ Cov(u1

)
) (

1 ⊗ I
)

= nCov(u1
) .
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2. THE BERNOULLI PROCESS

Let us consider a sequence of random vectors u1, u2, ... where, ∀ui
can

assume only two values

I1
=

[
1

0

]
or I2

=

[
0

1

]
, where I =

[
1 0

0 1

]
,

representing success or failure. That is, ui
can assume the value of any column

of the identity matrix, I. We say that ui
is of class k, c(ui

) = k, iff ui
= Ik

,

k ∈ [1, 2].

Also assume that (in your opinion), this sequence is exchangeable, that is,

if p =
[
p(1), p(2), ..., p(n)

]
is a permutation of [1, 2, ..., n], then, ∀n, p,

Pr
(
u1, ..., un

)
= Pr

(
up(1), ..., up(n)

)
.

Just from this exchangeability constraint, that can be interpreted as saying that

the index labels are non informative, de Finetti Theorem establishes the existence

of an unknown vector

θ ∈ Θ =

{
0 ≤ θ =

[
θ1
θ2

]
≤ 1

∣∣∣ 1′θ = 1

}

such that, conditionally on θ, u1, u2, ... are mutually independent, and the con-

ditional probability of Pr(ui
= Ik | θ) is θk, i.e.

(
u1 ∐ u2 ∐ ...

)∣∣ θ or

∞∐

i=1

ui | θ , and Pr
(
ui

= Ik | θ
)

= θk .

Vector θ is characterized as the limit of proportions

θ = lim
n→∞

1

n
xn , xn

= U1 :n 1 =

∑n

j=1
uj .

Conditionally on θ, the sequence u1, u2, ... receives the name of Bernoulli

process. As we shall see, many well known discrete distributions can be obtained

from transformations of this process.

The expectation and covariance (conditionally on θ) of any vector in the

sequence are:

• E(ui
) = θ ;

• Cov(ui
) = E

(
ui ⊗ (ui

)
′
)
− E(ui

) ⊗ E
(
(ui

)
′
)

= diag(θ) − θ ⊗ θ′ .

When the summation domain 1 :n is understood, we may use the relaxed

notation x instead of xn
. We also define the Delta operator, or “pointwise power
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product” between two vectors of same dimension: Given θ, and x, n× 1,

θ△x ≡
n∏

i=1

(θi)
xi .

A stopping rule, δ, establishes, for every n = 1, 2, ..., a decision of observing

(or not) un+1
, after the observations u1, ..., un

.

For a good understanding of this text, it is necessary to have a clear in-

terpretation of conditional expressions like xn |n or xn
2 |x

n
1 . In both cases we

are referring to a unknown vector, xn
, but with a different partial information.

In the first case, we know n, and therefore we know the sum of components,

xn
1 + xn

2 = n; however, we know neither component xn
1 nor xn

2 . In the second

case we only know the first component, of xn
, xn

1 , and do not know the second

component, xn
2 , obviously we also do not know the sum, n = xn

1 + xn
2 . Just pay

attention: We list what we know to the right of the bar and, (unless we have

some additional information) everything that can not be deduced from this list

is unknown.

The first distribution we are going to discuss is the Binomial. Let δ(n) be

the stopping rule where n is the pre-established number of observations. The

(conditional) probability of the observation sequence U1 :n
is

Pr
(
U1 :n | θ

)
= θ△xn .

The summation vector, xn
, has Binomial distribution with parameters

n and θ, and we write xn | [n, θ] ∼ Bi(n, θ). When n (or δ(n)) is implicit in

the context we may write x | θ instead of xn | [n, θ]. The Binomial distribution

has the following expression:

Pr
(
xn |n, θ

)
=

(
n
xn

)(
θ△xn

)

where

(
n
x

)
≡

Γ(n+ 1)

Γ(x1 + 1) Γ(x2 + 1)
=

n!

x1! x2!
and n = 1′x .

It is not hard to check that expectation vector and the covariance matrix

of xn | [n, θ] have the following expressions:

E(xn
) = nθ and Cov(xn

) = n (θ△1)

[
1 −1

−1 1

]
.

The second distribution we discuss is the Negative Binomial. Let δ(xn
1 ) be

the rule establishing to stop at observation un
when obtaining a pre-established
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number of xn
1 successes. The random variable xn

2 , the number of failures he

have when we obtain the required xn
1 successes, is called a Negative Binomial

with parameters xn
1 and θ. It is not hard to prove that the Negative Binomial

distribution xn
2 | [x

n
1 , θ] ∼ NB(xn

1 , θ), has expression, ∀xn
2 ∈ N,

Pr
(
xn |xn

1 , θ
)

=
xn

1

n

(
n
xn

)(
θ△xn

)
= θ1 Pr

(
(xn−I1

) | (n−1), θ
)
.

Note that, from the definition of this distribution, xn
1 is a positive integer

number. Nevertheless, we can extend the definition above for any real positive

value a, and still obtain a probability function. For this, we use

∞∑

j=0

Γ(a+ j)

Γ(a) j!
(1 − π)

j
= π−a , ∀ a ∈ [0,∞[ and π ∈ ]0, 1[ .

It is not hard to check the last equation, as well as the following expressions for

the expectation and variance of xn
2 :

E
(
xn

2 |x
n
1 , θ
)

=
xn

1 θ2
θ1

and Var
(
xn

2 |x
n
1 , θ
)

=
xn

1 θ2
(θ1)2

.

In the special case of δ(xn
1 = 1), the Negative Binomial distribution is also

known as the Geometric distribution with parameter θ. If a random variables are

independent and identically distributed (i.i.d.) as a geometric distribution with

parameter θ, then the sum of these variables has Negative Binomial distribution

with parameters a and θ.

The third distribution studied in this article is the Hypergeometric. Going

back to the original sequence, u1, u2, ..., assume that a first observer knows the

first N observations, while a second observer knows only a subsequence of n<N

of these observations. Since the original sequence, u1, u2, ..., is exchangeable, we

can assume, without loss of generality, that the subsequence known to the second

observer is the subsequence of the first n observations, u1, ..., un
. Using de Finetti

theorem, we have that xn
and xN−xn

= Un+1 :N1 are conditionally independent,

given θ. That is, xn ∐ (xN− xn
) | θ. Moreover, we can write

xn | [n, θ] ∼ Bi(n, θ) , xN | [N, θ] ∼ Bi(N, θ) and

(xN− xn
)
∣∣ [(N− n), θ

]
∼ Bi(N− n, θ) .

Our goal is to find the distribution function of xn |xN
. Note that xN

is

sufficient for U1 :N
given θ, and xn

is sufficient for U1 :n
. Moreover xn | [n, xN

]

has the same distribution of xn | [n, xN , θ]. Using the basic rules of probability
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calculus and the properties above, we have that

Pr
(
xn |n, xN , θ

)
=

Pr
(
xn, xN |n,N, θ

)

Pr
(
xN |n,N, θ

)

=
Pr
(
xn, (xN− xn

) |n,N, θ
)

Pr
(
xN |n,N, θ

)

=
Pr
(
xn |n,N, θ

)
Pr
(
xN− xn |n,N, θ

)

Pr
(
xN |n,N, θ

) .

Hence, xn | [n, xN
] has distribution function

Pr
(
xn |n, xN

)
=

(
n
xn

) (
N − n
xN − xn

)

(
N
xN

)

where 0 ≤ xn ≤ xN ≤ N 1 , 1′xn
= n , 1′xN

= N .

This is the vector representation of the Hypergeometric probability distribution:

xn | [n, xN
] ∼ Hy(n,N, xN

) .

It is not hard to check the following expressions for the expectation and

(conditional) covariance of xn | [n,N, xN
], and covariance of ui

and uj
, i, j ≤ n:

E(xn
) =

n

N
xN

and Cov(xn
) =

n(N− n)

(N−1)

(
xN△1

) [ 1 −1

−1 1

]
,

Cov(ui, uj |xN
) =

1

(N−1)N2

(
xN△1

) [−1 1

1 −1

]
.

We finish this section presenting the derivation of the Beta-Binomial distri-

bution. Let us assume that the first observer observed xn
2 failures, until observing

a pre-established number of xn
1 successes. A second observer makes more obser-

vations, observing xN
2 failures until completing the pre-established number of xN

1

successes, xn
1 < xN

1 .

Since xn
1 and xN

1 are pre-established, we can write

xN
2 | θ ∼ NB(xN

1 , θ) , xn
2 | θ ∼ NB(xn

1 , θ) ,

(xN
2 − xn

2 ) | θ ∼ NB(xN
1 − xn

1 , θ) and xn
2 ∐ (xN

2 − xn
2 ) | θ .

As before, our goal is to describe the distribution of xn
2 | [x

n
1 , x

N
]. If one no-

tices that [xn
1 , x

N
] is sufficient for [xn, (xN− xn

)], with respect to θ, the problem
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becomes similar to the Hypergeometric case, and one can obtain

Pr
(
xn

2 |x
n
1 , x

N
)

=
xN

2 ! Γ(xN
1 )

Γ(xN
2 + xN

1 )

Γ(xn
2 + xn

1 )

xn
2 ! Γ(xn

1 )

Γ
(
xN

2 − xn
2 + xN

1 − xn
1

)

(xN
2 − xn

2 )! Γ(xN
1 − xn

1 )
,

xn
2 ∈

{
0, 1, ..., xN

2

}
.

This is the distribution function of a random variable called Beta Binomial with

parameters xn
1 and xN

:

xn
2 | (x

n
1 , x

N
) ∼ BB(xn

1 , x
N

) .

The properties of this distribution will be studied in the general case of the

Dirichlet-Multinomial, in the following sections.

Generalized categories for k > 2 can be represented by the orthonormal

base I1, I2, ...Ik
, i.e., the columns of the k-dimensional identity matrix. The

Multinomial and Hypergeometric multivariate distributions, presented in the next

sections, are distributions derived of this basic generalization.

3. MULTINOMIAL DISTRIBUTION

Let ui
, i= 1, 2, ..., be random vectors with possible results in the set of

columns of the m-dimensional identity matrix, Ik
, k ∈ 1 :m. We say that ui

is of

class k, c(ui
) = k, iff ui

= Ik
.

Let θ ∈ [0, 1]
m

be the vector of probabilities for an observation of class k

in a m-variate Bernoulli process, i.e.,

Pr
(
ui

= Ik | θ
)

= θk , 0 ≤ θ ≤ 1 , 1′θ = 1 .

Like in the last section, let U

U = [u1, u2, ...] and xn
= U1 :n 1 .

Definition 3.1. If the knowledge of θ makes the vectors ui
independent,

then the (conditional) distribution of xn
given θ is the Multinomial distribution

of order m with parameters n and θ, given by

Pr
(
xn |n, θ

)
=

(
n
xn

)
(θ△xn

)

where

(
n
x

)
≡

Γ(n+1)

Γ(x1+1) · · · Γ(xm +1)
=

n!

x1! · · · xm!
and n = 1′x .
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We represent the m-Multinomial distribution writing

xn | [n, θ] ∼ Mnm(n, θ) .

When m = 2, we have the binomial case.

Let us now examine some properties of the Multinomial distribution.

Lemma 3.1. If x|θ ∼ Mnm(n, θ) then the (conditional) expectation and

covariance of x are

E(x) = n θ and Cov(x) = n
(
diag(θ) − θ ⊗ θ′

)
.

Proof: Analogous to the binomial case.

The next result presents a characterization of the Multinomial in terms of

the Poisson distribution.

Lemma 3.2. Reproductive property of the Poisson distribution.

xi ∼ Ps(λi) =⇒ 1′x |λ ∼ Ps(1′λ) .

That is, the sum of (independent) Poisson variates is also Poisson.

Theorem 3.1. Characterization of the Multinomial by the Poisson.

Let x = [x1, ..., xm]
′ be a vector with independent Poisson distributed

components with parameters in the known vector λ = [λ1, ..., λm]
′ > 0. Let n be

a positive integer. Then, given λ,

x | [n = 1′x, λ] ∼ Mnm(n, θ) where θ =
1

1′λ
λ .

Proof: The joint distribution of x, given λ is

Pr(x|λ) =

m∏

k=1

e−λkλxk

i

xk!
.

Using the Poisson reproductive property,

Pr
(
x |1′x = n, λ

)
=

Pr
(
1′x = n ∧ x |λ

)

Pr
(
1′x = n |λ

) = δ(n= 1′x)
Pr(x |λ)

Pr
(
1′x = n |λ

) .

The following results state important properties of the Multinomial distri-

bution. The proof of these properties is simple, using the characterization of the

Multinomial by the Poisson, and the Poisson reproductive property.
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Theorem 3.2. Multinomial Class Partition.

Let 1 :m be the index domain for the classes of a order m Multinomial

distribution. Let T be a partition matrix breaking the m-classes into s-super-

classes. Let x ∼ Mnm(n, θ), then y = Tx ∼ Mns(n, Tθ).

Theorem 3.3. Multinomial Conditioning on the Partial Sum.

If x ∼ Mnm(n, θ), then the distribution of part of the vector x conditioned

on its sum has Multinomial distribution, having as parameter the corresponding

part of the original (normalized) parameters. In more detail, conditioning on the

t first components, we have:

x1 : t | (1
′x1 : t = j) ∼ Mnt

(
j ,

1

1′θ1 : t
θ1 : t

)
where 0 ≤ j ≤ n .

Theorem 3.4. Multinomial-Binomial Decomposition.

Using the last two theorems (3.2 and 3.3), if x ∼ Mnm(n, θ),

Pr(x|n, θ) =

n∑

j=0

Pr

(
x1 : t | j ,

1

1′θ1 : t
θ1 : t

)

· Pr

(
xt+1 :m | (n− j) ,

1

1′θt+1 :m
θt+1 :m

)

· Pr

([
j

(n− j)

]∣∣∣n,
[

1′θ1 : t

1′θt+1 :m

])
.

Analogously, we could write the Multinomial-Trinomial decomposition

for a three-partition of the class indices in three super-classes. More generally,

we could also write the m-nomial-s-nomial decomposition for the partition of the

m class indices into s super-classes.

4. MULTIVARIATE HYPERGEOMETRIC DISTRIBUTION

In the second section we have shown how an Hypergeometric variate can

be generated from a Bernoulli process. The natural generalization of this result

is obtained considering a Multinomial process. As in the last section, we say that

ui
is of class k, c(ui

) = k, iff ui
= Ik

.

We take a sample of size n from a finite population of size N (> n), that

is partitioned into m classes. The population frequencies (number of elements

in each category) are represented by [ψ1, ..., ψm], hence N= 1′ψ. Based on the

sample, we want to make an inference on ψ. xk is the sample frequency of

class k.
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One way of describing this problem is to consider an urn with N balls of

m different colors, indexed by 1, ...,m. ψk is the number of balls of color k.

Assume that the N balls are separated into two smaller boxes, so that box 1 has

n balls and box 2 has the remaining N−n balls. The statistician can observe the

composition of box 1, represented by vector x of sample frequencies. The quantity

of interest for the statistician is the vector ψ− x representing the composition of

box 2.

As in the bivariate case, we assume that U1 :N
is a finite sub-sequence in

an exchangeable process and, therefore, any sub-sequence extracted from U1 :N

has the same distribution of U1 :n
. Hence, x = U1 :n1 has the same distribution

of the frequency vector for a sample of size n.

As in the bivariate case, our objective is to find the distribution of x|ψ.

Again, using de Finetti theorem, there is a vector 0 ≤ θ ≤ 1, 1′θ = 1, such that∐N
j=0 u

j | θ and Pr
(
c(uj

) = k
)

= θk .

Theorem 4.1. As in the Multinomial case, the following results follow:

• ψ |θ ∼ Mnm(N, θ) ;

• x|θ ∼ Mnm(n, θ) ;

• (ψ−x) | θ ∼ Mnm

(
(N− n), θ

)
;

• (ψ−x) ∐ x|θ .

Using the results of the last section and following the same steps as in the

Hy2 case in the first section, we obtain the following expression for m-variate

Hypergeometric distribution, xn | [n,N, ψ] ∼ Hym(n,N, ψ) :

Pr
(
xn |n, ψ

)
=

(
n
xn

) (
N− n
ψ − xn

)

(
N
ψ

)

where 0 ≤ xn ≤ ψ ≤ N 1 , 1′xn
= n, 1′ψ = N .

This is the vector representation of the Hypergeometric probability distribution:

xn | [n, xN
] ∼ Hy(n,N, xN

) .

Alternatively, we can write the more usual formula,

Pr(x |ψ) =

(
ψ1

x1

)(
ψ2

x2

)
· · ·

(
ψm

xm

)

(
N
n

) .



Special Characterizations of Standard Discrete Models 213

Theorem 4.2. The expectation and covariance of a random vector with

Hypergeometric distribution, x ∼ Hym(n,N, ψ), are:

E(x) = nψ̃ , Cov(x) = n
N− n

N−1

(
diag(ψ̃) − ψ̃ ⊗ ψ̃′

)
where ψ̃ =

1

N
ψ .

Proof: Use that

Cov(xn
) = n Cov(u1

) + n(n−1) Cov(u1, u2
) ,

Cov(u1
) = E

(
u1⊗ (u1

)
′
)
− E(u1

) ⊗ E(u1
)
′

= diag(ψ̃) − ψ̃ ⊗ ψ̃′

Cov(u1, u2
) = E

(
u1⊗ (u2

)
′
)
− E(u1

) ⊗ E(u2
)
′ .

The second term of the last two equations are equal, and the first term of the

last equation is

E(u1
i u

2
j ) =





ψi

N

ψi −1

N−1
if i = j ,

ψi

N

ψj

N−1
if i 6= j .

Algebraic manipulation yields the result.

Note that, as in the order 2 case, the diagonal elements of Cov(u1
) are

positive, while the diagonal elements of Cov(u1, u2
) are negative. In the off

diagonal elements, the signs are reversed.

5. DIRICHLET DISTRIBUTION

In the second section we presented the multinomial distribution, Mnm(n, θ).

In this section we present the Dirichlet distribution for the parameter θ. Let us

first recall the univariate Poisson and Gamma distributions.

A random variable has Gamma distribution, x | [a, b] ∼ G(a, b), a, b > 0,

if its distribution is continuous with density

f(x|a, b) =
ba

Γ(a)
xa−1

exp(−bx) , x > 0 .

The expectation and variance of this variate are

E(x) =
a

b
and Var(x) =

a

b2
.

Lemma 5.1. Reproductive property for the Gamma distribution.

If n independent random variables xi |ai, b ∼ G(ai, b), then

1′x ∼ G(1′a, b) .
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Lemma 5.2. The Gamma distribution is conjugate to the Poisson distri-

bution.

Proof: If y |λ ∼ Ps(λ) and λ has prior λ|a, b ∼ G(a, b), then

f(λ|y, a, b) ∝ L(λ|y) f(λ) =

= exp(−λ)
λy

y!

ba

Γ(a)
λa−1

exp(−bλ) ∝ λy+a−1
exp
(
−(b+1)λ

)
.

That is, the posterior distribution of λ is Gamma with parameters

[a+ y, b+1].

Definition 5.1. Dirichlet distribution.

A random vector

y ∈ Sm−1 ≡
{
y ∈ Rm | 0 ≤ y ≤ 1 ∧ 1′y = 1

}

has Dirichlet distribution of order m with positive a ∈ Rm
if its density is

Pr(y |a) =
y△ (a−1)

B(a)
.

Note that Sm−1, the m−1 dimensional Simplex, is the region of Rm
subject

to the “constraint”, 1′y = 1. Hence, a point in the Simplex has only m−1

“degrees of freedom”. In this sense we say that the Dirichlet distribution has a

“singular” representation. It is possible to give a non-singular representation to

the distribution [y1, ..., ym−1]
′
, known as the Multivariate Beta distribution, but

at the cost of obtaining a convoluted algebraic formulation that also loses the

natural geometric interpretation of the singular form.

The normalization factor for the Dirichlet distribution is

B(a) ≡

∫

y∈Sm−1

(
y△ (a−1)

)
dy .

Lemma 5.3. Beta function.

The normalization factor for the Dirichlet distribution defined above is the

Beta function, defined as

B(a) =

∏m
k=1 Γ(ak)

Γ(1′a)
.

The proof is given at the end of this section.
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Theorem 5.1. Dirichlet as Conjugate of the Multinomial.

If θ ∼ Dim(a) and x|θ ∼ Mnm(n, θ) then

θ |x ∼ Dim(a+ x) .

Proof: We only have to remember that the Multinomial likelihood is pro-

portional to θ△x, and that a Dirichlet prior is proportional to θ△ (a−1). Hence,

the posterior is proportional to θ△ (x+ a−1). At the other hand, B(a+ x) is

the normalization factor, i.e., equal to the integral on θ of θ△ (x+ a−1), and so

we have a Dirichlet density function, as defined above.

Theorem 5.2. Dirichlet Moments.

If θ ∼ Dim(a) and p ∈ Nm, then

E(θ△ p) =
B(a+ p)

B(a)
.

Proof:
∫

Θ
(θ△ p) f(θ |a) dθ =

1

B(a)

∫

Θ
(θ△ p)

(
θ△ (a−1)

)
dθ

=
1

B(a)

∫

Θ

(
θ△ (a+ p−1)

)
dθ =

B(a+ p)

B(a)
.

Choosing the exponents, p, appropriately, we have

Corollary 5.1. If θ ∼ Dim(a), then

E(θ) = ã ≡
1

1′a
a ,

Cov(θ) =
1

1′a+ 1

(
diag(ã) − ã⊗ ã′

)
.

Theorem 5.3. Characterization of the Dirichlet by the Gamma.

Let the components of the random vector x ∈ Rm be independent variables

with distribution G(ak, b). Then, the normalized vector

y =
1

1′x
x ∼ Dim(a) , 1′x ∼ Ga(1′a) and y ∐ 1′x .

Proof: Consider the normalization

y =
1

t
x , t = 1′x , x = t y ,
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as a transformation of variables. Note that one of the new variables, say

ym ≡ t(1 − y1 · · · − ym−1), becomes redundant.

The Jacobian matrix of this transformation is

J =
∂ (x1, x2, ..., xm−1, xm)

∂ (y1, y2, ..., ym−1, t)
=




t 0 · · · 0 y1

0 t · · · 0 y2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · t ym−1

−t −t · · · −t 1 − y1 · · · − ym−1



.

By elementary operations that add all rows to the last one, we obtain the

LU factorization of the Jacobian matrix, J = LU , where

L =




1 0 · · · 0 0

0 1 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · 1 0

−1 −1 · · · −1 1




and U =




t 0 · · · 0 y1

0 t · · · 0 y2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · t ym−1

0 0 · · · 0 1



.

A triangular matrix determinant is equal to the product of the elements in its

main diagonal, hence |J | = |L| |U | = 1 tm−1
.

At the other hand, the joint distribution of x is

f(x) =

m∏

k=1

Ga(xk |ak, b) =

m∏

k=1

bak

Γ(ak)
e−bxk(xk)

ak−1

and the joint distribution in the new system of coordinates is

g([y, t]) = |J | f
(
x−1

([y, t])
)

= tm−1
m∏

k=1

bak

Γ(ak)
e−bxk(xk)

ak−1
= tm−1

m∏

k=1

bak

Γ(ak)
e−btyk(tyk)

ak−1

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
b1

′

a e−bt t1
′

a−m tm−1
=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
b1

′

a e−bt t1
′

a−1 .

Hence, the marginal distribution of y = [y1, ..., yk]
′
is

g(y) =

∫ ∞

t=0
g([y, t]) dt

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

) ∫ ∞

t=0
b1

′

a e−bt t1
′

a−1 dt

=

(
m∏

k=1

(yk)
ak−1

Γ(ak)

)
Γ(1′a) =

y△ (a−1)

B(a)
.

In the last passage, we have replaced the integral by the normalization

factor of a Gamma density, Ga(1′a, b). Hence, we obtain a density proportional

to y△ (a−1), i.e., a Dirichlet.
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In the last passage we also obtain the Dirichlet normalization factor, prov-

ing the Beta function lemma.

Lemma 5.4. Bipartition of Indices for the Dirichlet.

Let 1: t, t+1:m be a bipartition of the class index domain, 1:m, of an

order m Dirichlet, in two super-classes. Let y ∼ Dim(a), and

z1
=

1

1′y1 : t
y1 : t , z2

=
1

1′yt+1 :m
yt+1 :m , w =

[
1′y1 : t

1′yt+1 :m

]
.

We then have z1 ∐ z2 ∐ w and

z1 ∼ Dit(a1 : t) , z2 ∼ Dim−t(at+1 :m) and w ∼ Di2

([
1′a1 : t

1′at+1 :m

])
.

Proof: From the Dirichlet characterization by the Gamma we can imagine

that the vector y is built by normalizing of a vector x, as follows:

y =
1

1′x
x , xk ∼ Ga(ak, b) ,

m∐

k=1

xk .

Considering separately each one of the super-classes, we build the vectors z1
and

z2
that are distributed as

z1
=

1

1′y1 : t
y1 : t =

1

1′x1 : t
x1 : t ∼ Dit(a1 : t) ,

z2
=

1

1′yt+1 :m
yt+1 :m =

1

1′xt+1 :m
xt+1 :m ∼ Dim−t(at+1 :m) .

z1 ∐ z2
, that are in turn independent of the partial sums

1′x1 : t ∼ Ga(1′a1 : t, b) and 1′xt+1 :m ∼ Ga(1′at+1 :m, b) .

Using again the theorem characterizing the Dirichlet by the Gamma distri-

bution for these two Gamma variates, we obtain the result.

We can generalize this result for any partition of the set of classes, as

follows. If y ∼ Dim(a) and T is a s-partition of the m classes, the intra and extra

super-class distributions are independent Dirichlets, as follows:

zr
=

1

Try
rPy ∼ DiTr1(rPa) ,

w = Ty ∼ Dis(Ta) .
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6. DIRICHLET-MULTINOMIAL

We say that a random vector x ∈ Nn |1′x = n has Dirichlet-Multinomial

(DM) distribution with parameters n and a ∈ Rm
, iff

Pr(x|n, a) =
B(a+ x)

B(a)

(
n
x

)
=

B(a+ x)

B(a)B(x)

1

x△1
.

Theorem 6.1. Characterization of the DM as a Dirichlet mixture of

Multinomials.

If θ ∼ Dim(a) and x|θ ∼ Mn(n, θ) then x | [n, a] ∼ DMm(n, a) .

Proof: The joint distribution of θ, x is proportional to θ△ (a+ x− 1),

which integrated on θ is B(a+ x). Hence, multiplying by the joint distribution

constants, we have the marginal for x, Q.E.D. Therefore, we have also proved

that the function DM is normalized, that is

Pr(x) =

∫

θ∈Sm−1

(
n
x

)
(θ△x)

1

B(a)
θ△ (a−1) dθ

=
1

B(a)

(
n
x

)∫

θ∈Sm−1

(
θ△ (x+a−1)

)
dθ =

B(x+ a)

B(a)

(
n
x

)
.

Theorem 6.2. Characterization of the DM by m Negative Binomials.

Let a ∈ Nm
+ , and x ∈ Nm, be a vector whose components are independent

random variables, ak ∼ NB(ak, θ). Then

x | [1′x= n, a] ∼ DMm(n, a) .

Proof:

Pr(x|θ, a) =

m∏

k=1

(
ak + xk − 1

xk

)
θak(1− θ)xk ,

Pr(1′x|θ, a) =

(
1′a+ 1′x− 1

1′x

)
θ1

′

a
(1− θ)1

′

a .

Then,

Pr
(
x |1′x = n, θ, a

)
=

Pr(x|a, θ)

Pr(1′x = n | θ)
=

∏m
k=1

(
ak + xk − 1

xk

)

(
1′a+ 1′x− 1

1′x

) .
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Hence,

Pr
(
x |1′x = n, θ, a

)
= Pr

(
x |1′x = n, a

)

=

m∏

k=1

Γ(ak + xk)

x! Γ(ak)

/
Γ(1′a+ n)

Γ(1′a) n!
=

B(a+ x)

B(a)

(
n
x

)
.

Theorem 6.3. The DM as Pseudo-Conjugate for the Hypergeometric.

If x ∼ Hym(n,N, ψ) and ψ ∼ DMm(N, a) then (ψ−x) |x ∼ DMm(N−n, a) .

Proof: Using the properties of the Hypergeometric already presented, we

have the independence relation, (ψ − x) ∐ x|θ. We can therefore use the Multi-

nomial sample x|θ for updating the prior and obtain the posterior

θ |x ∼ Dim(a+ x) .

Hence, the distribution of the non sampled pat of the population, ψ−x, given the

sample x, is a mixture of (ψ−x)θ by the posterior for θ. By the characterization

of the DM as a mixture of Multinomials by a Dirichlet, the theorem follows, i.e.,

(ψ − x) | [θ, x] ∼ (ψ − x) | θ ∼ Mnm(N− n, θ)

θ |x ∼ Dim(a+ x)

}
=⇒

=⇒ (ψ − x) |x ∼ Dim(N− n, a+ x) .

Lemma 6.1. DM Expectation and Covariance.

If x ∼ DMm(n, a) then

E(x) = n ã ≡
1

1′a
a ,

Cov(x) =
n(n+ 1′a)

1′a+ 1

(
diag(ã) − ã⊗ ã′

)
.

Proof:

E(x) = Eθ

(
Ex(x|θ)

)
= Eθ(nθ) = nã ;

E(x⊗ x′) = Eθ

(
Ex(x⊗ x′ | θ)

)

= Eθ

(
E(x|θ) ⊗ E(x|θ)′ + Cov(x|θ)

)

= Eθ

(
n
(
diag(θ) − θ ⊗ θ′

)
+ n2θ ⊗ θ′

)

= nEθ

(
diag(θ)

)
+ n(n−1) Eθ(θ⊗θ

′
)

= n diag(ã) + n(n−1)

(
E(θ) ⊗ E(θ)′ + Cov(θ)

)

= n diag(ã) + n(n−1)

(
ã⊗ ã′ +

1

1′a+1

(
diag(ã) − ã⊗ ã′

))

= n diag(ã) + n(n−1)

(
1

1′a+1
diag(ã) +

1′a

1′a+1
ã⊗ ã′

)
;
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Cov(x) = E(x⊗x′) − E(x) ⊗ E(x)′ = E(x⊗x′) − n2 ã⊗ ã′

=

(
n+

n(n−1)

1′a+1

)
diag(ã) +

(
n(n−1)

1′a

1′a+1
− n2

)
ã⊗ ã′

=
n(n+ 1′a)

1′a+1

(
diag(ã) − ã⊗ ã′

)
.

Theorem 6.4. DM Class Bipartition.

Let 1: t, t+1:m a bipartition of the index domain for the classes of an

order m DM, 1:m, in two super-classes. Then, the following conditions (i) to

(iii) are equivalent to condition (iv):

(i) x1:t ∐ xt+1:m |n1 = 1′x1:t ;

(ii-1) x1:t |n1 = 1′x1;t ∼ DMt(n1, a1:t) ;

(ii-2) xt+1:m |n2 = 1′xt+1:m ∼ DMm−t(n2, at+1:m) ;

(iii)

[
n1

n2

]
∼ DM2

(
n,

[
1′a1:t

1′at+1:m

])
;

(iv) x ∼ DMm(n, a) .

Proof: We only have to show that the joint distribution can be factored in

this form. By the DM characterization as a mixture, we can write it as Dirichlet

mixture of Multinomials. By the bipartition theorems, we can factor both, the

Multinomials and the Dirichlet, so the theorem follows.

7. DIRICHLET OF THE SECOND KIND

Consider y ∼ Dim+1(a). The vector z = (1/ym+1)y1 :m has Dirichlet of the

Second Kind (D2K) distribution.

Theorem 7.1. Characterization of D2K by the Gamma distribution.

Using the characterization of the Dirichlet by the Gamma, we can write

the D2K variate as a function of m+1 independent Gamma variates,

z1 :m ∼ (1/xm+1)x1 :m where xk ∼ Ga(ak, b) .

Similar to what we did for the Dirichlet (of the first kind), we can write

the D2K distribution and its moments as:

f(z |a) =
z△ (a1 :m−1)

(1 + 1′z)1
′

a B(a)
,

E(z) = e = (1/am+1) a1 :m ,

Cov(z) =
1

am+1 − 2

(
diag(e) + e⊗ e′

)
.
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The logarithm of a Gamma variate is well approximated by a Normal vari-

ate, see Aitchison and Shen (1980). This approximation is the key to several

efficient computational procedures, and motivates the computation of the first

two moments of the log-D2K distribution. For that, we use the Digamma, ψ( ),

and Trigamma function, ψ′
( ), defined as:

ψ(a) =
d

da
ln Γ(a) =

Γ
′
(a)

Γ(a)
, ψ′

(a) =
d

da
ψ(a) .

Lemma 7.1. The expectation and covariance of a log-D2K variate are:

E
(
log(z)

)
= ψ(a1 :m) − ψ(am+1)1 ,

Cov
(
log(z)

)
= diag

(
ψ′

(a1 :m) + ψ′
(am+1)

)
1 ⊗ 1′ .

Proof: Consider a Gamma variate, x ∼ G(a, 1):

1 =

∫ ∞

0
f(x) dx =

∫ ∞

0

1

Γ(a)
xa−1

exp(−x) dx .

Taking the derivative with respect to parameter a, we have

0 =

∫ ∞

0
ln(x)xa−1 exp(−x)

Γ(a)
dx −

Γ
′
(a)

Γ2(a)
Γ(a) = E

(
ln(x)

)
− ψ(a) .

Taking the derivative with respect to parameter a a second time,

ψ′
(a) =

d

da
E
(
ln(x)

)
=

d

da

∫ ∞

0

ln(x)

Γ(a)
xa−1

exp(−x) dx

=

∫ ∞

0
ln(x)2 xa−1 exp(−x)

Γ(a)
dx −

Γ
′
(a)

Γ(a)
E
(
ln(x)

)

= E
(
ln(x)2

)
− E

(
ln(x)

)2
= Var

(
ln(x)

)
.

The lemma follows from the D2K characterization by the Gamma.

8. EXAMPLES

Example 8.1. Let A,B be two attributes, each one of them present or

absent in the elements of a population. Then each element of this population can

be classified in exactly one of 2
2
= 4 categories:

A B k Ik

present present 1 [1, 0, 0, 0]
′

present absent 2 [0, 1, 0, 0]
′

absent present 3 [0, 0, 1, 0]
′

absent absent 4 [0, 0, 0, 1]
′
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According to the notation above, we can write x|n, θ ∼ Mn4(n, θ).

If θ = [0.35, 0.20, 0.30, 0.15] and n = 10, then

Pr
(
x10 |n, θ

)
=

(
10

x10

)
(θ△x10

) .

Hence, in order to compute the probability of x = [1, 2, 3, 4]
′
given θ, we use the

expression above, obtaining

Pr







1

2

3

4




∣∣∣∣∣




0.35

0.20

0.30

0.15





 = 0.000888 .

Example 8.2. If X |θ ∼ Mn3(10, θ), θ = [0.20, 0.30, 0.15], one can con-

clude, using the result above, that

E(X) = (2, 3, 1.5) ,

while the covariance matrix is

Σ =




1.6 −0.6 −0.3
−0.6 2.1 −0.45

−0.3 −0.45 1.28


 .

Example 8.3. Assume thatX|θ ∼ Mn3(10, θ), with θ = [0.20, 0.30, 0.15],

as in Example 2. Let us take A0 = {0, 1}, A1 = {2, 3}. Then,

∑

A1

Xi |θ = X2 +X3 | θ ∼ Mn1(10, θ2 +θ3) ,

or

X2 +X3 | θ ∼ Mn1(10, 0.45) .

Analogously,

X0 +X1 | θ ∼ Mn1(10, 0.55) ,

X1 +X3 | θ ∼ Mn1(10, 0.35) ,

X2 | θ ∼ Mn1(10, 0.30) .

Note that, in general, if X|θ ∼ Mnk(n, θ), then Xi | θ ∼ Mn1(n, θi), for

i = 1, ..., k.

Example 8.4. 3×3 Contingency Tables.

Assume that X | θ ∼ Mn8(n, θ), as in a 3×3 Contingency Tables:
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x11 x12 x13 x1•

x21 x22 x23 x2•

x31 x32 x33 x3•

x•1 x•2 x•3 n

Applying Theorem 3.2 we get

(X1•, X2•) | θ ∼ Mn2(n, θ
′
) , θ′ = (θ1•, θ2•) , θ′0 = θ3 .

This result tell us that

(Xi1, Xi2, Xi3) | θ ∼ Mn3(n, θ
′
i) ,

with

θ′i = (θi1, θi2, θi3) , θ′0i = 1− θi• , i = 1, 2, 3 .

We can now apply Theorem 3.3 to obtain the probability distribution of each row

of the contingency table, conditioned on its sum, or conditioned on the sum of

the other rows. We have

(Xi1, Xi2) |xi• , θ ∼ Mn2(xi•, θ
′
i)

with

θ′i =
(θil, θi2)

θi•
, θ′0i =

θi3

θi•
.

The next result expresses the distribution of X | θ in term of the conditional

distributions, of each row of the table, in its sum, and in term of the distribution

of these sums.

Proposition 8.1. If X | θ ∼ Mnr2−1(n, θ), as in an r×r, contingency

table, then P (X | θ) can be written as

P (X | θ) =

[
r∏

i=1

P
(
Xi1, ..., Xi,r−1 |xi• , θ

)
]
P
(
X1•, ..., Xr−1• | θ

)
.

Proof: We have:

P (X | θ) = n!

r∏

i=1

θxi

i

xi!
= n!

θx11

11 · · · θxrr
rr

x11! · · · xrr!

=

[
r∏

i=1

xi•!

xi1! · · · xir!

(
θi1

θi•

)xi1

· · ·

(
θir

θi•

)xir

]
n!

xi•! · · · xr•!
θx1•

1• · · · θxr•
r• .

From Theorems 3.2 and 3.3, as in the last example, we recognize each of the first

r factors above as the probabilities of each row in the table, conditioned on its

sum, and recognize the last factor as the joint probability distribution of sum of

these r rows.
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Corollary 8.1. If X|θ ∼ Mnr2−1(n, θ), as in Theorems 3.2 and 3.3, then

P
(
X |x1•, ..., xr−1• , θ

)
=

r∏

i=1

P
(
Xi1, ..., Xi,r−1 |xi• , θ

)

and, knowing θ, x1•, ..., xr−1•,

(X11, ..., X1,r−1) ∐ ... ∐ (Xr1, ..., Xr,r−1) .

Proof: Since

P (X|θ) = P
(
X |x1•, ..., xr−1• , θ

)
P
(
X1•, X2•, ..., Xr−1• | θ

)
,

from Theorems 3.2 and 3.3 we get the proposed equality.

The following result will be used next to express Theorem 3.4 as a canonical

representation for P (X|θ).

Proposition 8.2. If X|θ ∼ Mnr2−1(n, θ), as in Proposition, then a trans-

formation

T :
(
θ11, ..., θ1r, ..., θr1, ..., θr,r−1

)
→
(
λ11, ..., λ1,r−1, ..., λr1, ..., λr,r−1, η1, ..., ηr−1

)

given by

λ11 =
θ11
θ1•

, . . . , λ1,r−1 =
θ1,r−1

θ1•...

λr1 =
θr1

θr•
, . . . , λr,r−1 =

θr,r−1

θr•

η1 = θ1• , η2 = θ2• , . . . , ηr−1 = θ(r−1)•

is a onto transformation defined in
{
0 < θ11 + · · · + θr,r−1 < 1 ; 0 < θij < 1

}
over

the unitary cube of dimension r2−1. Moreover, the Jacobian of this transforma-

tion, t, is

J = ηr−1 ηr−1
1 · · · ηr−1

r−1

(
1 − η1 − · · · − ηr−1

)r−1
.

The proof is not hard to check.

Example 8.5. Let us examine the case of a 2×2 contingency table:

x11 x12

x21 x22

n

θ11 θ12
θ21 θ22

1
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In order to obtain the canonical representation of P (X|θ) we use the transfor-

mation T in the case r = 2:

λ11 =
θ11

θ11 + θ12
,

λ21 =
θ11

θ21 + θ22
,

η1 = θ11 + θ12 ,

hence,

P (X|θ) =

(
x1•

x11

)
λx11

11 (1−λ11)
x12

(
x2•

x21

)
λx21

21 (1−λ21)
x22

(
n
x1•

)
ηx1•

1 (1−η1)
x2• ,

0< θ11< 1 , 0<θ21< 1 , 0<η1< 1 .

9. FUNCTIONAL CHARACTERIZATIONS

The objective of this section is to derive the general form of a homoge-

neous Markov random process. Theorem 9.1, by Reny and Aczel, states that

such a process is described by a mixture of Poisson distributions. Our presenta-

tion follows Aczél (1966, Sec. 2.1 and 2.3) and Jánossy, Rényi and Aczél (1950).

It follows from the characterization of the Multinomial by the Poisson distribu-

tion given in Theorem 3.1, that Reny–Aczel characterization of a homogeneous

and local time point process is analogous to de Finetti characterization of an

infinite exchangeable 0-1 process as a mixture of Bernoulli distributions, see for

example Feller (V. 2, Ch.VII, Sec. 4).

Cauchy’s Functional Equations

Cauchy’s additive functional equation has the form

f(x+ y) = f(x) + f(y) .

The following argument from Cauchy (1821) shows that a continuous solution of

this functional equation must have the form

f(x) = c x .

Repeating the sum of the same argument, x, n times, we must have f(nx) =

nf(x). If x = (m/n)t, then nx = mt and

nf(x) = f(nx) = f(mt) = mf(t) ,
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hence

f

(
m

n
t

)
=
m

n
f(t) ,

taking c = f(1), and x = m/n, it follows that f(x) = cx, over the rationals,

x ∈ Q. From the continuity condition for f(x), the last result must also be valid

over the reals, x ∈ R. Q.E.D.

Cauchy’s multiplicative functional equation has the form

f(x+ y) = f(x) f(y) , ∀x, y > 0 , f(x) ≥ 0 .

The trivial solution of this equation is f(x) ≡ 0. Assuming f(x) > 0, we take the

logarithm, reducing the multiplicative equation to the additive equation,

ln f(xy) = ln f(x) + ln f(y) ,

hence

ln f(x) = cx , or f(x) = exp(cx) .

Homogeneous Discrete Markov Processes

We seek the general form of a homogeneous discrete Markov process. Let

wk(t), for t ≥ 0, be the probability of occurrence of exactly k events. Let us also

assume the following hypotheses:

Time Locality : If t1 ≤ t2 ≤ t3 ≤ t4 then, the number of events in [t1, t2[

is independent of the number of events in [t3, t4[.

Time Homogeneity : The distribution for the number of events occurring

in [t1, t2[ depends only on the interval length, t = t2 − t1.

From time locality and homogeneity, we can decompose the occurrence of

no (zero) events in [0, t+ u[ as ,

w0(t+ u) = w0(t)w0(u) .

Hence, w0(t) must obey Cauchy’s functional equation, and

w0(t) = exp(ct) = exp(−λt) .

Since w0(t) is a probability distribution, w0(t) ≤ 1, and λ > 0.

Hence, v(t) = 1− w0(t) = 1− exp(−λt), the probability of one or more

events occurring before t > 0, must be the familiar exponential distribution.

For k ≥ 1 occurrences before t+ u, the general decomposition relation is

wn(t+ u) =

n∑

k=0

wk(t)wn−k(u) .
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Theorem 9.1 (Reny–Aczel). The general (non trivial) solution of this

this system of functional equations has the form:

wk(t) = e−λt
∑

〈r,k〉

k∏

j=1

(cj t)
rj

rj !
, λ =

∞∑

j=1

cj .

where the index set 〈r, k, n〉 is defined as

〈r, k, n〉 =

{
r1, r2, ..., rk

∣∣ r1 + 2r2 + · · · + k rk = n
}
.

and 〈r, k〉 is a shorthand for 〈r, k, k〉.

Proof: By induction: The theorem is true for k = 0. Let us assume, as

induction hypothesis, that it is true to k < n. The last equation in the recursive

system is

wn(t+u) =

n∑

k=0

wk(t)wn−k(u) =

= wn(t) e−λu
+ wn(u) e−λt

+ e−λ(t+u)
n−1∑

k=1

∑

〈r,k〉

∑

〈s,n−k〉

k∏

i=1

(ci t)
ri

ri!

k∏

j=1

(cj u)
sj

sj !
.

Defining

fn(t) = eλtwn(t) −
∑

〈r,n−1,n〉

n−1∏

j=1

(cj t)
rj

rj !
,

the recursive equation takes the form

fn(t+ u) = fn(t) + fn(u) ,

and can be solved as a general Cauchy’s equation, that is,

fn(t) = cn t .

From the last equation and the definition of fn(t), we get the expression of wn(t)

as in Theorem 9.1. The constant λ is chosen so that the distribution is normalized.

The general solution given by Theorem 9.1 represents a composition (mix-

ture) of Poisson processes, where an event in the j-th process in the composition

corresponds to the simultaneous occurrence of j single events in the original

homogeneous Markov process. If we impose the following rarity condition, the

general solution is reduced to a mixture of ordinary Poisson processes.

Rarity Condition : The probability that an event occurs in a short time at

least once is approximately equal to the probability that it occurs exactly once,

that is, the probability of simultaneous occurrences is zero.
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10. FINAL REMARKS

This work is in memory of Professor D. Basu who was the supervisor of

the first author PhD dissertation, the starting point for the research in Bayesian

analysis of categorical data presented here. A long list of papers follows Basu

and Pereira (1982). We have chosen a few that we recommend for additional

reading: Albert (1985), Gunel (1984), Irony, Pereira and Tiwari (2000), Paulino

and Pereira (1992, 1995) and Walker (1996). To make the analysis more realistic,

extensions and mixtures of Dirichlet also were considered. For instance see Albert

and Gupta (1983), Carlson (1977), Dickey (1983), Dickey, Jiang and Kadane

(1987), and Jiang, Kadane and Dickey (1992).

Usually the more complex distributions are used to realistic represent situ-

ations for which the strong properties of Dirichlet seems to be not realistic. For

instance, in a 2×2 contingency table, the first line to be conditional independent

of the second line given the marginal seems to be unrealistic in some situations.

Mixtures of Dirichlet in some cases take care of the situation as shown by Albert

and Gupta (1983).

The properties presented here are also important in non-parametric Bayes-

ian statistics in order to understand the Dirichlet process for the competitive

risk survival problem. See for instance Salinas-Torres, Pereira and Tiwari (1997,

2002). In order to be historically correct we cannot forget the important book of

Wilks, published in 1962, where one can find the definition of Dirichlet distribu-

tion.

This article adopts a singular notation and representation, first used in

Pereira and Stern (2005). Singular representations are unusual in statistical

texts. Nevertheless, the singular notation makes it simpler to extend and gen-

eralize theoretical results and greatly facilitates numerical and computational

implementation.

We end this article presenting the Reny–Aczel characterization of the Pois-

son mixture. This result can be interpreted as an alternative to de Finetti char-

acterization theorem introduced in Finetti (1937). Using the characterization of

binomial distributions by Poisson processes conditional arguments, as given by

Theorem 3.1, and Blackwell (minimal) sufficiency properties discussed in Basu

and Pereira (1983), Section 9 leads in fact to a De Finetti characterization for Bi-

nomial distributions. Also, if one recall the indifference principle (Mendel, 1989)

the finite version of Finetti argument can simply be obtained. See also Irony

and Pereira (1994) for the motivation of these arguments. The consideration of

Section 9 could be viewed as a very simple formulation of the binomial distribu-

tion finite characterization.
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number of stages), concluding for the advantage of the proposed design in regard to

the survey goals.
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1. INTRODUCTION

1.1. Context

Quality is an increasingly important subject in the production of statistics.

Customers tend to be increasingly demanding and critical about statistical data.

For population and housing censuses, quality evaluation is carried out in

various ways, one of them being the Post Enumeration Survey (PES). Usually,

when they exist, PES results are assumed to be the final quality indicators for

these censuses. “The PES, a special kind of survey designed to measure census

coverage and/or content error, has been used effectively in a wide range of coun-

tries in recent decades; (...) The final publication should include an estimate of

coverage error, together with a full indication of the methods used for evaluating

the completeness of the data...” ([20]).

Coverage and content evaluation of population census data are carried out

with two main purposes:

(1) to provide customers with quality indicators;

(2) for internal use, to improve knowledge of the problems encountered,

in order to improve the capacity to plan and conduct this type of

statistical operation in the future.

1.2. Historical note

In the USA, evaluation of population census coverage and content began in

1950, while in Australia “the first PES was run in 1966, but the 1976 PES was the

first to be used for population estimates” ([1]). In France, the first quality census

evaluation with a PES was carried out in 1962 but the next assessment was not

held until 1990 ([6]). Canada started measuring gross undercoverage in 1971, but

estimates of net undercoverage are only available from 1991, as 1991 marked the

first comprehensive measure of overcoverage following an experimental study in

1986 ([19]). The UK first used a PES to measure census quality in 1961, since

when a PES has been conducted in every census ([14, 15, 16, 12]). In other

countries the introduction of a PES began later, as in the case of New Zealand

where the first one was conducted in 1996.

In fact, post enumeration surveys have been regularly used in countries

where a population census is performed, but for 2000 and 2001 some countries
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made an even heavier investment in the measurement of census data quality.

This is the case of Canada, United Kingdom and the USA ([19, 12, 3, 4]).

The first attempt to conduct a PES in Portugal occurred with the 1981

census, though technical constraints and the lack of human resources did not allow

the task to be completed. However, for internal purposes only, a comparative

tabulation was made using the two equivalent samples of statistical units (census

and PES), which were used to produce two independent but equivalent sets of

data tables. For the 1991 census a new PES was designed with strict rules on

each person in each selected household being re-interviewed: that is, each person

had to be re-interviewed face to face and no other person in the household could

be substituted. In Census 91 it was possible to produce gross and net indicators

on coverage for each statistical unit but not on the content of census variables.

The delay in the census fieldwork and consequently in the PES also made it very

difficult to match and apply the automatic rules for the imputation of responses

in the PES questionnaires in the same way as for the census responses.

Certain leaders of public opinion also expressed their doubts about the

quality of coverage in the 1991 census (about 1% net undercoverage on population,

measured by the PES), which led the Portuguese Statistical Office (INE) to decide

that the estimates of quality for the 2001 Census should be clear and proven.

In order to reach this target, a “special” programme on quality evaluation was

designed in which PES was to provide the final quality measure for the 2001

Census.

Given the unexpected outcome from the 1991 Census (the count being

approximately 5% below the population estimates made by National Statistical

Institute (INE) itself before the first results of the 1991 Census became available),

INE was convinced that the 2001 Census would be subject to very close scrutiny

by its main users. In a way, despite the fact that ten years have passed since

1991, the 2001 census data would end up being an important evaluation factor of

the 1991 census, given that no significant or unexpected demographic “accident”

has taken place or was expected to take place in the country’s demographic

development ([5]).

1.3. The 2001 Portuguese post enumeration survey

The main goal of the census 2001 PES was to evaluate coverage and content

errors, giving information to census users about the accuracy of the results, thus

allowing to assess the risks involved in basing conclusions or decisions on census

data. Coverage and content errors are evaluated for the following universes:

buildings, dwellings, private households and resident population.
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The evaluation of coverage errors includes three main causes:

(1) Statistical units of the target populations that have not been enumer-

ated;

(2) Statistical units outside the target populations that have been wrongly

enumerated;

(3) Statistical units that have been enumerated more than once.

The evaluation of content errors includes census flaws related to observing

statistical unit characteristics that can affect the quality of census information

about resident population and housing.

To assess coverage and content errors the census enumeration process was

repeated in the selected sampling units. At statistical section level recounts

of buildings, dwellings, private households and resident population were made.

Also, the various types of questionnaires are again completed, for the different

statistical units, regarding the characteristics that those units had on census day.

It should be noted that the Portuguese PES presents a number of specifici-

ties when compared to other post enumeration surveys, namely: not only aimed

to measure coverage errors but also content errors; all measures were obtained us-

ing only one sample (though data were obtained from different sampling stages);

it was designed within a framework where no sampling frames besides admin-

istrative division of the country and auxiliary information regarding population

and dwelling estimates were available; it used a three-stage design with selection

probabilities proportional to size in the first two sampling stages; it was designed

to avoid the selection of sampling units being dependent on the conclusion of

census fieldwork in order to reduce the time between the census date and the

implementation of the post enumeration survey; it is meant to use information

on the geographical coordinates of sampling units in the sampling design; sample

size and allocation are obtained by means of an optimization problem that tries

to minimize the overall survey cost.

This paper discusses the methodology for this survey. The first section

introduces the problem and its context. The sampling design is presented in the

second section. Also, the methodology used for defining sample size and allocation

between strata, resulting from the imposition of maximum coefficients of variation

(CVs) both at regional and national level, for a set of variables, is presented. The

following section presents the methodology used in producing predictions for the

resident population and dwellings at the time of the census. These predictions

are used as auxiliary information in the definition of inclusion probabilities for

the primary sampling units. The paper finishes with some final remarks and

a discussion about the sampling design (compared with two alternative designs

with a smaller number of stages).
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2. SAMPLE DESIGN

2.1. Introduction

The quality survey for the 2001 census is a probabilistic sampling survey.

It covers the whole of the national territory and aims to be representative at

NUTS II
1

level for the variables dwellings, private households, resident popula-

tion, active population, employed population, resident population aged 18 years

or more and population by decennial age group between 20 and 80 years of age.

Figure 1 shows the partition of Portugal into the 7 NUTS II.

Figure 1: NUTS II division.

A sample of statistical sections
2

is used to evaluate coverage errors for

buildings and dwellings, while a sample of dwellings is used to assess coverage

errors for private households and resident population and content errors.

1NUTS (Nomenclature of Territorial Units for Statistical Purposes) II is an administrative
division that divides the country into seven regions (Norte, Centro, Lisboa e Vale do Tejo,
Alentejo, Algarve, Região Autónoma dos Açores and Região Autónoma da Madeira).

2The statistical section is a statistical division corresponding to an area belonging to a single
parish (freguesia) with approximately 300 dwellings.



Portuguese Population and Housing Censuses 237

The sample is previously stratified by NUTS II. In each stratum a sample of

freguesias3
, statistical sections and dwellings is obtained. The approach includes

the selection, in each stratum, of a multi-stage self-weighted sample through

systematic selection with probability proportional to size (pps) at the first and

second stage. The primary sampling units are freguesias, the secondary sampling

units statistical sections and the tertiary sampling units dwellings. The sampling

design assures equal probability of selection for dwellings within strata. See [17,

pp. 144–150] for general theory about multi-stage designs.

At the first sampling stage inclusion probabilities are defined through the

use of auxiliary information based on resident population and estimates of dwelling

totals, at census time. An exception is made in the stratum of the Algarve where

the selection of the sub-sample of freguesias is based on resident population esti-

mates in each freguesia.

Auxiliary information resulting from preliminary counts from the question-

naire delivery phase of the census is used to define inclusion probabilities for the

statistical sections (secondary sampling units). This is due to the impossibility

of producing reliable estimates (for population or dwellings) at statistical section

level. With this approach it is possible to incorporate updated and high qual-

ity auxiliary information in the selection process for statistical sections, which

contributes to a more efficient sampling design.

It should be noted that primary unit selection is carried out a priori, i.e.

before the census date, using estimates for the number of dwellings and the

resident population by freguesia. On the other hand, statistical sections are

selected as soon as the counts from the questionnaire delivery phase of the census

are obtained for each of the previously selected freguesias. Given the multistage

nature of the sampling design, the selection of statistical sections is not dependent

on the conclusion of all counts in the questionnaire delivery phase, but only those

referring to freguesias selected at the first stage. Such dependence would be

undesirable, given the obvious interest in reducing the time between the census

date and the quality survey.

Finally, at the third stage, the dwelling samples are extracted, through

systematic selection and with equal probabilities as soon as the dwelling recounts

are completed for statistical sections selected at the second sampling stage.

A more detailed description is given in the following sections.

3Freguesia (NUTS V) is an administrative division corresponding to one or more Statistical
Sections. At the census day there were 4,208 freguesias in Portugal.
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2.2. Selection of freguesias (primary units)

At the first sampling stage, freguesias are selected in each region (stratum)

with probability proportional to the estimated number of dwellings. For the

Algarve the selection probability is proportional to the estimated resident popu-

lation. The use of a different approach is motivated by the weak correlation

(observed in the simulations using data from the 1991 census) between resident

population and dwellings in that region. Therefore, the choice of an alternative

sampling design for this region contributes to a significant reduction in sampling

effort (cf. Section 2.5).

Freguesias are sorted beforehand using the geographical coordinates of their

centroids
4
. In each stratum freguesias are ordered by ascending order of their

Euclidean distance from the origin. The goal is to assure that the sample is

geographically dispersed while still allowing a probability of selection proportional

to its size. Finally, freguesias are selected through systematic sampling.

The selection probability for freguesia i of stratum h was defined as

πhi =





Ahi

Ih
if Ahi < Ih ,

1 otherwise ,

(2.1)

where Ahi is the estimated number of dwellings (population for the Algarve) of

freguesia i of stratum h.

The selection interval for freguesias at stratum h, Ih, is

(2.2) Ih =
Ah

mh

where mh is the number of statistical sections to be selected for the sample

in stratum h and Ah is the estimated number of dwellings (population for the

Algarve) in stratum h.

Note that the selection interval Ih is inversely proportional to the number

of secondary sampling units, mh . As it will be explained in more detail in the

next section, the reasoning behind this choice is to support the selection of only

one secondary sampling unit (statistical section) at each primary sampling unit

(freguesia) with selection probability lower than one.

4The point of origin of these coordinates is situated in the Atlantic Ocean to the southwest
of Portugal.
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2.3. Selection of statistical sections (secondary units)

Lists of statistical sections are formed in freguesias selected at the first

sampling stage. These sections are sorted using their geographical coordinates

(distance from the centroid to the origin).

At the second sampling stage statistical sections are selected through sys-

tematic sampling with probability proportional to the number of dwellings ob-

tained in the preliminary counts from the questionnaire delivery phase of the

census.

The selection probability for section j of freguesia i of stratum h conditioned

to the selection of freguesia hi is defined as

πhij |hi =





Nhij

Nhi
if Ahi < Ih ,

Ahi

Ih

Nhij

Nhi
otherwise ,

(2.3)

where Nhij is the number of dwellings in section j of freguesia i of stratum h

(data from the preliminary counts from the questionnaire delivery phase of the

census), Nhi is the number of dwellings at freguesia i of stratum h (data from

the preliminary counts from the questionnaire delivery phase of the census).

The unconditional selection probability for section j of freguesia i of stra-

tum h is consequently

(2.4) πhij =
Ahi

Ih

Nhij

Nhi
.

To guarantee this selection probability, the selection interval in freguesia i of

stratum h is defined as

Ihi =





Nhi if Ahi < Ih ,

Nhi

Ahi
Ih =

Nhi Ah

Ahi mh
otherwise .

(2.5)

The number of statistical sections being re-enumerated in each freguesia selected

at the first sampling stage is equal to one for freguesias with selection probability

lower than one, allowing therefore a strong dispersion of sampled sections in a

high number of freguesias. The sample size at the second stage will only be

higher than one for freguesias with selection probability equal to one in order to

assure that the unconditional selection probability at the second stage remains

proportional to AhiNhij/Nhi.

The number of statistical sections being re-enumerated in freguesia i will

then be

mhi =





1 if Ahi < Ih ,

mh
Ahi

Ah
otherwise .

(2.6)
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2.4. Selection of dwellings (tertiary units)

The estimation of coverage errors relative to buildings and dwellings is

achieved through the sample of secondary units. For that purpose, each statistical

section in the sample should be exhaustively re-enumerated in order to obtain

the “true” totals for buildings and dwellings. After obtaining these recounts,

a list of dwellings is formed in each statistical section. These lists are used to

select the samples of dwellings (tertiary units) to be re-enumerated.

At this third sampling stage dwellings are selected through systematic sam-

pling, with equal probabilities, in order to obtain a self-weighted sample in each

stratum.

The selection probability for dwelling k, of section hij, conditioned to the

selection of the section to which it belongs, is defined as

(2.7) πhijk |hij =
nhij

N ′
hij

where nhij is the number of sampled dwellings in section hij and N ′
hij is the

number of dwellings in section hij, (obtained from the second stage of the PES).

The unconditional selection probability for dwelling k of section hij is there-

fore belongs, is defined as

(2.8) πhijk = πhij · πhijk |hij =
Ahi

IhNhi

Nhij

N ′
hij

nhij .

In each section, the sample size for tertiary units is obtained in order to

get a self-weighted sample of dwellings in each stratum. For that a constant

selection probability is defined in each stratum, equal to the overall sampling

rate fh = nh/N ′
h.

The sample size at section j of freguesia i in stratum h is consequently

given by

(2.9) nhij =
fh AhNhi N ′

hij

mhAhi Nhij
.

To guarantee the defined selection probabilities, the sampling interval in section

hij is defined as

(2.10) Ihij =
mhAhi Nhij

mhAhNhi
.

Therefore, the resulting selection probability

πhijk =
Ahi

IhNhi

Nhij

N ′
hij

nhij =
Ahi

IhNhi
·
Nhij

N ′
hij

·
fhAhNhi N ′

hij

mhAhi Nhij
= fh

will be constant in each stratum.
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2.5. Sample size and allocation

It should be remembered that the sample is previously stratified by

NUTS II, resulting in seven strata. Also the survey is intended to be representa-

tive not only at national level but also at NUTS II level. The overall sample size

and its allocation by each stratum was obtained as the solution to the following

optimization problem
5
:

min

(
C =

H∑

i=1

c1hmh + c2hnh

)
(2.11)

s.t.

CV (τ̂k,h) ≤ dk,h (k = 1, ..., K; h = 1, ..., H)

CV (τ̂k) ≤ dk (k = 1, ..., K)

mh ≤ Mh , nh ≤ N ′
h (h = 1, ..., H)

mh ≥ 0 , nh ≥ 0 (h = 1, ..., H)

where K is the number of variables considered for sample dimensioning, H the

number of strata, mh is the sample size of statistical sections in stratum h,

nh is the sample size of dwellings in stratum h, Mh is the number of sections

in stratum h, c1h the cost of observing one section in stratum h, c2h the cost of

observing one dwelling in stratum h, CV (τ̂k,h) =

√
V (τ̂k,h)

τk,h
, CV (τ̂k) =

√
V (τ̂k)

τk
,

τk,h is the population total of variable k in stratum h and τ̂k,h the Horvitz–

Thomson estimator for the same parameter. Also, τk =
∑H

i=1 τk,h is the popula-

tion total of variable k, τ̂k is its estimator and V (τ̂k) =
∑

h V (τ̂k,h). As proved

in Appendix 1, the variance V (τ̂k,h) can be approximated by the expression

V (τ̂k,h) ≈
1

mh



∑

i∈UI
1h

AhAhi

A2
1h

(
A1h τk,hi

Ahi
− τk,1h

)2

+

∑

i∈UI
1h

∑

j∈UII
hi

AhNhij

Ahi Nhi

(
Nhi τk,hij

Nhij
− τk,hi

)2

+

N ′2
h

nh
σ2

k,h,intra ,

where
∑

i∈UI
h

is the summation over all freguesias of stratum h,
∑

i∈UI
1h

is the

summation over the freguesias of stratum h where τa,hi < Ih,
∑

j∈UII
hi

is the

summation over all the sections of freguesia i of stratum h, τa,1h is the estimate

of the total of dwellings (residents in the Algarve) in population U I
1h, τk,1h is the

total of variable k in the same population and σ2
k,h,intra =

∑

i∈UI
h

∑

j∈UII
hi

N ′
hij

N ′
h

σ2
k,hij

is the intra-section variance for variable k in stratum h. All other parameters are

as defined in the previous sections.

5The problem was solved through Generalized Reduced Gradient Nonlinear Optimization.
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The aim of the strategy adopted is to minimize the total sampling cost, C,

with the application of maximum limits for the variation coefficients in estimating

totals for the K selected variables, at regional level (the stratum corresponding

to NUT II) and national level.

The maximum variation coefficients at NUT II level (dkh) were established

at 5% for the variables dwellings, private households, resident population, active

population, employed population, and resident population of 18 years of age or

more and at 7% for resident population by decennial age group between 20 and

80 years of age. Also, the maximum variation coefficients for estimating national

totals (dk) were set at 3% for the variables dwellings, private households, resident

population, active population, employed population, and resident population of

18 years of age or more and at 3.5% for resident population by decennial age

group between 20 and 80 years of age.

Figure 2 shows the geographical location of sections in the sample. Atten-

tion should be paid to the location of sample sections associated with high popu-

lation concentrations in coastal areas and urban centers. The calculations used

to determine sample sizes were based on data from the 1991 census
6
.

It should be remembered that a specific sampling design was adopted in

the Algarve, since the selection probabilities for primary sampling units in that

NUTS II were defined as proportional to the estimated resident population.

If the sampling design in the Algarve were the same as that adopted in other

NUTS II, using the number of dwellings to define selection probabilities, the

necessary sample size to guarantee the achieved variation coefficients would be

equal to 122 statistical sections. This result clearly demonstrates the advantage

of the procedure adopted, which is justified by the low correlation between resi-

dent population and dwellings in that region (cf. Table 1). In fact, one should

remember that the Algarve is a tourist region where many people keep a second

home.

It should also be noted that the high sample size obtained in Lisboa e

Vale do Tejo is essentially justified by the significant variance that some of the

variables show at freguesia level, as well as by the low correlation between resident

population and dwellings at section level. This sample could be downsized using

a design similar to that adopted in the Algarve7
. The decision to keep the primary

6Since the simulation used 1991 census data summarized at freguesia level, the variances
(k = 1, ..., K; h = 1, ..., H) were replaced by estimates obtained from other surveys conducted
by INE. In practice, c1h and c2h were considered non invariant with h, i.e. c1h = c1; c2h = c2,
h = 1, ..., H. A new set of restrictions was also imposed, fh = f , h = 1, ..., H, in order to achieve
a constant selection probability for all dwellings in the country. The overall sampling rate f

came out approximately equal to 0.00275. Simulations showed that the impact of this procedure
on the overall sampling cost was moderate.

7In the simulations using data from the 1991 census the reduction in sample size (for the
same level of precision) would be from 110 to 97 statistical sections.
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units proportional to the number of dwellings in that region resulted from the

observation that the reduction in sample size would be less significant than in

the Algarve. In addition, the strategy adopted shows certain advantages in field

procedures, associated with the greater stability of the sample size at the last

sampling stage.

Figure 2: Statistical section in the sample.

Table 1: Standard deviations and correlations between dwellings and

resident population (data from the 1991 census).

Stratum
(NUTS II)

Freguesia Statistical Section

Standard Standard Standard Standard
Correlation deviation deviation Correlation deviation deviation

(dwellings) (population) (dwellings) (population)

Norte 0.99 1,286 3,532 0.84 135 422

Centro 0.97 992 2,283 0.75 99 278

LVT 0.98 3,936 9,608 0.57 84 249

Alentejo 0.99 795 1,849 0.75 82 212

Algarve 0.87 3,432 5,273 0.43 115 279

Açores 0.96 435 1,477 0.68 82 320

Madeira 0.98 1,350 5,131 0.61 73 318
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3. DWELLING AND RESIDENT POPULATION ESTIMATES

It has already been mentioned that the selection probabilities at the first

sampling stage use estimates of the number of dwellings and the resident popu-

lation by freguesia, in relation to the census date.

The production of these estimates is addressed below, particularly as re-

gards the data sources and methodology used. The proposed estimators were

tested with the exhaustive observation of 107 freguesias in April 2000. This

observation followed a similar approach to the one adopted in the 2001 census.

Estimators for freguesia totals (obtained using the methodology presented in the

following sections) showed a mean absolute relative error of 11% in estimating

the resident population of freguesias in the test and of 8% in estimating the num-

ber of dwellings. Note that these errors are compatible with the approach used

for determining sample size, since that approach was based on data from the

1991 census where the mean absolute relative error for the estimated number of

dwellings was about 12%. A more detailed presentation of the methodology used

can be found in [7].

3.1. Estimation of the number of dwellings by freguesia

Some of the data sources available for the number of dwellings were:

the results of the 1991 census, statistics from the INE construction survey

and EDP household registers (Portuguese electricity company data on domestic

consumption locations).

The estimate for the number of dwellings in freguesia i on the census date

is obtained as

(3.1) Ahi = 0.5×Chi
+ 0.5×Dhi

2001 ,

where, Ahi is the estimate of the number of dwellings in freguesia hi, at the census

date, Chi
is the simple count of the number of domestic electricity consumption

contracts in the EDP registers, by freguesia, Dhi
2001 is an estimate derived from

accumulating the annual balance of newly constructed dwellings and demolished

dwellings (data from the construction survey), on the basis of the number of

dwellings obtained in the 1991 census (corrected from the coverage error).

This last estimate is given by
8
:

Dhi
t = Dhi

t−1 + NewDhi
t − Demhi

t
(3.2)

Dhi
91 = Dhi

C91

8This methodology presented various limitations, namely: the absence of information about
demolitions prior to 1993; the fact that data prior to 1994 is only available at concelho level
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where Dhi
t is the estimate of the number of dwellings in freguesia hi at year t,

NewDhi
t is the number of dwellings constructed in freguesia hi, at year t (data

from the construction survey), Demhi
t is the number of demolitions in freguesia hi,

at year t (data from the construction survey), Dhi
C91 is the number of dwellings

in freguesia hi counted in the 1991 census.

The decision to use an average of the two estimates is based on the ob-

servation (using the 107 test freguesias) that EDP data tends to systematically

underestimate the true number of dwellings, while the estimate obtained from

the construction survey shows a tendency of to overestimate them. In the ab-

sence of other information on the precision of each of the alternative estimators,

a natural choice in producing a weighted average of both estimates is to use equal

weighting.

3.2. Estimation of resident population by freguesia

Some of the data sources available on resident population were: the results

of the 1991 census, official data on births and deaths in the decade, electoral roll

databases, and the legalization of immigrants and residence cancellations (data

from the Immigration Service).

The estimates produced result from the accumulation of the balance be-

tween births and deaths, the balance of transfers in the electoral rolls, and net

immigration (taken as the difference between legalization requests and cancella-

tions in the Immigration Service). The resident population enumerated in the

1991 census (corrected from the coverage error) was taken as a base for the cal-

culation.

The estimate of the resident population in freguesia hi, at year t, is

Pophi
t = Pophi

t−1 + BBhi
t + TrBhi

t + FmBhi
t

(3.3)

Pophi
91 = Pophi

C91

where

• BBhi
t = Birthshi

t − Deathshi
t ;

• Birthshi
t is the number of births in freguesia hi, at year t ;

• Deathshi
t is the number of deaths in freguesia hi, at year t ;

(aggregation of freguesias); and the unavailability of data posterior to 1999. These limitations
were overcomed by carrying out, respectively, an estimation of demolitions for 1991 and 1992
based on information about the following years, allocation of data prior to 1994 by freguesia

using the average structure of each concelho in the period 1994–1999 and the prediction of the
series value at the census day by adjustment of a linear regression model.
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• TrBhi
t = T hi

t − Ehi
t ;

– T hi
t is the number of transfers to freguesia hi, at year t, in the elec-

toral roll ;

– Ehi
t is the number of cancellations due to transfer from freguesia hi,

at year t, in the electoral roll ;

• FmBhc
t = LRhc

t − Chc
t , FmBhi

t = FmBhc
t

FPophi
C91

FPophc
C91

;

– FmBhc
t is the net migration of foreigners to concelho (municipality) hc,

at year t ;

– LRhc
t is the number of legalization requests from foreigners in con-

celho hc, at year t ;

– Chc
t is the number of residence permit cancellations for foreigners in

concelho hc, at year t ;

– FmBhi
t is the net migration of foreigners to freguesia hi, at year t ;

– FPophi
C91 is the resident population of foreigners in freguesia hi,

recorded in the 1991 census;

– FPophc
C91 is the resident population of foreigners in concelho hc,

recorded in 1991 census.

The estimated resident population for the census date is then

(3.4) Phi = Pophi
2001 .

Thus, the estimator includes information about births and deaths, internal mi-

grations and foreign immigration. It may be presumed that internal migration

and foreign immigration had a great impact on the resident population at fregue-

sia level, since there were less than 90,000 persons as natural increase at national

level between 1991 and 2001.

It should also be noted that, although data for births and deaths are con-

sidered to be totally reliable, this is not the case with migration, both internal

and international. For this reason, transfers in the electoral rolls were taken as

a proxy for internal migration at freguesia level. In fact, the impossibility of

producing reliable estimates for internal migrations at this aggregation level mo-

tivated the search for a variable that could be considered a proxy for internal

migration as it was reliable at freguesia level. The main limitation is the fact

that migrations of people under 18 years of age are not included. In addition,

calculation of the estimates demanded the allocation of the net foreign migration

(only available at concelho level) to freguesias, using the structure observed in

the 1991 census.



Portuguese Population and Housing Censuses 247

4. DISCUSSION

The PES was designed to evaluate coverage errors and content errors in

the main statistical units: buildings, dwellings, private households and resident

population. For this purpose the enumeration process was repeated in the selected

sampling units. The various questionnaires were completed again, for the different

statistical units, with the characteristics that those units had at the time of the

census day.

This paper discussed the methodology used for this survey, which is based

on a three-stage sample. Primary and secondary sampling units were selected

with probability proportional to the size. For this purpose, at the first sampling

stage inclusion probabilities were defined through the use of auxiliary information

based on the estimated resident population and dwelling totals, at the time of the

census. Auxiliary information, resulting from preliminary counts obtained at the

questionnaire delivery phase in the census, was used in the definition of inclusion

probabilities for secondary sampling units. With this approach it was possible to

incorporate updated and high-quality auxiliary information in the selection pro-

cess for the statistical sections, contributing to a more efficient sampling design.

In the first two sampling stages auxiliary information regarding the geographi-

cal coordinates of area units (statistical section and freguesia) was used in order

to obtain an implicit stratification. Particularly with regard to the number of

stages, the design took operational restrictions into account. The goal was to

make use of available auxiliary information to determine the appropriate selec-

tion probabilities and to avoid the sample selection being totally dependent on

the conclusion of all counts in the questionnaire delivery phase. In fact, the lowest

level of aggregation for which information used to define inclusion probabilities is

available is the freguesia level. So, the selection of statistical sections as primary

sampling units would make it impossible to use reliable auxiliary information in

defining such probabilities.

Sample size and allocation between strata were obtained as the solution

to an optimization problem that minimizes the total survey cost, with maximum

limits for the coefficients of variation in estimating totals for a number of variables,

both at regional level (the stratum corresponding to NUTS II) and at national

level. This approach resulted in a sample of 367 statistical sections.

Nevertheless, alternative sampling designs, with a smaller number of stages,

could have been conceived, in order to try to reduce a possible design effect. This

alternative approach could then be based on a two-stage sampling, successively

selecting statistical sections and dwellings.

One possible approach would then be to select statistical sections with equal

probability. A two-stage sampling with selection of statistical sections with equal

probability at the first stage was simulated using data from the 1991 census.
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To guarantee the same precision, that design would have to be based on the

sample sizes shown in the last column of Table 2
9
. It should be noted that with

the exception of Lisboa e Vale do Tejo, the sample sizes necessary to achieve the

same variation coefficients would be substantially higher than the ones used in

the proposed design, resulting in an impressive increase in the overall sample size

from 267 sections to 743 sections.

Table 2: Sample sizes for three alternative sampling desig.

Stratum
(NUTS II)

Sample Size

2 stages 2 stages

3 stages Selection of sections Selection of sections
(with probability proportional (with equal probability)
to the number of dwellings)

Norte 42 52 159

Centro 46 63 119

Lisboa e Vale do Tejo 110 87 97

Alentejo 33 55 93

Algarve 73 122 145

Açores 32 40 74

Madeira 31 38 56

Total 367 457 743

Another approach would be to select statistical sections, at the first sam-

pling stage, with probability proportional to preliminary counts obtained from

the questionnaire delivery phase in the 2001 census. With such an approach the

selection of sections would be dependent on the conclusion of all the counts from

the questionnaire delivery. This dependency is undesirable given the goal of re-

ducing the period between the census date and the implementation of the post

enumeration survey. Moreover, certain operational restrictions recommend that

the geographical distribution of the sample should be known before the selection

of the sample is possible.

Furthermore, this alternative design would not lead to a more precise esti-

mation. Results from the simulation with data from the 1991 census (cf. Table 2),

corresponding to a two stage sampling with selection of statistical sections with

probability proportional to the preliminary counts from the questionnaire deliv-

ery at the first stage, show that the design adopted is generally more efficient than

this alternative design
10

. In fact, it can be seen that the sample size necessary

9For this propose, in each stratum, the total estimator variance was approximated by the

expression V (τ̂k,h) ≈

M2

h

mh(mh−1)

X
i∈UI

h

X
j∈UII

hi

�
τk,hij −

τk,h

Mh

�
2

, where Mh represents the

number of sections in stratum h. This implies that for this benchmark, sampling error due to
the last sampling stage is ignored.

10In the simulation the total estimator variance, in each stratum, was approximated by the

expression V (τ̂k,h) ≈
1

mh

X
i∈UI

h

X
j∈UII

hi

Nhij

Nh

�
Nh τk,hij

Nhij

− τk,h

�
2

.
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to achieve the same variation coefficients would in general be greater than that

obtained in the design adopted. It should be noted that this increase in sampling

effort would be particularly significant in the Algarve because it would no longer

be possible to use estimates for resident population in the definition of inclusion

probabilities. In order to achieve the same precision this alternative design would

cause an increase in the overall sample size from 267 sections to 457 sections
11

.

Assuming that the cost of observing one statistical section is not signifi-

cantly different among the three designs considered, it can be concluded that the

survey cost (associated with the first sampling stage) would increase by 25% for

the two-stage design with probability proportional to the number of dwellings

and about 100% for the two stage design with equal probabilities. Only in Lisboa

e Vale do Tejo would the two-stage designs lead to a reduction in sample size.

This is due to the fact that the variance in freguesia totals as regards dwellings

and population is higher in this stratum, while the same does not hold at sec-

tion level. In addition, this was the region where dwelling estimates showed the

poorest precision, affecting the quality of selection probabilities at the first stage

of the three-stage design.

In fact, in the proposed design, the number of sections selected in each

freguesia selected for the sample at the first stage is usually equal to one. Only

in some freguesias, with inclusion probabilities equal to one, will more than one

statistical section be selected for the sample in order to keep the unconditional

selection probability at the second stage proportional to size. In this way it is

possible to avoid a high concentration of sampled sections within a small num-

ber of freguesias and the typically associated design effect. Moreover it can be

observed from Table 1 that the correlation between dwellings and resident pop-

ulation is significantly higher at freguesia level than at section level. This means

that selection probabilities are more closely correlated with resident population

totals at the first sampling stage than at the second, which can be considered as

an indication of the superiority of the three-stage design.

Furthermore, a methodology for producing predictions for the resident

population and dwellings at the time of the census was presented. This was

achieved by combining demographic equations with information from other sources

(data from other national surveys, data from the Portuguese electricity company

on domestic consumption locations, data from the electoral rolls and data from

the Immigration Service on the legalization of immigrants). These predictions

were used as auxiliary information for defining inclusion probabilities for the pri-

mary sampling units. From a test carried out in 2000, it was concluded that their

precision (a mean absolute relative error of 11% in estimating the resident popu-

lation of freguesias in the test and of 8% in estimating the number of dwellings)

was compatible with the aims of the survey design.

11The simulations were based on the assumption that the dwelling counts obtained from the
questionnaire delivery phase of the census are free of error. In the (probable) situation where this
assumption does not hold, the alternative two-stage design could erode precision even further.
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APPENDIX

A. DERIVATION FOR THE APPROXIMATE VARIANCE OF τ̂k,h

It should be noted that is obtained with a three-stage sampling design.

Its approximate variance (Särndal, et al. 1992, pp. 148–149) can be written as

V (τ̂k, h) ≈
∑

i∈UI
h

∑

i′∈UI
h

(πi,i′ − πiπi′)
τk,hi

πi

τk,hi′

πi′

+

∑

i∈UI
h

∑

j∈UII
hi

∑

j∈UII
hi

πij,ij′ |i − πij |i πij′ |i

πi

τk,hij

πij |i

τk,hij′

πij′ |i

+

∑

i∈UI
h

∑

j∈UII
hi

V (τ̂k,hij)

πij

where U I
and U II

represent respectively the population of primary units and

secondary units.

Consider in each stratum h, two subpopulations: U I
1h represents primary

units of stratum h, such as Ahi < Ih , and U I
2h the population formed by primary

units in stratum h, where Ahi ≥ Ih.

The sampling design is also such that mhi = 1, ∀ i∈U I
1h and E(mhi) =

Ahi

Ih
,

∀ i ∈ U I
2h , with mhi being the size of the sub-sample of sections corresponding

to freguesia i of stratum h. Using an approximation through a sampling design

with replacement we have

V (τ̂k,h) ≈

≈
1

m1h



∑

i∈UI
1h

Ahi

A1h

(
A1h τk,hi

Ahi
− τk,1h

)2
+

∑

i∈UI
1h

∑

j∈UII
1hi

A1hNhij

AhiNhi

(
Nhi τk,hij

Nhij
− τk,hi

)2



+

∑

i∈UI
1h

∑

j∈UII
1hi

A1hNhi

m1hAhiNhij
V (τ̂k,hij) +

1

mh

∑

i∈UI
2h

∑

j∈UII
2hi

AhNhij

AhiNhi

(
Nhi τk,hij

Nhij
− τk,hi

)2

+

∑

i∈UI
2h

∑

j∈UII
2hi

AhNhi

mhAhiNhij
V (τ̂k,hij)

=
1

mh



∑

i∈UI
1h

AhAhi

A2
1h

(
A1h τk,hi

Ahi
− τk,1h

)2
+

∑

i∈UI
h

∑

j∈UII
hi

AhNhij

AhiNhi

(
Nhi τk,hij

Nhij
− τk,hi

)2



+
N ′2

h

nh
σ2

k,h,intra
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where mh is the size of the sample of sections corresponding to stratum h,

m1h = mh
A1h

Ah
, V (τ̂k,hij) =

N ′
hij mhAhiNhij

fhAhNhi
σ2

k,hij , σ2
k,h,intra =

∑

i∈UI
h

∑

j∈UII
hi

N ′
hij

N ′
h

σ2
k,hij

is the intra-section variance in stratum h for variable k, and σ2
k,hij is the popula-

tion variance of dwelling totals for variable k in section hij.
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1. INTRODUCTION

The usual linear models for time series have been used successfully for

modelling stationary dependent sequences under the assumption of Gaussianity,

which is inappropriate for modelling counting processes. Motivated by the need

of modelling correlated series counts, the INteger-valued AutoRegressive (INAR)

process was proposed by Al-Osh and Alzaid (1987) and Mckenzie (1985).

The INAR model has been extensively studied in the literature and success-

fully applied in different contexts. A generalization of the INAR model to the

multivariate case has been considered by Latour (1997). Here, our interest lies in

models for integer-valued panel data, which are a particular case of multivariate

data. The simplest such model is considered in Silva et al. (2005) and consists

of independent replicates of the INAR model. However, in many practical situa-

tions, namely in econometric data, the individuals are not uncorrelated. Such an

example is the panel data of entry and exit of plants in Swedish municipalities

considered by Berlung and Brannas (1996). To model these data, the authors

propose a multivariate integer-valued INAR(1) model related to the Seemingly

Unrelated Regression model, SUR, as follows.

Consider a panel of integer-valued data consisting of r individuals and

n −1 time periods, Xk,t, k =1, ..., r, t = 2, ..., n, satisfying the following r variate

Poisson INAR(1) model with parameters which are constant along the time but

different from individual to individual,

(1.1) Xk,t = αk ◦Xk,t−1 + ǫk,t , k = 1, ..., r, t = 2, ..., n ,

where xk,1 is known, αk ◦Xk,t−1|Xk,t−1 ∼ B(Xk,t−1, αk), αk ∈ (0, 1), ǫk,t are, for

each k = 1, ..., r, Poisson random variables with parameter µk and, moreover, ǫk,t

and Xk,t−1 are independent, for all k and t.

The dependence between individuals is modelled in (1.1) through the inno-

vations term by

ǫk,t = ǫ∗k,t + ζt , k = 1, ..., r, t = 2, ..., n .

Thus, equation (1.1) takes the form

(1.2) Xk,t = αk ◦Xk,t−1 + ǫ∗k,t + ζt , k = 1, ..., r, t = 2, ..., n ,

with ǫ∗k,t ∼ P (λk) i.i.d., k = 1, ..., r; ζt ∼ P (δ) i.i.d., t = 2, ..., n; ǫ∗k,t and ζt are

independent for k = 1, ..., r, t = 2, ..., n.

The model defined in (1.2) is called Seemingly Unrelated INteger Auto-

Regressive, SUINAR, since the individuals appear independent from each other.
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Particular situations of the model defined in (1.1) were studied by Silva et al.

(2005) — PoRINAR(1) model — where the parameters are constant along the

time and from individual to individual, i.e., considering independent replicates of

the PoINAR(1) model. Berglund and Brännäs (2001), Blundell et al. (1999) and

Böckenholt (1999), considered a generalization of this model in which the parame-

ters depend on exogenous variables and vary with time and from individual to

individual.

In time series analysis we are usually interested in estimating the underlying

model and in the predictive capabilities of that model. Thus, the aim of this study

is to establish a comparison between classical and Bayesian approaches in order to

conduct inference for model parameters and obtain predictions for future values.

The remaining of the paper is organized as follows. In Section 2, the SUINAR

process is introduced and some properties of the model are derived. In Section 3,

the estimation of the parameters is studied under several classical methods and

Bayesian methodology which requires the use of an MCMC algorithm — ARMS —

for which we give full details. In Section 4, forecasts of future observations and

prediction intervals are derived, under both approaches. In Section 5, the results

are illustrated through a simulation study. Finally, in Section 6 some concluding

remarks are given.

2. THE SUINAR(1) MODEL AND ITS PROPERTIES

Equation (1.2) is written in matrix form as




X1

X2
.
.
.

Xr




t

=




α1 0 · · · 0

0 α2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · αr


 ◦




X1

X2
.
.
.

Xr




t−1

+




ǫ∗1
ǫ∗2
.
.
.

ǫ∗r




t

+




1

1

.

.

.

1




t

ζt ,

or alternatively

x · t = A◦ x ·(t−1) + ǫ · t + 1r ζt , t = 2, ..., n ,

with

A◦ x ·(t−1) =

(
α1◦X1 =

X1∑

i=1

Bi1, . . . , αr ◦Xr =

Xr∑

i=1

Bir

)′

t−1

,

where x · t = (X1,t, X2,t, ..., Xr,t), Bik are i.i.d. Bernoulli random variables with

αk as the success probability and independent of xt−1 and ǫt, t = 2, ..., n.
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The following properties are important for the remainder of the paper.

1. Let ǫ · t = ǫ∗· t + ζt1r. The covariance matrix of (ǫ · t) at lag j is given by

γǫ(j) = Cov
(
ǫ · t, ǫ · (t+j)

)

=




cov(ǫ1,t, ǫ1,t+j) cov(ǫ1,t, ǫ2,t+j) · · · cov(ǫ1,t, ǫr,t+j)

cov(ǫ2,t, ǫ1,t+j) cov(ǫ2,t, ǫ2,t+j) · · · cov(ǫ2,t, ǫr,t+j)

.

.

.
.
.
.

. . .
.
.
.

cov(ǫr,t, ǫ1,t+j) cov(ǫr,t, ǫ2,t+j) ... cov(ǫr,t, ǫr,t+j)


 .

When j = 0, it follows that

γǫ(0) =




λ1 + δ δ · · · δ
δ λ2 + δ · · · δ
.
.
.

.

.

.
. . .

.

.

.

δ δ · · · λr + δ


 .

If j ≥ 1, then γǫ(j) = 0, due to the independence between ǫ∗k,t and ζt

for k = 1, ..., r, t = 2, ..., n.

2. The mean value of the process x · t is given by

E(x · t) = (Ir − A)
−1

(λ + δ1r) ,

where x · t = (X1,t, X2,t, ..., Xr,t), λ = (λ1, ..., λr) and Ir is the (r×r)

identity matrix.

For the k-th individual, we have

E[Xk,t] = (λk + δ)/(1− αk) , k = 1, ..., r .

3. The covariance matrix of the process, x · t, is defined by

(2.1) γX(0) =




(λ1+δ)/(1−α1) δ/(1−α1α2) · · · δ/(1−α1αr)

δ/(1−α2α1) (λ2 +δ)/(1−α2) · · · δ/(1−α2αr)

.

.

.
.
.
.

. . . · · ·
δ/(1−αr α1) δ/(1−αr α2) · · · (λr+δ)/(1−αr)


 .

4. The covariance matrix x · t at lag j is given by

γX(j) = E

[(
x·t−E(x·t)

)(
x·(t−j)−E(x·(t−j))

)]′
= Aj γX(0), j =1,2, ... .

3. PARAMETER ESTIMATION

In this section we consider the estimation of the 2r+1 unknown parameters

θ = (α, λ, δ) = (α1, α2, ..., αr; λ1, λ2, ..., λr; δ) of the SUINAR(1) process from

the sample xr,n =
{
Xk,t; k=1, 2, ..., r; t=1, 2, ..., n

}
. The methods under study

are the Conditional Maximum Likelihood, Conditional Least Squares, Method of

Moments and Bayesian methodology.
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3.1. Classical Approach

3.1.1. Conditional Maximum Likelihood Estimators

The likelihood function, conditional on x ·1 = (x1,1, x2,1, ..., xr,1), is given

by the following expression

L
(
xr,n; θ|x.1

)
=

r∏

k=1

n∏

t=2

P
(
Xk,t = xk,t |Xk,t−1 = xk,t−1

)

(3.1)

=

r∏

k=1

n∏

t=2

Mk,t∑

i=0

exp
[
−(λk+δ)

] (λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i ,

with Mk,t = min(xk,t, xk,t−1).

Estimates for δ and λk, k=1, ..., r, cannot be obtained separately due to

the term (λk+δ)xk,t−i
. Thus, we consider µk = λk +δ in the expression (3.1), and

we obtain the conditional maximum likelihood (CML) estimates of αk and µk.

The CML estimates satisfy the following system, where the equations are

obtained by cancelling the derivatives of the logarithm of expression (3.1)





∂ logL
(
xr,n; θ|x ·1

)

∂µk
= 0 ⇔

n∑

t=2

Pt(xk,t−1)

Pt(xk,t)
= (n−1) ,

∂ logL
(
xr,n; θ|x ·1

)

∂αk
= 0 ⇔

n∑

t=2

xk,t − αk

n∑

t=2

xk,t−1 − µk

n∑

t=2

Pt(xk,t−1)

Pt(xk,t)
= 0 ,

where

Pt(y) = exp
[
−(λk +δ)

] Mk,t∑

i=0

(λk +δ)y−i

(y− i)!

(
xk,t−1

i

)
αi

k(1− αk)
xk,t−1− i .

These equations do not yield explicit forms for the estimators of µk and αk,

therefore iterative methods are used to solve the system. We use the bisection

method, halving the amplitude of the interval which contains the zero of the

function until the required precision is obtained.

3.1.2. Conditional Least Squares Estimators

To obtain the Conditional Least Squares (CLS) estimators, we proceed

similarly to Al-Osh and Alzaid (1987) in the analysis of PoINAR(1) model. Thus,
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the Conditional Least Squares (CLS) estimator of the parameter is obtained by

minimizing

(3.2) Q =

r∑

k=1

n∑

t=2

[
Xk,t−E(Xk,t|Xk,t−1)

]2
=

r∑

k=1

n∑

t=2

[
Xk,t−αkXk,t−1−λk−δ

]2
.

Therefore, calculating the derivatives of the previous expression in order to αk, λk

and δ, we obtain respectively

(3.3)





∂Q/∂αk = −2

n∑

t=2

Xk,t−1

[
Xk,t− αk Xk,t−1− λk − δ

]
,

∂Q/∂λk = −2

n∑

t=2

[
Xk,t− αk Xk,t−1− λk − δ

]
, k=1, ..., r .

∂Q/∂δ = −2

r∑

k=1

n∑

t=2

[
Xk,t− αk Xk,t−1− λk − δ

]
,

Setting the derivatives to zero, we observe that ∂Q/∂δ is a multiple of ∂Q/∂λk.

It is easy to check that the normal equations constitute an indeterminate system

and, similarly to the maximum likelihood method, it is not possible to estimate

the parameters δ, αk, λk, k=1, ..., r, separately. Therefore, once again we consider

µk = λk + δ in expression (3.2).

After some simple algebraic operations the estimators are given by

α̂k,CLS =
(n−1)

∑n
t=2 Xk,tXk,t−1 −

(∑n
t=2 Xk,t

) (∑n
t=2 Xk,t−1

)

(n−1)
∑n

t=2 X2
k,t−1 −

(∑n
t=2 Xk,t−1

)2 ,

µ̂k,CLS =

∑n
t=2 Xk,t − α̂k,LSE

∑n
t=2 Xk,t−1

(n−1)
.

3.1.3. Moment Estimators

Considering that the one step ahead prediction error is

ek,t = Xk,t − E(Xk,t |Xk,t−1) , k=1, 2, ..., r ,

we have that E(ek,t|Xk,t−1) = 0, E(Xk,t−1ek,t|Xk,t−1) = 0 and the corresponding

sample moments are the following

(3.4)





1

n−1

n∑

t=2

(
Xk,t − αk Xk,t−1 − λk − δ

)
= 0 ,

1

n−1

n∑

t=2

Xk,t−1

(
Xk,t − αk Xk,t−1 − λk − δ

)
= 0 ,
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for k = 1, 2, ..., r. This system has 2r equations and 2r +1 unknown parameters

so it will be necessary to add another equation in order to estimate all the pa-

rameters. Through the analysis of covariance matrix given in (2.1), we observe

that

Cov(Xi,t, Xj,t) −
δ

1− αiαj
= 0 , i, j = 1, 2, ..., r , i 6= j ,

being the corresponding sample moment given by

(3.5)
1

n−1

n∑

t=2

(Xi,t− X̄i · ) (Xj,t− X̄j · ) −
δ

1− αiαj
, i, j = 1, 2, ..., r ,

with X̄k · =
∑n

t=2 Xk,t/(n−1), k = 1, 2, ..., r.

Each of these equations yields an estimator for δ. Averaging the r(n−1)/2

equations we obtain the following smoothed estimator for δ

(3.6)
2

r(r−1)

r−1∑

i=1

r∑

j=i+1

[
1

n−1

n∑

t=2

(Xi,t− X̄i · ) (Xj,t− X̄j · ) −
δ

1− αiαj

]
.

Thus, from the system (3.4) and equation (3.6), the following estimators for the

parameters δ, αk and λk, k = 1, ..., r, are obtained

α̂k,MM =
(n−1)

∑n
t=2 Xk,tXk,t−1 −

(∑n
t=2 Xk,t

) (∑n
t=2 Xk,t−1

)

(n−1)
∑n

t=2 X2
k,t−1 −

(∑n
t=2 Xk,t−1

)2 ,

δ̂MM =

∑r−1
i=1

∑r
j=i+1

∑n
t=2

[
(Xi,t− X̄i · ) (Xj,t− X̄j · )

]

(n−1)
∑r−1

i=1

∑r
j=i+1

[
1/(1− αiαj)

] ,

λ̂k,MM =

∑n
t=2 Xk,t − α̂k,MM

∑n
t=2 Xk,t−1

(n−1)
− δ̂MM .

Note that the following relations may be established:

• for αk moment estimators are the same as conditional least squares

estimators, α̂k,MM = α̂k,CLS ,

• moment estimators for λk may be expressed as λ̂k,MM = µ̂k,CLS − δ̂MM .

3.2. Bayesian Approach

It is well known that Bayesian inference is based on the posterior distri-

bution, since this distribution contains all the available information about the

unknown parameters θ. After observing the particular sample xn, the updated

information about θ is expressed by Bayes theorem through posterior distribution

which is given by

(3.7) π(θ|xr,n) =
L(xr,n; θ|x ·1) π(θ)∫

Θ
L(xr,n; θ|x ·1) π(θ) dθ

∝ L(xr,n; θ|x1) π(θ) , θ ∈ Θ ,
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where π(θ) denotes the prior distribution. In a Bayesian framework it is necessary

to assign priors to each parameter. In this work, the prior distributions considered

are the beta and gamma distributions since they are conjugated of binomial and

Poisson distributions, respectively. Therefore, beta distribution with parameters

ak, bk > 0 is the prior for αk, αk ⌢ Be(ak, bk), and gamma distributions with

parameters ck, dk > 0, λk ⌢ Ga(ck, dk) and e, f > 0, δ ⌢ Ga(e, f) are the priors

for λk and δ, respectively.

Moreover, we assume independence between αk, λk and δ, for k = 1, 2, ..., r,

as well as the knowledge of hiperparameters ak, bk, ck, dk, e and f, k = 1, 2, ..., r.

Therefore, the prior distribution of the 2r +1 parameters (α1, α2, ..., αr; λ1, λ2,

..., λr; δ) has the form

π(θ) = π(δ)
r∏

k=1

π(αk) π(λk)

(3.8)

∝ δe−1
exp(−fδ)

r∏

k=1

αk
ak−1

(1− αk)
bk−1λck−1

k exp(−dkλk) .

Thus, by Bayes theorem it follows from the prior and the likelihood (3.1), that

the posterior distribution is given by the following expression

π(θ|xr,n) ∝ δe−1
exp(−fδ)

(
r∏

k=1

αk
ak−1

(1−αk)
bk−1λck−1

k exp(−dkλk)

)
×

(3.9)

×




r∏

k=1

n∏

t=2

Mk,t∑

i=0

exp
[
−(λk+δ)

](λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i


 .

The Bayes estimate for θ is the mean of this distribution which cannot be ob-

tained analytically. Thus we use the Gibbs sampler in order to generate values

of π(θ|xr,n). Through Gibbs sampler and based on a irreducible Markov chain

with state space Θ whose stationary distribution is π(θ|xr,n), a sequence of

correlated realizations is generated. In this context the algorithm is based on

the fact that if the joint distribution π(θ|xr,n) is positive over its entire do-

main, then it is uniquely determined by the m full conditional distributions

π(θi|xr,n, θ−i), i = 1, 2, ..., m, where θ−i represents the vector θ after being re-

moved θi component (Besag, 1974; Gelfand and Smith, 1990).

The full conditional posterior densities are

• for αk

π
(
αk|α−k, λ, δ,xr,n

)
= π

(
αk|λk, δ,xk ·

)
∝

∝ αak−1
k (1−αk)

bk−1
n∏

t=2

Mk,t∑

i=0

(λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i ,

with α−k = (α1, ..., αk−1, αk+1, ..., αr), xk · = (xk,t : t=1, 2, ..., n);
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• for λk

π
(
λk|λ−k, α, δ,xr,n

)
= π

(
λk|αk, δ,xk ·

)
∝ λck−1

k exp
[
−(λk dk)

]
×

×
n∏

t=2

Mk,t∑

i=0

exp
[
−(λk+δ)

](λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i ,

with λ−k = (λ1, ..., λk−1, λk+1, ..., λr);

• for δ

π
(
δ|α, λ,xr,n

)
∝ δe−1

exp(−fδ) ×

×
r∏

k=1

n∏

t=2

Mk,t∑

i=0

exp
[
−(λk+δ)

](λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i .

The generation of pseudo-random numbers through the full conditional posterior

densities may be achieved through the Adaptive Rejection Sampling (ARS) if the

functions were surely log-concave. However, since this is not generally the case,

we use Adaptive Rejection Metropolis Sampling (ARMS), which is an hybrid

method introduced by Gilks et al. (1995). Thus, in Gibbs sampler each value θ−i

is generated from π(θi|xr,n, θ−i) through ARMS algorithm in the following way:

Algorithm 1.

1. generate a random sample of the model (1.2);

2. calculate the initial estimates of α1, ..., αr and δ, by the moments

method; denote them by α1,0, ..., αr,0 and δ0 ;

3. using ARMS method, simulate for each k = 1, 2, ..., r,

λk,1 from π
(
λk|xk · , δ0, αk,0

)

and
αk,1 from π

(
αk|xk · , δ0, λk,1

)
;

4. simulate, using ARMS method,

δ1 from π
(
δ|xr,n, α1,1, ..., αr,1, λ1,1, ..., λr,1

)
;

5. repeat steps 3. and 4. with i = 2, ...,nig (number of Gibbs sampler

iterations); that is, for k = 1, 2, ..., r,

λk,i is simulated from π
(
λk|xk · , δi−1, αk,i−1

)
,

αk,i is simulated from π
(
αk|xk · , δi−1, λk,i

)

δi is simulated from π
(
δ|xr,n, α1,i, ..., αr,i, λ1,i, ..., λr,i

)
;

6. despising the first b values (corresponding to the burn-in period) and

picking up each value, obtain a sample with m = (nig − b)/l elements.

Denote the corresponding sample means by: α
(i)
k,B, λ

(i)
k,B and δ

(i)
B ;

7. repeat nrep times the steps 1. to 6..
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Afterwards Bayes estimates can be calculated through the expressions

α̂k,B =
1

nrep

nrep∑

i=1

α
(i)
k,B , λ̂k,B =

1

nrep

nrep∑

i=1

λ
(i)
k,B and δ̂B =

1

nrep

nrep∑

i=1

δ(i) .

4. PREDICTIVE INFERENCE

Let xn =
{
Xk,t : k = 1, ..., r, t = 2, ..., n

}
be a sample generated by the

Poisson SUINAR(1) model. We aim at obtaining the h-step-ahead predictor of

Xk,n+h, X̂k,n+h. We begin by presenting some results fundamental to the under-

standing of the work.

According to the definition of the SUINAR(1) process, we have that

(4.1) Xk,n+h = αk ◦Xk,n+h−1 + ǫk,n+h .

Iterating backwards h times, equation (4.1) can be written as

Xk,n+h = αh
k ◦Xk,n +

h∑

j=1

αh−j
k ◦ ǫk,n+j , h = 1, 2, ... .

Since Xk,n is independent of ǫk,n+j , j = 1, ..., h, the conditional distribution of

Xk,n+h on Xk,n is

P
(
Xk,n+h = x

∣∣Xk,n

)
= P

(
αh

k ◦Xk,n +

h∑

j=1

αh−j
k ◦ ǫk,n+j = x

∣∣∣Xk,n

)
=

=

min Xk,n,x∑

y=0

P
(
αh

k ◦Xk,n = y
∣∣Xk,n

)
P

(
h∑

j=1

αh−j
k ◦ ǫk,n+j = x − y

)
.

Noting that αk ◦Xk,n |Xk,n ∼ Bi(Xk,n, αk) and ǫk,t ∼ P (λk), it follows easily

that the distribution of Xk,n+h|Xk,n is the convolution of the distribution of the

innovation process, a Poisson distribution with parameter (λk+δ)(1−αh
k)/(1−αk),

and that resulting from the binomial thinning operation, a binomial distribution

with parameters Xk,n and αh
k . This result, proved in Silva (2005), is established

in the following theorem:

Theorem 4.1. For the Poisson SUINAR(1) model, the distribution of

Xk,n+h given Xk,n is the convolution of a binomial distribution with parameters

Xk,n and αh
k and a Poisson distribution with parameter (λk+ δ)(1−αh

k)/(1−αk).

That is to say, Xk,n+h|Xk,n has the moment generating function

(4.2) ϕXk,n+h|Xk,n
(s) =

[
αh

k es
+ (1− αh

k)

]xk,n

exp

{
(λk + δ)

1− αh
k

1− αk
(es−1)

}
.
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Thus, the probability function of Xk,n+h|Xk,n, k = 1, 2..., r, is given by

p
(
xk,n+h |xk,n

)
= P

(
Xk,n+h = x

∣∣Xk,n = xk,n

)

=

min(x,xk,n)∑

i=0

(
xk,n

i

)
(αh

k)
i
(1−αh

k)
xk,n−i ×(4.3)

× exp

[
−(λk+δ)

1−αh
k

1−αk

]
1

(x−i)!

[
(λk+δ)

1−αh
k

1−αk

]x−i

, k=1,2, ..., r .

Since lim
h→+∞

ϕXk,n+h|Xk,n
(s) = exp

[
λk+δ

1−αk
(es−1)

]
, the corollary follows.

Corollary 4.1. Xk,n+h|Xk,n has the Poisson limit distribution with pa-

rameter (λk+δ)/(1−αk).

4.1. Classical Prediction

4.1.1. Forecasts of future observations

Analogously to the study made by Silva et al. (2006) concerning prediction

in PoINAR(1) processes, we will calculate two predictors of Xk,n+h. One of them

is based on the minimization of mean square error and the other minimizes the

mean absolute error. Due to the fact that the best predictor which minimizes the

mean square error is X̂k,n+h = E[Xk,n+h|Xk,n] and according to expression (4.2),

it comes straightforwardly that E[Xk,n+h|Xk,n] = ϕ′
Xk,n+h|Xk,n

(s)|s=0 . Therefore

(4.4) X̂k,n+h = E[Xk,n+h|Xk,n] = αh
k Xk,n +

1−αh
k

1−αk
(λk+δ) , k=1, 2, ..., r .

This method hardly produces coherent predictions in the sense that forecasts

of integer values must be integer values as well (see Chatfield, 2001). In order

to obtain coherent predictions for Xn+h, Freeland and McCabe (2003) suggest

using the value which minimizes the expected absolute error given the sample,

i.e., the value that minimizes E
[
|Xn+h− X̂n+h|

∣∣Xn

]
. Let mk,h be the median

of the conditional distribution Xk,n+h|Xk,n. It can be proved that E
[
|Xk,n+h−

m̂k,n+h|
∣∣Xk,n

]
has a global minimum in m̂k,n+h = mk,h; in this sense, this means

that median of the predictive distribution is the best predictor of Xk,n+h.
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4.1.2. Prediction Intervals

A prediction interval is always more informative than a point forecast.

The method for obtaining confidence intervals for the predicted value is based on

the probability function of the h-steps-ahead forecast error, which is given by

ek,n+h |xr,n = Xk,n+h− X̂k,n+h = Xk,n+h− αh
kxk,n−

1−αh
k

1−αk
(λk+δ) .

It is worth to mention that ek,n+h is a discrete variable taking values on{
j − αh

k xk,n −
[
(λk + δ) (1−αh

k)/(1−αk)
]
; j = 0, 1, 2...

}
; hence has the prob-

ability function,

P

(
ek,n+h |xr,n = j−αh

k xk,n− (λk+δ)
1−αh

k

1−αk

)
= P

(
Xk,n+h = j

∣∣Xk,n = xk,n

)
=

= exp

[
−(λk+δ)

1−αh
k

1−αk

]
×

×

min(j,xk,n)∑

i=0

[
(λk+δ) (1−αh

k)/(1−αk)
]j−i

(j− i)!

(
xk,n

i

)
(αh

k)
i
(1−αh

k)
xk,n−i .

Once the probability function of the forecast error is known, the 100γ% confidence

interval for Xk,n+h is given by

(4.5)
(
X̂k,n+h + et1 , X̂k,n+h + et2

)
,

where X̂k,n+h is defined by (4.4), et1 is the greatest value ek,n+h|xr,n such as

P (ek,n+h|xr,n ≤ et1) ≤ (1− γ)/2 and et2 is the lowest value of ek,n+h|xr,n, such

as P (ek,n+h|xr,n ≤ et2) ≥ (1+ γ)/2.

4.2. Bayesian Prediction

To obtain the Bayesian predictive function we use the randomness of both

the future observation Xk,n+h we want to predict and the vector of unknown

parameters θ. Moreover, information about θ is contained in the observed sample

xr,n and is quantified on the posterior distribution π(θ|xr,n). Thus the following

definition.

Definition 4.1. Let θ ∈ Θ be the vector of unknown parameters. The h

steps-ahead Bayesian posterior predictive distribution is defined by

(4.6) π(xk,n+h|xr,n) =

∫

Θ
π(xn+h; θ|xr,n) dθ =

∫

Θ
p(xk,n+h|xr,n; θ) π(θ|xr,n) dθ ,

where π(θ|xr,n) is the posterior probability density function of θ and p(xk,n+h|xr,n; θ)

is the classic predictive function.
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The predictive distribution Xn+h|xr,n given by (4.6) is looked upon as con-

taining all the accumulated information on the future values. Therefore, the

Bayesian predictor of Xk,n+h can be calculated through the mean value, the me-

dian or the mode of the predictive function π(xk,n+h|xr,n).

4.2.1. Forecasts of future observations

According to Definition 4.1, the h-steps-ahead Bayesian predictive function

for the k-th individual of the SUINAR(1) model is given by

π(xk,n+h|xr,n) =

∫

Θk

π(xk,n+h, θk|xr,n) dθk

=

∫

Θk

p(xk,n+h|xr,n, θk) π(θk|xr,n) dθk

=

∫

Θk

p(xk,n+h|xk,n, θk) π(θk|xr,n) dθk ,

(4.7)

where θk = (δ, αk, λk), p(xk,n+h|xk,n, θk), k = 1, 2, ..., r, is given by (4.3) and

π(θk|xr,n) is the posterior probability density function of θk defined by

π(θk|xr,n) ∝ π(θk) L(xr,n, δ, λk, αk|x ·1)

∝ δe−1
exp(−fδ) αk

ak−1
(1−αk)

bk−1λck−1
k exp(−dk λk) ×

×




n∏

t=2

Mk,t∑

i=0

exp
[
−(λk+δ)

](λk+δ)xk,t−i

(xk,t− i)!

(
xk,t−1

i

)
αi

k(1−αk)
xk,t−1−i


 .

Usually, Xk,n+h is predicted by E(Xk,n+h|xr,n) which does not seem feasible here

due to the complexity of equation (4.7). Thus we propose two methodologies to

deal with the problem. In the first approach, using the expected value properties,

E(Xk,n+h|xr,n) is rewritten as follows:

E
[
Xk,n+h |xr,n

]
= E

[
E(Xk,n+h |xr,n, θk)

∣∣ xr,n

]

= E

[
αh

k Xk,n + (1−αh
k)(λk+δ)/(1−αk)

∣∣ xr,n

]
by (4.4)

= Xk,n E(αh
k |xr,n) + E

[
(1−αh

k)(λk+δ)/(1−αk)
∣∣ xr,n

]
.

Now, the mean values E(αh
k |xr,n) and E

[
(1−αh

k)(λk+ δ)/(1−αk) | xr,n

]
, can be

estimated using Gibbs methodology jointly with ARMS algorithm to generate

m values of the full conditional distributions:
(
δ(1), δ(2), ..., δ(m)

)
,
(
α

(1)
k , α

(2)
k , ..., α

(m)
k

)

and
(
λ

(1)
k , λ

(2)
k , ..., λ

(m)
k

)
for k = 1, 2, ..., r, necessary to the evaluation of the corre-

sponding ergodic means (see Section 3.2). Thus, Xk,n+h can be estimated by

(4.8) X̂k,n+h = xk,n
1

m

m∑

i=1

(
α

(i)
k

)h
+

[
1

m

m∑

i=1

1−
(
α

(i)
k

)h

1−α
(i)
k

(
λ

(i)
k + δ(i)

)]
,

where m is the number of replications really used, after convergency attained.
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The second approach applies Tanner composition method, Tanner (1996),

to the SUINAR(1) model. A sample (Xk,n+h,1, Xk,n+h,2, ..., Xk,n+h,m) is gener-

ated from the predictive distribution (4.7) using Algorithm 2 described bellow.

Then, the forecast for the future observation Xk,n+h can be calculated through

the sample mean, median or mode.

Algorithm 2.

1. Calculate an initial estimate α0 and δ0 for αk and δ, respectively, using

MM estimation from a sample
{
Xk,t : k = 1, ..., r, t = 2, ..., n

}
of the

Poisson SUINAR(1) defined by (1.2);

2. using Gibbs methodology jointly with adaptive rejection Metropolis

sampling (ARMS), sample values of the triplets (αk,1, λk,1, δ1),

(αk,2, λk,2, δ2), ..., (αk,m, λk,m, δm) from the full conditional distribu-

tions of αk, λk and δ ;

3. for each i (i = 1, ..., m) draw Xk,n+h,i from π(xk,n+h|xr,n, αk,i, λk,i, δi),

using the inverse transformation method adapted to discrete variables.

That means:

(a) sample a scaler u from Uniform distribution U(0, 1),

(b) evaluate the lowest integer value s:
s∑

i=0
π
(
xk,n+h|xr,n, αi, λi, δi

)
≥ u,

(c) consider Xk,n+h,i = s.

Thus, we have sampled Xk,n+h,1, Xk,n+h,2, ..., Xk,n+h,m from the posterior

predictive distribution.

4.2.2. HPD predictive intervals

In this section Highest Probability Density (HPD) predictive intervals are

obtained from the posterior predictive distribution (Paulino et al., 2003).

Definition 4.2. R(γ) = (XL, XR) is a prediction interval HPD (degree γ)

for Xk,n+h if

P
(
XL ≤Xk,n+h ≤XR

)
=

XR∑

xk,n+h=XL

π(xk,n+h|xr,n) ≥ Kγ ,

where Kγ is the largest constant such that P
[
Xn+h ∈R(γ)

]
≥ γ.

The computation of the HPD interval for Xk,n+h is hindered by the lack of

an explicit expression for the posterior predictive probability function, equation

(4.7). However an estimate of R(γ) may be obtained using Chen and Shao (1999)

algorithm which is outlined next.
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Algorithm 3.

1. draw a sample from π(xk,n+h|xr,n) (Algorithm 2);

2. order the sample values X(k,n+h,1), X(k,n+h,2), ..., X(k,n+h,m), obtained

in 1.;

3. for fixed γ, calculate the intervals

R̂i(γ) =
(
X(k,n+h,i), X(k,n+h,i+[mγ])

)
, 1≤ i ≤ m − [mγ] ,

where [mγ] is the integer part of mγ. Choose for 100γ% HPD interval

for Xk,n+h, the R̂(γ) with smallest amplitude.

R̂(γ) is an estimator of R(γ), whose asymptotic properties are valid under

certain regularity conditions (Theorem 7.3.1., Chen et al., 2000). Noting that

we are considering point processes, the Algorithm 3 can produce more than one

interval. When this is the case we choose for R̂(γ) the interval with highest

absolute frequency, between those with smaller amplitude; in the case of equality

of the absolute frequencies, the interval considered is the one with smaller inferior

limit as suggested by Chen et al. (2000).

5. SIMULATION STUDY

In this section the small sample properties of the estimation and forecast-

ing methods proposed are accessed by means of a simulation study. The data

are generated according to model (1.2) with r = 5, δ = 2 and for several sets

of parameters (α1, ..., α5, λ1, ..., λ5). The sets of values for the parameters αk

and λk combine small, αs, large, αl and mixed, αsl values for the α’s with

small, λs, large λl and mixed, λsl values for the λ’s, in a total of nine models,

(αs, λs), (αs, λl), (αs, λsl), ..., (αsl, λsl), described in Table 1. For each model,

200 time series of dimension n = 25, 50, 100 are generated.

Table 1: Values of the vector parameters α and λ

used to simulate the samples.

α1 α2 α3 α4 α5 λ1 λ2 λ3 λ4 λ5

αs 0.2 0.2 0.1 0.1 0.2 λs 1.5 1.0 1.0 1.5 1.0

αl 0.8 0.8 0.8 0.9 0.9 λl 3.0 3.0 2.5 2.5 3.0

αsl 0.2 0.8 0.9 0.1 0.2 λsl 3.0 0.5 1.0 3.0 0.1
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5.1. Parameter Estimation

To calculate the Bayesian estimates we use vague prior distributions, con-

sidering all the hyperparameters approximately null. This choice is due to the fact

that, for one hand we are dealing with simulated samples hence there is no avail-

able prior information, and for the other hand the main purpose is to compare

the performance between classical and Bayesian methodologies. In Algorithm 1,

we set nig = 3100, with b = 1100 as burn-in period and l = 20, to reduce auto-

correlation between MCMC samples. A problem that occurs frequently when

estimating INAR models by classic methodology is that the estimates for the

parameters αk are inadmissible, that is to say that αk /∈ (0, 1). In this study these

samples are eliminated.

The performance of the estimation methods is illustrated in Tables 2 and 3

for two particular situations of the Poisson SUINAR(1) model and based on

200 independent replicates. In Table 2 we consider the model (αsl, λsl) with

parameters αsl: α1 = 0.2, α2 = 0.8, α3 = 0.9, α4 = 0.1, α5 = 0.2, λsl: λ1 = 3.0,

λ2 = 0.5, λ3 = 1.0, λ4 = 3.0, λ5 = 0.1 and δ = 2 which is caracterized by both

αk and λk ranging from low to high values, meaning that the mean of the inno-

vations varies among the individuals. Table 3 presents the estimation results for

the model (αs, λl) with parameters αs: α1 = 0.2, α2 = 0.2, α3 = 0.1, α4 = 0.1,

α5 = 0.2, λl: λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0 and δ = 2 which

is caracterized by low values for the parameters α and high values for the innno-

vations for all the individuals, with small variation between individuals. These

results indicate that the method of moments (mm) provides better estimates for

small values of αk (αk ≤ 0.2) whereas the maximum likelihood (ml) and Bayesian

methodology (B) are more appropriate when the αk parameter has large values

(αk ≥ 0.8); however, the Bayesian approach has the advantage of estimating

δ, αk and λk separately, which is not possible with the maximum likelihood.

Regarding the estimation of λk the simulation results indicate that the Bayesian

methodology has a better performance when the mean value of entrances is very

different from individual to individual. However, if the differences between the

mean values are small, the behavior is not so good. It can be noticed that the

method of moments provides always poor estimates for λk. Moreover, the param-

eter δ is underestimated by both methods and the bias increases in the samples

where the mean number of entrances differ between the individuals. Regarding

the estimation of µk = δ+λk the method of moments provides the estimates with

smallest bias, whereas the maximum likelihood estimates are the most biased.

It is important to note once again that µk is estimated as a parameter by ml

while µ̂k,mm = δ̂mm + λ̂k,mm.
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Table 2: Estimates of (α,λ, δ) model with parameters αsl = (0.2, 0.8, 0.9, 0.1, 0.2),

λsl = (3.0, 0.5, 1.0, 3.0, 0.1) and δ = 2 (variances in brackets).

n = 25 n = 100

k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2
0.230 0.334 0.256 0.183 0.250 0.197

(0.02) (0.03) (0.02) (0.89) (0.01) (0.01)

2 0.8
0.673 0.847 0.842 0.766 0.865 0.865

(0.02) (0.00) (0.00) (0.01) (0.00) (0.00)

3 0.9
0.794 0.919 0.918 0.873 0.924 0.924

(0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

4 0.1
0.177 0.275 0.224 0.118 0.174 0.125

(0.02) (0.03) (0.02) (0.01) (0.01) (0.01)

5 0.2
0.143 0.673 0.623 0.155 0.761 0.758

(0.02) (0.05) (0.02) (0.01) (0.00) (0.00)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0
3.783 3.333 4.004 3.812

(0.70) (0.82) (0.29) (0.37)

2 0.5
2.445 0.685 1.659 0.782

(2.00) (0.13) (0.32) (0.03)

3 1.0
4.322 1.088 2.494 1.303

(10.86) (0.39) (0.92) (0.07)

4 3.0
3.548 3.016 3.845 3.695

(0.53) (0.65) (0.14) (0.16)

5 0.1
1.082 0.155 1.114 0.154

(0.14) (0.00) (0.05) (0.00)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2
3.917 3.381 3.779 4.076 3.739 4.005

(0.59) (0.879) (0.08) (0.25) (0.34) (0.37)

2 2.8
2.581 1.097 1.130 1.730 0.977 0.975

(1.74) (0.13) (0.07) (0.27) (0.02) (0.03)

3 2.9
4.457 1.524 1.535 2.565 1.488 1.496

(10.27) (0.31) (0.07) (0.89) (0.82) (0.07)

4 2.1
3.683 3.241 3.462 3.916 3.667 3.889

(0.43) (0.71) (0.08) (0.12) (0.23) (0.16)

5 2.2
1.217 0.436 0.601 1.185 0.331 0.347

(0.03) (0.06) (0.08) (0.01) (0.01) (0.00)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2
0.135 0.446 0.071 0.193

(0.11) (0.07) (0.06) (0.04)
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Table 3: Estimates of (α,λ, δ) of SUINAR(1) model with parameters

αs =(0.2, 0.2, 0.1, 0.1, 0.2), λl =(3.0, 3.0, 2.5, 2.5, 3.0) and δ=2

(variances in brackets).

n = 25 n = 100

k αk α̂k,mm α̂k,ml α̂k,B α̂k,mm α̂k,ml α̂k,B

1 0.2
0.212 0.323 0.238 0.181 0.243 0.201

(0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

2 0.2
0.217 0.320 0.243 0.196 0.267 0.215

(0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

3 0.1
0.180 0.306 0.162 0.125 0.204 0.094

(0.02) (0.04) (0.01) (0.01) (0.02) (0.01)

4 0.1
0.183 0.310 0.167 0.119 0.189 0.088

(0.02) (0.04) (0.01) (0.01) (0.01) (0.00)

5 0.2
0.215 0.325 0.237 0.187 0.256 0.211

(0.02) (0.04) (0.01) (0.01) (0.01) (0.01)

k λk λ̂k,mm λ̂k,B λ̂k,mm λ̂k,B

1 3.0
3.926 1.018 4.079 0.673

(0.70) (0.21) (0.29) (0.18)

2 3.0
3.948 1.050 3.999 0.603

(0.72) (0.27) (0.24) (0.19)

3 2.5
3.174 0.553 3.411 0.255

(0.43) (0.10) (0.15) (0.02)

4 2.5
3.150 0.526 3.432 0.272

(0.38) (0.05) (0.12) (0.03)

5 3.0
3.909 1.026 4.096 0.669

(0.45) (0.22) (0.22) (0.18)

k µk µ̂k,mm µ̂k,ml µ̂k,B µ̂k,mm µ̂k,ml µ̂k,B

1 2.2
3.947 3.388 3.787 4.079 3.767 3.966

(0.61) (0.89) (0.40) (0.27) (0.38) (0.27)

2 2.2
3.968 3.447 3.819 3.999 3.646 3.897

(0.65) (1.00) (0.47) (0.22) (0.33) (0.29)

3 2.1
3.195 2.702 3.322 3.412 3.102 3.549

(0.36) (0.66) (0.29) (0.13) (0.27) (0.12)

4 2.1
3.171 2.675 3.294 3.433 3.159 3.566

(0.35) (0.65) (0.25) (0.10) (0.20) (0.13)

5 2.2
3.930 3.376 3.795 4.096 3.747 3.963

(0.60) (0.98) (0.41) (0.21) (0.32) (0.28)

δ̂mm δ̂B δ̂mm δ̂B

δ = 2
0.0211 1.3832 0.0005 1.1759

(0.05) (0.19) (0.01) (0.09)
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5.2. Prediction

In this section h-steps-ahead (h = 1, 2, ..., 10) point forecasts and prediction

intervals are obtained using classic methodology, equations (4.4) and (4.5) and

Bayesian methodology, equation (4.8) and Algorithm 3 to obtain HPD predictive

intervals. The performance of the forecasting methods is illustrated in Tables 4

and 5 for two particular Poisson SUINAR(1) models.

Table 4: Forecasts for xk,n+h and values of square deviances (DA2
=(x̂k,n+h−xk,n+h)

2
)

of SUINAR(1) model with initial values αs = (0.2, 0.2, 0.1, 0.1, 0.2),

λs = (1.5, 1.0, 1.0, 1.5, 1.0) and δ = 2.

n = 25 n = 100

classical bayesian classical bayesian
h k jump

x̂k,n+h DA2 x̂k,n+h DA2

jump
x̂k,n+h DA2 x̂k,n+h DA2

1 1 2.672 0.107 2.323 0.458 2 3.191 1.418 3.254 1.571
2 0 2.272 0.530 2.744 0.066 3 2.864 3.474 3.180 4.752

1 3 0 2.618 0.146 2.712 0.083 1 2.328 0.452 2.233 0.588
4 0 2.789 0.045 2.841 0.025 1 3.095 3.629 3.178 3.320

5 3 1.340 7.076 1.307 7.252 0 2.721 0.078 2.812 0.035

1 1 2.857 3.448 2.626 2.644 2 3.135 1.288 3.216 1.479

2 2 2.213 1.471 2.679 2.819 2 2.514 0.264 2.876 0.767
2 3 1 2.528 0.279 2.641 0.411 1 2.359 1.847 2.324 1.753

4 0 2.697 0.092 2.811 0.036 1 2.956 0.002 3.097 0.009

5 1 1.523 0.228 1.539 0.213 1 2.617 0.381 2.743 0.552

1 2 2.922 1.162 2.933 1.138 1 3.131 0.017 3.200 0.040

2 1 2.208 3.211 2.552 2.097 1 2.373 0.393 2.575 0.181
4 3 1 2.502 0.252 2.697 0.486 2 2.362 2.683 2.460 2.372

4 3 2.639 11.296 2.811 10.170 1 2.932 0.004 2.991 0.000
5 2 1.675 1.756 1.812 1.411 1 2.564 2.062 2.721 1.636

1 5 2.927 16.589 3.247 14.085 3 3.131 4.541 3.173 4.722
2 0 2.208 0.627 2.472 0.279 3 2.358 1.844 2.509 2.277

8 3 1 2.500 0.250 2.781 0.610 0 2.363 0.132 2.443 0.196
4 2 2.626 5.636 2.799 4.844 0 2.931 1.143 3.021 0.958

5 0 1.731 0.534 2.114 1.241 1 2.556 0.309 2.705 0.497

1 0 2.927 0.859 3.259 1.585 3 3.131 4.541 3.200 4.840

2 2 2.208 7.795 2.626 5.636 0 2.358 0.696 2.429 2.468
10 3 0 2.500 0.250 2.755 0.060 1 2.363 0.406 2.452 0.300

4 1 2.625 1.891 3.108 0.796 2 2.931 0.867 3.047 1.096
5 0 1.735 0.540 2.157 1.339 1 2.556 2.085 2.731 1.610

1 2.927 3.131
2 2.208 2.358

∞ 3 2.500 2.363
4 2.623 2.931
5 1.736 2.556
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Table 5: Forecasts for xk,n+h and values of square deviances (DA2
=(x̂k,n+h−xk,n+h)

2
)

of SUINAR(1) model with initial values αl = (0.8, 0.8, 0.8, 0.9, 0.9),

λl = (3.0, 3.0, 2.5, 2.5, 3.0) and δ = 2.

n = 25 n = 100

classical bayesian classical bayesian
h k jump

x̂k,n+h DA2 x̂k,n+h DA2

jump
x̂k,n+h DA2 x̂k,n+h DA2

1 2 20.585 2.002 20.173 3.338 1 23.667 5.443 24.375 2.641

2 5 24.906 37.137 24.969 36.373 0 18.680 0.102 18.755 0.060

1 3 1 14.379 0.386 14.244 0.572 1 19.572 2.039 19.782 1.848

4 0 38.856 0.733 37.932 0.005 1 24.611 0.151 24.677 0.104

5 3 35.765 10.465 36.073 8.567 5 37.463 29.844 37.173 26.760

1 1 20.992 3.968 20.254 1.573 1 22.811 1.414 23.876 0.015

2 1 24.025 8.851 24.442 6.543 3 18.442 5.963 18.576 6.636

2 3 2 14.876 1.263 14.449 2.253 1 19.273 2.983 19.591 1.985

4 7 39.266 32.879 37.863 50.937 3 25.156 3.400 25.227 3.144

5 6 35.765 38.875 36.307 32.410 7 57.844 61.528 37.341 53.890

1 1 21.476 0.227 20.686 0.099 0 21.908 9.560 23.224 3.154

2 3 22.745 0.065 23.153 0.023 1 18.131 0.017 18.406 0.165

4 3 1 15.035 4.141 14.895 3.591 2 18.918 9.499 19.326 7.150

4 5 39.557 11.854 37.774 27.311 6 26.076 15.398 26.395 12.996

5 9 35.109 97.832 36.589 70.745 3 38.418 19.519 37.582 12.831

1 1 21.826 0.682 21.049 0.002 2 21.381 31.573 22.387 21.280

2 8 21.375 11.391 22.538 20.593 2 17.862 9.847 17.928 9.437

8 3 2 15.359 11.283 15.537 12.510 2 18.660 11.156 18.837 10.005

4 4 39.640 5.570 37.370 21.437 5 27.391 2.589 27.647 1.758

5 5 34.336 44.409 37.207 14.387 4 39.072 3.717 37.995 9.030

1 2 21.882 0.014 20.714 1.654 6 21.317 5.368 22.037 9.223

2 7 21.026 4.105 21.638 6.959 7 17.808 67.109 18.054 63.139

10 3 2 15.425 11.731 15.334 11.116 0 18.619 1.907 18.840 1.346

4 3 39.643 1.841 37.658 11.169 3 27.855 0.731 28.230 1.513

5 6 33.989 64.176 37.444 20.757 14 39.252 138.016 38.340 161.188

1 21.937 21.273

2 20.384 17.738

∞ 3 15.510 18.577

4 39.645 29.664

5 29.221 39.640

Table 4 displays forecasts for xk,n+h, the jump between xk,n and xk,n+h,

and the squared errors between x̂k,n+h and xk,n+h, considering samples of sizes

n = 25 and n = 100 simulated from the model with parameters (αs: α1 = 0.2,

α2 = 0.2, α3 = 0.1, α4 = 0.1, α5 = 0.2), (λs: λ1 = 1.5, λ2 = 1.0, λ3 = 1.0, λ4 = 1.5,

λ5 = 1.0) and δ = 2. Table 5 presents similar results for samples generated

from the model with parameters (αl: α1 = 0.8, α2 = 0.8, α3 = 0.8, α4 = 0.9,

α5 = 0.9), (λl: λ1 = 3.0, λ2 = 3.0, λ3 = 2.5, λ4 = 2.5, λ5 = 3.0) and δ = 2.
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Additionally Figure 1 presents absolute errors between predicted values and cor-

responding simulated values, regarding several samples of size 25 of SUINAR(1)

model. According to the present simulation study we can conclude that the re-

sults are independent of the prediction method and the methodology. Moreover,

the observed prediction error depends on two factors: the jump between xk,n and

xk,n+h for h≤ 4 and the proximity between xk,n+h and (λ̂k+ δ̂)/(1− α̂k) for large

values of h (h ≥ 5) (remark that limh→∞ E(Xk,n+h|Xk,n) = (λk + δ)/(1− αk))

(see Figure 1). Several simulated examples indicate that the variability of the

predictive function increases with the magnitude of αk and λk, justifying that

the predictions shown in Table 5 are worst than those in Table 4. Moreover it is

worthwhile to mention that the values of x̂k,n+h are constant for h≥ 8 (Table 4)

when αk and λk are small. In contrast, these values are not constant when αk

and λk are large. There is evidence that the confidence interval gets wider as h

increases, as expected and converges to the asymptotic interval. However, the

rate of convergence is higher for smaller values of αk and λk.
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Figure 1: Values of |x̂k,25+1− xk,25+1| with different samples of SUINAR(1) model.

6. APPLICATION

In this section the SUINAR(1) process is used to model the annual number

of plants in an industrial sector (electricity, gas, heating and waterpower) in

fifteen Swedish municipalities for the period 1984–1993, Berglund and Brännäs

(1996). For this data set k is equal to 15 and n is equal to 10. The estimates

for the parameters are given in Table 6. From the table it is easily seen that

maximum likelihood and Bayes methodologies yield similar estimates only for

k = 3, 5, 8, 10, 11 and 13. This is due to the small number of observations per

individual. In fact, a simulation study with k = 15 and n = 10 was carried out

and it was observed that the three estimation methods yield different estimates

and that the differences are larger for small values of αk and λk.
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Table 6: Estimated model for the number of plants in electricity,

gas, heating and waterpower.

k α̂k,mm α̂k,ml α̂k,B µ̂k,mm µαk,ml µαk,B

1 0.667 0.104 0.253 2.667 4.729 4.052

2 0.494 0.787 0.486 3.251 1.753 3.445

3 0.579 0.747 0.628 30.922 18.775 28.106

4 0.037 0.774 0.551 8.136 2.000 3.966

5 0.231 0.758 0.724 14.077 5.120 5.631

6 0.494 0.787 0.483 3.251 1.753 3.463

7 0.167 0.265 0.410 8.444 7.529 6.060

8 0.267 0.382 0.384 6.616 5.543 5.439

9 0.500 0.114 0.351 4.722 7.424 5.693

10 0.331 0.718 0.610 16.694 7.479 9.941

11 0.373 0.785 0.809 11.697 5.114 4.673

12 0.370 0.774 0.555 8.136 2.000 3.937

13 0.261 0.664 0.573 7.663 3.551 4.550

14 0.524 0.787 0.510 3.272 1.404 3.581

15 0.387 0.442 0.192 2.372 2.110 3.444

For illustrative purposes, h steps ahead predictions were obtained, for

h = 1, 2, 3, 4, 5. The predictions for h = 1, 2 and 5 are given in Table 7 and

1 step-ahead predictions for the 15 municipalities are represented in Figure 2.

Although the estimates of the model parameters differ, the forecasts obtained by

the different methodologies are quite similar.

Table 7: Forecasts for h = 1, 2, 5 steps-ahead for the number of

plants in electricity, gas, heating and waterpower.

h = 1 h = 2 h = 5
k

Classical Bayes Classical Bayes Classical Bayes

1 12.67 7.32 11.11 6.72 8.92 6.30

2 6.71 6.81 6.57 7.23 6.45 8.12

3 69.16 68.69 70.98 75.21 73.01 88.12

4 8.40 8.03 8.45 8.56 8.45 9.76

5 18.00 18.05 18.23 19.64 18.30 21.78

6 6.71 6.85 6.57 7.19 6.45 7.72

7 11.44 13.12 10.35 12.71 10.13 12.60

8 10.89 11.54 9.52 10.33 9.04 10.36

9 13.72 11.32 11.58 11.03 9.71 10.53

10 27.94 29.92 25.93 32.33 24.98 33.38

11 19.53 21.66 18.98 22.95 18.68 27.72

12 8.40 7.89 8.45 8.60 8.45 10.49

13 10.28 10.32 10.35 11.01 10.37 12.40

14 6.94 7.07 6.91 7.50 6.88 8.04

15 3.15 4.01 3.59 4.19 3.85 4.44
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Figure 2: Values of x̂k,10+1 for the number of plants relatively to electricity,

gas, heating and waterpower.

7. FINAL COMMENTS

In this work classical and Bayesian approaches to time series analysis and

forecasting are applied to the SUINAR(1) models. Regarding the estimation of

the model, the Bayesian approach has the advantage of allowing the estimation

of all the parameters of the model. However, the two methodologies perform

similarly regarding the forecasting of future values.
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Aplicações through Programa Operacional “Ciência, Tecnologia e Inovação” of

FCT cofinanced by the European Community fund FEDER. The authors would

like to express their gratitude to the Associate Editor and to an anonymous

referee for all the helpfull comments.



Estimation and Forecasting in SUINAR(1) Model 277

REFERENCES

[1] Al-Osh, M.A. and Alzaid, A.A. (1987). First-order integer-valued autoregres-

sive (INAR(1)) process, J. Time Ser. Anal., 8, 261–275.

[2] Berglund, E. and Brännäs, K. (1996). Entry and exit of plants: A study

based on Swedish panel count data. In “1995 Yearbook of the Finnish Statistical

Society”, Helsinki, 95–111.

[3] Berglund, E. and Brännäs, K. (2001). Plant’s entry and exit in Swedish

municipalities. In “The Annals of Regional Science”, Springer, Vol. 35, 431–448.

[4] Besag, J. (1974). Spacial interaction and statistical analysis of lattice systems

(with discussion), J. R. Stat. Soc. Ser. B, 36, 192–326.

[5] Blundell, R.; Griffith, R. and Windmeijer, F. (1999). Individual effects

and dynamics in count data models, Working Paper, W99/3, Institute of Fiscal

Studies, London.
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1. INTRODUCTION

Suppose the least squares method is used to estimate some linear combi-

nation of the coefficients in a regression model Y (x) = θ
0
+ θ

1
x + ... + θrx

r
+ ε

on an interval (a, b). The optimal design theory deals with the choice of the

allocation of the observations to accomplish the estimation in an optimal way.

The problem has been solved by Smith (1918) using a global optimality cri-

terion based on the variance of the estimated regression function, and circa 1960

Guest (1958), Hoel (1958), Box and Draper (1959, 1963), Kiefer (1959, 1961,

1962), Kiefer and Wolfowitz (1959) brought in many new results, namely by in-

troducing sensible optimality criteria, and Anderson (1962) and Kussmaul (1969)

investigated the choice of the degree in polynomial regression. See also Stigler

(1971) and references therein for the discussion of alternative optimal criteria.

The design space X is the set of all possible points where measurements Y

can be taken; X is assumed to be a compact subset of an Euclidean space. The

measurements Y = Y (x), the response at x ∈ X , is the sum of the deterministic

mean effect f(x)
T θ = E[Y |x] and an additive error term ε. In other words,

Y = f(x)
T θ + ε

where θ = (θ
1
, ..., θ

k
)
T

is a vector of unknown parameters, f(x) =
(
f
1
(x), ..., f

k
(x)
)T

is a vector of real-valued linearly independent continuous regression functions,

and ε is an error term with E(ε) = 0.

For point estimation the moment assumptions E[Y |x] = f(x)
T θ and

var[Y |x] = σ2 > 0 provide an adequate setting, but for intervalar estimation

or hypothesis testing the usual assumption is that Y ⌢ Gaussian
(
f(x)

T θ, σ2
)
.

We further assume that the experimenter can take n uncorrelated observa-

tions at experimental conditions x
1
, ..., xn ∈ X

Y
i
= f(x

i
)θ + ε

i
, E[ε

i
ε

j
] = σ2 δ

ij
, δ

ij
=

{
1 if i = j

0 otherwise
i, j = 1, ..., n

at not necessarily distinct points x
i
.

Denoting the vectors of the responses Y = (Y
1
, ..., Yn)

T
and of the errors

ε = (ε
1
, ..., εn)

T
, we can rewrite the univariate regression model in matrix form

Y = Xθ + ε

where X =
(
f(x

1
), ...,f(xn)

)T
denotes the design matrix, E(Y ) = Xθ and the

dispersion matrix of the random vector Y is D(Y ) = σ2In .

The estimation of the unknown parameters θ, σ2
from the observed re-

sponses Y is an important problem. We shall consider only linear unbiased
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estimators θ̃L = LY where L is a given k×n matrix and E[θ̃L] = LX θ = θ

for all θ ∈ Rk
.

In this general setting, the comparison of linear unbiased estimators is

performed in terms of the Loewner ordering of the set of symmetric matrices

A ≥ B iff A−B is nonnegative definite ;

A > B iff A−B is positive definite .

It is easily proven (Dette and Studden, 1997, p. 131) that the Gauss–Markov

estimator θ̃
GM

= (XT X)
−1XT Y is BLUE with respect to the Loewner ordering

for the regression model with moment assumptions.

Often we are interested in inference about a particular linear combination

z
j
θ, z

j
∈ Rk

, j = 1, ..., s, of the unknown parameters. The parameter subsystem

KT θ ∈ Rs
, where K= (z

1
, ..., zs) denotes a k×s matrix of rank s ≤ k is estimable

if and only if there exists a linear unbiased estimator for KT θ.

This is so if and only if the range inclusion range(K)⊆ range(XT
) is

satisfied. In that case, the BLUE for the parameter subsystem KT θ is

θ̂
T

= KT
(XT X)

− XT Y

with minimum dispersion matrix D(θ̂
T
) = σ2KT

(XT X)
− K .

In the above expression, (XT X)
−

denotes a generalized inverse of (XT X),

i.e. (XT X) (XT X)
−

(XT X) = XT X; under the range inclusion condition neither

θ̂
T

nor D(θ̂
T
) depend on the specific choice of the generalized inverse.

Under the linear model with gaussian assumption, K ∈ Rk×s
a given ma-

trix of rank s ≤ k, if the range inclusion assumption is satisfied for a parameter

subsystem KT θ and if n > rank(X), the null hypothesis H
0
: KT θ = 0 is rejected

for large values of the test statistic

n − rank(X)

rank(K)

(
θ̂(K)

)T (
KT

(XT X)
− K

)−
θ̂(K)

Y T
(
In− X (XT X)− XT

)
Y

where θ̂(K) = KT
(XT X)

− XT Y .

With the gaussian assumption, under the null hypothesis the sampling

distribution of the test statistic is a noncentral F with (rank(K), n − rank(X))

degrees of freedom and noncentrality parameter

1

σ2
(kT θ)

T
(
KT

(XT X)
− K

)−
(KT θ) .

It is readily established that the power function of the F -test for the hypothesis

H
0
: KT θ = 0 is an increasing function of the noncentrality parameter.
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2. CANONICAL MOMENTS

Under the assumption of gaussian “errors” ε ⌢ Gaussian(0, σ2
), or even of

a less demanding moments assumption involving homocedasticity, the choice of

the allocation of the observations to accomplish the estimation in an optimal way

amounts to dealing with the minimization of some functionals of the covariance

matrix, and an elegant solution is provided using the theory of canonical moments

and of closely related parameters (Dette and Studden, 1997):

Let

m
k
(µ) = m

k
:=

b∫

a

xk
dµ(x) , k = 1, 2, ...

denote the k-th raw moment of the probability measure µ defined on the Borel

sets of [a, b], let

mn(µ) = mn := (m
1
, ..., mn)

denote the vector of raw moments up to order n, and P
m

the class of all probability

measures defined on the Borel sets of [a, b] whose moments up to the order n are

m
1
, ..., mn .

Skibinski (1967) investigated m+
n+1

:= max
µ∈P

m

{
m

n+1
(µ)
}

and m−
n+1

:=

min
µ∈P

m

{
m

n+1
(µ)
}
; from those “extreme” moments we can define several parame-

ters, namely the canonical moments

χ
k
:=

m
k
− m−

n+1

m+
n+1

− m−
n+1

, k = 1, 2, ... ,

and the closely associated parameters

ζ
0

:= 1 , ζ
1
:= χ

1
, ζ

k
:= ξ

k−1
χ

k
, k ≥ 2 ,

and

γ
0
:= 1 , γ

1
:= η

1
, γ

k
:= χ

k−1
ξ

k
, k ≥ 2 ,

where ξ
k
:= 1−χ

k
; they have the substantial advantage of being invariant under

linear transformations of the measure µ. From this invariance property, we shall

in general consider [a, b] = [−1, 1], or, whenever more appropriate, [a, b] = [0, 1].

Dette and Studden (1997, p. 21) claim that the parameters ζ
k

and γ
k

are more

basic than the canonical moments.

The above parameters can be easily expressed in terms of the Hankel

determinants

H
2n

:=

∣∣∣∣∣∣∣

m
0
· · · mn

.

.

.
. . .

.

.

.

mn · · · m
2n

∣∣∣∣∣∣∣
H

2n
:=

∣∣∣∣∣∣∣

m
1
− m

2
· · · mn− m

n+1

.

.

.
. . .

.

.

.

mn− m
n+1

· · · m
2n−1

− m
2n

∣∣∣∣∣∣∣



284 J. P. Martins, S. Mendonça and D. D. Pestana

and

H
2n+1

:=

∣∣∣∣∣∣∣

m
1

· · · m
n+1

.

.

.
. . .

.

.

.

m
n+1

· · · m
2n+1

∣∣∣∣∣∣∣
H

2n+1
:=

∣∣∣∣∣∣∣

m
0
− m

1
· · · mn− m

n+1

.

.

.
. . .

.

.

.

mn− m
n+1

· · · m
2n
− m

2n+1

∣∣∣∣∣∣∣

provided we define H
−2

= H
−2

= H
−1

= H
−1

= H
0

= H
0

:= 1:

χn =
Hn H

n−2

H
n−1

H
n−1

, ξn =
H

n−2
Hn

H
n−1

H
n−1

, ζn =
Hn H

n−3

H
n−1

H
n−2

, γn =
Hn H

n−3

H
n−1

H
n−2

.

For instance, the canonical moments of X ⌢ Beta(p, q), p, q > 0, are

χn =

(
1−(−1)n

2 p +
[

n
2

])/
(p + q + n− 1), n = 1, 2, ... (as usual, [x] is the greatest

integer less than or equal to x); observe, in particular, thal all the canonical

moments of the Beta
(

1
2 , 1

2

)
(or arcsine) measure are χn=

1
2 (Skibinski, 1969).

It can be readily established that:

• The random variable with support S ⊆ [−1, 1] corresponding to the

sequence of canonical moments
(

1
2 , χ

2
, 1

2 , 1
)

is

X =





−1 0 1

χ
2

2
ξ
2

χ
2

2

.

• The random variable with support S ⊆ [−1, 1] corresponding to the

sequence of canonical moments
(

1
2 , χ

2
, 1

2 , χ
4
, 1

2 , 1
)

is

X =





−1 −
√

χ
2
ξ
4

√
χ

2
ξ
4

1

χ
2
χ

4

2 (1− χ
2
ξ
4
)

1

2
−

χ
2
χ

4

2 (1− χ
2
ξ
4
)

1

2
−

χ
2
χ

4

2 (1− χ
2
ξ
4
)

χ
2
χ

4

2 (1− χ
2
ξ
4
)

.

• The random variable with support S ⊆ [−1, 1] corresponding to the

sequence of canonical moments
(

1
2 , χ

2
, 1

2 , χ
4
, 1

2 , χ
6
, 1

2 , 1
)

is

X =

{
−1 −

√
χ

2
ξ
4
+ χ

4
ξ
6

0
√

χ
2
ξ
4
+ χ

4
ξ
6

1

α
1

α
2

1− 2α
1
− 2α

2
α

2
α

1

,

where α
1
=

χ
2
χ

4
χ

6

2(ξ
2
ξ
4
+ χ

4
χ

6
)

and α
2
=

χ
2
ξ
4
ξ
6

2(χ
2
ξ
4
+ χ

4
ξ
6
) (ξ

2
ξ
4
+ χ

4
χ

6
)
.

For a thorough discussion on moment spaces, moment sequences, canonical

moments and their connection with Stieltjes transforms, continued fractions and

orthogonal polynomials, cf. Dette and Studden (1997).
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3. EXACT, APPROXIMATE AND OPTIMAL DESIGNS

In what follows, we shall assume that the unknown regression functions are

sufficiently smooth over the range under investigation, so that modeling with a

low degree polynomial Pr(x) =

r∑
k=0

θ
k
xk

is appropriate.

In other words, f(x) = (1, x, ..., xr
)
T
, k = r+1, and if the observations are

taken at the points x
1
, ..., xn , the design matrix is

X =




1 x
1
· · · xr

1

1 x
2
· · · xr

2

.

.

.
.
.
.

. . .
.
.
.

1 xn · · · xr
n


 .

The design matrix X has rank r +1 if and only if there are at least r +1

different points among x
1
, ..., xn . We define the matrix of empirical moments

up to order 2r :

1

n
XT X =




1 m
1

m
2

· · · mr

m
1

m
2

m
3

· · · m
r+1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

mr m
r+1

m
r+2

· · · m
2r




with m
i
=

1
n

n∑
k=0

xi
k
, i = 0, ..., 2r .

The covariance matrix of the BLUE for the parameter subsystem KT θ,

where K∈ R(r+1)×s
, is given by σ2KT

(XT X)
− K.

If the experimenter is interested in finding out whether a polynomial

regression of degree r or r − 1 is appropriate for describing the response vari-

able in terms of the explanatory variable, he can perform a F test as described

above:

H
0
: KT θ = θr = 0

where K = er = (0, 0, ..., 1)
T ∈ Rr+1

denotes the (r+1)-th unit vector. Assuming

that the range inclusion is verified, in other words that there are at least r + 1

different points among the x
1
, ..., xn , the test statistic

(n−r−1) θ̂2
r(er )

(
eT

r
(XT X)

−1 er

)−1

Y T
(
In− X (XT X)−1 XT

)
Y

,

where θ̂r(er ) = eT
r

θ̂
GM

, has under the null hypothesis the F distribution with

(1, n−m−1) degrees of freedom and noncentrality parameter
1
σ2 θ2

r

(
eT

r
(XTX)

−1er

)−1
.
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As we observed above, the power function of the F -test for the null hy-

pothesis H
0
: θr = 0 increases when eT

r
(XT X)

−1 er decreases with respect to the

choice of observation points — and this clearly raises the question whether there

exists an optimum experimental design.

To discuss this issue, let us consider the linear regression model with the

moment assumptions E[Y ] = Xθ and D(Y ) = σ2In , where the design matrix is

X =
(
f(x

1
), ...,f(xn)

)T
∈ Rn×k

.

An exact design for sample size n is a finite probability measure on the

design space X with support in the distinct points x
1
, ..., x

ℓ
among the x

1
, ..., xn ,

ℓ ≤ n, with masses
n

i

n
, i=1, ..., ℓ, that are multiples of

1

n
; n

i
, i=1, ..., ℓ, is the

number of times the particular point x
i
occurs among x

1
, ..., xn . An exact design

∂
(n)

can therefore be represented

∂
(n)

=





x
1

· · · x
ℓ

n
1

n
· · ·

n
ℓ

n

(Kiefer, 1959), and the matrix XTX is

XT X =

n∑

k=1

f(x
k
)fT

(x
k
) = n

ℓ∑

j=1

n
i

n
f(x

j
)fT

(x
j
)

= n

∫
f(x)fT

(x) d∂
(n)

(x) =: n M(∂
(n)

) .

Let K∈ Rk×s
be a given matrix of rank s≤ k, and consider the problem of

estimating the estimable parameter subsystem KT θ; as the minimum dispersion

matrix D(θ̂(K)) =
σ2

n KT M−1
(∂

(n)
)K depends on the design ∂

(n)
, it is reasonable

to choose an optimum exact design, whenever feasible, i.e. an exact design that

for some optimality criterion minimizes the dispersion matrix.

Integer optimization raises many problems, and an approximate solution

can be satisfactory. Hence it may be much more convenient to use an approximate

design, defined as a probability measure on the design space X with support

points x
1
, ..., x

ℓ
and weights w

1
, ..., w

ℓ
adding up to 1:

∂
(n)

=

{
x

1
· · · x

ℓ

w
1
· · · w

ℓ

.

The interpretation is obvious, and exact designs for finite sample sizes can be

found by apportionment from the optimal approximate designs (Fedorov, 1972),

with the huge advantage that we can use the duality theory of convex analysis in

the optimization of a concave function on a convex and compact subset of the set

of nonnegative definite s×s matrices NND(s) instead of integer optimization.
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Pukelsheim (1993) discusses in depth several different optimality criteria or

information functions — real valued, positively homogeneous, nonconstant, upper

semicontinuous, isotonic and concave functions on NND(s) — for determining

optimum designs maximizing appropriate functions of the information matrix

C
K

(
M(∂

(n)
)
)

=:
(
KT M−1

(∂
(n)

) K
)−1

.

A design ∂∗
is G-optimal for the parameter θ if |M(∂∗

)| > 0 and it mini-

mizes G(∂) = max
x∈X

fT
(x)M−1

(∂)f(x). G-optimal designs for low order polyno-

mials have been first worked out numerically by Smith (1918), and theoretically

by Guest (1958).

Hoel (1958) introduced D-optimal designs, the case p = 0 of Kiefer’s

φp-criteria we shall focus on, based on the definition of the p-th matrix mean

φp(C) =





λ
min

(C) p = −∞

(
det C

) 1

s p = 0

(
1

s
trace Cp

)1

p

p ∈ (−∞, 0) ∪ (0, 1)

for C ∈ PD(s), the set of positive definite s×s matrices, and

φp(C) =





0 p ∈ [−∞, 0]

(
1

s
trace Cp

)1

p

p ∈ (0, 1]

for C ∈ NND(s).

The popular D-optimality criterion uses p = 0:

φ
0

(
C

K

(
M(∂

(n)
)
))

=

(
det
(
KT M−1

(∂
(n)

) K
))− 1

s
.

A D-optimum design ∂D
(n)

for KT θ minimizes the volume of the ellipsoids

of concentration for the vector KT θ with respect to the choice of designs ∂
(n)

.

In particular, if K = I
k
, the D-optimum design ∂D

(n)
maximizes det(M(∂

(n)
)).

Guest (1958) G-optimal designs and Hoel (1958) D-optimal designs co-

incide, and in 1960 Kiefer and Wolfowitz established the earliest “equivalence

theorem”: A design ∂∗
with M(∂∗

) > 0 is G-optimal for the parameter θ if and

only if it is D-optimal.

In what concerns the univariate polynomial regression model, Guest (1958)

and Hoel (1958) results can be rephrased by noting that

|Mr(∂)| =

∣∣∣∣∣

1∫

0

f
r
(x)fT

r
(x) d∂(x)

∣∣∣∣∣ = H
2r

=

r∏

j=1

(ζ
2j−1

ζ
2j

)
r−j+1
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and therefore

The D-optimal design ∂D
r

for the full parameter θ in the univariate

polynomial regression model of degree r on the interval [−1, 1] has

equal masses at the r+1 zeros of the polynomial (x2−1)L
′

r
(x), where

L
′

r
denotes the derivative of the r-th Legendre polynomial.

A D-optimal design on the interval [a, b] is obviously obtained from ∂D
r

by

the linear transformation ∂
[a,b]

({x}) = ∂

({
2x − b − a

b − a

})
. Observe also that

(x2−1)L
′

r
(x) = r x Lr(x) − rL

r−1
(x). Hence, for low degree polynomials, the

optimal observation points are:

r

2 −1 0 1

3 −1 −0.44721 0.44721 1

4 −1 −0.65465 0 0.65465 1

5 −1 −0.76506 −0.28523 0.28523 0.76506 1

6 −1 −0.83022 −0.46885 0 0.46885 0.83022 1

7 −1 −0.8717 −0.59170 −0.20930 0.20930 0.59170 0.8717 1

8 −1 −0.8998 −0.67719 −0.36312 0 0.36312 0.67719 0.8998 1

The D-efficiency of a given design in the polynomial regression of degree r is

eff
D
r (∂) =

(
|Mr(∂)|

|Mr(∂D)|

) 1
r+1

.

On the other hand, the information for the parameter KT θ = θr is given by

Cer

(
M(∂)

)
=
(
eT

r
M−1

r
(∂) er

)−1
=

|Mr(∂)|∣∣M
r−1

(∂)
∣∣ .

A design maximizing Cer

(
M(∂)

)
is called D

1
-optimal in the sense that it

is optimal for the estimation of the highest coefficient θr :

The D1-optimal design ∂D
1

r
in the univariate polynomial regression of

degree r on the interval [−1, 1] has equal masses
1

2r
at the points −1

and 1, and equal masses
1

r
at the zeros of the Chebyshev polynomial

of second kind U
r−1

(x).

An example: In order to investigate if the quadratic term is relevant in the

univariate quadratic model Y = θ
0
+ θ

1
x + θ

2
x2

+ ε on the design space X =

[−1, 1], we consider K = e
2
= (0, 0, 1)

T
.
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Denoting ∂
(n)

an exact design of sample size n, and f(x) = (1, x, x2
)
T

the

vector of regression functions, the matrix M(∂
(n)

) is

M(∂
(n)

) =

1∫

−1

f(x) f(x)
T

d∂
(n)

(x) =




1 m
1

m
2

m
1

m
2

m
3

m
2

m
3

m
4


 .

The parameter θ
2
= eT

2
θ is estimable if and only if ξ

(n)
has at least three support

points, and for these designs the dispersion of the Gauss–Markov estimator is

proportional to

{
C

K

(
M(∂

(n)
)
)}−1

= eT
2

{
M(∂

(n)
)

}−1
e

2
=

m
2
− m2

1∣∣M(∂
(n)

)
∣∣ .

The optimal designs, maximizing C
K

(
M(∂

(n)
)
)

— and therefore minimizing

the variance of the Gauss–Markov estimator of the parameter of interest θ
2

—

in the set of all exact designs with nonsingular matrix M(∂
(n)

) are

∂∗
(n)

=









−1 0 1

1

4

1

2

1

4

if n = 4p





−1 0 1

p

4p +1

2p +1

4p +1

p

4p +1

if n = 4p +1





−1 ± x
0
(n) 1

p +1

4p + 2

2p +1

4p + 2

p

4p + 2

if n = 4p + 2





−1 0 1

p +1

4p + 3

2p +1

4p + 3

p +1

4p + 3

if n = 4p + 3

,

where in the case n= 2p+2 the point x
0
(n) is the real root of the cubic polynomial

n2x3 − 3nx2
+ (n2−2)x − n (Kraft and Schaefer, 1995).

On the other hand, an optimal approximate design to estimate θ
2
maximizes

C
e
2

(
M(∂)

)
=

|M(∂)|

m
2
− m2

1

=
H

4
(∂)

H
2
(∂)

.

This can be reexpressed in terms of the canonical moments of the measure ∂:

C
e
2

(
M(∂)

)
= 2

4
2∏

k=1

γ
2k

= 2
4 χ

4

3∏

j=1

χ
j
ξ

j
.
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The maximization in terms of canonical moments yelds χ
1
= χ

2
= χ

3
=

1
2

and χ
4
=1, and the approximate optimal design for estimating θ

2
is

∂∗
=





−1 0 1

1

4

1

2

1

4

.

Hence, n
0

denoting the closest integer to
n

4
, ∂∗

approximates the exact

design ∂̃(n) =





−1 0 1

n
0

n
1−

2n
0

n

n
0

n

.

In fact, they coincide unless n = 4p + 2, and in this case comparing the

performance of the two designs using the relative efficiency ratio
C

e
2

(
M(∂̃

(4p+2)
)
)

C
e
2

(
M(∂∗

(4p+2)
)
)

we can observe that for p≥ 5 we get
C

e
2

(
M(∂̃

(4p+2)
)
)

C
e
2

(
M(∂∗

(4p+2)
)
) ≥ 0.995, as seen on Table 1.

Table 1: Relative efficiency of the approximate design.

p 1 2 3 4 5

n 6 10 14 18 22

x
0
(p) 0.0707 0.0408 0.0289 0.0224 0.0183

relative efficiency 0.9327 0.9759 0.9877 0.9925 0.9950

4. DISCRIMINANT, ROBUST AND MIXED DESIGNS

Consider the model Y =

r∑
k=0

θ
rk

xk
+ ε, under the gaussian assumption.

The optimal design to fit a linear regression model is fatally inefficient to detect

curvature, and in general an optimal design for a specific task can be inappro-

priate for slightly different purposes. Hence we recommend that the analysis

be performed in two steps, first to try to identify the appropriate degree of the

polynomial, then to build up the optimal design.

The two steps can however be merged if practical considerations on data

gathering costs imply that should be so.

Anderson (1962) invented a good decision rule for this problem: For a given

nondecreasing sequence of levels (α
1
, ..., αr) the procedure he devised chooses

the largest integer in {1, ..., r} for which the F -test rejects the null hypothesis

H
0
: θ

jj
= 0 at the levels α

j
. This method has several optimality properties, and

led to the introduction of discriminant and of robust designs, discussed in what

follows.
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Let Fr be the class of all possible polynomial regression models up to

degree r, and π = (π
1
, ..., πr) nonnegative numbers with πr > 0 and such that

π
1
+ · · · + πr = 1. Those are interpreted as “priors” reflecting the experimenter

belief about the adequacy of the polynomial regression of degree ℓ, ℓ = 1, ..., r.

As discussed beforehand, H
0
: θ

ℓℓ
= 0 can be tested using a test statis-

tic with non-central F distribution, and the power function increases with the

non centrality parameter which we now rewrite δ2
ℓ (∂) =

θ2
ℓℓ

σ2

(
eT
ℓ (XT

l Xℓ)
−1 eℓ

)−1
.

As this should ideally be maximized for ℓ = 1, ..., r, which would amount to jointly

maximizing

eff
D1

ℓ (∂) =
δ2
ℓ (∂)

sup
η

δ2
ℓ (η)

= 2
2ℓ−2 |Mℓ (∂)|

|Mℓ−1 (∂)|
,

a task obviously beyond what is feasible, what can be done in practice is to maxi-

mize an appropriate weighted mean of the above efficiencies, using the weights

in π corresponding to the credibility the experimenter puts in the adequacy of

using polynomal regression of each of the degrees ℓ, ℓ = 1, ..., r.

A design ∂
0,π

with moment matrix M(∂
0,π

) is a Ψ
0
-optimal discrimi-

nating design for the class Fr with respect to the prior π if and

only if ∂
0,π

maximizes the weighted geometric mean

Ψ
π

0
(∂) =

r∏

k=1

(
eff

D
1

k (∂)

)
π

k
=

r∏

k=1

(
2
4k−2

(b−a)2k

|M
k
(∂)|∣∣M

k−1
(∂)
∣∣

)
π

k

.

(Observe that if π = (0, ..., 0, 1) we obtain the D
1

optimality criterion.)

It is readily established that the Ψ
0
-optimal discriminating design for the

class Fr with respect to the prior π = (π
1
, ..., πr) is uniquely determined by its

canonical moments

χ
2i−1

=
1

2
, i = 1, ..., r , χ

2i
=

Π
i

Π
i
+ Π

i+1

, i = 1, ..., r−1 , χ
2r

= 1 ,

where Π
i
=

r∑
ℓ=i

π
ℓ

(Lau and Studden, 1985). For instance, with the uniform prior

π =
(

1
4 , 1

4 , 1
4 , 1

4

)
for the class F

4
we have

Π
1
= 1 , Π

2
=

3

4
, Π

3
=

1

2
, Π

4
=

4

4
,

and

χ
2
=

4

7
, χ

4
=

3

5
, χ

6
=

2

3
.

Therefore the the Ψ
0
-optimal discriminating design is

∂
0,π

U
=





−1 −

√
3

7
0

√
3

7
1

1

5

1

5

1

5

1

5

1

5

.
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In what concerns Ψ
π

0 -optimal discriminant designs for the classes F2, F3

and F4, and with π giving the same prior probability 1/r to the values of ℓ

ranging from 1 to r,

r π Points effD1

1
/ effD1

2
/ effD1

3
/ effD1

4
(ξ)

2

�
1

2
,
1

2

�
−1, 0, 1 0.817 / 1 / − /−

3

�
1

3
,
1

3
,
1

3

�
−1, −0.4472, 0, 4472, 1 0.600 / 0.640 / 0.853 /−

4

�
1

4
,
1

4
,
1

4
,
1

4

�
−1, −0.6547, 0, 0.6547, 1 0.571 / 0.588 / 0.627 / 0.836

we can observe, when comparing with the efficiency of the D1-optimal design for

polynomial regression of degree r = 4, that the loss of efficiency in the case of

degree 4 is largely compensated by the increased efficiency when the appropriate

degree is lower than 4.

An alternative strategy, inspired on the way Ψ
π

0 -optimal discriminant de-

signs have been defined, is to build up designs maximizing an weighted geometric

mean of D-efficiencies, up to some degree r. Those designs are christened robust

designs since they are quite efficient for a set of possible polynomial regression

degrees.

For a given weights vector π = (π1, ..., πr),
∑r

l=1πl = 1 and πi > 0,

the design ∂0,π is a Ξ
π

0 -robust design for the class Fr in respect to

the prior π if and only if ∂0,π maximizes the weighted geometric mean

Ξ
π

0 (∂) =

r∏

ℓ=1

(
eff

D
ℓ (∂)

)πℓ
=

r∏

ℓ=1

(
|Mℓ (∂)|

|Mℓ (∂D)|

)πℓ/(ℓ+1)

.

Dette and Studden (1995) show that the canonical moments for the above

defined robust design are

χ
2i−1

=
1

2
, i = 1, ..., r , χ

2i
=

σi

σi + σi+1
, i = 1, ..., r−1 , χ

2r
= 1 ,

with σi =

r∑

ℓ=i

ℓ+1− i

ℓ+1
πℓ .

For Ξ
π

0 -robust designs for the classes F2, F3 and F4, and with π giving the

same prior probability 1/r to the values of ℓ ranging from 1 to r,

m Points Weights effD
1 /effD

2 /effD
3 /effD

4 (ξ)

2 −1, 0, 1 0.389, 0.222, 0, 389 0.881/0.968/ − /−

3 −1,−0.401, 0.401, 1 0.319, 0.181, 0.181, 0.319 0.835/0.914/0.954/−

4 −1,−0.605, 0,−1, 0.605, 1 0.271, 0.152, 0.153, 0.152, 0.271 0.809/0.883/0.927/0.949
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As we shall show in Tables 5–12 below, gross loss of efficiency can be

incurred into — up to 10% — when a Ξ
π

0 -robust design is used instead of a Ψ
π

0 -

discriminant design, or vice-versa. This prompted us to use a mixed strategy,

defining Θ
π

0 -mixed designs as follows:

For a given weights vector π = (π1, ..., πr),
∑r

l=1πl = 1 and πi > 0,

the design ∂0,π is a Θ
π

0 -mixed design for the class Fr in respect to

the prior π if and only if ∂0,π maximizes the weighted geometric mean

Θ
π

0 =

r∏

ℓ=1

(
eff

D1

ℓ (∂)
)πℓ

r∏

j=1

(
eff

D
j (∂)

)πj

=

r∏

ℓ=1

(
2
2ℓ−2 |Mℓ(∂)|

|Mℓ−1(∂)|

)πℓ r∏

j=1

(
Mj(∂)

Mj

(
∂D

j

)
)πj

j+1

.

In Tables 2–4 we present mixed designs for Fr, r = 2, 3, 4, and in Tables

5–12 we study the corresponding efficiencies when they are used instead of the

corresponding optimal discriminant or robust designs.

Table 2: Θ
π

0
-optimal mixed design, r = 2, π = (a, 1−a).

a weight at ±1 weight at 0

0.05 0.2835 0.4330

0.10 0.2895 0.4211

0.15 0.2958 0.4084

0.20 0.3025 0.3951

0.25 0.3095 0.3810

0.30 0.3170 0.3660

0.35 0.3249 0.3502

0.40 0.3333 0.3333

0.45 0.3423 0.3154

0.50 0.3519 0.2963

0.55 0.3621 0.2759

0.60 0.3730 0.2540

0.65 0.3848 0.2305

0.70 0.3974 0.2051

0.75 0.4111 0.1778

0.80 0.4259 0.1481

0.85 0.4420 0.1159

0.90 0.4596 0.0808

0.95 0.4788 0.0423
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Table 3: Θ
π

0
-optimal mixed design, r = 3, π = (a, b, 1−a−b).

a b t weight at ±1 weight at ±t

0.1 0.1 0.4911 0.2119 0.2881

0.1 0.2 0.4748 0.2190 0.2810

0.1 0.3 0.4553 0.2267 0.2733

0.1 0.4 0.4315 0.2350 0.2650

0.1 0.5 0.4019 0.2440 0.2560

0.1 0.6 0.3635 0.2538 0.2462

0.1 0.7 0.3112 0.2646 0.2354

0.1 0.8 0.2318 0.2764 0.2236

0.2 0.1 0.5001 0.2256 0.2744

0.2 0.2 0.4808 0.2338 0.2662

0.2 0.3 0.4569 0.2428 0.2572

0.2 0.4 0.4269 0.2525 0.2475

0.2 0.5 0.3876 0.2632 0.2368

0.2 0.6 0.3333 0.2750 0.2250

0.2 0.7 0.2496 0.2880 0.2120

0.3 0.1 0.5095 0.2415 0.2585

0.3 0.2 0.4858 0.2513 0.2487

0.3 0.3 0.4556 0.2619 0.2381

0.3 0.4 0.4155 0.2736 0.2264

0.3 0.5 0.3593 0.2865 0.2135

0.3 0.6 0.2709 0.3009 0.1991

0.4 0.1 0.5190 0.2606 0.2394

0.4 0.2 0.4889 0.2722 0.2278

0.4 0.3 0.4483 0.2851 0.2149

0.4 0.4 0.3902 0.2994 0.2006

0.4 0.5 0.2967 0.3154 0.1846

0.5 0.1 0.5281 0.2836 0.2164

0.5 0.2 0.4875 0.2978 0.2022

0.5 0.3 0.4279 0.3137 0.1863

0.5 0.4 0.3289 0.3316 0.1684

0.6 0.1 0.5351 0.3121 0.1879

0.6 0.2 0.4748 0.3299 0.1701

0.6 0.3 0.3705 0.3500 0.1500

0.3 0.4 0.5353 0.3481 0.1519

0.3 0.5 0.4267 0.3710 0.1290

0.3 0.6 0.5085 0.3953 0.1047

1/3 1/3 0.4407 0.2731 0.2269
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Table 4: Θ
π

0
-optimal mixed design, r = 4, π = (a, b, c, 1−a−b−c).

a b c t weight at ±1 weight at ±t weight at 0

0.1 0.1 0.1 0.6973 0.1717 0.2177 0.2210

0.1 0.1 0.2 0.6836 0.1764 0.2176 0.2119

0.1 0.1 0.3 0.6673 0.1814 0.2184 0.2004

0.1 0.1 0.4 0.6474 0.1867 0.2206 0.1853

0.1 0.1 0.5 0.6228 0.1924 0.2252 0.1647

0.1 0.1 0.6 0.5913 0.1985 0.2341 0.1349

0.1 0.1 0.7 0.5495 0.2050 0.2513 0.0874

0.1 0.2 0.1 0.6937 0.1811 0.2036 0.2307

0.1 0.2 0.2 0.6765 0.1864 0.2036 0.2200

0.1 0.2 0.3 0.6553 0.1920 0.2051 0.2057

0.1 0.2 0.4 0.6284 0.1981 0.2091 0.1856

0.1 0.2 0.5 0.5933 0.2046 0.2178 0.1553

0.1 0.2 0.6 0.5453 0.2115 0.2363 0.1043

0.1 0.3 0.1 0.6886 0.1917 0.1873 0.2420

0.1 0.3 0.2 0.6661 0.1977 0.1879 0.2289

0.1 0.3 0.3 0.6370 0.2042 0.1908 0.2100

0.1 0.3 0.4 0.5979 0.2111 0.1988 0.1802

0.1 0.3 0.5 0.5423 0.2186 0.2182 0.1265

0.1 0.4 0.1 0.6811 0.2038 0.1686 0.2552

0.1 0.4 0.2 0.6499 0.2107 0.1701 0.2383

0.1 0.4 0.3 0.6065 0.2182 0.1766 0.2104

0.1 0.4 0.4 0.5417 0.2262 0.1959 0.1557

0.1 0.5 0.1 0.6692 0.2177 0.1469 0.2707

0.1 0.5 0.2 0.6217 0.2258 0.1509 0.2466

0.1 0.5 0.3 0.5462 0.2345 0.1683 0.1943

0.1 0.6 0.1 0.6481 0.2340 0.1216 0.2887

0.1 0.6 0.2 0.5610 0.2435 0.1342 0.2447

0.1 0.7 0.1 0.5981 0.2533 0.0935 0.3064

0.2 0.1 0.1 0.7031 0.1851 0.2128 0.2041

0.2 0.1 0.2 0.6869 0.1907 0.2124 0.1937

0.2 0.1 0.3 0.6670 0.1967 0.2132 0.1801

0.2 0.1 0.4 0.6419 0.2032 0.2162 0.1613

0.2 0.1 0.5 0.6092 0.2101 0.2231 0.1335

0.2 0.1 0.6 0.5647 0.2175 0.2384 0.0881

0.2 0.2 0.1 0.6978 0.1964 0.1965 0.2143

0.2 0.2 0.2 0.6766 0.2028 0.1964 0.2017

0.2 0.2 0.3 0.6492 0.2097 0.1985 0.1837

0.2 0.2 0.4 0.6125 0.2171 0.2049 0.1559

0.2 0.2 0.5 0.5607 0.2251 0.2212 0.1074

0.2 0.3 0.1 0.6900 0.2093 0.1775 0.2265

0.2 0.3 0.2 0.6604 0.2167 0.1783 0.2101

0.2 0.3 0.3 0.6195 0.2247 0.1835 0.1836

(continued on next page)
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Table 4: Θ
π

0
-optimal mixed design, r = 4, π = (a, b, c, 1−a−b−c).

(continued from previous page)

a b c t weight at ±1 weight at ±t weight at 0

0.2 0.3 0.4 0.5586 0.2333 0.2001 0.1332

0.2 0.4 0.1 0.6778 0.2242 0.1552 0.2411

0.2 0.4 0.2 0.6325 0.2329 0.1584 0.2175

0.2 0.4 0.3 0.5610 0.2423 0.1737 0.1681

0.2 0.5 0.1 0.6562 0.2418 0.1291 0.2582

0.2 0.5 0.2 0.5728 0.2520 0.1404 0.2151

0.2 0.6 0.1 0.6058 0.2627 0.0997 0.2753

0.3 0.1 0.1 0.7089 0.2014 0.2058 0.1857

0.3 0.1 0.2 0.6891 0.2082 0.2049 0.1737

0.3 0.1 0.3 0.6637 0.2156 0.2060 0.1569

0.3 0.1 0.4 0.6297 0.2236 0.2107 0.1316

0.3 0.1 0.5 0.5820 0.2322 0.2234 0.0888

0.3 0.2 0.1 0.7009 0.2152 0.1865 0.1966

0.3 0.2 0.2 0.6732 0.2231 0.1864 0.1809

0.3 0.2 0.3 0.6349 0.2317 0.1902 0.1562

0.3 0.2 0.4 0.5785 0.2411 0.2035 0.1109

0.3 0.3 0.1 0.6884 0.2313 0.1639 0.2098

0.3 0.3 0.2 0.6457 0.2406 0.1658 0.1872

0.3 0.3 0.3 0.5787 0.2508 0.1784 0.1416

0.3 0.4 0.1 0.6663 0.2503 0.1369 0.2256

0.3 0.4 0.2 0.5872 0.2614 0.1464 0.1844

0.3 0.5 0.1 0.6155 0.2731 0.1061 0.2417

0.4 0.1 0.1 0.7144 0.2216 0.1957 0.1656

0.4 0.1 0.2 0.6888 0.2301 0.1944 0.1510

0.4 0.1 0.3 0.6536 0.2394 0.1963 0.1287

0.4 0.1 0.4 0.6022 0.2495 0.2059 0.0892

0.4 0.2 0.1 0.7016 0.2389 0.1726 0.1771

0.4 0.2 0.2 0.6619 0.2490 0.1730 0.1561

0.4 0.2 0.3 0.6001 0.2601 0.1823 0.1152

0.4 0.3 0.1 0.6791 0.2595 0.1449 0.1912

0.4 0.3 0.2 0.6051 0.2717 0.1520 0.1527

0.4 0.4 0.1 0.6281 0.2845 0.1126 0.2057

0.5 0.1 0.1 0.7182 0.2472 0.1811 0.1434

0.5 0.1 0.2 0.6821 0.2582 0.1796 0.1245

0.5 0.1 0.3 0.6263 0.2703 0.1850 0.0894

0.5 0.2 0.1 0.6956 0.2697 0.1527 0.1552

0.5 0.2 0.2 0.6276 0.2830 0.1566 0.1207

0.5 0.3 0.1 0.6445 0.2972 0.1190 0.1676

0.6 0.1 0.1 0.7172 0.2810 0.1598 0.1184

0.6 0.1 0.2 0.6566 0.2957 0.1597 0.0892

0.6 0.2 0.1 0.6667 0.3114 0.1246 0.1280

0.7 0.1 0.1 0.6978 0.3274 0.1285 0.0882

0.25 0.25 0.25 0.6484 0.2239 0.1839 0.1845
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Table 5: Values of Ψ
π

0
for r = 2 and π = (a, 1−a).

100× 100×
a Ψ

π

0
(D) Ψ

π

0
(R) Ψ

π

0
(M) [

Ψ
π

0
(R)−Ψ

π

0
(D)

] [
Ψ

π

0
(M)−Ψ

π

0
(D)

]

0.05 0.967 0.866 0.955 −10.076 −1.110

0.10 0.935 0.844 0.926 −9.118 −0.995

0.15 0.907 0.824 0.898 −8.233 −0.890

0.20 0.880 0.806 0.872 −7.414 −0.795

0.25 0.856 0.790 0.849 −6.657 −0.707

0.30 0.834 0.775 0.828 −5.958 −0.627

0.35 0.814 0.761 0.809 −5.312 −0.554

0.40 0.797 0.750 0.792 −4.714 −0.487

0.45 0.782 0.741 0.778 −4.162 −0.426

0.50 0.770 0.733 0.766 −3.650 −0.370

0.55 0.760 0.728 0.757 −3.177 −0.320

0.60 0.753 0.726 0.751 −2.739 −0.273

0.65 0.750 0.727 0.748 −2.331 −0.230

0.70 0.751 0.731 0.749 −1.951 −0.191

0.75 0.757 0.741 0.755 −1.596 −0.155

0.80 0.768 0.756 0.767 −1.262 −0.121

0.85 0.789 0.779 0.788 −0.943 −0.090

0.90 0.822 0.815 0.821 −0.635 −0.060

0.95 0.877 0.873 0.876 −0.328 −0.031

Table 6: Values of Ξ
π

0
for r = 2 and π = (a, 1−a).

100× 100×
a Ξ

π

0
(D) Ξ

π

0
(R) Ξ

π

0
(M) [

Ξ
π

0
(D)−Ξ

π

0
(R)
] [

Ξ
π

0
(M)−Ξ

π

0
(R)
]

0.05 0.939 0.990 0.967 −5.084 −2.343

0.10 0.934 0.981 0.959 −4.679 −2.161

0.15 0.929 0.972 0.952 −4.293 −1.986

0.20 0.924 0.963 0.945 −3.923 −1.819

0.25 0.919 0.955 0.938 −3.570 −1.658

0.30 0.915 0.947 0.932 −3.233 −1.505

0.35 0.911 0.941 0.927 −2.912 −1.359

0.40 0.908 0.934 0.922 −2.607 −1.219

0.45 0.906 0.929 0.918 −2.317 −1.086

0.50 0.904 0.924 0.914 −2.042 −0.959

0.55 0.902 0.920 0.912 −1.781 −0.839

0.60 0.902 0.917 0.910 −1.534 −0.724

0.65 0.903 0.916 0.910 −1.301 −0.616

0.70 0.905 0.916 0.911 −1.081 −0.513

0.75 0.909 0.917 0.913 −0.873 −0.416

0.80 0.914 0.921 0.918 −0.678 −0.324

0.85 0.923 0.928 0.926 −0.495 −0.237

0.90 0.937 0.940 0.938 −0.321 −0.154

0.95 0.957 0.959 0.958 −0.158 −0.076
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Table 7: Values of Ψ
π

0
for r = 3 and π = (a, b, 1−a−b).

100× 100×
a b Ψ

π

0
(D) Ψ

π

0
(R) Ψ

π

0
(M) [

Ψ
π

0
(R)−Ψ

π

0
(D)

] [
Ψ

π

0
(M)−Ψ

π

0
(D)

]

0.1 0.1 0.875 0.772 0.866 −10.305 −0.976

0.1 0.2 0.825 0.736 0.816 −8.885 −0.862

0.1 0.3 0.783 0.705 0.775 −7.788 −0.778

0.1 0.4 0.751 0.681 0.744 −6.989 −0.721

0.1 0.5 0.730 0.665 0.723 −6.478 −0.688

0.1 0.6 0.722 0.659 0.715 −6.266 −0.683

0.1 0.7 0.733 0.669 0.726 −6.405 −0.708

0.1 0.8 0.776 0.706 0.769 −7.058 −0.781

0.2 0.1 0.824 0.741 0.817 −8.285 −0.758

0.2 0.2 0.777 0.707 0.771 −7.049 −0.665

0.2 0.3 0.740 0.679 0.734 −6.133 −0.600

0.2 0.4 0.714 0.659 0.708 −5.518 −0.561

0.2 0.5 0.700 0.648 0.695 −5.206 −0.548

0.2 0.6 0.704 0.652 0.699 −5.232 −0.564

0.2 0.7 0.739 0.681 0.733 −5.724 −0.621

0.3 0.1 0.781 0.716 0.776 −6.556 −0.580

0.3 0.2 0.738 0.684 0.733 −5.485 −0.504

0.3 0.3 0.706 0.659 0.702 −4.741 −0.456

0.3 0.4 0.686 0.643 0.682 −4.314 −0.435

0.3 0.5 0.683 0.641 0.679 −4.227 −0.442

0.3 0.6 0.709 0.663 0.704 −4.577 −0.487

0.4 0.1 0.747 0.696 0.743 −5.077 −0.435

0.4 0.2 0.708 0.666 0.704 −4.157 −0.373

0.4 0.3 0.681 0.645 0.678 −3.587 −0.342

0.4 0.4 0.671 0.637 0.667 −3.374 −0.340

0.4 0.5 0.687 0.651 0.683 −3.591 −0.373

0.5 0.1 0.722 0.684 0.719 −3.809 −0.316

0.5 0.2 0.687 0.657 0.685 −3.038 −0.269

0.5 0.3 0.668 0.642 0.666 −2.667 −0.255

0.5 0.4 0.675 0.647 0.672 −2.745 −0.278

0.6 0.1 0.708 0.681 0.706 −2.718 −0.219

0.6 0.2 0.679 0.657 0.677 −2.116 −0.188

0.6 0.3 0.674 0.654 0.672 −2.024 −0.198

0.7 0.1 0.708 0.690 0.706 −1.775 −0.141

0.7 0.2 0.689 0.675 0.688 −1.424 −0.131

0.8 0.1 0.729 0.719 0.728 −0.982 −0.080

1/3 1/3 0.689 0.648 0.685 −4.174 −0.407
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Table 8: Values of Ξ
π

0
for r = 3 and π = (a, b, 1−a−b).

100× 100×
a b Ξ

π

0
(D) Ξ

π

0
(R) Ξ

π

0
(M) [

Ξ
π

0
(D)−Ξ

π

0
(R)
] [

Ξ
π

0
(M)−Ξ

π

0
(R)
]

0.1 0.1 0.913 0.962 0.938 −4.996 −2.433

0.1 0.2 0.905 0.951 0.929 −4.597 −2.208

0.1 0.3 0.898 0.941 0.920 −4.288 −2.029

0.1 0.4 0.892 0.932 0.914 −4.070 −1.898

0.1 0.5 0.887 0.927 0.909 −3.945 −1.817

0.1 0.6 0.885 0.924 0.907 −3.920 −1.790

0.1 0.7 0.887 0.927 0.909 −4.005 −1.823

0.1 0.8 0.897 0.939 0.920 −4.221 −1.929

0.2 0.1 0.900 0.941 0.921 −4.076 −2.005

0.2 0.2 0.893 0.930 0.912 −3.713 −1.797

0.2 0.3 0.887 0.922 0.905 −3.449 −1.641

0.2 0.4 0.882 0.915 0.900 −3.288 −1.538

0.2 0.5 0.880 0.912 0.897 −3.234 −1.492

0.2 0.6 0.881 0.914 0.898 −3.296 −1.510

0.2 0.7 0.889 0.924 0.908 −3.494 −1.603

0.3 0.1 0.890 0.922 0.906 −3.258 −1.620

0.3 0.2 0.884 0.913 0.899 −2.930 −1.429

0.3 0.3 0.879 0.906 0.893 −2.716 −1.297

0.3 0.4 0.875 0.902 0.889 −2.621 −1.227

0.3 0.5 0.876 0.902 0.890 −2.654 −1.226

0.3 0.6 0.882 0.911 0.898 −2.831 −1.305

0.4 0.1 0.881 0.906 0.894 −2.534 −1.273

0.4 0.2 0.876 0.899 0.888 −2.245 −1.101

0.4 0.3 0.873 0.894 0.884 −2.090 −0.999

0.4 0.4 0.872 0.893 0.883 −2.080 −0.973

0.4 0.5 0.878 0.900 0.890 −2.229 −1.034

0.5 0.1 0.875 0.894 0.884 −1.898 −0.963

0.5 0.2 0.872 0.888 0.880 −1.654 −0.814

0.5 0.3 0.871 0.887 0.879 −1.579 −0.752

0.5 0.4 0.875 0.892 0.884 −1.688 −0.789

0.6 0.1 0.873 0.887 0.880 −1.344 −0.687

0.6 0.2 0.872 0.884 0.878 −1.164 −0.571

0.6 0.3 0.876 0.888 0.882 −1.209 −0.572

0.7 0.1 0.877 0.886 0.882 −0.868 −0.446

0.7 0.2 0.881 0.889 0.885 −0.798 −0.385

0.8 0.1 0.892 0.897 0.895 −0.482 −0.244

1/3 1/3 0.875 0.900 0.888 −2.458 −1.166
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Table 9: Values of Ψ
π

0
for r = 4 and π = (a, b, c, 1−a−b−c).

100× 100×
a b c Ψ

π

0
(D) Ψ

π

0
(R) Ψ

π

0
(M) [

Ψ
π

0
(R)−Ψ

π

0
(D)

] [
Ψ

π

0
(M)−Ψ

π

0
(D)

]

0.1 0.1 0.1 0.820 0.722 0.811 −9.740 −0.814

0.1 0.1 0.2 0.773 0.688 0.766 −8.483 −0.741

0.1 0.1 0.3 0.736 0.660 0.729 −7.586 −0.693

0.1 0.1 0.4 0.710 0.640 0.703 −7.035 −0.668

0.1 0.1 0.5 0.696 0.628 0.690 −6.839 −0.668

0.1 0.1 0.6 0.700 0.630 0.693 −7.059 −0.696

0.1 0.1 0.7 0.735 0.656 0.727 −7.876 −0.768

0.1 0.2 0.1 0.772 0.691 0.765 −8.138 −0.698

0.1 0.2 0.2 0.730 0.659 0.724 −7.068 −0.639

0.1 0.2 0.3 0.698 0.634 0.692 −6.369 −0.607

0.1 0.2 0.4 0.679 0.618 0.673 −6.043 −0.599

0.1 0.2 0.5 0.676 0.614 0.669 −6.132 −0.619

0.1 0.2 0.6 0.701 0.633 0.694 −6.787 −0.681

0.1 0.3 0.1 0.734 0.665 0.728 −6.914 −0.620

0.1 0.3 0.2 0.696 0.636 0.690 −6.013 −0.574

0.1 0.3 0.3 0.669 0.614 0.664 −5.519 −0.555

0.1 0.3 0.4 0.659 0.604 0.653 −5.459 −0.566

0.1 0.3 0.5 0.675 0.616 0.669 −5.960 −0.617

0.1 0.4 0.1 0.705 0.644 0.699 −6.039 −0.575

0.1 0.4 0.2 0.671 0.618 0.665 −5.306 −0.540

0.1 0.4 0.3 0.652 0.602 0.647 −5.053 −0.538

0.1 0.4 0.4 0.659 0.605 0.653 −5.387 −0.577

0.1 0.5 0.1 0.686 0.631 0.681 −5.500 −0.559

0.1 0.5 0.2 0.658 0.608 0.652 −4.962 −0.537

0.1 0.5 0.3 0.653 0.602 0.647 −5.079 −0.561

0.1 0.6 0.1 0.681 0.627 0.675 −5.312 −0.574

0.1 0.6 0.2 0.662 0.612 0.657 −5.088 −0.573

0.1 0.7 0.1 0.695 0.640 0.689 −5.571 −0.625

0.2 0.1 0.1 0.772 0.694 0.766 −7.742 −0.622

0.2 0.1 0.2 0.730 0.663 0.724 −6.673 −0.565

0.2 0.1 0.3 0.698 0.638 0.692 −5.970 −0.532

0.2 0.1 0.4 0.678 0.622 0.673 −5.632 −0.524

0.2 0.1 0.5 0.675 0.618 0.670 −5.698 −0.541

0.2 0.1 0.6 0.700 0.637 0.694 −6.309 −0.596

0.2 0.2 0.1 0.729 0.665 0.723 −6.330 −0.525

0.2 0.2 0.2 0.691 0.636 0.686 −5.448 −0.483

0.2 0.2 0.3 0.664 0.615 0.660 −4.959 −0.466

0.2 0.2 0.4 0.654 0.605 0.649 −4.888 −0.477

0.2 0.2 0.5 0.670 0.617 0.665 −5.352 −0.523

0.2 0.3 0.1 0.695 0.642 0.690 −5.301 −0.467

0.2 0.3 0.2 0.661 0.615 0.657 −4.598 −0.437

0.2 0.3 0.3 0.643 0.599 0.638 −4.354 −0.437

(continued on next page)
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Table 9: Values of Ψ
π

0
for r = 4 and π = (a, b, c, 1−a−b−c).

(continued from previous page)

100× 100×
a b c Ψ

π

0
(D) Ψ

π

0
(R) Ψ

π

0
(M) [

Ψ
π

0
(R)−Ψ

π

0
(D)

] [
Ψ

π

0
(M)−Ψ

π

0
(D)

]

0.2 0.3 0.4 0.649 0.602 0.644 −4.663 −0.474

0.2 0.4 0.1 0.671 0.625 0.667 −4.632 −0.441

0.2 0.4 0.2 0.643 0.602 0.639 −4.131 −0.424

0.2 0.4 0.3 0.639 0.596 0.634 −4.244 −0.449

0.2 0.5 0.1 0.660 0.617 0.656 −4.330 −0.447

0.2 0.5 0.2 0.642 0.601 0.638 −4.135 −0.451

0.2 0.6 0.1 0.668 0.624 0.663 −4.468 −0.489

0.3 0.1 0.1 0.732 0.672 0.728 −6.028 −0.466

0.3 0.1 0.2 0.694 0.643 0.690 −5.135 −0.423

0.3 0.1 0.3 0.668 0.621 0.664 −4.630 −0.406

0.3 0.1 0.4 0.657 0.612 0.653 −4.536 −0.413

0.3 0.1 0.5 0.674 0.624 0.669 −4.961 −0.454

0.3 0.2 0.1 0.693 0.645 0.689 −4.790 −0.387

0.3 0.2 0.2 0.659 0.618 0.656 −4.094 −0.359

0.3 0.2 0.3 0.641 0.603 0.637 −3.844 −0.359

0.3 0.2 0.4 0.647 0.606 0.643 −4.124 −0.393

0.3 0.3 0.1 0.664 0.624 0.660 −3.952 −0.347

0.3 0.3 0.2 0.636 0.601 0.633 −3.471 −0.333

0.3 0.3 0.3 0.632 0.596 0.628 −3.573 −0.357

0.3 0.4 0.1 0.647 0.612 0.643 −3.511 −0.342

0.3 0.4 0.2 0.630 0.596 0.626 −3.336 −0.348

0.3 0.5 0.1 0.648 0.613 0.645 −3.523 −0.374

0.4 0.1 0.1 0.701 0.655 0.698 −4.557 −0.341

0.4 0.1 0.2 0.667 0.629 0.664 −3.838 −0.311

0.4 0.1 0.3 0.649 0.613 0.645 −3.560 −0.308

0.4 0.1 0.4 0.655 0.617 0.652 −3.802 −0.337

0.4 0.2 0.1 0.665 0.631 0.663 −3.484 −0.277

0.4 0.2 0.2 0.638 0.608 0.635 −3.000 −0.265

0.4 0.2 0.3 0.633 0.603 0.630 −3.080 −0.286

0.4 0.3 0.1 0.642 0.614 0.640 −2.859 −0.257

0.4 0.3 0.2 0.625 0.598 0.622 −2.690 −0.265

0.4 0.4 0.1 0.637 0.609 0.634 −2.724 −0.278

0.5 0.1 0.1 0.679 0.646 0.676 −3.289 −0.240

0.5 0.1 0.2 0.650 0.623 0.648 −2.769 −0.224

0.5 0.1 0.3 0.646 0.618 0.644 −2.809 −0.240

0.5 0.2 0.1 0.648 0.624 0.646 −2.398 −0.193

0.5 0.2 0.2 0.630 0.608 0.628 −2.215 −0.201

0.5 0.3 0.1 0.634 0.613 0.632 −2.067 −0.198

0.6 0.1 0.1 0.667 0.645 0.666 −2.200 −0.159

0.6 0.1 0.2 0.650 0.630 0.648 −1.969 −0.161

0.6 0.2 0.1 0.644 0.628 0.643 −1.570 −0.136

0.7 0.1 0.1 0.672 0.659 0.671 −1.305 −0.098

0.25 0.25 0.25 0.648 0.606 0.644 −4.137 −0.391
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Table 10: Values of Ξ
π

0
for r = 4 and π = (a, b, c, 1−a−b−c).

100× 100×
a b c Ξ

π

0
(D) Ξ

π

0
(R) Ξ

π

0
(M) [

Ξ
π

0
(D)−Ξ

π

0
(R)
] [

Ξ
π

0
(M)−Ξ

π

0
(R)
]

0.1 0.1 0.1 0.901 0.947 0.924 −4.527 −2.284

0.1 0.1 0.2 0.896 0.938 0.917 −4.274 −2.114

0.1 0.1 0.3 0.890 0.931 0.911 −4.113 −1.998

0.1 0.1 0.4 0.886 0.926 0.907 −4.048 −1.939

0.1 0.1 0.5 0.883 0.923 0.904 −4.084 −1.941

0.1 0.1 0.6 0.882 0.924 0.904 −4.229 −2.010

0.1 0.1 0.7 0.887 0.932 0.910 −4.503 −2.158

0.1 0.2 0.1 0.892 0.932 0.912 −4.024 −1.998

0.1 0.2 0.2 0.887 0.925 0.906 −3.811 −1.849

0.1 0.2 0.3 0.882 0.919 0.901 −3.705 −1.762

0.1 0.2 0.4 0.878 0.916 0.898 −3.711 −1.743

0.1 0.2 0.5 0.877 0.916 0.898 −3.839 −1.797

0.1 0.2 0.6 0.881 0.922 0.903 −4.106 −1.937

0.1 0.3 0.1 0.883 0.920 0.902 −3.662 −1.779

0.1 0.3 0.2 0.878 0.913 0.897 −3.492 −1.653

0.1 0.3 0.3 0.875 0.909 0.893 −3.450 −1.603

0.1 0.3 0.4 0.873 0.909 0.892 −3.546 −1.634

0.1 0.3 0.5 0.876 0.914 0.896 −3.798 −1.762

0.1 0.4 0.1 0.875 0.910 0.893 −3.439 −1.628

0.1 0.4 0.2 0.872 0.905 0.890 −3.319 −1.531

0.1 0.4 0.3 0.870 0.903 0.888 −3.361 −1.529

0.1 0.4 0.4 0.872 0.908 0.891 −3.585 −1.636

0.1 0.5 0.1 0.869 0.903 0.887 −3.355 −1.549

0.1 0.5 0.2 0.868 0.901 0.886 −3.302 −1.491

0.1 0.5 0.3 0.869 0.904 0.888 −3.472 −1.564

0.1 0.6 0.1 0.867 0.901 0.886 −3.412 −1.546

0.1 0.6 0.2 0.869 0.904 0.888 −3.477 −1.556

0.1 0.7 0.1 0.872 0.908 0.892 −3.636 −1.635

0.2 0.1 0.1 0.888 0.924 0.906 −3.630 −1.854

0.2 0.1 0.2 0.882 0.917 0.900 −3.407 −1.702

0.2 0.1 0.3 0.878 0.911 0.895 −3.288 −1.610

0.2 0.1 0.4 0.874 0.907 0.891 −3.278 −1.583

0.2 0.1 0.5 0.873 0.907 0.891 −3.385 −1.627

0.2 0.1 0.6 0.877 0.913 0.895 −3.626 −1.754

0.2 0.2 0.1 0.879 0.911 0.895 −3.171 −1.590

0.2 0.2 0.2 0.875 0.905 0.890 −2.996 −1.462

0.2 0.2 0.3 0.871 0.900 0.886 −2.945 −1.407

0.2 0.2 0.4 0.869 0.899 0.885 −3.028 −1.432

0.2 0.2 0.5 0.872 0.904 0.889 −3.261 −1.549

0.2 0.3 0.1 0.872 0.900 0.886 −2.870 −1.400

0.2 0.3 0.2 0.868 0.896 0.883 −2.749 −1.302

0.2 0.3 0.3 0.866 0.894 0.881 −2.785 −1.296

(continued on next page)
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Table 10: Values of Ξ
π

0
for r = 4 and π = (a, b, c, 1−a−b−c).

(continued from previous page)

100× 100×
a b c Ξ

π

0
(D) Ξ

π

0
(R) Ξ

π

0
(M) [

Ξ
π

0
(D)−Ξ

π

0
(R)
] [

Ξ
π

0
(M)−Ξ

π

0
(R)
]

0.2 0.3 0.4 0.868 0.898 0.884 −2.996 −1.395

0.2 0.4 0.1 0.866 0.893 0.880 −2.727 −1.288

0.2 0.4 0.2 0.864 0.891 0.878 −2.677 −1.230

0.2 0.4 0.3 0.865 0.893 0.880 −2.841 −1.299

0.2 0.5 0.1 0.863 0.890 0.878 −2.743 −1.259

0.2 0.5 0.2 0.864 0.892 0.879 −2.809 −1.269

0.2 0.6 0.1 0.866 0.896 0.882 −2.940 −1.330

0.3 0.1 0.1 0.876 0.904 0.890 −2.842 −1.469

0.3 0.1 0.2 0.871 0.898 0.884 −2.651 −1.336

0.3 0.1 0.3 0.867 0.893 0.881 −2.583 −1.273

0.3 0.1 0.4 0.866 0.892 0.879 −2.643 −1.287

0.3 0.1 0.5 0.868 0.897 0.883 −2.848 −1.391

0.3 0.2 0.1 0.869 0.893 0.881 −2.429 −1.227

0.3 0.2 0.2 0.865 0.888 0.877 −2.300 −1.125

0.3 0.2 0.3 0.863 0.886 0.875 −2.322 −1.112

0.3 0.2 0.4 0.864 0.889 0.877 −2.513 −1.202

0.3 0.3 0.1 0.863 0.885 0.874 −2.198 −1.071

0.3 0.3 0.2 0.861 0.882 0.872 −2.145 −1.011

0.3 0.3 0.3 0.861 0.884 0.874 −2.298 −1.074

0.3 0.4 0.1 0.860 0.881 0.871 −2.152 −1.008

0.3 0.4 0.2 0.860 0.882 0.872 −2.218 −1.016

0.3 0.5 0.1 0.862 0.885 0.874 −2.309 −1.053

0.4 0.1 0.1 0.866 0.888 0.876 −2.153 −1.125

0.4 0.1 0.2 0.862 0.882 0.872 −2.003 −1.015

0.4 0.1 0.3 0.860 0.880 0.870 −2.001 −0.991

0.4 0.1 0.4 0.862 0.883 0.873 −2.161 −1.066

0.4 0.2 0.1 0.861 0.879 0.870 −1.793 −0.909

0.4 0.2 0.2 0.859 0.876 0.867 −1.728 −0.843

0.4 0.2 0.3 0.859 0.878 0.869 −1.862 −0.896

0.4 0.3 0.1 0.858 0.874 0.866 −1.652 −0.797

0.4 0.3 0.2 0.858 0.875 0.867 −1.711 −0.802

0.4 0.4 0.1 0.859 0.877 0.869 −1.749 −0.808

0.5 0.1 0.1 0.860 0.875 0.867 −1.555 −0.819

0.5 0.1 0.2 0.857 0.872 0.865 −1.463 −0.742

0.5 0.1 0.3 0.858 0.874 0.866 −1.563 −0.779

0.5 0.2 0.1 0.857 0.870 0.864 −1.266 −0.638

0.5 0.2 0.2 0.857 0.870 0.864 −1.309 −0.634

0.5 0.3 0.1 0.859 0.871 0.865 −1.265 −0.597

0.6 0.1 0.1 0.859 0.869 0.863 −1.045 −0.551

0.6 0.1 0.2 0.859 0.869 0.864 −1.050 −0.531

0.6 0.2 0.1 0.860 0.869 0.865 −0.878 −0.430

0.7 0.1 0.1 0.865 0.872 0.868 −0.637 −0.330

0.25 0.25 0.25 0.865 0.890 0.878 −2.503 −1.190



304 J. P. Martins, S. Mendonça and D. D. Pestana

The benefits of using the mixed optimizing strategy seem evident: the

loss of efficiency is much smaller when using a quasi-optimal design of this class

instead of an optimal discriminating or robust design, than when a robust design

is used instead of a discriminant design, or vice-versa.

5. A NOTE ON PSEUDO-CANONICAL MOMENTS OF MEA-

SURES WITH INFINITE SUPPORT

The canonical moments are defined only for measures whose support is a

subset of a closed interval. As the canonical moments are closely related with the

zeros of monic orthogonal polynomials observing the recurrence relation

Pm+1(x) =
(
x − ζ2m − ζ2m+1

)
Pm(x) − ζ2m−1 ζ2m Pm−1(x) for m≥ 1

with initial conditions P0(x) = 1 and P1(x) = x−ζ1, it seems worthwhile to try to

investigate some “pseudo-canonical moments” for measures with infinite support,

using the above recurrence relation together with the recurence relation

Pm+1(x) = (Amx + Bm) Pm(x) − Cm Pm−1(x) , m = 0, 1, 2, ... ,

with P−1(x) = 0 and Am−1Am Cm > 0, valid for any family of orthogonal

polynomials.

Let us first examine the gaussian case dµ(x) =
e
−

x2

2

√
2π

dx, x∈R.

It is well known that the Hermite polynomials H(x), recursively defined by

H0(x) = 1 ; H1(x) = x ; Hn+1(x) = x Hn(x) − n Hn−1(x) for n≥ 1

are orthogonal in what regards the measure µ.

Hence, in the gaussian case, the parameters ζm are

ζ1 = 1 ; ζ2 = 1 ; ζ2m = −ζ2m+1 = (−1)
m+1 m × (m−2) × · · ·

(m−1) × (m−3) × · · ·
for m≥ 2 .

Using the definition m ≥ 1, ζm = χ∗
m

(
1− χ∗

m−1

)
, we get

χ∗
m =

ζm

1− χ∗
m−1

(with χ∗
0 = 0) .



Optimal and Quasi-Optimal Designs 305

When m = 2 the denominator of the previous fraction is null and therefore

the gaussian distribution has only the first pseudo-canonical moment as indicated

in Table 11.

Table 11: Gaussian pseudo-canonical moments, n≤ 5.

i χ∗

i

1 1

2 —

3 —

4 —

5 —

Similarly, for the gamma measure with shape parameter α > 0,

dµ(x) =
xα−1

exp(−x)

Γ(α)
dx , x ≥ 0 ,

which is associated with the generalized Laguerre polynomials L(α)
(x) defined by

L
(α)
n+1(x) = (x−2n−1−α) L(α)

n (x) + (n+α) L
(α)
n−1(x) for n≥ 1 ,

with the initial values L
(α)
0 (x) = 1, L

(α)
1 (x) = x − α − 1, we get





ζ2m = −
m + α

ζ2m−1

ζ2m+1 = 2m + 1 + α − ζ2m

.

Using the fact that ζ0 = 1 and the relation χ∗
m =

ζm

1− χ∗
m−1

(with χ∗
0 = 0), the

pseudo-canonical moments of a gamma measure with shape α = a up to order n

are readily computed using the script

zeta(1) = a

zeta(2) = (1+a)/a

zeta(3) = (3+a)-zeta(2)

for j = 2:n

zeta(2*j) = (j+a)/zeta(2*j-1)

zeta(2*j+1) = 2*j+1+a-zeta(2*j)

end

chi(1) = zeta(1)

for j = 2:(2*n+1)

chi(j) = zeta(j)/(1-chi(j-1))

end



306 J. P. Martins, S. Mendonça and D. D. Pestana

In the table below we exhibit, as an example, the pseudo-canonical moments

up to n = 20 for the gamma measure with shape parameter α = 3.

Table 12: Gamma-3 pseudo-canonical moments, n≤ 20.

i χ∗

i i χ∗

i i χ∗

i i χ∗

i

1 3 6 0.0867 11 15.4130 16 0.0323

2 0.6667 7 11.7057 12 0.0427 17 21.2785

3 22.000 8 0.0612 13 17.3558 18 0.0287

4 0.0325 9 13.4791 14 0.0368 19 23.2510

5 8.9732 10 0.0507 15 19.3125 20 0.0259

Observe that χ∗
2n 6= 1

2 in the case of the gaussian (while for symmetric

measures with support S ⊆ [a, b] we always have χ2n =
1
2); or, in the case of

the gamma measure, for which χ∗
2 does exist, χ∗

2 isn’t associated with the raw

moments via χ2 =
m2 − m2

1

m1 (1− m1)
, a relation which holds true for the canonical

moments of finite support measures.

These two examples plainly show that the pseudo-canonical moments do not

possess the nice properties canonical moments do satisfy in the case of measures

whose support is a subset of a compact interval.
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