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FOREWORD

Recent years have witnessed a vigorous growth in the use of Extreme Value

Theory and Statistics of Extremes, with relevance to applications in a broad

spectrum of areas, ranging for example from natural hazards in geophysics and

the environment to rare events in financial risk. This special issue of REVSTAT

– Statistical Review aims at giving the readers a flavor of this exciting area of

research, through recent advances in the field.

Statistics of Extremes and Related Fields consists of six articles authored

by prominent researchers who participated in the 56th Session of the Interna-

tional Statistical Institute, which was held in PORTUGAL, Lisbon, from August

22–29, 2007. The selection involves some of the original contributions in Invited

Paper Meetings (IPMs) and Special Topics Contributed Paper Meetings (STCPMs)

in the field of Statistics of Extremes, namely IPM7 (Bias Reduction in the Esti-

mation of Parameters of Rare Events), IPM10 (Extremes, Risk and the Environ-

ment), IPM61 (Are extreme weather events more prevalent now than before?)

and STCPM17 (Extremal methods for action in today’s world). This selection

covers a wide range of topics in the field, which are of significant current interest.

The topics discussed include:

Minimum-Variance Reduced-Bias High Quantile Estimation, i.e., estimation of a
value that is exceeded with a small pre-specified probability. The semipara-
metric estimation of this parameter relies essentially on the estimation of
the tail index, the primary parameter in statistics of extremes.

An applied article whose main objective is to provide an insight into the geographic
distribution of extreme precipitation events in the Southern region of con-
tinental Portugal, as a basis for future study of the relationships between
extreme rainfall patterns.

The asymptotic properties of the so-called Generalized Probability-Weighted
Moments (GPWM), a recent extension of PWM, which address Generalized
Extreme Value distributions with large values of the shape parameter.

The problem in a general kernel goodness-of-fit test statistic for assessing whether
a sample is consistent with the Pareto-type model. Therein the relation be-
tween goodness-of-fit testing and the optimal selection of the sample fraction
for tail estimation is examined.

A proposal for use of a stationary max-stable process as a model of the dependence
structure in two-dimensional spatial problems, employing a representation
of simple max-stable processes.

A brief overview of several tests published in the context of statistical choice
of extreme value domains and for assessing extreme value conditions, also
illustrated with a teletraffic data set.



It is our hope that this edition also strengthens the ties and encourages

collaboration between researchers in Statistics of Extremes and related fields

all over the world. We thank the authors for their prompt support with their

interesting contributions. We are also most grateful to the referees for care-

ful review of the papers. Finally, we must record our deep appreciation for

the encouragement and support of the editor-in-chief, Professor Ivette Gomes,

(together with CEAUL, Center of Statistics and Applications at University of

Lisbon, http://www.ceaul.fc.ul.pt), who had a prominent role on the organiza-

tion of the IPMs and STCPMs under the auspices of ISI2007.

Finally our sincere thanks go to all those involved in making this project

successful.

Jan Beirlant

Isabel Fraga Alves

Ross Leadbetter
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Abstract:

• Heavy tailed-models are quite useful in many fields, like insurance, finance, telecom-
munications, internet traffic, among others, and it is often necessary to estimate a
high quantile, i.e., a value that is exceeded with a probability p, small. The semi-
parametric estimation of this parameter relies essentially on the estimation of the tail
index, the primary parameter in statistics of extremes. Classical semi-parametric es-
timators of extreme parameters show usually a severe bias and are known to be very
sensitive to the number k of top order statistics used in the estimation. For k small
they have a high variance, and for large k a high bias. Recently, new second-order
“shape” and “scale” estimators allowed the development of second-order reduced-bias
estimators, which are much less sensitive to the choice of k. Here we shall study, under
a third order framework, minimum-variance reduced-bias (MVRB) tail index estima-
tors, recently introduced in the literature, and dependent on an adequate estimation
of second order parameters. The improvement comes from the asymptotic variance,
which is kept equal to the asymptotic variance of the classical Hill estimator, provided
that we estimate the second order parameters at a level of a larger order than the
level used for the estimation of the first order parameter. The use of those MVRB
tail index estimators enables us to introduce new classes of reduced-bias high quantile
estimators. These new classes are compared among themselves and with previous
ones through the use of a small-scale Monte Carlo simulation.
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• statistics of extremes; tail index; high quantiles; second-order reduced-bias semi-

parametric estimation; third order framework.
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1. INTRODUCTION

Let X1, X2, ..., Xn be a set of n independent and identically distributed

(i.i.d.) random variables (r.v.’s), from a population with distribution function

(d.f.) F , in the max domain of attraction of Gγ , γ ∈ R, with

Gγ(x) =





exp
[
−(1 + γx)

− 1
γ
]
, 1 + γx > 0 if γ 6= 0 ,

exp(−e−x) , x ∈ R if γ = 0 .

The parameter γ is the extreme value index and we then use the notation

F ∈ D(Gγ). In this paper we shall work only with heavy-tailed models, i.e.,

models F ∈ D(Gγ) with γ > 0. Then γ is often called tail index.

Let us define U(t) := F←(1−1/t), t >1, with F←(x) := inf
{
y : F (y) ≥ x

}

denoting the generalized inverse function of F . We have

(1.1) F ∈ D(Gγ), γ > 0 ⇐⇒ 1−F ∈ RV−1/γ ⇐⇒ U ∈ RVγ

(Gnedenko, 1943; de Haan, 1970), where, for any real a, RVa stands for the class

of regularly varying functions at infinity with index of regular variation a, i.e.

positive measurable functions g such that limt→∞ g(tx)/g(t) = xa, for all x > 0.

We are interested in the estimation of a high quantile, χ1−p, a typical pa-

rameter in the most diversified areas of application. Such a quantile is a value

exceeded with a small probability p, i.e., such that F (χ1−p) = 1− p. More specif-

ically, we want to extrapolate beyond the sample, and to estimate

(1.2) χ1−p = U(1/p) , p = pn→ 0, npn→K as n→∞, K ∈ [0, 1] .

Denoting by X1:n < ... < Xn:n the order statistics (o.s.’s) from the original sam-

ple, Weissman (1978) proposed, for heavy-tailed models, the following semi-

parametric estimator of χ1−p ,

(1.3) Q
(p)
γ̂ (k) := Xn−k:n cγ̂

n , cn := k
np → ∞, as n→∞ ,

where γ̂ is any consistent estimator of γ. For γ ∈ R, we can find semi-parametric

high quantile estimators in de Haan and Rootzén (1983), Ferreira et al. (2003) and

Matthys and Beirlant (2003). As usual in semi-parametric estimation of param-

eters from extreme value models, we shall assume that k = kn is an intermediate

sequence, i.e., a sequence of integer values in [1, n], such that

(1.4) kn → ∞ , kn = o(n), as n → ∞ .
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For heavy tails, the classical tail index estimator, usually the one which is plugged

in (1.3) for a semi-parametric quantile estimation, is the Hill estimator γ̂ =

γ̂(k) =: H(k) (Hill, 1975),

(1.5) H(k) := 1
k

k∑

i=1

Vik = 1
k

k∑

i=1

Ui ,

the average of the log-excesses Vik := lnXn−i+1:n− lnXn−k:n, 1≤ i≤ k < n, as

well as the average of the scaled log-spacings

(1.6) Ui := i
(
lnXn−i+1:n− ln Xn−i:n

)
, 1 ≤ i ≤ k < n .

We thus get the so-called classical quantile estimator, Q
(p)
H (k), based on the Hill

tail index estimator H. It is known that for intermediate k and if the first order

condition (1.1) holds, H(k) and Q
(p)
H (k) are consistent for the estimation of γ and

χ1−p, respectively. The main problem with these semi-parametric estimators is

a high variance for small k, i.e., high thresholds, and a high bias for large k.

To obtain information on the distributional behaviour of these estimators,

we shall also assume a second order condition, that measures the rate of conver-

gence of lnU(tx)− lnU(t) to γ ln x,

lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ−1

ρ
⇐⇒

(1.7)

⇐⇒ lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγ xρ−1

ρ
,

for all x > 0, where ρ ≤ 0 is the shape second order parameter and the function

|A| must be of regular variation with index ρ (Geluk and de Haan, 1987). To be

able to reduce the bias of these estimators, it is quite useful to assume that we

are working in Hall’s class of heavy-tailed models (Hall, 1982; Hall and Welsh,

1985) where, with γ > 0, ρ < 0, C > 0 and D1 6= 0,

(1.8) U(t) = C tγ
(
1 + D1 tρ + o(tρ)

)
, t → ∞ .

Then, the second order condition (1.7) holds with A(t) = ρD1 tρ := γ β tρ.

Proposition 1.1 (de Haan and Peng, 1998). Under the secondorder frame-

work in (1.7), and for intermediate k, i.e., whenever (1.4) holds, we may guarantee

the asymptotic normality of H(k) in (1.5). Indeed, we may write,

(1.9) H(k)
d
= γ +

γ√
k

Zk +
A(n/k)

1−ρ

(
1+ op(1)

)
,

with Zk =
√

k
(∑k

i=1 Ei/k − 1
)
, and {Ei} i.i.d. standard exponential r.v.’s.
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Consequently, if we choose k such that
√

k A(n/k) → λ 6= 0, finite, as n → ∞,√
k
(
H(k)−γ

)
is asymptotically normal, with variance equal to γ2 and a non-null

mean value given by λ/(1−ρ).

The result in (1.9) has recently led researchers to consider the possibility of

dealing with the asymptotic bias dominant term in an appropriate way, building

second-order reduced-bias estimators, discussed by Peng (1998), Beirlant et al.

(1999), Feuerverger and Hall (1999), Gomes et al. (2000), among others. In the

above mentioned papers, authors have been able to remove the dominant com-

ponent of the asymptotic bias, but with an increase of the asymptotic variance.

More recently, Gomes et al. (2004b), Caeiro et al. (2005) and Gomes et al. (2007a)

proposed minimum-variance reduced-bias (MVRB) estimators, based on an ex-

ternal estimation of second order parameters, built in such way that they were

able to reduce the bias without increasing the asymptotic variance, which is kept

equal to γ2, the asymptotic variance of the Hill estimator.

If we look at (1.9), we see that the dominant component of the bias of Hill’s

estimator is A(n/k)/(1−ρ) = γβ (n/k)ρ/ρ, for models in (1.8). This component

can be easily estimated and removed from Hill’s estimator, leading to any of the

asymptotically equivalent estimators (Caeiro et al., 2005),

Hβ̂,ρ̂(k) := H(k)

(
1 − β̂

1− ρ̂

(n

k

)ρ̂)
,

(1.10)

Hβ̂,ρ̂(k) := H(k) exp

(
− β̂

1− ρ̂

(n

k

)ρ̂)
,

where ρ̂ and β̂ need to be adequate consistent estimators of the second order

parameters ρ and β, if we want to keep the asymptotic variance at γ2. This

requires an external estimation of the second order parameters using a number

of top o.s.’s k1, larger than the number of top o.s.’s, k, used for the tail index

estimation, and an estimator ρ̂ of ρ such that ρ̂ − ρ = op(1/ ln n).

On the basis of the different papers dealing with high quantile semi-para-

metric estimation for heavy tails, among which we mention Gomes and Figueiredo

(2006) and Caeiro and Gomes (2007), we can state the following result.

Proposition 1.2. Under the conditions of Proposition 1.1, the validity of

(1.2), a known tail index γ and cn defined in (1.3),

(1.11) Q(p)
γ (k)

d
= χ1−p

(
1 +

γ√
k

Bk +
1− cρ

n

ρ
A(n/k)

(
1+ op(1)

))
,

with Bk an asymptotically standard normal r.v. Consequently, if
√

k A(n/k)→ λ,

finite,
√

k
(
Q

(p)
γ (k)/χ1−p−1

)
is asymptotically normal, with variance γ2 and mean
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value λ/ρ. If γ is unknown and is estimated by any consistent estimator γ̂,

(1.12) Q
(p)
γ̂ (k)

d
= χ1−p

(
1 + (γ̂−γ) ln cn +

γ√
k

Bk +
1− cρ

n

ρ
A(n/k)

(
1+ op(1)

))
.

Consequently, if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then√
k

ln cn

(
Q

(p)
γ (k)/χ1−p − 1

)
has asymptotically the same distribution as

√
k (γ̂ − γ).

From (1.12) it is obvious that the behaviour of γ̂ rules strongly the be-

haviour of Q
(p)
γ̂ . The summand (1− cρ

n)A(n/k)/ρ, asymptotically equivalent to

A(n/k)/ρ and the dominant component of the bias of Q
(p)
γ in (1.11), does not in-

fluence the limiting distribution of Q
(p)
γ̂ . But, as already noticed in Matthys et al.

(2004), the removal of this term for finite samples, typically leads to an improve-

ment in the overall stability of the quantile estimates as a function of k. Since

χ1−p/Xn−k:n
p∼ cγ

n

(
1+ (cρ

n−1)A(n/k)/ρ
)
, we shall consider the new estimators,

(1.13) Q
(p)
γ̂ (k) = Q

(p)
γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂

n

(
1 + γ̂ β̂

(n

k

)ρ̂ cρ̂
n−1

ρ̂

)
,

asymptotically equivalent, up to the second order, to the estimators already pro-

posed before by Matthys et al. (2004), Beirlant et al. (2006) and Gomes and

Pestana (2007b),

(1.14) Q
(p)

γ̂ (k) = Q
(p)

γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂
n exp

(
γ̂ β̂
(n

k

)ρ̂ cρ̂
n−1

ρ̂

)
.

We shall replace γ̂ by any of the MVRB estimators H(k) = Hβ̂,ρ̂(k) and H(k) =

Hβ̂,ρ̂(k), generally denoted by H̃(k), with Hβ̂,ρ̂(k) and Hβ̂,ρ̂(k) given in (1.10).

Remark 1.1. Since cρ
n ln cn = o(1), the asymptotic behavior of (1.13) and

(1.14) does not change if we replace c ρ̂
n by 0. In the simulation study, we did not

notice any change in the performance of the estimators with this replacement.

Anyway, we shall keep working with the quantile estimators defined in (1.13).

Is section 2, and assuming a third order framework in order to get full

information on the leading terms of asymptotic bias, we study the tail index

estimators H̃(k) in (1.10), as well as Q
(p)eH , with Q

(p)
γ̂ given in (1.13). In Section 3,

a small-scale simulation study helps us to identify the behaviour of the quantile

estimators in (1.13) for finite samples. Finally, in Section 4, we draw a short final

conclusion.
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2. ASYMPTOTIC PROPERTIES

2.1. Third order framework

In order to derive the asymptotic bias of the MVRB estimators under study,

we shall work with a sub-class of Hall’s class such that

(2.1) U(t) = C tγ
(
1 + D1 tρ + D2 tρ+ρ∗+ o

(
tρ+ρ∗

))
, t → ∞ ,

C > 0, D1 6= 0, ρ < 0, ρ∗ < 0. Note that, compared to Hall’s class in (1.8) we

merely specify the summand o(tρ). Note also that, with hθ(x) := (xθ−1)/θ, θ < 0,

A(t) = ρ D1t
ρ = γβ tρ, ρ′= max(ρ, ρ∗) ≥ ρ and

B(t) = β′ tρ
′

=





(
(1 + ρ∗/ρ)D2/D1

)
tρ

∗

, ρ < ρ∗ ,
(
2D2/D1− D1

)
tρ, ρ = ρ∗ ,

−D1 tρ, ρ > ρ∗ or D2 = 0 ,

we may write for any x > 0,

(2.2) ln
U(tx)

U(t)
− γ lnx = A(t)hρ(x) + A(t)B(t)hρ+ρ′(x)

(
1 + o(1)

)
,

which is, for arbitrary ρ and ρ′, the third order condition used in the paper by

Gomes et al. (2004a), equivalent to the ones assumed in Gomes et al. (2002) and

Fraga Alves et al. (2003). As mentioned before, we shall essentially consider the

validity of (2.1), which is equivalent to consider that (2.2) holds with ρ ≤ ρ′ and

A(t) = α tρ for some real α.

Remark 2.1. The class in (2.1) contains most of the heavy-tailed mod-

els used in applications, like the Fréchet, with U(t) =
(
ln(t/(t−1))

)−γ
, the Burr,

with U(t) = (t−ρ−1)−γ/ρ, t > 1, the Generalized Pareto (GP ), with U(t) =

(tγ −1)/γ, t > 1, and the Student’s-tν , ν > 0, with d.f.

F (x) = F (x |ν) =
Γ
(
(ν +1)/2

)

Γ(ν/2)
√

πν

∫ x

−∞
(1 + z2/ν)−(ν+1)/2 dz , x ∈ R, ν > 0 .

Although ρ∗= ρ′= ρ for all these classical models, we have decided to work with

a slight more general condition, the one in (2.1). Indeed, it is not so hard to

find examples where ρ′ 6= ρ. Gomes and Oliveira (2003) noticed that shifting

the data can change the asymptotic behavior of the tail and the value of the

second order parameters, i.e., if X is our original parent, and Y = X + a, then

UY (t) = UX(t) + a, and consequentially,

UY (t) = C tγ
(
1 + D1 tρ + a t−γ/C + D2 tρ+ρ∗+ o

(
tρ+ρ∗

))
, t → ∞ .
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In Table 1 we present, for the above mentioned models, the values of the first,

second and third order parameters in (2.1) and the values of β and β′ in A(t) =

γβ tρ and B(t) = β′ tρ. In this table, cν = (νB(ν/2, 1/2))1/ν (c1 = π leading to

the usually called Cauchy d.f.), where B is the complete Beta function.

Table 1: Study of some distributions in Hall’s class.

Distribution C D1 D2 γ ρ ρ∗ β β′

Fréchet 1 −
γ

2
− γ

12
γ −1 −1

1

2

5

6

Burr 1
γ

ρ

γ(ρ+γ)

2ρ2
γ ρ ρ 1 1

GP
1

γ
−1 0 γ −γ −γ 1 1

Student’s tν

√
v c−1

ν
− (ν+1)c2ν

2(ν+2)
−ν (ν+1)(ν+3)c4ν

8(ν+2)2 (ν+4)

1

ν
− 2

ν
− 2

ν

(ν+1)c2ν

ν+2

(ν2+4ν+2)c2ν

(ν+2)(ν+4)

2.2. Estimation of second order parameters

The reduced-bias tail index and quantile estimators require the estimation

of the second order parameters ρ and β, which will be now briefly discussed.

2.2.1. Estimation of the shape second order parameter ρ

We shall consider here particular members of the class of estimators of the

second order parameter ρ proposed by Fraga Alves et al. (2003), but parame-

terized by a tuning real parameter τ (see Caeiro and Gomes, 2006). Denoting

M
(j)
n (k) := 1

k

∑k
i=1V

j
ik the j-moment of the log-excesses, j =1, 2, 3, these ρ-esti-

mators depend on the statistics

T (τ)
n (k) :=





(
M

(1)
n (k)

)τ
−
(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2
−
(
M

(3)
n (k)/6

)τ/3
, if τ 6= 0 ,

ln
(
M

(1)
n (k)

)
− 1

2 ln
(
M

(2)
n (k)/2

)

1
2 ln

(
M

(2)
n (k)/2

)
− 1

3 ln
(
M

(3)
n (k)/6

) , if τ = 0 ,
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which converge towards 3(1−ρ)/(3−ρ) for any real τ , whenever the second order

condition (1.7) holds, k is such that (1.4) holds and
√

k A(n/k)→∞, as n→∞.

The ρ-estimators considered have the functional expression,

(2.3) ρ̂τ (k) = ρ̂(k; τ) := −min
(
0 , 3

(
T (τ)

n (k)
)
−1
)/(

T (τ)
n (k) − 3

)
.

Proposition 2.1 (Fraga Alves et al., 2003). If the second order condition

(1.7) holds, with ρ < 0, (1.4) holds and
√

k A(n/k) → ∞, then ρ̂(k; τ) in (2.3)

converge in probability to ρ, as n → ∞. Under the third order framework in

(2.2),

(2.4) ρ̂(k; τ)
d
= ρ +

(
γ σρW ρ

k√
k A(n/k)

+ υ1A(n/k) + υ2B(n/k)

)(
1+ op(1)

)
,

where W ρ
k is an asymptotically standard normal r.v., σρ = (1−ρ)3

ρ

√
(2ρ2−2ρ+1),

υ1 ≡ υ1(γ, ρ, τ) =
ρ
[
τ (1−2ρ)2 (3−ρ) (3−2ρ) + 6ρ

(
4 (2−ρ) (1−ρ)2−1

)]

12 γ (1−ρ)2 (1−2ρ)2
,

υ2 =
ρ′(ρ + ρ′)(1 − ρ)3

ρ(1 − ρ − ρ′)3
.

Consequently, if
√

k A2(n/k) → λ
A

and
√

k A(n/k)B(n/k) → λ
B
, finite, then√

k A(n/k) (ρ̂(k; τ)−ρ)
d−→ N(λ

A
υ1 + λ

B
υ2, γ2σ2

ρ).

Corollary 2.1. Under the third order framework in (2.1), if (1.4) holds,√
k A(n/k) → ∞ and

√
k A(n/k)B(n/k) → λ

B
, finite, then ρ̂n(k; τ) − ρ =

Op

(
1/(

√
k A(n/k))

)
. But, if we chose k such that

√
k A(n/k)B(n/k) → ∞, then

1/(
√

k A(n/k)) = o(B(n/k)) and ρ̂n(k; τ) − ρ = Op(B(n/k)).

A comment on the choice of the tuning parameter τ . From Proposi-

tion 2.1, we can conclude that the tuning parameter τ only affects ρ̂(k; τ) asymp-

totic bias. If ρ′= ρ, and consequentially B(n/k) = O(A(n/k)), we can always

choose τ = τ0 so that the asymptotic bias υ1A(n/k) + υ2B(n/k) in (2.4) is null,

even when
√

k A2(n/k) → λA > 0 and
√

k A(n/k)B(n/k) → λB 6= 0. It is enough

to choose the value τ0 which is the solution of υ1γ β + υ2β′ = 0. Such a value is

independent of γ and, with ξ = β′/β, is given by

(2.5) τ0 ≡ τ0(ρ, ξ) =
−6
[
4ξ (1−ρ5) + ρ (1−2ρ)

(
4(2−ρ) (1−ρ)2−1

)]

(1−2ρ)3 (3−ρ) (3−2ρ)
.

Although τ0, as a function of ρ, is not always monotone, it converges to 3(1−ξ/2),

as ρ → −∞ and to −8ξ/3, as ρ → 0.



10 Frederico Caeiro and M. Ivette Gomes

Using the available values ρ, β and β′, from Table 1, we have for the

Fréchet model, ρ = −1, ξ = 5/3 and τ0 = −217/270 ≃ −0.8. For models like the

Burr and the GP , where β′= β and consequently ξ = 1, we present in Figure 1

(left) τ0(ρ,1) as function of ρ. For Student’s tν distribution, ρ, β and β′ are

functions of ν, and the value τ0 in (2.5) can also be written as a function of ν:

τ0(ν) =
12
(
384 + 1216 ν + 1440 ν2 + 720 ν3 + 72 ν4 − 61 ν5 − 21 ν6 − 2 ν7

)

(1+ν) (4+ν)4 (2+3ν) (4+3ν)
.

This function τ0(ν) is shown in Figure 1 (right), as a function of ν.

-6 -5 -4 -3 -2 -1
Ρ

-2.5

-2

-1.5

-1

-0.5

0.5

1

Τ0HΡ, 1L

2 4 6 8 10
Ν

-1

-0.5

0.5

1

1.5

2

Τ0HΝL

Figure 1: Left: τ0(ρ, 1) as function of ρ. Right: τ0(ν) for Student’s tν .

As an example, for the GP (γ = 0.5), we have τ0(−0.5, 1) = −213/448 ≃
−0.48. In Figure 2 and to illustrate the comment above, we picture a sample

path of ρ̂(k; τ) with τ = τ0 and τ = 0, the value of τ most commonly suggested

for models with |ρ|< 1. We conclude that ρ̂τ0(k) = ρ̂(k; τ0) is indeed more stable

than ρ̂0(k) = ρ̂(k; 0) around the true value ρ = −0.5.

0 5000 10000 15000 20000 25000

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

k

τ = 0

τ = −0.48

Figure 2: Sample path of the estimator ρ̂(k; τ), τ = 0,−0.48, for one sample
of size n = 25000 from the GP distribution with γ = 0.5.

Remark 2.2. Indeed, for an appropriate tuning parameter τ the ρ-estima-

tors in (2.3) show highly stable sample paths as functions of k, the number of
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top o.s. used, for a wide range of large k-values. The theoretical and simulated

results in Fraga Alves et al. (2003), together with the use of these estimators in

different reduced-bias statistics, has led to advise in practice the estimation of ρ

through the estimator in (2.3), computed at the value

(2.6) k1 :=
[
n0.995

]
,

not chosen in any optimal way, and the choice of the tuning parameter τ = 0

for ρ ∈ [−1, 0) and τ = 1 for ρ ∈ (−∞,−1). As usual, [x] denotes the integer

part of x. However, practitioners should not choose blindly the value of τ in

(2.3), and as pointed out in Caeiro and Gomes (2006), even negative values of τ

should be possible candidates. It is indeed sensible to draw a few sample paths

of ρ̂τ (k) = ρ̂(k; τ), as functions of k, electing the value of τ which provides the

highest stability for large k, by means of any stability criterion, like the one

suggested in Gomes et al. (2005) or Gomes and Pestana (2007a). For not too

small n, we are frequently led to the above mentioned choice: ρ̂0 if ρ≥−1 and ρ̂1

if ρ < −1, when we consider only the tuning parameters τ = 0 and τ = 1 as the

possible alternatives. In practice, the adequate choice of τ is much more crucial

than the choice of k1, discussed in the following.

A few comments on the choice of the level k1 for the ρ-estimation.

On the basis of the results in Proposition 1.1 and Proposition 2.1, it seems sensible

to estimate the second order ρ using a number k1 of o.s.’s of a larger order than k,

the number of o.s.’s used for the estimation of the tail index γ. We now make

the following comments on the choice of the value k1 that should be used for the

estimation of the second order parameter ρ.

(1) The ideal situation would perhaps be the choice of an “optimal” k1 for the

estimation of ρ, in the sense of a value that enables the asymptotic normality

of the ρ-estimator with a non-null asymptotic bias. For models in (2.1),

k1 is then such that
√

k1 A(n/k1)B(n/k1) → λ
B1

, finite and non-null. We

then get k1 = O
(
n−2(ρ+ρ′)/(1−2(ρ+ρ′))

)
. Denoting ρ̂ = ρ̂(k1; τ) for any ρ̂(k; τ)

in (2.3), ρ̂− ρ is of the order of 1/
(√

k1 A(n/k1)
)

= O
(
nρ′/(1−2(ρ+ρ′))

)
=

o(1/ lnn), i.e.,

(2.7) ρ̂ − ρ = op(1/ ln n), as n → ∞ ,

a condition needed later on. In practice, such a k1 has only a “limited”

interest at the current state-of-the-art. It is however of theoretical interest.

(2) Assume next the validity of the following condition:

Condition U : There exist a tuning parameter τ∗ and a level k1, with√
k1 A(n/k1)B(n/k1) → ∞, such that, with ρ̂(k; τ) defined

in (2.3), ρ̂∗− ρ = ρ̂(k1; τ
∗) − ρ = Op

(
1/(

√
k1 A(n/k1))

)
.
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This is obviously a strong assumption, practically equivalent to saying that

for any specific model there is a τ∗ and a k1 such that ρ̂∗= ρ̂(k1; τ
∗) is

an unbiased estimator for ρ, so that the bias has no influence in the rate

of convergence, which is kept at 1/
(√

k1 A(n/k1)
)
. Indeed, such a claim is

made on the basis of the high stability of sample paths of the ρ-estimates

in (2.3) for a specific τ = τ∗ and large values of k (see Figure 2 and the

comment made above on the choice of τ). Then, the use of a value k1

larger than the so-called “optimal” level in item 1., but intermediate, like

for instance, the one suggested in Gomes and Martins (2002),

(2.8) k1 := min
(
n−1, 2n/ ln lnn

)
,

enables us to guarantee that ρ̂∗− ρ = op(1/ ln n). Indeed, if we assume the

validity of Condition U for k1 in (2.8), we get ρ̂∗−ρ = Op

(
1/(

√
k1A(n/k1))

)
=

Op

(
(ln lnn)(1−2ρ)/2/

√
n
)
, which is obviously of smaller order than {1/ lnn},

i.e., (2.7) holds. This will be the unique situation under which we may work

with the k1 suggested in Gomes and Martins (2002), i.e, the one in (2.8),

and still guarantee the above mentioned property on the ρ-estimator, and a

possible generalization of the third-order results derived for H̃β,ρ to H̃β̂∗,ρ̂∗ ,

with β̂∗ an adequate β-estimator, to be specified later on, in Section 2.2.2.

(3) If we consider a level k1 of the order of n1−ǫ, for some small ǫ > 0, we

may also guarantee that (2.7) holds for a large class of models, without the

need to assume a condition as strong as Condition U. This is the reason

why, such as done in Caeiro et al. (2004b), Gomes and Pestana (2007a,b)

and Gomes et al. (2004b, 2007a), we advise in practice, as a compromise

between theoretical and practical considerations, the use of an intermediate

level like the one in (2.6) or any other level k1 = [n1−ǫ] for some ǫ > 0, small.

2.2.2. Estimation of the scale second order parameter β

Let us introduce the notation N
(α)
n (k) := 1

k

∑k
i=1

(
i
k

)α−1
Ui, with Ui defined

in (1.6). For the estimation of β we shall here consider the estimator in Gomes

and Martins (2002), with the functional expression,

(2.9) β̂ρ̂(k) = β̂(k; ρ̂) :=
(k

n

)ρ̂

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1)
n (k) − N

(1−ρ̂)
n (k)

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1−ρ̂)
n (k) − N

(1−2ρ̂)
n (k)

.
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Theorem 2.1 (Gomes et al., 2004b). If the second order condition (1.7)

holds, with A(t) = γ β tρ, ρ < 0, if (1.4) holds, and if
√

k A(n/k)→∞, then, with

ρ̂n(k; τ) and β̂ρ̂(k) given in (2.3) and (2.9), respectively, and ρ̂ = ρ̂n(k; τ) such

that (2.7) holds, i.e., ρ̂ − ρ = op(1/ lnn), as n → ∞, β̂ρ̂(k) is consistent for the

estimation of β. Moreover,

(2.10) β̂ρ̂(k) − β
p∼ −β ln(n/k) (ρ̂ − ρ) = op(1) .

2.3. Asymptotic properties of the tail index estimators, under a third

order framework

We shall study now the asymptotic behaviour, under a third order frame-

work, of the MVRB estimators H and H, generally denoted H̃. We assume first

that we know the two second order parameters β and ρ. Next we estimate both

second-order parameters externally at a level k1 of a larger order than the level k

at which we compute the tail index.

Theorem 2.2.

(a) Under the second order framework in (1.8), and for intermediate k, i.e.,

whenever (1.4) holds, we may write,

(2.11) H̃β,ρ(k)
d
= γ +

γ√
k

Zk + op

(
A(n/k)

)
,

where Zk is the asymptotically standard normal r.v. in (1.9). Also, if we

choose k such that
√

k A(n/k) → λ, finite, as n → ∞,
√

k
(
H̃β,ρ(k) − γ

)

are asymptotically normal, with variance γ2 and a null mean value, even if

λ 6= 0.

(b) If we further assume (2.1), more information can be given for the term

op(A(n/k)), and we get the asymptotic distributional representations:

(2.12) Hβ,ρ(k)
d
= γ+

γ√
k

Z∗k+
A(n/k)B(n/k)

1−ρ−ρ′

(
1−(1−ρ−ρ′)A(n/k)

γ (1−ρ)2B(n/k)

)(
1+op(1)

)
,

and

(2.13) Hβ,ρ(k)
d
= γ+

γ√
k

Z∗k+
A(n/k)B(n/k)

1−ρ−ρ′

(
1− (1−ρ−ρ′)A(n/k)

2γ (1−ρ)2B(n/k)

)(
1+op(1)

)
,

with Z∗k asymptotically standard normal. If
√

k A(n/k)B(n/k)→ λ
B
, finite

(and then,
√

kA2(n/k)→λ
A
, also finite),

√
k
(
Hβ,ρ(k)−γ

)
and

√
k
(
Hβ,ρ(k)−γ

)

are asymptotically normal with the same variance, equal to γ2, and asymp-

totic bias bH = λ
B
/(1−ρ−ρ′)−λ

A
/(γ(1−ρ)2) and b

H
= λ

B
/(1−ρ−ρ′)−λ

A
/

(2γ (1−ρ)2), respectively.
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Proof: The first part of the theorem has been proved in Caeiro et al.

(2005). Regarding the second part: from the third order set-up in (2.2), we get

H(k)
d
= γ +

γ√
k

Zk +
A(n/k)

1−ρ
+ Op

(
A(n/k)√

k

)
+

A(n/k)B(n/k)

1−ρ−ρ′
(
1+ op(1)

)
.

Consequently, as Hβ,ρ(k) = H(k)×
(
1 − A(n/k)/(γ (1−ρ))

)
for models in (2.1),

Hβ,ρ(k)
d
= γ +

γ√
k

Zk +

(
A(n/k)B(n/k)

1−ρ−ρ′
− A2(n/k)

γ (1−ρ)2
+Op

(
A(n/k)√

k

))(
1+ op(1)

)
,

Hβ,ρ(k)−Hβ,ρ(k)
p∼ A2(n/k)/(2γ (1−ρ)2), and the results in the theorem follow.

Note that since
√

k Op

(
A(n/k)/

√
k
)
→ 0, for the intermediate levels k considered,

the term Op

(
A(n/k)/

√
k
)

is irrelevant for the asymptotic bias.

Remark 2.3. Notice that H and H have the same asymptotic variance

and b
H

= bH +λA/(2γ (1−ρ)2), with λA ≥ 0. So if both bias are positive, H

should have, asymptotically, a better performance than H.

Theorem 2.3.

(a) Under the initial conditions of Theorem 2.2, let us consider the tail index

estimators H̃β̂,ρ̂ with β̂ and ρ̂ consistent for the estimation of β and ρ,

respectively, both computed at the level k1 of a larger order than the level k

at which we compute the tail index, and such that (2.7) holds. Then√
k
(
H̃β̂,ρ̂(k)− γ

)
are asymptotically normal, with variance equal to γ2 and

a null mean value, even if
√

k A(n/k) → λ 6= 0, as n → ∞.

(b) If we work under the third order framework in (2.1), consider β̂ρ̂(k) in (2.9),

β̂ = β̂ρ̂(k1), and choose k such that
√

k A(n/k)→∞, but
√

k A(n/k)B(n/k)→
λ

B
, finite, then

√
k
(
Hβ̂,ρ̂(k) − γ

)
and

√
k
(
Hβ̂,ρ̂(k) − γ

)
are asymptotically

normal with variance γ2 and asymptotic bias bH and b
H

, respectively,

given in Theorem 2.2, provided that we can guarantee that (ρ̂− ρ) lnn =

op

(
1/
√

k A(n/k)
)
. This last condition on ρ̂ holds if we further assume the

validity of Condition U for k1 in (2.8).

Proof: If we estimate consistently β and ρ through β̂ and ρ̂ under the con-

ditions of the theorem, we may use Taylor’s expansion series, and as ∂H̃β,ρ/∂β
p∼

A(n/k)/(β(1−ρ)), ∂H̃β,ρ/∂ρ
p∼ −A(n/k)

(
ln(n/k) + 1/(1−ρ)

)
/(1−ρ), we get

(2.14) H̃β̂,ρ̂(k)− H̃β,ρ(k)
p∼ −A(n/k)

1−ρ

{
β̂−β

β
+ (ρ̂ − ρ)

[
ln(n/k) +

1

1−ρ

]}
.

The first part of the theorem, related to levels k such that
√

k A(n/k) → λ, finite,

follows thus straightforwardly from (2.14).
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Next, from (2.10), (β̂ − β)/β
p∼ − ln(n/k1) (ρ̂−ρ) = op

(
1/(

√
k A(n/k))

)
,√

k
(
H̃β̂,ρ̂(k)−H̃β,ρ(k)

)
= op

(
1/
√

k
)

and the stated asymptotic normality of H̃β̂,ρ̂

follows as well. We may further write

(2.15) H̃β̂,ρ̂(k)− H̃β,ρ(k)
p∼ −A(n/k)

1−ρ
(ρ̂−ρ)

(
ln(k/k1) +

1

1−ρ

)
.

If we assume the validity of Condition U for the level k1 in (2.8) and consider

H̃β̂∗, ρ̂∗ , we straighforwardly guarantee that
√

k (ρ̂∗−ρ)A(n/k) ln(k/k1) = op(1).

Consequently, the use of (2.15), with (β̂, ρ̂) replaced by (β̂∗, ρ̂∗), enables us to get

the results in the theorem.

2.4. Asymptotic properties of the reduced-bias quantile estimators,

under a third order framework

We shall provide in theorems 2.4 and 2.5 the distributional behaviour of

the quantile estimators under study, for models in (2.1).

Theorem 2.4. Under the third order framework in (2.1), for intermediate k,

i.e., whenever (1.4) holds, and whenever ln(np) = o(
√

k), we can write,

Q
(p)
H(k)(k)/χ1−p

d
= 1 +

(
H(k)−γ

)
ln cn +

γ√
k

Bk − hρ(cn)A(n/k) + Op

(
A(n/k)√

k

)

(2.16)
−
(
hρ+ρ′(cn)A(n/k)B(n/k) +

1

2
h2

ρ(cn)A2(n/k)

)(
1+ op(1)

)
,

where Bk is an asymptotically standard normal r.v., hθ(x) = (xθ−1)/θ, θ < 0.

Consequently, if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then√
k

ln cn

(
Q

(p)
H(k)(k)/χ1−p−1) has asymptotically the same distribution as

√
k (H(k)−γ),

i.e., it is asymptotically normal, with variance γ2 and mean value λ/(1−ρ).

Proof: From (2.2), and as t → ∞, we get,

(2.17)
U(tx)

U(t)
= xγ

{
1+hρ(x)A(t)+

(
hρ+ρ′(x)A(t)B(t)+

1

2
h2

ρ(x)A2(t)
)(

1+o(1)
)
}

.

Denoting by γ̂ any consistent tail index estimator and since Xn−k:n
d
= U(Yn−k:n),

where Y is a standard Pareto r.v., we can write

Q
(p)
γ̂(k)(k)/χ1−p =

(
Xn−k:n

U(1/p)

)
cγ̂(k)
n =

(
Xn−k:n

U(n/k)

)(
U(n/k)

U(ncn/k)

)
cγ̂(k)
n .
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Using the delta method, together with the fact that ln cn/
√

k → 0, as n → ∞,

c
γ̂(k)
n

p∼ cγ
n

{
1+ (γ̂(k)−γ) ln cn

}
. From (2.17), we obtain

Q
(p)
H(k)(k)/χ1−p

d
=

(
1+

γ√
k

Bk + Op

(
A(n/k)√

k

))

×
{
1− hρ(cn)A(n/k) −

(
hρ+ρ′(cn)A(n/k)B(n/k) + h2

ρ(cn)A
2(n/k)/2

)(
1+op(1)

)}

×
(
1+

(
γ̂(k)−γ

)
ln cn

)(
1+op(1)

)
,

and, with γ̂ replaced byH, (2.16) as well as the asymptotic normality follow.

Theorem 2.5.

(a) Under the conditions of Theorem 2.4, let us consider the tail index estimator

H̃ = H̃β̂,ρ̂ with (β̂, ρ̂) consistent estimators of (β, ρ), both computed at k1,

with k = o(k1) and such that (ρ̂−ρ) ln n = op(1). Then, if
√

kA(n/k)→ λ,
√

k
ln cn

(
Q

(p)eH(k)
(k)/χ1−p − 1

)
has asymptotically the same distribution as

√
k
(
H̃(k) − γ

)
, i.e., they are both asymptotically normal, with variance

equal to γ2 and a null mean value (even if λ 6= 0).

(b) If we choose k such that
√

kA(n/k) → ∞, but
√

k A(n/k)B(n/k) → λ
B
,

finite,
√

k
ln cn

(
Q

(p)eH(k)
(k)/χ1−p−1

)
and

√
k
(
H̃(k)−γ

)
also have asymptotically

the same distributions, i.e., they are asymptotically normal, with variance

equal to γ2 and asymptotic bias given in Theorem 2.2, provided that we

can guarantee that (ρ̂−ρ) lnn = op

(
1/
√

k A(n/k)
)
.

Proof: Let as first assume to know β and ρ. Then, since Q
(p)eHβ,ρ

(k; β, ρ) =

Q
(p)eHβ,ρ

(k)
(
1+ H̃β,ρ(k)β

(
n
k

)ρ
hρ(cn)

)
for models in (2.1), we can use (2.16) and get

Q
(p)eHβ,ρ

(k; β,ρ)/χ1−p
d
= 1+

(
Hβ,ρ(k) − γ

)
ln cn +

γ√
k

Bk + Op

(
A(n/k)√

k

)

(2.18)
−
(
hρ+ρ′(cn)A(n/k)B(n/k) +

1

2
h2

ρ(cn)A
2(n/k)

)(
1+op(1)

)
,

Then
√

k
ln cn

(
Q

(p)eHβ,ρ(k;β,ρ)
(k)/χ1−p − 1

)
has asymptotically the same distributions

as
√

k
(
H̃β,ρ(k) − γ

)
. Since, H̃β̂,ρ̂(k) = γ (1+op(1)), cρ

n → 0, cρ
n ln cn → 0, for any

intermediate k, we may use Cramer’s delta-method, and write

H̃β̂,ρ̂(k) β̂
(n

k

)ρ̂
hρ̂(cn)

p∼ hρ(cn)A(n/k)

{
1 +

β̂−β

β
+ (ρ̂−ρ) ln(n/k)

}
.

Consequently,
(
Q

(p)eH
β̂,ρ̂

(k; β, ρ) − Q
(p)eHβ,ρ

(k; β, ρ)
)/

χ1−p
p∼
(
H̃β̂,ρ̂(k) − H̃β,ρ(k)

)
ln cn
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and
(
Q

(p)eH
β̂,ρ̂

(k; β̂, ρ̂) − Q
(p)eHβ,ρ

(k; β, ρ)
)/

χ1−p
p∼

p∼
(
H̃β̂,ρ̂(k)− H̃β,ρ(k)

)
ln cn + hρ(cn)A(n/k)

{
β̂−β

β
+ (ρ̂−ρ) ln(n/k)

}
.

The remaining of the proof is analogous to the proof of Theorem 2.3.

3. A SMALL-SCALE SIMULATION STUDY

We have implemented, for Fréchet underlying parents, a Monte Carlo sim-

ulation of size 5000 for RH ≡ Q
(p)
H /χ1−p, RH ≡ Q

(p)

H
/χ1−p and R

H
≡ Q

(p)

H
/χ1−p.

Results for Q, not presented, have also been simulated and almost overlap the

ones for Q. For every estimator R = R(k), we have simulated for p = 1/n and

p = 1/(n ln n), the mean value, the root mean squared error (RMSE) and the op-

timal sample fraction, OSFR = k0/n = arg mink{RMSE (R(k))}/n. The second

order parameters were estimated through ρ̂0 = ρ̂(k1; 0) and β̂0 = β̂ρ̂0
(k1), with

ρ̂(k; τ) and β̂ρ̂(k) defined in (2.3) and (2.9), respectively, and k1 given in (2.6).

Table 2: Simulated mean values /RMSE at optimal levels.

n 100 500 1000 5000

Fréchet parent with γ = 0.25 and p = 1/n

RH 1.056 / 0.191 1.053 / 0.136 1.053 / 0.118 1.037 / 0.080

R
H

0.969 / 0.164 0.984 / 0.116 0.988 / 0.099 0.992 / 0.061

R
H

1.007 / 0.154 1.006 / 0.108 1.004 / 0.092 1.004 / 0.057

Fréchet parent with γ = 0.25 and p = 1/(n ln n)

RH 1.106 / 0.298 1.089 / 0.259 1.085 / 0.172 1.057 / 0.112

R
H

0.960 / 0.236 0.984 / 0.162 0.988 / 0.135 0.991 / 0.080

R
H

1.009 / 0.224 1.013 / 0.152 1.009 / 0.127 1.009 / 0.076

A few remarks for Fréchet parents:

• For Fréchet parents, the RMSE of RH(k)(k) and R
H(k)

(k) is always smaller

(or equal) than the RMSE of the classical quantil estimator, RH(k)(k).

• Also, the normalized quantile estimator R
H(k)

(k) has always the smallest

mean squared error.
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Figure 3: Underlying Fréchet parent with γ = 0.25, p = 1/n, and n = 1000.
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Figure 4: Underlying Fréchet parent with γ = 0.25, p = 1/(n ln n) and n = 1000.

4. CONCLUSION

The MVRB estimators proposed in this paper are bias-corrected Hill esti-

mators which perform better than the classical Hill estimator for all k, the number

of top o.s.’s used in the estimation of the tail index γ. Despite of this, it is sensible

to understand their comparative behaviour at optimal levels, not only for finite

sample size, but also asymptotically, as recently done in Gomes and Neves (2007)

for some of the classical estimators, like the well-known Hill, moment, maximum

likelihood and the recently introduced mixed moment estimator (Fraga Alves et

al., 2007). It is thus crucial to have information on the order of the dominant

component(s) of their asymptotic bias, the main contribution in this paper, for

the MVRB tail index estimators in (1.10) and the associated quantile estima-

tors in (1.13). The adaptive choice of the threshold is now becoming feasible for

a wide class of models, but it is outside of the scope of this paper.
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• In Mediterranean climate regions, prolonged periods of unusually dry conditions re-
duce the availability of water resources and affect vegetation cover; while other areas
can be affected by an increase in the number of heavy precipitation events, with an
increase in the flood risk. Issues such as drought and erosive rainfall have been raising
concern about the risks of land degradation and desertification. The main objective
of this paper is to provide an insight of the geographic distribution of extreme precip-
itation events in the Southern region of continental Portugal, as a basis for a future
study of the relationships between extreme rainfall patterns, both spatial and tem-
poral, and desertification processes. The data used in this study are a set of 105
station records with daily precipitation observations for the period 1940–1999. This
60-year period was chosen to optimize data availability across the region, taking into
consideration the quality control analysis performed. Among the numerous indices
of extreme precipitation described in the literature, we selected three of them for an
exploratory analysis: one index representing dry conditions, another one represent-
ing extremely heavy precipitation events and another index representing flood events.
For each of these three indices, yearly trends and decadal space-time patterns are
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1. INTRODUCTION

In Mediterranean climate regions, prolonged periods of unusually dry con-

ditions reduce the availability of water resources and affect vegetation cover; while

other areas can be affected by an increase in the number of heavy precipitation

events, with an increase in the flood risk ([9]). Issues such as drought and ero-

sive rainfall have been raising concern about the risks of land degradation and

desertification ([13]). The main objective of this paper is to provide an insight

of the geographic distribution of extreme precipitation events in the southern

region of continental Portugal, as a basis for a future study of the relationships

between extreme rainfall patterns, both spatial and temporal, and desertification

processes.

The data used in this study are a set of 105 station records with daily precip-

itation observations for the period 1940–1999. This 60-year period was chosen to

optimize data availability across the region, taking into consideration the quality

control analysis performed. Among the numerous indices of extreme precipitation

described in the literature, we selected three of them for an exploratory analysis:

one index representing dry conditions, another one representing extremely heavy

precipitation events and another index representing flood events.

Most of the studies analysing extreme precipitation indices focus on tem-

poral linear trends, rather than space-time patterns, because many of them aim

to assess climate changes, whereas for others a spatial analysis is not feasible due

to the sparse number of monitoring stations over large study regions (e.g. [11]).

However, that kind of analysis is extremely important for impact studies related

with the desertification phenomenon and therefore, for each of the three extreme

precipitation indices calculated, yearly trends and decadal space-time patterns

are investigated.

2. STUDY AREA AND DATA

The study area is located in the South of continental Portugal, and an

original set of 106 monitoring stations with daily precipitation data was selected.

Most of them were extracted from the National System of Water Resources In-

formation (SNIRH Sistema Nacional de Informao de Recursos Hdricos) database

(http://snirh.inag.pt), and three of them were compiled from the European Cli-

mate Assessment (ECA) dataset (http://eca.knmi.nl). Each station series data

was quality controlled by several procedures: gross error check (e.g. check nega-

tive precipitation and non-existent dates); records flagging using several criteria

(data outlying pre-fixed thresholds and graphical analysis); cross control among

highly correlated series (consider as possible errors the data that markedly dis-
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agree with the rainfall in other stations highly correlated); set to missing the

observations considered as erroneous or extremely suspicious; “flat line” check

procedures, which identify data of the same value for at least three consecutive

days (not applied to zero precipitation data).

Furthermore, for each station, annual precipitation series were computed

and studied for homogeneity through the application of six statistical tests, by

means of the hybrid approach proposed by Wijngaard et al. ([15]). In addition,

62% of the long-term series were also checked through relative approaches (testing

procedures that use records from reference stations), comprising the application

of five homogeneity tests which are capable of locating the year where a break

is likely ([2]; [3]). One station’s data was then rejected because multiple break-

points were identified and the homogeneous periods were too short and unreliable.

Hence, the data used in this study are a set of 105 station records with daily pre-

cipitation observations within the period 1940–1999 (Figure 1). Only the longest

homogeneous period was used to build the extreme precipitation indices whenever

at least one of the relative tests identified a break year.

Figure 1: Study domain and stations’ locations
with selected daily precipitation series.
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The extreme precipitation indices are sensitive to the number of missing

days, thus the selected stations satisfy the following criterion. The daily records

are as complete as possible, with less than 16% of data missing in each year.

Hence, for each station, the indices for a specific year were set to missing if there

were more than 16% of the days missing for that year ([8]).

3. EXTREME PRECIPITATION INDICES

Numerous extreme precipitation indices are described and analyzed in the

literature. Some indices involve arbitrary fixed thresholds, such as the number of

days per year with daily precipitation exceeding 10mm or 20mm (e.g. [11]; [12]).

Other indices are based on statistical quantities such as percentiles, which are

more appropriate for regions that contain a broad range of climates ([7]; [11]).

Indices based on the count of days crossing certain fixed thresholds are beneficial

for impact studies as they can be related with extreme events that affect human

society and the natural environment ([11]). Since numerous extreme rainfall in-

dices described in the literature are largely inter-correlated, we selected one index

representing dry conditions (RL10) and two for wet conditions (R30 and R5D).

The index RL10 is defined as the number of days per year with precipitation

amount below 10mm, thus measures the frequency of dry events. The index R30

measures the frequency of extremely heavy precipitation events and is defined

as the number of days per year with precipitation amount above or equal to

30mm. The index R5D is defined as the highest consecutive 5-day precipitation

total in each year and provides a measure (in mm) of the magnitude of strong

precipitation events. In the present study only annually specified indices are

considered.

4. METHODOLOGY FOR ASSESSING TRENDS AND SPACE-

TIME PATTERNS IN PRECIPITATION EXTREMES

The extreme precipitation indices were calculated for each station and were

then averaged over all the stations to obtain the regional-average of each extreme

index per year. The average number of stations series used by year to build

the regional-average series is equal to 47. The slopes of the trends in the in-

dices of precipitation extremes were calculated by least squares linear fitting and

trends’ significance determined using Student’s t-tests. The regression coefficient

b (slope) multiplied by 10 gives the change per decade ([11]).
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The spatial interpolation of precipitation has been the focus of much re-

search (e.g. [14]; [6]; [4]). However, the number of studies analysing space-time

patterns of extreme precipitation indices is very limited, as the large majority of

the studies focus on the temporal linear trends in the indices. An exception is the

work of Hundecha and Bárdossy ([10]) in which the station values of the daily pre-

cipitation were interpolated on a 5km×5km grid through external drift kriging,

using a digital elevation model as secondary information and, afterwards, several

extreme precipitation indices were calculated on grids of 5, 10, 25 and 50 km.

Geostatistical estimators, known as kriging (family of generalized least-

squares regression algorithms), provide statistically unbiased estimates of surface

values from a set of observations at recorded locations, using the estimated spatial

and temporal covariance model of the observed data. Stationarity assumptions

on kriging are traditionally accounted for by using local search neighbourhoods

so that the dependence on stationarity becomes local ([5]). The most commonly

applied forms of kriging use a variogram — inverse function of the spatial (and

temporal) covariance. This is a key function of geostatistics and represents the

variability of the spatial and temporal patterns of physical phenomena. Usually,

a mathematical variogram model is fitted to the empirical semi-variogram values

(experimental semi-variogram) calculated for given angular and distance classes.

The most common models are the linear, spherical, exponential and Gaussian

models ([5]). These models are known as transitive variograms, because the

spatial correlation structure varies with the distance h.

The parameters of the variogram model (sill, range and nugget) are then

used to assign optimal weights for spatial prediction using kriging. The nugget

is determined when h approaches 0. The nugget effect results from high vari-

ability at short distances that can be caused by lack of samples, or sampling

inaccuracy. The range is one of the most important parameters as it is related

with the spatial (or space-time) extent of continuity of the phenomenon. For the

case of a spherical model, the range of the variogram is the distance h beyond

which the variance no longer shows spatial dependence. At h, the sill value is

reached. Observations separated by a distance larger than the range are spatially

independent observations.

In this study, the extreme precipitation indices were calculated for each

station using data within the baseline period 1940–1999. Afterwards, the space-

time patterns of the indices were assessed through ordinary kriging on a 800m×
800m grid, for each year, using a different space-time variogram model for each

decade. The way in which the variogram models are chosen and their parameters

are estimated is controversial ([5]). In this study we chose exponential models that

capture the major spatial features of each attribute under study by subjectively

fitting the models to the experimental semi-variogram values taking into account

physical knowledge of the area and phenomenon.
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It is recognized that topography and other geographical factors are respon-

sible for considerable spatial heterogeneity of the precipitation distribution at the

sub-regional scale. Precipitation generally increases with elevation because of the

orographic effect of mountainous terrain. Ordinary kringing was preferred over

other methods incorporating secondary information (e.g., altitude or distance to

the coastline) such as cokriging, because of the poor linear relationships (assessed

through Pearson’s correlation coefficients) between the three indices and variables

such as the elevation and the geographical coordinates of the stations’ locations.

5. RESULTS AND DISCUSSION

5.1. Time trend analysis

The frequency of dry events, measured by the regional average of RL10

within the period 1940–99, is increasing (the change per decade is equal to

0.582 days), but the trend is not statistically significant (the p-value of the

t-test is equal to 0.214). The regional average of R30 shows a decrease in the

frequency of extremely heavy precipitation events (the change per decade is equal

to −0.009 days) but it is not statistically significant (the p-value of the t-test is

equal to 0.937). The magnitude of strong precipitation events, measured by the

regional average of R5D, is also decreasing (the change per decade is equal to

−0.132mm), but the trend is not statistically significant (the t-test p-value is

equal to 0.939).

The variability of the regional-average series of RL10, R30 and R5D does

not show significant trends either (Figure 2, left graphics).

5.2. Space-time continuity analysis

The variogram is an inverse measure of the correlation for a given vec-

tor distance h. Variograms, which are inverse functions of covariances, describe

how the spatial continuity changes as a function of the distance and direction

(where anisotropy is considered) between any pair of points in space and time.

Variogram’s values increase with increasing distance of separation until they reach

a maximum, named sill, at a distance known as the range. Here, the variogram

models are a function of these two parameters only, the range (denoted by a) and

the sill (denoted by c).



28 Ana Cristina Costa, Rita Durão, Amı́lcar Soares and Maria João Pereira

Figure 2: Left graphs: least squares linear fitting (red line) and weighted local
polynomial fitting (LOWESS smoothing introduced by [1]) with a
time span of 10 years (grey line) for each regional-average series.
Right graphs: least squares linear fitting of the regional standard-
deviation of RL10, R30 and R5D.

The space-time analysis was done on periods of 10 years: 1940–49, 1945–54,

1950–59, 1954–65, 1960–69, 1965–74, 1970–79, 1975–84, 1980–89, 1985–94, 1990–99.

Experimental space-time semi-variograms were calculated for the eleven decades

for each extreme precipitation index and exponential models fitted (the spatial

component was modelled as isotropic). For sake of simplicity only the variograms

of RL10 for 3 decades are shown in Figure 3. The parameters fitted for each var-

iogram are summarized in Table 1, showing that there are no relevant tendencies

in what concerns the temporal component of the semi-variograms, which is con-

sistent with what was previously discussed about the series time trends. However,

the ranges of the exponential models fitted to the experimental semi-variograms,

which express the extent of spatial continuity of the phenomena, are generally

increasing along the decades for all indices. This means that extreme events tend

to be more spatially homogeneous along time in this region.
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Figure 3: Space-time variograms of RL10 and exponential models fitted.
Graphs a), b), c) show the spatial component, and graphs d), e), f)
show the temporal component for the decades 1945–54, 1975–85
and 1990–99, respectively.

Table 1: Parameters of the space-time variograms
for each precipitation index by decade.

Index Decades
Spatial range a

(m)
Temporal range a

(years) Sill c

1945–54 120 000 5 70.406

RL10 1975–85 160 000 7.5 56.461

1990–99 275 000 4 71.366

1945–54 60 000 4 11.598

R30 1975–85 100 000 4.5 7.675

1990–99 150 000 4.5 8.984

1945–54 120 000 2.5 2885.47

R5D 1975–85 120 000 3.5 1704.018

1990–99 160 000 1.4 2803.646
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5.3. Space-time inference

Ordinary kriging was used to estimate in space and time the extreme pre-

cipitation indices, producing one map for each index per year. One map from the

decade 1945–54 and another one from the decade 1990–99 of each extreme pre-

cipitation index are shown in the following figures. The estimated maps of RL10

represent the driest years of those decades, namely 1954 and 1992 (Figure 4).

While the estimated maps of R30 represent the wetter years of those decades,

namely 1947 and 1996 (Figure 5). The estimated maps of R5D refer to the years

with more accumulated precipitation in five consecutive days, namely 1949 and

1997 (Figure 6).

Figure 4: Spatial distribution of the RL10 index for 1954 (left figure)
and 1992 (right figure).

Figure 5: Spatial distribution of the R30 index for 1947 (left figure)
and 1996 (right figure).
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Figure 6: Spatial distribution of the R5D index for 1949 (left figure)
and 1997 (right figure).

According with the experimental space-time variograms in the previous sec-

tion, the spatial distributions of the three precipitation indexes show an increase

of the spatial continuity along time as expected.

6. FINAL REMARKS

The results show no statistically significant trends in the regional-average

series within the period 1940–99, although the signs of the slopes are as expected

([11]; ECA project, http://eca.knmi.nl, retrieved April 2007): for the index

representing dry conditions the slope is positive and both indices representing

wet conditions show negative slopes. However, there is no significant change in

the temporal variability of the three regional extreme indices.

All extreme precipitation indices analysed show increased spatial continuity

along time.

The results of this application open perspectives for new approaches of the

analysis of extreme climate events, particularly in the context of impact studies

related with the desertification phenomenon.
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1. INTRODUCTION

In climatology and hydrology, maxima of temperatures, precipitation and

river discharges have been recorded for many decades. The block maxima size

(hourly, daily, weekly, monthly or yearly) varies according to instrumental con-

straints, seasonalities and the application at hand. Extreme Value Theory (EVT)

provides a theoretical framework to model the distribution of such block max-

ima (e.g. Embrechts et al., 1997; Beirlant et al., 2004; de Haan and Ferreira,

2006). Since the work of Fisher and Tippett in 1928, it is known that the only

possible limiting form of a normalized maximum of a random sample (when a

non-degenerate limit exists) is captured by the Generalized Extreme Value dis-

tribution (GEV)

G(x; σ, γ, µ) =





exp

(
−
{

1 + γ
x−µ

σ

}−1/γ
)

, if 1 + γ
x−µ

σ
> 0, γ 6= 0 ,

exp

(
− exp

{
− x−µ

σ

})
, if x ∈ R, γ = 0 ,

with µ ∈ R, σ > 0 and γ are called the location, scale and shape parameters,

respectively.

Whenever all observations from a given sample are available, it is statisti-

cally more efficient to disregard the block maxima modeling approach and instead

to analyze exceedances above a high fixed threshold. The exceedances amplitudes

can be asymptotically modeled by the Generalized Pareto Distribution (GPD)

(e.g., Pickands, 1975; Davison, 1984). In the last four decades, a wide range of

methods have been proposed to estimate the GPD scale and shape parameters

(e.g. Embrechts et al., 1997; Beirlant et al., 2004; de Haan and Ferreira, 2006).

But, for some specific cases, a GEV based approach may still be preferred to

a GPD one for at least three reasons. Firstly, block maxima may be the only

measurements available to the practitioner (this is specially true for long histor-

ical records). Secondly, climatologists frequently face a computational problem.

A very high number time series have to be analyzed. For example, General Cir-

culation Models, complex computer codes simulating the atmospheric circulation

through resolving the equations representing the Earths atmospheric dynamics

provide synthetic temperature time series on a spherical grid. The number of

points on such a grid can easily be greater than the hundreds. Consequently, it

is computationally easier to only focus on block maxima. This strategy bypasses

the difficult problem of choosing a high threshold for each grid point (Kharin,

2007). The latter task is already difficult for a single time series. The third

reason to work with blocks of a given size centers on the interpretability of the

estimated parameters. For example, a block size of one year makes sense for the

Earth scientist because inter-annual physical processes are often very different

than decadal ones. For these three reasons, modeling block maxima with a GEV

distribution remains a very frequent procedure in hydrology and climatology.
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To estimate the GEV parameters in the independent and identically dis-

tributed (iid) setting, there exists a wide variety of approaches. In this paper we

focus on the two most popular ones used in hydrology and climatology: method-

of-moments types (e.g. Hosking et al., 1985) and likelihood based procedures (e.g.

Coles and Dixon, 1999; Katz et al., 2002). For the former, hydrologists frequently

analyze their maxima with the so-called Probability Weighted Moments (PWM)

method introduced by Landwehr et al. (1979) and Greenwood et al. (1979).

The main idea of this approach is to match the moments

E

[
Xp
(
F (X)

)r (
1−F (X)

)s]
, with p, r and s real numbers ,

with their empirical functionals, similarly to the classical method-of-moments.

For the GEVdistribution, it is easy to show (Hosking et al., 1985) that E
[
X(F (X))r

]

can be written as

βr =
1

r+1

{
µ − σ

γ

[
1 − (r+1)γ Γ(1− γ)

]}
, γ < 1 and γ 6= 0 .(1.1)

Consequently, the PWM estimators (σ̂, γ̂, µ̂) of the GEV parameters (σ, γ, µ) are

simply the solution of the following system of equations





β0 = µ − σ

γ

(
1 − Γ(1− γ)

)

2β1 − β0 =
σ

γ
Γ(1− γ) (2γ − 1)

3β2 − β0

2β1 − β0
=

3γ − 1

2γ − 1

in which βr has to be replaced by the unbiased estimator proposed by Landwehr

et al. (1979)

β̂r =
1

n

n∑

j=1

(
r∏

ℓ=1

j − ℓ

n − ℓ

)
Xj,n

where (X1,n, ..., Xn,n) represents the ordered GEV distributed sample. The prop-

erties and performances of (β̂0, β̂1, β̂2) and (σ̂, γ̂, µ̂) were studied in details by

Hosking et al. (1985) who showed the asymptotic normality of these estimators

for γ < 0.5. Hoskings and his co-workers also asserted that PWMs estimators per-

formed better than a classical maximum likelihood estimation (MLE) for small

samples (see also Hosking and Wallis, 1987). Its conceptual simplicity, its practi-

cability and its good properties for small samples can explain the success of the

PWM approach in geosciences (e.g. Katz et al., 2002). Furrer and Naveau (2007)

derived some PWMs properties for small GPD distributed samples.

Despite its qualities, the PWM approach has been criticized by Coles and

Dixon (1999). In particular, these authors first argued that the PWM estimator

assumes a priori that the GEV shape parameter is smaller than one, equivalent
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to specifying that the studied distribution has finite mean. Then they deduced

that, if this prior information is available, then a penalized likelihood approach

with the constraint γ < 1 should be preferred. In this case, a simulation study in-

dicated that the penalized MLE outperformed the PWM estimators. But one has

to be careful with such a reasoning because PWM estimators are still computable

even when γ > 1 (like the sample mean X can be calculated even when the mean

is not finite). A penalized MLE with the constraint γ < 1 will never be able to

provide a shape estimator greater than one. In addition, the classical and pe-

nalized MLE approaches impose a restriction on the lower values of γ. We need

γ > −0.5 to have regularity of the MLE based estimators and the numerical

solutions of the MLE equations are erratic for γ close to −0.5. Although it is

rare to work with bounded upper tails, they can be encountered in geophysics.

For example, atmospheric scientists can be interested in relative humidity max-

ima, a bounded random variable. In this context, we argue that it is always

better to try removing restrictions on γ than adding ones because we never know

in practice the true value of the shape parameter. Hence one of our goals is to

extend the validity of method-of-moments based procedures. Still, we agree with

Coles and Dixon (1999) on the inherent flexibility of the maximum likelihood

and that the conditions on moments existence have to be carefully examined and

discussed to understand the limits of the PWMs approach. Our main point is not

to sell one estimator in favor of another, but rather to know how to improve a

simple approach frequently used in geosciences. With this objective in mind, we

recall that Diebolt et al. (2007) have recently proposed a wider class of PWMs

(called Generalized PWMs) for the GPD. In this paper, our aims are threefold.

Firstly, we propose GPWM estimators for the GEV parameters. Secondly, we

establish the asymptotic properties of our new estimators under general condi-

tions ensuring the validity of the method for a large range of values of γ. Thirdly,

we compare their performances with MLE and classical PWMs.

2. ASYMPTOTIC PROPERTIES OF THE GENERALIZED PWM

ESTIMATORS

The generalized probability-weighted moments (GPWM) recently intro-

duced by Diebolt et al. (2007) can be described in the following way

νω = E
(
X ω(G)

)
=

∫ ∞

−∞
x ω
(
G(x)

)
dG(x) ,

where ω is a suitable continuous function. By changing variables, this moment

can be rewritten as

νω =

∫ 1

0
G−1(u)ω(u) du .
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Let W be the primitive of ω, null at 0, i.e. W (t) =

∫ t

0
ω(u) du. We propose to

estimate νω by

ν̂ω,n =

∫ 1

0
F
−1
n (u)ω(u) du(2.1)

where Fn denotes the classical empirical distribution function based on a sample

(X1, ..., Xn). We are interested in the asymptotic properties of ν̂ω,n for the GEV

distribution. To reach this goal, we select a function ω such that

ω(t) = O
(
(1− t)b

)
for t close to 1, b ≥ 0(2.2)

and

ω(t) = O(ta
′

) for t close to 0, a′ > 0 .(2.3)

These assumptions tie down the functions G−1(t) and F
−1
n (t) at t = 0 and t = 1.

An example of such a function is ω(t) = ta(− log t)b, a > a′. In this case, the

GPWM for the GEV distribution can be rewritten (see Appendix) as

(2.4) νω =
σ

γ

1

(a+1)b−γ+1
Γ
(
b − γ +1

)
−
(σ

γ
−µ
) 1

(a+1)b+1
Γ
(
b +1

)
.

Compared to Equality (1.1) derived by Hosking et al. (1985), we have a more

general expression, Equation (1.1) can be obtained by taking b = 0 in (2.4).

As for the PWMs method, a system of three equations for three different val-

ues of a and/or b has to be solved in order to obtain estimators for σ, γ, µ.

Under the conditions (2.2) and (2.3), the GPWM νω exists as soon as

γ < b +1. This means that the domain of validity for the asymptotic normality

of the GPWM estimators has been extended from the set (γ < 1/2) to the larger

set γ < 1
2 + b. More precisely, the following theorem summarizes our findings.

Theorem 2.1. Let (X1, ..., Xn) be a sample of maxima whose marginal

follows a GEV distribution. Let ω1, ω2 and ω3 be any three continuous functions

satisfying (2.2) and (2.3). If γ < 1
2 + min(b1, b2, b3) for some bi ≥ 0, then the

rescaled trivariate GPWM estimator vector defined by (2.1) and denoted by

√
n




ν̂ω1,n − νω1

ν̂ω2,n − νω2

ν̂ω3,n − νω3




converges in distribution towards the trivariate vector



σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω1(t) dt

σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω2(t) dt

σ

∫ 1

0

B(t)

t

(
− log t

)−γ−1
ω3(t) dt




(2.5)
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where B denotes a Brownian bridge and n →∞. The elements of the variance-

covariance matrix, Γ, of this limiting vector are given by

∫ 1

0

1

t

(
− log t

)−γ−1
ωi(t)

∫ t

0

(
− log s

)−γ−1
ωj(s) ds dt(2.6)

+

∫ 1

0

(
− log t

)−γ−1
ωi(t)

∫ t

0

1

s

(
− log s

)−γ−1
ωj(s) ds dt

−
∫ 1

0

(
− log t

)−γ−1
ωi(t) dt

∫ 1

0

(
− log t

)−γ−1
ωj(t) dt ,

where i = 1, 2, 3 and j = 1, 2, 3.

The proof of this theorem is postponed to the appendix and is based on

empirical process arguments. From this result, we can deduce estimators for the

three parameters σ, γ, µ of the GEV distribution by applying the delta-method.

In order to assess the performance of our approach, we analyze simulated and

real data in the next section.

3. ANALYSIS OF SIMULATED AND REAL DATA

Theorem 2.1 is a general result. In practice, we have to select the three

function ω1, ω2 and ω3. In this section, we opt for ω(t) = ta(− log t)b with the

three pairs (a, b) = (1, 1), (1, 2), (2, 1). This choice is justified by the fact that

an estimator of γ can be deduced for these functions by solving the following

equation

γ̂

1−
(

3
2

)bγ =
2
[
ω̂11 − ω̂12

]

ω̂11− 9
4 ω̂21

,

where

ω̂ab =

∫ 1

0
F
−1
n (u)ua(− log u)b du .

Two estimators of σ and µ can be obtained from the relations

σ̂ = 23−bγ ω̂11− ω̂12

Γ(2 − γ̂)
and µ̂ =

σ̂

γ̂
− σ̂

γ̂
2bγ Γ(2− γ̂) + 4 ω̂11 .

From Theorem 2.1, the asymptotic normality of these three estimators of the GEV

parameters can be derived. It is possible to show the existence of a C1-diffeo-

morphism T which transforms the GPWMs (ω11, ω12, ω21) into (σ, γ, µ). Direct

but lengthy computations lead to the following Jacobian matrix, M , associated
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to this diffeomorphism



2
γ−2

γ
Γ(2−γ)−

1

4γ

σ

γ
2

γ−2

��
log 2−

1

γ

�
Γ(2−γ) −Γ

′

(2−γ)

�
+

σ

4γ2

1

4�
2

γ
−1

�
2

γ−3
Γ(2−γ)−

1

4γ

σ

γ
2

γ−3

��
−

2

γ
+log 2(2−γ)

�
Γ(2−γ)−(2−γ)Γ

′

(2−γ)

�
+

σ

4γ2

1

4

3
γ−2

γ
Γ(2−γ)−

1

9γ

σ

γ
3

γ−2

��
log 3−

1

γ

�
Γ(2−γ)−Γ

′

(2−γ)

�
+

σ

9γ2

1

9




.

Under the same assumptions stated in Theorem 2.1, we can deduce that the

limiting variance-covariance matrix of the trivariate vector
√

n




σ̂−σ
γ̂−γ
µ̂−µ


 can be

written as M−1Γ(M−1)′. This matrix will be useful for computing asymptotic

confidence intervals for our GPWM estimators for our application.

3.1. A simulation study

The aim of this simulation study is to show that our method performs

adequately for a wide range of values of γ (we will test γ =−0.2, 0, 0.2 and 1.2)

and for small and medium samples sizes (n = 15, 25, 50 and 100). The quality

of our estimators will be compared to the two most common approaches used in

hydrology (MLE and PWM). These three estimation methods (MLE, PWM and

GPWM) are invariant under linear transformations of the data, so without loss of

generality the location and scale parameters are set to µ = 0 and σ = 1 in all the

simulations. For each combination of values of n and γ, 10 000 random samples

are generated from the GEV distribution, and for each sample of parameters,

µ, σ and γ were estimated by each of the three methods.

We also implemented the penalized likelihood procedure proposed by Coles

and Dixon (1999) but it did not produced valuable results for γ = −0.2 and 1.2

for all sample sizes. Consequently, we will not show figures about the penalized

likelihood procedure (they are available upon request).

Figure 1 shows the estimation results for four different shape parameters γ.

Each vertical panel corresponds to the estimations obtained from γ =−0.2, 0, 0.2

and 1.2 (from bottom to top). The gray, yellow and white boxplots derived

from 10 000 GEV samples represent the performance of the MLE, PWM and

GPWM estimators, respectively. The x-axis corresponds to different sample sizes

n = 15, 25, 50 and 100. This graph indicates at least three things for the estima-

tion of the shape parameter. For γ =−0.2, 0, 0.2, the GPWM and MLE behave

fairly similarly for all sample sizes, while the PWM method tends to a smaller

interquartile but a larger bias. For strong heavy tail (γ = 1.2), PWM does not

perform well. The MLE provides a very large interquartile (even for n = 100),
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Figure 1: Estimation of γ: The gray, yellow and white boxplots from 10 000 GEV sam-
ples represent the performance of the MLE, PWM and GPWM estimators,
respectively. The x-axis corresponds to different sample sizes n = 15, 25,
50 and 100. Each vertical panel represents the estimations obtained from
a different value of γ =−0.2, 0, 0.2 and 1.2 (from bottom to top).

while the GPWM gives reasonable results for medium sample sizes n = 50 and

n = 100. But this may not be the whole story because one also has to look at

the two other GEV parameters. Figure 2 displays the estimation results for µ = 0

(left panels) and σ = 1 (right panels). As in Figure 1, each vertical panel repre-

sents the estimations obtained from γ =−0.2, 0, 0.2 and 1.2 (from bottom to top).
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Figure 2 confirms the remarks raised from Figure 1. The GPWM estimators seem

to outperform the PWM ones in all cases. That means that our generalization

of the PWM has widened the domain of validity without deteriorating the es-

timation of the parameters. The MLE approach works adequately but not for

γ = 1.2. For this latter case, the estimation of σ even for n = 100 does not seem

to provide reasonable estimates.
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Figure 2: Estimation of µ = 0 (left panels) and σ = 1 (right panels): The gray, yellow
and white boxplots from 10 000 GEV samples represent the performance
of the MLE, PWM and GPWM estimators, respectively. The x-axis corre-
sponds to different sample sizes n = 15, 25, 50 and 100. Each vertical panel
represents the estimations obtained from a different value of γ =−0.2, 0, 0.2
and 1.2 (from bottom to top).
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3.2. A real data set

One weather station in the city of Fort-Collins (Colorado, USA) recorded

annual daily precipitation maxima (in mm) from 1948 to 2001. Figure 3 displays

these precipitation maxima. The year 1997 stands up because a storm caused

extensive flood damage to this city on July 28th 1997. In order to fit a GEV dis-

tribution to this series of yearly maxima, we apply the three estimation methods

1950 1960 1970 1980 1990 2000
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Figure 3: Annual daily precipitation maxima (in mm) recorded in
Fort Collins (Colorado, USA) from 1948 to 2001.

(MLE, PWM and GPWM) to our data. For each method and for each parame-

ter, 95% asymptotic confidence intervals were obtained. Table 1 summarizes our

findings. The three estimation methods (PWM, MLE and GPWM) give similar

value for the shape parameter γ, around 0.3. For this type of value and type of

sample size (around 50), we know from our simulation study that the three meth-

ods should provide similar results in terms of estimation and confidence intervals.

The results presented in Table 1 tends to confirm this fact.

Table 1: GEV parameters fitted to the annual daily precipitation maxima in Fort-
Collins, Colorado, USA. For each estimation method and parameters,
the 95% asymptotic confidence intervals are shown into brackets.

µ̂ σ̂ γ̂

PWM 112.47 [96.61, 128.33] 50.57 [36.43, 64.71] 0.27 [−0.01, 0.55]

MLE 111.31 [96.45, 126.17] 47.39 [34.43, 60.35] 0.35 [0.07, 0.63]

GPWM 112.01 [106.40, 117.62] 50.24 [38.12, 62.36] 0.32 [−0.08, 0.73]
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4. CONCLUDING REMARKS

In this paper, we extend the PWM method of Hosking et al. (1985) for

the GEV distribution. As observed in the simulation part, the validity domain

is not only broadened but also the performance of our new method is improved

over the classical PWM, especially for large values of the shape parameter. The

latter situation is not favorable to the ML approach for small and medium sample

sizes. Still, while it is clear that GPWM should be favored to classical PWM,

it is difficult to disregard the MLE because it can bring a powerful flexibility in

the presence of covariates and/or non-stationarity. In the iid case, the hydrolo-

gist and the climatologist may prefer to estimate their GEV parameters with

GPWMs because the latter are based on the same method-of-moment approach

as the PWM. PWM has been used in their communities for decades and is well

understood. The GPWM conserves the PWM conceptual simplicity and its easy

implementation. Consequently, it could be quickly integrated in the toolbox of

the hydrologist. One remaining challenge for the statistician is to extend such

method-of-moment procedures to non-stationary situations.

APPENDIX

Proof of equality (2.4)

νω =

∫ ∞

−∞
x
(
G(x)

)a(− log G(x)
)b

dG(x)

=

∫ 1

0
G−1(u)ua

(
− log u

)b
du

=

∫ 1

0

{
σ

γ

[(
− log u

)−γ − 1
]
+ µ

}
ua
(
− log u

)b
du

=

∫ ∞

0

{
σ

γ

[
x−γ − 1

]
+ µ

}
e−(a+1)xxb dx

=
σ

γ

∫ ∞

0
xb−γ e−(a+1)x dx −

(
σ

γ
− µ

)∫ ∞

0
xbe−(a+1)x dx

=
σ

γ

1

(a +1)b−γ+1
Γ
(
b − γ + 1

)
−
(

σ

γ
− µ

)
1

(a +1)b+1
Γ
(
b +1

)
.
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Proof of our Theorem 2.1

We consider the difference

ν̂ω,n− νω
d
=

∫ 1

0

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

=

∫ an
n

0

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

+

∫ 1−an
n

an
n

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

+

∫ 1

1−an
n

[
G−1

(
G

−1
n (t)

)
− G−1(t)

]
ω(t) dt

=: T1,n + T2,n + T3,n ,

where (an)n is defined by an = ([9 log log n] +1)2 and G
−1
n denotes the empirical

quantile function of independent uniform random variables on (0, 1). We study

the different terms separately. We can easily prove that, if γ 6= 0, we have

G−1(t) =
σ

γ

[(
− log t

)−γ − 1
]

+ µ .

The case γ = 0 can be viewed as the limiting case, letting γ → 0.

Term T1,n

T1,n =

∫ an
n

0

σ

γ

[(
− log G

−1
n (t)

)−γ −
(
− log t

)−γ
]
ω(t) dt

=
σ

γ
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n

0

(
− log G

−1
n (t)

)−γ
ω(t) dt − σ

γ

∫ an
n

0

(
− log t

)−γ
ω(t) dt

=: T
(1)
1,n + T

(2)
1,n .

By changing variables, it is clear that

T
(2)
1,n = −σ

γ

∫ ∞

log n
an

x−γ e−x ω(e−x) dx .

Consequently

∣∣∣T (2)
1,n

∣∣∣ ≤ σ

γ

an

n

∫ ∞

log n
an

x−γ
∣∣ω(e−x)

∣∣ dx .

Therefore, we have, under the assumption

∫ ∞

0
x−γ

∣∣ω(e−x)
∣∣ dx < ∞ ,(A.1)
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that

√
n
∣∣∣T (2)

1,n

∣∣∣ = O

(
an√
n

)
−→ 0 .

Of course, (A.1) is satisfied since we have (2.2) and (2.3). Now, concerning the

term T
(1)
1,n , we use the following decomposition

T
(1)
1,n =

σ

γ
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(
− log G

−1
n (t)
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ω(t) dt + · · · +
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ω

(
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n

)

with i −1 ≤ ξi,n ≤ i and U1,n ≤ ... ≤ Un,n the order statistics of a sample of

n independent random variables from a uniform distribution on (0, 1). Since

|ω(t)| ≤ C ta
′

for t close to 0, we have
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1,n

∣∣∣ ≤ σ

γ

C

na′+1

{
(
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)−γ
+
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i=2

(
− log Ui,n

)−γ
ia

′

}
.

Using the following bounds (see Shorack and Wellner, 1986, p. 408 & 420), we

have, for n large enough:

• for U1,n:

1

n(log n)1+ε
≤ U1,n ≤ (1+ ε′)

log log n

n
a.s.

• for Ui,n:
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1≤i≤n

i

n Ui,n
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(
log n
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n Ui+1,n

i
≤ (1+ ε′) log log n a.s. .

Therefore, it is clear that

√
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∣∣∣T (1)

1,n

∣∣∣ = O

(
(log n)−γ

na′+1/2

)
+ O

(
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n
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log n
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−→ 0 ,

by definition of an.
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Term T2,n
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where βn is the uniform empirical quantile process and ξt,n ∈
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)
,
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(
t, t + βn(t)√

n

)]
. Our aim now is to use a result due to Csörgő et al. (1983)

(see e.g. Shorack and Wellner, 1986, p. 500). There exists a sequence of Brownian

bridges Bn such that, for ν ∈ [0, 1
2 [ :
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Therefore, under the conditions (2.2) and (2.3), T
(1)
2,n tends to 0 as soon as

γ < b + 1
2 . Now, we consider T

(2)
2,n . We can use the fact that
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(
− log t
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ω(t) dt

d
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Here and in all the paper, C represents a generic constant.

Therefore, we have
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Now, we have to study T
(3)
2,n . According to Shorack and Wellner (1986, p. 616),

we have

∣∣βn(t)
∣∣ ≤ C

√
t(1− t)

√
log log n a.s., uniformly on

[
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log log n

n
, 1− 9
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Therefore
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(
− log ξt,n

)−γ−2 (
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)
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This integral can be divided into three parts: from an

n to ε, from ε to 1− ε and

from 1− ε to 1− an

n , where ε is fixed. We denote these integrals by T
(3,1)
2,n , T
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2,n

and T
(3,3)
2,n respectively. We start with T
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2,n . Note that for t ∈ [an

n , ε], we have
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Therefore
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= 1 + o(1) and log ξt,n =

(
1 + o(1)

)
log t ,(A.4)

where the o(1)-terms are uniform in t. Consequently,
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Using (2.3), T
(3,1)
2,n tends clearly to 0. Similarly, since (A.2) and (A.4) are true for

t ∈
[
1− ε, 1− an

n

]
, we have
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}
,

by (2.2). The right-hand side of the last equality tends to 0 as soon as γ < b+ 1
2 .

For the central part, T
(3,2)
2,n , similar arguments lead to its negligibility.

Term T3,n
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The term T
(2)
3,n is of order

√
n

∫ 1

1−an
n

(1− t)−γ+b dt

which tends to 0 as soon as γ < b+ 1
2 . For T

(1)
3,n , we decompose again the integral

as follows, with j−1 ≤ ξj ≤ j:

T
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3,n =

σ

γ
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(
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ω
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= O
((

log n
)|γ| (1+ε)

nγ−b− 1

2 ab−γ+1
n

)
= o(1) ,

as soon as γ < b + 1
2 .

From all the above convergences, using Serfling (1980, page 18), we deduce (2.5),

and therefore the expression of the generic term at position (i, j), 1≤ i, j ≤ 3,

of the limiting variance-covariance matrix given in (2.6).

Combining these results, Theorem 2.1 follows.
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1. INTRODUCTION

Extreme value theory focuses on characteristics related to the tail of a

distribution function such as indices describing tail decay, extreme quantiles and

small tail probabilities. In the process of making inferences about the far tail

of a distribution function, it is necessary to extend the empirical distribution

function beyond the available data. This is typically done by only considering

the upper k order statistics, which then entails the issue of how to select a good,

or, if possible, an optimal, k-value. Many proposals to tackle this issue have been

made in the literature, see for instance Drees and Kaufmann (1998), Danielsson

et al. (2001), Guillou and Hall (2001), and Beirlant et al. (2002). In this paper we

use recently introduced kernel goodness-of-fit statistics for Pareto-type behavior

as a basis for proposing a new procedure for selecting k.

Consider random variables X1, ..., Xn independent and identically distrib-

uted (i.i.d.) according to some distribution function F and let X1,n ≤ ... ≤ Xn,n

denote the corresponding ascending order statistics. If for sequences of constants

(an > 0)n and (bn)n

lim
n→∞

P

(
Xn,n− bn

an
≤ x

)
= lim

n→∞
Fn(bn + anx) = G(x)(1.1)

at all continuity points of G, for G some non-degenerate distribution function,

then G has to be of the generalized extreme value (GEV) type:

Gγ(x) =





exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, γ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R, γ = 0 .

(1.2)

Note that the behavior of this distribution function is governed by the single

parameter γ, called the extreme value index. If F satisfies (1.1)–(1.2), then it

is said to belong to the max-domain of attraction of Gγ , denoted F ∈ D(Gγ).

An important subclass of the max-domain of attraction of the GEV distribution

is the class of the Pareto-type models. These are characterized by heavy tailed

distribution functions with infinite right endpoints, having γ > 0.

For Pareto-type distributions the first order condition (1.1) can be ex-

pressed in an equivalent way in terms of the survival function 1− F :

1− F (x) = x−1/γ ℓF (x) , x > 0 ,(1.3)

where ℓF denotes a slowly varying function at infinity, i.e.

ℓF (λx)

ℓF (x)
→ 1 as x → ∞ for all λ > 0 .(1.4)
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In terms of the tail quantile function U , defined as U(x) = inf{y : F (y)≥ 1−1/x},
x > 1, we then have that

U(x) = xγ ℓU (x) ,(1.5)

where ℓU again denotes a slowly varying function at infinity (Gnedenko, 1943).

Pareto-type tails are systematically used in certain branches of non-life insurance,

as well as in finance (stock returns), telecommunication (file sizes, waiting times),

geology (diamond values, earthquake magnitudes), and many others. In the

analysis of heavy tailed distributions the estimation of γ, and the subsequent

estimation of extreme quantiles, assume a central position. Several estimators

for γ have been proposed in the literature, and their asymptotic distributions

established, usually under a second order condition on the tail behavior (see e.g.

Beirlant et al., 2004, and de Haan and Ferreira, 2006). This condition specifies

the rate of convergence of ratios of the form ℓ(λx)/ℓ(x), with ℓ a slowly varying

function, to their limit (see Bingham et al., 1987).

Second order condition (Rℓ). A slowly varying function ℓ satisfies a

second order condition if there exists a real constant ρ ≤ 0 and a rate function b

satisfying b(x) → 0 as x → ∞, such that for all λ ≥ 1, as x → ∞,

ℓ(λx)

ℓ(x)
− 1 ∼ b(x)

λρ − 1

ρ
.

In the context of estimation of γ, it is then typically assumed that the

slowly varying function ℓU in (1.5) satisfies a second order condition. Of interest

for the subsequent development of a procedure for selecting a threshold, is testing

of the hypothesis that the underlying distribution is of Pareto-type together with

a second order condition holding. Formally, this hypothesis can be stated as

H0 : F is of Pareto-type with ℓU satisfying Rℓ .(1.6)

It is well known that the log-transform of a (strict) Pareto random variable has

an exponential distribution. Our approach to testing H0 is to exploit this fact by

considering goodness-of-fit tests for exponentiality as possible test statistics. The

literature on goodness-of-fit tests for the exponential distribution is quite elabo-

rate, see e.g. Henze and Meintanis (2005) for a recent overview of this literature.

Such tests often take the form of the ratio of two estimators for the exponential

scale parameter. In a similar way, one can construct test statistics as ratios of

two estimators for the extreme value index γ.

Of course it is intuitively clear that goodness-of-fit procedures should enable

one to choose an appropriate threshold Xn−k,n for tail index estimation. Hill

(1975) already recognized this idea, see also Beirlant et al. (1996). Typically,

however, goodness-of-fit based procedures are too conservative with respect to the

null hypothesis, leading to too high values of k (or equivalently too low thresholds)
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with respect to the asymptotic mean squared error (AMSE) criterion. Based on

the limiting distribution of our kernel goodness-of-fit statistic, we propose an

estimator for the bias component of the AMSE of the Hill estimator, yielding an

alternative method to select the threshold Xn−k,n.

The remainder of this paper is organized as follows. In Section 2 we intro-

duce a general kernel goodness-of-fit statistic for assessing whether a sample is

consistent with the Pareto-type model, and state its main properties. Section 3

deals with the link between goodness-of-fit testing and the selection of the opti-

mal tail sample fraction, for instance when using the Hill estimator. In Section 4

we illustrate the methodology with a practical example.

2. A KERNEL GOODNESS-OF-FIT STATISTIC FOR PARETO-

TYPE BEHAVIOR

Consider X1, ..., Xn i.i.d. Pa(1/γ) random variables, where Pa(1/γ) denotes

the strict Pareto distribution with Pareto index 1/γ, i.e. F (x) = 1−x−1/γ , x > 1,

and the corresponding ascending order statistics X1,n ≤ ... ≤ Xn,n. Then the ra-

tios Yj,k = Xn−k+j,n/Xn−k,n, j = 1, ..., k, are jointly distributed as the order statis-

tics of a random sample of size k from the Pa(1/γ) distribution. Consequently,

Y ∗
j,k = log Yj,k behave as Exp(1/γ) order statistics, where Exp(1/γ) denotes the

exponential distribution with mean γ. In case the data originate from a Pareto-

type distribution these properties hold approximately above a sufficiently high

threshold. This close link between the Pareto-type and the exponential model

will be exploited in the derivation of goodness-of-fit tests for the former. The

literature on testing whether a sample is consistent with an exponential distribu-

tion is quite extensive, see for instance Stephens (1986) and Henze and Meintanis

(2005), and the references therein. These exponential goodness-of-fit test statis-

tics are quite often a ratio of two estimators for the exponential scale parameter

(e.g. Lewis, 1965, Jackson, 1967, de Wet and Venter, 1973). Inspired by this and

based on the above properties of Pa(1/γ) order statistics, we apply a similar ratio

to the k largest order statistics, leading to the following test statistic

1
k

∑k
j=1 K

(
j

k+1

)
Zj

Hk,n
,(2.1)

with K denoting a kernel function satisfying
∫ 1
0 K(u)du = 0, Zj = j(log Xn−j+1,n−

log Xn−j,n), and Hk,n = 1
k

∑k
j=1 Zj , the Hill estimator for γ (Hill, 1975).

In Goegebeur et al. (2007), generalizing Beirlant et al. (2006), the statistic

in (2.1) was proposed and its limiting distribution derived under the hypothe-

sis stated in (1.6), some mild regularity conditions on K, and an intermediate
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k sequence, i.e. k = kn → ∞, kn = o(n) as n → ∞. We use log+u to denote

max{log u, 1}.

Theorem 2.1. Consider X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0. Assume ℓU satisfies

Rℓ and let K(t) = 1
t

∫ t
0 u(v) dv for some function u satisfying

∣∣k
∫ j/k
(j−1)/k u(t) dt

∣∣ ≤
f
( j

k+1

)
for some positive continuous function f defined on (0, 1) such that∫ 1

0 log+(1/w)f(w) dw < ∞ in case ρ < 0 and
∫ 1
0 w−ξf(w) dw < ∞ for some small

ξ > 0 in case ρ = 0,
∫ 1
0 |K(w)|2+δ dw <∞ for some δ > 0 and 1√

k

∑k
j=1K

( j
k+1

)
→ 0

as k →∞. Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k∑

j=1

K

(
j

k+1

)
Zj

L−→ N

(
c

γ

∫ 1

0
K(u)u−ρ du,

∫ 1

0
K2(u) du

)
.

Using this theorem, the decision rule for testing the hypothesis (1.6) at the

significance level α is to reject H0 if

√
k

∣∣∣∣∣
1

k Hk,n

k∑

j=1

K

(
j

k+1

)
Zj − b(n/k)

γ

∫ 1

0
K(u)u−ρdu

∣∣∣∣∣ >

> Φ−1

(
1 − α

2

)√∫ 1

0
K2(u) du ,

where Φ−1 denotes the standard normal quantile function. However, for practical

application this rule is not very helpful as it depends on the unknown function b

as well as on the parameters γ and ρ. A way out of this is to choose k relatively

small, i.e. small enough to guarantee that
√

k b(n/k) ≈ 0, which then leads to the

rule to reject H0 if

√
k

Hk,n

∣∣∣∣∣
1

k

k∑

j=1

K

(
j

k + 1

)
Zj

∣∣∣∣∣ > Φ−1

(
1 − α

2

)√∫ 1

0
K2(u) du .

For a detailed description of the fundamental properties of the goodness-

of-fit statistic and for an evaluation of its small sample performance through a

simulation study, we refer to Goegebeur et al. (2007). We will now describe two

important special cases of this kernel-type goodness-of-fit statistic, the Jackson

(Jackson, 1967) and the Lewis (Lewis, 1965) statistics, in more detail.

2.1. Jackson kernel function

We modify the Jackson statistic (Jackson, 1967), originally proposed as a

goodness-of-fit statistic for testing exponentiality, in such a way that it measures
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the linearity of the k largest observations on the Pareto quantile plot. Consider

X1,, ..., Xn i.i.d. Exp(δ) random variables. The Jackson statistic is given by

TJ =

∑n
j=1 tj,nXj,n∑n

j=1 Xj
(2.2)

where tj,n = δE(Xj,n) =
∑j

i=1(n − i + 1)−1. The numerator is clearly a sum of

cross products of order statistics and their expected values. The denominator

is introduced to eliminate the dependence on the nuisance parameter δ. The

Jackson statistic can hence be considered as a ‘correlation like’ statistic based

on the exponential quantile plot. The limiting distribution of the appropri-

ately normalized Jackson statistic was derived by Jackson (1976), in particular
√

n(TJ − 2)
D→ N(0, 1), as n → ∞. For our purposes it is more convenient to

express (2.2) in terms of the standardized spacings Vj = (n−j+1)(Xj,n−Xj−1,n),

j = 1, ..., n. From the Rényi representation these are known to be i.i.d. Exp(δ)

random variables. Rearranging terms of (2.2), it can be shown that

TJ =

∑n
j=1 Cj,n Vj∑n

j=1 Vj

where C1,n = 1 and Cj,n = 1 + tj−1,n, j = 2, ..., n.

We will now adjust the Jackson statistic in such a way that it measures the

linearity of the k upper order statistics on the Pareto quantile plot. Consider a

random sample X1, ..., Xn of Pareto-type distributed random variables. Applica-

tion of the Jackson statistic to Y ∗
j,k, j = 1, ..., k, yields, after suitable normalization

and rearranging terms,

T J
k,n =

√
k

1
k

∑k
j=1 KJ

(
j

k+1

)
Zj

Hk,n

where KJ(u) = −1 − log u, see also Beirlant et al. (2006). The kernel function

KJ satisfies the conditions of Theorem 2.1 with u(s) = −2 − log s, and hence

we can state the following proposition.

Proposition 2.1. Assume X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0 and ℓU satisfying Rℓ.

Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k∑

j=1

KJ

(
j

k + 1

)
Zj

L−→ N

(
c ρ

γ(1− ρ)2
, 1

)
.

Note that the normal limit is not necessarily centered at zero, i.e. the

statistic may exhibit some bias. The centering depends, besides γ, on the slowly

varying function ℓU through the parameters ρ and c.
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2.2. Lewis kernel function

As a second example we study the Lewis goodness-of-fit statistic. Consider

a sample X1, ..., Xn of i.i.d. Exp(δ) random variables. The Lewis statistic is given

by

TL =

∑n
j=1

j
n+1 Vn−j+1∑n
j=1 Xj

,

and
√

n(TL− 1/2)
L→ N(0, 1/12), as n → ∞ (Lewis, 1965). In case of a random

sample X1, ..., Xn of Pareto-type random variables, we can apply the Lewis statis-

tic to Y ∗
j,k, j = 1, ..., k, yielding, after appropriate normalization and rearranging

terms,

T L
k,n =

√
k

1
k

∑k
j=1 KL

(
j

k+1

)
Zj

Hk,n
,

with KL(u) = u − 0.5. The function KL satisfies the conditions of Theorem 2.1

with u(s) = 2s − 0.5, leading to the following proposition:

Proposition 2.2. Assume X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈ D(Gγ) for some γ > 0 and ℓU satisfying Rℓ.

Then as k, n → ∞, k/n → 0 and
√

k b(n/k) → c,

√
k

Hk,n

1

k

k∑

j=1

KL

(
j

k + 1

)
Zj

L→ N

(
− c ρ

2 γ (1−ρ)(2−ρ)
,

1

12

)
.

Note that for the same value of c, the absolute value of the asymptotic bias

of the Lewis statistic is smaller than the absolute bias of the Jackson statistic.

2.3. Bias-correction

As mentioned above, the bias of the kernel statistics may make it difficult

to evaluate the nature of the tail behavior. It is, however, possible to derive, for

a given kernel function K, a bias-corrected kernel function, denoted KBC(·; ρ),

i.e. a kernel satisfying
∫ 1
0 KBC(u; ρ)u−ρ du = 0. To obtain such a bias-corrected

kernel, note that both the numerator and the denominator of the general kernel

statistic (2.1) are weighted averages of the Zj , j = 1, ..., k. Within the framework

of Pareto-type tails and assuming condition Rℓ on ℓU holds, with ρ < 0, Beirlant

et al. (1999) derived the following approximate representation for log-spacings of

successive order statistics

Zj ∼ γ + bn,k

(
j

k + 1

)−ρ

+ εj , j = 1, ..., k ,(2.3)
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where bn,k = b(n/k) and εj , j =1, ..., k, are zero centered error terms, or, equiva-

lently

Zj − bn,k

(
j

k + 1

)−ρ

∼ γ + εj , j = 1, ..., k .

This then motivates the following bias-corrected statistic

√
k

1
k

∑k
j=1 K

(
j

k+1

)(
Zj − b̂LS,k(ρ)

(
j

k+1

)−ρ
)

γ̂LS,k(ρ)
,(2.4)

with γ̂LS,k(ρ) and b̂LS,k(ρ) the least squares estimators for respectively γ and bn,k

obtained from (2.3), taking ρ as fixed:

γ̂LS,k(ρ) =
1

k

k∑

j=1

Zj −
b̂LS,k(ρ)

1−ρ
,(2.5)

b̂LS,k(ρ) =
(1−ρ)2 (1− 2ρ)

ρ2

1

k

k∑

j=1

((
j

k + 1

)−ρ

− 1

1−ρ

)
Zj .(2.6)

After some additional straightforward manipulations on (2.4), we obtain the bias-

corrected kernel function:

KBC(u; ρ) = K(u) − (1−ρ)2 (1− 2ρ)

ρ2

(
u−ρ− 1

1−ρ

) ∫ 1

0
K(v)v−ρ dv .(2.7)

It is easy to verify that for kernel functions K satisfying the conditions of Theo-

rem 2.1, KBC will also satisfy these conditions with
∫ 1
0 KBC(u; ρ)u−ρ du = 0,

hence leading to an asymptotic normal distribution with null mean value, stated

in the next theorem (Goegebeur et al., 2007).

Theorem 2.2. Consider X1, ..., Xn i.i.d. random variables according to

distribution function F , where F ∈D(Gγ) for some γ > 0, and with ℓU satisfying

Rℓ, fixed ρ < 0. If K satisfies the conditions of Theorem 2.1, then if k, n → ∞,

k/n → 0 and
√

k b(n/k) → c,

√
k

γ̂LS,k(ρ)

1

k

k∑

j=1

KBC

(
j

k+1
; ρ

)
Zj

L−→ N

(
0 ,

∫ 1

0
K2

BC(u; ρ) du

)
.

The bias-correcting effect of the above described operation can be readily

seen from the limiting distribution: whatever c the normal limit is centered at

zero. In case of the bias-corrected Lewis kernel function, denoted KBCL, obtained

by plugging KL into (2.7),
∫ 1
0 K2

BCL(u; ρ) du = 0 if ρ =−1, leading to a degenerate

distribution at zero. When dealing with this kernel function we exclude the value

ρ = −1.
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3. SELECTION OF THE NUMBER OF UPPER ORDER STATIS-

TICS FOR TAIL INDEX ESTIMATION

In this section we discuss the use of the kernel goodness-of-fit statistic for

selecting the optimal threshold in tail index estimation. The discussion will be

focused on the Hill estimator, but the idea can of course be equally well applied to

other estimators for γ > 0. The basic idea is to exploit the relationship between

the bias component of the asymptotic mean squared error of the Hill estimator,

denoted AMSE (Hk,n), and the kernel goodness-of-fit statistics introduced above.

It is well known that for the Hill estimator

AMSE (Hk,n) =
γ2

k
+

(
bn,k

1−ρ

)2

= γ2

[
1

k
+

(
bn,k

γ(1−ρ)

)2
]

.

From Theorem 2.1, we have for the general kernel goodness-of-fit statistic, for

k, n large and k/n small,

1
k

∑k
j=1 K

(
j

k+1

)
Zj

Hk,n
∼ bn,k

γ

∫ 1

0
K(u)u−ρ du ,

and hence, provided
∫ 1
0 K(u)u−ρ du 6= 0,

bn,k

γ(1−ρ)
∼

1
k

∑k
j=1 K

(
j

k+1

)
Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du

,(3.1)

leading to the following approximation to AMSE (Hk,n)

ÂMSE (Hk,n) = γ2





1

k
+




1
k

∑k
j=1 K

(
j

k+1

)
Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du




2




.

The optimal choice of k is then approximated by

k̂opt = arg min





1

k
+




1
k

∑k
j=1 K

(
j

k+1

)
Zj

(1−ρ)Hk,n

∫ 1
0 K(u)u−ρ du




2




.(3.2)

Note that the squared goodness-of-fit statistic is to be complemented by a penalty

1/k in order to prevent choosing too small values of k. Also the role of ρ is

important: typically, the smaller |ρ| the heavier the ρ-factor with the test statistic

leading to small values of k.

In the remainder of this section we will concentrate on the Lewis goodness-

of-fit statistic, but of course similar results can be easily obtained for other kernel

functions. For the Lewis statistic, KL(u) = u− 0.5, and hence,
∫ 1
0 K(u)u−ρ du =
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|ρ|/
[
2(1−ρ)(2−ρ)

]
, which leads to minimizing

1

k
+

[
2(2−ρ)

|ρ|
√

k
T L

k,n

]2

(3.3)

with respect to k.

Practical implementations based on (3.2) or (3.3) require of course an esti-

mate for the unknown parameter ρ. Gomes et al. (2002) proposed ratios involving

different powers of statistics M
(r)
k,n, with

M
(r)
k,n =

1

k

k∑

j=1

(
log Xn−j+1,n − log Xn−k,n

)r

to derive estimators for ρ. In a similar fashion, we propose an estimator for ρ

using a ratio of two kernel goodness-of-fit statistics. Define

Ti =
1

k

k∑

j=1

Ki

(
j

k + 1

)
Zj , i = 1, 2 ,

where the indices 1 and 2 refer to the Jackson and Lewis goodness-of-fit statistics,

for instance. From Proposition 2.1 and Proposition 2.2, we have, in probability,

T1 ∼ bn,k
ρ

(1−ρ)2
,

T2 ∼ −bn,k
ρ

2(1−ρ)(2 − ρ)
,

and hence
T1

T2
∼ −2(2 − ρ)

1−ρ
,

which can be solved for ρ, yielding

ρ̂k =
4T2 + T1

2T2 + T1
.(3.4)

The asymptotic properties of this estimator will be discussed elsewhere.

As an alternative goodness-of-fit based procedure, the optimal k could be

derived from comparing observed and fitted values on the Pareto quantile plot,

for instance minimizing a weighted Cramér–von Mises statistic

1

H2
k,n

1

k

k∑

j=1

j

k− j +1

(
log

Xn−j+1,n

Xn−k,n
+ Hk,n log

j

k+1

)2

.(3.5)

Criteria of this type were considered in, for instance, Beirlant et al. (1996), and

Dupuis and Victoria-Feser (2003). Unlike the goodness-of-fit based threshold se-

lection procedure described above, this prediction error criterion does not require

the estimation of the nuisance parameter ρ, but even asymptotically it will not

minimize the AMSE.
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The Lewis based AMSE criterion and the prediction error criterion will

now be compared on the basis of a small sample simulation study. For the Lewis

based AMSE criterion we consider three cases: ρ fixed at −1, correct specification

of ρ and the case where ρ is replaced by (3.4). We simulated 500 samples of size

n = 500 from the Burr(η, τ, λ) distribution, with distribution function given by

F (x) = 1−
(

η

η + xτ

)λ

, x > 0, η, τ, λ > 0 ,

for which γ = 1/(λτ) and ρ = −1/λ. In Table 1, we summarize the results of

the simulation study by the empirical mean squared errors (MSE) of Hk̂opt,n
.

For both procedures considered, the γ estimates deteriorate with increasing values

of ρ. Clearly, the Lewis based AMSE approximation outperforms the prediction

error criterion. Moreover, the gains in MSE tend to increase in ρ. Note that,

although the Lewis based approximation of the AMSE requires an estimate for ρ,

the results are quite insensitive with respect to the specification of ρ.

Table 1: Empirical MSE of H
k̂opt,n

.

Distribution γ ρ
Lewis based AMSE criterion Prediction error

criterionρ = −1 correct ρ ρ̂

Burr(1, 2, 0.5) 1 −2 0.0103 0.0100 0.0109 0.0109

Burr(1, 1, 1) 1 −1 0.0275 0.0275 0.0288 0.0359

Burr(1, 0.5, 2) 1 −0.5 0.1178 0.1018 0.1199 0.1996

Burr(1, 0.25, 4) 1 −0.25 0.6869 0.5156 0.7195 1.1239

Burr(1, 4, 0.5) 0.5 −2 0.0029 0.0025 0.0030 0.0027

Burr(1, 2, 1) 0.5 −1 0.0069 0.0069 0.0072 0.0089

Burr(1, 1, 2) 0.5 −0.5 0.0299 0.0271 0.0308 0.0464

Burr(1, 0.5, 4) 0.5 −0.25 0.1771 0.1316 0.1741 0.2756

Besides this prediction error criterion we will also compare our goodness-of-

fit based approach with some other criteria recently proposed. The computational

complexity of some of these is such that they are not easy to implement for

comparison purposes. Beirlant et al. (2002) performed an extensive simulation

study and we will refer to some of their results, along with those from Beirlant

et al. (1996) and Matthys and Beirlant (2003).

To summarize, the procedures that will be compared are:

• Method 1: the Lewis based criterion given by (3.3),

• Method 2: the prediction error criterion given by (3.5),

• Method 3: Beirlant et al. (2002),
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• Method 4: Danielsson et al. (2001),

• Method 5: Drees and Kaufmann (1998),

• Method 6: Guillou and Hall (2001).

The performance of these procedures is evaluated on the basis of a small

sample simulation study. In this simulation we use, next to the Burr(η, τ, λ)

distribution introduced above, the following distributions:

1. The Fréchet(α) distribution,

F (x) = exp(−x−α) , x > 0, α > 0 ,

with γ = 1/α and ρ = −1. We set α = 2.

2. The |Tν | distribution,

F (x) =

∫ x

0

2 Γ
(

ν+1
2

)
√

νπ Γ
(

ν
2

)
(

1 +
y2

ν

)− ν+1

2

dy , x > 0, ν > 0 ,

with γ = 1/ν and ρ = −2/ν. We took ν = 6.

3. The loggamma(λ, α) distribution,

F (x) =

∫ x

1

λα

Γ(α)
(log y)α−1 y−λ−1 dy , x > 1, λ, α > 0 ,

with γ = 1/λ and ρ = 0. We set λ = 1 and α = 2.

For each of the above models, 500 datasets of size n = 500 are simulated. The

results of the simulation are summarized in Table 2 where we show the empirical

mean squared error of Hk̂opt,n
for the different methods and distributions consid-

ered. As is clear from Table 2 no single criterion performs uniformly best. The

Lewis based approximation is clearly competitive and maintains itself in the first

half of the methods considered.

Table 2: Empirical MSE of H
k̂opt,n

.

Method Fréchet(2) Burr(1, 0.5, 2) |T6| loggamma(1, 2)

1 0.0047 0.1178 0.0148 0.0873

2 0.0054 0.1996 0.0242 0.1105

3 0.0052 0.0930 0.0110 0.0602

4 0.0109 0.1459 0.0176 0.0904

5 0.0041 0.1239 0.0129 0.0784

6 0.0049 0.1452 0.0190 0.0689
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4. Case study: diamond data

Our case study can be situated in a geostatistical context and concerns

the valuation of diamonds. The profitability of a mining exploration largely

depends on the occurrence of precious stones, and consequently, accurate mod-

eling of the tail of the diamond value distribution is of crucial importance. The

data set considered here contains the value (in USD) of a sample of 1914 dia-

monds obtained from a kimberlite deposit. These data are publicly available at

http://ucs.kuleuven.be/Wiley/Data/diamond.txt. Figure 1 (a) shows the

exponential quantile plot for the variable value; Figure 1 (b) is the correspond-

ing mean excess plot. The convex shape of the exponential quantile plot and

the means excess function that is decreasing when considered as a function of k

indicate sub-exponential tail behavior. To assess the hypothesis of Pareto-type

behavior we also construct the Pareto quantile plot, see Figure 1 (c). The Pareto

quantile plot is clearly approximately linear in the largest observations indicating

a good fit of the value distribution by a Pareto-type model. The mean excess

function of the log-transformed data, which is in fact the Hill estimator, given in

Figure 1 (d), confirms this in the sense that it clearly shows a constant slope at

the smaller log k values.
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Figure 1: Diamond data: (a) exponential quantile plot, (b) mean excess plot,
(c) Pareto quantile plot and (d) Hk,n as a function of log k.
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In Figure 2 we show the four goodness-of-fit statistics together with the

critical values of pointwise 5% hypothesis tests, as derived from the limiting

distributions of the test statistics. For the ease of comparison we show the statis-

tics in standardized format, i.e. we show T J
k,n,

√
12 T L

k,n, (1− ρ̂)/|ρ̂|T BCJ
k,n and

(2−ρ̂)/|1+ρ̂|
√

12 T BCL
k,n , where the scaling factors follow from the asymptotic vari-

ance expression
∫ 1
0 K2(u) du, and where T BCJ

k,n and T BCL
k,n denote the bias-corrected

Jackson and Lewis statistic, respectively, obtained by plugging KJ and KL in

(2.7). Globally, up to approximately k = 380, all statistics fail to reject H0 of

Pareto-type behavior with Rℓ on ℓU . The bias-corrected Lewis statistic shows two

exceptions to this overall pattern, namely at the positions k = 53 and k = 128.

These positions are indicated on the Pareto quantile plot given in Figure 3.
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Figure 2: Diamond data: (a) T J

k,n
, (b)

√
12 TL

k,n
, (c) (1− ρ̂)/|ρ̂| T BCJ

k,n
,

(d) (2− ρ̂)/|1+ ρ̂|
√

12 T BCL

k,n
as a function of k.

Clearly, at these positions the Pareto quantile plot makes vertical jumps.

Beyond k = 380 the uncorrected statistics diverge and move outside the accep-

tance region, while the bias-corrected statistics fluctuate heavily and show por-

tions of reasonable length both inside and outside the acceptance region, and

hence give a more nuanced picture of the distributional behavior. A plausible ex-

planation for this pattern can be found in the Pareto quantile plot. The Pareto

quantile plot shows more or less linear segments on both the left- and right-hand
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side of the observation k = 380, although with different slopes. The uncorrected

statistics can only handle the ultimate linear part of this plot and hence beyond

this point they diverge. The bias-corrected statistics, through the inclusion of the

second order tail condition, are also able to deal with the curved part. However,

the portions inside and outside the acceptance region indicate special features of

these data. Looking back at the Pareto quantile plot we find that also deeper

in the data, i.e. at larger k-values, other linear portions with different slopes can

be distinguished. This may indicate that the diamond value distribution is a

mixture of several Pareto-type models with different Pareto indices. In fact, the

tail of the diamond value distribution is known to be influenced by factors such

as, among others, size and color (Beirlant and Goegebeur, 2003). In this analysis

we ignored this information. It is a nice feature of the bias-corrected statistics

that they indicate this change in distributional regime and give, compared to the

uncorrected statistics, a more subtle view on the tail behavior.
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Figure 3: Diamond data: Pareto quantile plot with the positions where
H0 of Pareto-type behavior is rejected.

Given that the Pareto-type model provides a plausible explanation of these

data, the analysis can be carried one step further, focusing on the estimation of

the tail index γ. In this respect, Figure 4 (a) shows the Lewis based approxima-

tion to the asymptotic mean squared error of the Hill estimator, ÂMSE (Hk,n),

obtained with ρ̂ = −2.724, as a function of k. This ρ-value is obtained from (3.4)

together with the rule of thumb proposed by Gomes et al. (2002) that the k for the

estimation of ρ can be taken as k = ⌊n0.995⌋, see also Figure 4 (e). The minimum

value of ÂMSE (Hk,n) is reached at k̂opt = 343 and H343,1914 = 0.917. Note that
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Figure 4: Diamond data: (a) ÂMSE (Hk,n) as a function of k,
(b) Pareto quantile plot, (c) residuals versus fitted responses,
(d) prediction error criterion, (e) ρ̂k as a function of k.

the k-value minimizing the asymptotic mean squared error is smaller than the

k-value beyond which goodness-of-fit tests consistently reject the null hypothesis

given in (1.6). Alternatively, based on Figure 4 (e), we could also have taken

ρ̂ = −1, which would result in k̂opt = 336 and H336,1914 = 0.912, results that are

in line with those obtained with the former ρ-value. In Figure 4 (b) we indicate

the 343th largest observation on the Pareto quantile plot of the variable value

together with a straight line through this point and with slope Hk̂opt,n
. Clearly,
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the straight line summarizes the upper right portion of the Pareto quantile plot

quite well, see also the Figure 4 (c) showing the residuals resulting from this line

fit. Finally, in Figure 4 (d), we show the prediction error criterion (3.5) as a

function of k. The prediction error reaches its minimum deeper in the data, at

k = 379 and H379,1914 = 0.940, results that are comparable with the minimization

of the asymptotic mean squared error.

5. CONCLUSION

In this paper we examined the relationship between Pareto-type goodness-

of-fit testing and the selection of the upper sample fraction when estimating the

tail index, for instance using Hill’s estimator. To this end we considered the class

of kernel statistics introduced in Goegebeur et al. (2007). Typically, goodness-

of-fit tests are too conservative with respect to the null hypothesis, entailing too

high k-values (or too small thresholds) relative to the minimum AMSE criterion,

which led us to follow another route, exploiting the relationship between the

kernel statistic and the bias component of the AMSE of the Hill estimator. The

procedure was evaluated on a small sample simulation study and showed to be

competitive with some of the better performing currently available algorithms.

As a nice side result, we obtained a new estimator for the second order parameter

ρ, of which the in-depth investigation is a topic of current research.
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ponential representations of log-spacings of extreme order statistics, Extremes, 5,
157–180.

[4] Beirlant, J. and Goegebeur, Y. (2003). Regression with response distribu-
tions of Pareto-type, Computational Statistics and Data Analysis, 42, 595–619.

[5] Beirlant, J.; Goegebeur, Y.; Segers, J. and Teugels, J. (2004). Statistics

of Extremes – Theory and Applications, Wiley Series in Probability and Statistics.

[6] Beirlant, J.; Vynckier, P. and Teugels, J.L. (1996). Tail index estima-
tion, Pareto quantile plots, and regression diagnostics, Journal of the American

Statistical Association, 91, 1659–1667.

[7] Bingham, N.H.; Goldie, C.M. and Teugels, J.L. (1987). Regular Variation,
Cambridge University Press, Cambridge.

[8] Danielsson, J.; de Haan, L.; Peng, L. and de Vries, C. (2001). Using a
bootstrap method to choose sample fraction in tail index estimation, Journal of

Multivariate analysis, 76, 226–248.

[9] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction,
Springer.

[10] de Wet, T. and Venter, J.H. (1973). A goodness-of-fit test for a scale pa-
rameter family of distributions, South African Statistical Journal, 7, 35–46.

[11] Drees, H. and Kaufmann, E. (1998). Selecting the optimal sample fraction in
univariate extreme value estimation, Stochastic Processes and their Applications,
75, 149–172.

[12] Dupuis, D. and Victoria-Feser, M.-P. (2003). A prediction error criterion

for choosing the lower quantile in Pareto-index estimation, Cahiers de Recherche
HEC no. 2003.19, University of Geneva.

[13] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d’une
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1. INTRODUCTION

Problems of spatial statistics connected with high values of the spatial

process need to be dealt with using extreme value theory (EVT), since the de-

pendence between locations at high levels may differ from the dependence at

moderate levels.

A case in point is the estimation of high quantiles of the total rainfall in

a certain area. Engineers often need extreme rainfall statistics for the design of

structures for flood protection. The observed rainfall data is only available on a

few fixed monitoring stations. In order to study the high quantiles of the total

rainfall, it is necessary to model the extreme rainfall process with dependence.

Considering the dependence structure, Cooley, Nychka and Naveau ([2])

used a Bayesian hierarchical model: locally the extreme rainfall is modeled by a

one-dimensional EVT distribution and the parameters of this distribution follow

some spatial dependence model.

A different way of introducing dependence is via a max-stable process. The

mathematical setting of a spatial model for extreme rainfall is as follows. Consider

independent replications of a stochastic process with continuous sample paths

{
Xn(t)

}
t∈R

,

n = 1, 2, ... . Suppose that the process is in the domain of attraction of a max-

stable process, that is, there are sequences of continuous functions an > 0 and bn

such that as n → ∞

(1.1)

{
max1≤i≤n Xi(t) − bn(t)

an(t)

}

t∈R

w−→
{
η̃(t)

}
t∈R

in C-space. Necessary and sufficient conditions have been given by de Haan and

Lin ([4]). The limit process {η̃(t)} is a max-stable process. Without loss of

generality we can assume that the marginal distribution of η̃ can be written as

exp
{
−
(
1 + γ(t)x

)−1/γ(t)
}

for all x with 1 + γ(t)x > 0 where the function γ is continuous.

Buishand, de Haan and Zhou ([1]) simulated extreme rainfall from a max-

stable process. Combining simulations of extreme rainfall with resampling from

the non-extreme observations, an overview on the total rainfall can be generated.

This is a novel solution for problems connected to both spatial statistics and

extreme value analysis.
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A major difficulty in the above methodology is to find a reasonable model

for the max-stable process. With a suitable standardization, we can restrict

ourselves to discussing the standardized process, called simple max-stable,

{
η(t)

}
:=
{(

1 + γ(t) η̃(t)
)1/γ(t)

+

}
,

whose marginal distribution functions are all standard Fréchet: exp(−1/x), x > 0.

For application, it would be nice to have a stationary simple max-stable

process. There are two different representations of stationary simple max-stable

processes in literature. We consider one of them as follows, see Corollary 9.4.5,

de Haan and Ferreira ([3]).

All simple max-stable process in C+(R) (the positive continuous functions

on R) can be generated in the following way. Consider a Poisson point process

on (0, +∞] with mean measure dr/r2. Let {Zi}∞i=1 be a realization of this point

process. Further consider i.i.d. stochastic processes V, V1, V2, ... in C+(R) with

EV (s) = 1 for all s ∈ R and E sups∈I V (s) < ∞ for all compact interval I. Let

the point process and the sequence V, V1, V2, ... be independent. Then

(1.2)
{
η(s)

}
s∈R

d
=
{

max
i≥1

ZiVi(s)
}

s∈R

is a simple max-stable process. Conversely each simple max-stable process has

such a representation.

We use this result in a two-dimensional context and propose the following

model

(1.3) η(s1, s2) := max
i≥1

Zi exp
{

W1i(βs1) + W2i(βs2) − β
(
|s1| + |s2|

)
/2
}

for (s1, s2) ∈ R
2. The processes W11, W21, W12, W22, W13, W23, ... are independent

copies of double-sided Brownian motions W defined as follows. Take two inde-

pendent Brownian motions B1 and B2. Then

(1.4) W (s) :=

{
B1(s), s ≥ 0 ;

B2(−s), s < 0 .

The positive constant β reflects the amount of spatial dependence at high levels

of local observation: “β small” means strong dependence and “β large” means

weak dependence. For this model, we shall prove that the dependence between

extreme observations at two locations depends only on the distance between the

locations.
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The process η satisfies the requirements as follows:

E exp
{

W1(βs1) + W2(βs2) − β
(
|s1| + |s2|

)
/2
}

= 1 for (s1, s2) ∈ R
2 ,

and

E sup
a1≤s1≤b1
a2≤s2≤b2

exp
{
W1(βs1) + W2(βs2) − β

(
|s1| + |s2|

)
/2
}

< ∞

for all a1< b1, a2 < b2 real .

Meanwhile, the one-dimensional marginal distribution functions of (1.3) are all

e−1/x, x > 0. Notice that only a one-dimensional Poisson point process is used

in η. Thus, this process is easy to simulate.

Similar to de Haan and Pereira ([5]), in order to use this model in studying

spatial extremes, we have to prove that the process η is shift stationary and

we have to calculate the two-dimensional marginal distributions.

Since the two-dimensional process η is a combination of two one-dimen-

sional processes, for the stationarity it is sufficient to prove the same for the

one-dimensional version, i.e. that the process

(1.5) η′(s) := max
i≥1

Zi exp
{

W1i(βs1) − β |s1|/2
}

is stationary. This follows from the fact that the process η′ can be obtained

as the limit of the pointwise maximum of i.i.d. Ornstein–Uhlenbeck processes

(cf. e.g. Example 9.8.2, de Haan and Ferreira ([3])). The stationarity follows

from the stationarity of the Ornstein–Uhlenbeck process.

It remains to calculate the two-dimensional marginal distributions. This is

done in Section 2.

2. THE TWO-DIMENSIONAL MARGINAL DISTRIBUTION OF η

The two-dimensional marginal distribution of η′ in (1.5) is calculated in

de Haan and Ferreira ([3]), section 9.8. We state it as the following proposition.

Proposition 2.1. Suppose {η′(s)}s∈R
is defined as in (1.5). Then for

x, y ∈ R and s1, s2 ∈ R,

− log P
(
η′(s1)≤ ex, η′(s2)≤ ey

)
=

= e−x Φ

(√
|s1− s2|

2
+

−x + y√
|s1− s2|

)
+ e−y Φ

(√
|s1− s2|

2
+

x − y√
|s1− s2|

)
.
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This is useful in similar calculation for the two-dimensional process η.

Besides Proposition 2.1, we need the following Lemma.

Lemma 2.1. Suppose N is normally distributed with mean 0, variance u,

then with non-random constants a > 0 and b,

(2.1) E eN−u/2 Φ(aN+ b) = Φ

(
au + b√
a2u + 1

)
.

Proof: SupposeN1 is standard normally distributed, and independent of N,

then we have

E eN−u/2 1N1≤aN+b = EN E
(
eN−u/2 1N1≤aN+b |N

)
= E eN−u/2 Φ(aN+ b) ,

which is the left side of (2.1). By Fubini’s Theorem, it can be recalculated in the

following way

E eN−u/2 1N1≤aN+b = EN1
E
(
eN−u/2 1N1≤aN+b |N1

)

= EN1

∫ ∞
N1−b

a

et−u/2 1√
2πu

e−
t2

2u dt

= EN1

∫ ∞
N1−b

a

1√
2πu

e−
(t−u)

2

2u dt

= EN1

(
1 − Φ

(
N1− b

a
√

u
−
√

u

))
.

By a similar trick — introducing a standard normal variable N2 independent of

N1, the calculation can be finished to prove the lemma.

EN1

(
1 − Φ

(
N1− b

a
√

u
−
√

u

))
= EN1

E
(
1

N2≥
N1−b

a
√

u
−
√

u
|N1

)

= EN1,N2
1

N2≥
N1−b

a
√

u
−
√

u

= P

(
N2 ≥ N1− b

a
√

u
−
√

u

)

= Φ

(
au + b√
a2u + 1

)
.

We remark that the last calculation is similar to that of Lemma 2.1 in Gupta,

González-Faŕıas and Domı́nguez-Molina ([6]).

The lemma can be used to derive the two-dimensional marginal distribu-

tions as follows. As in the proof of Proposition 2.1 (cf. de Haan and Ferreira ([3]),
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Section 9.8), we have

− log P
(
η(u1, u2)≤ ex, η(v1, v2)≤ ey

)
=(2.2)

= E max
(
eW1(βu1)+W2(βu2)−(|βu1|+|βu2|)/2−x, eW1(βv1)+W2(βv2)−(|βv1|+|βv2|)/2−y

)

= EW1
E

(
max

(
eW1(βu1)+W2(βu2)−(β|u1|+β|u2|)/2−x,

eW1(βv1)+W2(βv2)−(β|v1|+β|v2|)/2−y
) ∣∣∣W1

)

= E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)

+ E e−y+W1(βv1)−β|v1|/2

· Φ

(√
β|u2 − v2|

2
+

x − y + W1(βv1) − W1(βu1) − β|v1|/2 + β|u1|/2√
β|u2 − v2|

)
.

Now we can calculate the two parts in (2.2) separately. Without loosing general-

ity, we only focus on the first part.

Case 1: 0 ≤ u1 ≤ v1 .

In this case e−x+W1(βu1)−β|u1|/2 is independent of the other part. Hence,

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−xE Φ



√

β|u2 − v2|
2

+
y − x −

(
W1(βv1) − W1(βu1) − β(v1− u1)/2

)

√
β|u2 − v2|




= e−x P


N ≤

√
β|u2 − v2|

2
+

y − x −
(
W1(βv1) − W1(βu1) − β(v1− u1)/2

)

√
β|u2 − v2|




= e−x Φ

(√
β|u2 − v2| + β(v1− u1)

2
+

y − x√
β|u2 − v2| + β(v1− u1)

)
.

Case 2: 0 ≤ v1 < u1 .

Note that E eW1(βv1)−βv1/2 = 1 and W1(βv1) is independent of W1(βu1)−W1(βv1),
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we have

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x E eW1(βu1)−W1(βv1)−β(u1−v1)/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
.

Since W1(βu1)−W1(βv1) is normally distributed with mean 0, variance β(u1−v1),

we can apply Lemma 2.1 with the constants a = 1/
√

β|u2 − v2|, u = β(u1− v1)

and

b =

√
β|u2 − v2|

2
+

y − x − βu1/2 + βv1/2√
β|u2 − v2|

.

The final result is

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x Φ

(√
β|u2 − v2| + β(u1 − v1)

2
+

y − x√
β|u2 − v2| + β(u1− v1)

)
.

Case 3: v1 < u1 < 0 and u1≤ v1 < 0 .

These two cases are similar to Case 1 and 2 respectively. The final results are all

the same as follows.

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x Φ

(√
β|u2 − v2| + β|u1− v1|

2
+

y − x√
β|u2 − v2| + β|u1− v1|

)
.

Case 4: u1 and v1 have different signs.

In this case W1(βu1) and W1(βv1) are independent, we can calculate the expec-

tation with respect to W1(βv1) first, then with respect to W1(βu1).

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x E eW1(βu1)−β|u1|/2 Φ

(√
β|u2− v2| + β|v1|

2
+

y − x + W1(βu1) − β|u1|/2√
β|u2 − v2| + β|v1|

)
.
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Now we can again apply Lemma 2.1 with the constants a = 1/
√

β|u2−v2| + β|v1|,
u = β|u1| and

b =

√
β|u2 − v2| + β|v1|

2
+

y − x − β|u1|/2√
β|u2 − v2| + β|v1|

to get that

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x Φ




√
β|u2 − v2| + β

(
|u1| + |v1|

)

2
+

y − x√
β|u2 − v2| + β

(
|u1| + |v1|

)


 .

Notice that due to the different signs of u1 and v1, |u1− v1| = |u1| + |v1|.

By defining h = |u1− v1| + |u2 − v2|, all these cases can be combined to-

gether as

E e−x+W1(βu1)−β|u1|/2

· Φ

(√
β|u2 − v2|

2
+

y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2√
β|u2 − v2|

)
=

= e−x Φ

(√
βh

2
+

y − x√
βh

)
.

Symmetrically, the second part of (2.2) can be simplified as

e−y Φ

(√
βh

2
+

x − y√
βh

)
.

Combining these two parts, we get the following theorem about the two-dimen-

sional marginal distribution of η.

Theorem 2.1. Suppose the simple max-stable process η is defined in (1.3).

Given any two coordinates (u1, u2) and (v1, v2) on R
2, denote the distance be-

tween them as h := |u1−v1| + |u2−v2|. Then the two-dimensional distribution

function of
(
η(u1, u2), η(v1, v2)

)
is

P
(
η(u1, u2)≤ ex, η(v1, v2)≤ ey

)
=(2.3)

= exp

{
−
(

e−x Φ

(√
βh

2
+

y − x√
βh

)
+ e−y Φ

(√
βh

2
+

x − y√
βh

))}
,

where Φ is the standard normal distribution function and x, y ∈ R.
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Note that the two-dimensional marginal distribution depends on only h.

It agrees with the shift stationarity discussed in Section 1.

Similar to de Haan and Pereira ([5]), Theorem 2.1 is useful in estimating β.

By taking x = y = 0, we get that

P
(
η(u1, u2)≤ 1, η(v1, v2)≤ 1

)
= exp

{
−2 Φ

(√
βh

2

)}
.

Consequently, we have that

β =
4

h

(
Φ←
(
−1

2
log P

(
η(u1, u2)≤ 1, η(v1, v2)≤ 1

)))2

.

Hence we can estimate β if we know how to estimate

L(u1,u2),(v1,v2)(1, 1) := − log P
(
η(u1, u2)≤ 1, η(v1, v2)≤ 1

)
.

In fact, this problem has been solved by Huang and Mason (cf. Huang ([8]),

Drees and Huang ([7])). Suppose we have i.i.d. observations of η as η1, η2, ... .

Write
{
ηi,n(s1, s2)

}n

i=1
for the order statistics at location (s1, s2). Then the esti-

mator

L̂
(k)
(u1,u2),(v1,v2)(1,1) :=

1

k

n∑

j=1

1{
ηj(u1,u2)≥ηn−k+1,n(u1,u2) or ηj(v1,v2)≥ηn−k+1,n(v1,v2)

}

is consistent provided k = k(n)→∞, k(n)/n→ 0, n→∞. It is asymptotically

normal under certain mild extra conditions.

Hence, from the two-dimensional marginal distribution, we can estimate β

when we have the observation at two specific locations. An application of this

method is in Buishand, de Haan and Zhou ([1]), Section 5.
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1. INTRODUCTION

Statistical inference about rare and damaging events can fairly be designed

upon those observations which are considered extreme in some sense. There are

different ways of mapping such observations yielding alternative approaches to

statistical inference on extreme values: the classical Gumbel parametric method

of block of Annual Maxima, Peaks-Over-Threshold (POT) parametric meth-

ods and the recently denominated Peaks-Over-Random-Threshold (PORT) semi-

parametric methods, which is nothing more than a fairly small variant of POT

for statistical inference conditionally on an intermediate random threshold.

However, regardless of the specific approach we intend to follow, statistical

inference is clearly improved if one makes a priori assumptions about the most

appropriate type of decay of the underlying tail distribution function 1− F , i.e.,

about whether it decays exponentially fast, is polynomially decreasing or exhibits

a light tail with finite right endpoint. This is supported by Extreme Value Theory,

stemming from the fundamental Theorem of Fisher and Tippett (1928), which

ascertains that all possible non-degenerate weak limit distributions of partial

maxima of independent and identically distributed random variables X1, X2, ...

are (Generalized) Extreme Value distributions.

The Generalized Extreme Value distribution (GEVd) comprises Fréchet,

Weibull and Gumbel distributions. A distribution function (d.f.) F that belongs

to the Fréchet domain of attraction is called a heavy-tailed distribution, the

Weibull domain encloses light-tailed distributions with finite right endpoint and

the particularly interesting case of the Gumbel domain embraces a great variety

of tail distribution functions ranging from light to moderately heavy, whether

detaining finite right endpoint or not.

Hence, separating statistical inference procedures according to the most

suitable domain of attraction for the underlying distribution has become a usual

practice in the literature either by following a parametric or a semi-parametric

approach. Following a semi-parametric approach, the only assumption made is

that the underlying d.f. is in the domain of attraction of the GEVd. In this

setup, any inference concerning the tail of the underlying distribution is based

exclusively on those observations lying above an intermediate random threshold,

giving rise to the PORT method. The latter compares with the alternative setup

of restricting attention to a random number of observations exceeding a given

high increasing deterministic level u, an approach engraved in the POT method.

Our aim here is to give a brief overview of several well-known testing proce-

dures in the context of statistical choice of extreme value conditions, along with

some recent proposals using location/scale invariant statistics that have been

built on the k excesses above a random threshold. This random threshold is
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consensually an intermediate order statistic. The development of statistical pro-

cedures and techniques with the specific intention of dealing with extreme data

in a more systematic and reliable way renders, to our best knowledge, a challenge

that many applied fields such as environmetrics, climatology, telecommunications

or finance hold in common.

The paper proceeds as follows. Section 2 contains some notation and sets

general ground rules in the context of extreme value analysis. For analyzing

extreme values there are different approaches, according to the underlying as-

sumptions on F and the specific observations of the random sample available

for statistical inference purposes. In this sequence, Sections 3 and 4 provide ref-

erences and brief descriptions of several contributions in both parametric and

semi-parametric setup. Finally, Section 5 brings the PORT-method into focus by

means of an application to real data.

2. PRELIMINARIES AND SOME NOTATION

When we are interested in modeling large observations, we are usually

confronted with two extreme value models:

• Generalized Extreme Value distribution (GEVd) with d.f.

(2.1) Gγ(x) :=





exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R if γ = 0 .

• Generalized Pareto distribution (GPd) with d.f.

(2.2) Hγ(x) :=





1 − (1 + γx)−1/γ , 1 + γx > 0 and x ∈ R
+ if γ 6= 0 ,

1 − exp(−x) , x ∈ R
+ if γ = 0 .

The introduction of scale δ > 0 and location λ ∈ R, results in the full GEV

and GP families of distributions given by Gγ(x; λ, δ) = Gγ

(
(x−λ)/δ

)
and

Hγ(x; λ, δ) = Hγ

(
(x−λ)/δ

)
, respectively, which play a central role in statisti-

cal inference of extreme values.

GEVd and MAX-Domain: The Fisher–Tippett theorem of extreme

values (Fisher and Tippett, 1928) states that all possible non-degenerate weak

limit distributions of partial maxima of independent and identically distributed

(i.i.d.) random variables X1, X2, ... are (Generalized) Extreme Value distributions.

That is, assume there exist normalizing constants an > 0 and bn ∈ R such that,
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for all x

(2.3) lim
n→∞

P
{

a−1
n

(
max(X1, ..., Xn) − bn

)
≤ x

}
= G(x) ,

where G is some non-degenerate distribution function, we can redefine the con-

stants in such a way that the limit G is one of the GEV family of distributions

given by (2.1) in the von Mises–Jenkinson form (von Mises, 1936; Jenkinson,

1955). We then say that G = Gγ and the underlying d.f. F is in the domain of

attraction of Gγ (notation: F ∈ D(Gγ)). In case of γ < 0, γ = 0 or γ > 0, the

Gγ reduces to Weibull, Gumbel or Fréchet distribution function, respectively.

GPd and POT-Domain: The use of GPd is suggested by the result of

Balkema and de Haan (1974) and Pickands (1975), who proved that F ∈ D(Gγ)

if and only if the upper tail of F is, in a certain sense, close to the upper tail

of Hγ . While restricting attention to a top portion of the original sample, the GPd

comes into play since it appears as the limiting distribution for the excesses

Yi = Xi− u |Xi > u, i=1, ..., ku over a sufficiently high threshold u (POT method).

For γ < 0, γ = 0 and γ > 0, the Hγ d.f. in (2.2) reduces to Beta, Exponential and

Pareto distribution functions, respectively. In both classes, the extreme value

index γ is closely related to the tail heaviness of the distribution. In that sense,

the value γ = 0 (exponential tail) can be regarded as a change point: γ < 0

refers to short tails with finite right endpoint xF := sup
{
x : F (x) < 1

}
, whereas

for γ > 0 d.f.’s are heavy tailed. In many applied sciences where extremes come

into play, it is assumed that the extreme value index γ of the underlying d.f.

equals 0, and statistical inference procedures concerning rare events on the tail

of F , such as the estimation of small exceedance probabilities or return periods,

bear on this assumption. Moreover, Gumbel and exponential models are also

preferred because of the greater simplicity of inference associated with Gumbel

or exponential populations.

Here and throughout this paper, let us denote by X1:n ≤ ... ≤ Xn:n the order

statistics pertaining to the i.i.d. random variable X1, X2, ..., Xn, after arranging

these by nondecreasing order.

3. TESTING EXTREMES UNDER A PARAMETRIC APPROACH

In a parametric set-up, the main assumption regards the existence of a suit-

able class of models for describing the random variable attached to the process

that is generating the data under study. These only three possible classes are mo-

tivated by Extreme Value Theory, and depend mainly on the shape parameter γ,

and eventually on location and scale parameters.
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Annual Maxima (AM): Suppose that the maximum of a random sam-

ple can be obtained in each of k equally spaced observation periods. The class of

GEVd functions, Gγ , may be prescribed in order to model maxima of k subsam-

ples taken from a given set of data of size k ·n, that is,

(3.1) Zi := X(i)
n:n = max

{
X

(i)
1 , ..., X(i)

n

}
, i = 1, ..., k .

A typical course of action lying in this classical Gumbel method is to take annual

maxima. In this AM setup, the following testing problem has been treated ex-

tensively in the literature, with main emphasis on testing the Gumbel hypothesis

for the d.f. of the {Zi}k
i=1 defined in (3.1):

(3.2) H0 : γ = 0 vs. H1 : γ 6= 0 .

The testing problem (3.2) has received much attention in the literature; in fact,

the hydrologists have long made use of extreme value distributions for estimat-

ing probabilities of flood events and the correct choice of the GEVd under ap-

proach is of crucial importance, since the three types differ considerably in their

right tails. Among the papers concerned with the special testing problem G0

against {Gγ : γ 6= 0}, or against one-sided alternatives {Gγ : γ > 0}, {Gγ : γ < 0},
we refer to Van Montfort (1970), Bardsley (1977), Otten and Van Montfort (1978),

Tiago de Oliveira (1981), Gomes (1982), Tiago de Oliveira (1984), Tiago de

Oliveira and Gomes (1984), Hosking (1984), Marohn (1994), Wang et al. (1996)

and Marohn (1998a). Somewhat connected with the problem (3.2), there is

the problem of goodness-of-fit tests for the Gumbel model, which has received

the attention of Stephens (1976), Stephens (1977), Stephens (1986) and Kinni-

son (1989). The tests therein considered are mostly based on the well known

goodness-of-fit statistics: Kolmogorov, Cramér–von Mises and Anderson–Darling

statistics.

Largest Observations (LO): It may be that, when considering yearly

data, some years contain several values that are larger then the maxima of other

years. Although the requirement of only a simplified data summary carries reduc-

tion of possible dependencies in the sampled data, the loss of information provided

by the largest observations in the sample can, by itself, motivate this alternative

approach. Hence, suppose we take the k largest observations in the sample.

If the underlying d.f. F ∈ D(Gγ), the non-degenerate joint limiting behavior of

the k largest random variables determines the probability density function (p.d.f.)

(3.3) fγ(z1, z2, ..., zk) = gγ(zk)
k−1∏

i=1

gγ(zi)

Gγ(zi)
, z1 > z2 > ... > zk ,

where gγ(z) = ∂Gγ(z)/∂z, in the sense that, after appropriately normalized with

constants an > 0 and bn,
(

Xn:n− bn

an
,

Xn−1:n− bn

an
, ...,

Xn−k+1:n− bn

an

)
d−→

n→∞

(
Z1, Z2, ..., Zk

)
.
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This multivariate model, introduced in Weissman (1978), has received the general

designation of extremal process. In light of this result, statistical procedures to

discern between Gumbel and Fréchet or Weibull distributions have been consid-

ered, for instance, in Gomes and Alpuim (1986), Hasofer and Wang (1992), Wang

(1995) and Wang et al. (1996). The key insight for the testing problem G0 against

{Gγ : γ 6= 0}, or against the one-sided alternatives {Gγ : γ > 0}, {Gγ : γ < 0}
is thus to assume that, with k fixed, the joint stochastic behavior of the largest

k random variables tends to be properly described by the p.d.f (3.3) pertaining

to γ = 0, i.e.,

f0(z1, z2, ..., zk) = exp

(
− exp(−zk) −

k∑

i=1

zi

)
, z1 > z2 > ... > zk ,

which enables replacement of the normalized top order statistics with (Z1,Z2, ...,Zk).

Under this assumption, Hasofer and Wang (1992) prove that the following test

statistic

W (k) :=
1

k−1

(
1
k

k∑
i=1

Zi−Zk

)2

1
k

k∑
i=1

(
Zi−Zk

)2 −
(

1
k

k∑
i=1

Zi−Zk

)2 ,

akin to the Shapiro–Wilk goodness-of-fit statistic (see Shapiro and Wilk, 1965),

can be considered as approximately normal with mean (k − 1)−1 and variance

22 (k−2)(k−1)−2
(
(k+1)(k+2)

)−1
.

Despite the above results concern a fixed number k of top observations, we

can find in Hasofer and Wang (1992) an attempt to make k to increase with n, but

at a much slower rate, through the specification of k = c1nc2 in the simulation

study. Wang (1995) also mention the case where k →∞ and k = o(n), as n→∞.

Furthermore, Wang (1995) relies on the Hasofer and Wang test to select the num-

ber k of largest order statistics for suitable statistical inference in the Gumbel

domain. In general, if G is a goodness-of-fit statistic, then at a certain nomi-

nal level of the test α, say, choose k+1 = min
{
i : g(i) ∈ critical region of G(i)

}
,

provided the adopted statistic G is scale and location invariant and, of course,

sensitive to small deviations from the null hypothesis.

Combination of AM and LO: In Gomes (1989), for instance, the test-

ing problem specifying the Gumbel d.f. G0 in the (simple) null hypothesis is

handled with a combination of blocking split of the sample data and the k largest

observations in each of the m blocks through what is called the multidimen-

sional — GEVγ model, as follows: a set of independent, identically distributed

k-dimensional random vectors {Xi : i = 1, ..., m}, and after suitable normaliza-

tion, with common p.d.f of the vectors Zi = (Xi−λ)/δ is given by fγ(z) defined

in (3.3). Note that both AM and LO approaches can be particular cases of this
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multidimensional model, taking k = 1 and m = 1, respectively. In Gomes (1987)

a truncated sample of the largest values of a sample, whose size increases to

infinity and whose limiting distribution is in the class of GEVd is considered

for goodness-of-fit purposes. Using the reduction to the exponentials of Gumbel

distributions the author develops two-sided tests of exponentiality for the trans-

formed variables, the tests being the Kolmogorov–Smirnov, Cramér–von Mises

and Stephens goodness-of-fit test.

Peaks Over Threshold (POT): Suppose we pick up those observations

exceeding a fixed high threshold u. As described in Section 2, given a random

sample (X1, X2, ..., Xn) from the d.f. F , the GPd is regarded as a good approxi-

mation for the distribution of the excesses Wi := Xi− u over a sufficiently high

threshold u if and only if F ∈ D(Gγ). A clear difference between the designated

AM and POT setups is that the k yearly maxima do not necessarily carry over

as to yield the k largest observations from the original sample.

In this POT setup the following testing problem has been frequently con-

sidered, rendering priority to testing the Exponential hypothesis for the d.f. of

the excesses {Wi}ku

i=1, i.e., H0 : γ = 0 versus H1 : γ 6= 0. The maximum likelihood

method may then be applied under the assumption that those ku observations

over the threshold u follow exactly a GPd, provided a scale normalization σu, i.e.

Hγ,σu(w) = 1 −
(
1 + γw/σu

)−1/γ
,

for all positive w such that 1 + γ/σu w > 0. The parametrization τ = −γ/σ

(Davison and Smith, 1990; Grimshaw, 1993) can be used for reducing dimen-

sionality and therefore construct a likelihood ratio test based on the log-profile

likelihood. In view of applications, the problem of detecting the presence of expo-

nential distribution, under the POT approach, has received particular attention

from hydrologists. Davison and Smith (1990) addresses this testing problem in

the context of river-flow exceedances. Van Montfort and Witter (1986) illustrates

the “lack”-of-fit statistic towards exponentiality γ̂/
√

v̂ar(γ̂), where γ̂ denotes the

Maximum Likelihood (ML) estimator of γ, in the sequence of a thorough appli-

cation of the POT method to rainfall data. Among the numerous works con-

nected with the special problem of testing exponential against other GPd upon

the tail we mention, for instance, Van Montfort and Witter (1985), Gomes and

Van Montfort (1986) and Brilhante (2004). Chaouche and Bacro (2004) introduce

the test statistic S = W/(W−Wn:n), where again Wi are independent random

variables with the same d.f. Hγ,σu , and obtain its empirical distribution via sim-

ulation. Moreover, when using Probability Weighted Moments of different orders

to adapt S, a method to purge the influence of σu off these new test statistics

is provided. Giving heed to the Local Asymptotic Normality theory, Falk (1995)

followed by Marohn (1998b) and Marohn (2000), aim at asymptotically optimal

tests for discriminating between different values of the extreme value index γ.
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Goodness-of-fit tests for the Generalized Pareto distribution

Fitting the GPd function to data, which we expect to be lying far away

in the tail, has been worked out in Castillo and Hadi (1997). The problem

of goodness-of-fit tests for the GP model has been studied by Choulakian and

Stephens (2001), with the following proposals for Cramér–von Mises and Ander-

son–Darling statistics:

W 2 =
k∑

i=1

(
Hγ̂,σ̂(Xn−i+1:n) − 2(k− i) + 1

2k

)2

+
1

12 k
,

A2 = −k − 1

k

k∑

i=1

(
2(k− i) + 1

)(
log Hγ̂,σ̂(Xn−i+1:n) + log

(
1− Hγ̂,σ̂(Xi:n)

))
,

where (γ̂, σ̂) are ML estimators. A table of critical points is provided with good

accuracy for k ≥ 25. Konstantinides and Meintanis (2004) assess the presence of

a GPd by means of a transformation of the data to reduce to exponential, then

search for traces of exponentiality in the empirical Laplace transform. They also

adapt the critical points leading to what promises to be a more accurate level

of the test, pursuing the path of Davison and Smith (1990) claim that tables for

testing the presence of a exponential distribution (see Van Montfort and Wit-

ter (1986) lack of fit statistic mentioned upstairs) give in general critical values

which are too high, thus resulting in a very conservative test. Comparison with

Choulakian and Stephens (2001) are also present by means of a simulation study.

Luceño (2006) assigns more weight to the tails than the usual practice relating

Cramér–von Mises and Aderson–Darling statistics goodness-of-fit test statistics

and considers a maximum goodness-of-fit estimation method, which enables us

to deal successfully with the estimation of GPd parameters, overcoming the oc-

casional lack of convergence in ML estimation.

4. TESTING EXTREMES UNDER A SEMI-PARAMETRIC

APPROACH

Following a semi-parametric approach, the only assumption made is that

the extreme value condition (2.3) is satisfied, i.e., the underlying d.f. F ∈ D(Gγ).

In this framework, the extreme value index γ is the parameter of prominent

interest since, in both GEV and GP classes of distributions, it determines the

shape of the tail of the underlying distribution function F .

To this extent, γ = 0 can be regarded as a benchmark value, since a nega-

tive γ is inevitably associated with short tails with finite right endpoint, while a

positive (tail index) γ is connected with the presence of a heavy-tailed distribu-

tion. In many applied sciences where extremes are relevant, the case of simplest
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inference γ = 0 is assumed and bearing on this assumption, extreme characteris-

tics such as exceedance probabilities or return periods are easily estimated.

As a matter of fact, separating statistical inference procedures according to

the most suitable domain of attraction for the sampled distribution has become

a usual practice. Methodologies for testing the Gumbel domain against Fréchet

or Weibull max-domains have been of great usefulness. This fit-of-attraction

problem, crafted from a semi-parametric setup, can be rephrased as a test for

(4.1) H0 : F ∈ D(G0) versus H1 : F ∈ D(Gγ)γ 6=0 .

or against one-sided alternatives F ∈ D(Gγ)γ<0 or F ∈ D(Gγ)γ>0.

Statistical tests that tackle the problem (4.1) can be traced back to the sem-

inal papers by Galambos (1982) and Castillo et al. (1989). The latter presents a

cunning procedure for fit of attraction diagnostics from the curvature of the graph

of the sample distribution function hinged on the Gumbel probability paper.

Predicated on this (so-called) curvature method, the authors introduce a test to

assess whether the upper tail distribution function might be classified as convex,

concave or a straight line.

Further testing procedures for (4.1) can be found in Fraga Alves and Gomes

(1996), Fraga Alves (1999). Segers and Teugels (2000) have recently suggested

a large sample test for the Gumbel domain with asymptotics deriving from the

limiting distribution of Galton’s ratio under the extreme value condition (2.3),

which Rao’s test statistic (see e.g. Serfling, 1980) for simple null hypothesis was

applied to, with the ulterior aim of establishing a decision rule. In the process,

the authors were confronted with the need of blocking the original sample of size

n into m subsamples, each of size ni, i = 1, ..., m also under pledge of largeness.

Recently, Neves et al. (2006) and Neves and Fraga Alves (2007) have in-

troduced two testing procedures that are based on the sample observations lying

above a random threshold. More specifically, in the last two references, the de-

signed statistics for testing (4.1) are based on the k excesses over the (n−k)-th

ascending intermediate order statistic Xn−k:n, where k = kn is such that k → ∞
and k = o(n) as n →∞. Clearly, the latter only differs from the POT approach

on the absence of a parametric model and on the fact that the intermediate

random threshold is now playing the role of the deterministic sufficiently high

threshold u which, only by itself, we find relevant enough to motive the Peaks

Over Random Threshold (PORT) methodology. Now following a semi-parametric

approach supported on concepts from the theory of regularly varying functions,

Neves and Fraga Alves (2007), reformulate the asymptotic properties of the Ha-

sofer and Wang test statistic (denoted below with Wn(k)) in case k = kn behaves

as an intermediate sequence rather than remaining fixed while the sample size n

increases (which was case covered by Hasofer and Wang, 1992). In the process,

a new Greenwood-type test statistic Gn(k) (cf. Greenwood, 1946) proves to be

useful in assessing the presence of heavy-tailed distributions.
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Furthermore, motivated by eventual differences in the relative contribution

of the maximum to the sum of the k excesses over the random threshold at

different tail heaviness, a complementary test statistic Rn(k) was introduced by

Neves et al. (2006) in order to discern between max-domains of attraction.

Under the null hypothesis of Gumbel domain of attraction plus extra mild

second order conditions on the upper tail of F and on the growth of the interme-

diate sequence kn, we have that

[Ratio-test] Rn(k) :=
Xn:n−Xn−k:n

1
k

k∑
i=1

(
Xn−i+1:n−Xn−k:n

) − log k
d−→

n→∞
Λ ,(4.2)

[Gt-test] Gn(k) :=

1
k

k∑
i=1

(
Xn−i+1:n−Xn−k:n

)2

(
1
k

k∑
i=1

Xn−i+1:n−Xn−k:n

)2 ,(4.3)

√
k/4

(
Gn(k)−2

) d−→
n→∞

N(0, 1) ,

[HW-test] Wn(k) :=
1

k

[
1 − Gn(k) − 2

1+
(
Gn(k)−2

)
]

,(4.4)

√
k/4

(
k Wn(k)−1

) d−→
n→∞

N(0, 1) ,

where Λ stands for a Gumbel random variable. The critical regions for testing

the two-sided alternative (4.1), at a nominal size α, are given by Vn(k) < vα/2

or Vn(k) > v1−α/2, where V has to be conveniently replaced by T , R, or W

and vε denotes the ε-quantile of the corresponding limiting distribution. The

limiting distribution of Gn(k) [resp. Wn(k)] shifts towards the right [resp. left] for

distributions in the Fréchet domain of attraction (F ∈ D(Gγ)γ>0) and towards

the left [resp. right] for distributions lying in the Weibull domain (F ∈ D(Gγ)γ<0).

Notice that the test statistic S in Chaouche and Bacro (2004) may be seen as

the POT-counterpart of
(
1−Rn(k)

)−1
. An extensive simulation study involving

Ratio, Gt and HW tests, let us to perceived the following guidelines:

• The test based on the G∗
n is shown to good advantage when testing the

presence of heavy-tailed distributions is in demand.

• While the Gt-test barely detects small negative values of γ, the HW is

the most powerful test under study with respect to alternatives in the

Weibull domain of attraction.

• The simulations have emphasized the admonition for controlling the

actual size of the test to apply, keeping low within acceptable bounds

the probability of incorrect rejection of the null hypothesis. Since the

test based on the very simple Ratio statistic tends to be a conservative

test and yet detains a reasonable power, it proves to be a valuable

complement to the remainder procedures.
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Testing Extreme Value conditions

From its grounds, any inferential methodology considered in the field of Ex-

treme Values is inextricably bound to the validity of an extreme value condition.

Inevitably, the methods of the previous sections do not escape such a requirement.

Hence, assessing whether the hypothesis that “F ∈ D(Gγ)” is strongly supported

by the data at hand, becomes an impending problem. On this matter, Dietrich

et al. (2002) introduce the test statistic

(4.5) En(k) := k

∫ 1

0

(
log Xn−[kt]:n− log Xn−k:n

γ̂+
− t−γ̂

− − 1

γ̂−
(1 − γ̂−)

)2

tη dt ,

for some η > 0, where γ̂+ and γ̂− are the same estimators of γ+ = max(0, γ) and

γ− = min(γ, 0) as in Dekkers et al. (1989). Furthermore, in case we wish to test

the null hypothesis that F ∈ D(Gγ)γ≥0, a simple version is available:

PEn(k) := k

∫ 1

0

(
log Xn−[kt]:n− log Xn−k:n

γ̂+
+ log t

)2

tη dt .

Under extra mild condition upon the growth of k, the limit distributions of En(k)

and PEn(k) are attainable, with their specific forms being established by using

an asymptotic expansion for the tail empirical quantile function due to Drees

(1998). A table of critical points several values of γ is provided, although some

corrections have become available in Hüsler and Li (2006). Aside from the latter,

Drees et al. (2006) deal with the testing of extreme value conditions pertaining

to γ >−1/2, via the statistic

(4.6) Tn(k) := k

∫ 1

0

(
n

k
Fn

(
â
(n

k

) x−γ̂ −1

γ̂
+ b̂
(n

k

))
− x

)2

xη−2 dx ,

for some η > 0, with Fn = 1−Fn. The use ML estimators for γ and a as in

Drees et al. (2004) is recommend, while b̂(n/k) := Xn−k:n. Similarly as before,

under mild restrictions upon the growth of k, the limit distribution of Tn(k) is

attainable and its specific form can be established using a tail approximation

to the empirical distribution function. Again, tables of critical points at quite

good accuracy are provided in Hüsler and Li (2006), where an exhaustive simu-

lation study is carried out in order to draw general guidelines for the adequate

specification of η in the most suitable test for the problem at hand.

Notwithstanding, if we strongly suspect we are dealing with heavy tailed

phenomena, Beirlant et al. (2006) provide a goodness-of-fit procedure for testing

the inherent Pareto-type behavior upon the tail of the underlying distribution

function F .
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5. AN ILLUSTRATIVE EXAMPLE

The potential of Extreme Value theory in assessing statistical models for

tail-related values has gained widespread recognition in fields ranging from

hydrology to insurance, finance and, more recently, in telecommunications and

engineering.

As an illustrative example of methodologies embraced in the previous sec-

tion, consider the 36 699 file lengths, in bytes, extracted from the Internet Traffic

Archive (http://ita.ee.lbl.gov/index.html). In the light of extreme value anal-

ysis, the main concern here is not towards the accumulation of many file lengths,

none of these being dominant (in which case the normal assumption would rea-

sonably follow from the Central Limit Theorem), but the interest goes instead

to the transmission of such huge batches of data that could possibly compromise

the capacity of the system, thus making the normal distribution inadequate to

describe the small set of data arising with such individual large and, therefore,

dominant contributors. This same data set is analyzed in a paper by Tsourti and

Panaretos (2004). Their exploratory analysis for independence seems to ascer-

tain that an application of the testing procedures mentioned in this paper, to the

available data set, will not be hindered by the pernicious effects of seasonality

and clustering.
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Figure 1: Plot of the sample paths returned by the three test statistics
for the Gumbel domain.

Hence, we have found it reasonable to proceed with three tests in (4.2)–

(4.4). The results are depicted in Figure 1. All the tests point towards a defi-

nite rejection of the null hypothesis that the underlying distribution function F

belongs to the Gumbel domain. Nevertheless, the validity of condition (2.3) is

still questionable. So far, we have only found evidences in the data of that F can

be in any domain except for the Gumbel domain, but the question “does the un-

derlying d.f. F belongs to any domain of attraction at all?” remains unanswered.
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Figure 2: (a)–(b) Plot of the sample paths for the T-test and E-test statistics
with accompanying critical points; (c) Plot of the ML estimates;
(d) Plot of the Moment estimates.

Owing to these last remarks and following practical recommendations of Hüsler

and Li (2006), we have furthermore considered application of the T-test and the

E-test, given in (4.6) and (4.5), with η = 1 and η = 2, respectively. Figure 2

displays the results with respect to a significance level α = 0.05. Although the

moment estimator yields a stable plateau near γ = 1 for quite long, the conjunc-

tion of the two testing procedures seems to advise rejection of the null hypothesis

on that the tail of F obeys the dictates of an extreme value law.
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