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Obituary: Radu Theodorescu, 1933–2007

Our dear colleague, Professor Emeritus Radu Theodorescu, passed away in
Québec on August 14.

I met Professor Theodorescu for the first time in Lisbon, circa 1980. We had
a long conversation, and in fact I was astonished and proud that he spent a couple
of hours asking details about my thesis, instead of enjoying a visit to Lisbon and
its outskirts. I was even more surprised when I found echoes of this conversation
on his book with Bertin and Cuculescu, Unimodality of Probability Measures.

Our second encounter has been at Funchal, when I organized the 23rd Euro-
pean Meeting of Statisticians. He came to Funchal with his wife and their two
children, and we stayed at the same hotel. Both before and after the meeting we
exchanged many e-mails, and during this joyful week at Funchal I could observe
his helpful and courteuos attitude towards young statisticians, and his commit-
ment to understand in depth all developments in Statistics. I recommended him to
M. Ivette Gomes, who had been invited to be the Editor-in-Chief of REVSTAT,
as an appropriate colleague to join the board of editors, an invitation that he
gracefully accepted.

Radu published almost 200 papers and monographs, in a broad variety
of areas of statistics. In the CV he prepared himself, he proposed a classifica-
tion of his papers in: Probability theory; concentration functions; unimodality;
depths, copulas; stochastic processes (general processes, Markov processes, non-
Markovian processes, learning theory, Gaussian reciprocal processes, Lévy pro-
cesses); statistics (quality control, parametric and nonparametric inference, appli-
cations to population dynamics, biology, and geology, stochastic approximation,
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Linnik laws, estimation, quantile domains); programming, games (stochastic
programming, game theory, dynamic programming); control systems, informa-
tion and communication, automata; numerical analysis; mathematical education,
biography, philosophy.

Aside from this huge amount of publications reflecting his many contribu-
tions towards the advancement of Probability and Statistics, he served the sta-
tistical community preparing more than 600 reviews for Mathematical Reviews,
Zentralblatt Math and other scientific retrieving journals and databases.
But above all he has been an outstanding Professor, being awarded the title
of Professor Emeritus at University Laval, in 2001.

Radu had been a Ph.D. student of Octav Onicescu. The Mathematics Gene-

alogy Project records seven of his Ph.D. students. Christian Genest prepared an
obituary for the IMS Bulletin 36, that can be read on-line at

http://archimede.mat.ulaval.ca/pages/genest/publi/IMS-36-8-16.pdf ;

read also his interview, in

http://archimede.mat.ulaval.ca/pages/radutheo/Liaison-Interview.pdf .

All these can be consulted at

http://archimede.mat.ulaval.ca/pages/radutheo/ .

I am thankful to Marie-José, Radu’s widow, for sending me the material
he had himself prepared for his CV and list of publications. M. Ivette Gomes
asks me to present the condolences of REVSTAT to her and Radu’s children for
their sad bereavement, shared by all the other editors.

Dinis Pestana
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Abstract:

• The main purpose of this paper is to look at the extremal properties of

Xk =

∞
∑

j=1

(

j−1
∏

s=1

Ak−s

)

Bk−j , k ∈ Z ,

where (Ak, Bk)k∈Z is a periodic sequence of independent R
2
+-valued random pairs.

The so-called complete convergence theorem we prove enable us to give in detail the
weak limiting behavior of various functional of the underlying process including the
asymptotic distribution of upper and lower order statistics. In particular, we inves-
tigate the limiting distribution of the maximum and its corresponding extremal index.
An application to a particular class of bilinear processes is included. These results
generalize the ones obtained for the stationary case.

Key-Words:

• periodic stochastic difference equations; extremal index; point processes.
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1. INTRODUCTION

A general approach to look at the extremal properties of non-linear pro-

cesses is through the analysis of stochastic difference equations (SDEs hereafter)

of the form

Xk = AkXk−1 + Bk , k ∈ Z ,(1.1)

where (Ak) are d×d random matrices with possibly negative entries, (Bk) are

[0,∞)d-valued random (column) vectors such that (Ak,Bk) are independent and

identically distributed (i.i.d.), and independent of the random column vector

X0 ∈ [0,∞)d. The literature of SDEs is vast mainly for i.i.d. and stationary er-

godic sequences (Ak,Bk). The existence of a solution to (1.1) has been addressed

by Kesten [23], Vervaat [37], and Goldie [18]; for more general results see also

Brandt et al. [8], Bougerol and Picard [7], and Babillot et al. [2]. SDEs play a

central role in fields such as finance, economics, insurance mathematics and bi-

ology. Examples can be found in Dufresne [12], Embrechts et al. [13], Baxendale

and Khasminskii [6], Stărică [36], Mikosch [28], and Konstantinides and Mikosch

[24]. The interest in these equations is generally justified by the fact that many

non-linear processes, including (G)ARCH, threshold, and bilinear processes can

be embedded in SDEs.

Extremal properties of the solution of one-dimensional SDEs were first stud-

ied by de Haan et al . [11] and then by Perfekt [31]. de Haan et al . [11] proved

the convergence of the point processes of exceedances to a compound Poisson

process. As an application, these authors obtained the extremal behavior of the

ARCH(1) process. Perfekt [31] extended de Haan et al .’s results to Markov pro-

cesses including SDEs as special cases with possibly negative Ak and Bk. More

recently, Scotto [35] derived the extremal behavior of stationary solutions of SDEs

where (Ak, Bk)k∈Z are i.i.d. R
2
+-valued random pairs, the distribution of B1 being

heavy-tailed and the distribution of A1 having relatively lighter tails compared

to the one of B1 (cf. Grincevic̆ius, [20] and Grey, [19]).

The primary objective of this paper is to derive the extremal properties

of one-dimensional SDEs when (Xk)k∈Z forms a periodic sequence, i.e., when

there exists an integer M ≥ 1 such that for every choice of integers i1, ..., in,

(Xi1 , ..., Xin) and (Xi1+M , ..., Xin+M ) are identically distributed. We will refer to

such a sequence as an M -periodic sequence if M is the smallest integer as above.

Note that if M = 1 then (Xk)k∈Z is a stationary sequence. The study of the ex-

tremal properties of non-stationary (periodic) stochastic processes plays a central

role when modelling environmental time series, because of its wide applicability to

the analysis of phenomena such as extreme concentration of air pollution, floods,

wind storms, and extreme temperatures. Extreme value theory of non-stationary

processes has been discussed under certain conditions. Horowitz [21] considered

the model log(Yk) = g(k) + Xk, for daily ozone maxima (Yk)k∈Z, where g(k) is a
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deterministic function and (Xk)k∈Z is a normal stationary autoregressive process.

Ballerini and McCormick [4] discussed limit theory for non-stationary random se-

quences of the form Yk = g(k) + h(k)Xk, where (Xk)k∈Z is a stationary random

sequence, satisfying some mixing conditions, and h(k) is a positive, periodic func-

tion with integer period p > 1 as the variance function. The authors derived the

limiting distribution of the maximum term based on the assumption that the

distribution of Xk belongs to the domain of attraction of an extreme value dis-

tribution. The results were applied in a rainfall study; see also Ballerini and

Waylen [5] and Ballerini [3]. Niu [29] introduced a class of nonlinear additive

time series models for daily maxima of ozone concentrations in which both mean

levels and variances are nonlinear functions of relevant meteorological variables.

As an alternative approach to analyze tropospheric ozone data Niu [30] focus on

estimating probabilities of monthly maximum ozone observations exceeding some

specific levels, calculating the mean rate of exceedances of daily maximum ozone

over the national standard level 120 ppb (parts per billion). For further examples

see Coles [9].

Extreme value theory for periodic sequences was first considered by Alpuim

[1] who showed that under Leadbetter’s D condition (Leadbetter et al., [26]) the

only possible limit laws for the normalized maxima of the periodic sequence are

the three extreme value distributions. Extensions for randomly indexed periodic

sequences under long range dependence conditions were established by Ferreira

[16]. Further results can be found in Ferreira [15] who studied the extremal be-

havior of periodic sequences under local mixing conditions. Generalizations under

weaker local mixing conditions have been considered by Ferreira and Martins [17].

More recently, Martins and Ferreira [27] derived the expression of the extremal

index (and hence the limiting distribution of the maximum) of a periodic moving

average sequence driven by heavy-tailed innovations.

The rest of the paper is organized as follows: Section 2 deals with the tail

behavior of Xr, r = 1, ..., M . Section 3 is devoted to a detailed point process

analysis of asymptotic properties of the periodic sequence (Xk)k∈Z. In particular

we deduce the maximum limiting distribution and the extremal index. Finally,

in Section 4 the results are applied to a particular class of bilinear processes.

2. TAIL BEHAVIOR

Let (Ak, Bk)k∈Z be a one-dimensional M -periodic sequence of independent

R
2
+-valued random pairs, such that F̄Br

(x) = P (Br >x), r = 1, ..., M , are regu-

larly varying with tail index −α, for some α > 0, i.e.,

F̄Br
(x) = x−αLr(x) , r = 1, ..., M ,(2.1)

for some slowly varying functions Lr : R+→ R+ (r = 1, ..., M) at infinity.
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We further assume that the tails are equivalent in the sense that

lim
x→∞

F̄Bl
(x)

F̄Bk
(x)

= γl,k , (0<γl,k <∞) l, k ∈ Z .(2.2)

Note that γl,k = γl+M,k and γl,k = γl,k+M . In addition, we assume that for

r = 1, ..., M

EAα
r < 1 , and EAα+δ

r < ∞ , for some δ > 0 .(2.3)

Note that no further assumptions are needed since the central role in determining

the tail behavior of Xr is played by the distributions FBr
. Furthermore, we

assume that Xk admits the representation

Xk =

∞
∑

j=1

(

j−1
∏

s=1

Ak−s

)

Bk−j ,(2.4)

where we use the convention
∏0

s=1 = 1. This series representation is possible

a.s. by virtude of the assumptions on Ak and Bk. Clearly, (Xk)k∈Z forms an

M -periodic sequence and satisfies the SDEs

Xk = Ak Xk−1 + Bk .

We start with the analysis of the tail behavior of Xr, r = 1, ..., M . In doing so,

the following alternative representation of Xr is very useful.

Proposition 2.1. For the process defined in (2.4), it holds that for

r = 1, ..., M

Xr =
M−1
∑

i=0

X(i)
r ,

with

X(i)
r =

∞
∑

j=1

(

M(j−1)+i
∏

s=1

Ar−s

)

Br−(j−1)M−i−1 .

We now begin with a series of results designed to understand the tail be-

havior of X
(i)
r as well as sums of these variables. The tail behavior of X

(i)
r will

be derived in two stages: first we obtain the tail behavior of the approximation

X
(i)
r,m, with m = KM (K ≥ 1), defined as

X(i)
r,m =

m
∑

j=1

W
(j)
r,i ,

with

W
(j)
r,i =

(

M(j−1)+i
∏

s=1

Ar−s

)

Br−(j−1)M−i−1 ;

then the results are extended so that the number of summands can be infinite.
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Lemma 2.1. Let (Ak, Bk)k∈Z be an M-periodic sequence of independ-

ent R
2
+-valued random pairs satisfying (2.1), (2.2), and (2.3). For a fixed value

0 ≤ i ≤ M −1 and 1 ≤ j ≤ m, we have as x → ∞

(2.5) P
(

W
(j)
r,i >x

)

∼ γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

P
(

Br>x
)

.

Furthermore, for all fixed values 1≤ j1 < j2 ≤m and 0≤ i≤M−1, as x → ∞

P
(

W
(j1)
r,i > x, W

(j2)
r,i > x

)

P
(

Br > x
) → 0 , r = 1, ..., M .(2.6)

Proof: The first statement follows as an application of Breiman’s result

(cf. Davis and Resnick [10], p. 1197). Let Cs,jh
=
∏M(jh−1)+i

s=1 Ar−s, for h = 1, 2.

In proving (2.6) observe that

P
(

W
(j1)
r,i > x, W

(j2)
r,i > x

)

=

= P
(

Cs,j1Br−(j1−1)M−i−1 > x, Cs,j1Cs,j2 Br−(j2−1)M−i−1 > x
)

≤ P
(

Cs,j1 ≤ ǫ, Cs,j1Br−(j1−1)M−i−1 > x
)

+ P
(

Cs,j1 > ǫ, Cs,j1Br−(j1−1)M−i−1 > x, Cs,j1Cs,j2 Br−(j2−1)M−i−1 > x
)

≤ P
(

Cs,j11[Cs,j1
≤ǫ] Br−(j1−1)M−i−1 > x

)

+ P
(

Br−(j1−1)M−i−1 >
x

ǫ
, Cs,j2 Br−(j2−1)M−i−1 >

x

ǫ

)

.

Now, by Breiman’s result

lim sup
x→∞

P
(

Cs,j1 1[Cs,j1
≤ǫ] Br−(j1−1)M−i−1 > x

)

P
(

Br > x
) = γr+M−i−1,r E

(

Cs,j1 1[Cs,j1
≤ǫ]

)α

→ 0 ,

as ǫ → 0. Moreover,

P
(

Br−(j1−1)M−i−1 > x
ǫ , Cs,j2 Br−(j2−1)M−i−1 > x

ǫ

)

P
(

Br > x
) ∼

∼ ǫ2α γr+M−i−1,r E(Cs,j2)
α P
(

Br−(j2−1)M−i−1 > x
)

,

as x→∞. Note that as ǫ→ 0, the right-hand side converges to 0. This completes

the proof.
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Lemma 2.2. Let (Ak, Bk)k∈Z be an M-periodic sequence of independent

R
2
+-valued random pairs satisfying (2.1), (2.2), and (2.3). For a fixed value of

0 ≤ i ≤ M −1

lim
x→∞

P
(

X
(i)
r,m > x

)

P
(

Br > x
) =

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r ,(2.7)

for r = 1, ..., M . Moreover, as m → ∞

lim
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) =

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .(2.8)

Proof: The first statement follows as an application of Lemma 2.1 in Davis

and Resnick [10] and Lemma 2.1. The proof is complete upon showing that by

letting m → ∞ we obtain (2.8). First note that the first statement implies that

lim inf
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≥ lim inf

x→∞

P
(

X
(i)
r,m > x

)

P
(

Br > x
)

=

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

Hence, as m → ∞

lim inf
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≥

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

The arguments needed to get the upper bound follow closely the arguments

outlined in Resnick ([33], p. 228): decompose the event
[

X
(i)
r > x

]

according to

whether
[

maxj∈N W
(j)
r,i > x

]

or
[

maxj∈N W
(j)
r,i ≤ x

]

P
(

X(i)
r > x

)

= P
(

X(i)
r > x, max

j∈N

W
(j)
r,i > x

)

+ P
(

X(i)
r > x, max

j∈N

W
(j)
r,i ≤ x

)

≤ P

(

⋃

j∈N

W
(j)
r,i > x

)

+ P

(

∞
∑

j=1

W
(j)
r,i 1

{W
(j)
r,i ≤x}

> x, max
j∈N

W
(j)
r,i ≤ x

)

≤
∞
∑

j=1

P
(

W
(j)
r,i > x

)

+ P

(

∞
∑

j=1

W
(j)
r,i 1

{W
(j)
r,i ≤x}

> x

)

.

By Markov’s inequality

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

∑∞
j=1 P

(

W
(j)
r,i > x

)

P
(

Br > x
) +

∑∞
j=1 EW

(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
)

= I(x) + J(x) .
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To handle I(x), note that by Kamarata’s Theorem quoted in Resnick ([33], p. 17),

the result in (2.5) along with condition (2.3) and dominated convergence, lead us

to obtain

lim
x→∞

I(x) =

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

For J(x) let us start by considering the case 0 < α < 1. By Lemma 2.1, the

distribution tail of W
(j)
r,i is regularly varying with index −α. Now

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
) =

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

W
(j)
r,i > x

)

P
(

W
(j)
r,i > x

)

P
(

Br > x
) .

From an integration by parts along with the result in (2.5), and Kamarata’s

Theorem

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

W
(j)
r,i > x

)

→ α(1− α)−1 , x → ∞ .(2.9)

Since P (Br > x) is regularly varying with index −α we can use its Kamarata

representation and (2.5) to obtain that for sufficiently large x and some constant

K > 0

P
(

W
(j)
r,i > x

)

P
(

Br > x
) ≤ K γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

,(2.10)

for r = 1, ..., M . Combining (2.9) and (2.10), we conclude, for sufficiently large x

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
) ≤ K1 γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

,

for some constant K1 > 0. This bound is summable providing, by dominated

convergence

lim sup
x→∞

J(x) ≤ K1

∞
∑

j=1

γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

= K1

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

and hence

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (K1 +1)

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .(2.11)
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If α ≥ 1, we proceed as follows:

pick β ∈ (α, αδ−1) and consider A(i) =
∑∞

j=1

∏M(j−1)+i
s=1 Ar−s, (i=1, ..., M)

and P
(i)
j =

(
∏M(j−1)+i

s=1 Ar−s

)

{A(i)}−1, (i=1, ..., M, j ∈N).

By Jensen’s inequality

(

X(i)
r

)β
=
{

A(i)
}β





∞
∑

j=1

P
(i)
j Br−(j−1)M−i−1





β

≤
{

A(i)
}β

∞
∑

j=1

P
(i)
j Bβ

r−(j−1)M−i−1

=
{

A(i)
}β−1

∞
∑

j=1

(

M(j−1)+i
∏

s=1

Ar−s

)

Bβ
r−(j−1)M−i−1 ,

providing

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

P

(

{

A(i)
}β−1 ∑∞

j=1

(

∏M(j−1)+i
s=1 Ar−s

)

Bβ
r−(j−1)M−i−1 > xβ

)

P
(

Bβ
r > xβ

)
.

Using the fact that P (Bβ
r > x) ∈ RV−αβ−1 with δ < αβ−1, for r = 1, ..., M and

i = 0, ..., M−1 it follows that

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (K1+1)

∞
∑

j=1

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

(2.12)
×
{

EA(i)
}α(1−β−1)

γr+M−i−1,r < ∞ .

On the other hand, for any ǫ > 0

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

P
(

∑m
j=1W

(j)
r,i > (1− ǫ)x

)

P
(

Br > x
) +

P
(

∑∞
j=m+1W

(j)
r,i > ǫ x

)

P
(

Br > x
) ,

and for (2.7) and (2.11)

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (1− ǫ)−α

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

+ K1 ǫ−α

×

∞
∑

j=m+1

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

γr+M−i−1,r ,

for the case 0 ≤ α ≤ 1 with a similar bound for the second piece provided by

(2.12) when α ≥ 1. Let m → ∞ and then send ǫ → 0 to obtain

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

and this combined with the liminf statement concludes the proof.
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Combining Lemmas 2.1 and 2.2 yields the following result.

Theorem 2.1. Let (Xk)k∈Z be the M-periodic sequence defined in (2.4).

Let (Ak, Bk)k∈Z be an M-periodic sequence of independent R
2
+-valued random

pairs satisfying (2.1), (2.2), and (2.3). For r = 1, ..., M

lim
x→∞

P
(

Xr > x
)

P
(

Br > x
) =

1

1 −
∏M

s=1 EAα
r−s

M−1
∑

i=0

γr+M−i−1,r

(

i
∏

s=1

EAα
r−s

)

.(2.13)

Proof: Note that by Lemma 2.1 in Davis and Resnick [10] it is sufficient

to show that for 0 ≤ i1 < i2 ≤ M−1, as x → ∞

P
(

X
(i1)
r > x, X

(i2)
r > x

)

P
(

Br > x
) ∼ 0 , r = 1, ..., M .(2.14)

Now an argument similar to the one in the proof of Lemma 2.1 shows that (2.14)

holds.

3. POINT PROCESS APPROACH

In this section we investigate the limit behavior of a sequence of point

processes based on the periodic sequence (Xk)k∈Z. Since our results are based

on point process theory, we briefly discuss some notation and background about

point processes; for further details see Kallenberg [22] and Resnick [33].

Let (Ω,F ,P) be a probability space and E a state space where points reside

and assume that E is Euclidian. Let E be the σ-algebra on E generated by open

sets of E. For x ∈ E, define ǫx(·) on E as the simple point measure with unit

mass at x. Let {xj} be a countable collection of points on E. A point measure

N on E is defined to be

N(·) =
∞
∑

j=1

ǫxj
(·) ,

which is a non-negative integer valued Radon measure on compact subsets of E.

Let Mp(E) be the class of such Radon measures on E and Mp(E) the smallest

σ-algebra, making maps N → N(A∗) measurable, where N ∈ Mp(E) and A∗ ∈ E .

Mp(E) can be made into a complete separable metric space, hence we assume that

it is a metric space with vague metric d. A point process on E is a measurable map

from (Ω,F) to
(

Mp(E),Mp(E)
)

. Let C+
K(E) be the set of all continuous, non-

negative functions on the state space E with compact support. If Nn ∈ Mp(E)

then Nn converges vaguely to N (Nn ⇒N) if Nn(f) converges to N(f) for every
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f ∈ C+
K(E), where N(f) =

∫

f dN . A Poisson process on (E, E) with mean mea-

sure µ is a point process N such that, for every A∗∈ E , N(A∗) is a Poisson random

variable with mean measure µ(A∗). If A∗
1, ..., A

∗
m are mutually independent sets

then N(A∗
1), ..., N(A∗

m) are independent random variables. We call N a Poisson

random measure with mean measure µ or PRM(µ) for short.

In this section, we investigate the limiting behavior of a sequence of point

processes (Nn)n∈N defined as

Nn =
∞
∑

k=1

ǫ{k/n, a−1
n Xk}

,

based on (a−1
n Xk)k∈Z with the sequence of norming constants (an)n∈N satisfying

lim
n→∞

nP
(

Br > anx
)

= τr , (τr > 0), r = 1, ..., M .

Note that such a sequence exists by the assumption of regular variation of each

F̄Br
, (r = 1, ..., M), and implies that

nP
(

Xr > anx
)

→ τr

{

1

1 −
∏M

s=1 EAα
r−s

M−1
∑

i=0

(

i
∏

s=1

EAα
r−s

)

γr+M−i−1,r

}

,

as n → ∞. It is important to point out the fact that τr = τhγr,l, for r, l ∈

{1, ..., M}. Hence, without lost of generality it will be assumed that τr = τ1γr,1

with τ1 = x−α.

The main result of this section is formalized through the following the-

orem, which discusses the weak convergence of the sequence of point processes

(Nn)n∈N to a function of PRM. For simplicity of notation we define Eh = (0,∞)×

[−∞,∞]h\{0}, with h ∈ N.

Theorem 3.1. Let (Xk)k∈Z be an M-periodic sequence defined as in (2.4)

where (Ak, Bk)k∈Z is an M -periodic sequence of independent R
2
+-valued random

pairs satisfying (2.1), (2.2), and (2.3). Then, as n → ∞

Nn =
∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} ⇒ N =

M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i−1,r

o ,

in the space Mp(E1), where
∑∞

k=1 ǫn
T

(i)
k,r

, J
(i)
k,r

o are PRM (dt×dνr,i) with

νr,i =
1

M
γr,1 γr+M−i−1,r µ(dx) ,

where µ(dx) = α x−α−11(0,∞](x) dx and (Uk,1,r, ..., Uk,M,r) having the same dis-

tribution as (A1, ..., AM ).
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Proof: First note that

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} =

M
∑

r=1

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o .

As an application of Proposition 3.2 in Feigin et al. [14], for fixed values of

r = 1..., M and i = 0, ..., M−1, it follows that

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n (Bk−(j−1)M−i−1), j=1,...,m), Ak−s, s=1,...,M(j−1)+i
o ⇒

⇒
∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k,r

e1,∞, Uk,1,r, ..., UkM(j−1)+i,r

o
+

∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k

e2, Uk,1,r,∞, ..., Uk,M(j−1)+i,r

o
...

+

∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k,r

em, Uk,1,r, ..., Uk,M(j−1)+i,r,∞
o ,

in Mp

(

Em×(0,∞)M(j−1)+i
)

, where es is the unit vector in R
m with 1 in the s-th

component and the rest zero. By the lines of reasoning given in Resnick and Van

den Berg ([34], Theorem 4.1) it follows that, for a fixed value of r = 1..., M and

i = 0, ..., M−1

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

o ⇒
∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o ,

in Mp(E1). Next we have to show that the point processes

N (1)
n =

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

, ...,X
(M−1)
(k−1)M+r

�o
and

N (2)
n =

M−1
∑

i=0

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

vi

o ,

where vs is the unit vector in R
M with 1 in the s-th component and the rest zero,

differ negligibly, as n → ∞. In doing so we must prove that

d
(

N (1)
n , N (2)

n

)

→ 0 ,(3.1)

in probability, where d is the vague metric on the space of point measures in which

N
(1)
n and N

(2)
n live. Here N

(2)
n concentrates all its points on the axes vs, and (3.1)

is expressing the fact that, for each k, at most one of the M components X
(i)
k
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is non-negligible as compared to an. From the definition of vague convergence,

(3.1) follows if

N (1)
n (f) − N (2)

n (f) → 0 ,(3.2)

in probability for each f ∈ C+
K(EM ), the space of continuous non-negative func-

tions with compact support on EM . To prove (3.2), suppose that f is such a

function. Because of compactness, the support of f is contained in the set

[0, ξ] ×
{

x : x ∈ [0,∞]M\{0}, max
0≤i≤M−1

xi > δ
}

,

for some ξ > 0 and δ > 0. Note therefore that f vanishes in [0, ξ]× [0, δ]M . For an

arbitrary y ∈ (0, δ) we define Sy as

Sy

{

x : x ∈ [0,∞]M\{0}, at most one component xi > y
}

,

and

N (h)
n (f) =

∫

[0,ξ]×Sy

f dN (h)
n +

∫

[0,ξ]×Sc
y

f dN (h)
n , h = 1, 2 .

Note that

E

(

∫

[0,ξ]×Sc
y

f dN (1)
n

)

≤

≤
(

sup f
)

E
(

N (1)
n

(

[0, ξ]×Sc
y

)

)

≤
(

sup f
)

[

n

M

]

ξ P
[

2 or more X
(0)
M(k−1)+r, ..., X

(M−1)
M(k−1)+r > any

]

≤
(

sup f
)

[

n

M

]

ξ

(

M
2

)

P
(

X
(i1)
M(k−1)+r > any, X

(i2)
M(k−1)+r > any

)

→ 0, n→∞ ,

which follows by (2.14). Furthermore, it is also true that
∫

[0,ξ]×Sc
y

f dN (2)
n = 0 .

Thus, in proving (3.2) it is enough to show that
∫

[0,ξ]×Sy

f dN (1)
n −

∫

[0,ξ]×Sy

f dN (2)
n → 0 ,

in probability. This last statement follows by the same arguments used in the

proof of Proposition 4.26 in Resnick [33]. We skip the details. Consider now the

map T : (Mp(E1))
M → Mp(EM ) such that, for a fixed value of r = 1..., M

T





∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o, i = 0, ..., M−1



 =

=
M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r vi

o .
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Note that this map is continuous and hence by the continuous mapping theorem

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

o, i = 0, ..., M−1

)

=

=
M−1
∑

i=0

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

vi

o =⇒

(3.3)

=⇒ T

(

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o, i = 0, ..., M−1

)

=

=
M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,rvi

o ,

in Mp(EM ). Finally the map T : Mp(EM ) → Mp(E1) defined by

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

,...,X
(M−1)
(k−1)M+r

�o) =
∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o ,

is almost surely continuous with respect to the distribution of (3.3). Hence ap-

plying the continuous mapping theorem we obtain

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

,...,X
(M−1)
(k−1)M+r

�o)=

=

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o =⇒

=⇒ T





M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r vi

o
=

=

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o ,

providing

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} =⇒

M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o .

The distribution of Mn = max1≤k≤n(Xk) and its corresponding extremal

index can now be obtained.
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Corollary 3.1. Under the conditions of the above theorem,

1. as n → ∞

P
(

Mn ≤ anx
)

→ exp

{

−
1

M
EWαx−α

}

,(3.4)

with

W =
M
∨

r=1

γr,1

M−1
∨

i=0

(

γr+M−i−1,r

∞
∨

j=1

{

U1,1,r · · · U1,M(j−1)+i,r

}

)

;

2. the periodic sequence (Xk)k∈Z has extremal index

θ =

{

1 −
∏M

s=1 EAα
r−s

}

EWα

∑M
r=1γr,1

∑M−1
i=0

(

∏i
s=1 EAα

r−s

)

γr+M−i−1,r

.

Proof:

P
(

Mn ≤ anx
)

= P

(

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk}

(

(0, 1]×(x,∞]
)

= 0

)

=⇒

=⇒ P





M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o((0, 1]×(x,∞]
)

= 0



 .

The event






M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
J

(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o(x,∞] = 0







,

is equivalent to the event that none of the points

{

J
(i)
k,rUk,1,r · · · Uk,M(j−1)+i,r , r = 1, ..., M, i = 0, ..., M−1, k, j ∈N

}

,

exceeds x. The latter can be expressed as the set

M
⋂

r=1

M−1
⋂

i=0

∞
⋂

k=1

{

J
(i)
k,rV

(i)
k,r ≤ x

}

,(3.5)

where

V
(i)
k,r =

∞
∨

j=1

{

Uk,1,r · · · Uk,M(j−1)+i,r

}

.

For a fixed value of r = 1..., M and i = 0, ..., M− 1 it follows that
{

J
(i)
k,rV

(i)
k,r

}

k∈N

are the points of a PRM on (0,∞] with mean measure

(1/M) γr,1 γr+M−i−1,r E
(

V
(i)
1,r

)α
x−α ,
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(cf. Resnick, [32]). Since the set in (3.5) can be expressed as

{

J
(i)
k,rW ≤ x, r = 1, ..., M, i = 0, ..., M−1, k ∈ N

}

,

with

W =
M
∨

r=1

M−1
∨

i=0

V
(i)
1,r ,

the set
{

J
(i)
k,rW, r = 1, ..., M, i = 0, ..., M−1, k ∈ N

}

contains the points of

a PRM on (0,∞) with mean measure EWαx−α and the result follows.

Finally, we concentrate on the examination of the extremal index. Define

(X̂k)k∈Z as the associated independent M -periodic sequence of (Xk)k∈Z, i.e.,

X̂1, X̂2..., are independent random variables being the tail distribution of X̂r as

in (2.13), for r = 1, ..., M . Further we define M X̂
n = maxk(X̂k). From Theorem 2.1

and classical extreme value theory we obtain that

P
(

M X̂
n ≤ anx

)

→

(3.6)

→ exp

{

−
1

M

M
∑

r=1

τr

(

1

1−
∏M

s=1EAα
r−s

M−1
∑

i=0

(

i
∏

s=1

EAα
r−s

)

γr+M−i−1,r

)}

.

By comparing (3.4) with (3.6) the expression of the extremal index is obtained;

see Leadbetter et al. [26].

4. EXAMPLES

Consider that Xk is given in the form

Xk =
∞
∑

j=1

(

j−1
∏

s=1

bZk−s

)

bZ2
k−j , k ∈ Z ,

with b > 0 a positive constant. Note that the process (Yk)k∈Z defined as

Yk = Xk + Zk ,

satisfies the bilinear recursion

Yk = b Yk−1Zk−1 + Zk , k ∈ Z .

The reason in considering the tail behavior of Xk rather that Yk itself is due to

the fact that the contribution of the term Zk on the extremal behavior of Yk is

negligible.
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For deriving probabilistic and extremal properties of this process we will

make extensive use of the fact that Xk can be embedded in the form (2.4) if

(Ak, Bk) = (bZk, bZ
2
k). We further assume that

F̄r(x) = P
(

Z2
r > x

)

= x−α/2Lr(x) , r = 1, ..., M ,

and that

bα/2EZα/2
r < 1 , r = 1, ..., M .

It follows by Lemma 2.2 and the fact that

P
(

Br > x
)

= P
(

bZ2
r > x

)

= bα/2 x−α/2Lr(x) ,

for r = 1, ..., M and i = 0, ..., M−1

lim
x→∞

P
(

X
(i)
r > x

)

P
(

Z2
r > x

) =
b(i+1)α/2

∏i
s=1EZ

α/2
r−s

1 − bMα/2
∏M

s=1EZ
α/2
r−s

γr+M−i−1,r .

Furthermore, by Theorem 2.1, for r = 1, ..., M

lim
x→∞

P
(

Xr > x
)

P
(

Z2
r > x

) =
bα/2

1 − bMα/2
∏M

s=1 EZ
α/2
r−s

M−1
∑

i=0

(

i
∏

s=1

EZ
α/2
r−s

)

bαi/2 γr+M−i−1,r .

The expression of the extremal index can be calculated from Corollary 3.1,

providing

θ =

(

1 − bMα/2
∏M

s=1EZ
α/2
r−s

)

EWα/2

bα/2
∑M

r=1 γr,1
∑M−1

i=0

(

∏i
s=1 EZ

α/2
r−s

)

γr+M−i−1,r bαi/2
.

Extensions for bivariate bilinear models can be easily obtained from the previous

results; see Kumar [25] for details.
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1. INTRODUCTION

Nonhomogenous diffusions are useful for modeling term structure of interest

rates in finance and other fields. Asymptotic properties such as weak consistency,

asymptotic normality and convergence of moments of maximum likelihood esti-

mator (MLE) and Bayes estimators (BEs) of the drift parameter in the nonlinear

nonhomogeneous Itô stochastic differential equations having nonstationary solu-

tions were first studied by Kutoyants (1978) for the small noise asymptotics case

and Kutoyants (1984) for the general case which includes both small noise and

long time asymptotics. The approach was through Ibragimov and Khasminskii

(1981). Later on, strong consistency and asymptotic normality for large sample

case were studied by Borkar and Bagchi (1982), Mishra and Prakasa Rao (1985a)

and Levanony, Shwartz and Zeitouni (1994) using the martingale approach un-

der stronger regularity conditions. Asymptotic normality of BEs was studied by

Mishra (1989) and Harison (1992) as a consequence of Bernstein-von Mises theo-

rem. Slightly weaker assumptions than those used in Kutoyants (1984) were used

by Yoshida (1990) to obtain the asymptotic behaviour of M -estimator. For first

order theory in general nonergodic stochastic models through the LAMN (de-

fined below) approach, see Basawa and Scott (1983). See the monograph Bishwal

(2007) for recent results on likelihood asymptotics and Bayesian asymptotics for

drift estimation of finite and infinite dimensional stochastic differential equations.

All the above results are on first order asymptotics. Beyond the first order

asymptotics in consistency, Florens and Pham (1999) obtained large deviations

for MLE and a minimum contrast estimator for the Ornstein–Uhlenbeck process.

For the nonlinear stationary homogeneous diffusions a large deviations upper

bound for the MLE and Bayes estimators was obtained by Bishwal (1999). For

the nonhomogeneous diffusions, Levanony (1994) obtained the conditional large

deviations upper and lower bounds for the MLE through the martingale approach

following Dupuis and Kushner (1989). He obtained unconditional large deviations

lower bounds following Bahadur et al. (1980). We obtain unconditional large

deviations upper bounds following Ibragimov and Khasminskii (1981).

Beyond the first order results in asymptotic normality, Berry–Esseen type

bounds in the linear homogeneous case were obtained by Mishra and Prakasa Rao

(1985b) which were sharpened to the Ornstein–Uhlenbeck process by Bose (1986),

Bishwal and Bose (1995) and Bishwal (2000a) respectively in order. Sharp Berry–

Esseen bound for the Bayes estimators and minimum contrast estimator were

obtained in Bishwal (2000b) and Bishwal (2005) respectively. In the above works

on Ornstein–Uhlenbeck process, stationarity was not assumed. For nonlinear

stationary ergodic diffusion, Edgeworth expansion of the distribution of the MLE

was obtained by Yoshida (1997) and that for M -estimator by Sakamoto and

Yoshida (1998) through the Malliavin calculus approach. As far as we know,
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no result is known on the rate of convergence to normality of the MLE in the

nonergodic case. We obtain a Berry–Esseen type bound for the MLE following

Michel and Pfanzagl (1971). Finally Berry–Esseen results are illustrated for a

nonhomogeneous Ornstein–Uhlenbeck process.

2. MODEL, ASSUMPTIONS AND PRELIMINARIES

Let (Ω,F , {Ft}t≥0P ) be a stochastic basis satisfying the usual hypotheses

on which is defined a diffusion process {Xt, t ≥ 0} satisfying the Itô stochastic

differential equation

(2.1) dXt = f(θ, t,Xt) dt+ dWt , t ≥ 0, X0 = 0

where {Wt, t≥ 0} is a standard Wiener process, f(θ, t, x) is a known real valued

function continuous on Θ× [0, T ]×R where Θ is a closed interval of the real

line and the parameter θ is unknown, which is to be estimated on the basis of

observation of the process {Xt, 0≤ t≤ T} =: XT
0 . Let θ0 be the true value of the

parameter which lies inside the parameter space Θ.

Let P T
θ be the measure generated by the process XT

0 on the space (CT , BT )

of continuous functions on [0, T ] with the associated Borel σ-algebra BT associ-

ated to the sup-norm topology of CT . Let ET
θ be the expectation with respect to

the measure P T
θ . Suppose P T

θ is absolutely continuous with respect to P T
θ0

. Then

it is well known that (see Liptser and Shiryayev (1977, p. 239)

(2.2)

LT (θ) :=
dP T

θ

dP T
θ0

(XT
0 )

= exp

{
∫ T

0

[

f(θ, s,Xs) − f(θ0, s,Xs)
]

dWs

− 1

2

∫ T

0

[

f(θ, s,Xs) − f(θ0, s,Xs)
]2
ds

}

.

is the Radon–Nikodym derivative (likelihood) of P T
θ with respect to P T

θ0
. The

MLE θT of θ based on XT
0 is defined as

θT := arg max
θ∈Θ

LT (θ) .

Throughout the paper prime denotes derivative with respect to θ. Let us denote

the log-likelihood function by lt(θ) ≡ logLT (θ), and let l′t(θ) ≡ UT (θ), l′′T (θ)≡
HT (θ) and l′′′T (θ) ≡ QT (θ).

If LT (θ) is continuous in θ, it can be shown that there exists a measurable

MLE by using Lemma 3.3 in Schmetterer (1974). Hereafter, we assume the exis-

tence of such a measurable MLE. We assume the following regularity conditions

on f(θ, t, x).
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(A1) Pθ1
6= Pθ2

for θ1 6= θ2 in Θ.

(A2) {Xt} is the unique strong solution of (2.1) with

(2.3) Pθ

(
∫ T

0
f2(θ, t,Xt) dt <∞

)

= 1 for all θ ∈ Θ, T <∞ .

The condition (2.3) ensures that P T
θ ≪P T

W for all θ where P T
W is

the standard Wiener measure and likelihood function is given by

(2.4)
dP T

θ

dP T
W

= exp

{
∫ T

0
f(θ, t,Xt) dXt −

1

2

∫ T

0
f2(θ, t,Xt) dt

}

.

(A3) (i) f(θ, t, x) is differentiable in t and x.

The log-likelihood with respect to P T
W can be written as

(2.5) log
dP T

θ

dP T
W

=

∫ T

0
f(θ, t,Xt) dXt −

1

2

∫ T

0
f2(θ, t,Xt) dt .

(ii) The integrals in (2.4) and (2.5) can be differentiated twice

under the integral sign with respect to θ.

Let IT (θ) :=
∫ T
0 f

′2(θ, t,Xt) dt and YT (θ) :=
∫ T
0 f

′′2(θ, t,Xt) dt.

(iii) l′′T is continuous in a neighborhood Vθ of θ for every θ ∈ Θ

and
nT = nT (θ) := Eθ(IT (θ)) <∞ , Eθ(YT (θ)) <∞

with nT → ∞ as T → ∞ and there exists a constant C0 such

that for any θ, θ1, θ2 ∈ Θ

Eθ(IT (θ2))

nT (θ1)
< C0 .

(iv)
IT (θ)

nT

Pθ→ 1 as T → ∞.

(A4) Suppose there exists γ ≥ 2 and C > 0 such that for all θ ∈ Θ

Eθ exp

{

−1

3

∫ T

0

[

f
(

θ+un
−1/2
T ,t,Xt)−f(θ,t,Xt)

]2
dt

}

≤ exp
(

−C|u|γ
)

.

(A5) Suppose that there exists mT = mT (θ) ↑∞ as T → ∞ such that

(i)
IT (θ)

mT

Pθ→η(θ) as T→∞ where Pθ

(

η(θ)>0
)

>0 andE(η−1(θ))<∞.

(ii)
YT (θ)

mT

Pθ→ξ(θ) as T → ∞.

Some of regularity conditions (A1)–(A5) can be found in the literature,

for example, Borkar and Bagchi (1982) and Levanony et al. (1994). However

both proved strong consistency and Levanony et al. (1994) proved asymptotic

normality. We need stronger regularity condition (A4) in order to prove large

deviations.
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Let us introduce the Bayes estimator. Let Λ be a prior probability measure

on (Θ,B) where B is the σ-algebra of Borel subsets of Θ. Suppose that Λ has a

density λ(·) with respect to the Lebesgue measure on R, which is continuous and

positive on Θ and possesses a polynomial majorant in Θ.

Let p(θ|XT
0 ) be the posterior density of θ given XT

0 . By Bayes theorem

p(θ|XT
0 ) is given by

p(θ|XT
0 ) =

LT (θ)λ(θ)
∫

Θ LT (θ)λ(θ) dθ
.

Let l(·, ·): Θ×Θ → R be a loss function as defined in Ibragimov and Khasminskii

(1981) which satisfies the following conditions:

(B1) ψ(u, v) = ψ(u−v).

(B2) ψ(u) is defined and nonnegative on R, ψ(0) = 0 and ψ(u) is contin-

uous at u = 0 but is not identically equal to 0.

(B3) ψ is symmetric, i.e., ψ(u) = ψ(−u).

(B4) {u : ψ(u) < c} are convex sets and are bounded for all c > 0 suffi-

ciently small.

(B5) There exists numbers γ > 0, h0 ≥ 0 such that for h ≥ h0

sup
{

ψ(u) : |u| ≤ hγ
}

≤ inf
{

ψ(u) : |u| ≥ h
}

.

Clearly, all power loss functions of the form |u− v|r, r > 0, satisfy the con-

dition (B1)–(B5). In particular, quadratic loss function |u − v|2 satisfies these

conditions.

A Bayes estimator
∼
θT of θ with respect to the loss function ψ(θ, φ) and

prior density λ(θ) is one which minimizes the posterior risk and is given by

∼
θT := arg min

φ∈Θ

∫

Θ
l(φ, θ) p(θ|XT

0 ) dθ .

In particular, for the quadratic loss function ψ(u, v) = |u− v|2, the Bayes esti-

mator
∼
θT becomes the posterior mean given by

∼
θT =

∫

Θ φ p(φ|XT
0 ) du

∫

Θ p(φ|XT
0 ) dφ

.

Let us consider the likelihood ratio process

ZT (u) :=
dP

θ+un
−1/2

T

dPθ
(XT

0 ) .
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By (2.2) with gt(u) := f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt), we have

ZT (u) = exp

{
∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
]

dWt

− 1

2

∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
]2
dt

}

= exp

{
∫ T

0
gt(u) dWt −

1

2

∫ T

0
g2
t (u) dt

}

.

We define the LAMN condition below:

Definition (Le Cam and Yang (1990), Jeganathan (1982, 1995)). Let

En =
(

Ωn,Fn, (P
n
θ , θ ∈Θ)

)

, n≥ 1, be a sequence of statistical experiments, where

Θ is an open subset of R. We denote by

Λn
ηθ

= log

(

dPn
η

dPn
θ

)

the log-likelihood between η and θ at stage n.

We say that the sequence En satisfies the local asymptotically quadratic

(LAQ) condition at a point θ ∈Θ if there are random variables ∆n and Γn defined

on (Ωn,Fn), Γn > 0 a.s. [Pn
θ ] and a positive numerical sequence φn ↓ 0 such that

for each bounded sequence of numbers un,

Λn
θ+φnun,θ −

(

un∆n − 1

2
u2

nΓn

) P n
θ→ 0

and

(∆n,Γn) → (∆,Γ) in Pn
θ -distribution

where ∆ and Γ are random variables on a measurable space (Ω,F , P ) with Γ> 0

a.s. (P ) and

EP exp
(

u∆ − 1

2
u2Γ

)

= 1 .

The sequence of experiments is called locally asymptotically Brownian functional

(LABF) if ∆ =
∫ 1
0 Fs dWs and Γ =

∫ 1
0 F

2
s ds with W a standard Brownian motion

and F a predictable process with respect to some filtration in F . It is called

locally asymptotically mixed normal (LAMN) if ∆ = Γ1/2W1 with W1 standard

normal variable independent of Γ and locally asymptotically normal (LAN) if,

in addition, Γ is nonrandom.

Let Φ(.) denote the standard normal distribution function and C denote a

generic positive constant. We shall use the following lemmas to prove our main

results. The first lemma is a revised version of Theorem 19 of Ibragimov and

Khasminskii (1981, p. 372) from Kallianpur and Selukar (1993, p. 330).
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Lemma 2.1. Let ζ(t) be a real valued random function defined on a closed

subset F of the Euclidean space R
k. We shall assume that the random process

ζ(t) is measurable and separable. Assume that the following condition is ful-

filled: there exist numbers m ≥ r > k and a function H(x) : R
k→ R

1 bounded

on compact sets such that for all x, h ∈ F , x+h ∈ F ,

E |ζ(x)|m ≤ H(x) ,

E
∣

∣ζ(x+h) − ζ(x)
∣

∣

m ≤ H(x) |h|r .

Then with probability one the realizations of ζ(t) are continuous functions of F .

Moreover, set

w(δ, ζ, L) = sup
x,y∈F

|x|,|y|≤L
|x−y|≤δ

∣

∣ζ(x) − ζ(y)
∣

∣ ,

then

E
(

w(h; ζ, L)
)

≤ B0

(

sup
|x|<L

H(x)
)1/m

Lk h(r−k)/m log(h−1)

where B0 = 64k
(

1 − 2−(r−k)m
)−1

+
(

2(m−r)/m − 1
)−1

.

Lemma 2.2 (Ibragimov and Khasminskii (1981, p. 45)). Let Zǫ,θ(u) be the

likelihood ratio function corresponding to the points θ+ φ(ǫ)u and θ where φ(ǫ)

denotes a normalizing factor such that |φ(ǫ)| → 0 as ǫ→ 0. Thus Zǫ,θ is defined

on the set Uǫ = (φ(ǫ))−1(Θ − θ). Let Zθ
ǫ,0(u) possesses the following properties:

given a compact set K⊂ Θ there exist numbers M1 > 0 and m1 ≥ 0 and functions

gK
ǫ (y) = gǫ(y) correspond such that

(1) For some α > 0 and all θ ∈ K,

sup
|u1|≤R
|u2|≤R

|u2 − u1|−α E
(ǫ)
θ

∣

∣Z
1/2
ǫ,θ (u2) − Z

1/2
ǫ,θ (u1)

∣

∣

2 ≤ M1 (1+Rm1) .

(2) For all θ ∈ K and u ∈ Uǫ, E
(ǫ)
θ Z

1/2
ǫ,θ (u) ≤ e−gǫ(u).

(3) gǫ(u) is a monotonically increasing to ∞ function of y

lim
y→∞
ǫ→0

yNe−gǫ(y) = 0 .

Let {
∼
θǫ} be a family of Bayes estimators with respect to the prior density q,

which is continuous and positive on K and possesses in Θ a polynomial majorant

and a loss function ωǫ(u, v) := ψ
(

(φ(ǫ))−1(u−v)
)

where ψ satisfies (B1)–(B5).

Then for all N ,

lim
h→∞
ǫ→0

hN sup
θǫK

P
(ǫ)
θ

{

∣

∣(φ(ǫ))−1(
∼
θǫ− θ)

∣

∣ > h
}

= 0 .
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If in addition, ψ(u) = τ(|u|), then for all ǫ sufficiently small, 0 < ǫ < ǫ0,

sup
θ∈K

P
(ǫ)
θ

{

∣

∣(φ(ǫ))−1 (
∼
θǫ− θ)

∣

∣ > h
}

≤ B0 e
−b0gǫ(h) .

Lemma 2.3. Under the assumptions (A1)–(A4),

(a) sup
θ∈Θ

ET
θ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
≤ C2

0

4
(u2− u1)

2 ;

(b) sup
θ∈Θ

ET
θ

[

Z
1/2
T (u)

]

≤ C exp(−C|u|γ) .

Proof: Observe that

(2.6)

ET
θ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
=

= ET
θ

[

ZT (u1)
]

+ ET
θ

[

ZT (u2)
]

− 2ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

≤ 2 − 2ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

.

From Gikhman and Skorohod (1972, p. 82), for all u, we have

(2.7) ET
θ

[

ZT (u)
]

= ET
θ

[

exp

{
∫ T

0
gt(u) dWt −

1

2

∫ T

0
g2
t (u) dt

}

]

≤ 1 .

Let

(2.8)

θ1 := θ + u1n
−1/2
T , θ2 := θ + u2n

−1/2
T ,

δt := f(θ2, t,Xt) − f(θ1, t,Xt) ,

J(θ1, θ2) := Eθ1

(

IT (θ2)
)

,

VT := exp

{

1

2

∫ T

0
δt dWt −

1

4

∫ T

0
δ2t dt

}

=

(

dP T
θ2

dP T
θ1

)1/2

.

By Itô formula, VT can be represented as

(2.9) VT = 1 − 1

8

∫ T

0
Vt δ

2
t dt +

1

2

∫ T

0
Vt δt dWt .

The random process
{

V 2
t ,Ft, P

T
θ , 0 ≤ t ≤ T

}

is a martingale and from the
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Ft-measurability of δt for each t ∈ [0, T ],

(2.10)

ET
θ1

∫ T

0
V 2

t δ
2
t dt = ET

θ1

∫ T

0
ET

θ1
(V 2

t |Ft) δ
2
t dt

= ET
θ1
V 2

T

∫ T

0
δ2t dt

=

∫

V 2
T

(
∫ T

0
δ2t dt

)

dPθ1

=

∫
(
∫ T

0
δ2t dt

)

dP T
θ2

= ET
θ2

(
∫ T

0
δ2t dt

)

= ET
θ2

∫ T

0

∣

∣f(θ2, t,Xt) − f(θ1, t,Xt)
∣

∣

2
dt

(2.11)

= ET
θ2

∫ T

0

(
∫ θ2

θ1

f ′(y, t,Xt) dy

)2

dt (by (A1))

≤ (θ2 − θ1)E
T
θ2

∫ T

0

∫ θ2

θ1

f ′
2

(y, t,Xt) dy dt

= (θ2 − θ1)

∫ θ2

θ1

J(θ2, y) dy < ∞ .

Hence ET
θ1

∫ T
0 Vt δt dWt = 0. Therefore, using |ab| ≤ a2+b2

2 , we obtain from (2.10)

(2.12)

ET
θ1

(VT ) = 1 − 1

8

∫ T

0
ET

θ1
(δtVt .δt) dt

≥ 1 − 1

16

∫ T

0
ET

θ1
δ2t dt −

1

16

∫ T

0
ET

θ1
V 2

t δ
2
t dt

= 1 − 1

16
ET

θ1

∫ T

0
δ2t dt −

1

16
ET

θ2

∫ T

0
δ2t dt (by (2.11)) .

Now

(2.13)

ET
θ

[

Z
1/2
T (u1)Z

1/2
T (u2)

]

= ET
θ





dP T

θ+u1n
−1/2

T

dP T
θ





1/2 



dP T

θ+u2n
−1/2

T

dP T
θ





1/2

=

∫

[

dP T
θ1

dP T
θ

]1/2 [

dP T
θ2

dP T
θ

]1/2

dP T
θ

=

∫

[

dP T
θ2

dP T
θ1

]1/2

dP T
θ1

= ET
θ1

(VT ) .
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Substituting (2.13) into (2.6) and using (2.12), we obtain

Eθ

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]2
≤

≤ 2 − 2Eθ1
(VT )

≤ 1

8
Eθ1

∫ T

0
δ2t dt +

1

8
Eθ2

∫ T

0
δ2t dt

≤ 1

8
(θ2 − θ1)

∫ θ2

θ1

[

J(θ1, y) + J(θ2, y)
]

dy

(by using arguments similar to (2.10))

≤ 1

4
(θ2 − θ1)

2 sup
θ,y

J(θ, y)

=
(u2 − u1)

2

4nT
sup
θ,y

J(θ, y)

≤ C0

4
(u2 − u1)

2 (by (A3)(iii)) .

This completes the proof of (a).

Let us now prove (b). By Hölder inequality,

(2.14)

Eθ

[

Z
1/2
T (u)

]

=

= Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

4

∫ T

0
g2
t (u) dt

}

]

= Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

6

∫ T

0

(

gt(u)
)2
dt

}

exp

{

− 1

12

∫ T

0

(

gt(u)
)2
dt

}

]

≤







Eθ

[

exp

{

1

2

∫ T

0
gt(u) dWt −

1

6

∫ T

0

(

gt(u)
)2
dt

}

]4/3






3/4

×







Eθ

[

exp

{

− 1

12

∫ T

0

(

gt(u)
)2
dt

}

]4






1/4

≤
[

Eθ exp

{

2

3

∫ T

0
gt(u) dWt −

2

9

∫ T

0

(

g2
t (u)

)

dt

}

]3/4

×
[

Eθ exp

{

−1

3

∫ T

0

(

gt(u)
)2
dt

}

]1/4

.

Assumption (A5) implies that

(2.15)

E exp

{

−1

3

∫ T

0

(

gt(u)
)2
dt

}

=

= E exp

{

−1

3

∫ T

0

[

f
(

θ + un
−1/2
T , t,Xt

)

− f(θ, t,Xt)
2
]2
dt

}

≤ exp
(

−C |u|γ
)

.
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On the other hand, from Gikhman and Skorohod (1972, p. 82)

(2.16) Eθ

[

exp

{
∫ T

0

2

3
gt(u) dWt −

1

2

∫ T

0

(2

3
gt(u)

)2
dt

}

]

≤ 1 .

Combination of (2.14)–(2.16) completes the proof of (b).

Lemma 2.4 (Michel and Pfanzagl (1971)). Let Y and Z be two random

variables on some probability space with P (Z > 0) = 1. Then for all ǫ > 0, we

have

sup
x∈R

∣

∣

∣

∣

P

{

Y

Z
≤ x

}

− Φ(x)

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣
P
{

Y ≤ x
}

− Φ(x)
∣

∣

∣
+ P

{

|Z−1|> ǫ
}

+ ǫ .

The following is the generalization of the above lemma from non-random η

to random η.

Lemma 2.5 (Oblakova (1989)). Let Y, Z and η be three random variables

on some probability space with P (Z > 0) = 1, and η is a positive random variable

with P
{

0<η2 <∞
}

= 1, E(η−1)<∞. Then for all ǫ > 0, we have

sup
x∈R

∣

∣

∣

∣

P

{

Y

Z
≤ x

}

−Φ(x)

∣

∣

∣

∣

= E sup
x∈R

∣

∣

∣
P
{

Y ≤ x |G
}

−
∼
Φ(x)

∣

∣

∣
+2P

{

|Z−η|> ǫ
}

+ǫE(η−1) .

where
∼
Φ(x) = P (ζ η ≤ x |η), G = σ(η) ⊂ F0 and ζ is N (0, 1) random variable

independent of η.

3. MAIN RESULTS

We obtain the following large deviations upper bound for the MLE.

Theorem 3.1. Under the assumptions (A1)–(A4), for ρ > 0, we have

sup
θ∈Θ

P T
θ

{

n
1/2
T |θT − θ| ≥ ρ

}

≤ B exp
(

−b |ρ|γ
)

for some positive constants b and B independent of ρ and T .

Proof: Let

ST :=
{

u : θ + un
−1/2
T ∈ Θ

}

,
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(3.1)

P T
θ

{

n
1/2
T |θT − θ| > ρ

}

= P T
θ

{

|θT − θ| > ρn
−1/2
T

}

≤ P T
θ

{

sup
|u|≥ρ
u∈ST

LT

(

θ + uT−1/2
)

≥ LT (θ)

}

= P T
θ

{

sup
|u|≥ρ

LT

(

θ + uT−1/2)

LT (θ)
≥ 1

}

= P T
θ

{

sup
|u|≥ρ

ZT (u) ≥ 1

}

≤
∞
∑

r=0

P T
θ

{

sup
u∈Γr

ZT (u) ≥ 1

}

,

where Γr = [ρ+r, ρ+r+1]. Applying Lemma 2.1 with ζ(u) = Z
1/2
T (u), we obtain

from Lemma 2.3 that there exists a constant B > 0 such that

(3.2) sup
θ∈Θ

ET
θ

{

sup
|u1−u2|≤h
|u1|,|u2|≤l

[

Z
1/2
T (u1) − Z

1/2
T (u2)

]

}

≤ B l1/2 h1/2 log h−1 .

Divide Γr into subintervals of length at most h > 0. The number n of subintervals

is clearly less than or equal to [ 1
h ] + 1. Let Γ

(j)
r , 1 ≤ j ∈ n be the subintervals

chosen. Choose uj ∈ Γ
(j)
r . Then

P T
θ

[

sup
u∈Γr

ZT (u) ≥ 1

]

≤

≤
n
∑

j=1

P T
θ

[

Z
1/2
T (uj) ≥

1

2

]

+ P T
θ

{

sup
|u−v|≤h

|u|,|v|≤ρ+r+1

∣

∣

∣
Z

1/2
T (u) − Z

1/2
T (v)

∣

∣

∣
≥ 1

2

}

≤ 2
n
∑

j=1

ET
θ

[

Z
1/2
T (uj)

]

+ 2B(ρ+ r + 1)1/2 h1/2 log(h−1)

(by Markov inequality and (3.2))

≤ 2C
n
∑

j=1

exp
(

−C |uj |γ
)

+ 2B(ρ+r+1)1/2 h1/2 log(h−1) (by Lemma 2.2)

≤ 2C

([

1

h

]

+1

)

exp
{

−C(ρ+r)γ
}

+ 2B(ρ+r+1)1/2 h1/2 log(h−1) .

Let us now choose h = exp
{

−C(ρ+r)γ

2

}

. Then

(3.3)
sup
θ∈Θ

P T
θ

{

sup
u>ρ

ZT (u) ≥ 1

}

≤ B

∞
∑

r=0

(ρ+ r + 1)1/2 exp

{−C(ρ+ r)γ

4

}

≤ B exp(−bργ) ,

where B and b are positive generic constants independent of ρ and T . Similarly

it can be shown that

(3.4) sup
θ∈Θ

P T
θ

[

sup
u<−ρ

ZT (u) ≥ 1

]

≤ B exp(−bργ) .
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Combining (3.3) and (3.4), we obtain

(3.5) sup
θ∈Θ

P T
θ

[

sup
|u|>ρ

ZT (u) ≥ 1

]

≤ B exp(−bργ) .

The theorem follows from (3.2) and (3.5).

By substituting ρ = n
1/2
T ǫ in Theorem 3.1, the following result is obtained.

Corollary 3.1. Under the conditions of Theorem 3.1, for arbitrary ǫ > 0

and all T > 0, we have

sup
θ∈Θ

P T
θ

{

|θT − θ| > ǫ
}

≤ B exp(−b nT ǫ
γ)

where B and b are positive constants independent of ǫ and T .

We obtain the following large deviations bound for the Bayes estimator
∼
θT .

Theorem 3.2. Suppose (A1)–(A4) and (B1)–(B5) hold. For ρ > 0, the

Bayes estimator
∼
θT with respect to the prior λ(·) and a loss function l(·, ·) with

l(u) = l(|u|) satisfies

sup
θ∈Θ

P T
θ

{√
T
∣

∣

∼
θT − θ

∣

∣ ≥ ρ
}

≤ B exp(−bρ2)

for some positive constants B and b independent of ρ and T .

Proof: Using Lemma 2.3, conditions (1), (2) and (3) of Lemma 2.2 are

satisfied with α = 2 and g(u) = u2. Hence the result follows from Lemma 2.2.

Corollary 3.2. Under the conditions of Theorem 3.3, for arbitrary ǫ > 0

and all T > 0, we have

sup
θ∈Θ

P T
θ

{

∣

∣

∼
θT − θ

∣

∣ > ǫ
}

≤ B exp(−C T ǫ2) .

As another application of Theorem 3.3 we obtain the following result.

Theorem 3.3. Under the assumptions (A1)–(A4), for all N , we have for

the Bayes estimator
∼
θT with respect to the prior λ(·) and loss function ψ(·, ·)

satisfying the conditions (B1)–(B5),

lim
H→∞
T→∞

HN sup
θǫΘ

P T
θ

{√
T
∣

∣

∼
θT − θ

∣

∣>H
}

= 0 .
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We establish the following Berry–Esseen type inequality for the MLE.

Theorem 3.4. Under the assumptions (A2), (A3) and (A5),

sup
x∈R

∣

∣

∣
Pθ

{

I
−1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
≤

≤ E
1/3
θ

∣

∣

∣

∣

IT (θ)

mT
− η(θ)

∣

∣

∣

∣

+ Pθ

{∣

∣

∣

∣

HT (θ)

IT
−1

∣

∣

∣

∣

>
ǫT

2

}

+ Pθ

{

sup
θ∈Θ

∣

∣I−1
T (QT (θ))

∣

∣>
ǫT

2δ

}

+ C exp
(

−b nT δ
2
)

.

for any δ > 0 and some ǫT ↓ 0 as T→∞ and b > 0 is a constant independent of T .

Proof: Recall that l′t(θ) ≡ UT (θ), l′′T (θ) ≡ HT (θ) and l′′′T (θ) ≡ QT (θ).

By a Taylor expansion of UT (θ) around θ, we have

0 = UT (θT ) = UT (θ) + (θT − θ)HT (θT ) where |θT − θ| < |θT − θ| .

Hence

I
1/2
T (θ) (θT − θ) = −I1/2

T (θ)
UT (θ)

HT (θT )

= −
(

IT (θ)

mT

)1/2 m
−1/2
T UT (θ)

m−1
T HT (θT )

.

Thus by Lemma 2.3, we have

sup
x∈R

∣

∣

∣
Pθ

{

I
1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
=

= sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−
(

IT (θ)
mT

)−1/2
m

−1/2
T UT (θ)

(

IT (θ)
mT

)−1
m−1

T HT (θT )
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−m−1/2
T UT (θ)
(

IT (θ)
mT

)1/2
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

+ Pθ

{

∣

∣I−1
T (θ)HT (θT ) − 1

∣

∣ > ǫT

}

+ ǫT

=: J1 + J2 + ǫT .

Let MT (θ) = −m−1/2
T UT (θ) = m

−1/2
T

∫ T
0 f

′(θ, t,Xt) dWt, a normalized continuous

martingale with respect to FT and 〈M(θ)〉T = m−1
T IT (θ) = m−1

T

∫ T
0 f

′2(θ, t,Xt) dt

be its corresponding increasing process. Let
∼
Φ(x) = P

(

Gη ≤ x|η
)

, G ∼ N (0, 1)
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and G ≡ σ(η) ⊂ F0. Then by Lemma 2.5

J1 = sup
x∈R

∣

∣

∣

∣

∣

∣

∣

Pθ











−m−1/2
T UT (θ)
(

IT (θ)
mT

)1/2
≤ x











− Φ(x)

∣

∣

∣

∣

∣

∣

∣

= sup
x∈R

∣

∣

∣

∣

∣

Pθ

{

MT (θ)
√

〈M(θ)〉T
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

≤ Eθ sup
x∈R

∣

∣

∣
Pθ

(

MT (θ)≤ x |G
)

−
∼
Φ(x)

∣

∣

∣

+ 2Pθ

{

∣

∣

√

〈M(θ)〉T − η(θ)
∣

∣ > ǫT

}

+ ǫT E
(

η−1(θ)
)

≤ C1E
1/3
θ

∣

∣

∣

∣

IT (θ)

mT
− η(θ)

∣

∣

∣

∣

(by Lemma 2.5)

where C1 depends only on E(η−1(θ)). Further,

J2 = Pθ

{

∣

∣I−1
T HT (θT ) − 1

∣

∣ > ǫT

}

≤ Pθ

{

∣

∣I−1
T

∣

∣

∣

∣HT (θT ) −HT (θ)
∣

∣ >
ǫT

2

}

+ Pθ

{

∣

∣I−1
T HT (θ) − 1

∣

∣ >
ǫT

2

}

= Pθ

{

I−1
T

∣

∣(θT − θ)QT (θ⋆
T )
∣

∣ >
ǫT

2

}

+ Pθ

{

∣

∣I−1
T HT (θ) − 1

∣

∣ >
ǫT

2

}

(

where |θ⋆
T − θ| < |θT − θ|

)

≤ Pθ

{

∣

∣I−1
T

(

QT (θ⋆
T )
)
∣

∣>
ǫT

2 δ

}

+ Pθ

{

∣

∣θT − θ
∣

∣> δ
}

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

≤ Pθ

{

∣

∣I−1
T

(

QT (θ⋆
T )
)
∣

∣>
ǫT

2 δ

}

+ Pθ

{

∣

∣θT − θ
∣

∣> δ
}

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

≤ Pθ

{

sup
θ∈Θ

∣

∣I−1
T

(

QT (θ)
)
∣

∣>
ǫT

2δ

}

+ C exp
(

−b nT δ
γ
)

+ Pθ

{

∣

∣I−1
T HT (θ) −1

∣

∣>
ǫT

2

}

(by Corollary 3.2) .

This completes the proof of the theorem.

Remark. We used the splitting technique developed by Michel and Pfan-

zagl (1971) for the i.i.d. case. The upper bound in the Berry–Esseen type in-

equality obtained here contains four terms. The first term is cube root of the

absolute moment, the second and the third term are moderate deviations type

probabilities of the second and the third derivatives of log-likelihood respectively,

and the fourth term is decays exponentially. The bound is quite sharp as seen in

the linear case in the following example.
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4. NONHOMOGENEOUS ORNSTEIN–UHLENBECK PROCESS

We apply the Berry–Esseen results for the MLE in the nonhomogeneous

Ornstein–Uhlenbeck process satisfying the stochastic differential equation

(4.1) dXt = θ tXt dt+ dWt , t ≥ 0, X0 = 0

where θ > 0. Note that the solution is a nonstationary and nonergodic process.

Here the MLE based on {Xt, 0≤ t≤ T} is given by

θT =

∫ T
0 tXt dXt
∫ T
0 t2X2

t dt
,

and IT (θ)=
∫ T
0 t

2X2
t dt. Let us choose mT =

∫ T
0 t

2 eθt2dt. Note that m
1/2
T (θ)(θT−θ)

converges to Cauchy distribution with parameters (0,1) as T→∞. Here IT
mT

→∆2

a.s. where ∆ has N
(

0, ( π
4θ )1/2

)

distribution and η2(θ) = ∆2. Directly from the

calculation of J1 in Theorem 3.6, we have

sup
x∈R

∣

∣

∣
Pθ

{

I
1/2
T (θ) (θT − θ) ≤ x

}

− Φ(x)
∣

∣

∣
≤ E

1/3
θ

∣

∣

∣

∣

∣

∫ T
0 t2X2

t dt
∫ T
0 t2 eθt2 dt

− ∆2

∣

∣

∣

∣

∣

≤ C T 1/2 exp

(−θ T 4

12

)

≤ C exp

(−θ T 4

24

)

.

This shows that rate of weak convergence can be faster in the nonergodic

processes than in ergodic processes in which case the sharpest possible rate is

O(T−1/2).

Remarks.

(1) Levanony et al. (1994) (see also Trofimov (1982)) showed that, for

large enough t, MLE θt is a continuous semimartingale satisfying a

stochastic differential equation. One could use the Berry–Esseenbound

for semimartingales (see, e.g., Liptser and Shiryayev (1982, 1989))

to obtain a Berry–Esseen bound for the MLE θt. However, it would

not give sharp bounds. Hence we follow the method of Michel and

Pfanzagl (1971)) developed for the independent observations case.

(2) Large deviations for M -estimator remains to be investigated.

(3) It would be interesting if one can improve the Berry–Esseen bound in

the above example by applying the characteristic function technique

used in Bishwal (2000a).

(4) Berry–Esseen type bounds for Bayes estimators remain open.

(5) Large deviations and Berry–Esseen results for diffusions based on dis-

crete observations remains to be investigated which would be more

interesting in view of applications in finance.
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1. INTRODUCTION

Consider an R×R square contingency table with the same row and column

classifications. Let pij denote the probability that an observation will fall in the

i-th row and j-th column of the table (i = 1, ..., R; j = 1, ..., R), and let X and Y

denote the row and column variables, respectively. The marginal homogeneity

(MH) model is defined by

Pr(X= i) = Pr(Y = i) for i = 1, ..., R ,

namely

pi · = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki (see, e.g., Stuart, 1955; Bhapkar, 1966;

Bishop, Fienberg and Holland, 1975, p.294).

Let

G1(i) =
i

∑

s=1

R
∑

t=i+1

pst

[

= Pr
(

X≤ i, Y ≥ i+1
)]

,

and

G2(i) =
R

∑

s=i+1

i
∑

t=1

pst

[

= Pr
(

X≥ i+1, Y ≤ i
)]

,

for i = 1, ..., R−1. By considering the difference between the cumulative marginal

probabilities, FX
i − F Y

i for i = 1, ..., R−1, where FX
i = Pr(X≤ i) and F Y

i =

Pr(Y ≤ i), we see that the MH model may also be expressed as

G1(i) = G2(i) for i = 1, ..., R−1 .

Namely, this states that the cumulative probability that an observation will fall

in row category i or below and column category i + 1 or above is equal to the

cumulative probability that the observation falls in column category i or below

and row category i + 1 or above for i = 1, ..., R−1.

Tomizawa (1984, 1995a) considered the extended marginal homogeneity

(EMH) model defined by

p
(δ)
i · = p

(δ)
· i for i = 1, ..., R ,

where the parameter δ is unspecified and

p
(δ)
i · = δ

i−1
∑

t=1

pit +
R

∑

t=i

pit , p
(δ)
· i =

i
∑

s=1

psi + δ
R

∑

s=i+1

psi .

Consider the artificial probabilities in Table 1. We see that the EMH model

holds with δ = 2 in Table 1. The EMH model may also be expressed as

G1(i) = δ G2(i) for i = 1, ..., R−1 .
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Table 1: Artificial probabilities having the structure of EMH with δ = 2.

0.04 0.02 0.04 0.26

0.01 0.03 0.08 0.16

0.02 0.04 0.02 0.04

0.13 0.08 0.02 0.01

A special case of this model obtained by putting δ = 1 is the MH model. This

model indicates that the cumulative probability that an observation will fall in

row category i or below and column category i + 1 or above is δ times higher

than the cumulative probability that the observation falls in column category i

or below and row category i + 1 or above for i = 1, ..., R−1. The EMH model

may further be expressed as

G∗
1(i) = G∗

2(i) for i = 1, ..., R−1 ,(1.1)

where

G∗
1(i) = G1(i)/G1 , G∗

2(i) = G2(i)/G2 ,

G1 =

R−1
∑

i=1

G1(i) , G2 =

R−1
∑

i=1

G2(i) .

Namely the EMH model indicates that there is a structure of symmetry between
{

G∗
1(i)

}

and
{

G∗
2(i)

}

for i = 1, ..., R−1.

For square contingency tables with nominal categories, Tomizawa (1995b)

considered two kinds of measures to represent the degree of departure from MH,

which are expressed by using the Shannon entropy and Gini concentration.

Tomizawa and Makii (2001) considered a generalization of Tomizawa measures,

which is expressed by using the Cressie and Read’s (1984) power-divergence

(or Patil and Taillie’s (1982) diversity index). For square contingency tables

with ordered categories, Tomizawa, Miyamoto and Ashihara (2003) considered a

measure to represent the degree of departure from MH.

When the MH model does not hold, these measures would be useful for

measuring the degree of departure from MH. When the EMH model does not

hold, we are now interested in measuring the degree of departure from EMH

(instead of that from MH).

The purpose of this paper is to propose a power-divergence type mea-

sure which represents the degree of departure from EMH for square contingency

tables with ordered categories. In Section 2 we propose such a measure which is

expressed as a function of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

. It would be useful for comparing

the degree of departure from EMH in several tables with ordered categories.
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2. MEASURE OF DEPARTURE FROM EXTENDED MARGINAL

HOMOGENEITY

Assume that G1 > 0, G2 > 0 and G1(i) + G2(i) > 0 for i = 1, ..., R−1. Let

Ci =
G∗

1(i) + G∗
2(i)

2
for i = 1, ..., R−1 .

Note that
∑R−1

i=1 Ci = 1. To represent the degree of departure from EMH, consider

a measure defined by

Γ
(λ)
EM =

λ(λ+1)

2(2λ−1)

[

I(λ)
(

{

G∗
1(i)

}

;
{

Ci

}

)

+ I(λ)
(

{

G∗
2(i)

}

;
{

Ci

}

)]

for λ >−1 ,

where

I(λ)
(

{ai}; {bi}
)

=
1

λ(λ+1)

R−1
∑

i=1

ai

[

( ai

bi

)λ
− 1

]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus,

Γ
(0)
EM =

1

2 log 2

[

I(0)
(

{

G∗
1(i)

}

;
{

Ci

}

)

+ I(0)
(

{

G∗
2(i)

}

;
{

Ci

}

)]

,(2.1)

where

I(0)
(

{ai}; {bi}
)

=

R−1
∑

i=1

ai log
( ai

bi

)

.

The I(λ)
(

{ai}; {bi}
)

is the power-divergence between {ai} and {bi}, and especially

I(0)
(

{ai}; {bi}
)

is the Kullback–Leibler information (KL) between them. For more

details of the power-divergence I(λ)(·; ·), see Cressie and Read (1984), and Read

and Cressie (1988, p.15). Note that a real value λ is chosen by user.

Let

Gc
1(i) =

G∗
1(i)

G∗
1(i)+ G∗

2(i)

, Gc
2(i) =

G∗
2(i)

G∗
1(i)+ G∗

2(i)

for i = 1, ..., R−1 .

Note that
{

Gc
1(i)+ Gc

2(i) = 1
}

. The EMH model can be expressed as

Gc
1(i) = Gc

2(i)

(

=
1

2

)

for i = 1, ..., R−1 .

Then the measure Γ
(λ)
EM may be expressed as

Γ
(λ)
EM =

λ(λ+1)

2λ−1

R−1
∑

i=1

Ci I
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,

1

2

})

for λ > −1 ,(2.2)
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where

I
(λ)
i (·; ·) =

1

λ(λ+1)

[

Gc
1(i)

{

(Gc
1(i)

1/2

)λ

− 1

}

+ Gc
2(i)

{

(Gc
2(i)

1/2

)λ

− 1

}]

,

and the value at λ = 0 is taken to be the limit as λ→ 0. Thus,

Γ
(0)
EM =

1

log 2

R−1
∑

i=1

Ci I
(0)
i

(

{

Gc
1(i), G

c
2(i)

}

;

{

1

2
,

1

2

})

,

where

I
(0)
i (·; ·) = Gc

1(i) log

(Gc
1(i)

1/2

)

+ Gc
2(i) log

(Gc
2(i)

1/2

)

.

Therefore, Γ
(λ)
EM in equation (2.2) would represent, essentially, the weighted sum

of the power-divergence I
(λ)
i

({

Gc
1(i), G

c
2(i)

}

;
{

1/2, 1/2
})

.

Moreover, Γ
(λ)
EM may be expressed as

Γ
(λ)
EM = 1 − λ 2λ

2λ−1

R−1
∑

i=1

Ci H
(λ)
i

(

{

Gc
1(i), G

c
2(i)

}

)

for λ > −1 ,(2.3)

where

H
(λ)
i (·) =

1

λ

[

1 −
(

Gc
1(i)

)λ+1−
(

Gc
2(i)

)λ+1
]

,

and the value at λ = 0 is taken to be the limit as λ → 0. Thus,

Γ
(0)
EM = 1 − 1

log 2

R−1
∑

i=1

Ci H
(0)
i

(

{

Gc
1(i), G

c
2(i)

}

)

,

where

H
(0)
i (·) = −Gc

1(i) log Gc
1(i) − Gc

2(i) log Gc
2(i) .

Note that H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

is Patil and Taillie’s (1982) diversity index for
{

Gc
1(i), G

c
2(i)

}

, which includes the Shannon entropy (when λ = 0) and the Gini con-

centration (when λ = 1) in special cases. Therefore, Γ
(λ)
EM in equation (2.3) would

represent essentially the weighted sum of the diversity index H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

.

Noting that I
(λ)
i

({

Gc
1(i), G

c
2(i)

}

;
{

1/2, 1/2
})

≥ 0 and H
(λ)
i

({

Gc
1(i), G

c
2(i)

})

≥ 0,

we see that the measure Γ
(λ)
EM must lie between 0 and 1. Also, for each λ (>−1),

(i) there is a structure of EMH in the R×R table if and only if Γ
(λ)
EM = 0,

and

(ii) the degree of departure from EMH is the largest in the sense that

Gc
1(i)= 0 (then Gc

2(i)= 1) or Gc
2(i)= 0 (then Gc

1(i)= 1) [namely, G∗
1(i)= 0

(then G∗
2(i) > 0) or G∗

2(i) = 0 (then G∗
1(i) > 0)] for i = 1, ..., R−1;

if and only if Γ
(λ)
EM = 1.
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Note that Γ
(λ)
EM = 1 indicates that G∗

1(i)/G∗
2(i) = ∞ for some i and G∗

1(i)/G∗
2(i) = 0

for the other i, and therefore it seems appropriate to consider that then the degree

of departure from EMH (i.e., from G∗
1(i)/G∗

2(i) = 1 for i = 1, ..., R− 1) is largest.

In addition, according to the weighted sum of the power-divergence or the weighted

sum of the Patil and Taillie’s diversity index, the degree increases as the value of

Γ
(λ)
EM increases.

3. APPROXIMATE CONFIDENCE INTERVAL FOR MEASURE

Let nij denote the observed frequency in the i-th row and j-th column

of the table (i = 1, ..., R; j = 1, ..., R). Assuming that a multinomial distribution

applies to the R×R table, we shall consider an approximate standard error and

large-sample confidence interval for Γ
(λ)
EM using the delta method, descriptions of

which are given by Bishop et al. (1975, Sec. 14.6) and Agresti (1990, Sec. 12.1).

The sample version of Γ
(λ)
EM, i.e., Γ̂

(λ)
EM, is given by Γ

(λ)
EM with {pij} replaced by {p̂ij},

where p̂ij = nij/n and n =
∑∑

nij . Using the delta method,
√

n
(

Γ̂
(λ)
EM− Γ

(λ)
EM

)

has asymptotically (as n→∞) a normal distribution with mean zero and variance,

σ2
[

Γ
(λ)
EM

]

=
R−1
∑

k=1

R
∑

l=k+1

[

pkl

(

ω
(λ)
1(kl)

)2
+ plk

(

ω
(λ)
2(kl)

)2
]

,

where for λ >−1, λ 6= 0; t = 1, 2,

ω
(λ)
t(kl) =

2λ

2 (2λ−1)Gt

[

l−1
∑

i=k

∆
(λ)
t(i) − (l−k)

R−1
∑

i=1

G∗
t(i) ∆

(λ)
t(i)

]

,

∆
(λ)
1(i) =

(

Gc
1(i)

)λ
+ λ

{

(

Gc
1(i)

)λ−
(

Gc
2(i)

)λ
}

Gc
2(i) ,

∆
(λ)
2(i) =

(

Gc
2(i)

)λ
+ λ

{

(

Gc
2(i)

)λ−
(

Gc
1(i)

)λ
}

Gc
1(i) ;

and for λ = 0; t = 1, 2,

ω
(0)
t(kl) =

1

2 (log 2)Gt

[

l−1
∑

i=k

log
(

Gc
t(i)

)

− (l−k)
R−1
∑

i=1

G∗
t(i) log

(

Gc
t(i)

)

]

.

We note that the asymptotic distribution of
√

n
(

Γ̂
(λ)
EM − Γ

(λ)
EM

)

is not applicable

when Γ
(λ)
EM = 0 and Γ

(λ)
EM = 1 because then σ2

[

Γ
(λ)
EM

]

= 0. Let σ̂2
[

Γ
(λ)
EM

]

denote

σ2
[

Γ
(λ)
EM

]

with {pij} replaced by {p̂ij}. Then σ̂
[

Γ
(λ)
EM

]

/
√

n is an estimated ap-

proximate standard error for Γ̂
(λ)
EM, and Γ̂

(λ)
EM± zp/2 σ̂

[

Γ
(λ)
EM

]

/
√

n is an approximate

100(1−p) percent confidence interval for Γ
(λ)
EM, where zp/2 is the percentage point

from the standard normal distribution corresponding to a two-tail probability

equal to p.
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4. EXAMPLES

Consider the data in Table 2, taken from Tominaga (1979, p.53). These

data describe the cross-classification of father’s and son’s occupational status

categories in Japan which were examined in 1955, 1965 and 1975.

Table 2: Occupational status for Japanese father-son pairs;
from Tominaga (1979, p.53).

Father’s
status

Son’s status
Total

(1) (2) (3) (4) (5) (6) (7) (8)

(a) Examined in 1955

(1) 36 4 14 7 8 2 3 8 82
(2) 20 20 27 24 11 11 2 11 126
(3) 9 6 23 12 9 5 3 16 83
(4) 15 14 39 81 17 16 11 15 208
(5) 6 7 22 13 72 20 6 13 159
(6) 3 2 5 12 18 19 9 7 75
(7) 5 3 10 11 21 15 38 25 128
(8) 39 30 76 80 69 52 45 614 1005

Total 133 86 216 240 225 140 117 709 1866

(b) Examined in 1965

(1) 27 10 16 3 6 6 1 2 71
(2) 15 38 30 20 8 4 3 7 125
(3) 13 17 32 17 7 16 6 5 113
(4) 12 36 40 132 22 30 13 6 291
(5) 8 22 38 41 91 42 22 9 273
(6) 2 2 7 12 13 16 3 2 57
(7) 3 2 11 11 13 26 30 6 102
(8) 38 44 95 101 132 114 60 309 893

Total 118 171 269 337 292 254 138 346 1925

(c) Examined in 1975

(1) 44 18 28 8 6 8 1 5 118
(2) 15 50 45 20 18 17 4 7 176
(3) 18 25 47 30 24 18 5 7 174
(4) 16 27 53 77 40 29 9 6 257
(5) 18 25 42 31 122 43 17 13 311
(6) 12 15 21 15 36 33 3 8 143
(7) 3 5 8 7 26 21 9 3 82
(8) 44 65 114 92 184 195 58 325 1077

Total 170 230 358 280 456 364 106 374 2338

Note: Status (1) is Professional, (2) Managers, (3) Clerical, (4) Sales, (5) Skilled manual,

(6) Semiskilled manual, (7) Unskilled manual and (8) Farmers.
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Since the confidence intervals for Γ
(λ)
EM applied to the data in Tables 2a, 2b

and 2c do not include zero for all λ (see Table 3), these would indicate that there

is not a structure of EMH in each table.

Table 3: Estimate of Γ
(λ)
EM, estimated approximate standard error for Γ̂

(λ)
EM, and ap-

proximate 95% confidence interval for Γ
(λ)
EM, applied to Tables 2a, 2b and 2c.

Values of λ
Estimated
measure

Standard
error

Confidence
interval

(a) For Table 2a

−0.5 0.017 0.004 (0.009, 0.024)
0 0.028 0.006 (0.016, 0.040)
0.5 0.035 0.008 (0.019, 0.050)
1.0 0.038 0.009 (0.021, 0.055)
1.5 0.039 0.009 (0.022, 0.056)
2.0 0.038 0.009 (0.021, 0.055)
2.5 0.036 0.008 (0.020, 0.052)

(b) For Table 2b

−0.5 0.043 0.006 (0.031, 0.055)
0 0.070 0.009 (0.051, 0.088)
0.5 0.085 0.011 (0.063, 0.107)
1.0 0.093 0.012 (0.069, 0.116)
1.5 0.095 0.012 (0.071, 0.118)
2.0 0.093 0.012 (0.069, 0.116)
2.5 0.088 0.012 (0.066, 0.111)

(c) For Table 2c

−0.5 0.053 0.007 (0.040, 0.066)
0 0.086 0.010 (0.066, 0.106)
0.5 0.105 0.012 (0.081, 0.129)
1.0 0.114 0.013 (0.089, 0.139)
1.5 0.116 0.013 (0.091, 0.142)
2.0 0.114 0.013 (0.089, 0.139)
2.5 0.109 0.012 (0.084, 0.133)

When the degrees of departure from EMH in Tables 2a, 2b and 2c are

compared using the confidence interval for Γ
(λ)
EM, it is greater in Tables 2b and 2c

than in Table 2a. However, the comparison between Tables 2b and 2c may be

impossible, because the values in the confidence interval for Table 2b are not

always greater than the values in the confidence interval for Table 2c.

We shall investigate the degree of departure from EMH in more details.

For instance, when λ = 1, the estimated measure Γ̂
(1)
EM equals 0.038 for Table 2a,

0.093 for Table 2b, and 0.114 for Table 2c (see Table 3). Thus,

(i) for Table 2a, the degree of departure from EMH is estimated to be

3.8 percent of the maximum degree of departure from EMH,
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(ii) for Table 2b, it is estimated to be 9.3 percent of the maximum degree

of departure from EMH,

and

(iii) for Table 2c, it is estimated to be 11.4 percent of the maximum degree

of departure from EMH.

Note: Let W (λ) (−∞ < λ < ∞) denote the power-divergence statistic

for testing goodness-of-fit of the EMH model with R−2 degrees of freedom.

[See Appendix for W (λ), and see Cressie and Read (1984) and Read and Cressie

(1988, p.15) for details of the power-divergence test statistic.] In particular,

W (0) and W (1) are the likelihood ratio and Pearson’s chi-squared statistics, re-

spectively. Table 4 gives the values of W (λ) applied to the data in Tables 2a, 2b,

and 2c. These data fit the EMH model very poorly.

Table 4: The values of power-divergence statistic W (λ) (with 6 degrees of freedom) for
testing goodness-of-fit of the EMH model, applied to Tables 2a, 2b and 2c.

Values of λ For Table 2a For Table 2b For Table 2c

−0.5 118.52 300.36 333.41
0 116.76 231.58 280.73
0.5 117.38 200.39 252.56
1.0 120.39 186.77 239.04
1.5 125.95 183.14 235.42
2.0 134.42 186.48 239.54
2.5 146.33 195.69 250.66

5. CONCLUDING REMARKS

The measure Γ
(λ)
EM always ranges between 0 and 1 independent of the di-

mension R and sample size n. Therefore, Γ
(λ)
EM may be useful for comparing the

degree of departure from EMH in several tables.

Consider the artificial data in Table 5. Table 6 gives the values of W (λ)

(with 2 degrees of freedom) for testing goodness-of-fit of the EMH model applied

to these data. Compare the values of W (λ) for Tables 5a and 5b. From W (λ)

with any fixed λ, we see that the EMH model fits the data in Table 5a worse

than the data in Table 5b (see Table 6). In contrast, for any fixed λ (>−1), the

value of Γ̂
(λ)
EM is less for Table 5a than for Table 5b (see Table 7). In terms of

Ĝ1(i)/Ĝ2(i), i = 1, 2, 3 (see Table 5), it seems natural to conclude that the degree

of departure from EMH is less for Table 5a than for Table 5b. Therefore Γ̂
(λ)
EM
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Table 5: Artificial data.

(a) n = 2829

(1) (2) (3) (4) Total

(1) 187 330 70 20 607
(2) 30 178 60 40 308
(3) 50 100 898 60 1108
(4) 70 20 10 706 806

Total 337 628 1038 826 2829

Note:
Ĝ1(1)

Ĝ2(1)

= 2.80,
Ĝ1(2)

Ĝ2(2)

= 0.79,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

(b) n = 2654

(1) (2) (3) (4) Total

(1) 687 80 10 5 782
(2) 5 178 5 12 200
(3) 5 25 898 13 941
(4) 10 8 7 706 731

Total 707 291 920 736 2654

Note:
Ĝ1(1)

Ĝ2(1)

= 4.75,
Ĝ1(2)

Ĝ2(2)

= 0.67,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

(b) n = 429

(1) (2) (3) (4) Total

(1) 68 80 10 5 163
(2) 5 17 5 12 39
(3) 5 25 89 13 132
(4) 10 8 7 70 95

Total 88 130 111 100 429

Note:
Ĝ1(1)

Ĝ2(1)

= 4.75,
Ĝ1(2)

Ĝ2(2)

= 0.67,
Ĝ1(3)

Ĝ2(3)

= 1.20 .

may be preferable to W (λ) for comparing the degree of departure from EMH

in several tables. It may seem, to many readers, that W (λ)/n (for a given λ)

is also a reasonable measure for representing the degree of departure from EMH.

However, it does not seem to us that W (λ)/n is a reasonable measure. For exam-

ple, consider the artificial data in Tables 5b and 5c. The values of W (λ)/n are,

for example, when λ = 0 (λ = 1), W (0)/n = 0.024 (W (1)/n = 0.022) for Table 5b,

and W (0)/n = 0.147 (W (1)/n = 0.138) for Table 5c. Therefore the value of W (λ)/n

is less for Table 5b than for Table 5c. On the other side, for any fixed λ (>−1),
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the value of Γ̂
(λ)
EM for Table 5b is theoretically identical to that for Table 5c (see

Table 7). In addition, Ĝ1(i)/Ĝ2(i), i = 1, 2, 3, for Table 5b is identical to that

for Table 5c (see Table 5). So it seems natural to conclude that the degree of

departure from EMH for Table 5b is equal to that for Table 5c. Therefore Γ̂
(λ)
EM

may also be preferable to W (λ)/n for comparing the degree of departure from

EMH in several tables.

Table 6: The values of W (λ) (with 2 degrees of freedom) for testing goodness-of-fit
of the EMH model, applied to Tables 5a, 5b and 5c.

Values of λ For Table 5a For Table 5b For Table 5c

−0.5 194.43 69.35 69.35
0 182.76 63.25 63.25
0.5 175.25 60.04 60.04
1.0 171.21 59.04 59.04
1.5 170.17 59.93 59.93
2.0 171.89 62.61 62.61
2.5 176.28 67.17 67.17

Table 7: The values of Γ̂
(λ)
EM applied to Tables 5a, 5b and 5c.

Values of λ For Table 5a For Table 5b For Table 5c

−0.5 0.034 0.076 0.076
0 0.057 0.125 0.125
0.5 0.071 0.153 0.153
1.0 0.078 0.167 0.167
1.5 0.080 0.171 0.171
2.0 0.078 0.167 0.167
2.5 0.074 0.159 0.159

Since the EMH model is expressed as equation (1.1), we are interested in

measuring how far
{

G∗
1(i)

}

and
{

G∗
2(i)

}

are distant from those with an EMH

structure when the EMH model does not hold. The measure Γ
(λ)
EM is a function

of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

. Since equation (1.1), it seems natural that the measure

is expressed as a function of
{

G∗
1(i)

}

and
{

G∗
2(i)

}

.

For the measure Γ
(λ)
EM, the analyst may be interested in which value of λ

is preferred for a given table. However, it seems difficult to discuss this. It seems

to be important and safe that for comparing the degrees of departure from EMH

in several tables, the analyst calculates the values of Γ̂
(λ)
EM for various values of λ

and discusses the degree of departure from EMH in terms of them (rather than

calculating Γ̂
(λ)
EM for only one specified value of λ).
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Table 8: Artificial data.

(a) n = 1895 (sample size)

374 602 170 64
18 255 139 71
4 23 42 55
2 6 17 53

(b) n = 5397

81 444 632 726
646 178 498 6
787 288 68 762
72 105 17 87

Consider the artificial data in Tables 8a and 8b. Then we see from Table 9

that the value of Γ̂
(0)
EM is less for Table 8a than for Table 8b, but the value of Γ̂

(1)
EM

is greater for Table 8a than for Table 8b. However, the differences are very slight

in these cases. So, for these cases, we may conclude (by using Γ̂
(λ)
EM) that the

departure from EMH for Table 8a is similar to that for Table 8b. But generally,

for the comparison between two tables, it would be possible to conclude for which

of two tables the departure from the EMH is greater if Γ̂
(λ)
EM (for every λ) is always

greater (or always less) for one table than for the other table.

Table 9: The values of Γ̂
(λ)
EM applied to Tables 8a and 8b.

Values of λ For Table 8a For Table 8b

−0.5∗ 0.040 0.042
0∗ 0.066 0.068
0.5∗ 0.081 0.082
1.0 0.089 0.088
1.5 0.091 0.090
2.0 0.089 0.088
2.5 0.084 0.084

∗ indicates that Γ̂
(λ)
EM is less for Table 8a than for Table 8b.

By the way, it is easily seen that the measure Γ
(0)
EM with equation (2.1) can

be expressed as

Γ
(0)
EM =

1

2 log 2
min
{Di}

[

I(0)
(

{

G∗
1(i)

}

;
{

Di

}

)

+ I(0)
(

{

G∗
2(i)

}

;
{

Di

}

)

]

,(5.1)

where
∑R−1

i=1 Di = 1 and Di > 0. Therefore we point out that Ci in Γ
(λ)
EM is the

value of Di such that the sum of two KL distances
(

i.e., the KL distance between



282 K. Yamamoto, Y. Furuya and S. Tomizawa

{

G∗
1(i)

}

and
{

Di

}

with an EMH structure and the KL distance between
{

G∗
2(i)

}

and
{

Di

})

is a minimum. [Note that the readers may also be interested in

equation (5.1) with I(0)(·; ·) replaced by the power-divergence I(λ)(·; ·); however,

it is difficult to obtain the value of Di such that the corresponding two power-

divergence is a minimum, and also difficult to obtain the maximum value of such

a measure.]

Finally, we observe that

(i) the measure should be applied to contingency tables with ordered

categories because it is not invariant under the same arbitrary per-

mutations of row and column categories except the reverse order,

(ii) Γ
(λ)
EM should be used when there is not a structure of EMH in square

tables,

(iii) Γ̂
(λ)
EM cannot be used for testing goodness-of-fit of the EMH model

(though W (λ) can be used),

and

(iv) the value of Γ
(1)
EM is theoretically equal to the value of Γ

(2)
EM.

APPENDIX

The power-divergence statistic for testing goodness-of-fit of the EMH model

is given by

W (λ) = 2n I(λ)
(

{

p̂ij

}

;
{

p̂ML
ij

}

)

for −∞< λ <∞ ,

where

I(λ)(·; ·) =
1

λ(λ+1)

R
∑

i=1

R
∑

j=1

p̂ij

[

(

p̂ij

p̂ML
ij

)λ

− 1

]

, p̂ij =
nij

n
,

and p̂ML
ij is the maximum likelihood estimate of pij under the EMH model, where

the values at λ =−1 and λ = 0 are taken to be the limit as λ→−1 and λ→ 0,

respectively. The number of degrees of freedom is R−2.

ACKNOWLEDGMENTS

The authors thank a referee and the associate editor for their helpful comments.



Measure of the EMH Model 283

REFERENCES

[1] Agresti, A. (1990). Categorical Data Analysis, Wiley, New York.

[2] Bhapkar, V.P. (1966). A note on the equivalence of two test criteria for hy-
potheses in categorical data, Journal of the American Statistical Association, 61,
228–235.

[3] Bishop, Y.M.M.; Fienberg, S.E. and Holland, P.W. (1975). Discrete
Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, Mas-
sachusetts.

[4] Cressie, N. and Read, T.R.C. (1984). Multinomial goodness-of-fit tests, Jour-
nal of the Royal Statistical Society, Series B, 46, 440–464.

[5] Patil, G.P. and Taillie, C. (1982). Diversity as a concept and its measure-
ment, Journal of the American Statistical Association, 77, 548–561.

[6] Read, T.R.C. and Cressie, N. (1988). Goodness-of-Fit Statistics for Discrete
Multivariate Data, Springer, New York.

[7] Stuart, A. (1955). A test for homogeneity of the marginal distributions in
a two-way classification, Biometrika, 42, 412–416.

[8] Tominaga, K. (1979). Nippon no Kaisou Kouzou (Japanese Hierarchical Struc-
ture), University of Tokyo Press, Tokyo (in Japanese).

[9] Tomizawa, S. (1984). Three kinds of decompositions for the conditional symme-
try model in a square contingency table, Journal of the Japan Statistical Society,
14, 35–42.

[10] Tomizawa, S. (1995a). A generalization of the marginal homogeneity model for
square contingency tables with ordered categories, Journal of Educational and
Behavioral Statistics, 20, 349–360.

[11] Tomizawa, S. (1995b). Measures of departure from marginal homogeneity for
contingency tables with nominal categories, Journal of the Royal Statistical
Society, Series D; The Statistician, 44, 425–439.

[12] Tomizawa, S. and Makii, T. (2001). Generalized measures of departure from
marginal homogeneity for contingency tables with nominal categories, Journal of
Statistical Research, 35, 1–24.

[13] Tomizawa, S.; Miyamoto, N. and Ashihara, N. (2003). Measure of depar-
ture from marginal homogeneity for square contingency tables having ordered
categories, Behaviormetrika, 30, 173–193.



REVSTAT – Statistical Journal

Volume 5, Number 3, November 2007, 285–304

A NOTE ON SECOND ORDER CONDITIONS IN

EXTREME VALUE THEORY: LINKING GENERAL

AND HEAVY TAIL CONDITIONS

Authors: M. Isabel Fraga Alves

– CEAUL, DEIO, Faculty of Science, University of Lisbon,
Portugal
isabel.alves@fc.ul.pt

M. Ivette Gomes

– CEAUL, DEIO, Faculty of Science, University of Lisbon,
Portugal
ivette.gomes@fc.ul.pt

Laurens de Haan

– Department of Economics, Erasmus University Rotterdam,
The Netherlands
ldhaan@few.eur.nl
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1. INTRODUCTION

Let X1, X2, ..., Xn be an independent, identically distributed (i.i.d.) sample

from an unknown distribution function (d.f.) F . It is well-known from Gnedenko’s

seminal work (Gnedenko, 1943) that if there exist normalizing constants an > 0,

bn ∈ R and a non-degenerate d.f. G such that, for all x,

lim
n→∞

P
{

a−1
n

(
max(X1, ..., Xn) − bn

)
≤ x

}
= G(x) ,

G is, up to scale and location, an Extreme Value d.f., dependent on a shape

parameter γ ∈ R, and given by

(1.1) Gγ(x) :=





exp
(
−(1+ γ x)−1/γ

)
, 1+ γ x > 0 if γ 6= 0

exp
(
− exp(−x)

)
, x ∈ R if γ = 0 .

We then say that F is in the domain of attraction for maxima of the d.f. Gγ

in (1.1) and write F ∈ DM(Gγ).

2. FIRST AND SECOND ORDER CONDITIONS

2.1. A general tail (γ ∈ R)

The following extended regular variation property (de Haan, 1984), denoted

ERVγ , is a well-known necessary and sufficient condition for F ∈ D
M

(Gγ):

(2.1) lim
t→∞

U(tx) − U(t)

a(t)
=





xγ −1

γ
if γ 6= 0

lnx if γ = 0 ,

for every x > 0 and some positive measurable function a. For the case γ > 0

we see easily from (2.9) that we can choose a(t) = γ U(t).

Apart from the first order condition in (2.1), we shall consider the most

common second order condition, specifying the rate of convergence in (2.1).

We shall assume the existence of a function A(t), possibly not changing in sign

and tending to zero as t → ∞, such that

(2.2) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) :=

1

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)

for all x > 0, where ρ ≤ 0 is also a second order parameter controlling the speed

of convergence of maximum values, linearly normalized, towards the limit law in
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(1.1), for a general γ ∈ R. We then say that the function U is of second order

extended regular variation, and use the notation U ∈ 2ERVγ,ρ. In (2.2), the cases

γ = 0 and ρ = 0 are obtained by continuity arguments. More specifically, we can

write

Hγ,ρ(x) =





1

ρ

(
xρ−1

ρ
− lnx

)
if γ = 0, ρ 6= 0

1

γ

(
xγ lnx −

xγ −1

γ

)
if γ 6= 0, ρ = 0

ln2 x

2
if γ = ρ = 0 .

We remark that |A| ∈ RVρ. For a large variety of models we have ρ < 0 thus

making sensible to simplify (2.2). We now state:

Proposition 2.1 (Gomes and Neves, 2007). Let us assume that there exist

a(·) and A(·) such that (2.2) holds, with ρ < 0. Then, there exist a0(·) and A0(·)

such that

(2.3) lim
t→∞

U(tx)−U(t)
a0(t) − xγ−1

γ

A0(t)
=

xγ+ρ−1

γ +ρ

with

(2.4) A0(t) = A(t)/ρ , a0(t) = a(t)
(
1−A0(t)

)
.

From Theorem A in Draisma de Haan, Peng and Pereira (1999), with slight

additions in Ferreira, de Haan and Peng (2003) and in de Haan and Ferreira

(2006), we state the following:

Theorem 2.1. Suppose the right endpoint xF := U(∞) > 0 and there

exist a(·) and A(·) such that (2.2) holds, with ρ ≤ 0, γ 6= ρ. Define

(2.5) A(t) :=

(
a(t)

U(t)
− γ+

)
, γ+ := max(0, γ) .

Then for γ +ρ < 0

(2.6) l := lim
t→∞

(
U(t) −

a(t)

γ

)
exists and is finite

and the following holds

A(t) −→
t→∞

0 and
A(t)

A(t)
−→
t→∞

c ,

with

(2.7) c =





0 if γ < ρ≤ 0
γ

γ +ρ
if 0≤−ρ < γ or (0 < γ <−ρ and l = 0)

±∞ if γ +ρ = 0 or (0 < γ <−ρ and l 6= 0) or ρ < γ ≤ 0 .
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2.1.1. Heavy tails (γ > 0)

The most typical first order condition for heavy tails, i.e., for the case γ > 0

in (1.1), comes also from Gnedenko (1943). For any real τ , let us denote by RVτ

the class of regularly varying functions with an index of regular variation τ , i.e.,

positive measurable functions g such that limt→∞ g(tx)/g(t) = xτ for all x > 0.

Then, for γ > 0,

(2.8) F ∈ DM(Gγ) ⇐⇒ F = 1−F ∈ RV−1/γ .

Equivalently, and with U standing for a quantile type function associated to F

and defined by U(t) :=
(
1/(1−F )

)←
(t) = inf

{
x : F (x) ≥ 1− 1

t

}
, de Haan (1970)

established that

(2.9) F ∈ DM(Gγ) ⇐⇒ U ∈ RVγ .

To measure the rate of convergence in (2.9), it is then sensible to consider

one of the following conditions:

lim
t→∞

U(tx)
U(t) − xγ

Ã(t)
= xγ xeρ−1

ρ̃
⇐⇒

(2.10)

⇐⇒ lim
t→∞

lnU(tx) − lnU(t) − γ lnx

Ã(t)
=

xeρ−1

ρ̃
,

for all x > 0, where ρ̃ ≤ 0 is a second order parameter controlling the speed of

convergence of maximum values, linearly normalized, towards the limit law in

(1.1) pertaining to γ > 0. Under these circumstances, we say that the function

U is of regular variation of second order, and use the notation U ∈ 2RV (γ, ρ̃).

We remark that |Ã| ∈ RVeρ.
3. THE LINK BETWEEN THE SECOND ORDER CONDITION

FOR A HEAVY AND FOR A GENERAL TAIL

The following results hold with any measurable (eventually) positive func-

tion U .

Lemma 3.1. If (2.1) holds for some γ ∈ R, then the auxiliary function

a(t) in (2.1) is of regular variation at infinity with index γ, i.e., a ∈ RVγ and

lim
t→∞

a(t)

U(t)
= γ+ := max(0, γ) .
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Moreover, if γ > 0, both functions a and U belong to RVγ ; if γ < 0, then xF =

U(∞) < ∞, limt→∞ a(t)/
(
xF−U(t)

)
= −γ and xF−U ∈ RVγ .

Furthermore, with γ
−

:= min(γ, 0), and provided that U(∞) > 0,

(3.1) lim
t→∞

lnU(tx) − lnU(t)

a(t)/U(t)
=

xγ
− −1

γ
−

, for every x > 0 .

Proof: The first part of the lemma comes from Theorems 1.9 and 1.10 in

Geluk and de Haan (1987). The limit in (3.1) follows easily when we distinguish

between the cases γ > 0 and γ ≤ 0.

For the derivation of asymptotic properties of semi-parametric estimators

of γ, a topic out of the scope of this paper, it is important to know, for all x > 0,

not only the rate of convergence of lnU(tx) − lnU(t), but also of U(tx)/U(t)

and of U(t)/U(tx), as t→∞. We shall now see in more detail for the different

relevant subspaces of the semi-plane (γ, ρ) ∈ R×R
−

0 , the limiting behaviour, as

t→∞, of U(tx)/U(t) and U(t)/U(tx). The limit behavior of lnU(tx) − lnU(t)

has been analyzed e.g. in Appendix B of de Haan and Ferreira (2006).

Lemma 3.2. Assume that (2.2) holds, i.e., U ∈ 2ERVγ,ρ. Then, we may

write

(3.2)
U(tx)

U(t)
= xγ+ + A(t)

[
xγ −1

γ
+ A(t) a(x, t; γ, ρ)

(
1+ o(1)

)]
,

where

a(x, t; γ, ρ) =





ln2 x

2
if γ = ρ = 0

1

γ

(
xγ lnx −

xγ −1

γ

)
if γ < ρ = 0

1

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)
if γ ≤ 0, ρ < 0

γ

ρ A(t)

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)
if γ > 0, ρ < 0

1

A(t)

(
xγ lnx −

xγ −1

γ

)
if ρ = 0 < γ .

Proof: Directly from (2.2), we get

U(tx)

U(t)
− 1 =

a(t)

U(t)

{
xγ −1

γ
+

A(t)

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)(
1+ o(1)

)
}

.
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With the notation in (2.5), i.e., a(t)/U(t) = γ+ + A(t), we may write

U(tx)

U(t)
− 1 = γ+

(
xγ −1

γ

)
+ A(t)

(
xγ −1

γ

)

+
A(t)

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)(
γ+ + A(t)

) (
1+ o(1)

)

and (3.2) follows for any ρ < 0.

If ρ = 0 and γ 6= 0, then, also directly from (2.2), and by continuity argu-

ments,

U(tx)

U(t)
− 1 =

a(t)

U(t)

{
xγ −1

γ
+

A(t)

γ

(
xγ lnx −

xγ −1

γ

)(
1+ o(1)

)
}

,

and things work as before, with A(t)/ρ replaced by A(t)/γ and xγ+ρ−1
γ+ρ replaced

by xγ lnx. The case γ = ρ = 0 comes again directly from (2.2) and by continuity

arguments.

Theorem 3.1. Let U ∈ ERVγ,ρ as introduced in (2.2). Let c be the limit

in (2.7).

(i) If γ > 0,

(3.3) lim
t→∞

U(t)
U(tx) − x−γ

Ã(t)
= Kγ,ρ(x) :=





−x−γ xρ−1

ρ
if c =

γ

γ +ρ

−x−γ x−γ −1

−γ
if c = ±∞ ,

for all x > 0, where, with A(t) given in (2.5),

(3.4) Ã(t) :=





γ A(t)

γ +ρ
if c =

γ

γ +ρ

A(t) if c = ±∞ .

Necessarily,
∣∣Ã
∣∣ ∈ RVeρ, with

(3.5) ρ̃ =





ρ if c =
γ

γ +ρ

−γ if c = ±∞ .

(ii) If γ ≤ 0, we need further to assume that γ 6= ρ. Then,

(3.6) lim
t→∞

U(t)
a∗(t)

(
1− U(t)

U(tx)

)
− xγ−1

γ

A∗(t)
= K∗γ,ρ(x) =





xγ lnx if γ < ρ = 0

xγ+ρ−1

γ +ρ
if γ < ρ < 0

x2γ −1

2 γ
if ρ < γ < 0

ln2 x if ρ < γ = 0 ,
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where

(3.7) A∗(t) =





A(t)

γ
if γ < ρ = 0

A(t)

ρ
if γ < ρ < 0

−
2 A(t)

γ
if ρ < γ < 0

−A(t) if ρ < γ = 0

and

(3.8) a∗(t) =

{
a(t) if ρ < γ = 0

a(t)
(
1−A∗(t)

)
otherwise .

Necessarily, |A∗| ∈ RV
ρ∗

, with

(3.9) ρ∗ =

{
ρ if γ < ρ≤ 0

γ if ρ < γ ≤ 0 .

Proof: We shall consider the cases (i) and (ii) separately.

Case (i): If γ > 0, ρ < 0 and (2.2) holds, i.e., U ∈ 2ERVγ,ρ, we have from

(3.2),

U(tx)

U(t)
− xγ = A(t)

(
xγ −1

γ

)
+

γ A(t)

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)
+ o
(
A(t)

)
.

If c = ±∞, then A(t) = o
(
A(t)

)
,

U(tx)

U(t)
− xγ = xγ

(
x−γ−1

−γ

)
A(t) + o

(
A(t)

)
and

U(tx)
U(t) −xγ

A(t)
−→
t→∞

xγ

(
x−γ−1

−γ

)
.

If c = γ/(γ +ρ), we get A(t) = γ A(t)
γ+ρ

(
1+ o(1)

)
. Since in this region γ 6=−ρ,

we may further write

U(tx)

U(t)
− xγ = xγ

(
A(t)

(
x−γ −1

−γ

)
+

γ A(t)

γ +ρ

(
xρ−1

ρ
−

x−γ −1

−γ

)
+ o
(
A(t)

)
)

=
γ A(t)

γ +ρ
xγ

(
xρ−1

ρ

)
+ o
(
A(t)

)
.

Consequently,

(3.10) lim
t→∞

U(tx)
U(t) − xγ

Ã(t)
=





xγ xρ−1

ρ
if c =

γ

γ +ρ

xγ x−γ −1

−γ
if c = ±∞

= −x2γ Kγ,ρ(x) ,
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with Kγ,ρ(x) and Ã(t) defined in (3.3) and (3.4), respectively. Finally, (3.10),

together with the fact that

U(tx)

U(t)
− xγ = −xγ U(tx)

U(t)

(
U(t)

U(tx)
− x−γ

)
= −x2γ

(
U(t)

U(tx)
− x−γ

)(
1+ o(1)

)
,

leads us to the limit in (3.3), with Ã(t) and ρ̃ given in (3.4) and (3.5), respectively.

If γ > 0 and ρ = 0, we get, again from (3.2),

U(tx)

U(t)
− xγ = A(t)

(
xγ −1

γ

)
+ A(t)

(
xγ lnx −

xγ −1

γ

)
+ o
(
A(t)

)

= xγ

(
A(t)

(
x−γ −1

−γ

)
+ A(t)

(
lnx −

x−γ −1

−γ

)
+ o
(
A(t)

)
)

.

But if γ > 0 and ρ = 0, then c = γ/(γ +ρ) = 1, A(t) = A(t)+o
(
A(t)

)
, and

U(tx)

U(t)
− xγ = A(t) xγ lnx + o

(
A(t)

)
.

Consequently, (3.3) holds, with Ã(t) = A(t) ≡ γ A(t)/(γ +ρ) and ρ̃ = ρ = 0.

Case (ii): If γ < ρ = 0, we get, again from (3.2),

U(t)

a(t)

(
1 −

U(t)

U(tx)

)
=

xγ −1

γ
+

A(t)

γ

(
xγ lnx −

xγ −1

γ

)
+ o
(
A(t)

)

=
xγ −1

γ

(
1−

A(t)

γ

)
+

A(t)

γ
xγ lnx + o

(
A(t)

)

and with a∗(t) = a(t)
(
1− A(t)

γ

)
,

U(t)

a∗(t)

(
1−

U(t)

U(tx)

)
=

xγ −1

γ
+

A(t)

γ
xγ lnx + o

(
A(t)

)
.

Consequently, (3.6), (3.7), (3.8) and (3.9) follow in this region of the (γ, ρ)-plane.

If γ < ρ < 0, a(t)/U(t) ≡ A(t) = o(A(t)), and again from (3.2),

U(t)

a(t)

(
1−

U(t)

U(tx)

)
=

xγ −1

γ
+

A(t)

ρ

(
xγ+ρ−1

γ +ρ
−

xγ −1

γ

)
+ o
(
A(t)

)

=
xγ −1

γ

(
1−

A(t)

ρ

)
+

A(t)

ρ

(
xγ+ρ−1

γ +ρ

)
+ o
(
A(t)

)
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and with a∗(t) = a(t)
(
1− A(t)

ρ

)
,

U(t)

a∗(t)

(
1−

U(t)

U(tx)

)
=

xγ −1

γ
+

A(t)

ρ

(
xγ+ρ−1

γ +ρ

)
+ o
(
A(t)

)
,

and the results in the proposition hold.

If ρ < γ ≤ 0, A(t) = o
(
A(t)

)
, and also from (3.2), we get

(3.11)
U(t)

U(tx)
= 1 − A(t)

(
xγ −1

γ

)
+ A

2
(t)

(
xγ −1

γ

)2 (
1+ o(1)

)
.

Consequently, for γ < 0, since
(

xγ−1
γ

)2
= 2

γ

(
x2γ−1

2γ − xγ−1
γ

)

U(t)

a(t)

(
1−

U(t)

U(tx)

)
=

xγ −1

γ
−

2 A(t)

γ

(
x2γ −1

2 γ
−

xγ −1

γ

)(
1+ o(1)

)

=
xγ −1

γ

(
1+

2 A(t)

γ

)
−

2 A(t)

γ

(
x2γ −1

2 γ

)(
1+ o(1)

)
,

and with a∗(t) = a(t)
(
1+ 2 A(t)

γ

)
,

U(t)

a∗(t)

(
1−

U(t)

U(tx)

)
=

xγ −1

γ
−

2 A(t)

γ

(
x2γ −1

2 γ

)(
1+ o(1)

)
,

and the results in the proposition follow.

If ρ < γ = 0, then from (3.11), we get

U(t)

a(t)

(
1−

U(t)

U(tx)

)
= lnx − A(t) ln2x

(
1+ o(1)

)
,

and the result in the proposition follows as well.

Corollary 3.1. Under the conditions and notations of Proposition 2.1,

and for γ > 0,

(3.12) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

Ã(t)
= K̃γ,ρ(x) :=





xρ−1

ρ
if c =

γ

γ +ρ

x−γ−1

−γ
if c = ±∞ ,

for every x > 0, and with Ã provided in (3.4).

Proof: The proof follows immediately from relation (3.3).
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Remark 3.1. Note that the second order condition in (3.12) is the usual

second order condition for heavy tails, i.e., the second order condition provided

in (2.10).

Remark 3.2. Note next that the region
{
(γ, ρ) : 0 < γ <−ρ and l 6= 0

}

in the (γ, ρ)-plane, jointly with the line ρ = −γ, are transformed in the line

ρ̃ = −γ in the (γ, ρ̃)-plane. There we have c = ±∞. Outside that line we have

c = γ/(γ + ρ̃) = γ/(γ +ρ).

Remark 3.3. For γ > 0, the rate of convergence in (3.1), i.e., the rate of

convergence of
(
lnU(tx) − lnU(t)

)
/
(
a(t)/U(t)

)
− lnx towards zero, is measured

by Ã(t) in (3.4) only if ρ 6= 0. If ρ = 0, the rate of convergence in (3.1) can be of

a smaller order than Ã(t) as may be seen in Example 4.1.

For γ≤0, Lemma 3.2 gives rise to (3.1) in a similar way as it yields Corollary 3.1.

4. EXAMPLES AND SOME ADDITIONAL COMMENTS

Example 4.1. (A model with ρ = ρ̃ = 0 and γ > 0). Consider the model

U(t) = tγ (1+ ln t). Then

U(tx) − U(t) = γ tγ (ln t +1)

(
xγ −1

γ
+

xγ lnx

γ (ln t +1)

)
, x > 0 ,

i.e., ρ = 0 in (2.2), since

U(tx)−U(t)
γ tγ(ln t+1) −

xγ−1
γ

1/
(
γ (ln t +1)

) = xγ lnx .

Notice that Hγ,0(x) = γ−1
(
xγ lnx− (xγ−1)/γ

)
, meaning that (2.2) is equivalent

to
U(tx)−U(t)

a(t) (1−A(t)/γ) −
xγ−1

γ

A(t)/γ
−→
t→∞

xγ lnx ,

as stated in (2.3). Consequently we should choose

A(t) =
1

ln t +1
∈ RV0 , a(t)

(
1−

1

γ (ln t +1)

)
= γ tγ (ln t +1) .

Theorem 2.1 yields c = 1 while Theorem 3.1 determines ρ̃ = 0 and Ã(t) = A(t).

Indeed, we have

lnU(tx) − lnU(t) − γ lnx =
lnx

ln t +1
+

ln2 x

2(ln t +1)2
+ o

(
1

ln2 t

)
,(4.1)
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as t → ∞, thus making suitable to take A(t) = (ln t +1)−1 in the left hand side

of

lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
= lnx , x > 0

and (3.12) holds in fact with Ã(t) = A(t). Furthermore, after a few manipulations

of (4.1), we get
ln U(tx)− ln U(t)

γ
�
1+ 1

γ(ln t+1)

� − lnx

1
2 ln2 t

−→
t→∞

ln2x .

Therefore, the rate of convergence in (3.1) is of the order of 1/ ln2 t = o
(
A(t)

)
,

as mentioned in Remark 3.3.

Example 4.2. For the Fréchet model, F (x) = exp
(
−x−1/γ

)
, x≥ 0 (γ > 0),

we get successively,

U(t) =

(
− ln

(
1−

1

t

))−γ

= tγ
(

1 +
1

2 t
+

1

3 t2
+ o
(
t−2
))−γ

= tγ
(

1 −
γ

2 t
+

γ (3 γ − 5)

24 t2
+ o
(
t−2
))

.

Hence,

U(tx) − U(t) =





γ tγ
(

xγ −1

γ
−

γ−1

2 t

(
xγ−1−1

γ−1

)
+ o
(
t−1
))

if γ 6= 1

t

(
(x−1) −

1

12 t2
(x−1−1) + o

(
t−2
))

if γ = 1 .

If we make correspondence with condition (2.3), we see that ρ =

{
−1 if γ 6= 1
−2 if γ = 1 .

Likewise, (2.4) can be set as

a0(t) = γ tγ and A0(t) =





1− γ

2 t
if γ 6= 1

1

12 t2
if γ = 1 .

According to Proposition 2.1, if we choose

A(t) = ρA0(t) =





γ −1

2 t
if γ 6= 1

−
1

6 t2
if γ = 1
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and

a(t) = γ tγ/
(
1− A0(t)

)
=





2 γ tγ+1

2 t + γ − 1
if γ 6= 1

12 t3

12 t2 − 1
if γ = 1 ,

we get the limiting result in (2.2).

We will derive that (3.12) holds for Ã(t) = γ/(2 t), with ρ̃ = −1 6= ρ = −2

for γ = 1, and ρ̃ = −1 = ρ for γ 6= 1. As seen before regarding the limit in (2.2),

we have whenever γ 6= 1,

U(t) = tγ
(
1−

γ

2 t
+

γ (3 γ − 5)

24 t2
+ o
(
t−2
))

;

a(t) = 2 γ tγ+1/(2 t+γ +ρ) ;

A(t) = −ρ(γ +ρ)/(2 t) .

Then,

A(t) =
a(t)

U(t)
− γ =

2 γ t

2 t + γ + ρ

(
1 +

γ

2 t
−

γ (3 γ − 5)

24 t2
+

γ2

4 t2
+ o
(
t−2
))

− γ

=
2 γ t (2 t + γ)

2 t (2 t + γ + ρ)
− γ −

2 γ2 t (9 γ − 5)

24 t2 (2 t + γ + ρ)
+ o
(
t−2
)

= −
γ ρ

2 t + γ + ρ

(
1 +

γ (9 γ − 5)

12 ρ t
+ o
(
t−1
))

−→
t→∞

0 ,

and

A(t)

A(t)
=

2 γ t

(γ +ρ) (2 t+γ +ρ)

(
1 +

γ (9 γ − 5)

12 t
+ o
(
t−1
))

−→
t→∞

γ

γ +ρ
.

Let us think on

U(t)−
a(t)

γ
= −

U(t)

γ
A(t)

= tγ
(

2ρ t − γ(γ+ρ)

2 t (2 t+γ +ρ)
+

γ (3γ−5)

24 t2
+ o
(
t−2
))

−→
t→∞

0 =: l, if 0<γ <1 .

Hence, we conclude that c = γ/(γ +ρ), for γ 6= 1.

If we consider the case γ = 1,

a(t)

U(t)
=

12 t2

12 t2 − 1

(
1 +

1

2 t
+

1

12 t2
+

1

4 t2
+ o
(
t−2
))

= 1 +
1

2 t
+

5

12 t2
+ o
(
t−2
)

.
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Consequently, and as was expected from Theorem 2.1,

A(t) =
a(t)

U(t)
− 1 =

1

2 t

(
1 +

5

6 t
+ o
(
t−1
))

−→
t→∞

0 ,

A(t)

A(t)
= −3 t

(
1 +

5

6 t
+ o
(
t−1
))

−→
t→∞

−∞, i.e., c = −∞

and

U(t) − a(t) = −
1

2
−

t

12 t2 −1
−

1

12 t
+ o
(
t−1
)

−→
t→∞

−
1

2
= l .

Since this limit l is different from zero and γ = 1 < −ρ = 2, we indeed expected

to have c = ±∞, as actually happens. Now, from Theorem 3.1, ρ̃ = −γ = −1

and we may choose

Ã(t) = A(t) =
1

2 t

(
1 +

5

6 t
+ o
(
t−1
))

,

or more simply Ã(t) = 1/(2 t). Indeed, and as mentioned before for γ = 1, (3.12)

holds true with Ã(t) = γ/(2 t) and ρ̃ = −1 6= ρ = −2.

Example 4.3. Consider the extreme value model with d.f. Gγ(x) =

exp
(
−(1+ γ x)−1/γ

)
, 1 + γ x > 0, γ ∈ R. For this model,

U(t) =

(
− ln

(
1− 1

t

))−γ
− 1

γ

=
tγ

γ

(
1 − t−γ −

γ

2 t
+

γ (3 γ − 5)

24 t2
+ o
(
t−2
))

=





−
1

γ

(
1 − tγ +

γ tγ−1

2
+ o
(
tγ−1

))
if γ < 0

ln t −
1

2 t
+ o
(
t−1
)

if γ = 0

tγ

γ

(
1 − t−γ −

γ

2 t
+ o
(
t−1
))

if 0 < γ < 1

tγ

γ

(
1 −

3

2 t
−

1

12 t2
+ o
(
t−2
))

if γ = 1

tγ

γ

(
1 −

γ

2 t
+ o
(
t−1
))

if γ > 1 .

Then

U(tx) − U(t) =





tγ
(

xγ −1

γ
−

γ −1

2 t

(
xγ−1−1

γ −1

)
+ o
(
t−1
))

if γ 6= 1

tγ
(

xγ −1

γ
+

γ − 2

12 t2

(
xγ−2−1

γ − 2

)
+ o
(
t−2
))

if γ = 1 ,
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i.e., we may choose, in (2.3),

a0(t) = tγ and A0(t) =





−
γ −1

2 t
if γ 6= 1

−
1

12 t2
if γ = 1

, with ρ =

{
−1 if γ 6= 1

−2 if γ = 1 .

Since

1 − A0(t) =





2 t + γ − 1

2 t
if γ 6= 1

12 t2 −1

12 t2
if γ = 1 ,

we get, from (2.4),

a(t) =
a0(t)

1−A0(t)
=





2 tγ+1

2 t + γ − 1
if γ 6= 1

12 t3

12 t2 − 1
if γ = 1

and

A(t) = ρ A0(t) =





γ −1

2 t
if γ 6= 1

1

6 t2
if γ = 1 .

Then

a(t)

U(t)
=





−γ tγ
(
1 +

(
1− γ

2 t
+ tγ

)(
1+ o(1)

))
if γ < 0

1

ln t

(
1 +

1

2 t
+ o
(
t−1
))

if γ = 0

γ
(
1 + t−γ + o

(
t−γ
))

if 0 < γ < 1

1 +
3

2 t
+ o
(
t−1
)

if γ = 1

γ

(
1 +

1

2 t
+ o
(
t−1
))

if γ > 1 ,

and consequently,

A(t) =
a(t)

U(t)
− γ+ =





−γ tγ
(
1 + o(1)

)
if γ < 0

1

ln t

(
1 + o(1)

)
if γ = 0

γ t−γ + o
(
t−γ
)

if 0 < γ < 1

3

2 t
+ o
(
t−1
)

if γ = 1

γ

2 t
+ o
(
t−1
)

if γ > 1 .
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Then

A(t)

A(t)
=





−
2 γ tγ+1

γ −1

(
1 + o(1)

)
if γ < 0

−
2 t

ln t

(
1 + o(1)

)
if γ = 0

2 γ

γ − 1
t1−γ

(
1 + o(1)

)
if 0 < γ < 1

−9 t
(
1 + o(1)

)
if γ = 1

γ

γ −1

(
1 + o(1)

)
if γ > 1

−→
t→∞

−→
t→∞





0 if γ <−1

−∞ if −1 < γ ≤ 1

γ

γ −1
=

γ

γ + ρ
if γ > 1

=: c .

Note that for γ = ρ = −1 we get a finite limit A(t)/A(t) −→
t→∞

−1 and different

from γ/(γ +ρ) = 1/2.

Let us now compute for 0 < γ <−ρ,

U(t) −
a(t)

γ
=





tγ

γ

(
−t−γ + o

(
t−γ
))

if 0 < γ < 1

t

(
−

3

2 t
+ o
(
t−1
))

if γ = 1

−→
t→∞

−→
t→∞





−
1

γ
if 0 < γ < 1

−
3

2
if γ = 1

=: l ,

in agreement with Theorem 2.1. Note however that l 6= 0 for all 0 < γ <−ρ

and c = ±∞ for all region 0 < γ <−ρ.

On another side, for heavy tails, i.e., for γ > 0,

lnU(tx) − lnU(t) − γ lnx

Ã(t)
−→
t→∞

xeρ−1

ρ̃
, ρ̃ =

{
−γ if 0 < γ ≤ 1

ρ = −1 if γ > 1 ,

Ã(t) =





γ t−γ if 0 < γ < 1

3

2 t
if γ = 1

γ

2 t
if γ > 1

= A(t)
(
1 + o(1)

)
,

now in agreement with the results in Corollary 3.1.
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Example 4.4. The most common heavy-tailed models with ρ̃ = −γ and

0 < γ <−ρ (then necessarily with l 6= 0), are such that

U(t) = C tγ
(
1 + A t−γ + B t−2γ + o

(
t−2γ

))
, A, B 6= 0, C > 0 .

For these models,

U(tx) − U(t) = C γ tγ
(

xγ −1

γ
− B t−2γ

(
x−γ −1

−γ

)
+ o
(
t−2γ

))
,

and
U(tx)−U(t)

C γ tγ − xγ−1
γ

−B t−2γ
−→
t→∞

x−γ −1

−γ
,

i.e., ρ + γ = −γ, or equivalently, ρ = −2 γ. Then, (2.2) holds, provided that we

choose

a(t) =
C γ tγ

1+ B t−2γ
, A(t) = 2B γ t−2γ

and
a(t)

U(t)
= γ

(
1 − A t−γ −

(
2 B−A2

)
t−2γ + o

(
t−2γ

))
.

Consequently, with A(t), l and c provided in (2.5), (2.6) and (2.7), respectively,

A(t) = −A γ t−γ
(
1+ O(t−γ)

)
,

A(t)

A(t)
= −

A

2 B t−γ

(
1+ O(t−γ)

)
−→
t→∞

±∞ ,

i.e., c = ±∞ and

U(t) −
a(t)

γ
= C tγ

(
A t−γ + 2B t−2γ + o

(
t−2γ

))
−→
t→∞

AC 6= 0 ,

i.e., l = AC 6= 0, as mentioned at the very beginning of this example. Indeed,

we could also have written

U(t) = l + C tγ
(
1 + B t−2γ + o

(
t−2γ

))
, as t → ∞ .

5. THE SECOND ORDER CONDITION FOR A GENERAL TAIL,

HEAVY TAIL AND A THIRD ORDER FRAMEWORK

Note that for heavy-tailed models, the second order condition (2.2) implies

a third order behaviour of the function lnU(t), whenever we are in the region

0 < γ ≤−ρ, and l 6= 0, a region where A(t) = o
(
A(t)

)
. Also, since

∣∣A
∣∣ ∈ RV−γ ,

|A| ∈RVρ and A
2
∈RV−2γ , then A dominates A

2
if ρ >−2 γ, but A

2
dominates A

if ρ <−2 γ. From the Proof of Theorem 3.1, Case (i), the third order behaviour

of lnU(t) may be written as

lim
t→∞

ln U(tx)− ln U(t)− γ ln x

A(t)
− x−γ−1

−γ

B̃(t)
= Heρ,eη(x) ,
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where H is defined in (2.2),

B̃(t) :=





−A(t) if 0 < γ <−
ρ

2

γ
A(t)

A(t)
if −

ρ

2
< γ <−ρ

and the second and third order parameters ρ̃ and η̃, respectively, are given by

ρ̃ = −γ , η̃ =





−γ if 0 < γ <−
ρ

2
γ +ρ if −

ρ

2
< γ <−ρ .

Note that in the region −ρ/2 < γ <−ρ we get ρ̃ 6= η̃.

Remark 5.1. For the case γ = −ρ/2, excluded from this note, everything

depends on the relative behaviour of A and A
2
, both regularly varying functions

with the same index of regular variation ρ.

Note also that the situation η̃ = ρ̃ is the one that most often happens in

practice, for standard heavy-tailed models like Fréchet, Burr, the Generalized

Pareto and Student’s t d.f.’s. For these d.f.’s, (2.2) holds with ρ =−2 γ. However,

if we induce a shift l 6= 0 in the above mentioned models, this relation between γ

and ρ no longer exists and we may cover all region 0 < γ <−ρ.

Finally, we mention that for the extreme value model with d.f. Gγ , we get

ρ = −1 , ρ̃ = −γ and η̃ =

{
−γ if 0≤ γ ≤ 1/2

γ −1 if 1/2 < γ < 1 .

For more details on the way the third order framework may be used in Statistics of

Extremes, see, for heavy tails, Gomes, de Haan and Peng (2002) and Fraga Alves,

Gomes and de Haan (2003a), papers dealing with the estimation of the second

order parameter ρ, and Gomes, Caeiro and Figueiredo (2004), a paper dealing

with reduced bias extreme value index estimation. For details on the general third

order framework, see Fraga Alves, de Haan and Lin (2003b, Appendix; 2006).

As a final remark, we would like to emphasise the importance of all these

conditions in Statistics of Extremes. The first order conditions in (2.1), (2.8)

and (2.9), together with additional light conditions on k, the number of top order

statistics used in the estimation of a first order parameter, enable us to guarantee

consistency of semi-parametric estimators of such a parameter. The primary first

order parameter is the extreme value index γ, but we can refer other relevant

parameters of extreme events, like high quantiles, return periods or probabilities

of exceedances of high levels, among others. To obtain a Central Limit Theorem

for these estimators, or consistency of any estimator of a second order parameter,

like the shape second order parameters ρ or ρ̃, discussed in this paper, it is

convenient to assume a second order condition, like the ones in (2.2) and (2.10).
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For the derivation of an asymptotic non-degenerate behaviour of estimators of

second order parameters, we further need to assume a third order condition,

ruling the rate of convergence in (2.2) or in (2.10). Such a type of condition

is also quite useful for the study of any second-order reduced-bias estimators,

particularly if we want to have information on the bias of such estimators. For

details on this type of extreme value index estimators and the importance of

third order conditions see, for instance, the most recent papers on the subject

(Caeiro, Gomes and Pestana, 2005; Gomes, de Haan and Henriques Rodrigues,

2007b; Gomes, Martins and Neves, 2007c). In these papers, the adequate external

estimation of second order parameters leads to reduced-bias estimators with the

same asymptotic variance as the (biased) classical estimator for heavy tails, the

Hill estimator (Hill, 1975). For overviews on second-order reduced-bias estimation

see Reiss and Thomas (Chapter 6) and Gomes, Canto e Castro, Fraga Alves and

Pestana (2007a).
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