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Abstract:

e Let (U, V) be a random vector following a bivariate extreme value distribution (EVD)
with reverse exponential margins. It is known that the excess distribution F.(t) =
P(U+V > ct | U+V > c) of U+V converges to F(t)=1? as the threshold ¢ increases
if U,V are independent, and to F(t) =t, t € [0, 1], elsewhere. We investigate the limit
of the excess distribution of aU+ bV in case of an EVD with arbitrary margins and
with arbitrary scale parameters a,b > 0. It turns out that the limiting excess df may
have a different behavior. For Fréchet margins, independence of U,V does not affect
the limit excess distribution, whereas for Gumbel and reverse Weibull margins it does.
Unless for Gumbel margins, the limit excess distribution is independent of a, b.
Interpreting a, b as weights and U, V as risks, aU+ bV can be viewed as a (short) linear
portfolio. The fact that the limiting excess distribution of aU+ bV does not depend
on a,b, unless for Gumbel margins, implies that risk measures such as the expected
shortfall E(aU+ bV | aU+ bV < ¢) might fail for multivariate extreme value models.

Key-Words:

e univariate extreme value distribution; multivariate extreme value distribution; sums
of random variables; excess distribution; Pickands dependence function; linear port-
folio; risk measure; expected shortfall.
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1. INTRODUCTION

Let (X,Y) be a random vector (rv), whose distribution function (df) is a
bivariate extreme value df (EVD) G with reverse exponential margins, i.e., G is
max-stable

(2 4) =Gley),  wy<0, neN,
n'n
and satisfies

G(z,0) = G(0,z) = P(X<z)=P(Y<z)=exp(z) , x<0.

It is well-known that G' can be represented as

(1) 6oy = e+ D(1)). ww<o,

where D: [0,1] — [1/2,1] is a Pickands dependence function; see, for example,
Sections 4.3, 6.1, 6.2 in Falk et al. (2004). A Pickands dependence function is
characterized by the two properties

(1.2) D is convex ,

(1.3) max(z,1—2) < D(z2) <1, z€[0,1],

ie., G(z,y) =exp((x+y)D(z/(x+y)), z,y <0, defines an EVD G with reverse
exponential margins if, and only if the function D: [0, 1] — [1/2, 1] satisfies con-
dition (1.2) and (1.3) (see Falk (2006)).

A popular example is, with A € [1, 00|,

D(z) = (z’\ +(1- z)’\)l//\, 2e0,1],

which yields the Gumbel type B df G(z,y) = exp(—(|x|>‘ + |y|)‘) 10\), x,y <0,
with the convention D(z) = max(z,1— z) if A = oc.

Note that the case of independence of X,Y is in general characterized
by the constant dependence function D =1, in which case G(z,y) = exp(x + y),
z,y < 0. A major problem in the statistical analysis of given data (z1,1), ...,
(Zn,yn), is the decision whether the data were generated by rvs (X;,Y;) with
independent margins X;,Y;, see, for example, Dupuis and Tawn (2001).

It was observed in Falk and Michel (2006) that the sum X +Y over a
high threshold has excellent ability to discriminate between independence and
dependence, i.e., between the case of the constant dependence function D =1
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and a nonconstant D. Precisely, it was observed in Falk and Michel (2006) that

for ¢t € [0, 1]
{t2 it D=1,

(1.4) P<X+Y St | X4Y > c) —
t elsewhere .

c10

The excess distribution of the sum X +Y over a high threshold approaches,
consequently, either the df F(t) =2, t € [0, 1], in case of independence of X,Y,
or, elsewhere, the uniform distribution on [0, 1].

This observation was used in Falk and Michel (2006) to define a test for
independence of X,Y, which is derived from the Neyman—Pearson test for the
binary testing problem F(t) = t? against F(t) = t, t € [0, 1], based on n indepen-
dent copies of (X,Y’). It was shown that this test has excellent performance and

is able to detect deviations from the constant dependence function D = 1 which
are of order O(n~1/?).

The problem suggests itself, whether the characterization of independence
and dependence of X, Y via the limiting excess distribution in (1.4) remains valid,
if the rv (X, Y) with EVD G with reverse exponential margins is replaced by a rv
(U, V), which follows an arbitrary EVD. This will be investigated in the present
paper, where our investigations include arbitrary scale parameters a, b > 0 as well,
i.e., we consider the excess distribution of aU + bV over a high threshold with
underlying arbitrary EVD. It turns out that the limit df of the excess distribution
of the sum depends heavily on the marginal dfs: In some cases independence of
U and V affects the limit, in other cases it does not. The main results can be
summarized as follows, where it is generally assumed that the joint df of (U, V)
is a bivariate EVD.

Reverse Weibull Margins: Suppose that U, V' both follow a reverse Wei-
bull df: P(U< )= exp(—(—x)*), P(V< z) = exp(—(—2)*?), 2 <0, a1, a3 > 0.
Then we obtain for a,b > 0 and ¢ € [0, 1] (see Theorem 3.1)

(1.5) P(aU+ bV > te | al+bV > c> e

—

{t‘”1+a2 if U,V are independent ,
c10

pmax(a,a2)  glsewhere .

The special case a1 = ag = a = b = 1 was established in Falk and Michel (2006).
The limit excess df of aU+ bV is, therefore, determined by independence or
dependence of U, V', but it is not affected by the scale parameters a,b > 0.

Fréchet Margins: Suppose that U, V both follow a Fréchet df: P(U < x)=
exp(—z~*), P(V<z) = exp(—z~*?), £ >0, a1, az > 0. Then we have for a,b>0
and t > 1

(1.6) P(aU+ bV >te | aU+ bV > c) —, ¢~ min(a,a2)

C—00
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In the case a1 = @y and dependence of U,V the preceding result requires
an additional weak condition on the underlying Pickands dependence function,
see Theorem 3.3 and 3.2 for details.

In case of Fréchet margins, the limiting excess df of aU + bV is, conse-
quently, invariant under dependence and independence of U,V and it is not
affected by the choice of the scale parameters a,b > 0.

Gumbel Margins: If U,V both follow the Gumbel df F'(z) = exp(—e™*),
x € R, then we obtain for a,b >0 and ¢ > 0

(1.7) P(aU+bV>c—|—t | aU+bV>c> —

Cc—00

t
exp| ———— if U,V are independent ,
max(a, b)

—
C— 00
exp| —

> elsewhere ,
a+b

see Theorem 3.4. In case of Gumbel margins, dependence and independence of
U,V determine, consequently, the limiting excess df of aU + bV. But different
to the other two cases above, it depends on the scale factors a,b > 0 as well.

The cases of mixed margins is determined by that df among the two dfs
involved, which has a heavier tail, see Theorem 3.5, 3.6 and 3.7. Note that
additional location parameters of U and V can simply be incorporated in the
preceding results by shifting them to the threshold.

The transformation of the univariate margins of a multivariate EVD to ar-
bitrary univariate extreme value distributions yields again a multivariate EVD.
A common approach in multivariate extreme value theory is, therefore, the trans-
formation of a given EVD to an EVD with one’s favorite univariate margins. This
approach might, however, be misleading as the preceding results reveal that the
marginal distributions of a multivariate EVD, actually, can matter.

Extreme value theory has become a standard toolkit within quantitative
finance useful for describing non normal phenomena, see, e.g., Embrechts (2000,
2004), Kliippelberg (2004), Section 13 in Reiss and Thomas (2001). The above
results now reveal surprising facts in particular about the expected shortfall,
which is a popular risk measure of a linear portfolio. Interpreting a,b as weights
and U,V as risks, the sum aU + bV can be viewed as a (short) linear portfolio.
Note that the limit excess df of aU + bV above a high threshold can in case
of reverse Weibull margins readily be turned into the limiting excess df of a
linear portfolio below a small threshold approaching zero: A rv (U, V) follows a
bivariate max-stable df with reverse (standard) Weibull margins if, and only if,
the rv (U, V) := (=U, —V) follows a bivariate min-stable df with Weibull margins.
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The standard exponential df on (0, 00) is a particular example. The limit result
(1.5) now becomes with arbitrary a,b > 0 and ¢ € [0, 1]
P(a0+bv<tc | aU+b‘7<c> T
taitaz if U,V are independent,
5) {tma"(al"”) elsewhere .
We see that in various cases, as the threshold increases or decreases, the
limit excess distribution of aU + bV does not depend on the parameters a,b > 0.
A risk measure of a portfolio such as the expected shortfall (Acerbi and Sirtori
(2001), Acerbi and Tasche (2001), Acerbi and Tasche (2002)), i.e., the expectation
of aU+ bV given that the sum exceeds a high or a low threshold, is in this case
asymptotically independent of the weights a,b. Such a risk measure of a linear
portfolio has, consequently, to be taken with care, if the underlying joint df of
the risks is assumed to be a max-stable or a min-stable df. For a linear portfolio
Y i<q @i U; of arbitrary length d this was already observed in Macke (2005) in the
case where (U, ..., Uy) follows a d-dimensional EVD G with reverse exponential
margins.

We remark that corresponding results might be established in higher dimen-
sions as well, see, for a special case, Macke (2005). But the case of a dimension
higher than two requires additional conditions such as very smooth dependence
functions; it does not, however, provide essential new insight into the limit be-
havior of the corresponding excess distributions. In the two-dimensional case our
mathematical tools are, on the other hand, so refined that we can establish our
results under most general conditions. That is why we restrict ourselves in this
paper to sums aU + bV of length two.

It would, of course, be desirable to extend the preceding results (1.5)—(1.7)
to rvs (U, V), whose distribution lies in the domain of attraction of a multivariate
EVD. But this is not possible without further assumption. Take, for example,
arv (U, V), which follows a bivariate normal distribution N(0,3) with mean vec-
tor 0, variances 1 and and covariance p € (—1,1). Then N(0, ¥) is in the domain
of attraction of the EVD G(z,y) = exp(—e * — e Y), z,y € R, with independent
Gumbel margins, i.e., there exist constants a,,, ¢, >0, b,,d, € R such that

P( <b < d ) R
112%}%[]7,_ n + an, 121%};‘/7,_ ntCny njoi) G(l‘,y), T,y ek,

where (U1, V1), (U, Va), ... are independent copies of (U, V), see, e.g., equation
(9.7) in Reiss and Thomas (2001). According to equation (1.7) one, therefore,
should expect in this case that the limit of P(aU+ bV >c+t | aU+bV > c)
is exp(—t/ max(a, b)) as ¢ converges to infinity. Standard arguments, however,

yield that
P(aU+bV>c+t | aU+bV>c) 0

C— 00

for arbitrary a,b,t > 0.
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The results in this paper are related to results by Wiithrich (2003), Alink
et al. (2004, 2005a, 2005b) and Barbe et al. (2006), who establish P (>, X; > t)
~ AP(X;>1) as t — oo with some diversification constant A > 0. This is
achieved under various conditions on the joint distribution of (X1, ..., X3), thus
extending the well known result with A =d in case of iid regularly varying X;
(Feller (1971, p.279)) to dependent rvs. The above authors work, however, with
identically distributed X; so that the results stated here are not included in these
papers.

This paper is organized as follows. As the derivation of our results is highly
technical, we compile in Section 2 in a preparatory step various auxiliary results
and tools. The main results are established in Section 3.

2.  AUXILIARY RESULTS AND TOOLS

In a preparatory step we provide in this section several auxiliary results
and mathematical tools, which might be of interest of their own.

A bivariate and nondegenerate EVD H has the characteristic property of
max-stability, i.e., for each n € N there are constants a;, >0, b;, € R, i=1,2,
such that

Hn(a1n$+b1n, a?ny+b2n) = H(l‘ay) ) T,y € R.

The margins of H are, consequently, univariate EVDs. The family of nondegen-
erate univariate EVDs is, with a > 0, up to a scale and location shift given by

1, x>0,

Fale) = {exp(_(_x>a)’ v <0,

0 <0
(2.1) Flo(z) =4 r=
exp(—z~%), x>0,

Fo(z) := exp(—e¥), reR,

being the family of (reverse) Weibull, Fréchet dfs and the Gumbel df; see, e.g.,
Section 2.2 in Falk et al. (2004). Note that F} is the standard reverse exponential
df.

Let now (U, V') be a rv, which follows a bivariate EVD H with standard uni-
variate extreme value margins as in (2.1). It is well-known that the df H of (U, V')
equals that of (Hfl(exp(X)), H;l(exp(Y))), where (X,Y) follows an EVD G
with reverse exponential margins Fi. By F~1(q) := inf{t € R: F(t) > q}, ¢ € (0, 1),
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we denote the generalized inverse of a univariate df F'; see, for example, Lemma
5.4.7 in Falk et al. (2004). In different notation we have, thus,

H(w,y) = G(10g(H1(2)),log(Ha(y)) ) = G (1 (@), va(v) -

where ;(x) =log(H;(z)), i=1,2, is each one of the three functions defined
as follows:
—(—z)*, =<0,
P(z) = ¢ -2, x>0,
—e 7, reR.

We have, consequently,

(2.2) (U.V) =p (7" (X), 05" (Y)) ,

where =p denotes equality in distribution, and, we have by equation (1.1) for z,y
with 0 < H1<$),H2<$) <1

(23  Hy) = exp((w1<x> + () D(W)) ,

where D is a Pickands dependence function as defined by (1.2) and (1.3).

Note that (v7 YX), oy 1(Y)) follows for an arbitrary choice of an EVD G
with reverse exponential margins an EVD H with margins Hy, Hs and, thus, rep-
resentation (2.3) characterizes up to a scale and location parameter the complete
class of bivariate EVDs with arbitrary margins.

The following auxiliary result provides a representation of an arbitrary
Pickands dependence function D, which will be crucial for the derivation of our
subsequent results. It implies in particular that any D is absolutely continuous
and provides its derivative D’. For a proof of this result we refer to Lemma 6.2.1
in Falk et al. (2004).

Lemma 2.1. An arbitrary Pickands dependence function D can be repre-
sented as

D(2) :l—i—/OZM(x)—ldx: 1—/1M(:c)—1dm,

where M: [0,1] — [0,2] is a measure generating function with M (1) = 2,
fOIM(x) dxr = 1. The dependence function D is, consequently, absolutely con-
tinuous with derivative

D'(z) == M(2)—1 € [-1,1].

It is easy to see that the converse of the preceding result is also true: any
function D: [0,1] — [0, 00) that can be represented as D(z) = 1+ [ M (x) —1dz,
with M: [0,1] — [0, 2] as in Lemma 2.1, satisfies condition (1.2) and (1.3) and is,
consequently, a Pickands dependence function.
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We will make extensive use of the conditional df P(Y <wv | X = u), where
(X,Y) follows a bivariate EVD with reverse exponential margins. This condi-
tional df is provided in the next lemma. For a proof we refer to Lemma 2.1 in
Falk and Michel (2006); the arguments are taken from Ghoudi et al. (1998).

Lemma 2.2. Suppose that the rv (X,Y) follows an EVD G with reverse
exponential margins and Pickands dependence function D. Then we have for
u <0

P(ng |X:u) -

exp{u(D(5) —1) +vD(75)} (D) + D) (1= 5)) if v<o,
1 if v>0.

3. MAIN RESULTS

In this section we compute the limiting excess df of the sum aU + bV,
where (U, V) follows an arbitrary bivariate EVD. Without loss of generality (wlog)
we suppose that the marginal univariate dfs have scale parameter 1. We begin
with the case of reverse Weibull margins.

Theorem 3.1 (Reverse Weibull Margins). Suppose that (U,V') follows
a bivariate EVD with reverse Weibull margins: P(U < z) = exp(—(—z)™),
PV<zx)= exp(—(—x)O‘?), <0, ar,az > 0. If U,V are not independent, then
we have for a,b >0 and 0 <t <1

P(aU+bV > te | alU+bV > c) o)

If U,V are independent, then we have

P(aU+bV>tc | aU—l—bV>c) ? torto

Proof: Wlog we assume aj > as. The assertion is an immediate conse-
quence of

(3.1) (=¢) ' P(aU+bV > c) T K(a,b) >0

if U,V are not independent, and of
1
(3.2) (—c)*(a1+042) P(CLU—i— bV > c) ? a9y al/ (1_ u)az w1 qu
¢ 0

if U,V are independent. This will be established in the following.
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Wlog we can by (2.2) assume that (U, V)= (—(=X)Y, —(=Y)¥/2),
where (X,Y) follows a bivariate EVD G(z,y) = exp((z +y) D w/ (z+y)),
x,y <0, with reverse exponential margins and Pickands dependence function D.

By conditioning on X = u, we obtain from Lemma 2.2 the representation

P(aU+ bV > c) =

_ /° P(_(_y)l/a2 S C“‘(bu)l/m X = u) exp(u) du

— 00

( )—1) ( cratu™ )l/m)wD(m)

X (D(u) +D'(@) (1 — u)) exp(u) du ,

where for u € (—(—c/a)*,0]

In case of independence, i.e., D = 1, we obtain from equation (3.3) by using

Taylor expansion of exp at 0 and substituting u — —(—cu/a)™

P(aU—|- bV > c) =

N D)t

= (e ()
X exp <— <_ac>oqu°‘1> apu 1t du

(ze)rree Qo 1 — )2yt 0 u
L[ = e o) du

- a1 bocg

which implies equation (3.2).

It remains to establish equation (3.1). From equation (3.4) we obtain with
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the substitution v — —(—cu/a)*!

P(aU+ bV > c) =

1)

(3.5) Cenar [l v —c\e2
- eXp(‘(a) uf (D) =1) = () (1= D (“C)>
(ot 1000 w) en(-() o
where for v € (0,1)

= - 0 if a1 > as .
T e

Ue

Hence we obtain in the case a1 > a9y

— —

(—% "P(aU+bV > c) — =D'(0) = 1-M(0) > 0.

a c
The fact that M(0) < 1 can be seen as follows: Suppose that M (0) > 1. Then
we obtain from Lemma 2.1 that D(z) =1+ [ M(z)—1dz >1, 0<z<1, and,
thus, D is the constant function 1. But this case was excluded. Thus we have
established equation (3.1) in the case a; > as. It remains to prove (3.1) also in

the case a1 = ao.
Suppose that a3 = ag. Equation (3.5) implies

—C —Q1
(3.6) (;J P(alU+bV > ¢) —
1
— (1 — D(*) - D'(u*) (1 —u*)) au®du > 0
cT0 0

where for u € [0, 1]
u®t

= 1] .
u ua1+(1_u)a1 (%)al € [07 }

We show in the following that the limit integral in (3.6) is strictly positive.
Note that we have by Lemma 2.1 for u € [0, 1]

1
1~ D(u) — D'(u) (1—u) _/ M(z)— M) dz > 0,

where the integral on the right hand side above is a function in u, which is
continuous from the right. Suppose that the integral in equation (3.6) is zero.
This implies ful M (x)— M(u)dx =0 for v € [0,1). Then we have in particular
folM(ac) — M(0) dz = 0, which implies M (z) = M (0), z € [0,1), and, thus, D(z) =
14 [fM(0)—1de =1+ 2(M(0)—1), z€[0,1]. From the fact that D(1)=1
we obtain M (0) =1 and, hence, that D(z) =1, z € [0,1]. But this case was
excluded. The limit integral in (3.6) is, therefore, strictly positive. This completes
the proof of equation (3.1) and, thus, the proof of Theorem 3.1. O
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The case of Fréchet margins requires completely different proofs for identi-
cal and nonidentical margins. The two cases are, therefore, stated separately in
Theorem 3.3 and in Theorem 3.2. We begin with the case of different margins,
since this case is an immediate consequence of the following result for regularly
varying rvs. For a proof of this result we refer to Lemma 2 in Kliippelberg et al.
(2006) [17].

Lemma 3.1. Let Y and Z be rvs on a common probability space such
that Y has regularly varying right tail with index —x < 0. Let d > x and suppose
that F(|Z|%) < oco. Then

i P22
z—oo  P(Y > x)

Theorem 3.2 (Different Fréchet Margins). Suppose that (U, V') follows a
bivariate EVD with different standard Fréchet margins: P(U < x) = exp(—z~%1),
P(V<z)=exp(—2x7*), x>0, ay # aa. Then we have for a,b >0 and t > 1

P(aU+ bV >ct | aU+bV > c) —, ¢~ min(an,a2)

C— 00

Note that the case of identical Fréchet margins a; = g =: « is not covered
by Lemma 3.1, as in this case E(|U|?) = E(|V|?) = co for any d > a.

Theorem 3.3 (Identical Fréchet Margins). Suppose that (U, V') follows a
bivariate EVD with identical Fréchet margins: P(U<x)= P(V<x)=exp(—2~%),
x > 0, for some o > 0. Then we obtain for a,b >0 and t > 1
(3.7) P(aU+ bV > ct | aU+ bV > c) 4

CcC— 00

if U,V are independent. If U,V are not independent, this result remains true
if we require in addition that the underlying dependence function D satisfies
for some § > 1 the expansion

(3.8) 1-D(z) —D'(2)(1-2) = O((1 - 2)°) .

Condition (3.8) is, for example, satisfied by the dependence function D(z) =
(z>‘ +(1— z)’\)l//\, 1 < X < 00, which corresponds to the Gumbel type B EVD.
It is also obviously satisfied by the dependence function D(z) = 1—Amin(z,1—2),
A €10,1], which corresponds to the Marshall-Olkin EVD. We conjecture that
it is satisfied by an arbitrary dependence function, but this is an open question.

Proof: Wlog we can assume (U,V) = ((—X)_l/a, (—Y)_I/O‘), where (X,Y)
follows a bivariate EVD G with reverse exponential margins and dependence
function D.
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First we consider the case D(z) =1, z € [0, 1], i.e., the case of independence
of X,Y or, equivalently, of U, V. We claim that in this case

(3.9) A PaU+bV >¢) — a®+ b,

C—00

from which equation (3.7) follows immediately. Equation (3.9) can be seen as
follows. Note that P(aU+bV > ¢ | X=u) =1 if u>—(a/c)* and, thus,

P(aU—i— bV > c) =

0
= / P(aU+ bV >c |X:u) exp(u) du

—00

_ /Z‘;)"‘eXp(u) " +/OEZ)QP<Y>_(c—a(—bu)—1/a)a‘X:u> exp(u) du

a\® _(%)a b a
= 1—exp<—(c> ) —1—/_00 (1—exp<—<0_a(_u)1/a) >>exp(u) du .
Since 1 — exp(—(a/c)*) = (a/c)*(1 + o(1)), it suffices to show that the integral
on the right hand side above equals (b/c)*(1+40(1)). Split the integral into the
sum of the subintegrals f:fo(a/ % du + f:Q((a a/ /cg)o; -+ du. By the substitution
u+— —(a/c)*u the second subintegral equals

A ) SO DR

by the dominated convergence theorem. From the Taylor expansion exp(—z)=
1— 2 + exp(—9, z) x?/2 with 0 < ¥, < 1 and the fact that 0 < exp(—9, z) < 1
for x > 0 we obtain that the first subintegral equals

/Z(z)a <§)“ (1 _ a(_u)l/O‘)aexp(u) du + O(c™2) = (g)a(HO(l)) :

o c c
Thus we have shown (3.9).

If D is not the constant function 1, we have

(3.10) CaP(aUJr bV>c) c—>—o)o
Al (1= )V a1
e b/ol (1 —D(2)-D'(2)(1— z)) S1/a—1 (b +(1(_1 Z)Q) ) "

+ba(2—M(1—0)) >0,

where M is the measure generating function in the representation D(z) =1+
Jo M (2)—1dz and M(1—0) :=lim. o M(1—¢) is the limit from the left of M at 1.
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This is established in the following. Repeating previous arguments we obtain

(aU+bV>c =

—1-ew(- (%))
/ ‘Z)( P<Y< (W)am:u)) exp(u) du .

The integral equals, by Lemma 2.2,

/_:‘;)a {1 _ exp<<u _ (c_a(_bu)_l/a)a> D(ﬂ)) exp(—u)

X (D(ﬂ) +D'(a) (1— a)) } exp(u) du =
(3.11)

where for u < —(a/c)®

b
1 + (c(fu)l/"‘fa)a

converges to 1 as ¢ — oco. Putting for z € (0,1)

o= -5 () )

and substituting u — ¢(z), we obtain that the first integral in equation (3.11)

equals

1
- [(1-P6) - D) - 2) epl(gl) o () d= =
0 1
_ Cl;/o (1= D) - D'(2) (1= 2)) exp(g(2))

a—1
X (bzl/a—i—a(l—z)l/o‘) (1—2)"2zYo"1 gz

From condition (3.8) and the dominated convergence theorem we, therefore,

obtain
[ Oj (1- D@ - D'(@) (1= @) exp(w) du —
1
(3.12) _- b/o (1 —D(2) = D'(2) (1— z)> ZHel

a—1
X <bzl/“ +a(l— z)l/a) (1—2)%dz € (0,00) .
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The second integral in equation (3.11) is split into the sum of the sub-

intervals

o

/Q(z)a du +/2( du = I(e) + T1(c) .

oo )

ole

ole

Substituting u — —(a/¢)*u and putting for u € (1,2)

1
U = € 071 ’
O R

the second subintegral above equals

(c) = (%)a /12{1— exp<—<i>au(D(ﬂ)—1) = (g)a(l— u‘l/“)‘“D(ﬂ)>}

a

X (D(ﬂ) + D'(u) (1— ﬁ)) exp <— <C>au> du
= o(c_a)
by the dominated convergence theorem.

Taylor expansion of exp at zero yields that the first subintegral equals

I(e) = /:(Z)& ((1 —D(@)u + (W)%(a))

x exp{ﬁuu(D(ﬁ) ~1) - ﬁu<bu)_1/a>aD(ﬁ>}

c—a(—

X (D(a) +D'(@) (1— a)) exp(u) du

where 0 < ¢, < 1. Recall that 1—D(a) € [0,1/2], D'(a)(1—a) € [-1,1] and
note that for u < —2(a/c)®

«

(=) = (&) 1—1) < mar(e)

We have, further, by Lemma 2.1

1
1 — D(a) :/~M(a:)—1da: = (M(1-0)—-1)(1-a)(1+r(a) ,
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where

/;M(:n) ~1dz

02 r(@:= M1-0) -1 1-a
/1M(x) ~ M(1-0) dx
T (MO0 -1)(-a)
L M(@) - M(1-0)
= TMI-0) -1
. M(1-0)— M(0)
= M@O-0)-1

is bounded and converges to 0 as ¢ — co. We have, further, for u < —2(a/c)®

ba
(1-a)u = (e(zup/o—a) u
1+
(c(—u)l/a—a)
e !
co ((—u)l/a _ %)0‘ 1+ 7@(_”)?7&_&)@
- _Cia (1 + SC('LL)) )

where s. is bounded and s.(u) — 0.
CcC— 00

We obtain, consequently, from the dominated convergence theorem

0
(3.13)  c*I(c) — b (2—M(1-0)) exp(u) du = (2—M(1-0)) b > 0.
Equation (3.10) now follows from (3.11), (3.12) and (3.13). O

Theorem 3.4 (Gumbel Margins). Suppose that the rv (U,V') follows a bi-
variate EVD with identical Gumbel margins: P(U<z) = P(V<z) = exp(—e™ %),
x € R. Then we obtain for a,b >0 andt >0

P(aU+bV>c—|—t | aU+ bV > c) —

t
exp <—> if U,V are independent ,
max(a, b)

CcC— 00 t
exp <— a—i—b) elsewhere .
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Proof: We consider first the case, where U,V are independent. Wlog
we assume a > b. The case a = b requires a different approach, see below.
The assertion is immediate from

(3.14) ea P(aU4bV >¢) — b/ (1—exp(—e_“)> e du € (0,00) ,

=00 @ o
which we establish in the sequel.

Put F(u) := exp(—e™™), u € R. We have

PaU+bV >c) = / P(aU+bV>c | U:u)F’(u) du

—0o0

_ /OO <1 - F(C_b““)> F'(u) du .

o0

With the substitution u +— (¢ — bu)/a, the preceding integral equals

S /OO<1—F(U)>F/<C_abU) du =

b o0 u—c uU—cCc
= / (1 - exp(—e_”)) e exp(—eb @ ) du

c b o0 u—c
= ¢ a - / (1 _ exp(—e‘“)) eat exp(_eb « ) du

and, thus, equation (3.14) follows from the dominated convergence theorem;
recall that a > b.

Next we consider the case, where U,V are independent and a =b. The
assertion is a consequence of

ec/a

(3.15) P(aU+aV>c) — 1,

c/a c—00

which we establish in the following. Wlog we assume a = 1. Repeating the
arguments in the derivation of (3.14) we obtain

—00

+ /OOO <1 — exp(—e*“)) e exp(—e"™°) du}

= e {I(c) +H(c)} .

P(aU+bV>¢) = e_c{/o (1 - exp(—e_“)) e exp(—e""°) du

The dominated convergence theorem implies that

I(c) — ' (1—exp(—e_“)) e'du € (0,1).

—
c—oo [ o
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Taylor expansion of exp at 0 and the substitution u — u + ¢ yields
oo
II(c) = / (e_” + O(e_2u)> e exp(—e""°) du
OOO
= / exp(—e“") du + O(1)
0

= /_ Ocexp(—e“) du + /0 Ooexp(—e”) du + O(1)
0

= / exp(—e") du + O(1) .

—C
In order to establish equation (3.15) it suffices, therefore, to show that
0
c_l/ exp(—e*)du — 1.
e c—00

But this follows from straightforward computations.

Finally we consider the case, where U, V are not independent. Wlog we as-
sume that a > b and that (U, V) = (—log(—X), —log(—Y)), where (X,Y) follows
a bivariate EVD with reverse exponential margins and dependence function D,
which is not the constant function 1. The assertion is a consequence of the fact

(3.16) exp(ai_%) P(aU+bV > ¢) .

(AXl_D@>—D%@u_zDza%u—zw%2dz€<@“”’

which we establish in the following.

—
c—oo  a+b

Put for v <0
1
U = € (0,1).
T T ew(p) (e © O

Then we have by Lemma 2.2
0
P(aU+bV>¢) = / (1—P<Y§—exp(—g)(—u)_a/b | X= u)) exp(u) du

— /0 (1 - exp{u(D(a) —1) - eXp(-%) (—U)_a/bD(ﬂ)}

x <D(ﬁ) + D'(@)(1— u))> exp(u) du

_ /0 (1~ D)~ D'(@) (1~ @)) exp(u) du

—00

n /_(; <1 _ exp{U(D(a) -1) - exp(fg) (u)_a/bD(ﬂ)}>

X (D(a) +D'(a)(1— a)) exp(u) du

=: I(c)+I(c) .
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Put for z € (0,1)

0= (- 55) ()

Then we have g(z) = z and, thus, with

’ _ _ C b _ﬁ . ﬁ—2
§() = —exp(—— ) — ZA (1-2)a

the substitution u — g(z) yields
fe) = = [ (1-D6) = D)1= 2) exp(9(2) o ) =

= exp(-—) a—bH)

X /01 (1 —D(z)-D'(z)(1— z)) exp(g(2)) zTat (1— 2)ats 2 dz .

Note that the function g depends on the threshold ¢ with g(z) — 0 and that
CcC—00
g(z) <0,z € (0,1). The dominated convergence theorem implies, therefore, that

) i(e)
b

—_—

c—oo  a+b

eXp(aer

C— 00

1 1—D(z)—D'(z)(1—2)) 2" a5 (1—2)as 2dz € (0,00) .
0

The integral on the right hand side is finite since 1 — D(z) < 1— z and D'(2) €
[—1,1]. It is positive by the arguments at the end of the proof of Theorem 3.1.

In order to establish (3.16) it suffices, therefore, to show that

(3.17) exp(aiw) I(c) — 0.

This can be seen as follows. Choose z. € (0,1) with g(z.) = —¢/b, i.e.,

1
(a+b)/b
()

Ze —

1+ exp(—%) .

Split the integral II(c) into the sum of the subintervals

~ 9(zc) 0
H(c):/ ---du+/---du.
— 9(zc)

The first integral is of order O (exp(—2¢/(3b))) = o(exp(—c/(a+b))); recall that
we assume a > b and that 1—D(a) < 1/3 for u < —¢/b if ¢ is large. By using
again the substitution u — ¢(z) and Taylor expansion of exp at 0, the second
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integral on the right hand side above equals
(o) s
exp|—
P\t 0/ arb

« [ (1= expd g(2) (D(z)—l)—exp(—acl)(lgz)#bD(z)
0 +

X (D(z) +D'(2)(1— z)) exp(g(2)) ZTar (1—z)as 2dy =

- eXp<_a—ci—b> ajbl—b

X /1/2 (1 - exp{g(Z) (D(z) —1) - eXp<_a—ci-b> (1;Z>ﬁb D(Z)})

X <D(z) +D'(2)(1— z)) exp(g(z)) 2~ o+ (1— z)a%b_2 dz
oot )

- exp(—aib) aib

< [~ (06 -1 +en(— ) ()T D) (- 900 s

1/2 a+b

+ o(exp(_ajb))
_ o(exp(_ajb)) ,

which follows from elementary computations; recall that g(z) — 0 and that
Cc—00

1—D(z) <1—z. We have, thus, established (3.17), which completes the proof
of Theorem 3.4. t

In the subsequent theorems we compile the limit excess distributions of
aU + bV for all combinations of different marginal univariate EVDs. Note that
the df of (U,V) is a bivariate EVD if, and only if the df of (V,U) is a bivariate
EVD. This implies that the order of the prescribed marginal dfs of (U, V) in the
subsequent results does not matter.

Theorem 3.5 (Reverse Weibull and Gumbel Margins). Suppose that (U,V)
follows a bivariate EVD and that P(U< z) =exp(—e ), x e R, P(V<y) =
exp(—(—y)o‘), y <0, a > 0. Then we have for a,b >0 and t > 0

P<aU+ bV >c+t | aU+bV > c) — exp(—t/a) .
C— 00
The combination of a reverse Weibull and a Gumbel margin is, conse-

quently, dominated by the Gumbel part. The corresponding scale parameter is
preserved in the limit.
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Proof: Wlog we can assume the representation U=—log(—X), V=—(-Y)"2
where (X,Y) follows a bivariate EVD with reverse exponential margins and
dependence function D(z) =1+ [ M (x) —1dz, see Lemma 2.1. We will establish
in the following

0
(3.18) eC/“P(aUJr bV >c) — / exp(—é (—u)l/a) exp(u) du € (0,1)
c—oo o a

if U and V are independent and

1
(3.19) ec/“P(aU+bV>c) — 1—M(0)/exp(—(—log(u“/b))a> du € (0,1)
0

C—00

elsewhere. This implies the assertion.

First we establish (3.18). Conditioning on Y = u we obtain

P(aU+bV >c) = /0 P(—alog(—X) —b(-YV)Ve>c Y= u) exp(u) du

—00

_ /io (1—P<X§—exp<—c+b(a_u)l/a> | yzu>> exp(u) du

0 1/
= / 1-— exp(—e_c/a_b(_“) /“)) exp(u) du

and, thus,

—
c—oo [ o

0
ec/aP(aU—i— bV >c) — / exp(—g(—u)l/a) exp(u) du ,
which is (3.18).

Next we establish (3.19). Conditioning on X = u we obtain from Lemma 2.2

P(aU+bV>c) = /0 P(—alog(—u) —b(-Y)Ve>¢ | X= u) exp(u) du

—00

_ /_ pr(_c/a) (1—P<Y < —(W)a | X= u)) exp(u) du
N /_pr(—c/a> (1_ eXp{u(D(ﬂ) - <_C_a(170g(_w>aD(ﬂ)}

X (D(&) + D'(a)(1— &))) exp(u) du ,

where




158 Michael Falk

With the substitution u — — exp(—c/a)u, the above integral equals

exp <—2> /01 (1 - exp{— exp <—§> u(D(a)—1) — (- log(u“/b))aD(u)}
X (D(a) + D'(w) (1— a))) exp <— exp(—g) u) du

where for u € (0,1)

P

U = (— exp(—c/a)u) = u

u + exp(c/a) (—log(u®/?))" c—l>oo 0

We obtain, consequently,

exp(%) P(aU+ bV > c) =

_ /01 (1- D@ - D'(@) (1-w)) exp<— exp(~2) u) du
*/01{1 ~exp(—exp(~5) u(1-D(w) - (—logw“/b”a”“))}
x (D(a) + D'(@)(1— a)) exp (- exp(—g) u> du

. _D'(0) +/01{1 —exp(—(—log(ua/b))a)} (1+D(0)) du

C— 00

= 1-M(0) /Olexp(—(—log(ua/b))a> du € (0,1).

Note that necessarily M(0) < 1. Otherwise we had D(z) = 1+ [ M(z)—1dx > 1
and, thus, D would be the constant function 1. But this case was excluded. Thus
we have established (3.19), which completes the proof of Theorem 3.5. ]

Theorem 3.6 (Reverse Weibull and Fréchet Margins). Suppose that (U,V)
follows a bivariate EVD with P(U < z) = exp(—(—x)*'), <0, and P(V < y) =
exp(—y~*?), y > 0, a1, 2 > 0. Then we have for a,b >0 and t > 1

C— 00

P(aU+bV>tc | aU+bV>c> e

The combination of a reverse Weibull and a Fréchet margin is, therefore,
determined by the Fréchet part. The limit excess df is independent of the scale
parameters.

Proof: It is sufficient to show that for n € N

(3.20) n~ ez 11%1%)%(an+ bV;) - exp(—(y/b)™*) , y>0,
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where (U1, V1), (Ua, V2), ... are independent copies of (U, V). But (3.20) is imme-
diate from the inequalities

a man +b maXV < max(aU +bV) <b maXV

1<i<n <i<n 1<i<n <i<n

and the facts that

—1/012 - 2
n 1?%’%%136@( y %), y>0,
n~ /% minU; — 0  in probability . O

1<i<n n—00

Theorem 3.7 (Fréchet and Gumbel Margins). Suppose that the rv (U,V)
follows a bivariate EVD with P(U < z) = exp(—2~%), x > 0, where a > 0, and
P(V<y)=exp(—eY), y € R. Then we have for a,b >0 and t > 1

P(aU+bV>tc | aU+ bV > c) — ¢

CcC— 00

The combination of a Fréchet and a Gumbel margin is, consequently, de-
termined by the Fréchet part. The limit excess df is independent of the scale
parameters.

Proof: It is sufficient to show that for n € N

(3.21) nt/e 1max(aU +bV;) - exp(—(z/b)"%) , x>0,

where (U, V1), (Ua, V2), ... are independent copies of (U, V). But (3.21) is imme-
diate from the inequalities

amaxU; + b minV;, < max(aU +bV) < a max U; + b maxV;
1<i<n 1<i<n 1<i<n 1<i<n 1<i<n

and the facts that

—1/a - o«
n lrilzaélUZ = exp(—z~ %), x>0,
n/* minV; — 0, n~Y* maxV; — 0  in probability . O
1<i<n  n—o© 1<i<n n—00
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1. INTRODUCTION

For an R xR square contingency table with ordered categories, let p;; de-
note the probability that an observation will fall in the cell in row ¢ and column j
(i=1,..,R; j=1,...,R), and let X; and X3 denote the row and column variables,
respectively. The marginal homogeneity (MH) model is defined by

Pr(X;=1) = Pr(Xy=1) for i=1,...,R;
that is
Pi. = D.; for i=1,...,R,

where p;. = ZkR:1Pik and p.; = ZkR:1 pri- This model indicates that the row
marginal distribution is identical to the column marginal distribution (Stuart,
1955; Bhapkar, 1966; Bishop, Fienberg and Holland, 1975, p.294; Tomizawa,
1991, 1993, 1998). Let Fi(l) and Fi@) denote the marginal cumulative probabilities
of X7 and Xy, respectively. These are Fi(l) =Pr(X;<i) = 22:1 pr. and Fl-(z) =
Pr(X, < i) = 22:1 pg for i=1,..., R—1. Then the MH model may also be
expressed as

FY=r?  for i=1,..,R—1.

7 (3

Let LZ(-I) and LZ@) denote the marginal cumulative logit of X; and Xa,
respectively. These are given as

W[ P
L; logit [Pr(X, < )] = log [1 —Pr(X;<i)|’
and
O e o [ P <i)
L; logit[Pr(X3 < i)] = log [1 — Pr(X2 < i)

fori =1,...,R—1. Then the MH model may be further expressed as

=12  for i=1,..R-1.

3 7

As an extension of the MH model, Agresti (1984, p.205; 2002, p. 420) considered
the marginal cumulative logistic (ML) model defined by

=P +A  for i=1,..,R—1.

This model states that the odds that X7 is 7 or below instead of 7 + 1 or above,
is exp(A) times higher than the odds that X5 is ¢ or below instead of i+ 1 or
above, for every i =1, ..., R—1. Note that the MH model implies the ML model.
Consider the marginal mean equivalence (ME) model defined by

R R

Y ipi=> ipi (e, E(X))=E(Xy)) .

1=1 i=1
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Miyamoto, Niibe and Tomizawa (2005) gave the following theorem.

Theorem 1.1. The MH model holds if and only if both the ML and ME
models hold.

Using the conditional probabilities, the MH model may also be expressed

as
Pr(Xlzi\leéXg) :Pr<X2:i|X17£X2> for i=1,.,R;
that is
5. = p5 for i=1,...,.R,
where
P = w - Pr(Xlzi |X17AX2) :
e = }% - Pr(Xzzi yXHAXQ) ,
6= > v =Pr(Xi#X) .
st

Let Fl-c(l) and Ff(2) denote the conditional marginal cumulative probabilities of
X1 and X5 given that X; # Xo, i.e.,

Ff(l) = Pr(X1§i \X1¢X2> = ipi- )
k=1

FF@ = Pr(XgSi !Xl#XQ) = Zl:pck ;
k=1

for i=1,..., R—1. Then the MH model may be further expressed as Fl-c(l) — ®

for i=1,..., R—1. Miyamoto et al. (2005) also considered the conditional marginal

cumulative logistic (CML) model defined by

D — LE(Z)-F A* for i=1,..,R—1,

1

where

W — logit [Pr(Xlgi | X1 %X2)} )

7

L = logit [Pr(Xg <ilX %)Q)} :

7

Miyamoto et al. (2005) also gave the following theorem.

Theorem 1.2. The MH model holds if and only if both the CML and ME
models hold.
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For analyzing the data of multi-way tables of the same classifications with
ordered categories, the some models of symmetry, e.g., the symmetry model, the
MH model (e.g., Bishop et al. 1975, pp.300-307), and the ML model (Agresti,
2002, pp. 439-440) are applied. The symmetry and the MH models do not depend
on the main diagonal cell probabilities, however, the ML model depends on them.
So, we are now interested in the another ML model which does not depend on
the main diagonal cell probabilities, namely, in the conditional ML model on
condition that an observation will fall in one of off-diagonal cells of the table.

The purpose of this paper is (1) to extend the CML model into the multi-
way tables (Section 2.4) and (2) to extend Theorems 1.1 and 1.2 into the multi-
way tables (Section 3).

2.  EXTENSION TO MULTI-WAY TABLES

2.1. The MH model

Consider an RT table (T > 3) having ordered categories. Let X; denote
the ¢-th random variable for t = 1,...,T and let Pr(X1=i1,..., X7 = i1) = Diy iy
for i, =1, ..., R. The marginal homogeneity (MH) model is defined by

Pr(X1=1i) = =Pr(Xr=1) for i=1,...,R;
that is
pgl):-":pET) for i=1,..,R,
where

pl(t) = Pr(X;=1) for t=1,..,T.

(*)

Let Fi(t) denote the marginal cumulative probabilities and let Lit denote
the marginal cumulative logit of X; for i=1,...., R—1; t=1,...,7. Namely,
Y= Yoy pgt), and Lgt) = logit [Pr(Xt < z)] Then the MH model may also

1
be expressed as

FO =Y for i=1,.,R-1; k=2,...T,

or
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2.2. The ML model

Agresti (2002, p.442) considered the marginal cumulative logistic (ML)
model, defined by

LW =1 Ay, for i=1,.,R-1; k=2..T.
By putting LZ(-I) = 0;, this model may be expressed as

Fl(k): eXp((gi—Akfl) for ’i:1,...,R—1; k:L_“’T’
1+ eXp(Qi — Akfl)

where Ag=0. A special case of this model obtained by putting A;=--- =
Ar_1 =0 is the MH model.

2.3. Other expressions of MH model

The MH model may also be expressed as

Pr(Xk:i | (X1, .0, X7) 2 (5,000, 5), 5:1,...,R) -
- Pr(Xlzi | (X1, oy X7) 2 (5 000y 8), s:1,...,R) :
for i=1,...,R; k=2,...,T; that is
p P =W for i=1,.,R k=2,...T,

where, for m=1,...,T,

(m)
pe™ = }% _ Pr(Xm:i | (X1, o, X7) 2 (5, 000y 8), 3:1,...,R) ,

R
0 = 1—Zpii~--i = Pr((Xl,...,XT) # (8,...,8), s=1,...,R) .

=1

Let Ff(k) denote the conditional marginal cumulative probabilities of X} given
that (X1,..., X71) # (s,...,8), s=1,.., R, ie.,
7

FOR) Pr(ngz' | (X1, e, X7) 2 (5, 000y 8), 5:1,...,R> =Y p®
t=1

for i=1,...,R—1; k=1,...,T. Then the MH model may be further expressed as
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2.4. The CML model

Consider now a model defined by
LW =rW_Ar | for i=1,.,R-1; k=2,.,T,

where, for m=1,...,T,

)

L = 1ogit[Pr(Xmgz' | (X1, ey X7) # (55 000s 8), s:l,...,Rﬂ

Pr(Xmgi | (X1 oo X1) # (85 00s 8), s:l,...,R)

= log
1 —Pr(Xmgz' | (X1, X7) 2 (5, 0y 8), 5:1,...,R>

We shall refer to this model as the conditional marginal cumulative logistic (CML)

(1)

model. By putting L7’ = 6, this model may be expressed as

ek _ exp(0] — Aj_)
v 1+ exp(0F — AF_,)

for i=1,...R-1; k=1,...,T,

where Aj = 0. A special case of the CML model obtained by putting A} =--- =
A% _; =0 is the MH model.

The CML model states that for kK = 2,...,T, on condition that the values
of random variables are not all same, the odds that X7 is 7 or below instead of
i+1 or above, is exp(Aj_;) times higher than the odds that X}, is ¢ or below
instead of i+1 or above, for every i = 1,..., R—1. Thus, if A} _; > 0, on the same
condition, X7 rather than X} tends to be i or below instead of i+ 1 or above for
every 1 =1,..., R—1.

3. DECOMPOSITIONS OF THE MARGINAL HOMOGENEITY
MODEL

We shall consider two kinds of decompositions of the MH model.

3.1. A decomposition of the MH model using the ML model

Consider a model defined as

R R
31 iV = =i (e, B(X) == E(Xr)) .
=1

i=1
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Namely, the means of variables X (k=1,...,T) are equal. Note that the MH model
implies model (3.1).

Consider a specified monotonic function g(k) satisfying ¢(1) <--- < g(R)
or g(1) > --- > g(R), where at least one strict inequality holds. Using the func-
tion g(k), model (3.1) is generalized as

R
32 Y gp) == g)p" (e, B(g(X1))==E(g(Xr))) .

i=1 =1

We shall refer to (3.2) as the marginal mean equivalence (ME) model.

The {g(k)} may be considered as the ordered scores {uy} assigned to the
categories if it is possible to assign the scores; namely, g(k) = uy satisfying
up <---<ug or uj>--->upg. In particular, when the scores are equal-interval;
that is, when us — u; = ug — us = --- = ugp — up_1, then the ME model with
g(k) = uy, is equivalent to the model (3.1). We now obtain the following theorem.

Theorem 3.1. For multi-way tables, the MH model holds if and only if
both the ML and ME models hold.

Proof: If the MH model holds, then both the ML and ME models hold.
Therefore, assuming that both the ML and ME models hold, we shall show that
the MH model holds. We have

R
E(g(X1)) = > g(k)p}”

where

Similarly, we have

This yields
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Since the ML and ME models hold, we obtain

R
exp(fx—_1) B exp(fp—1— A1) _
22 dy, ( )> 0.

1+exp(fr—1) 1+exp(Op_1— A

Thus

(1 - exp(-a1)) ZR: i -0
7 (14 exp(fr-1)) (1 + exp(fp—1 — A1) '

Then

R

exp(@k_l)
kz (1 + exp(fr—1)) (1 + exp(fr—1— A1)) 70

because d > 0 for all k =2,...,R (or di < 0 for all k = 2,..., R), with at least
one of the di’s being not equal to zero. Therefore we obtain A;=0. In the
similar way, we obtain Ay = 0 for k =2,...,T — 1. Thus, the MH model holds.
The proof is completed. O

3.2. A decomposition of the MH model using the CML model

We now obtain the following theorem.

Theorem 3.2. For multi-way tables, the MH model holds if and only if
both the CML and ME models hold.

We omit the proof because it can be obtained in a similar way as the proof
of Theorem 3.1.

Generally, consider a decomposition of model such that model M; holds
if and only if both models Ms and M3 hold. When models M; and M, fit the
data poorly but model Ms fits the data well, we can then understand that the
poor fit of model M; is caused by the lack of structure of model Ms rather than
the structure of model M3. Thus, the decomposition of model M; may be useful
to see the reason for the poor fit of model M;.

Let n;,...;. denote the observed frequency in the (iy,...,i7) cell of the RT
table with n=>---> n;,..i,, and let m;,...;,. denote the corresponding expected
frequency. We assume that {n;,...;, } have a multinomial distribution. The max-
imum likelihood estimates (MLEs) of the expected frequencies under each model
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can be obtained using a Newton—Raphson method to solve the likelihood equa-
tion (see Appendix for the CML model). Denote the likelihood ratio chi-squared
statistic for testing the goodness-of-fit of model M by G2(M). For testing that
model M; holds assuming that model Ms holds true, the likelihood ratio statis-
tic is given as G?(My|Ms) = G*(M;) — G%(Ms) (> 0). The numbers of degrees
of freedom (df) for testing the goodness-of-fit of the MH, ML (CML), and ME
models are (T'—1)(R—1), (T —1)(R—2), and T — 1, respectively.

Table 1: Opinions about government spending; from Lang and Agresti (1994).
The upper and lower paranthesized values are the MLEs of expected
frequencies under the ML and CML models, respectively.

Law Enforcement

Cities Health

(1) (2) (3)
(1) (1) 76 20 5
(71.31) | (17.03) (5.92)
(76.00) | (21.00) (5.66)
(1) (2) 13 11 0
(12.29) (9.43) (0.00)
(15.22) | (12.59) (0.00)
(1) (3) 4 3 2
(3.68) (2.51) (2.31)
(3.31) (2.44) (1.72)
(2) (1) 113 56 5
(122.83) | (54.44) (7.16)
(108.92) | (52.96) (5.06)
(2) (2) 30 28 1
(32.89) | (27.43) (1.45)
(31.29) | (28.00) (1.10)
(2) (3) 4 1 2
(4.25) (0.95) (2.78)
(3.04) (0.75) (1.58)
(3) (1) 103 41 15

(100.86) | (36.28) | (18.76)

(103.88) | (40.54) | (15.92)

(3) (2) 29 21 5
(28.61) | (18.71) (6.32)

(31.77) | (22.51) (5.79)

(3) (3) 6 8 5
(5.76) (6.95) (6.09)

(4.73) (6.21) (5.00)

Note: (1) — too little; (2) — about right; (3) — too much.
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4. EXAMPLE

The data in Table 1, taken directly from Lang and Agresti (1994), is the
1989 General Social Survey conducted by the National Opinion Research Center
at the University of Chicago. Subjects in the sample were asked their opinion
regarding government spending on the health (X7), the law enforcement (X3),
and the assistance to big cities (X3). The common response scale is (1) too little,
(2) about right, and (3) too much. Table 2 presents the values of likelihood ratio
statistic G2 for each model.

The MH model fits these data very poorly. However the CML model fits
these data well although the ML model does not fit so well. Also, the ME model
with g(k) = k, k=1,2,3, fits these data very poorly.

Consider the hypothesis that the MH model holds under the assumption
that the ML (CML) model holds; namely, the hypothesis that A;j = Ay =0
(At = A} =0) under the assumption. Because G*(MH|ML) = G?(MH)—G?(ML)
= 328.57 and G*(MH|CML) = G?(MH) — G?(CML) = 331.49 with 2 df, we re-
ject these hypotheses at the 0.05 level. These show the rejection of A= Ay =0
(AY= A% =0) in the ML (CML) model.

Under the CML model the MLEs of exp(Aj) are exp(A}) = 1.59 and
exp(A3)=17.3 (i.e., Af=0.46 and A% =2.85). Thus, the CML model provides
that (1) under the condition that the opinions are not all same, the odds that
the opinion is ‘too little’ instead of not ‘too little’ are estimated to be 1.59 times
higher in health than in law, and (2) the odds that the opinion is not ‘too much’
instead of ‘too much’ are estimated to be 1.59 times higher in health than in law,
and similarly, (3) the odds that the opinion is ‘too little’ instead of not ‘too little’
are estimated to be 17.3 times higher in health than in cities, and (4) the odds
that the opinion is not ‘too much’ instead of ‘too much’ are estimated to be
17.3 times higher in health than in cities.

Table 2: Likelihood ratio statistic G? for models applied to the data in Table 1.

Models Table 1
df G?
MH 4 334.62*
ML 2 6.05*
CML 2 3.13
ME 2 316.01*

* means significant at 0.05 level.

Note: g(k) for the ME model are the equal-interval scores.
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5. CONCLUDING REMARKS

When the MH model fits the data poorly, the decompositions of the MH
model may be useful for seeing the reason for its poor fit. Indeed, for the data in
Table 1, the poor fit of the MH model is caused by the poor fit of the ME model
rather than the ML (or CML) model.

Each of the MH, CML and ME models does not depend on the probabilities
{pii...;} on the main diagonal of the table, but the ML model depends on them.
Notice that the estimated expected frequencies on the main diagonal cells under
the ML model are different from the observed frequencies on the main diagonal

(see Table 1).

When the MH model does not hold, if we want to see the reason why
the equalities of the conditional marginal cumulative probabilities {Fic(k)} do not
hold, the analyst would be interested in inferring the structure of only off-diagonal
probabilities. In this case, the decomposition of the MH model into the CML and
ME models may be preferable to that into the ML and ME models.

Also, the MH model indicates the equalities of marginal cumulative prob-
abilities {Fi(k)}, which include the probabilities {pj;...;} on the main diagonal.
Therefore, when the MH model does not hold, if we want to see the reason why
the equalities of {Fi(k)} do not hold, the analyst would be interested in inferring
the structure of {Fi(k)}. Then, the decomposition of the MH model into the ML
and ME models may be preferable to that into the CML and ME models.

The decompositions of the MH model described here should be consid-
ered for ordinal categorical data, because each of the decomposed models is not
invariant under the same arbitrary permutations of all categories.
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APPENDIX

We consider the MLEs of the expected frequencies {m;;;} under the CML
model. We give the case of three-way table below and omit the case of more
multi-way table because those are obtained in the similar way.

To obtain the MLEs under the CML model, we must maximize the Lagran-
gian

R LR R R R
= > nglogpij — M(Z SN pig - 1)
iz1

i=1 j=1 t=1 j=1 t=1
R-1
i(FE (1= FE®) — exp(a)) (1- FFY) 7E2)
=1
- c(1)y ;e(3)
A2i FZC exp(A3) (1= F;, ) Ff
(00 £) |

with respect to {piji}, pt, {Mi}, {A2i}, A, and A3. Setting the partial derivatives
of L equal to zeros, we obtain the equations

nijt .. .. L.
Mt = for 4,5,t=1,....R; (¢,4,t 1,1,1) ,
N 1+ L(Thj + Tow) (i:,8) # (i,30)
Miii = Ny4s for i= 1, ,R 5
where

R—1
Ty = 07" Z [[(u>i) Tusjy A {(1—F5(2)) — exp(A]) (1- Fet ))}
u=1
+ I(u<z) I(qu) Alu{ eXP(A ) (FC(Q) + (1 Fc( )))}
Lz Tuy) M { (1= F) + FEO

+ Tu<iy Liu<j) Mu {Fﬁ(l) —exp(A7) Ff,f(Q)}

R-1
T = 071 ) [I(uzn Tuzt) A2u {(1 —F®)) — exp(A3) (1 —Fﬁ(l))}
u=1
+ Lu<iy Luzt) A2u {— exp(A3) (F5(3) +(1- Fﬁ(U))}
+ Luzi) Luct) A2u {(1 —~F&¥) F5(1>}

+ Tei) Tuey Aou { FED = exp(A3) Fi® )

)
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and R—_1
S i (-EOYFEY =0 for k=23,

i=1

ﬂc(”(l—Ff(’“)) — exp(Af_) (1=FNYE® for i=1,.,R—1; k=23,
where m;;; = np;;; and I(,) is the indicator function. Using the Newton—Raphson

method, we can solve the equations with respect to {p;;i}, {A1i}, {A2i}, AT and A3.
Therefore, we can obtain the MLEs of {m;;;}, A} and A under the CML model.
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Abstract:

e (lassical extreme value index estimators are known to be quite sensitive to the num-
ber k of top order statistics used in the estimation. The recently developed second
order reduced-bias estimators show much less sensitivity to changes in k. Here, we
are interested in the improvement of the performance of reduced-bias extreme value
index estimators based on an exponential second order regression model applied to
the scaled log-spacings of the top k order statistics. In order to achieve that improve-
ment, the estimation of a “scale” and a “shape” second order parameters in the bias is
performed at a level ky of a larger order than that of the level £ at which we compute
the extreme value index estimators. This enables us to keep the asymptotic variance
of the new estimators of a positive extreme value index v equal to the asymptotic
variance of the Hill estimator, the maximum likelihood estimator of +, under a strict
Pareto model. These new estimators are then alternatives to the classical estimators,
not only around optimal and/or large levels k, but for other levels too. To enhance the
interesting performance of this type of estimators, we also consider the estimation of
the “scale” second order parameter only, at the same level k used for the extreme value
index estimation. The asymptotic distributional properties of the proposed class of
~v-estimators are derived and the estimators are compared with other similar alter-
native estimators of v recently introduced in the literature, not only asymptotically,
but also for finite samples through Monte Carlo techniques. Case-studies in the fields
of finance and insurance will illustrate the performance of the new second order
reduced-bias extreme value index estimators.
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1. INTRODUCTION AND MOTIVATION FOR THE NEW CLASS
OF EXTREME VALUE INDEX ESTIMATORS

Examples of heavy-tailed models are quite common in the most diversified
fields. We may find them in computer science, telecommunication networks,
insurance, economics and finance, among other areas of application. In the area
of extreme wvalue theory, a model F' is said to be heavy-tailed whenever the tail
function, F :=1— F, is a regularly varying function with a negative index of
regular variation equal to —1/v, v > 0, denoted F' € RV_ /v» Where the notation
RV, stands for the class of regularly varying functions at infinity with an index
of regular variation equal to «, i.e., positive measurable functions ¢ such that
lim o0 g(tx)/g(t) = 22, for all z > 0. Equivalently, the quantile function U(t) =
F—(1-1/t), t > 1, with F(z) = inf{y: F(y) > x}, is of regular variation with
index 7, i.e.,

(1.1) F is heavy-tailed <= FeRV_y, <= Ue€RV,,

for some v > 0. Then, we are in the domain of attraction for maxima of an
extreme value distribution function (d.f.),

{exp(—(l +2)77), 14+y2>0 if v#0,

EV. (z) =
! exp(— exp(—x)), reR if v=0,

but with v > 0, and we write F' € Dyq(EVys0). The parameter « is the extreme
value index, one of the primary parameters of extreme or even rare events.

The second order parameter p rules the rate of convergence in the first
order condition (1.1), let us say the rate of convergence towards zero of
InU(tx) —InU(t) — v Inz, and is the non-positive parameter appearing in the
limiting relation

InU(tz) —InU(t) —yInx 2 —1

(12) A A(t) T

which we assume to hold for all > 0, and where |A(¢)| must then be of regular
variation with index p (Geluk and de Haan, 1987). We shall assume everywhere
that p < 0. The second order condition (1.2) has been widely accepted as an
appropriate condition to specify the tail of a Pareto-type distribution in a semi-
parametric way, and it holds for most common Pareto-type models.

Remark 1.1. For Hall-Welsh class of Pareto-type models (Hall and Welsh,
1985), i.e., models such that, with C' > 0, D1 # 0 and p < 0,

(1.3) U(t) = Ct7 (1 + Dqt? + o(t")), as t— o0,

condition (1.2) holds and we may choose A(t) = p Dyt".



180 M. Ivette Gomes, M. Joao Martins and Manuela Neves

Here, although not going into a general third order framework, as the one
found in Gomes et al. (2002) and Fraga Alves et al. (2003), in papers on the
estimation of p, as well as in Gomes et al. (2004a), in a paper on the estima-
tion of a positive extreme value index -y, we shall further specify the term o(t”)
in Hall-Welsh class of models, and, for some particular details in the paper,
we shall assume to be working with a Pareto-type class of models with a quantile
function

(1.4) U(t) = Ct7 (1 + DitP + Dot* + o(t?)) |

ast— oo, with C' >0, D1, Do # 0, p < 0. Consequently, we may obviously choose,
in (1.2),

(1.5) A(t) = pDitP = vy (tP B#0, p<O0,
and, with
(1.6) B(t) = (2Da/D1— D) t? —: §'tP — ﬂIBAy) ,

we may write

x2P —1

2p

P —1
P

InU(tz) —InU(t) —yIlnx = A(t)( > + A(t) B(t)< > (1+o0(1)) .
The consideration of models in (1.4) enables us to get full information on the
asymptotic bias of the so-called second-order reduced-bias extreme value index

estimators, the type of estimators under consideration in this paper.

Remark 1.2. Most common heavy-tailed d.f.’s, like the Fréchet, the Gen-
eralized Pareto (GP), the Burr and the Student’s ¢ belong to the class of models
in (1.4), and consequently, to the class of models in (1.3) or, to the more general
class of parents satisfying (1.2).

For intermediate k, i.e., a sequence of integers k =k, 1 <k <n, such that

(1.7) k=Fk,— oo, kn=o0(n), as n— oo,

and with X;.,, denoting the i-th ascending order statistic (0.s.), 1 < i <n, associated
to an independent, identically distributed (i.i.d.) random sample (X1, Xs, ..., Xp,),
we shall consider, as basic statistics, both the log-excesses over the random high
level In X,,_.p,, i.e.,

(18) Vik :=In Xy 110 —In Xy g 1<i<k<n,
and the scaled log-spacings,

(1.9) Upi=i{ln Xy iy1n — Xy in}, 1<i<k<n.
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We have a strong obvious link between the log-excesses and the scaled log-spacings
provided by the equation, Zle Vik = Zle U;.

It is well known that for intermediate k, and whenever we are working
with models in (1.1), the log-excesses Vji, 1< i <k, are approximately the k
0.8.’s from an exponential sample of size k and mean value . Also, under the
same conditions, the scaled log-spacings U;, 1< ¢ < k, are approximately i.i.d.
and exponential with mean value . Consequently, the Hill estimator of ~ (Hill,
1975),

(1.10) Hk) = Hy(k) = ;ka _ %Zm ,

is consistent for the estimation of v whenever (1.1) holds and k is intermediate,
i.e.,, (1.7) holds. Under the second order framework in (1.2) the asymptotic
distributional representation

(1.11) Hok) £ 5

~
Tk
holds, where ZS) =k (Zle E;/k —1), with {E;} i.i.d. standard exponential
random variables (r.v.’s), is an asymptotically standard normal random variable.
Consequently, vk (H, (k) — ) converges weakly towards a normal r.v. with vari-
ance 72 and a non-null mean value equal to /(1 — p), whenever vk A(n/k) —
A # 0, finite.

The adequate accommodation of the bias of Hill’s estimator has been
extensively addressed in recent years by several authors. Beirlant et al. (1999)
and Feuerverger and Hall (1999) consider exponential regression techniques,
based on the exponential approximations U; ~ v(1+ b(n/k) (k/i)?) E; and
U; ~ v exp(ﬂ (n/z)p) E;, respectively, 1 < i < k. They then proceed to the joint
maximum likelihood (ML) estimation of the three unknown parameters or func-
tionals at the same level k. Considering also the scaled log-spacings U; in (1.9)
to be approximately exponential with mean value p; = v exp (ﬁ(n/i)p), 1<i <k,
B # 0, Gomes and Martins (2002) advance with the so-called “external” estima-
tion of the second order parameter p, i.e., an adequate estimation of p at a level ky
higher than the level k used for the extreme value index estimation, together with
a first order approximation for the ML estimator of 5. They then obtain “quasi-
ML’ explicit estimators of v and (3, both computed at the same level k, and
through that “external” estimation of p, are then able to reduce the asymptotic
variance of the extreme value index estimator proposed, comparatively to the
asymptotic variance of the extreme value index estimator in Feuerverger and
Hall (1999), where the three parameters v, 3 and p are estimated at the same
level k. With the notation

1 <a /il 1 <a /inal
(1.12) di(a) = Z(E> » Dile) = Z(E> Ui,
i=1 i=1
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for any real a > 1 [Dy(1) = H(k) in (1.10)], and with p any consistent estimator
of p, such estimators are

(113) k) = HE) ~ Bk ) (7)) De1— )
and

r~ (kNP di(1—p) X Dy(1) — Di(1—p)
) B = (O G o - Do

for v and f3, respectively. This means that [, in (1.5), which is also a second
order parameter, is estimated at the same level k£ at which the ~-estimation
is performed, being B(k:, p) — not consistent for the estimation of § whenever
VEk A(n/k) — X, finite, but consistent for models in (1.2) and intermediate k
such that vk A(n/k) — oo (Gomes and Martins, 2002), — plugged in the extreme
value index estimator in (1.13). In all the above mentioned papers, authors have
been led to the now called “classical” second order reduced-bias extreme value
index estimators with an asymptotic variance larger or equal to 72((1 -p)/ p)2,
the minimal asymptotic variance of an asymptotically unbiased estimator in
Drees class of functionals (Drees, 1998).

We here propose an “external” estimation of both § and p, through B and p,
respectively, both using a number of top o0.s.’s, k1, larger than the number of
top 0.8.’s, k, used for the extreme value index estimation. We shall thus consider
the estimator

5 (MNP .
(1.15) MLy (k) == H(k) = 3 () De1=5) .
for adequate consistent estimators /3’ and p of the second order parameters 3 and p,
respectively, to be specified in subsection 3.3 of this paper. Additionally, we shall

also deal with the estimator

k
(1.16) ML, (k) = % S Us exp(—B(n/i)?) |
=1

the estimator directly derived from the likelihood equation for + with § and p
fixed and based upon the exponential approximation, U; ~ ~ exp(ﬂ(n/z’)p) E;,
1 <¢ < k. Doing this, we are able to reduce the bias without increasing the
asymptotic variance, which is kept at the value 72, the asymptotic variance of
Hill’s estimator. The estimators are thus better than the Hill estimator for all k.

Remark 1.3. If, in (1.15), we estimate 3 at the same level k used for
the estimation of vy, we may be led to 3M*(k) in (1.13). Indeed, M (k) =
MLﬁA(k;ﬁ)’ﬁ(k:), with §(k; p) defined in (1.14).

Remark 1.4. The ML estimator in (1.15) may be obtained from the esti-
mator in (1.16) through the use of the first order approximation, {1— 3(n/i)”},

for the exponential weight, e*B("/i)ﬁ, of the scaled log-spacing U;, 1 < i < k.
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Remark 1.5. The estimators in (1.15) and (1.16) have been inspired in
the recent papers of Gomes et al. (2004b) and Caeiro et al. (2005). These authors
consider, in different ways, the joint external estimation of both the “scale” and
the “shape” parameters in the A function in (1.2), parameterized as in (1.5), being
able to reduce the bias without increasing the asymptotic variance, which is kept
at the value +2, the asymptotic variance of Hill’s estimator. Those estimators
are also going to be considered here for comparison with the new estimators in
(1.15) and (1.16). The reduced-bias extreme value index estimator in Gomes
et al. (2004b) is based on a linear combination of the log-excesses Vi in (1.8),
and is given by

k

- 5 . L —
S B gy = 2L

1.1 H; (k) :=
( 7) w. ,p( ) pt pln:U

with the notation WH standing for Weighted Hill estimator. Caeiro et al. (2005)
consider the estimator

(1.18) H, (k) = H(k) <1— fﬁ (Z)”) ,

where the dominant component of the bias of Hill’s estimator H(k) in (1.10), given
by A(n/k)/(1—p) = B~(n/k)?/(1—p), is thus estimated through H(k) 5(n/k)?/(1—p),
and directly removed from Hill’s classical extreme value index estimator.
As before, both in (1.17) and (1.18), B and p need to be adequate consistent
estimators of the second order parameters § and p, respectively, so that the
new estimators are better than the Hill estimator for all k.

In section 2 of this paper, and assuming first that only = is unknown,
we shall state a theorem that provides an obvious technical motivation for the
estimators in (1.15) and (1.16). Next, in section 3, we consider the derivation of
the asymptotic behavior of the classes of estimators in (1.15) and (1.16), for an
appropriate estimation of g and p at a level k; larger than the value k used for the
extreme value index estimation. We also do that only with the estimation of p,
estimating J at the same level k£ used for the extreme value index estimation.
In this same section, we finally briefly review the estimation of the two second
order parameters 3 and p. In section 4, using simulation techniques, we exhibit
the performance of the ML estimator in (1.15) and the ML estimator in (1.16),
comparatively to the other “Unbiased Hill” (UH) estimators, WH and H, in
(1.17) and (1.18), respectively, to the classical Hill estimator H in (1.10) and to
the “asymptotically unbiased” estimator ¥%(k) in (1.13), studied in Gomes and
Martins (2002), or equivalently, ML 5 5 with MLg ; the estimator in (1.15).
Section 5 is devoted to the illustration of the behav10r of these estimators for
the Daily Log-Returns of the Furo against the UK Pound and automobile claims
gathered from several European insurance companies co-operating with the same
re-insurer (Secura Belgian Re).
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2. ASYMPTOTIC BEHAVIOR OF THE ESTIMATORS (ONLY ~
IS UNKNOWN)

For real values @ > 1, and denoting again {E;} a sequence of i.i.d. standard
exponential r.v.’s, let us introduce the following notation:

o 1 gaine-t 1
(2.1) Z\% = \/(2a—1)k (k Z(E) B - a) .

1=1
With the same kind of reasoning as in Gomes et al. (2005a), we state:

Lemma 2.1. Under the second order framework in (1.2), for intermediate
k-sequences, i.e., whenever (1.7) holds, and with U; given in (1.9), we may guar-
antee that, for any real o > 1, and Dy(«) given in (1.12),

14" Aln/k)
2a—-1)k a—p

Dy(a) 4 g—i— (1+0p(1)) ,

where Z ,(ga), given in (2.1), is an asymptotically standard normal random variable.
If we further assume to be working with models in (1.4), and with the same
notation as before, we may write for any «, 3 > 1, a # (3, the joint distribution

7

Y, z
(Di(), D(8)) = (0475)+\/%<\/(22—1)’\/(2;—1)>

(2.2) + A(n/k) (;p,ﬁip) +5’A;(:/k:) (Q_lgp’ﬂ_lgp>

A(n/k) 2
+ 0p< 7 >+0p(A (n/k)) ,

with 3 and ' given in (1.5) and (1.6), respectively.

Let us assume that only the extreme value index parameter « is unknown,
and generally denote ML either ML or ML. This case obviously refers to a
situation which is rarely encountered in practice, but reveals the potential of
the classes of estimators in (1.15) and (1.16).

2.1. Known ( and p

We may state:
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Theorem 2.1. Under the second order framework in (1.2), further as-
suming that A(t) may be chosen as in (1.5), and for levels k such that (1.7)
holds, we get asymptotic distributional representations of the type

T d gl 1
(2.3) MLg (k) £ v+ —= 7Y + 0, (A(n/k)) |
vk
where Zlgl) is the asymptotically standard normal r.v. in (2.1) for o = 1.
Consequently, Vk (ML@p(k) — fy) is asymptotically normal with variance equal

to 42, and with a null mean value not only when vk A(n/k) — 0, but also
when 'k A(n/k) — X # 0, finite, as n — oc.

For models in (1.4), we may further specify the term o,(A(n/k)), writing

d v, (B =B) A%(n/k)
(2.4)  MLg,(k) £ 'y—i-ﬁZkl 2 (1+0,(1)) ,
(25) Wk L4+ Lz BEZDAWE ()

Vi " 267 (1-2p)
with 3 and (3’ given in (1.5) and (1.6), respectively. Consequently, even if
Vk A(n/k) — oo, with Vk A%(n/k) — X\,, finite, Vk (MLg,(k) —~) and
VE (MLg (k) —~) are asymptotically normal with variance equal to v* and
asymptotic bias equal to

(26) b _ (ﬂ,_ﬁ))\A and _ (2ﬁ/_ﬁ))\A

MET By (1-2p) ML 28y (1-2p)

respectively.

Proof: If all parameters are known, apart from the extreme value index -,
we get directly from Lemma 2.1,

MLy,y(k) = De(1) = B(7) Du(1=p)
4 VL0 Al/k)
= ’y—l-ﬁ Zkl + 1—/)
_A(n/k) ~ 0% (1-p) , Aln/k) o
g (1—/)Jr (1—2p)k A=y (- p<1))>

LAt % 7 4o, (A(n/k)) .

Similarly, since we may write

2(n
A;yék) Di(1-2p) (1+ 0,(1))

A%(n/k)
27(1-2p)

(2.7) MLg (k) = MLg (k) +

= MLg,(k) + (1+0p(1)) ,
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(2.3) holds for ML as well. For models in (1.4), and directly from (2.2), we get

v, Aln/k) B A% (n/k) ) A(n/k)
Vi TS, Tz U p(l))+0p< vk )

AWk) [y o (1-p) | Aln/k) o
- (1_p+ o Z, "+ sy (1+ p(1))>.

d
ML@p(k‘) = ’Y+

Working this expression, we finally obtain
d Y Q) A(n/k‘)) Az(n/k‘) <ﬁ/ >
MLg (k) = v+ —F%=Z +O< + ——1)(14+0p(1)),
polk) = N "\ VEk Y(1-2p) \ B (1+05(1))

€., (2.4) holds. Also directly from (2.4) and (2.7), (2.5) follows. Note that
since Vk Op(A(n/k)/\/E) = Op(A(n/k)) — 0, the summand Op(A(n/k)/\/E) is
totally irrelevant for the asymptotic bias in (2.6), that follows straightforwardly

from the above obtained distributional representations. ]

Remark 2.1. We know that the asymptotic variances of ML and ML are
the same. Since A\, >0, b__ =b,, + A, /(27 (1—2p)) > b,,. We may thus say
that, asymptotically, the ML-statistic is expected to exhibit a better performance
than ML, provided the bias are both positive. Things work the other way round
if the bias are both negative, i.e., the sample paths of ML are expected to be
in average above the ones of ML.

Remark 2.2. For the Burr d.f. F(z) = 1— (1+2~*/7)/? 2 > 0, we have
Ut) = /(1= tP) P = (145 t2)p +v(y+p) t%/(2p%) + o(t?)), for t > 1.
Consequently, (1.4) holds with Dy =~/p, Dy = y(y+p)/(2p?), B =3 =1 and
b,, = 0. A similar result holds for the GP d.f. F(z) =1— (14+~vyz)~Y7, >0,
For this d.f., U(t) = (t¥ — 1)/, and (1.4) holds with p = —v, D;= —1 and Dy = 0.
Hence f=3'=1 and b, =0. We thus expect a better performance of ML,
comparatively to ML, WH and H whenever the model underlying the data is
close to Burr or to GP models, a situation that happens often in practice, and

that is another point in favour of the ML-statistic.

2.2. Known p

We may state the following:

Theorem 2.2. For models in (1.4), if k =k, is a sequence of intermediate
integers, i.e., (1.7) holds, and if V'k A(n/k) — oo, with vk A%(n/k) converging
towards )\ ,, finite, as n — oo, then, with B(k‘, D), MLB,ﬁ(k) and mg’ﬁ(k‘) given in
(1.14), (1.15) and (1.16), respectively, the asymptotic variance of both ML*(k) =
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MLﬁA(k;p),p(kj) and m (k)) = WB
asymptotic bias given by

N (e 1L L (5G3-50) —20(-p) A,
' ME By (1=2p) (1-3p) ML 2B8v(1-2p)(1-3p)

respectively, again with (3 and ' given in (1.5) and (1.6), respectively.

(k-p)p(k) is equal to (7(1_0)/0)2, being their

Proof: Following the steps in Gomes and Martins (2002), but working
now with models in (1.4) and the distributional representation (2.2), we may
write:

Dy(1=p) { Di(1) (1+ (1)) = (1= p) Di(1-p) }
Dy(1=p) (1+0(1)) = (1=p) Di(1—2p)

_ ~ vx(p)

= H{k) Yr(p)

with Dy(a) given in (1.12). Directly from (2.2), we get

1 (1=p@A=2p) (  [2(1—p)A(n/k) 1 )
ve(p) v p? (1 { ~(1—3p) +OP<\/E)}(1+ p(U))

and, under the conditions on k£ imposed,

ML*(k) = H(k) —

_ 7 ZIS;U _ Z;ilfp) PP A(n/k)
er(p) = \/E<1—p 1_2p> (1-p)2(1—2p)
PP A (n/k) 28 1 )
(I=p)(1—=2p) (5(1—3/)) + 1_2p) (1+0p(1)) -
Consequently,
er(p) ¥ ) oy An/E)
ve(p) p2\/g((12p)zk1 —(1-p) 1*2pZ,€1 p)+17p

A2(n/k) 2(8' - ) 1
" <5(1—3p) " 1—2p> (1+0p(1)) -

Then, with

- 1-p\ ) ((1=p)VI=2p\ _a-
e (S (20

f(1y d v - (B =B)(1—p) A%(n/k)
ML*(k) = ML[}(k;p),p(k) = 'Y"‘ﬁzk— By (1—2p) (1—3p) (1+0p(1))

and the result in (2.8) follows for ML*(k). Also, since the asymptotic covariance
between Z,(Cl) and Z,il_p) is given by /1 —2p /(1 — p), the asymptotic variance of
Z}, is given by

1-p\' (1=p?(1-2p) 2(1-p°VI=2p VIi-2p _ (1-pY
<p>+ P! - P! R _<p>'
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Hence, the asymptotic variance 72{(1—/)) / p}z, stated in the theorem. If we
consider mmk_p) p(k:), since Vk A(n/k) — oo, B(k;p) converges in probability
towards 8 and a result similar to (2.7) holds, i.e.,

2 n
M) = Ty, = Mg, 0+ 57 "0 (L op(1)

The result in the theorem follows thus straightforwardly. O

Remark 2.3. For models in (1.4) and A, # 0 in Theorem 2.2, b* =0 if

’ "ML

and only if 3 = 3. Again, this holds for Burr and GP underlying models.

Remark 2.4. When we look at Theorems 2.1 and 2.2, we see that, for
(8,p) known, despite the increasing in the asymptotic variance, (b, /b* )? =

((1 —3p)/(1— p))2 is an increasing function of |p|, always greater than one,
for p < 0, i.e., there is here again a compromise between bias and variance.

2.3. Asymptotic comparison at optimal levels

We now proceed to an asymptotic comparison of ML and ML* at their
optimal levels in the lines of de Haan and Peng (1998), Gomes and Martins
(2001) and Gomes et al. (2005b, 2006), among others, but now for second order
reduced-bias estimators. Suppose 75 (k) is a general semi-parametric estimator
of the extreme value index ~, for which the distributional representation

Vi

holds for any intermediate k, and where Z; is an asymptotically standard normal

(2.9) k) £ v+

Zn +be A%(n/k) + 0,(A%(n/k))

random variable. Then we have
VEFL () =] 5 N(A\be,02),  as n—oo,

provided k is such that vk A%(n/k) — \,, finite, as n — oo. In this situation
we may write Bias.o[V5(k)] := be A?(n/k) and Var.[75(k)] := o2 /k. The so-called
Asymptotic Mean Squared Error (AMSE) is then given by

AMSE[R2(K)] := ‘f+ b2 AY(n/k) .

Using regular variation theory (Bingham et al., 1987), it may be proved that,
whenever b, # 0, there exists a function ¢(n), dependent only on the underlying
model, and not on the estimator, such that

(2.10)  lim p(n) AMSE[f%] = C(p) (02) 7% (B)T% = LMSE[F}] ,

n—oo
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where 7%, :=An(k3(n)), k§(n) := arginf, AMSE [y5(k)], is the estimator 77 (k)
computed at its optimal level, the level where its AMSE is minimum.

It is then sensible to consider the usual:

Definition 2.1. Given two second order reduced-bias estimators, ‘y\él)(k)
and 3,(?)(145), for which distributional representations of the type (2.9) hold, with
constants (o1,b1) and (o9,b2), by, be # 0, respectively, both computed at their
optimal levels, the Asymptotic Root Efficiency (AREFF) of ’y£0) relatively to

3\ is AREFF,, = AREFF. Ly = (LMSE 2/ LMsE[RY])"? with LMSE
given in (2.10).

Remark 2.5. This measure was devised so that the higher the AREFF
measure the better the estimator 1 is, comparatively to the estimator 2.

Proposition 2.1. For every [ # (', if we compare ML= MLg, and

« _ap\—1/(1—4
ML :MLB(k;p),p’ we get AREFF v = (1—p)% ((1=3p) p~*) /1=40)

for all p < Q.

We may also say that AREFF ML|ME > 1, for all p, B and 3. This indicator
depends then not only of p, but also of 8 and 3’. This result, together with the
result in Proposition 2.1, provides again a clear indication on an overall better
performance of the ML estimator, comparatively to ML and ML*.

3. EXTREME VALUE INDEX ESTIMATION BASED ON THE
ESTIMATION OF THE SECOND ORDER PARAMETERS
3 AND p

Again for a > 1, let us further introduce the following extra notations:

31 W = @a-1)V2a—1)k/2 (; zk:(;)a ln<k>E + )
=1

1=

(3.2) D;(a):de —ii() ()U

with U; and Dy(«) given in (1.9) and (1.12), respectively.

Again with the same kind of reasoning as in Gomes et al. (2005a), we state:
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Lemma 3.1. Under the second order framework in (1.2), for intermediate
k-sequences, i.e., whenever (1.7) holds, and with U; given in (1.9), we may guar-
antee that, for any real o > 1 and with D («) given in (3.2),

4 7 AL A(n/k)

a2 " (2a—1)v/(2a—1)k/2 " (a—p)? (14 0p(1)) ,

(33)  Di(e)

where Wk(:a), in (3.1), are asymptotically standard normal r.v.’s.

3.1. Estimation of both second order parameters § and p at a lower
threshold

Let us assume first that we estimate both 8 and p externally at a level k;
of a larger order than the level k at which we compute the extreme value index
estimator, now assumed to be an intermediate level k such that V& A(n/k) — ),
finite, as n — oo, with A(¢) the function in (1.2). We may state the following:

Theorem 3.1. Under the initial conditions of Theorem 2.1, let us consider
the class of extreme value index estimators MLBﬁ(k)7 with ML denoting again

either the ML estimator in (1.15) or the ML estimator in (1.16), with 3 and p
consistent for the estimation of B and p, respectively, and such that

(3.4) (p—p) Inn = 0py(1), as m— oo .

Then, \/E{mﬁ ﬁ(k:) —’y} is asymptotically normal with null mean value and vari-
ance o7 = ~2, not only when vk A(n/k) — 0, but also whenever vk A(n/k) —
A # 0, finite.

Proof: With the usual notation angYn if and only if X,,/Y,, goes in
probability to 1, as n — oo, we may write
A(n/k) Dp(1—p) p  An/k)

p —
) Di(1=p) = = By T B-p)

87\4\2/37p p _ (ﬁ
ap k

and

QED
=~
X
)
=

Moy g A0 (%) Dita-p) - Di1 )

AP ) )

If we estimate consistently p and 3 through the estimators B and p in the con-

AS

ditions of the theorem, we may use Taylor’s expansion series, and we obtain

(35) MLy ,(k)~MLg (k) % —Al(f/’;) {(ﬁ ;5 >+(ﬁ—p) (ln(n/k)ﬂip)}-
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Consequently, taking into account the conditions in the theorem,
MLy (k) — MLy ,(k) = o, (A(n/k)) .

Hence, if vk A(n/k) — ), finite, Theorem 2.1 enables us to guarantee the results
in the theorem. O

3.2. Estimation of the second order parameter p only at a lower
threshold

If we consider v and (3 estimated at the same level k, we are going to have
an increase in the asymptotic variance of our final extreme value index estimators,
but we no longer need to assume that condition (3.4) holds. Indeed, as stated
in Corollary 2.1 of Theorem 2.1 in Gomes and Martins (2002), for the estimator
in (1.13), Theorem 3.2 in Gomes et al. (2004b), for the estimator WHpy . 5 and

Theorem 3.2 in Caeiro et al. (2005), for the estimator ﬁ[ﬁ(kﬁ) 5 We may state:

Theorem 3.2. (Gomes and Martins, 2002; Gomes et al., 2004b; Caeiro
et al., 2005) Under the second order framework in (1.2), if k = k,, is a sequence
of intermediate integers, i.e., (1.7) holds, and if lim, .., Vk A(n/k) = X, finite,
then, with UH denoting any of the statistics ML, ML, WH or H in (1.15),
(1.16), (1.17) and (1.18), respectively, p any consistent estimator of the second
order parameter p, and 3(k; p) the B-estimator in (1.14),

d 1—p\2
00 E(UHy 00— 2 Moo, 23 =2 (2.
Le., the asymptotic variance of UHy - p(k) increases of a factor ((1—,0)/p)2 >1
for every p < 0.

Remark 3.1. If we compare Theorem 3.1 and Theorem 3.2, we see that,
as expected, the estimation of the two parameters v and (§ at the same level k
induces an increase in the asymptotic variance of the final y-estimator of a factor
given by ((1 -p)/ p) 2, greater than 1. The estimation of the three parameters ~,
B and p at the same level k£ may still induce an extra increase in the asymptotic
variance of the final v-estimator, as may be seen in Feuerverger and Hall (1999)
(where the three parameters are indeed computed at the same level k). These
authors get an asymptotic variance ruled by 0'127 g 72((1 -p)/ p) 4, and we have
01 < 09 < 0Ly, for all p < 0. Consequently, and taking into account asymptotic
variances, it seems convenient to estimate both § and p “externally”, at a level kq
of a larger order than the level k used for the estimation of the extreme value
index 7.
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3.3. How to estimate the second order parameters

We now provide some details on the type of second order parameters’ es-
timators we think sensible to use in practice, together with their distributional
properties.

3.3.1. The estimation of p

Several classes of p-estimators are available in the literature. Among them,
we mention the ones introduced in Hall and Welsh (1985), Drees and Kaufman
(1998), Peng (1998), Gomes et al. (2002) and Fraga Alves et al. (2003). The one
working better in practice and for the most common heavy-tailed models, is the
one in Fraga Alves et al. (2003). We shall thus consider here particular members of
this class of estimators. Under adequate general conditions, and for p < 0, they
are semi-parametric asymptotically normal estimators of p, which show highly
stable sample paths as functions of k1, the number of top o.s.’s used, for a wide
range of large ki-values. Such a class of estimators has been first parameterized
by a tuning parameter 7 > 0, but 7 may be more generally considered as a real
number (Caeiro and Gomes, 2004), and is defined as

3 (T,@(kl) - 1)
T\ (k) — 3

(3.7) plki;7) = pr(kr) = p7(kr) == —

where

(M,sl)(k‘l))T . (M7(L2)(k1>/2)’r/2

() =
O e — (010

with the notation a’” = blna, whenever 7 = 0 and with

; 1 k Xn—i+1'n J
M (k) = - Z{ln-} , j>1  [MP=H i (1.10)].

We shall here summarize a particular case of the results proved in Fraga
Alves et al. (2003):

Proposition 3.1 (Fraga Alves et al., 2003). Under the second order frame-
work in (1.2), if ki is an intermediate sequence of integers, and if \/k1 A(n/ki) —
(1)

00, as n — oo, the statistics py, '(k1) in (3.7) converge in probability towards p,
as n — oo, for any real T. Moreover, for models in (1.4), if we further assume
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that ki A%(n/k)) — Ay, s finite, pr(k1) EpA,(;)(kzl) is asymptotically normal
with a bias proportional to A, , and {p-(k1) — p} = Op(1/ (VE1 A(n/k1))).
If VEi A%(n/k1) — oo, {p-(k1) —p} = Op(A(n/k1)).

Remark 3.2. Note that if we choose for the estimation of p a level k;
under the conditions that assure, in Proposition 3.1, asymptotic normality with
a non-null bias, we may guarantee that ky = O(n‘4p/ (1_4P)) and consequently
VEki A(n/k) = O(n_/’/(l_4p)). Hence, pr(k1)—p = Op(1/(Vk1 A(n/k1))) =
O, (np/(l_4p)) = o0p(1/Inn) provided that p <0, ie., (3.4) holds whenever
we assume p < 0.

Remark 3.3. The adaptive choice of the level k; suggested in Remark 3.2
is not straightforward in practice. The theoretical and simulated results in Fraga
Alves et al. (2003), together with the use of these p-estimators in the Generalized
Jackknife statistics of Gomes et al. (2000), as done in Gomes and Martins (2002),
has led these authors to advise the choice k) = min(n— 1,[2n/Inln n}), to esti-
mate p. Note however that with such a choice of ki, v/k1 A%(n/ki) — oo and
{p+(k1) —p} = Op(A(n/k1)) = Op((InInn)”). Consequently, without any further
restrictions on the behavior of the p-estimators, we may no longer guarantee that
(3.4) holds.

Remark 3.4. Here, and inspired in the results in Gomes et al. (2004b)
for the estimator in (1.17), we advise the consideration of a level of the type

(3.8) ki=[n'7], for some € >0, small,

where [z] denotes, as usual, the integer part of x. When we consider the level ky
n (3.8), vk A%*(n/ky) — oo, if and only if p> 1 — 1 — —oc0, as € > 0, and
such a condition is an almost irrelevant restriction in the underlying model,
provided we choose a small value of e. For instance, if we choose € = 0.001,
we get p > —249.75. Then, and with such an irrelevant restriction in the models
in (1.4), if we work with any of the p-estimators in this section, computed at the
level ki, {p —p} is of the order of A(n/ki) = O(n*?), which is of smaller order
than 1/Inn. This means that, again, condition (3.4) holds, being the choice in

(3.8) a very adequate choice in practice.

We advise practitioners not to choose blindly the value of 7 in (3.7). It is
sensible to draw some sample paths of j(k;7), as functions of k and for a few
T-values, electing the value of 7 = 7* which provides the highest stability for
large k, by means of any stability criterion, like the ones suggested in Gomes
et al. (2004a), Gomes and Pestana (2004) and Gomes et al. (2005a). Anyway,
in all the Monte Carlo simulations we have considered the level k; in (3.8), with
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e = 0.001, and

) 3(T7(LT)(]€1) - 1)
(3.9) Pri= — o) , T=
Ty (k1) — 3

0 if p>-—1,

1 if p<—1.
Indeed, an adequate stability criterion, like the one used in Gomes and Pestana
(2004), has practically led us to this choice for all models simulated, whenever the
sample size n is not too small. Note also that the choice of the most adequate
value of 7, let us say the tuning parameter 7 = 7* mentioned before, is much
more relevant than the choice of the level k1, in the p-estimation and everywhere
in the paper, whenever we use second order parameters’ estimators in order to
estimate the extreme value index.

From now on we shall generally use the notation p = p; = p(k1;7) for any

~

of the estimators in (3.7) computed at a level k; in (3.8)

3.3.2. The estimation of 3 based on the scaled log-spacings

We have here considered the estimator of 5 obtained in Gomes and Martins
(2002), already defined in (1.14), and based on the scaled log-spacings U; in (1.9),
1< i < k. The first part of the following result has been proved in Gomes and
Martins (2002) and the second part, related to the behavior of G(k; p(k; 7)), has
been proved in Gomes et al. (2004b):

Proposition 3.2 (Gomes and Martins, 2002; Gomes et al., 2004b). If the
second order condition (1.2) holds, with A(t)=p~t’, p<0, if k=k, is
a sequence of intermediate positive integers, i.e. (1.7) holds, and if lim,
Vk A(n/k) = oo, then B(k‘;p), defined in (1.14), converges in probability towards (3,
as n — 0o. Moreover, if (3.4) holds, B(k;ﬁ) is consistent for the estimation of 3.
We may further say that

(3.10) Bk plk;m)) — B X =B In(n/k) (p(k;7)—p) |

with p(k;7) given in (3.7). Consequently, B(k‘, p(k;T)) is consistent for the estima-
tion of 3 whenever (1.7) holds and 'k A(n/k)/In(n/k) — co. For models in (1.4),
B(k; p(k;T)) — B = Op(In(n/k)/ (Vk A(n/k))) whenever Vk A%(n/k) — X, finite.
If Vk A% (n/k) — oo, then ((k; p(k; 7)) — B = Op(In(n/k) A(n/k)).

An algorithm for second order parameter estimation, in a context of high
quantiles estimation, can be found in Gomes and Pestana (2005).
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4. FINITE SAMPLE BEHAVIOR OF THE ESTIMATORS

4.1. Simulated models

In the simulations we have considered the following underlying parents:
the Fréchet model, with d.f. F(z) =exp(—z~'/7), >0, v>0, for which
p=—1, $=1/2, #’=5/6; and the GP model, with d.f. F(z) =1— (14+~z)"'/7,
x >0, >0, for which p = —v, =1, f/'=1.

4.2. Mean values and mean squared error patterns

We have here implemented simulation experiments with 5000 runs, based on
the estimation of 3 at the level k; in (3.8), with € = 0.001, the same level we have
used for the estimation of p. We use the notation le = B(kzl;ﬁj), 7 =0,1, with
B(k; p) and p,, 7=0,1, given in (1.14) and (3.9), respectively. Similarly to what
has been done in Gomes et al. (2004b) for the WH-estimator, in (1.17), and in
Caeiro et al. (2005) for the H-estimator, in (1.18), these estimators of p and 3 have
been also incorporated in the ML-estimators, leading to mo(k) = mﬁmﬁo(kz)
or to MLy (k) = MVLBH@(/@, with ML denoting both ML and ML in (1.15) and
(1.16), respectively.

The simulations show that the extreme value index estimators UH;(k) =
UHthﬁj(k:), with UH denoting again either ML or ML or WH or H, j equal
to either 0 or 1, according as |p| <1 or |p| > 1, seem to work reasonably well,
as illustrated in Figures 1, 2 and 3. In these figures we picture for the above
mentioned underlying models, and a sample of size n=1000, the mean values
(E[e]) and the mean squared errors (MSE][e]) of the Hill estimator H, together
with UHj (left), UH; = UH[?(k;f)j),ﬁj (right), with 7 =0 or j =1, according as
lp| <1 or |p|>1 and the r.v.’s UH = UHpg,, (center). The discrepancy, in some
of the models, between the behavior of the estimators proposed in this paper,
the ones in the left figures, and the r.v.’s, in the central ones, suggests that
some improvement in the estimation of second order parameters § and p is still
welcome.

Remark 4.1. For the Fréchet model (Figure 1), the UH/@ﬂ6 estimators
exhibit a negative bias up to moderate values of £ and consequently, as hinted
in Remark 2.1, the ML statistic is the one exhibiting the worst performance in
terms of bias and minimum mean squared error. The ML estimator, always quite
close to WHy, exhibits the best performance among the statistics considered.
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Figure 1: Underlying Fréchet parent with y=1 (p=—1).
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Figure 2: Underlying GP parent with v=0.5 (p=—-0.5).
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Figure 3: Underlying GP parent with y=2 (p=—-2).

Things work the other way round, either with the r.v.’s UH (Figure 1, center) or
with the statistics UH{; (Figure 1, right). The ML statistic is then the one with
the best performance.

Remark 4.2. For a GP model, we make the following comments:

1)

The ML statistic behaves indeed as a “really unbiased” estimator of ~,
should we get to know the true values of 3 and p (see the central graphs
of Figures 2 and 3). Indeed b, = 0 (see Remark 2.2), but we believe
that more than this happens, although we have no formal proof of the
unbiasedness of ML(k) for all k£ and for Burr and GP models, among
other possible parents.

For values of p > —1 (Figure 2), the estimators exhibit a positive bias,
overestimating the true value of the parameter, and the ML-statistic
is better than H, which on its turn behaves better than ML, this one
better than WH, both regarding bias and mean squared error and
in all situations (either when (8 and p are known or when (3 and p
are estimated at the larger level k; or when only p is estimated at a
larger level kq, with § estimated at the same level than the extreme
value index).
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3) For p< —1 (Figure 3), we need to use p; (instead of py) or an hybrid
estimator like the one suggested in Gomes and Pestana (2004).
In all the simulated cases the ML;-statistic is always the best one,
being ML, H; and WH; almost equivalent.

4.3. Simulated comparative behavior at optimal levels

In Table 1, for the above mentioned Fréchet(y=1), GP(y=.5) and
GP (y=2) parents and for the r.v.’s UH = UH g ,, we present the simulated val-
ues of the following characteristics at optimal levels: the optimal sample sample
fraction (OSF)/ mean value (E) (first row) and the mean squared error (MSE)/
Relative Efficiency (REFF') indicator (second row). The simulated output is
now based on a multi-sample simulation of size 1000 x10, and standard errors,
although not shown, are available from the authors. The OSF is, for any T, (k),

OSF, = k(()T:L(n) _ arg min ]\?llSE(Tn(k)) 7

and, relatively to the Hill estimator H, (k) in (1.10), the REFF indicator is

REFF, = \/MSE [Hn(k;gH)(n))] / MSE [Tn(kgﬂ(n))} .

For any value of n, and among the four r.v.’s, the largest REFF (equivalent to
smallest MSFE) is in bold and underlined.

It is clear from Table 1 the overall best performance of ML estimator,
whenever (3, p) is assumed to be known. Indeed, since b,,, = 0, we were intuitively
expecting this type of performance. The choice is not so clear-cut when we
consider the estimation of the second order parameters, and either the statistics
UHj or the statistics UH;". Tables 2, 3 and 4 are similar to Table 1, but for the
extreme value index estimators UH; and UH;T7 j=0or 1 according as |p| <1 or
|p > 1. Again, for any value of n, and among any four estimators of the same type,
the largest REFF (equivalent to smallest MSE) is also in bold and underlined
if it attains the largest value among all estimators, or only in bold if it attains

the largest value among estimators of the same type.

A few remarks:

e For Fréchet parents, and among the UHj estimators, the best perfor-
mance is associated to MLy for n < 500 and to ML} for n > 500. Among
the UH, estimators, MLy exhibits the best performance for all n.
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For GP parents with v = 0.5, MLg exhibits the best performance among

the UH, statistics.

ML is also the best among the UH{ statistics,
behaving ML better than MLy, for all n.

For GP parents with v = 2, ML; exhibits the best performance among

the UH, statistics.

ML] is also the best among the UH{ statistics.

Now, ML} behaves better than ML;, for n > 500 and for n < 500
ML, performs better than ML7.

Table 1:  Simulated OSF/E (first row) and MSE/REFF (second row)
at optimal levels of the r.v.’s under study.
’ n ‘ 100 200 ‘ 500 1000 2000
’ Fréchet parent, vy =1 (p=-1)
ML 0.642 / 0.986 0.599 / 1.017 0.517 / 1.037 0.473 / 1.039 0.429 / 1.012
0.015 / 1.678 | 0.009 / 1.734 | 0.004 / 1.832 | 0.002 / 1.909 0.001 / 2.001
57 0.608 / 0.971 0.544 / 1.008 0.477 / 1.045 0.416 / 1.040 0.367 / 1.007
0.016 / 1.647 0.010 / 1.662 0.005 / 1.727 0.003 / 1.782 0.002 / 1.855
WH 0.580 / 0.960 0.513 / 1.019 0.450 / 1.052 0.395 / 1.041 0.357 / 1.003
0.018 / 1.539 0.011 / 1.577 0.005 / 1.658 0.003 / 1.723 0.002 / 1.805
T 0.587 / 0.963 0.537 / 1.012 0.482 / 1.048 0.436 / 1.041 0.379 / 1.008
0.018 / 1.560 0.010 / 1.609 0.005 / 1.710 0.003 / 1.786 0.001 / 1.874
GP parent, v=0.5 (p=—0.5)
ML 0.987 / 0.507 0.985 / 0.513 0.991 / 0.504 0.990 / 0.504 0.997 / 0.503
0.002 / 5.813 | 0.001 / 6.567 | 0.000 / 7.831 | 0.000 / 9.184 | 0.000 / 10.487
ST 0.295 / 0.565 0.240 / 0.545 0.183 / 0.530 0.157 / 0.531 0.124 / 0.523
0.009 / 2.529 0.006 / 2.561 0.003 / 2.591 0.002 / 2.697 0.001 / 2.753
WH 0.273 / 0.573 0.221 / 0.566 0.174 / 0.537 0.146 / 0.533 0.117 / 0.530
0.012 / 2.246 0.007 / 2.332 0.004 / 2.419 0.002 / 2.542 0.001 / 2.624
T 0.391 / 0.549 0.353 / 0.537 0.302 / 0.536 | 0.262 / 0.5200 0.208 / 0.521
0.007 / 2.918 0.004 / 3.128 0.002 / 3.367 0.001 / 3.597 0.001 / 3.835
GP parent, y=2 (p=-2)
ML 0.990 / 2.065 0.994 / 1.921 0.995 / 1.992 0.993 / 2.011 0.999 / 2.015
0.032 / 1.923 | 0.016 / 2.030 | 0.006 / 2.211 0.00 / 2.382 0.002 / 2.541
ST 0.731 / 2.111 0.677 / 1.956 0.633 / 2.033 0.588 / 2.047 0.549 / 2.063
0.050 / 1.530 | 0.027 / 1.544 | 0.012 / 1.573 | 0.007 / 1.602 | 0.004 / 1.640
WH 0.659 / 2.091 0.633 / 1.977 0.576 / 2.036 0.540 / 2.057 0.505 / 2.062
0.058 / 1.420 0.031 / 1.450 0.014 / 1.496 0.008 / 1.528 0.004 / 1.573
T 0.669 / 2.103 0.647 / 1.976 0.604 / 2.047 0.574 / 2.053 0.533 / 2.057
0.058 / 1.423 0.030 / 1.470 0.013 / 1.525 0.007 / 1.570 0.004 / 1.622
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Table 2:  Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for Fréchet parents with y=1 (p=—1, f=0.5).
’ n ‘ 100 200 500 1000 2000
H 0.326 / 1.026 0.281 / 1.069 0.222 / 1.056 0.174 / 1.055 0.138 / 1.031
0.044 / 1.000 0.026 / 1.000 0.013 / 1.000 0.008 / 1.000 0.005 / 1.000
ML 0.569 / 0.820 0.592 / 0.966 0.826 / 0.977 0.808 / 1.010 0.999 / 0.985
© | 0.037/1.084 | 0.021/1.113 | 0.010/1.185 | 0.005/1.269 | 0.003 / 1.402
T, 0.847 / 0.959 0.802 / 1.027 0.758 / 1.008 0.727 / 1.026 0.709 / 0.998
0 0.019 / 1.518 | 0.012 / 1.485 | 0.006 / 1.538 | 0.003 / 1.641 | 0.002 / 1.766
Wi | 0816 /0.963 [ 0.756 / 1.014 | 0702/ 1.004 | 0.678 / 1.030 | 0.650 / 1.001
O | 0.020/1.494 | 0.012 /1.467 | 0.006 / 1.517 | 0.003 / 1.616 | 0.001 / 1.731
yer 0.877 / 0.951 0.841 / 1.005 0.819 / 0.998 0.808 / 1.026 0.808 / 0.973
0 0.024 / 1.358 0.015 / 1.331 0.007 / 1.376 0.004 / 1.469 0.002 / 1.576
ML 0.947 / 0.849 0.920 / 0.973 0.870 / 0.992 0.855 / 1.019 0.834 / 0.979
0 0.037 / 1.092 0.020 / 1.139 0.009 / 1.239 | 0.005 / 1.349 | 0.002 / 1.480
ST 0.858 / 0.988 0.787 / 1.054 0.676 / 1.064 0.603 / 1.058 0.530 / 1.001
0 0.027 / 1.277 | 0.017 / 1.234 | 0.009 / 1.222 0.005 / 1.230 0.003 / 1.246
WH? 0.811 / 0.992 0.736 / 1.062 0.647 / 1.069 0.567 / 1.057 0.511 / 1.003
0 0.030 / 1.211 0.018 / 1.194 0.009 / 1.194 0.006 / 1.208 0.003 / 1.224
- 0.856 / 0.973 | 0.795 / 1.048 | 0.711 / 1.059 | 0.643 / 1.057 | 0.579 / 0.994
0 0.031 / 1.191 0.019 / 1.183 0.009 / 1.205 0.005 / 1.231 0.003 / 1.261
Table 3:  Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for GP parents with v=0.5 (p=-0.5, §=1).
’ n ‘ 100 200 500 1000 2000
H 0.103 / 0.742 0.077 / 0.646 0.051 / 0.632 0.040 / 0.602 0.028 / 0.585
0.058 / 1.000 0.037 / 1.000 0.020 / 1.000 0.014 / 1.000 0.009 / 1.000
ML 0.306 / 0.636 0.216 / 0.633 0.107 / 0.606 0.076 / 0.583 0.051 / 0.558
0 0.023 / 1.572 | 0.017 / 1.474 | 0.011 / 1.383 | 0.008 / 1.339 | 0.006 / 1.274
T 0.211 / 0.674 0.149 / 0.618 0.101 / 0.606 0.073 / 0.588 0.049 / 0.558
0 0.029 / 1.418 0.019 / 1.383 0.011 / 1.338 0.008 / 1.310 0.006 / 1.258
WH. 0.202 / 0.669 0.144 / 0.614 0.100 / 0.607 0.071 / 0.586 0.049 / 0.558
0 0.029 / 1.416 0.019 / 1.382 0.011 / 1.336 0.008 / 1.308 0.006 / 1.257
yir 0.234 / 0.641 0.165 / 0.640 0.103 / 0.607 0.073 / 0.588 0.049 / 0.557
0 0.029 / 1.418 0.019 / 1.384 0.011 / 1.339 0.008 / 1.310 0.006 / 1.257
ML 0.795 / 0.652 0.636 / 0.628 0.421 / 0.602 0.310 / 0.578 0.240 / 0.568
0 0.022 / 1.612 | 0.016 / 1.525 | 0.010 / 1.452 | 0.007 / 1.420 | 0.005 / 1.370
L 0.449 / 0.720 0.350 / 0.654 0.251 / 0.610 0.192 / 0.600 0.140 / 0.579
0 0.049 / 1.090 0.030 / 1.114 0.015 / 1.148 0.010 / 1.185 0.006 / 1.199
WH 0.450 / 0.732 0.334 / 0.649 0.245 / 0.612 0.191 / 0.600 0.138 / 0.576
0 0.051 / 1.068 0.030 / 1.110 0.015 / 1.149 0.010 / 1.187 0.006 / 1.205
e 0.464 / 0.697 0.389 / 0.634 0.289 / 0.600 0.226 / 0.599 0.169 / 0.558
0 0.040 / 1.211 0.024 / 1.240 0.012 / 1.261 0.009 / 1.280 0.006 / 1.271
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Table 4:  Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for GP parents with y=2 (p=-2, §=1).

’ n ‘ 100 200 500 1000 2000
e 0.415 / 2.179 0.359 / 1.968 0.319 / 2.018 0.290 / 2.068 0.251 / 2.069
0.117 / 1.000 0.064 / 1.000 0.030 / 1.000 0.018 / 1.000 0.010 / 1.000
yp. | 0817 /2184 | 0.647 /2012 | 0.663 / 2.048 | 0.657 /2.077 | 1.000 / 2.094
'] 0.071 /1.282 | 0.043 / 1.221 | 0.021 / 1.194 | 0.013 / 1.173 | 0.007 / 1.180
L 0.631 / 2.140 0.558 / 2.008 0.478 / 2.044 0.399 / 2.050 0.358 / 2.040
! 0.079 / 1.215 0.046 / 1.184 0.022 / 1.168 0.013 / 1.158 0.008 / 1.153
WH 0.623 / 2.155 0.554 / 2.024 0.470 / 2.048 0.396 / 2.051 0.349 / 2.041
' | 0.081/1.197 | 0.047 /1.171 | 0.023 /1.159 | 0.013 / 1.153 | 0.008 / 1.149
Vit 0.618 / 2.167 0.545 / 2.041 0.470 / 2.050 0.396 / 2.051 0.349 / 2.041
! 0.083 / 1.186 | 0.047 / 1.165 | 0.023 / 1.156 | 0.013 / 1.152 | 0.008 / 1.148
ML 0.990 / 2.194 0.935 / 2.000 0.828 / 2.034 0.768 / 2.077 0.681 / 2.055
11 0.072 /1.272 | 0.044 / 1.211 | 0.021 / 1.204 | 0.012 / 1.197 | 0.007 / 1.191
VL 0.751 / 2.199 0.696 / 1.993 0.624 / 2.044 0.571 / 2.065 0.519 / 2.041
! 0.089 / 1.143 0.050 / 1.129 0.024 / 1.123 0.014 / 1.125 0.008 / 1.130
WH? 0.711 / 2.240 0.652 / 2.002 0.595 / 2.038 0.548 / 2.070 0.510 / 2.045
! 0.100 / 1.079 0.054 / 1.087 0.025 / 1.098 0.014 / 1.105 0.008 / 1.115
T 0.710 / 2.240 0.657 / 2.001 0.604 / 2.041 0.561 / 2.071 0.513 / 2.041
! 0.10 / 1.0780 | 0.054 / 1.088 | 0.025 / 1.101 | 0.014 / 1.109 | 0.008 / 1.120

4.4. An overall conclusion

The main advantage of the estimators UH;, and particularly of the ML;
estimators in this paper, the ones with an overall better performance, lies on
the fact that we may estimate 3 and p adequately through B and p so that the
MSE of the new estimator is smaller than the MSE of Hill’s estimator for all &,
even when |p| > 1, a region where it has been difficult to find alternatives for the
Hill estimator. And this happens together with a higher stability of the sample
paths around the target value . These new estimators work indeed better than
the Hill estimator for all values of k, contrarily to the alternatives so far available
in the literature, like the alternatives UHJ, j=0 or 1, also considered in this
paper for comparison.
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5. CASE-STUDIES IN THE FIELDS OF FINANCE AND
INSURANCE

5.1. Euro-UK Pound daily exchange rates

We shall first consider the performance of the above mentioned estimators
in the analysis of the Euro-UK Pound daily exchange rates from January 4, 1999
until December 14, 2004. This data has been collected by the European System of
Central Banks, and was obtained from http://www.bportugal.pt/rates/cambtx/.
In Figure 4 we picture the Daily Exchange Rates z; over the above mentioned
period and the Log-Returns, r» = 100 x (In 2y — Inx4_1), the data to be analyzed.
Indeed, although conscious that the log-returns of any financial time-series are not
i.i.d., we also know that the semi-parametric behavior of estimators of rare event
parameters may be generalized to weak dependent data (see Drees, 2002, and
references therein). Semi-parametric estimators of extreme events’ parameters,
devised for i.i.d. processes, are usually based on the tail empirical process, and
remain consistent and asymptotically normal in a large class of weakly dependent
data.

0.8 4
0.7 |

x[
06 1
0.5 . . 1
24-Jul-98 19-Apr-01 14-Jan-04 4

Figure 4: Daily Exchange Rates (left) and Daily Log-Returns (right)
on FEuro-UK Pound Exchange Rate.

The histogram in Figure 5 points to a heavy right tail. Indeed, the empirical
counterparts of the usual skewness and kurtosis coefficients are $; = 0.424 and
B2 = 1.835, clearly greater than 0, the target value for an underlying normal
parent.

In Figure 6, and working with the ng = 725 positive log-returns, we now
picture the sample paths of p(k;7) in (3.7) for 7 =0, and 1 (left), as functions
of k. The sample paths of the p-estimates associated to 7 = 0 and 7 = 1 lead us
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Figure 5: Histogram of the Daily Log-Returns on the Euro-UK Pound.

to choose, on the basis of any stability criterion for large values of k, the esti-
mate associated to 7 = 0. In Figure 6 we thus present the associated second order
parameters estimates, o= po(721) = —0.65 (left) and [y = B, (721) = 1.03,
together with the sample paths of G(k; po) in (1.14), for 7 =0 (center). The sam-
ple paths of the classical Hill estimator in (1.10) (H) and of three of reduced-bias,
second order extreme value index estimates discussed in this paper, associated
to po = —0.65 and fy = 1.03, are also pictured in Figure 6 (right). We do not
picture the statistic WHy because that statistic practically overlaps MLy.

Figure 6: Estimates of the second order parameter p (left), of the second
order parameter ( (center) and of the extreme value index (right),
for the Daily Log-Returns on the Euro-UK Pound.

The Hill estimator exhibits a relevant bias, as may be seen from Figure 6,
and we are for sure a long way from the strict Pareto model. The other estimators,
MLy, MLy and Hy, which are “asymptotically unbiased”, reveal without doubt
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a bias much smaller than that of the Hill. All these statistics enable us to take
a decision upon the estimate of v to be used, with the help of any stability crite-
rion, but the ML statistic is without doubt the one with smallest bias, among the
statistics considered. More important than this: we know that any estimate con-
sidered on the basis of MLy(k) (or any of the other three reduced-bias statistics)
performs for sure better than the estimate based on H(k) for any level k. Here,
we represent the estimate 7 =7,,, = 0.30, the median of the ML estimates, for
thresholds £ between [na2ﬁ/(172ﬁ)/4] =10 and [4x na%/(l*m)] =165, chosen in
an heuristic way. If we use this same criterion on the estimates ML, WH and H
we are also led to the same estimate, 7 = I ﬁﬁ = 0.30. The development
of adequate techniques for the adaptive choice of the optimal threshold for
this type of second order reduced-bias extreme value index estimators is needed,
being indeed an interesting topic of research, but is outside the scope of the

present paper.

5.2. Automobile claims

We shall next consider an illustration of the performance of the above men-
tioned estimators, through the analysis of automobile claim amounts exceeding
1,200.000 Euros, over the period 1988-2001, and gathered from several European
insurance companies co-operating with the same re-insurer (Secura Belgian Re).
This data set has already been studied, for instance, in Beirlant et al. (2004).
Figure 7 is similar to Figure 5, but for the Secura data. It is now quite clear
the heaviness of the right tail. The empirical skewness and kurtosis coefficients
are Bl = 2.441 and ﬁg = 8.303. Here, the existence of left-censoring is also clear,
begin the main reason for the high skewness and kurtosis values.

4e-07 6e-07
|

2e-07

e

[ T T T T T T 1
1e+06 3e+06 5e+06 7e+06

0e+00
|

Figure 7: Histogram or the Secura data.
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Finally, in Figure 8, working with the n = 371 automobile claims exceeding
1,200.000 Euro, we present the sample path of the p. (left), pr (center) estimates,
as function of k, for =0 and 7 =1, together with the sample paths of estimates
of the extreme value index v, provided by the Hill estimator, H, the M-estimator
and the M estimator (right).

-2.00 o540 || Botk)

-2.50

0.0 k 01 k
100 200 300 400 0 100 200 300 400

-3.00

Figure 8: Estimates of the second order parameter p (left) and of the
extreme value index v (right) for the automobile claims.

Again, the MLg statistic is the one exhibiting the best performance, leading
us to the estimate 7 = 0.23.
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1. INTRODUCTION

Applications of change-point models are given in many areas of interest.
For example, medical researchers usually have interest to know if a new therapy
of leukemia produces a departure from the usual experience of a constant relapse
rate after the induction of a remission (see for example, Matthews and Farewell
[9], Matthews et al. [10] or Henderson and Matthews [6]). Bayesian analysis for
change-point models has been introduced by many authors. A Bayesian analysis
for a homogeneous Poisson process with a change-point has been introduced by
Raftery and Akman [11]. A Bayesian interval estimator has been derived for
a change-point in a Poisson process by West and Ogden [15] and a Bayesian
approach for lifetime data with a constant hazard function and censored data in
the presence of a change point by Achcar and Bolfarine [1]. Recently Loschi and
Cruz [7] presented a Bayesian approach to the multiple change point identification
problem in Poisson data.

In this paper, we consider the presence of two or more change-point for life-
time with constant hazards, generalizing previous work (see for example, Achcar
and Bolfarine [1]).

Consider a homogeneous Poisson process with one or more change-points
at unknown times. With a single change-point, the rate of occurrence at time s
is given by

)\17 OSSSTv
(1.1) A(s) =
Ao, S§>T.

The analysis of the Poisson process is based on the counting data in the
period [0, 7], where N(T') =n is the number of events that occur at the ordered
times tl, tQ, vy tn.

With two change-points at unknown times 7 and 75 the rate of occurrences

are given by A, 0<s<m

(1.2) A(s) = A2, Ti<s<m,
)\3, TQ<S§T.

We also could have homogeneous Poisson processes with more than two
change-points.

The use of Bayesian methods has been considered by many authors for
homogeneous or nonhomogeneous Poisson processes in the presence of one change-
point (see for example, Raftery and Akman [11] or Ruggeri and Sivaganesan [13]).

Observe that times between failures for a homogeneous Poisson process
follow an exponential distribution.
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In this paper, we present a Bayesian analysis for interfailure data with
constant hazard function assuming more than one change-point and using MCMC
methods (see for example [4]).

The paper is organized as follows: in Section 2, we introduce the likelihood
function; in Section 3, we introduce a Bayesian analysis for the model, in Section 4,
we present some consideration on model selection; in Section 5, we introduce an
example with real data and finally, in Section 6, we present some conclusions.

2. THE LIKELIHOOD FUNCTION

Let z; =t;— t;_1, 1=1,2,...,n where ty = 0, be the interfailure times and
assume a single-change-point model (1.1). In this way, we observe that x; has an
exponential distribution with parameter A\ for 22:1 zr < 7 and an exponential
distribution with parameter Ao for 22:1 xr>T, 1=1,2,...,n. Assuming that
the change-point 7 is taking the values t;, the likelihood function for A1, As and 7

is given by
N(T)

(2.1) L()\17 /\277—) — H ()\1 e—/\m:i)ei (/\2 e—)\29€i)1—6i
=1

where ¢; = 1 if Z;‘:l zj <7 and ¢ =0if Z§:1 xj > 7. That is,

(2.2) L, Mo, 7) = )\iV(T)e—AlT )\;V(T)fN(T)e—AQ(T—T)

where N(r) =YD e, N(T)=n, 7= g6 and T—7 = SN D ai (1—¢).
Let us assume a two-change-point model (1.2) with the change-points 7

and 7 taking discrete values 7y = t;, o =t; (t; <tj, i # j) with ky = N(71) and
ko = N(72). The likelihood function for A1, A2, A3, 71 and 75 is given by

(2.3) L()\l, /\2, )\3, 71, 7'2) = H (/\1 e_/\lxi>€1’i (AQ e_)\Qxi)EQ’i (Ag 6_)‘3xi)63’i

i=1

where
1 if o mE < T ,

(24) €1, = . Zfil !
0 if Y _qxp>11,

(25) 62'_{1 if 7'1<Z£:i+1$k§7'2,

. g . . .

0 if Y @k <TLOr Y Tk > T2,
1 if /< Zn,» Tk ,

(2.6) €3, = . b
0 if T2ZEk:j+1xk .
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That is,

(27) L()\17A27)\377-117-2) =

— )\:]lV(Tl)e_)\lTl )\éV(TQ)*N(Tl)e—)\z(TQ—Tl) )\éV(T)*N(TQ)e—Ag,(T—TQ)
where Zf\;(lT) €1, = N(Tl), ZZZ\;(lT) €21 = N(T ) —N(Tl), lei(lT) €3, = N(T) —N(Tg)
and N(T) =n. Observe that 7 = Ei\;(lT)n
T—1y = Zi]\;(lT)n T €34.

N(T)n
Ti€li, T2 —TL = ;1 &€z, and

In the same way, we could generalize for more than two change-points.

3. A BAYESIAN ANALYSIS

Assume the change-point model (1.1) with a single change-point 7.

Assume that 7 is independent from A; and Ao, and also that Ay is condi-
tionally independent from Ao, given 7 = t;. Considering a noninformative prior
distribution for A\; and A given 7 (see for example, Box and Tiao [2]), we have

Lo
)\1/\27r7'

(3.1) 71'(/\1,)\2,7': ti) = 7'('()\1,)\2‘7’: ti) W(T:ti) X :ti)

where A1, Ao > 0.

Assuming an uniform prior distribution 7y(7 = ¢;) = 1/n, the joint poste-
rior distribution for A;, A and 7 is given by

(3.2) (A1, Ao, 7| D) ox AN DT e\ NI =a(T-)
where D denotes the data set.

Observe that we are using a data dependent prior distribution for the dis-
crete change-point (see for example Achcar and Bolfarine [1]). Also observe that
the event {7 = t;} is equivalent to {N(¢;) = i}, where the t; are the ordered oc-
currence epochs of failures. We also could consider an informative gamma prior
distribution for the parameters A\; and As.

The marginal posterior distribution for 7 is, from (3.2), given by

L[N(r)] T[n—N(7)]

(3.3) (7| D) o NGO (T — 7)yn—N @)

Assuming 7 = 7* known, the marginal posterior distribution for A\; and Ay are
given by
(i) M|m*, D ~ Gamma|N (%), 7*],

(3.4)
(i) A2|7*, D ~ Gammaln—N(t*),T—1*] ,

where Gamma[a,b] denotes a gamma distribution with mean a/b and variance a/b>.
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Assuming 7 unknown, since the marginal posterior distribution for 7 is
obtained analytically (see(3.3)), we use a mixed Gibbs sampling and Metropolis—
Hastings algorithm to generate the posterior distributions of A\; and Ag. The
conditional posterior distributions for the Gibbs sampling algorithm are given by

(i) Ai|Ae, 7, D ~ Gamma[N(T),T] ,

(3.5)
(i) A2|A1, 7, D ~ Gammal[n—N(7),T—7] .

Starting with initial values )\go) and )\éo), we follow the steps:

(i) Generate 7 from (3.3).
(ii) Generate )\ng) from 7r()\1|)\(2i) @ D).
(iii) Generate )\giﬂ) from 77()\2|)\§i+1),7'(i),1?).

We could monitor the convergence of the Gibbs samples using Gelman and
Rubin’s method that uses the analysis of variance technique to determine whether
further iterations are needed (see [5] for details).

A great simplification to get the posterior summaries of interest for the
constant hazard function model in the presence of a change-point is to use the
WinBugs software (see, Spiegelhalter et al. [14]) which requires only the specifi-
cation of the distribution for the data and prior distributions for the parameters.

Consider now, the change-point model (1.2) with two change-points 71 and 7,
(with 71 < 72). The prior density for A1, A2, A3, 71 and 72 is given by
(3.6)  w(A1, A2, A3, 71, T2) =
= 1A, A2, A3 [ =ty o = ) mo (1= ti, T2 = t5) Tgpcty

given 1= t;, o = tj, (t; <tj, i #j).

Assuming 7 and 7o independent from Ay, Ao and A3, and also that Aq,
A2 and A3 are conditionally independent given 71 and 7o, a noninformative joint
prior distribution for A1, A2, A3 and 7 and 7 is given by

1
RDYPYSW
where A1, A2, A3 >0, Iy, .y =11t ¢; <¢; and Iy, 4.3 =0 otherwise, for all i # j.

(3.7) (A1, A2, A3, 11 = ti, 7o = t) mo(T1=ti, T2 = t5) Tt

Assuming an uniform prior distribution for the discrete variables 71 = t;
and T = t;, where t; < t;, 4,5 =1,...,n, that is mo(m1 = t;, 2 = t;) = 2/n(n—1),
the joint posterior distribution for A1, Ae, Az, 7 and 7o is given by

(3.8) (A1, A2, A3, 71, 72| D) o

o /\iv("'l)_lefhﬁ )\éV(TQ)_N(Tl)_le*)Q(TQ*Tl) )\éV(T)_N(TQ)_le*M(T*Tz)

where A1, A2, A3 > 0 and 7 < 7o.
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The joint marginal posterior distribution for 7 and 7o is given by
L[N ()] T[N(r2) = N(r1)] T[N(72)—N(m1)]

N N(ra)-N(r1) (T —7o)N@D)-N(r2) ~

(3.9) m(r1,72|D) =
To — T1)

We use the Metropolis—Hastings algorithm to generate 71, 7 from the joint
marginal posterior distribution (3.9) and the Gibbs sampling algorithm to gener-
ate A1, Ao and A3. The conditional posterior distribution for the Gibbs sampling
algorithm are given by

(3.10) Ml A2, A3, 71,72, D ~ Gamma[N (), 7],
(3.11) )\2| )\1,)\3,7'1,7'2,1) ~ Gamma[N(Tg)—N(ﬁ), 7’2—7’1] y
(3.12) >\3| )\1,)\2,7'1,7'2,7) ~ Gamma[N(T)—N(Tg),T—TQ] .

This marginalization process should be made with careful choice of the
lower and upper limits of summation as well as of the number of minimum
points between 7 and 7. We consider my=t; for i=1,...,m1 —1, o =1; for
i=ma+1,...,n, where 7 <7y and m; (j=1,2) is a positive integer such that
tm;=T;. Note that once 71, (72) is known, possible candidates of 71, (72) are
limited within {t1, ...,tml_l}, ({tm2+1, ...,tn}).

Starting with the initial values )\5 ), /\go) and )\(0) we follow the steps:
(i (4) (4)

) Generate 77’ and 7, ’ from the marginal posterior distributions (3.9).
) Generate )\ng) from 77()\1|)\ )\é),Tl(Z),TQ( ),D)

(iii) Generate )\gﬂ) from (Ao |)\(Z+1) )\g), 1() 7'2(1),7))
) Generate )\gﬂ) from (X3 \)\(ZH) )\(Hl) 7'1() 72( ),D).

Observe that the choices for my and msy could have been made empirically
based on a preliminary analysis of the data set (empirical Bayesian methods).
In this way, we could use plots of the accumulated number of failures against
time of occurrence to get some information on the change-point.

4. SOME CONSIDERATIONS ON MODEL SELECTION

For model selection, we could use the predictive density for the interfailure
time ; given Z ;) = (71, ..., Ti—1, Tit1, ..., Tp). The predictive density for x; given
Z) 1s

(4.1) ¢i = f@ilz /f wzle 9\3:(1)

where 71'( AR (i)) is the posterior density for a vector of parameters § given the
data Z ()
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Using the Gibbs samples, (4.1) can be approximated by its Monte Carlo
estimates,

N 1 M _
(4.2) fzilze) = i Z f(iEi\Q(J)) :

J=1

where ) are the generated Gibbs samples, j=1,2,..., M.

We can use ¢; = J?(:cl |z (,-)) in model selection. In this way, we consider plots
of ¢; versus ¢ (i =1,2,...,n) for different models; large values of ¢; (in average)
indicates a better model. We could also have choosen the model such that P, =
[Ti-; ci(l) is maximum (I indexes models). We could also have considered (see
Raftery [12]) the marginal likelihood of the whole data set D for a model M,
given by
(4.3 PDIM) = [ L(DI61, M) (61| 34)

1
where D is the data, M; is the model specification (the number of change points),
0, is the vector of the parameters in M;, L(D|6,M;) is the likelihood function
and 7(60;| M;) is the prior.

The Bayes factor criterion prefers model M; to model My if P(D|Ms) <
P(D|My). A Monte Carlo estimate for the marginal likelihood P(D|M;) is given
by

M
~ 1 .
(4.4) P(D|M) = + S (D)oY, My)
j=1

where GI(j ), 7=1,2,..., M, could have been generated through the use of impor-

tance sampling. The simplest estimator of this type results from taking the prior
as the importance sampling function (see Raftery [12]).

Other ways to estimate the marginal likelihood P(D|M;) are proposed by
Raftery [12].

Considering a sample from the posterior distribution, we have
-1

A 1 d 1
(4.5) poM) =—S ———
M Z L(D|6, M)

In this case, the importance-sampling function is the posterior distribution.

A modification of the harmonic mean estimator (4.5) is proposed by Gelfand

and Dey [3], given by
~1

1 £(017)
M = 1(D]6Y, M;) 70 (67)

(4.6) P(D| M) =

where f(6;) is any probability density and 7,(6;) is a prior probability density.
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5. AN EXAMPLE

In this section, we analyze a data set related to the number of mine acci-
dents in England from 1875 to 1951. To analyze this data set, we have assumed
the validity of a homogeneous Poisson process in the presence of change-points.
Considering the time intervals between explosions in mines, we introduced a
Bayesian analysis to get inference for the parameter of the exponential distribu-
tions and for the finite change-points.

In Table 1, we have the time intervals (in days) between explosions in mines,
involving more than 10 men killed, from December 6, 1875 to May 29, 1951 (data
introduced by Maguire, Pearson and Wynn [8]).

Table 1: Time intervals in days between explosions in mines.

378 36 15 31 215 11 137 4 15 72 96
124 50 120 203 176 95 93 99 315 59 61
1 13 189 345 20 81 286 114 108 188 233

28 22 61 78 99 326 275 o4 217 113 32
23 151 361 312 354 58 275 78 17 1205 644
467 871 48 123 457 498 49 131 182 255 195
224 566 390 72 228 271 208 517 1613 54 326
1312 348 745 217 120 275 20 66 291 4 369

338 336 19 329 330 312 171 145 75 364 37
19 156 47 129 1630 29 217 7 18 1357

From a plot of N(¢;) versus t;, i=1,2,...,109 (see Figure 1), we observe the
presence of two or more change-points. We could also have assumed the presence
of a random number of change-points (see for example, Ruggeri and Sivaganesan
[13]) but this case is beyond the scope of this paper. As an illustration of the
proposed model introduced in Section 1, we assume the presence of two change-
points. Assuming the two change-points model (1.2) to analyze the data set of
Table 1 and from Figure 1, we see that these two change-points are approximately
71 = t45 = 5231 and T = tg1 = 19053. We also assume the presence of only one
change-point and use Bayesian discrimination methods to decide for the best
model.

In Figure 1, we also have empirical estimates for the rates A;, j =1,2,3,
obtained from the usual definition of the homogeneous Poisson processes N (t) o
At + o(n), where N (t) is the accumulated number of occurrences in the interval

(0,1).
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Figure 1: Plot of N(t;) versus t;(days).

If we assume the change-point model (1.1) with a single change-point 7
with an uniform discrete prior, the mode of the marginal posterior distribution
for 7 (see (3.3)) is given by 7% = 5382 (see Figure 2). Assuming 7* known, the
mean of the marginal posterior distributions (3.4) are given by A1 = 0.008361 and
X2 = 0.003065.

T(t|D) m(\,[t,D) (A, [T,D)

12 350 1200

10 300 1000

8 250 800
200

6 600
150

4 100 400

2 h 50 200

0 0 0

0 5000 10000 0 0.01 0.02 0 2 4
T A A, x10?

Figure 2: Marginal posterior distribution for 7 and, Ay and Ay with 7 = 7*.

Assuming one or two unknown change-points, we have obtained posterior
summaries (see Tables 2, 3, 4 and 5) through the use of MCMC algorithms.
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In all cases, we have considered a “burn-in-sample” of size 5,000; after this,
we have simulated 50,000 mixed Metropolis—Hastings and Gibbs samples taking

0" sample, to get approximated uncorrelated samples. The convergence

every 1
of the mixed algorithms was monitored using graphical methods and standard

existing indexes (see, for example, Gelman and Rubin [5]).

Considering the change-point model (1.1) with only one change-point T,
we have in Table 2, the posterior summaries for the parameters 7, A\; and A
assuming the noninformative prior (3.1). In Figure 3, we have the approximate
marginal posterior densities.

Table 2:  Posterior summaries (change-point model 1.1).
Mean S.D. 95% Cred. Inter.
T 5813 932 (4086 ; 7364)

A1 0.008059 0.001285 (0.005814 ; 0.010786)
A2 0.003047 4.011E-4 (0.002289 ; 0.003884)
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9.5 2 25 3 A 35 4 4.5 5
2 x107°

Figure 3: Marginal posterior distribution (change-point model 1.1).



220

J.A. Achcar, S. Loibel and M.G. Andrade

Similar results could also have been obtained from the parametrization

k= N(tg), A1 and Ag. Assuming an uniform prior distribution for N(¢;) taking
the values {1,2,...,n} and Gamma(0.1,0.1) prior distributions for A; and Ao,
we obtain by Gibbs sampling algorithms the approximate marginal posterior

densities for 7, Ay and Ao. In Table 3 we have the posterior summaries of interest

using the WinBugs software. The code of the WinBugs program is given in
Appendix 1, assuming k= N (t;). Observe that k = 46 corresponds to 7 = 5382.
That is, we have obtained results similar to the previous ones.

Table 3:  Posterior summaries (gamma priors for A\; and \s).
Mean S.D. 95% Cred. Inter.
k 45.63 5.186 (35.0 ; 53.0)
A 0.008322 0.001315 (0.006085 ; 0.01120)
A2 0.003056 3.975E-4 (0.002344 ; 0.003892)

In Figure 4, we have the approximated marginal posterior densities
considering the 5,000 generated Gibbs samples.
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Figure 4: Marginal posterior distribution (gamma prior distribution for A; and Ag).
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Assuming the two change-point model (1.2), we have in Table 4, the pos-
terior summaries for the parameters A1, Ay, A3, 71 and 7o obtained from the
5,000 generated Gibbs samples using the conditional posterior distributions
(3.10)—(3.12). In Figure 5 we have the approximate marginal posterior densities.

Table 4:  Posterior summaries (change-point model 1.2).
Mean S.D. 95% Cred. Inter.
T1 5990 876 (4176 ; 7354)
7 17459 3162 (11287 ; 22741)
A1 0.008036 0.001262 (0.005765 ; 0.010703)
A2 0.002713 6.080E-4 (0.001655 ; 0.004053)
A3 0.003450 7.646E-4 (0.002103 ; 0.005082)
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Figure 5: Marginal posterior distributions (change-point model 1.2).
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Similar results have been obtained from the parametrization k; = N (tx,),
ko = N(tr,), A1, A2 and A3. In Table 5, we have the posterior summaries of
interest, obtained using the WinBugs software (code in Appendix 1), infor-
mative discrete prior distributions for the two change-points and independent
Observe that ki = 46
corresponds to 7 = 5382 and kg = 78 corresponds to 7 = 17743. In Figure 6,

Gamma(0.1,0.1) prior distributions for A;, A2 and As.

we have the approximate marginal posterior distributions considering the 5,000
generated Gibbs samples.

Table 5: Posterior summaries (two change-point and gamma priors
for A1, A2 and A3).
Mean S.D. 95% Cred. Inter.
kq 46.22 4.237 (37.0 ; 53.0)
ko 78.29 10.45 (58.0 ; 97.0)
A1 0.008349 0.001298 (0.006077 ; 0.01115)
A2 0.002780 6.378E-4 (0.001606 ; 0.004134)
A3 0.003445 7.392E-4 (0.002195 ; 0.005079)

In Figure 7, we have plots of the predictive densities c¢; = f(z:]Z ),
i =1,2,...,n, approximated by the Monte Carlo estimates (4.2) for both models
M, (a single change-point model) and M; (two change-points model). For model
M, we have P| = Hni:1 C1 = 7.896 x1073%9 and for model My we have P, =
[1"%_, @i = 9.5536 x 107302, The ratio of these values is given by P»/P; = 12.09.

In Table 6, we have different estimates (see (4.5) and (4.6)) for the marginal
likelihood functions considering models M; (single change-point model) and My
(two change-point model).

Table 6:  Estimate values of the marginal likelihood.
Model P(D|M;) using (4.5) P(D|M;) using (4.6)
M, 7.7716 x 107305 4.6420 x 10304
M, 3.1256 x 107304 2.5020 x 107392

From Table 6, we calculate the Bayes factors B;; = P(D|M;)/P(D|M;),
i,7 =1,2. The Bayes factors are given by Bg; = 4.02 (using (4.5)) and By; = 53.9
(using (4.6)). If compared to one change-point model, we observe a better fit of
the two change-point model M for the data set of Table 1, considering the three
model selection procedures.

It is important to point out that better models also could be considered to
analyze the data set of the Table 1, considering more than two change-points.
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6. CONCLUDING REMARKS

In this paper, we have observed that Bayesian inference for the parameters
of change-point models is easily obtained through the use of Markov Chain Monte
Carlo methods.

The use of recent software, such as WinBugs, to simulate samples for the
joint posterior distribution of interest gives a great simplification in the com-
putational work. It is important to point out that the usual classical inference
procedures usually are not appropriate for change-point models (see for example,
Mattews et al. [10]).

The proposed Bayesian methodology could also have been considered di-
rectly using the counting data modeled by homogeneous Poisson processes in the
presence of one or more change-points in place of the inter-failure data (see for
example, Raftery and Akman [11]).

Similar results could have been obtained for interfailure data with constant
hazards and more than two change-points.

The use of Monte Carlo estimates for the predictive densities f (azz | g(i)),
i=1,2,...,n, or for the marginal likelihood of the whole data set D for a model M;,
gives simple ways to discriminate the different change-point models, a problem
of great practical interest.

APPENDIX

A. WinBugs code (one change-point)

Model
{
for(iin 1:N) {
t[i] « dexp(lambda[J[i]])
Jli]< —1+step(i—k—0.5)
punifij<—1/N
}
for(jin1:2) {
lambdalj]- dgamma(0.1,0.1)

}
k « dcat(punif] |)

}
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list (t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,
59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,
326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467,
871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208
517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,
329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),
N=109)
list(k=>50, lambda=c(0.5, 0.5))

B. WinBugs code (two change-point)

Model
{
for(iin 1:N) {
t[i] «~ dexp(lambdal[J[i]])
J[i]< —1+step(i—k1—0.5)+step(i—k2—0.5)
}
for(jin 1:3) {
lambdalj]-~ dgamma(0.1,0.1)
}
klwdcat(pl[])
k2dcat(p2[ ])
}
list(t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,
59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,
326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467
871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208
517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,
329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),
pl=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.1, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0, 0, 0, 0, 0, 0, 0, 0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0,
0,0,0,0,0), p2=(0, 0,0, 0, 0,0, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.10,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,
0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0,
0,0,0,0,0,0,0,0,0, 0), N=109)
list (k1=45,k2=78 lambda=c(0.5,0.5,0.5))
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