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Abstract:

• Let (U, V ) be a random vector following a bivariate extreme value distribution (EVD)
with reverse exponential margins. It is known that the excess distribution Fc(t) =
P
(
U+V > c t | U+V > c

)
of U+V converges to F (t)= t2 as the threshold c increases

if U, V are independent, and to F (t) = t, t∈ [0, 1], elsewhere. We investigate the limit
of the excess distribution of aU+ bV in case of an EVD with arbitrary margins and
with arbitrary scale parameters a, b > 0. It turns out that the limiting excess df may
have a different behavior. For Fréchet margins, independence of U, V does not affect
the limit excess distribution, whereas for Gumbel and reverse Weibull margins it does.
Unless for Gumbel margins, the limit excess distribution is independent of a, b.
Interpreting a, b as weights and U, V as risks, aU+ bV can be viewed as a (short) linear
portfolio. The fact that the limiting excess distribution of aU+ bV does not depend
on a, b, unless for Gumbel margins, implies that risk measures such as the expected
shortfall E

(
aU+ bV | aU+ bV < c

)
might fail for multivariate extreme value models.

Key-Words:

• univariate extreme value distribution; multivariate extreme value distribution; sums

of random variables; excess distribution; Pickands dependence function; linear port-

folio; risk measure; expected shortfall.

AMS Subject Classification:

• 60G70.



138 Michael Falk



On the Excess Distribution of Sums of Random Variables in Bivariate EV Models 139

1. INTRODUCTION

Let (X,Y ) be a random vector (rv), whose distribution function (df) is a

bivariate extreme value df (EVD) G with reverse exponential margins, i.e., G is

max-stable

Gn
(x
n
,
y

n

)
= G(x, y) , x, y ≤ 0, n ∈ N ,

and satisfies

G(x, 0) = G(0, x) = P (X≤ x) = P (Y ≤ x) = exp(x) , x ≤ 0 .

It is well-known that G can be represented as

(1.1) G(x, y) = exp

(
(x+ y)D

( x

x+ y

))
, x, y ≤ 0 ,

where D : [0, 1] → [1/2, 1] is a Pickands dependence function; see, for example,

Sections 4.3, 6.1, 6.2 in Falk et al. (2004). A Pickands dependence function is

characterized by the two properties

D is convex ,(1.2)

max(z, 1− z) ≤ D(z) ≤ 1 , z ∈ [0, 1] ,(1.3)

i.e., G(x, y) = exp
(
(x+ y)D(x/(x+ y)

)
, x, y ≤ 0, defines an EVD G with reverse

exponential margins if, and only if the function D : [0, 1]→ [1/2, 1] satisfies con-

dition (1.2) and (1.3) (see Falk (2006)).

A popular example is, with λ ∈ [1,∞],

D(z) =
(
zλ + (1− z)λ

)1/λ
, z ∈ [0, 1] ,

which yields the Gumbel type B df G(x, y) = exp
(
−
(
|x|λ + |y|λ

)1/λ)
, x, y ≤ 0,

with the convention D(z) = max(z, 1− z) if λ = ∞.

Note that the case of independence of X,Y is in general characterized

by the constant dependence function D= 1, in which case G(x, y) = exp(x+ y),

x, y ≤ 0. A major problem in the statistical analysis of given data (x1, y1), ...,

(xn, yn), is the decision whether the data were generated by rvs (Xi, Yi) with

independent margins Xi,Yi, see, for example, Dupuis and Tawn (2001).

It was observed in Falk and Michel (2006) that the sum X+ Y over a

high threshold has excellent ability to discriminate between independence and

dependence, i.e., between the case of the constant dependence function D = 1
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and a nonconstant D. Precisely, it was observed in Falk and Michel (2006) that

for t ∈ [0, 1]

(1.4) P
(
X+Y > ct | X+Y > c

)
−→
c↑0

{
t2 if D= 1 ,

t elsewhere .

The excess distribution of the sum X+Y over a high threshold approaches,

consequently, either the df F (t) = t2, t ∈ [0, 1], in case of independence of X,Y ,

or, elsewhere, the uniform distribution on [0, 1].

This observation was used in Falk and Michel (2006) to define a test for

independence of X,Y , which is derived from the Neyman–Pearson test for the

binary testing problem F (t) = t2 against F (t) = t, t ∈ [0, 1], based on n indepen-

dent copies of (X,Y ). It was shown that this test has excellent performance and

is able to detect deviations from the constant dependence function D = 1 which

are of order O(n−1/2).

The problem suggests itself, whether the characterization of independence

and dependence of X,Y via the limiting excess distribution in (1.4) remains valid,

if the rv (X,Y ) with EVD G with reverse exponential margins is replaced by a rv

(U, V ), which follows an arbitrary EVD. This will be investigated in the present

paper, where our investigations include arbitrary scale parameters a, b > 0 as well,

i.e., we consider the excess distribution of aU + bV over a high threshold with

underlying arbitrary EVD. It turns out that the limit df of the excess distribution

of the sum depends heavily on the marginal dfs: In some cases independence of

U and V affects the limit, in other cases it does not. The main results can be

summarized as follows, where it is generally assumed that the joint df of (U, V )

is a bivariate EVD.

Reverse Weibull Margins: Suppose that U, V both follow a reverse Wei-

bull df: P (U≤ x) = exp
(
−(−x)α1

)
, P (V ≤ x) = exp

(
−(−x)α2

)
, x≤ 0, α1, α2 > 0.

Then we obtain for a, b > 0 and t ∈ [0, 1] (see Theorem 3.1)

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

(1.5)

−→
c↑0

{
tα1+α2 if U, V are independent ,

tmax(α1,α2) elsewhere .

The special case α1 = α2 = a = b = 1 was established in Falk and Michel (2006).

The limit excess df of aU + bV is, therefore, determined by independence or

dependence of U, V , but it is not affected by the scale parameters a, b > 0.

FréchetMargins: Suppose that U, V both follow a Fréchet df: P (U≤ x)=

exp(−x−α1), P (V ≤ x) = exp(−x−α2), x> 0, α1, α2 > 0. Then we have for a, b > 0

and t ≥ 1

(1.6) P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−min(α1,α2) .
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In the case α1 = α2 and dependence of U, V , the preceding result requires

an additional weak condition on the underlying Pickands dependence function,

see Theorem 3.3 and 3.2 for details.

In case of Fréchet margins, the limiting excess df of aU + bV is, conse-

quently, invariant under dependence and independence of U, V and it is not

affected by the choice of the scale parameters a, b > 0.

Gumbel Margins: If U, V both follow the Gumbel df F (x) = exp(−e−x),

x ∈ R, then we obtain for a, b > 0 and t > 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

(1.7)

−→
c→∞





exp

(
−

t

max(a, b)

)
if U, V are independent ,

exp

(
−

t

a+ b

)
elsewhere ,

see Theorem 3.4. In case of Gumbel margins, dependence and independence of

U, V determine, consequently, the limiting excess df of aU + bV . But different

to the other two cases above, it depends on the scale factors a, b > 0 as well.

The cases of mixed margins is determined by that df among the two dfs

involved, which has a heavier tail, see Theorem 3.5, 3.6 and 3.7. Note that

additional location parameters of U and V can simply be incorporated in the

preceding results by shifting them to the threshold.

The transformation of the univariate margins of a multivariate EVD to ar-

bitrary univariate extreme value distributions yields again a multivariate EVD.

A common approach in multivariate extreme value theory is, therefore, the trans-

formation of a given EVD to an EVD with one’s favorite univariate margins. This

approach might, however, be misleading as the preceding results reveal that the

marginal distributions of a multivariate EVD, actually, can matter.

Extreme value theory has become a standard toolkit within quantitative

finance useful for describing non normal phenomena, see, e.g., Embrechts (2000,

2004), Klüppelberg (2004), Section 13 in Reiss and Thomas (2001). The above

results now reveal surprising facts in particular about the expected shortfall,

which is a popular risk measure of a linear portfolio. Interpreting a, b as weights

and U, V as risks, the sum aU + bV can be viewed as a (short) linear portfolio.

Note that the limit excess df of aU + bV above a high threshold can in case

of reverse Weibull margins readily be turned into the limiting excess df of a

linear portfolio below a small threshold approaching zero: A rv (U, V ) follows a

bivariate max-stable df with reverse (standard) Weibull margins if, and only if,

the rv (Ũ , Ṽ ) := (−U,−V ) follows a bivariate min-stable df with Weibull margins.
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The standard exponential df on (0,∞) is a particular example. The limit result

(1.5) now becomes with arbitrary a, b > 0 and t ∈ [0, 1]

P
(
aŨ + bṼ < tc | aŨ + bṼ < c

)
−→
c↓0

−→
c↓0

{
tα1+α2 if U, V are independent ,

tmax(α1,α2) elsewhere .

We see that in various cases, as the threshold increases or decreases, the

limit excess distribution of aU + bV does not depend on the parameters a, b > 0.

A risk measure of a portfolio such as the expected shortfall (Acerbi and Sirtori

(2001), Acerbi and Tasche (2001), Acerbi and Tasche (2002)), i.e., the expectation

of aU + bV given that the sum exceeds a high or a low threshold, is in this case

asymptotically independent of the weights a, b. Such a risk measure of a linear

portfolio has, consequently, to be taken with care, if the underlying joint df of

the risks is assumed to be a max-stable or a min-stable df. For a linear portfolio∑
i≤d aiUi of arbitrary length d this was already observed in Macke (2005) in the

case where (U1, ..., Ud) follows a d-dimensional EVD G with reverse exponential

margins.

We remark that corresponding results might be established in higher dimen-

sions as well, see, for a special case, Macke (2005). But the case of a dimension

higher than two requires additional conditions such as very smooth dependence

functions; it does not, however, provide essential new insight into the limit be-

havior of the corresponding excess distributions. In the two-dimensional case our

mathematical tools are, on the other hand, so refined that we can establish our

results under most general conditions. That is why we restrict ourselves in this

paper to sums aU + bV of length two.

It would, of course, be desirable to extend the preceding results (1.5)–(1.7)

to rvs (U, V ), whose distribution lies in the domain of attraction of a multivariate

EVD. But this is not possible without further assumption. Take, for example,

a rv (U, V ), which follows a bivariate normal distribution N(0,Σ) with mean vec-

tor 0, variances 1 and and covariance ρ ∈ (−1, 1). Then N(0,Σ) is in the domain

of attraction of the EVD G(x, y) = exp(−e−x − e−y), x, y ∈ R, with independent

Gumbel margins, i.e., there exist constants an, cn > 0, bn, dn ∈ R such that

P
(

max
1≤i≤n

Ui ≤ bn + anx, max
1≤i≤n

Vi ≤ dn + cny
)

−→
n→∞

G(x, y) , x, y ∈ R ,

where (U1, V1), (U2, V2), ... are independent copies of (U, V ), see, e.g., equation

(9.7) in Reiss and Thomas (2001). According to equation (1.7) one, therefore,

should expect in this case that the limit of P
(
aU + bV > c + t | aU + bV > c

)

is exp(−t/max(a, b)) as c converges to infinity. Standard arguments, however,

yield that
P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

0

for arbitrary a, b, t > 0.
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The results in this paper are related to results by Wüthrich (2003), Alink

et al. (2004, 2005a, 2005b) and Barbe et al. (2006), who establish P
(∑

i≤dXi > t
)

∼ ∆P (X1> t) as t→ ∞ with some diversification constant ∆ > 0. This is

achieved under various conditions on the joint distribution of (X1, ..., Xd), thus

extending the well known result with ∆ = d in case of iid regularly varying Xi

(Feller (1971, p. 279)) to dependent rvs. The above authors work, however, with

identically distributed Xi so that the results stated here are not included in these

papers.

This paper is organized as follows. As the derivation of our results is highly

technical, we compile in Section 2 in a preparatory step various auxiliary results

and tools. The main results are established in Section 3.

2. AUXILIARY RESULTS AND TOOLS

In a preparatory step we provide in this section several auxiliary results

and mathematical tools, which might be of interest of their own.

A bivariate and nondegenerate EVD H has the characteristic property of

max-stability, i.e., for each n ∈ N there are constants ain > 0, bi,n ∈ R, i= 1, 2,

such that

Hn
(
a1nx+ b1n, a2ny + b2n

)
= H(x, y) , x, y ∈ R .

The margins of H are, consequently, univariate EVDs. The family of nondegen-

erate univariate EVDs is, with α> 0, up to a scale and location shift given by

Fα(x) :=

{
exp
(
−(−x)α

)
, x ≤ 0 ,

1, x > 0 ,

F−α(x) :=

{
0, x ≤ 0 ,

exp(−x−α), x > 0 ,
(2.1)

F0(x) := exp(−e−x) , x ∈ R ,

being the family of (reverse) Weibull, Fréchet dfs and the Gumbel df; see, e.g.,

Section 2.2 in Falk et al. (2004). Note that F1 is the standard reverse exponential

df.

Let now (U, V ) be a rv, which follows a bivariate EVDH with standard uni-

variate extreme value margins as in (2.1). It is well-known that the df H of (U, V )

equals that of
(
H−1

1 (exp(X)), H−1
2 (exp(Y ))

)
, where (X,Y ) follows an EVD G

with reverse exponential margins F1. By F−1(q) := inf{t∈R : F (t)≥ q}, q ∈ (0, 1),
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we denote the generalized inverse of a univariate df F ; see, for example, Lemma

5.4.7 in Falk et al. (2004). In different notation we have, thus,

H(x, y) = G
(
log
(
H1(x)

)
, log

(
H2(y)

))
= G

(
ψ1(x), ψ2(y)

)
,

where ψi(x) = log(Hi(x)), i= 1, 2, is each one of the three functions defined

as follows:

ψ(x) :=





−(−x)α, x ≤ 0 ,

−x−α, x > 0 ,

−e−x, x ∈ R .

We have, consequently,

(2.2) (U, V ) =D

(
ψ−1

1 (X), ψ−1
2 (Y )

)
,

where =D denotes equality in distribution, and, we have by equation (1.1) for x, y

with 0 < H1(x), H2(x) < 1

(2.3) H(x, y) = exp

((
ψ1(x) + ψ2(y)

)
D

(
ψ1(x)

ψ1(x) + ψ2(y)

))
,

where D is a Pickands dependence function as defined by (1.2) and (1.3).

Note that
(
ψ−1

1 (X), ψ−1
2 (Y )

)
follows for an arbitrary choice of an EVD G

with reverse exponential margins an EVD H with margins H1, H2 and, thus, rep-

resentation (2.3) characterizes up to a scale and location parameter the complete

class of bivariate EVDs with arbitrary margins.

The following auxiliary result provides a representation of an arbitrary

Pickands dependence function D, which will be crucial for the derivation of our

subsequent results. It implies in particular that any D is absolutely continuous

and provides its derivative D′. For a proof of this result we refer to Lemma 6.2.1

in Falk et al. (2004).

Lemma 2.1. An arbitrary Pickands dependence function D can be repre-

sented as

D(z) = 1 +

∫ z

0
M(x) − 1 dx = 1 −

∫ 1

z
M(x) − 1 dx ,

where M : [0, 1] → [0, 2] is a measure generating function with M(1) = 2,∫ 1
0 M(x) dx = 1. The dependence function D is, consequently, absolutely con-

tinuous with derivative

D′(z) := M(z) − 1 ∈ [−1, 1] .

It is easy to see that the converse of the preceding result is also true: any

function D : [0, 1]→ [0,∞) that can be represented as D(z) = 1 +
∫ z
0 M(x) −1 dx,

with M : [0, 1]→ [0, 2] as in Lemma 2.1, satisfies condition (1.2) and (1.3) and is,

consequently, a Pickands dependence function.
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We will make extensive use of the conditional df P (Y ≤ v | X= u), where

(X,Y ) follows a bivariate EVD with reverse exponential margins. This condi-

tional df is provided in the next lemma. For a proof we refer to Lemma 2.1 in

Falk and Michel (2006); the arguments are taken from Ghoudi et al. (1998).

Lemma 2.2. Suppose that the rv (X,Y ) follows an EVD G with reverse

exponential margins and Pickands dependence function D. Then we have for

u < 0

P
(
Y ≤ v |X= u

)
=

=





exp
{
u
(
D
(

u
u+v

)
−1
)

+ vD
(

u
u+v

)}(
D
(

u
u+v

)
+D′

(
u

u+v

)(
1− u

u+v

))
if v<0 ,

1 if v≥0 .

3. MAIN RESULTS

In this section we compute the limiting excess df of the sum aU + bV ,

where (U, V ) follows an arbitrary bivariate EVD. Without loss of generality (wlog)

we suppose that the marginal univariate dfs have scale parameter 1. We begin

with the case of reverse Weibull margins.

Theorem 3.1 (Reverse Weibull Margins). Suppose that (U,V ) follows

a bivariate EVD with reverse Weibull margins: P (U ≤ x) = exp
(
−(−x)α1

)
,

P (V ≤ x)= exp
(
−(−x)α2

)
, x ≤ 0, α1, α2 > 0. If U, V are not independent, then

we have for a, b > 0 and 0 ≤ t ≤ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

tmax(α1,α2) .

If U, V are independent, then we have

P
(
aU + bV > tc | aU + bV > c

)
−→
c↑0

tα1+α2 .

Proof: Wlog we assume α1 ≥ α2. The assertion is an immediate conse-

quence of

(3.1) (−c)−α1P
(
aU + bV > c

)
−→
c↑0

K(a, b) > 0

if U, V are not independent, and of

(3.2) (−c)−(α1+α2) P
(
aU + bV > c

)
−→
c↑0

a−α1 b−α2 α1

∫ 1

0
(1− u)α2 uα1−1 du

if U, V are independent. This will be established in the following.
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Wlog we can by (2.2) assume that (U, V ) =
(
−(−X)1/α1 ,−(−Y )1/α2

)
,

where (X,Y ) follows a bivariate EVD G(x, y) = exp
(
(x+ y)D(x/(x+ y))

)
,

x, y≤ 0, with reverse exponential margins and Pickands dependence function D.

By conditioning on X = u, we obtain from Lemma 2.2 the representation

P
(
aU + bV > c

)
=

=

∫ 0

−∞

P

(
−(−Y )1/α2 >

c+ a(−u)1/α1

b
| X = u

)
exp(u) du

=

∫ 0

−(−c
a )

α1

(
1 − P

(
Y ≤ −

(
−
c+ a(−u)1/α1

b

)α2

| X = u

))
exp(u) du(3.3)

= 1 − exp

(
−
(−c
a

)α1

)
(3.4)

−

∫ 0

−(−c
a )

α1

exp

(
u
(
D(ũ) − 1

)
−

(
−
c+ a(−u)1/α1

b

)α2

D(ũ)

)

×
(
D(ũ) +D′(ũ) (1 − ũ)

)
exp(u) du ,

where for u ∈
(
−(−c/a)α1 , 0

]

ũ :=
u

u−
(
− c+a(−u)1/α1

b

)α2
∈ [0, 1] .

In case of independence, i.e., D = 1, we obtain from equation (3.3) by using

Taylor expansion of exp at 0 and substituting u 7→ −(−cu/a)α1

P
(
aU + bV > c

)
=

=

∫ 0

−(−c
a )

α1

(
1 − exp

(
−

(
−
c+ a(−u)1/α1

b

)α2
))

exp(u) du

= −
(−c
a

)α1

∫ 1

0

(
1 − exp

(
−
(−c
b

)α2

(1 − u)α2

))

× exp

(
−
(−c
a

)α1

uα1

)
α1 u

α1−1 du

=
(−c)α1+α2

aα1 bα2
α1

∫ 1

0
(1− u)α2 uα1−1

(
1 + o(1)

)
du ,

which implies equation (3.2).

It remains to establish equation (3.1). From equation (3.4) we obtain with
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the substitution u 7→ −(−cu/a)α1

P
(
aU + bV > c

)
=

= 1 − exp

(
−
(−c
a

)α1

)

(3.5)

−
(−c
a

)α1

∫ 1

0
exp

(
−
(−c
a

)α1

uα
1

(
D(uc)−1

)
−
(−c
b

)α2

(1−u)α2 D(uc)

)

×
(
D(uc) +D′(uc) (1−uc)

)
exp

(
−
(−c
a

)α1

uα1

)
α1 u

α1−1 du ,

where for u ∈ (0, 1)

uc :=
uα1

uα1 + (−c)α2−α1 aα1

bα2
(1−u)α2

↓
c↑0

0 if α1 > α2 .

Hence we obtain in the case α1 > α2

(−c
a

)−α1

P
(
aU + bV > c

)
−→
c↑0

−D′(0) = 1−M(0) > 0 .

The fact that M(0)< 1 can be seen as follows: Suppose that M(0) ≥ 1. Then

we obtain from Lemma 2.1 that D(z) = 1 +
∫ z
0 M(x)−1 dx ≥ 1, 0≤ z≤ 1, and,

thus, D is the constant function 1. But this case was excluded. Thus we have

established equation (3.1) in the case α1 > α2. It remains to prove (3.1) also in

the case α1 = α2.

Suppose that α1 = α2. Equation (3.5) implies
(−c
a

)−α1

P
(
aU + bV > c

)
−→
c↑0

(3.6)

−→
c↑0

∫ 1

0

(
1 −D(u∗) −D′(u∗) (1−u∗)

)
α1 u

α1−1 du > 0

where for u ∈ [0, 1]

u∗ :=
uα1

uα1 + (1−u)α1 (a
b )α1

∈ [0, 1] .

We show in the following that the limit integral in (3.6) is strictly positive.

Note that we have by Lemma 2.1 for u ∈ [0, 1]

1 −D(u) −D′(u) (1− u) =

∫ 1

u
M(x)−M(u) dx ≥ 0 ,

where the integral on the right hand side above is a function in u, which is

continuous from the right. Suppose that the integral in equation (3.6) is zero.

This implies
∫ 1
u M(x)−M(u) dx = 0 for u ∈ [0, 1). Then we have in particular∫ 1

0 M(x)−M(0) dx = 0, which impliesM(x) =M(0), x ∈ [0,1), and, thus, D(z)=

1 +
∫ z
0 M(0)−1 dx = 1 + z

(
M(0)−1

)
, z ∈ [0, 1]. From the fact that D(1) = 1

we obtain M(0) = 1 and, hence, that D(z) = 1, z ∈ [0, 1]. But this case was

excluded. The limit integral in (3.6) is, therefore, strictly positive. This completes

the proof of equation (3.1) and, thus, the proof of Theorem 3.1.
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The case of Fréchet margins requires completely different proofs for identi-

cal and nonidentical margins. The two cases are, therefore, stated separately in

Theorem 3.3 and in Theorem 3.2. We begin with the case of different margins,

since this case is an immediate consequence of the following result for regularly

varying rvs. For a proof of this result we refer to Lemma 2 in Klüppelberg et al.

(2006) [17].

Lemma 3.1. Let Y and Z be rvs on a common probability space such

that Y has regularly varying right tail with index −κ< 0. Let d> κ and suppose

that E(|Z|d)<∞. Then

lim
x→∞

P
(
Y + Z > x

)

P
(
Y > x

) = 1 .

Theorem 3.2 (Different Fréchet Margins). Suppose that (U, V ) follows a

bivariate EVD with different standard Fréchet margins: P (U≤ x) = exp(−x−α1),

P (V ≤ x) = exp(−x−α2), x> 0, α1 6= α2. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > ct | aU + bV > c

)
−→
c→∞

t−min(α1,α2) .

Note that the case of identical Fréchet margins α1 = α2 =: α is not covered

by Lemma 3.1, as in this case E(|U |d) = E(|V |d) = ∞ for any d > α.

Theorem 3.3 (Identical Fréchet Margins). Suppose that (U, V ) follows a

bivariate EVD with identical Fréchet margins: P (U≤ x) =P (V ≤ x) = exp(−x−α),

x > 0, for some α > 0. Then we obtain for a, b > 0 and t ≥ 1

(3.7) P
(
aU + bV > ct | aU + bV > c

)
−→
c→∞

t−α

if U, V are independent. If U, V are not independent, this result remains true

if we require in addition that the underlying dependence function D satisfies

for some δ > 1 the expansion

(3.8) 1 −D(z) −D′(z) (1− z) = O
(
(1 − z)δ

)
.

Condition (3.8) is, for example, satisfied by the dependence functionD(z) =(
zλ + (1− z)λ

)1/λ
, 1 ≤ λ ≤ ∞, which corresponds to the Gumbel type B EVD.

It is also obviously satisfied by the dependence functionD(z) = 1−λmin(z, 1−z),

λ∈ [0, 1], which corresponds to the Marshall–Olkin EVD. We conjecture that

it is satisfied by an arbitrary dependence function, but this is an open question.

Proof: Wlog we can assume (U,V ) =
(
(−X)−1/α, (−Y )−1/α

)
, where (X,Y )

follows a bivariate EVD G with reverse exponential margins and dependence

function D.
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First we consider the case D(z) = 1, z ∈ [0, 1], i.e., the case of independence

of X,Y or, equivalently, of U, V . We claim that in this case

(3.9) cαP
(
aU + bV > c

)
−→
c→∞

aα + bα ,

from which equation (3.7) follows immediately. Equation (3.9) can be seen as

follows. Note that P
(
aU + bV > c | X= u

)
= 1 if u>−(a/c)α and, thus,

P
(
aU + bV > c

)
=

=

∫ 0

−∞

P
(
aU + bV > c |X= u

)
exp(u) du

=

∫ 0

−(a
c )

α
exp(u) du +

∫ −(a
c )

α

−∞

P

(
Y >−

(
b

c− a(−u)−1/α

)α

| X= u

)
exp(u) du

= 1 − exp

(
−
(a
c

)α)
+

∫ −(a
c )

α

−∞

(
1 − exp

(
−

(
b

c− a(−u)−1/α

)α))
exp(u) du .

Since 1− exp
(
−(a/c)α

)
= (a/c)α

(
1 + o(1)

)
, it suffices to show that the integral

on the right hand side above equals (b/c)α
(
1+o(1)

)
. Split the integral into the

sum of the subintegrals
∫ −2(a/c)α

−∞
· · · du +

∫ −(a/c)α

−2(a/c)α · · · du. By the substitution

u 7→ −(a/c)αu the second subintegral equals

(a
c

)α ∫ 2

1

(
1 − exp

(
−
(b
c

)α(
1− u−1/α

)−α
))

exp

(
−
(a
c

)α
u

)
du = o(c−α)

by the dominated convergence theorem. From the Taylor expansion exp(−x) =

1− x + exp(−ϑx x)x
2/2 with 0 < ϑx < 1 and the fact that 0 < exp(−ϑx x) < 1

for x > 0 we obtain that the first subintegral equals

∫ −2(a
c )

α

−∞

(b
c

)α(
1 −

a

c
(−u)−1/α

)−α

exp(u) du + O(c−2α) =
(b
c

)α(
1+o(1)

)
.

Thus we have shown (3.9).

If D is not the constant function 1, we have

cαP
(
aU + bV > c

)
−→
c→∞

(3.10)

−→
c→∞

b

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
z1/α−1

(
b z1/α + a(1− z)1/α

)α−1

(1− z)2
dz

+ bα
(
2 −M(1− 0)

)
> 0 ,

where M is the measure generating function in the representation D(z) = 1+∫ z
0 M(x)−1 dx and M(1−0) := limε↓0M(1−ε) is the limit from the left of M at 1.
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This is established in the following. Repeating previous arguments we obtain

P
(
aU + bV > c

)
=

= 1 − exp

(
−
(a
c

)α)

+

∫ −(a
c )

α

−∞

(
1 − P

(
Y ≤−

(
b

c− a(−u)−1/α

)α

| X= u

))
exp(u) du .

The integral equals, by Lemma 2.2,

∫ −(a
c )

α

−∞



1 − exp

((
u−

(
b

c− a(−u)−1/α

)α)
D(ũ)

)
exp(−u)

×
(
D(ũ) +D′(ũ) (1− ũ)

)


 exp(u) du =

(3.11)

=

∫ −(a
c )

α

−∞

(
1 −D(ũ) −D′(ũ) (1− ũ)

)
exp(u) du

+

∫ −(a
c )

α

−∞



1 − exp

(
u
(
D(ũ) − 1

)
−

(
b

c− a(−u)−1/α

)α

D(ũ)

)


×
(
D(ũ) +D′(ũ)(1− ũ)

)
exp(u) du ,

where for u < −(a/c)α

ũ :=
1

1 + bα

(c(−u)1/α− a)
α

∈ (0, 1)

converges to 1 as c→ ∞. Putting for z ∈ (0, 1)

g(z) := −
1

cα

(
b
( z

1− z

)1/α
+ a

)α

.

and substituting u 7→ g(z), we obtain that the first integral in equation (3.11)

equals

−

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
exp
(
g(z)

)
g′(z) dz =

=
b

cα

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
exp
(
g(z)

)

×
(
b z1/α + a(1− z)1/α

)α−1
(1− z)−2 z1/α−1 dz .

From condition (3.8) and the dominated convergence theorem we, therefore,

obtain

cα
∫ −(a

c )
α

−∞

(
1 −D(ũ) −D′(ũ) (1− ũ)

)
exp(u) du −→

c→∞

−→
c→∞

b

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
z1/α−1(3.12)

×
(
b z1/α + a(1− z)1/α

)α−1
(1− z)−2 dz ∈ (0,∞) .
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The second integral in equation (3.11) is split into the sum of the sub-

intervals
∫ −2(a

c )
α

−∞

· · · du +

∫ −(a
c )

α

−2(a
c )

α
· · · du =: I(c) + II(c) .

Substituting u 7→ −(a/c)α u and putting for u ∈ (1, 2)

ū :=
1

1 + ( b
a)α (u1/α − 1)−α

∈ (0, 1) ,

the second subintegral above equals

II(c) =
(a
c

)α ∫ 2

1

{
1− exp

(
−
(a
c

)α
u
(
D(ū)−1

)
−
(b
c

)α(
1− u−1/α

)−α
D(ū)

)}

×
(
D(ū) +D′(ū) (1− ū)

)
exp

(
−
(a
c

)α
u

)
du

= o
(
c−α
)

by the dominated convergence theorem.

Taylor expansion of exp at zero yields that the first subintegral equals

I(c) =

∫ −2(a
c )

α

−∞

(
(
1 −D(ũ)

)
u +

(
b

c− a(−u)−1/α

)α

D(ũ)

)

× exp

{
ϑu u

(
D(ũ) −1

)
− ϑu

(
b

c− a(−u)−1/α

)α

D(ũ)

}

×
(
D(ũ) +D′(ũ) (1− ũ)

)
exp(u) du ,

where 0 < ϑu < 1. Recall that 1−D(ũ) ∈ [0, 1/2], D′(ũ)(1− ũ) ∈ [−1, 1] and

note that for u ≤ −2(a/c)α

(
b

c− a(−u)−1/α

)α

=

(
b

c

)α




1

1 − 1

(−( c
a)

α
u)

1/α




α

≤
1

(1 − 2−1/α)α

(
b

c

)α

.

We have, further, by Lemma 2.1

1 −D(ũ) =

∫ 1

ũ
M(x)−1 dx =

(
M(1−0) − 1

)
(1− ũ)

(
1+ r(ũ)

)
,
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where

0 ≥ r(ũ) :=

∫ 1

ũ
M(x)−1 dx

(
M(1−0) − 1

)
(1− ũ)

− 1

=

∫ 1

ũ
M(x) −M(1−0) dx

(
M(1−0) − 1

)
(1− ũ)

≥
M(ũ) −M(1−0)

M(1−0) − 1

≥ −
M(1−0) −M(0)

M(1−0) − 1

is bounded and converges to 0 as c→ ∞. We have, further, for u ≤ −2(a/c)α

(1− ũ)u =

bα

(c(−u)1/α− a)
α

1 + bα

(c(−u)1/α− a)
α

u

=
bα

cα
u(

(−u)1/α − a
c

)α
1

1 + bα

(c(−u)1/α− a)
α

= −
bα

cα
(
1 + sc(u)

)
,

where sc is bounded and sc(u) −→
c→∞

0.

We obtain, consequently, from the dominated convergence theorem

(3.13) cα I(c) −→
c→∞

∫ 0

−∞

bα
(
2−M(1−0)

)
exp(u) du =

(
2−M(1−0)

)
bα ≥ 0 .

Equation (3.10) now follows from (3.11), (3.12) and (3.13).

Theorem 3.4 (Gumbel Margins). Suppose that the rv (U,V ) follows a bi-

variate EVD with identical Gumbel margins: P (U≤ x) = P (V ≤ x) = exp(−e−x),

x ∈ R. Then we obtain for a, b > 0 and t ≥ 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

−→
c→∞





exp

(
−

t

max(a, b)

)
if U, V are independent ,

exp

(
−

t

a+ b

)
elsewhere .
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Proof: We consider first the case, where U, V are independent. Wlog

we assume a > b. The case a = b requires a different approach, see below.

The assertion is immediate from

(3.14) e
c
a P
(
aU+ bV > c

)
−→
c→∞

b

a

∫ ∞

−∞

(
1− exp(−e−u)

)
e

b
a
u du ∈ (0,∞) ,

which we establish in the sequel.

Put F (u) := exp(−e−u), u ∈ R. We have

P
(
aU + bV > c

)
=

∫ ∞

−∞

P
(
aU + bV > c | U= u

)
F ′(u) du

=

∫ ∞

−∞

(
1 − F

(c− au

b

))
F ′(u) du .

With the substitution u 7→ (c− bu)/a, the preceding integral equals

b

a

∫ ∞

−∞

(
1−F (u)

)
F ′
(c− bu

a

)
du =

=
b

a

∫ ∞

−∞

(
1− exp(−e−u)

)
e

bu−c
a exp

(
−e

bu−c
a
)
du

= e−
c
a
b

a

∫ ∞

−∞

(
1 − exp(−e−u)

)
e

b
a
u exp

(
−e

bu−c
a
)
du

and, thus, equation (3.14) follows from the dominated convergence theorem;

recall that a > b.

Next we consider the case, where U, V are independent and a = b. The

assertion is a consequence of

(3.15)
ec/a

c/a
P
(
aU + aV > c

)
−→
c→∞

1 ,

which we establish in the following. Wlog we assume a = 1. Repeating the

arguments in the derivation of (3.14) we obtain

P
(
aU + bV > c

)
= e−c

{∫ 0

−∞

(
1− exp(−e−u)

)
eu exp(−eu−c) du

+

∫ ∞

0

(
1− exp(−e−u)

)
eu exp(−eu−c) du

}

=: e−c
{
I(c) + II(c)

}
.

The dominated convergence theorem implies that

I(c) −→
c→∞

∫ 0

−∞

(
1− exp(−e−u)

)
eu du ∈ (0, 1) .
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Taylor expansion of exp at 0 and the substitution u 7→ u+ c yields

II(c) =

∫ ∞

0

(
e−u +O(e−2u)

)
eu exp(−eu−c) du

=

∫ ∞

0
exp(−eu−c) du + O(1)

=

∫ 0

−c
exp(−eu) du +

∫ ∞

0
exp(−eu) du + O(1)

=

∫ 0

−c
exp(−eu) du + O(1) .

In order to establish equation (3.15) it suffices, therefore, to show that

c−1

∫ 0

−c
exp(−eu) du −→

c→∞
1 .

But this follows from straightforward computations.

Finally we consider the case, where U, V are not independent. Wlog we as-

sume that a ≥ b and that (U, V ) =
(
− log(−X),− log(−Y )

)
, where (X,Y ) follows

a bivariate EVD with reverse exponential margins and dependence function D,

which is not the constant function 1. The assertion is a consequence of the fact

exp
( c

a+ b

)
P
(
aU + bV > c

)
−→
c→∞

(3.16)

−→
c→∞

b

a+ b

∫ 1

0

(
1 −D(z) −D′(z) (1− z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz ∈ (0,∞) ,

which we establish in the following.

Put for u < 0

ũ :=
1

1 + exp(− c
b) (−u)−(a+b)/b

∈ (0, 1) .

Then we have by Lemma 2.2

P
(
aU + bV > c

)
=

∫ 0

−∞

(
1−P

(
Y ≤− exp

(
−
c

b

)
(−u)−a/b | X= u

))
exp(u) du

=

∫ 0

−∞

(
1 − exp

{
u
(
D(ũ)−1

)
− exp

(
−
c

b

)
(−u)−a/bD(ũ)

}

×
(
D(ũ) +D′(ũ)(1− ũ)

))
exp(u) du

=

∫ 0

−∞

(
1 −D(ũ) −D′(ũ)(1− ũ)

)
exp(u) du

+

∫ 0

−∞

(
1 − exp

{
u
(
D(ũ)−1

)
− exp

(
−
c

b

)
(−u)−a/bD(ũ)

})

×
(
D(ũ) +D′(ũ)(1− ũ)

)
exp(u) du

=: Ĩ(c) + ĨI(c) .
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Put for z ∈ (0, 1)

g(z) := − exp
(
−

c

a+ b

)( z

1− z

) b
a+b

.

Then we have g̃(z) = z and, thus, with

g′(z) = − exp
(
−

c

a+ b

) b

a+ b
z−

a
a+b (1− z)

a
a+b

−2 ,

the substitution u 7→ g(z) yields

Ĩ(c) = −

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
exp
(
g(z)

)
g′(z) dz

= exp
(
−

c

a+ b

) b

a+ b

×

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz .

Note that the function g depends on the threshold c with g(z) −→
c→∞

0 and that

g(z)< 0, z ∈ (0, 1). The dominated convergence theorem implies, therefore, that

exp
( c

a+ b

)
Ĩ(c) −→

c→∞

−→
c→∞

b

a+ b

∫ 1

0

(
1 −D(z) −D′(z)(1− z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz ∈ (0,∞) .

The integral on the right hand side is finite since 1−D(z) ≤ 1− z and D′(z)∈

[−1, 1]. It is positive by the arguments at the end of the proof of Theorem 3.1.

In order to establish (3.16) it suffices, therefore, to show that

(3.17) exp
( c

a+ b

)
ĨI(c) −→

c→∞
0 .

This can be seen as follows. Choose zc ∈ (0, 1) with g(zc) = −c/b, i.e.,

zc =
1

1 +
(

b
c

)(a+b)/b
exp

(
− c

b

) .

Split the integral ĨI(c) into the sum of the subintervals

ĨI(c) =

∫ g(zc)

−∞

· · · du +

∫ 0

g(zc)
· · · du .

The first integral is of order O
(
exp(−2c/(3b))

)
= o
(
exp(−c/(a+b))

)
; recall that

we assume a ≥ b and that 1−D(ũ) < 1/3 for u ≤ −c/b if c is large. By using

again the substitution u 7→ g(z) and Taylor expansion of exp at 0, the second
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integral on the right hand side above equals

exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

0

(
1− exp

{
g(z)

(
D(z) −1

)
− exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

})

×
(
D(z) +D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz =

= exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

1/2

(
1− exp

{
g(z)

(
D(z) −1

)
− exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

})

×
(
D(z) +D′(z)(1− z)

)
exp
(
g(z)

)
z−

a
a+b (1− z)

a
a+b

−2 dz

+ o

(
exp
(
−

c

a+ b

))

= exp
(
−

c

a+ b

) b

a+ b

×

∫ zc

1/2

(
−g(z)

(
D(z)−1

)
+ exp

(
−

c

a+ b

)(1−z

z

) a
a+b

D(z)

)
(1− z)

a
a+b

−2O(1) dz

+ o

(
exp
(
−

c

a+ b

))

= o

(
exp
(
−

c

a+ b

))
,

which follows from elementary computations; recall that g(z) −→
c→∞

0 and that

1−D(z) ≤ 1− z. We have, thus, established (3.17), which completes the proof

of Theorem 3.4.

In the subsequent theorems we compile the limit excess distributions of

aU + bV for all combinations of different marginal univariate EVDs. Note that

the df of (U, V ) is a bivariate EVD if, and only if the df of (V,U) is a bivariate

EVD. This implies that the order of the prescribed marginal dfs of (U, V ) in the

subsequent results does not matter.

Theorem 3.5 (Reverse Weibull and Gumbel Margins). Suppose that (U,V )

follows a bivariate EVD and that P (U≤ x) = exp(−e−x), x ∈ R, P (V ≤ y) =

exp
(
−(−y)α

)
, y ≤ 0, α > 0. Then we have for a, b > 0 and t ≥ 0

P
(
aU + bV > c+ t | aU + bV > c

)
−→
c→∞

exp(−t/a) .

The combination of a reverse Weibull and a Gumbel margin is, conse-

quently, dominated by the Gumbel part. The corresponding scale parameter is

preserved in the limit.
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Proof: Wlog we can assume the representation U=− log(−X), V =−(−Y )1/α,

where (X,Y ) follows a bivariate EVD with reverse exponential margins and

dependence function D(z) = 1+
∫ z
0 M(x)−1 dx, see Lemma 2.1. We will establish

in the following

(3.18) ec/aP
(
aU + bV > c

)
−→
c→∞

∫ 0

−∞

exp
(
−
b

a
(−u)1/α

)
exp(u) du ∈ (0, 1)

if U and V are independent and

ec/aP
(
aU+ bV > c

)
−→
c→∞

1−M(0)

∫ 1

0
exp
(
−
(
−log(ua/b)

)α)
du ∈ (0, 1)(3.19)

elsewhere. This implies the assertion.

First we establish (3.18). Conditioning on Y = u we obtain

P
(
aU+ bV > c

)
=

∫ 0

−∞

P
(
−a log(−X) − b(−Y )1/α > c | Y = u

)
exp(u) du

=

∫ 0

−∞

(
1−P

(
X≤− exp

(
−
c+ b(−u)1/α

a

)
| Y = u

))
exp(u) du

=

∫ 0

−∞

(
1 − exp

(
−e−c/a−b(−u)1/α/a

))
exp(u) du

=

∫ 0

−∞

(
e−c/a−b(−u)1/α/a +O

(
e−2c/a−2b(−u)1/α/a

))
exp(u) du

and, thus,

ec/aP
(
aU + bV > c

)
−→
c→∞

∫ 0

−∞

exp
(
−
b

a
(−u)1/α

)
exp(u) du ,

which is (3.18).

Next we establish (3.19). Conditioning on X= u we obtain from Lemma 2.2

P
(
aU+ bV > c

)
=

∫ 0

−∞

P
(
−a log(−u) − b(−Y )1/α > c | X= u

)
exp(u) du

=

∫ 0

−exp(−c/a)

(
1−P

(
Y ≤−

(
−c−a log(−u)

b

)α

| X= u

))
exp(u) du

=

∫ 0

−exp(−c/a)

(
1− exp

{
u
(
D(ũ)−1

)
−

(
−c− a log(−u)

b

)α

D(ũ)

}

×
(
D(ũ) +D′(ũ)(1− ũ)

)
)

exp(u) du ,

where

ũ :=
u

u−
(
−c− a log(−u)

b

)α ∈ [0, 1] .
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With the substitution u 7→ − exp(−c/a)u, the above integral equals

exp
(
−
c

a

) ∫ 1

0

(
1 − exp

{
− exp

(
−
c

a

)
u
(
D(ū)−1

)
−
(
− log(ua/b)

)α
D(ū)

}

×
(
D(ū) +D′(ū)(1− ū)

))
exp

(
− exp

(
−
c

a

)
u

)
du ,

where for u ∈ (0, 1)

ū := ˜(
− exp(−c/a)u

)
=

u

u+ exp(c/a)
(
− log(ua/b)

)α ↓
c→∞

0 .

We obtain, consequently,

exp
( c
a

)
P
(
aU + bV > c

)
=

=

∫ 1

0

(
1 −D(ū) −D′(ū)(1− ū)

)
exp

(
− exp

(
−
c

a

)
u

)
du

+

∫ 1

0

{
1 − exp

(
− exp

(
−
c

a

)
u
(
1−D(ū)

)
−
(
− log(ua/b)

)α
D(ū)

)}

×
(
D(ū) +D′(ū)(1− ū)

)
exp

(
− exp

(
−
c

a

)
u

)
du

−→
c→∞

−D′(0) +

∫ 1

0

{
1 − exp

(
−
(
− log(ua/b)

)α)
}(

1+D′(0)
)
du

= 1−M(0)

∫ 1

0
exp
(
−
(
− log(ua/b)

)α)
du ∈ (0, 1) .

Note that necessarily M(0)< 1. Otherwise we had D(z) = 1+
∫ z
0 M(x)−1 dx ≥ 1

and, thus, D would be the constant function 1. But this case was excluded. Thus

we have established (3.19), which completes the proof of Theorem 3.5.

Theorem 3.6 (Reverse Weibull and Fréchet Margins). Suppose that (U,V )

follows a bivariate EVD with P (U≤ x) = exp
(
−(−x)α1

)
, x ≤ 0, and P (V ≤ y) =

exp(−y−α2), y > 0, α1, α2 > 0. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−α2 .

The combination of a reverse Weibull and a Fréchet margin is, therefore,

determined by the Fréchet part. The limit excess df is independent of the scale

parameters.

Proof: It is sufficient to show that for n ∈ N

(3.20) n−1/α2 max
1≤i≤n

(
aUi + bVi

)
−→
D

exp
(
−(y/b)−α2

)
, y > 0 ,
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where (U1, V1), (U2, V2), ... are independent copies of (U, V ). But (3.20) is imme-

diate from the inequalities

a min
1≤i≤n

Ui + b max
1≤i≤n

Vi ≤ max
1≤i≤n

(
aUi + bVi

)
≤ b max

1≤i≤n
Vi

and the facts that

n−1/α2 max
1≤i≤n

Vi =
D

exp(−y−α2) , y > 0 ,

n−1/α2 min
1≤i≤n

Ui −→
n→∞

0 in probability .

Theorem 3.7 (Fréchet and Gumbel Margins). Suppose that the rv (U,V )

follows a bivariate EVD with P (U≤ x) = exp(−x−α), x > 0, where α > 0, and

P (V ≤ y) = exp(−e−y), y ∈ R. Then we have for a, b > 0 and t ≥ 1

P
(
aU + bV > tc | aU + bV > c

)
−→
c→∞

t−α .

The combination of a Fréchet and a Gumbel margin is, consequently, de-

termined by the Fréchet part. The limit excess df is independent of the scale

parameters.

Proof: It is sufficient to show that for n ∈ N

(3.21) n−1/α max
1≤i≤n

(
aUi + bVi

)
−→
D

exp
(
−(x/b)−α

)
, x > 0 ,

where (U1, V1), (U2, V2), ... are independent copies of (U, V ). But (3.21) is imme-

diate from the inequalities

a max
1≤i≤n

Ui + b min
1≤i≤n

Vi ≤ max
1≤i≤n

(
aUi + bVi

)
≤ a max

1≤i≤n
Ui + b max

1≤i≤n
Vi

and the facts that

n−1/α max
1≤i≤n

Ui =
D

exp(−x−α) , x > 0 ,

n−1/α min
1≤i≤n

Vi −→
n→∞

0 , n−1/α max
1≤i≤n

Vi −→
n→∞

0 in probability .
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Key-Words:

• decomposition; marginal cumulative logistic model; marginal homogeneity; marginal

mean; multi-way contingency table.

AMS Subject Classification:

• 62H17.



164 K. Tahata, S. Katakura and S. Tomizawa



Decompositions of Marginal Homogeneity Model 165

1. INTRODUCTION

For an R×R square contingency table with ordered categories, let pij de-

note the probability that an observation will fall in the cell in row i and column j

(i = 1, ..., R; j = 1, ..., R), and let X1 and X2 denote the row and column variables,

respectively. The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = Pr(X2 = i) for i = 1, ..., R ;

that is

pi · = p· i for i = 1, ..., R ,

where pi · =
∑R

k=1 pik and p· i =
∑R

k=1 pki. This model indicates that the row

marginal distribution is identical to the column marginal distribution (Stuart,

1955; Bhapkar, 1966; Bishop, Fienberg and Holland, 1975, p. 294; Tomizawa,

1991, 1993, 1998). Let F
(1)
i and F

(2)
i denote the marginal cumulative probabilities

of X1 and X2, respectively. These are F
(1)
i = Pr(X1≤ i) =

∑i
k=1 pk · and F

(2)
i =

Pr(X2 ≤ i) =
∑i

k=1 p·k for i = 1, ..., R−1. Then the MH model may also be

expressed as

F
(1)
i = F

(2)
i for i = 1, ..., R−1 .

Let L
(1)
i and L

(2)
i denote the marginal cumulative logit of X1 and X2,

respectively. These are given as

L
(1)
i = logit

[
Pr(X1≤ i)

]
= log

[
Pr(X1≤ i)

1 − Pr(X1≤ i)

]
,

and

L
(2)
i = logit

[
Pr(X2 ≤ i)

]
= log

[
Pr(X2 ≤ i)

1 − Pr(X2 ≤ i)

]
,

for i = 1, ..., R−1. Then the MH model may be further expressed as

L
(1)
i = L

(2)
i for i = 1, ..., R−1 .

As an extension of the MH model, Agresti (1984, p. 205; 2002, p. 420) considered

the marginal cumulative logistic (ML) model defined by

L
(1)
i = L

(2)
i + ∆ for i = 1, ..., R−1 .

This model states that the odds that X1 is i or below instead of i + 1 or above,

is exp(∆) times higher than the odds that X2 is i or below instead of i + 1 or

above, for every i = 1, ..., R−1. Note that the MH model implies the ML model.

Consider the marginal mean equivalence (ME) model defined by

R∑

i=1

i pi · =
R∑

i=1

i p· i (i.e., E(X1) = E(X2)) .
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Miyamoto, Niibe and Tomizawa (2005) gave the following theorem.

Theorem 1.1. The MH model holds if and only if both the ML and ME

models hold.

Using the conditional probabilities, the MH model may also be expressed

as

Pr
(
X1 = i |X1 6= X2

)
= Pr

(
X2 = i |X1 6= X2

)
for i = 1, ..., R ;

that is

pc
i · = pc

· i for i = 1, ..., R ,

where

pc
i · =

pi · − pii

δ
= Pr

(
X1 = i |X1 6= X2

)
,

pc
· i =

p· i − pii

δ
= Pr

(
X2 = i |X1 6= X2

)
,

δ =
∑∑

s 6=t

pst = Pr
(
X1 6= X2

)
.

Let F
c(1)
i and F

c(2)
i denote the conditional marginal cumulative probabilities of

X1 and X2 given that X1 6= X2, i.e.,

F
c(1)
i = Pr

(
X1≤ i |X1 6= X2

)
=

i∑

k=1

pc
k · ,

F
c(2)
i = Pr

(
X2 ≤ i |X1 6= X2

)
=

i∑

k=1

pc
·k ,

for i = 1, ..., R−1. Then the MH model may be further expressed as F
c(1)
i = F

c(2)
i

for i = 1, ..., R−1. Miyamoto et al. (2005) also considered the conditional marginal

cumulative logistic (CML) model defined by

L
c(1)
i = L

c(2)
i + ∆∗ for i = 1, ..., R−1 ,

where

L
c(1)
i = logit

[
Pr
(
X1≤ i |X1 6= X2

)]
,

L
c(2)
i = logit

[
Pr
(
X2 ≤ i |X1 6= X2

)]
.

Miyamoto et al. (2005) also gave the following theorem.

Theorem 1.2. The MH model holds if and only if both the CML and ME

models hold.
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For analyzing the data of multi-way tables of the same classifications with

ordered categories, the some models of symmetry, e.g., the symmetry model, the

MH model (e.g., Bishop et al. 1975, pp. 300–307), and the ML model (Agresti,

2002, pp. 439–440) are applied. The symmetry and the MH models do not depend

on the main diagonal cell probabilities, however, the ML model depends on them.

So, we are now interested in the another ML model which does not depend on

the main diagonal cell probabilities, namely, in the conditional ML model on

condition that an observation will fall in one of off-diagonal cells of the table.

The purpose of this paper is (1) to extend the CML model into the multi-

way tables (Section 2.4) and (2) to extend Theorems 1.1 and 1.2 into the multi-

way tables (Section 3).

2. EXTENSION TO MULTI-WAY TABLES

2.1. The MH model

Consider an RT table (T ≥ 3) having ordered categories. Let Xt denote

the t-th random variable for t = 1, ..., T and let Pr(X1 = i1, ..., XT = iT ) = pi1...iT

for it = 1, ..., R. The marginal homogeneity (MH) model is defined by

Pr(X1 = i) = · · · = Pr(XT = i) for i = 1, ..., R ;

that is

p
(1)
i = · · · = p

(T )
i for i = 1, ..., R ,

where

p
(t)
i = Pr(Xt = i) for t = 1, ..., T .

Let F
(t)
i denote the marginal cumulative probabilities and let L

(t)
i denote

the marginal cumulative logit of Xt for i = 1, ..., R−1; t = 1, ..., T . Namely,

F
(t)
i =

∑i
s=1 p

(t)
s , and L

(t)
i = logit

[
Pr(Xt ≤ i)

]
. Then the MH model may also

be expressed as

F
(k)
i = F

(1)
i for i = 1, ..., R−1; k = 2, ..., T ,

or

L
(k)
i = L

(1)
i for i = 1, ..., R−1; k = 2, ..., T .
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2.2. The ML model

Agresti (2002, p. 442) considered the marginal cumulative logistic (ML)

model, defined by

L
(k)
i = L

(1)
i − ∆k−1 for i = 1, ..., R−1; k = 2, ..., T .

By putting L
(1)
i = θi, this model may be expressed as

F
(k)
i =

exp(θi − ∆k−1)

1 + exp(θi − ∆k−1)
for i = 1, ..., R−1; k = 1, ..., T ,

where ∆0 = 0. A special case of this model obtained by putting ∆1 = · · · =

∆T−1 = 0 is the MH model.

2.3. Other expressions of MH model

The MH model may also be expressed as

Pr
(
Xk = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)
=

= Pr
(
X1 = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)
,

for i = 1, ..., R; k = 2, ..., T ; that is

p
c(k)
i = p

c(1)
i for i = 1, ..., R; k = 2, ..., T ,

where, for m = 1, ..., T ,

p
c(m)
i =

p
(m)
i − pii ··· i

δ
= Pr

(
Xm = i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)
,

δ = 1 −

R∑

i=1

pii ··· i = Pr
(
(X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)
.

Let F
c(k)
i denote the conditional marginal cumulative probabilities of Xk given

that (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R, i.e.,

F
c(k)
i = Pr

(
Xk ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)
=

i∑

t=1

p
c(k)
t

for i = 1, ..., R−1; k = 1, ..., T . Then the MH model may be further expressed as

F
c(k)
i = F

c(1)
i for i = 1, ..., R−1; k = 2, ..., T .
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2.4. The CML model

Consider now a model defined by

L
c(k)
i = L

c(1)
i − ∆∗

k−1 for i = 1, ..., R−1; k = 2, ..., T ,

where, for m = 1, ..., T ,

L
c(m)
i = logit

[
Pr
(
Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)]

= log




Pr
(
Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)

1 − Pr
(
Xm ≤ i | (X1, ..., XT ) 6= (s, ..., s), s = 1, ..., R

)


 .

We shall refer to this model as the conditional marginal cumulative logistic (CML)

model. By putting L
c(1)
i = θ∗i , this model may be expressed as

F
c(k)
i =

exp(θ∗i − ∆∗
k−1)

1 + exp(θ∗i − ∆∗
k−1)

for i = 1, ..., R−1; k = 1, ..., T ,

where ∆∗
0 = 0. A special case of the CML model obtained by putting ∆∗

1 = · · · =

∆∗
T−1 = 0 is the MH model.

The CML model states that for k = 2, ..., T , on condition that the values

of random variables are not all same, the odds that X1 is i or below instead of

i+1 or above, is exp(∆∗
k−1) times higher than the odds that Xk is i or below

instead of i+1 or above, for every i = 1, ..., R−1. Thus, if ∆∗
k−1 > 0, on the same

condition, X1 rather than Xk tends to be i or below instead of i+ 1 or above for

every i = 1, ..., R−1.

3. DECOMPOSITIONS OF THE MARGINAL HOMOGENEITY

MODEL

We shall consider two kinds of decompositions of the MH model.

3.1. A decomposition of the MH model using the ML model

Consider a model defined as

R∑

i=1

i p
(1)
i = · · · =

R∑

i=1

i p
(T )
i (i.e., E(X1) = · · · = E(XT )) .(3.1)
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Namely, the means of variables Xk (k=1,...,T ) are equal. Note that the MH model

implies model (3.1).

Consider a specified monotonic function g(k) satisfying g(1) ≤ · · · ≤ g(R)

or g(1) ≥ · · · ≥ g(R), where at least one strict inequality holds. Using the func-

tion g(k), model (3.1) is generalized as

R∑

i=1

g(i) p
(1)
i = · · · =

R∑

i=1

g(i) p
(T )
i (i.e., E(g(X1)) = · · ·= E(g(XT ))) .(3.2)

We shall refer to (3.2) as the marginal mean equivalence (ME) model.

The {g(k)} may be considered as the ordered scores {uk} assigned to the

categories if it is possible to assign the scores; namely, g(k) = uk satisfying

u1≤ · · · ≤ uR or u1≥ · · · ≥ uR. In particular, when the scores are equal-interval;

that is, when u2 − u1 = u3 − u2 = · · · = uR − uR−1, then the ME model with

g(k) = uk is equivalent to the model (3.1). We now obtain the following theorem.

Theorem 3.1. For multi-way tables, the MH model holds if and only if

both the ML and ME models hold.

Proof: If the MH model holds, then both the ML and ME models hold.

Therefore, assuming that both the ML and ME models hold, we shall show that

the MH model holds. We have

E(g(X1)) =

R∑

k=1

g(k) p
(1)
k

= g(1) +
R∑

k=2

(
dk

R∑

i=k

p
(1)
i

)

= g(1) +
R∑

k=2

dk

(
1 − F

(1)
k−1

)

= g(R) −
R∑

k=2

dk F
(1)
k−1 ,

where

dk = g(k) − g(k−1) .

Similarly, we have

E(g(X2)) = g(R) −
R∑

k=2

dk F
(2)
k−1 .

This yields

E(g(X2)) − E(g(X1)) =

R∑

k=2

dk

(
F

(1)
k−1 − F

(2)
k−1

)
.
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Since the ML and ME models hold, we obtain

R∑

k=2

dk

(
exp(θk−1)

1 + exp(θk−1)
−

exp(θk−1− ∆1)

1 + exp(θk−1 − ∆1)

)
= 0 .

Thus

(
1 − exp(−∆1)

) R∑

k=2

dk
exp(θk−1)(

1 + exp(θk−1)
) (

1 + exp(θk−1− ∆1)
) = 0 .

Then

R∑

k=2

dk
exp(θk−1)(

1 + exp(θk−1)
) (

1 + exp(θk−1− ∆1)
) 6= 0 ,

because dk ≥ 0 for all k = 2, ..., R (or dk ≤ 0 for all k = 2, ..., R), with at least

one of the dk’s being not equal to zero. Therefore we obtain ∆1 = 0. In the

similar way, we obtain ∆k = 0 for k = 2, ..., T − 1. Thus, the MH model holds.

The proof is completed.

3.2. A decomposition of the MH model using the CML model

We now obtain the following theorem.

Theorem 3.2. For multi-way tables, the MH model holds if and only if

both the CML and ME models hold.

We omit the proof because it can be obtained in a similar way as the proof

of Theorem 3.1.

Generally, consider a decomposition of model such that model M1 holds

if and only if both models M2 and M3 hold. When models M1 and M2 fit the

data poorly but model M3 fits the data well, we can then understand that the

poor fit of model M1 is caused by the lack of structure of model M2 rather than

the structure of model M3. Thus, the decomposition of model M1 may be useful

to see the reason for the poor fit of model M1.

Let ni1··· iT denote the observed frequency in the (i1, ..., iT ) cell of the RT

table with n =
∑

· · ·
∑

ni1··· iT , and let mi1··· iT denote the corresponding expected

frequency. We assume that {ni1··· iT } have a multinomial distribution. The max-

imum likelihood estimates (MLEs) of the expected frequencies under each model
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can be obtained using a Newton–Raphson method to solve the likelihood equa-

tion (see Appendix for the CML model). Denote the likelihood ratio chi-squared

statistic for testing the goodness-of-fit of model M by G2(M). For testing that

model M1 holds assuming that model M2 holds true, the likelihood ratio statis-

tic is given as G2(M1 |M2) = G2(M1) − G2(M2) (≥ 0). The numbers of degrees

of freedom (df) for testing the goodness-of-fit of the MH, ML (CML), and ME

models are (T −1)(R−1), (T −1)(R−2), and T −1, respectively.

Table 1: Opinions about government spending; from Lang and Agresti (1994).
The upper and lower paranthesized values are the MLEs of expected
frequencies under the ML and CML models, respectively.

Cities Health
Law Enforcement

(1) (2) (3)

(1) (1) 76 20 5
(71.31) (17.03) (5.92)
(76.00) (21.00) (5.66)

(1) (2) 13 11 0
(12.29) (9.43) (0.00)
(15.22) (12.59) (0.00)

(1) (3) 4 3 2
(3.68) (2.51) (2.31)
(3.31) (2.44) (1.72)

(2) (1) 113 56 5
(122.83) (54.44) (7.16)
(108.92) (52.96) (5.06)

(2) (2) 30 28 1
(32.89) (27.43) (1.45)
(31.29) (28.00) (1.10)

(2) (3) 4 1 2
(4.25) (0.95) (2.78)
(3.04) (0.75) (1.58)

(3) (1) 103 41 15
(100.86) (36.28) (18.76)
(103.88) (40.54) (15.92)

(3) (2) 29 21 5
(28.61) (18.71) (6.32)
(31.77) (22.51) (5.79)

(3) (3) 6 8 5
(5.76) (6.95) (6.09)
(4.73) (6.21) (5.00)

Note: (1) – too little; (2) – about right; (3) – too much.
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4. EXAMPLE

The data in Table 1, taken directly from Lang and Agresti (1994), is the

1989 General Social Survey conducted by the National Opinion Research Center

at the University of Chicago. Subjects in the sample were asked their opinion

regarding government spending on the health (X1), the law enforcement (X2),

and the assistance to big cities (X3). The common response scale is (1) too little,

(2) about right, and (3) too much. Table 2 presents the values of likelihood ratio

statistic G2 for each model.

The MH model fits these data very poorly. However the CML model fits

these data well although the ML model does not fit so well. Also, the ME model

with g(k) = k, k = 1, 2, 3, fits these data very poorly.

Consider the hypothesis that the MH model holds under the assumption

that the ML (CML) model holds; namely, the hypothesis that ∆1 = ∆2 = 0

(∆∗
1= ∆∗

2 = 0) under the assumption. Because G2(MH |ML) = G2(MH)−G2(ML)

= 328.57 and G2(MH |CML) = G2(MH) − G2(CML) = 331.49 with 2 df, we re-

ject these hypotheses at the 0.05 level. These show the rejection of ∆1 = ∆2 = 0

(∆∗
1 = ∆∗

2 = 0) in the ML (CML) model.

Under the CML model the MLEs of exp(∆∗
k) are exp(∆̂∗

1) = 1.59 and

exp(∆̂∗
2) = 17.3 (i.e., ∆̂∗

1 = 0.46 and ∆̂∗
2 = 2.85). Thus, the CML model provides

that (1) under the condition that the opinions are not all same, the odds that

the opinion is ‘too little’ instead of not ‘too little’ are estimated to be 1.59 times

higher in health than in law, and (2) the odds that the opinion is not ‘too much’

instead of ‘too much’ are estimated to be 1.59 times higher in health than in law,

and similarly, (3) the odds that the opinion is ‘too little’ instead of not ‘too little’

are estimated to be 17.3 times higher in health than in cities, and (4) the odds

that the opinion is not ‘too much’ instead of ‘too much’ are estimated to be

17.3 times higher in health than in cities.

Table 2: Likelihood ratio statistic G2 for models applied to the data in Table 1.

Models
Table 1

df G2

MH 4 334.62∗

ML 2 6.05∗

CML 2 3.13
ME 2 316.01∗

∗ means significant at 0.05 level.

Note: g(k) for the ME model are the equal-interval scores.
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5. CONCLUDING REMARKS

When the MH model fits the data poorly, the decompositions of the MH

model may be useful for seeing the reason for its poor fit. Indeed, for the data in

Table 1, the poor fit of the MH model is caused by the poor fit of the ME model

rather than the ML (or CML) model.

Each of the MH, CML and ME models does not depend on the probabilities

{pii ··· i} on the main diagonal of the table, but the ML model depends on them.

Notice that the estimated expected frequencies on the main diagonal cells under

the ML model are different from the observed frequencies on the main diagonal

(see Table 1).

When the MH model does not hold, if we want to see the reason why

the equalities of the conditional marginal cumulative probabilities {F
c(k)
i } do not

hold, the analyst would be interested in inferring the structure of only off-diagonal

probabilities. In this case, the decomposition of the MH model into the CML and

ME models may be preferable to that into the ML and ME models.

Also, the MH model indicates the equalities of marginal cumulative prob-

abilities {F
(k)
i }, which include the probabilities {pii ··· i} on the main diagonal.

Therefore, when the MH model does not hold, if we want to see the reason why

the equalities of {F
(k)
i } do not hold, the analyst would be interested in inferring

the structure of {F
(k)
i }. Then, the decomposition of the MH model into the ML

and ME models may be preferable to that into the CML and ME models.

The decompositions of the MH model described here should be consid-

ered for ordinal categorical data, because each of the decomposed models is not

invariant under the same arbitrary permutations of all categories.
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APPENDIX

We consider the MLEs of the expected frequencies {mijt} under the CML

model. We give the case of three-way table below and omit the case of more

multi-way table because those are obtained in the similar way.

To obtain the MLEs under the CML model, we must maximize the Lagran-

gian

L =

R∑

i=1

R∑

j=1

R∑

t=1

nijt log pijt − µ

(
R∑

i=1

R∑

j=1

R∑

t=1

pijt − 1

)

−
R−1∑

i=1

λ1i

(
F

c(1)
i

(
1−F

c(2)
i

)
− exp(∆∗

1)
(
1−F

c(1)
i

)
F

c(2)
i

)

−
R−1∑

i=1

λ2i

(
F

c(1)
i

(
1−F

c(3)
i

)
− exp(∆∗

2)
(
1−F

c(1)
i

)
F

c(3)
i

)

with respect to {pijt}, µ, {λ1i}, {λ2i}, ∆∗
1, and ∆∗

2. Setting the partial derivatives

of L equal to zeros, we obtain the equations

mijt =
nijt

1 + 1
n(T1ij + T2it)

for i, j, t = 1, ..., R; (i, j, t) 6= (i, i, i) ,

miii = niii for i = 1, ..., R ,

where

T1ij = δ−1
R−1∑

u=1

[
I(u≥i) I(u≥j) λ1u

{(
1−F c(2)

u

)
− exp(∆∗

1)
(
1−F c(1)

u

)}

+ I(u<i) I(u≥j) λ1u

{
− exp(∆∗

1)
(
F c(2)

u +
(
1−F c(1)

u

))}

+ I(u≥i) I(u<j) λ1u

{(
1−F c(2)

u

)
+ F c(1)

u

}

+ I(u<i) I(u<j) λ1u

{
F c(1)

u − exp(∆∗
1)F c(2)

u

}]
,

T2it = δ−1
R−1∑

u=1

[
I(u≥i) I(u≥t) λ2u

{(
1−F c(3)

u

)
− exp(∆∗

2)
(
1−F c(1)

u

)}

+ I(u<i) I(u≥t) λ2u

{
− exp(∆∗

2)
(
F c(3)

u +
(
1−F c(1)

u

))}

+ I(u≥i) I(u<t) λ2u

{(
1−F c(3)

u

)
+ F c(1)

u

}

+ I(u<i) I(u<t) λ2u

{
F c(1)

u − exp(∆∗
2)F c(3)

u

}]
,
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and R−1∑

i=1

λk−1,i

(
1−F

c(1)
i

)
F

c(k)
i = 0 for k = 2, 3 ,

F
c(1)
i

(
1−F

c(k)
i

)
= exp(∆∗

k−1)
(
1−F

c(1)
i

)
F

c(k)
i for i = 1, ..., R−1; k = 2, 3 ,

where mijt = npijt and I(·) is the indicator function. Using the Newton–Raphson

method, we can solve the equations with respect to {pijt}, {λ1i}, {λ2i}, ∆
∗
1 and ∆∗

2.

Therefore, we can obtain the MLEs of {mijt}, ∆∗
1 and ∆∗

2 under the CML model.
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• Classical extreme value index estimators are known to be quite sensitive to the num-
ber k of top order statistics used in the estimation. The recently developed second
order reduced-bias estimators show much less sensitivity to changes in k. Here, we
are interested in the improvement of the performance of reduced-bias extreme value
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the scaled log-spacings of the top k order statistics. In order to achieve that improve-
ment, the estimation of a “scale” and a “shape” second order parameters in the bias is
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the extreme value index estimators. This enables us to keep the asymptotic variance
of the new estimators of a positive extreme value index γ equal to the asymptotic
variance of the Hill estimator, the maximum likelihood estimator of γ, under a strict
Pareto model. These new estimators are then alternatives to the classical estimators,
not only around optimal and/or large levels k, but for other levels too. To enhance the
interesting performance of this type of estimators, we also consider the estimation of
the “scale” second order parameter only, at the same level k used for the extreme value
index estimation. The asymptotic distributional properties of the proposed class of
γ-estimators are derived and the estimators are compared with other similar alter-
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reduced-bias extreme value index estimators.
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1. INTRODUCTION AND MOTIVATION FOR THE NEWCLASS

OF EXTREME VALUE INDEX ESTIMATORS

Examples of heavy-tailed models are quite common in the most diversified

fields. We may find them in computer science, telecommunication networks,

insurance, economics and finance, among other areas of application. In the area

of extreme value theory, a model F is said to be heavy-tailed whenever the tail

function, F := 1 − F , is a regularly varying function with a negative index of

regular variation equal to −1/γ, γ > 0, denoted F ∈ RV−1/γ , where the notation

RVα stands for the class of regularly varying functions at infinity with an index

of regular variation equal to α, i.e., positive measurable functions g such that

limt→∞ g(tx)/g(t) = xα, for all x > 0. Equivalently, the quantile function U(t) =

F←(1− 1/t), t ≥ 1, with F←(x) = inf{y : F (y) ≥ x}, is of regular variation with

index γ, i.e.,

(1.1) F is heavy-tailed ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ ,

for some γ > 0. Then, we are in the domain of attraction for maxima of an

extreme value distribution function (d.f.),

EVγ(x) =

{
exp
(
−(1 + γx)−1/γ

)
, 1 + γx ≥ 0 if γ 6= 0 ,

exp
(
− exp(−x)

)
, x ∈ R if γ = 0 ,

but with γ > 0, and we write F ∈ DM(EVγ>0). The parameter γ is the extreme

value index, one of the primary parameters of extreme or even rare events.

The second order parameter ρ rules the rate of convergence in the first

order condition (1.1), let us say the rate of convergence towards zero of

lnU(tx) − lnU(t) − γ lnx, and is the non-positive parameter appearing in the

limiting relation

(1.2) lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1

ρ
,

which we assume to hold for all x > 0, and where |A(t)| must then be of regular

variation with index ρ (Geluk and de Haan, 1987). We shall assume everywhere

that ρ < 0. The second order condition (1.2) has been widely accepted as an

appropriate condition to specify the tail of a Pareto-type distribution in a semi-

parametric way, and it holds for most common Pareto-type models.

Remark 1.1. For Hall–Welsh class of Pareto-type models (Hall and Welsh,

1985), i.e., models such that, with C > 0, D1 6= 0 and ρ < 0,

(1.3) U(t) = C tγ
(
1 +D1t

ρ + o(tρ)
)
, as t→∞ ,

condition (1.2) holds and we may choose A(t) = ρD1 t
ρ.
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Here, although not going into a general third order framework, as the one

found in Gomes et al. (2002) and Fraga Alves et al. (2003), in papers on the

estimation of ρ, as well as in Gomes et al. (2004a), in a paper on the estima-

tion of a positive extreme value index γ, we shall further specify the term o(tρ)

in Hall–Welsh class of models, and, for some particular details in the paper,

we shall assume to be working with a Pareto-type class of models with a quantile

function

(1.4) U(t) = C tγ
(
1 +D1t

ρ +D2 t
2ρ + o(t2ρ)

)
,

as t→∞, with C > 0, D1, D2 6= 0, ρ< 0. Consequently, we may obviously choose,

in (1.2),

(1.5) A(t) = ρD1 t
ρ =: γ β tρ , β 6= 0, ρ < 0 ,

and, with

(1.6) B(t) = (2D2/D1−D1) t
ρ =: β′ tρ =

β′A(t)

β γ
,

we may write

lnU(tx) − lnU(t) − γ lnx = A(t)

(
xρ−1

ρ

)
+A(t)B(t)

(
x2ρ−1

2 ρ

)(
1 + o(1)

)
.

The consideration of models in (1.4) enables us to get full information on the

asymptotic bias of the so-called second-order reduced-bias extreme value index

estimators, the type of estimators under consideration in this paper.

Remark 1.2. Most common heavy-tailed d.f.’s, like the Fréchet, the Gen-

eralized Pareto (GP), the Burr and the Student’s t belong to the class of models

in (1.4), and consequently, to the class of models in (1.3) or, to the more general

class of parents satisfying (1.2).

For intermediate k, i.e., a sequence of integers k= kn, 1≤ k <n, such that

(1.7) k = kn → ∞ , kn = o(n), as n→∞ ,

and withXi:n denoting the i-th ascending order statistic (o.s.), 1≤ i≤ n, associated

to an independent, identically distributed (i.i.d.) random sample (X1, X2, ..., Xn),

we shall consider, as basic statistics, both the log-excesses over the random high

level lnXn−k:n, i.e.,

(1.8) Vik := lnXn−i+1:n − lnXn−k:n , 1≤ i≤ k <n ,

and the scaled log-spacings,

(1.9) Ui := i
{
lnXn−i+1:n − lnXn−i:n

}
, 1≤ i≤ k <n .
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We have a strong obvious link between the log-excesses and the scaled log-spacings

provided by the equation,
∑k

i=1Vik =
∑k

i=1 Ui.

It is well known that for intermediate k, and whenever we are working

with models in (1.1), the log-excesses Vik, 1≤ i ≤ k, are approximately the k

o.s.’s from an exponential sample of size k and mean value γ. Also, under the

same conditions, the scaled log-spacings Ui, 1≤ i ≤ k, are approximately i.i.d.

and exponential with mean value γ. Consequently, the Hill estimator of γ (Hill,

1975),

(1.10) H(k) ≡ Hn(k) =
1

k

k∑

i=1

Vik =
1

k

k∑

i=1

Ui ,

is consistent for the estimation of γ whenever (1.1) holds and k is intermediate,

i.e., (1.7) holds. Under the second order framework in (1.2) the asymptotic

distributional representation

(1.11) Hn(k)
d
= γ +

γ
√
k
Z

(1)
k +

A(n/k)

1− ρ

(
1 + op(1)

)

holds, where Z
(1)
k =

√
k
(∑k

i=1Ei/k − 1
)
, with {Ei} i.i.d. standard exponential

random variables (r.v.’s), is an asymptotically standard normal random variable.

Consequently,
√
k (Hn(k)− γ) converges weakly towards a normal r.v. with vari-

ance γ2 and a non-null mean value equal to λ/(1− ρ), whenever
√
k A(n/k) →

λ 6= 0, finite.

The adequate accommodation of the bias of Hill’s estimator has been

extensively addressed in recent years by several authors. Beirlant et al. (1999)

and Feuerverger and Hall (1999) consider exponential regression techniques,

based on the exponential approximations Ui ≈ γ
(
1 + b(n/k) (k/i)ρ

)
Ei and

Ui ≈ γ exp
(
β (n/i)ρ

)
Ei, respectively, 1 ≤ i ≤ k. They then proceed to the joint

maximum likelihood (ML) estimation of the three unknown parameters or func-

tionals at the same level k. Considering also the scaled log-spacings Ui in (1.9)

to be approximately exponential with mean value µi = γ exp
(
β(n/i)ρ

)
, 1≤ i≤ k,

β 6= 0, Gomes and Martins (2002) advance with the so-called “external” estima-

tion of the second order parameter ρ, i.e., an adequate estimation of ρ at a level k1

higher than the level k used for the extreme value index estimation, together with

a first order approximation for the ML estimator of β. They then obtain “quasi-

ML” explicit estimators of γ and β, both computed at the same level k, and

through that “external” estimation of ρ, are then able to reduce the asymptotic

variance of the extreme value index estimator proposed, comparatively to the

asymptotic variance of the extreme value index estimator in Feuerverger and

Hall (1999), where the three parameters γ, β and ρ are estimated at the same

level k. With the notation

(1.12) dk(α) =
1

k

k∑

i=1

( i
k

)α−1
, Dk(α) =

1

k

k∑

i=1

( i
k

)α−1
Ui ,
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for any real α ≥ 1 [Dk(1)≡H(k) in (1.10)], and with ρ̂ any consistent estimator

of ρ, such estimators are

(1.13) γ̂ML

n (k) = H(k) − β̂(k; ρ̂)
(n
k

)ρ̂
Dk(1− ρ̂)

and

(1.14) β̂(k; ρ̂) :=
(k
n

)ρ̂ dk(1− ρ̂)×Dk(1) −Dk(1− ρ̂)

dk(1− ρ̂)×Dk(1− ρ̂) −Dk(1− 2 ρ̂)
,

for γ and β, respectively. This means that β, in (1.5), which is also a second

order parameter, is estimated at the same level k at which the γ-estimation

is performed, being β̂(k; ρ̂) — not consistent for the estimation of β whenever√
k A(n/k) → λ, finite, but consistent for models in (1.2) and intermediate k

such that
√
k A(n/k) → ∞ (Gomes and Martins, 2002), — plugged in the extreme

value index estimator in (1.13). In all the above mentioned papers, authors have

been led to the now called “classical” second order reduced-bias extreme value

index estimators with an asymptotic variance larger or equal to γ2
(
(1− ρ)/ρ

)2
,

the minimal asymptotic variance of an asymptotically unbiased estimator in

Drees class of functionals (Drees, 1998).

We here propose an “external” estimation of both β and ρ, through β̂ and ρ̂,

respectively, both using a number of top o.s.’s, k1, larger than the number of

top o.s.’s, k, used for the extreme value index estimation. We shall thus consider

the estimator

(1.15) MLβ̂,ρ̂(k) := H(k) − β̂
(n
k

)ρ̂
Dk(1− ρ̂) ,

for adequate consistent estimators β̂ and ρ̂ of the second order parameters β and ρ,

respectively, to be specified in subsection 3.3 of this paper. Additionally, we shall

also deal with the estimator

(1.16) MLβ̂,ρ̂(k) =
1

k

k∑

i=1

Ui exp
(
−β̂(n/i)ρ̂

)
,

the estimator directly derived from the likelihood equation for γ with β and ρ

fixed and based upon the exponential approximation, Ui ≈ γ exp
(
β(n/i)ρ

)
Ei,

1 ≤ i ≤ k. Doing this, we are able to reduce the bias without increasing the

asymptotic variance, which is kept at the value γ2, the asymptotic variance of

Hill’s estimator. The estimators are thus better than the Hill estimator for all k.

Remark 1.3. If, in (1.15), we estimate β at the same level k used for

the estimation of γ, we may be led to γ̂ML
n (k) in (1.13). Indeed, γ̂ML

n (k) =

MLβ̂(k;ρ̂),ρ̂(k), with β̂(k; ρ̂) defined in (1.14).

Remark 1.4. The ML estimator in (1.15) may be obtained from the esti-

mator in (1.16) through the use of the first order approximation,
{
1− β̂(n/i)ρ̂

}
,

for the exponential weight, e−β̂(n/i)ρ̂
, of the scaled log-spacing Ui, 1≤ i ≤ k.
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Remark 1.5. The estimators in (1.15) and (1.16) have been inspired in

the recent papers of Gomes et al. (2004b) and Caeiro et al. (2005). These authors

consider, in different ways, the joint external estimation of both the “scale” and

the “shape” parameters in the A function in (1.2), parameterized as in (1.5), being

able to reduce the bias without increasing the asymptotic variance, which is kept

at the value γ2, the asymptotic variance of Hill’s estimator. Those estimators

are also going to be considered here for comparison with the new estimators in

(1.15) and (1.16). The reduced-bias extreme value index estimator in Gomes

et al. (2004b) is based on a linear combination of the log-excesses Vik in (1.8),

and is given by

(1.17) WHβ̂,ρ̂(k) :=
1

k

k∑

i=1

e−β̂(n/k)ρ̂ ψρ̂(i/k) Vik , ψρ(x) = −
x−ρ − 1

ρ lnx
,

with the notation WH standing for Weighted Hill estimator. Caeiro et al. (2005)

consider the estimator

(1.18) Hβ̂,ρ̂(k) := H(k)

(
1−

β̂

1− ρ̂

(n
k

)ρ̂)
,

where the dominant component of the bias of Hill’s estimatorH(k) in (1.10), given

byA(n/k)/(1−ρ) = βγ(n/k)ρ/(1−ρ), is thus estimated throughH(k) β̂(n/k)ρ̂/(1−ρ̂),

and directly removed from Hill’s classical extreme value index estimator.

As before, both in (1.17) and (1.18), β̂ and ρ̂ need to be adequate consistent

estimators of the second order parameters β and ρ, respectively, so that the

new estimators are better than the Hill estimator for all k.

In section 2 of this paper, and assuming first that only γ is unknown,

we shall state a theorem that provides an obvious technical motivation for the

estimators in (1.15) and (1.16). Next, in section 3, we consider the derivation of

the asymptotic behavior of the classes of estimators in (1.15) and (1.16), for an

appropriate estimation of β and ρ at a level k1 larger than the value k used for the

extreme value index estimation. We also do that only with the estimation of ρ,

estimating β at the same level k used for the extreme value index estimation.

In this same section, we finally briefly review the estimation of the two second

order parameters β and ρ. In section 4, using simulation techniques, we exhibit

the performance of the ML estimator in (1.15) and the ML estimator in (1.16),

comparatively to the other “Unbiased Hill” (UH ) estimators, WH and H, in

(1.17) and (1.18), respectively, to the classical Hill estimator H in (1.10) and to

the “asymptotically unbiased” estimator γ̂ML
n (k) in (1.13), studied in Gomes and

Martins (2002), or equivalently, MLβ̂(k;ρ̂),ρ̂, with MLβ̂,ρ̂ the estimator in (1.15).

Section 5 is devoted to the illustration of the behavior of these estimators for

the Daily Log-Returns of the Euro against the UK Pound and automobile claims

gathered from several European insurance companies co-operating with the same

re-insurer (Secura Belgian Re).
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2. ASYMPTOTIC BEHAVIOR OF THE ESTIMATORS (ONLY γ

IS UNKNOWN)

For real values α ≥ 1, and denoting again {Ei} a sequence of i.i.d. standard

exponential r.v.’s, let us introduce the following notation:

(2.1) Z
(α)
k =

√
(2α−1)k

(
1

k

k∑

i=1

( i
k

)α−1
Ei −

1

α

)
.

With the same kind of reasoning as in Gomes et al. (2005a), we state:

Lemma 2.1. Under the second order framework in (1.2), for intermediate

k-sequences, i.e., whenever (1.7) holds, and with Ui given in (1.9), we may guar-

antee that, for any real α ≥ 1, and Dk(α) given in (1.12),

Dk(α)
d
=

γ

α
+

γ Z
(α)
k√

(2α− 1) k
+
A(n/k)

α− ρ

(
1 + op(1)

)
,

where Z
(α)
k , given in (2.1), is an asymptotically standard normal random variable.

If we further assume to be working with models in (1.4), and with the same

notation as before, we may write for any α, β ≥ 1, α 6= β, the joint distribution

(
Dk(α), Dk(β)

) d
=
(γ
α
,
γ

β

)
+

γ
√
k

(
Z

(α)
k√

(2α− 1)
,

Z
(β)
k√

(2β − 1)

)

+ A(n/k)

(
1

α−ρ
,

1

β−ρ

)
+
β′A2(n/k)

β γ

(
1

α−2ρ
,

1

β−2ρ

)
(2.2)

+ Op

(
A(n/k)
√
k

)
+ op

(
A2(n/k)

)
,

with β and β′ given in (1.5) and (1.6), respectively.

Let us assume that only the extreme value index parameter γ is unknown,

and generally denote M̃L either ML or ML. This case obviously refers to a

situation which is rarely encountered in practice, but reveals the potential of

the classes of estimators in (1.15) and (1.16).

2.1. Known β and ρ

We may state:
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Theorem 2.1. Under the second order framework in (1.2), further as-

suming that A(t) may be chosen as in (1.5), and for levels k such that (1.7)

holds, we get asymptotic distributional representations of the type

(2.3) M̃Lβ,ρ(k)
d
= γ +

γ
√
k
Z

(1)
k + op

(
A(n/k)

)
,

where Z
(1)
k is the asymptotically standard normal r.v. in (2.1) for α = 1.

Consequently,
√
k
(
M̃Lβ,ρ(k) − γ

)
is asymptotically normal with variance equal

to γ2, and with a null mean value not only when
√
k A(n/k) −→ 0, but also

when
√
k A(n/k) −→ λ 6= 0, finite, as n→ ∞.

For models in (1.4), we may further specify the term op
(
A(n/k)

)
, writing

MLβ,ρ(k)
d
= γ +

γ
√
k
Z

(1)
k +

(β′−β)A2(n/k)

β γ (1−2ρ)

(
1+ op(1)

)
,(2.4)

MLβ,ρ(k)
d
= γ +

γ
√
k
Z

(1)
k +

(2β′−β)A2(n/k)

2β γ (1−2ρ)

(
1+ op(1)

)
,(2.5)

with β and β′ given in (1.5) and (1.6), respectively. Consequently, even if√
k A(n/k) → ∞, with

√
k A2(n/k) → λA , finite,

√
k (MLβ,ρ(k) − γ) and√

k (MLβ,ρ(k) − γ) are asymptotically normal with variance equal to γ2 and

asymptotic bias equal to

(2.6) b
ML

=
(β′−β)λA

β γ (1−2ρ)
and b

ML
=

(2β′−β)λA

2β γ (1−2ρ)
,

respectively.

Proof: If all parameters are known, apart from the extreme value index γ,

we get directly from Lemma 2.1,

MLβ,ρ(k) := Dk(1) − β
(n
k

)ρ
Dk(1−ρ)

d
= γ +

γ
√
k
Z

(1)
k +

A(n/k)

1−ρ

−
A(n/k)

γ

(
γ

1−ρ
+

γ√
(1−2ρ)k

Z
(1−ρ)
k +

A(n/k)

1−2ρ

(
1+ op(1)

)
)

d
= γ +

γ
√
k
Z

(1)
k + op

(
A(n/k)

)
.

Similarly, since we may write

MLβ,ρ(k) = MLβ,ρ(k) +
A2(n/k)

2 γ2
Dk(1−2ρ)

(
1+ op(1)

)
(2.7)

= MLβ,ρ(k) +
A2(n/k)

2 γ (1−2ρ)

(
1+ op(1)

)
,
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(2.3) holds for ML as well. For models in (1.4), and directly from (2.2), we get

MLβ,ρ(k)
d
= γ +

γ
√
k
Z

(1)
k +

A(n/k)

1−ρ
+

β′A2(n/k)

β γ (1−2ρ)

(
1+ op(1)

)
+Op

(
A(n/k)
√
k

)

−
A(n/k)

γ

(
γ

1−ρ
+

γ√
(1−2ρ) k

Z
(1−ρ)
k +

A(n/k)

1− 2ρ

(
1+ op(1)

)
)
.

Working this expression, we finally obtain

MLβ,ρ(k)
d
= γ +

γ
√
k
Z

(1)
k +Op

(
A(n/k)
√
k

)
+

A2(n/k)

γ(1−2ρ)

(
β′

β
− 1

)(
1+ op(1)

)
,

i.e., (2.4) holds. Also directly from (2.4) and (2.7), (2.5) follows. Note that

since
√
k Op

(
A(n/k)/

√
k
)

= Op
(
A(n/k)

)
→ 0, the summand Op

(
A(n/k)/

√
k
)

is

totally irrelevant for the asymptotic bias in (2.6), that follows straightforwardly

from the above obtained distributional representations.

Remark 2.1. We know that the asymptotic variances of ML and ML are

the same. Since λA ≥ 0, b
ML

= b
ML

+ λA/
(
2 γ (1−2ρ)

)
≥ b

ML
. We may thus say

that, asymptotically, the ML-statistic is expected to exhibit a better performance

than ML, provided the bias are both positive. Things work the other way round

if the bias are both negative, i.e., the sample paths of ML are expected to be

in average above the ones of ML.

Remark 2.2. For the Burr d.f. F (x) = 1−(1+x−ρ/γ)1/ρ, x ≥ 0, we have

U(t) = tγ(1− tρ)−γ/ρ = tγ
(
1 + γ tρ/ρ + γ(γ+ρ) t2ρ/(2 ρ2) + o(t2ρ)

)
, for t ≥ 1.

Consequently, (1.4) holds with D1 = γ/ρ, D2 = γ(γ+ρ)/(2 ρ2), β′= β = 1 and

b
ML

= 0. A similar result holds for the GP d.f. F (x) = 1− (1+ γ x)−1/γ , x ≥ 0.

For this d.f., U(t) = (tγ−1)/γ, and (1.4) holds with ρ=−γ, D1 = −1 and D2 = 0.

Hence β = β′= 1 and b
ML

= 0. We thus expect a better performance of ML,

comparatively to ML, WH and H whenever the model underlying the data is

close to Burr or to GP models, a situation that happens often in practice, and

that is another point in favour of the ML-statistic.

2.2. Known ρ

We may state the following:

Theorem 2.2. For models in (1.4), if k= kn is a sequence of intermediate

integers, i.e., (1.7) holds, and if
√
k A(n/k) → ∞, with

√
k A2(n/k) converging

towards λA , finite, as n→∞, then, with β̂(k; ρ̂), MLβ̂,ρ̂(k) and MLβ̂,ρ̂(k) given in

(1.14), (1.15) and (1.16), respectively, the asymptotic variance of both ML∗(k) =
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MLβ̂(k;ρ),ρ(k) and ML
∗
(k) = MLβ̂(k;ρ),ρ(k) is equal to

(
γ (1−ρ)/ρ

)2
, being their

asymptotic bias given by

(2.8) b∗
ML

=
(β−β′) (1−ρ)λA

β γ (1−2ρ) (1−3ρ)
and b∗

ML

=

(
β (3−5ρ) − 2β′(1−ρ)

)
λA

2β γ (1−2ρ) (1−3ρ)
,

respectively, again with β and β′ given in (1.5) and (1.6), respectively.

Proof: Following the steps in Gomes and Martins (2002), but working

now with models in (1.4) and the distributional representation (2.2), we may

write:

ML∗(k) = H(k) −
Dk(1−ρ)

{
Dk(1)

(
1+ o(1)

)
− (1−ρ)Dk(1−ρ)

}

Dk(1−ρ)
(
1+ o(1)

)
− (1−ρ)Dk(1−2ρ)

=: H(k) −
ϕk(ρ)

ψk(ρ)
,

with Dk(α) given in (1.12). Directly from (2.2), we get

1

ψk(ρ)
= −

(1−ρ) (1−2ρ)

γ ρ2

(
1 −

{
2(1−ρ)A(n/k)

γ (1−3ρ)
+Op

(
1
√
k

)}(
1+ op(1)

)
)

and, under the conditions on k imposed,

ϕk(ρ) =
γ2

√
k

(
Z

(1)
k

1−ρ
−

Z
(1−ρ)
k√
1− 2ρ

)
−

γ ρ2A(n/k)

(1−ρ)2 (1−2ρ)

−
ρ2A2(n/k)

(1−ρ) (1−2ρ)

(
2β′

β (1−3ρ)
+

1

1− 2ρ

)(
1+ op(1)

)
.

Consequently,

ϕk(ρ)

ψk(ρ)
= −

γ

ρ2
√
k

(
(1−2ρ)Z

(1)
k − (1−ρ)

√
1− 2ρ Z

(1−ρ)
k

)
+
A(n/k)

1−ρ

+
A2(n/k)

γ

(
2(β′−β)

β (1− 3ρ)
+

1

1− 2ρ

)(
1+ op(1)

)
.

Then, with

Zk =

(
1−ρ

ρ

)2
Z

(1)
k −

(
(1−ρ)

√
1− 2ρ

ρ2

)
Z

(1−ρ)
k ,

ML∗(k) = MLβ̂(k;ρ),ρ(k)
d
= γ +

γ
√
k
Zk −

(β′−β) (1−ρ)A2(n/k)

β γ (1−2ρ) (1− 3ρ)

(
1+ op(1)

)
,

and the result in (2.8) follows for ML∗(k). Also, since the asymptotic covariance

between Z
(1)
k and Z

(1−ρ)
k is given by

√
1− 2ρ /(1−ρ), the asymptotic variance of

Zk is given by

(
1−ρ

ρ

)4
+

(1−ρ)2 (1−2ρ)

ρ4
−

2(1−ρ)3
√

1− 2ρ

ρ4
×

√
1− 2ρ

1−ρ
=

(
1−ρ

ρ

)2
.
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Hence, the asymptotic variance γ2
{
(1−ρ)/ρ

}2
, stated in the theorem. If we

consider MLβ̂(k;ρ),ρ(k), since
√
k A(n/k) → ∞, β̂(k; ρ) converges in probability

towards β and a result similar to (2.7) holds, i.e.,

ML
∗
(k) = MLβ̂(k;ρ),ρ(k) = MLβ̂(k;ρ),ρ(k) +

A2(n/k)

2γ (1−2ρ)

(
1+ op(1)

)
.

The result in the theorem follows thus straightforwardly.

Remark 2.3. For models in (1.4) and λA 6= 0 in Theorem 2.2, b∗
ML

= 0 if

and only if β = β′. Again, this holds for Burr and GP underlying models.

Remark 2.4. When we look at Theorems 2.1 and 2.2, we see that, for

(β, ρ) known, despite the increasing in the asymptotic variance, (b
ML
/b∗

ML
)2 =(

(1−3ρ)/(1−ρ)
)2

is an increasing function of |ρ|, always greater than one,

for ρ < 0, i.e., there is here again a compromise between bias and variance.

2.3. Asymptotic comparison at optimal levels

We now proceed to an asymptotic comparison of ML and ML∗ at their

optimal levels in the lines of de Haan and Peng (1998), Gomes and Martins

(2001) and Gomes et al. (2005b, 2006), among others, but now for second order

reduced-bias estimators. Suppose γ̂•n(k) is a general semi-parametric estimator

of the extreme value index γ, for which the distributional representation

(2.9) γ̂•n(k)
d
= γ +

σ•√
k
Z•n + b•A

2(n/k) + op
(
A2(n/k)

)

holds for any intermediate k, and where Z•n is an asymptotically standard normal

random variable. Then we have

√
k
[
γ̂•n(k)−γ

] d
→ N(λAb•, σ

2
•), as n→∞ ,

provided k is such that
√
k A2(n/k) → λA , finite, as n→ ∞. In this situation

we may write Bias∞[γ̂•n(k)] := b•A
2(n/k) and Var∞[γ̂•n(k)] := σ2

•/k. The so-called

Asymptotic Mean Squared Error (AMSE ) is then given by

AMSE [γ̂•n(k)] :=
σ2
•

k
+ b2•A

4(n/k) .

Using regular variation theory (Bingham et al., 1987), it may be proved that,

whenever b• 6= 0, there exists a function ϕ(n), dependent only on the underlying

model, and not on the estimator, such that

(2.10) lim
n→∞

ϕ(n)AMSE [γ̂•n0] = C(ρ) (σ2
•)
−

4ρ
1−4ρ (b2•)

1

1−4ρ =: LMSE [γ̂•n0] ,
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where γ̂•n0 := γ̂•n(k
•
0(n)), k•0(n) := arg infk AMSE [γ̂•n(k)], is the estimator γ̂•n(k)

computed at its optimal level, the level where its AMSE is minimum.

It is then sensible to consider the usual:

Definition 2.1. Given two second order reduced-bias estimators, γ̂
(1)
n (k)

and γ̂
(2)
n (k), for which distributional representations of the type (2.9) hold, with

constants (σ1, b1) and (σ2, b2), b1, b2 6= 0, respectively, both computed at their

optimal levels, the Asymptotic Root Efficiency (AREFF ) of γ̂
(1)
n0 relatively to

γ̂
(2)
n0 is AREFF1|2 ≡AREFFbγ(1)

n0
|bγ(2)

n0

:=
(
LMSE

[
γ̂

(2)
n0

]
/LMSE

[
γ̂

(1)
n0

])1/2
, with LMSE

given in (2.10).

Remark 2.5. This measure was devised so that the higher the AREFF

measure the better the estimator 1 is, comparatively to the estimator 2.

Proposition 2.1. For every β 6= β′, if we compare ML = MLβ,ρ and

ML∗= MLβ̂(k;ρ),ρ, we get AREFFML|ML
∗ = (1−ρ)2

(
(1− 3ρ) ρ−4ρ

)−1/(1−4ρ)
> 1

for all ρ < 0.

We may also say that AREFF
ML|ML

> 1, for all ρ, β and β′. This indicator

depends then not only of ρ, but also of β and β′. This result, together with the

result in Proposition 2.1, provides again a clear indication on an overall better

performance of the ML estimator, comparatively to ML and ML∗.

3. EXTREME VALUE INDEX ESTIMATION BASED ON THE

ESTIMATION OF THE SECOND ORDER PARAMETERS

β AND ρ

Again for α ≥ 1, let us further introduce the following extra notations:

W
(α)
k = (2α−1)

√
(2α−1) k/2

(
1

k

k∑

i=1

( i
k

)α−1
ln
( i
k

)
Ei +

1

α2

)
,(3.1)

D′k(α) =
dDk(α)

dα
:=

1

k

k∑

i=1

( i
k

)α−1
ln
( i
k

)
Ui ,(3.2)

with Ui and Dk(α) given in (1.9) and (1.12), respectively.

Again with the same kind of reasoning as in Gomes et al. (2005a), we state:
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Lemma 3.1. Under the second order framework in (1.2), for intermediate

k-sequences, i.e., whenever (1.7) holds, and with Ui given in (1.9), we may guar-

antee that, for any real α ≥ 1 and with D′k(α) given in (3.2),

(3.3) D′k(α)
d
= −

γ

α2
+

γ W
(α)
k

(2α−1)
√

(2α−1) k/2
−
A(n/k)

(α−ρ)2
(
1+ op(1)

)
,

where W
(α)
k , in (3.1), are asymptotically standard normal r.v.’s.

3.1. Estimation of both second order parameters β and ρ at a lower

threshold

Let us assume first that we estimate both β and ρ externally at a level k1

of a larger order than the level k at which we compute the extreme value index

estimator, now assumed to be an intermediate level k such that
√
k A(n/k) → λ,

finite, as n→ ∞, with A(t) the function in (1.2). We may state the following:

Theorem 3.1. Under the initial conditions of Theorem 2.1, let us consider

the class of extreme value index estimators M̃Lβ̂,ρ̂(k), with M̃L denoting again

either the ML estimator in (1.15) or the ML estimator in (1.16), with β̂ and ρ̂

consistent for the estimation of β and ρ, respectively, and such that

(3.4) (ρ̂−ρ) lnn = op(1), as n→∞ .

Then,
√
k
{
M̃Lβ̂,ρ̂(k)−γ

}
is asymptotically normal with null mean value and vari-

ance σ2
1 = γ2, not only when

√
k A(n/k) → 0, but also whenever

√
k A(n/k) →

λ 6= 0, finite.

Proof: With the usual notation Xn
p
∼Yn if and only if Xn/Yn goes in

probability to 1, as n→ ∞, we may write

∂M̃Lβ,ρ

∂β

p
∼ −

(n
k

)ρ
Dk(1−ρ) = −

A(n/k) Dk(1−ρ)

β γ

p
∼ −

A(n/k)

β(1−ρ)

and

∂M̃Lβ,ρ

∂ρ

p
∼ −

A(n/k)

γ

(
ln
(n
k

)
Dk(1−ρ) −D′k(1−ρ)

)

p
∼ −

A(n/k)

1−ρ

(
ln
(n
k

)
+

1

1−ρ

)
.

If we estimate consistently ρ and β through the estimators β̂ and ρ̂ in the con-

ditions of the theorem, we may use Taylor’s expansion series, and we obtain

(3.5) M̃Lβ̂,ρ̂(k)−M̃Lβ,ρ(k)
p
∼ −

A(n/k)

1−ρ

{(
β̂−β

β

)
+
(
ρ̂−ρ

)(
ln(n/k)+

1

1−ρ

)}
.
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Consequently, taking into account the conditions in the theorem,

M̃Lβ̂,ρ̂(k) − M̃Lβ,ρ(k) = op
(
A(n/k)

)
.

Hence, if
√
k A(n/k) → λ, finite, Theorem 2.1 enables us to guarantee the results

in the theorem.

3.2. Estimation of the second order parameter ρ only at a lower

threshold

If we consider γ and β estimated at the same level k, we are going to have

an increase in the asymptotic variance of our final extreme value index estimators,

but we no longer need to assume that condition (3.4) holds. Indeed, as stated

in Corollary 2.1 of Theorem 2.1 in Gomes and Martins (2002), for the estimator

in (1.13), Theorem 3.2 in Gomes et al. (2004b), for the estimator WHβ̂(k;ρ̂),ρ̂ and

Theorem 3.2 in Caeiro et al. (2005), for the estimator Hβ̂(k;ρ̂),ρ̂, we may state:

Theorem 3.2. (Gomes and Martins, 2002; Gomes et al., 2004b; Caeiro

et al., 2005) Under the second order framework in (1.2), if k = kn is a sequence

of intermediate integers, i.e., (1.7) holds, and if limn→∞

√
k A(n/k) = λ, finite,

then, with UH denoting any of the statistics ML, ML, WH or H in (1.15),

(1.16), (1.17) and (1.18), respectively, ρ̂ any consistent estimator of the second

order parameter ρ, and β̂(k; ρ̂) the β-estimator in (1.14),

(3.6)
√
k
(
UHβ̂(k;ρ̂),ρ̂(k) − γ

)
d

−→
n→∞

Normal

(
0, σ2

2 := γ2
(1−ρ

ρ

)2)
,

i.e., the asymptotic variance of UHβ̂(k;ρ̂),ρ̂(k) increases of a factor
(
(1−ρ)/ρ

)2
> 1

for every ρ < 0.

Remark 3.1. If we compare Theorem 3.1 and Theorem 3.2, we see that,

as expected, the estimation of the two parameters γ and β at the same level k

induces an increase in the asymptotic variance of the final γ-estimator of a factor

given by
(
(1−ρ)/ρ

)2
, greater than 1. The estimation of the three parameters γ,

β and ρ at the same level k may still induce an extra increase in the asymptotic

variance of the final γ-estimator, as may be seen in Feuerverger and Hall (1999)

(where the three parameters are indeed computed at the same level k). These

authors get an asymptotic variance ruled by σ2
FH

:= γ2
(
(1−ρ)/ρ

)4
, and we have

σ1 < σ2 < σFH for all ρ < 0. Consequently, and taking into account asymptotic

variances, it seems convenient to estimate both β and ρ “externally”, at a level k1

of a larger order than the level k used for the estimation of the extreme value

index γ.
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3.3. How to estimate the second order parameters

We now provide some details on the type of second order parameters’ es-

timators we think sensible to use in practice, together with their distributional

properties.

3.3.1. The estimation of ρ

Several classes of ρ-estimators are available in the literature. Among them,

we mention the ones introduced in Hall and Welsh (1985), Drees and Kaufman

(1998), Peng (1998), Gomes et al. (2002) and Fraga Alves et al. (2003). The one

working better in practice and for the most common heavy-tailed models, is the

one in Fraga Alves et al. (2003). We shall thus consider here particular members of

this class of estimators. Under adequate general conditions, and for ρ < 0, they

are semi-parametric asymptotically normal estimators of ρ, which show highly

stable sample paths as functions of k1, the number of top o.s.’s used, for a wide

range of large k1-values. Such a class of estimators has been first parameterized

by a tuning parameter τ > 0, but τ may be more generally considered as a real

number (Caeiro and Gomes, 2004), and is defined as

(3.7) ρ̂(k1; τ) ≡ ρ̂τ (k1) ≡ ρ̂(τ)
n (k1) := −

∣∣∣∣∣∣

3
(
T

(τ)
n (k1) −1

)

T
(τ)
n (k1) − 3

∣∣∣∣∣∣
,

where

T (τ)
n (k1) :=

(
M

(1)
n (k1)

)τ
−
(
M

(2)
n (k1)/2

)τ/2
(
M

(2)
n (k1)/2

)τ/2
−
(
M

(3)
n (k1)/6

)τ/3 , τ ∈ R ,

with the notation abτ = b ln a, whenever τ = 0 and with

M (j)
n (k) :=

1

k

k∑

i=1

{
ln
Xn−i+1:n

Xn−k:n

}j
, j ≥ 1

[
M (1)
n ≡H in (1.10)

]
.

We shall here summarize a particular case of the results proved in Fraga

Alves et al. (2003):

Proposition 3.1 (Fraga Alves et al., 2003). Under the second order frame-

work in (1.2), if k1 is an intermediate sequence of integers, and if
√
k1 A(n/k1) →

∞, as n→ ∞, the statistics ρ̂
(τ)
n (k1) in (3.7) converge in probability towards ρ,

as n→∞, for any real τ . Moreover, for models in (1.4), if we further assume
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that
√
k1 A

2(n/k1) −→ λA1
, finite, ρ̂τ (k1)≡ ρ̂

(τ)
n (k1) is asymptotically normal

with a bias proportional to λA1
, and

{
ρ̂τ (k1) − ρ

}
= Op

(
1/(

√
k1 A(n/k1))

)
.

If
√
k1A

2(n/k1) → ∞,
{
ρ̂τ (k1)−ρ

}
= Op

(
A(n/k1)

)
.

Remark 3.2. Note that if we choose for the estimation of ρ a level k1

under the conditions that assure, in Proposition 3.1, asymptotic normality with

a non-null bias, we may guarantee that k1 = O
(
n−4ρ/(1−4ρ)

)
and consequently

√
k1 A(n/k1) = O

(
n−ρ/(1−4ρ)

)
. Hence, ρ̂τ (k1) − ρ = Op

(
1/(

√
k1 A(n/k1))

)
=

Op
(
nρ/(1−4ρ)

)
= op(1/ lnn) provided that ρ < 0, i.e., (3.4) holds whenever

we assume ρ < 0.

Remark 3.3. The adaptive choice of the level k1 suggested in Remark 3.2

is not straightforward in practice. The theoretical and simulated results in Fraga

Alves et al. (2003), together with the use of these ρ-estimators in the Generalized

Jackknife statistics of Gomes et al. (2000), as done in Gomes and Martins (2002),

has led these authors to advise the choice k1 = min
(
n−1, [2n/ ln lnn]

)
, to esti-

mate ρ. Note however that with such a choice of k1,
√
k1A

2(n/k1) → ∞ and{
ρ̂τ (k1)−ρ

}
= Op

(
A(n/k1)

)
= Op

(
(ln lnn)ρ

)
. Consequently, without any further

restrictions on the behavior of the ρ-estimators, we may no longer guarantee that

(3.4) holds.

Remark 3.4. Here, and inspired in the results in Gomes et al. (2004b)

for the estimator in (1.17), we advise the consideration of a level of the type

(3.8) k1 =
[
n1−ǫ

]
, for some ǫ > 0, small ,

where [x] denotes, as usual, the integer part of x. When we consider the level k1

in (3.8),
√
k1 A

2(n/k1) → ∞, if and only if ρ > 1
4 − 1

4ǫ → −∞, as ǫ→ 0, and

such a condition is an almost irrelevant restriction in the underlying model,

provided we choose a small value of ǫ. For instance, if we choose ǫ = 0.001,

we get ρ > −249.75. Then, and with such an irrelevant restriction in the models

in (1.4), if we work with any of the ρ-estimators in this section, computed at the

level k1, {ρ̂−ρ} is of the order of A(n/k1) = O(nǫ×ρ), which is of smaller order

than 1/ lnn. This means that, again, condition (3.4) holds, being the choice in

(3.8) a very adequate choice in practice.

We advise practitioners not to choose blindly the value of τ in (3.7). It is

sensible to draw some sample paths of ρ̂(k; τ), as functions of k and for a few

τ -values, electing the value of τ ≡ τ∗ which provides the highest stability for

large k, by means of any stability criterion, like the ones suggested in Gomes

et al. (2004a), Gomes and Pestana (2004) and Gomes et al. (2005a). Anyway,

in all the Monte Carlo simulations we have considered the level k1 in (3.8), with
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ǫ = 0.001, and

(3.9) ρ̂τ := −

∣∣∣∣∣∣

3
(
T

(τ)
n (k1) − 1

)

T
(τ)
n (k1) − 3

∣∣∣∣∣∣
, τ =

{
0 if ρ≥−1 ,

1 if ρ<−1 .

Indeed, an adequate stability criterion, like the one used in Gomes and Pestana

(2004), has practically led us to this choice for all models simulated, whenever the

sample size n is not too small. Note also that the choice of the most adequate

value of τ , let us say the tuning parameter τ = τ∗ mentioned before, is much

more relevant than the choice of the level k1, in the ρ-estimation and everywhere

in the paper, whenever we use second order parameters’ estimators in order to

estimate the extreme value index.

From now on we shall generally use the notation ρ̂ ≡ ρ̂τ = ρ̂(k1; τ) for any

of the estimators in (3.7) computed at a level k1 in (3.8).

3.3.2. The estimation of β based on the scaled log-spacings

We have here considered the estimator of β obtained in Gomes and Martins

(2002), already defined in (1.14), and based on the scaled log-spacings Ui in (1.9),

1≤ i ≤ k. The first part of the following result has been proved in Gomes and

Martins (2002) and the second part, related to the behavior of β̂(k; ρ̂(k; τ)), has

been proved in Gomes et al. (2004b):

Proposition 3.2 (Gomes and Martins, 2002; Gomes et al., 2004b). If the

second order condition (1.2) holds, with A(t) = β γ tρ, ρ < 0, if k = kn is

a sequence of intermediate positive integers, i.e. (1.7) holds, and if limn→∞√
k A(n/k) =∞, then β̂(k;ρ), defined in (1.14), converges in probability towards β,

as n→∞. Moreover, if (3.4) holds, β̂(k;ρ̂) is consistent for the estimation of β.

We may further say that

(3.10) β̂
(
k; ρ̂(k; τ)

)
− β

p
∼ −β ln(n/k)

(
ρ̂(k; τ)−ρ

)
,

with ρ̂(k;τ) given in (3.7). Consequently, β̂
(
k; ρ̂(k;τ)

)
is consistent for the estima-

tion of β whenever (1.7) holds and
√
k A(n/k)/ ln(n/k) → ∞. For models in (1.4),

β̂
(
k; ρ̂(k;τ)

)
− β = Op

(
ln(n/k)/(

√
k A(n/k))

)
whenever

√
k A2(n/k) → λA , finite.

If
√
k A2(n/k) → ∞, then β̂

(
k; ρ̂(k; τ)

)
− β = Op

(
ln(n/k) A(n/k)

)
.

An algorithm for second order parameter estimation, in a context of high

quantiles estimation, can be found in Gomes and Pestana (2005).
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4. FINITE SAMPLE BEHAVIOR OF THE ESTIMATORS

4.1. Simulated models

In the simulations we have considered the following underlying parents:

the Fréchet model, with d.f. F (x) = exp(−x−1/γ), x ≥ 0, γ > 0, for which

ρ=−1, β =1/2, β′= 5/6; and the GP model, with d.f. F (x) = 1− (1+γ x)−1/γ ,

x ≥ 0, γ > 0, for which ρ = −γ, β =1, β′= 1.

4.2. Mean values and mean squared error patterns

We have here implemented simulation experiments with 5000 runs, based on

the estimation of β at the level k1 in (3.8), with ǫ = 0.001, the same level we have

used for the estimation of ρ. We use the notation β̂j1 = β̂(k1; ρ̂j ), j = 0, 1, with

β(k; ρ̂) and ρ̂τ , τ = 0, 1, given in (1.14) and (3.9), respectively. Similarly to what

has been done in Gomes et al. (2004b) for the WH -estimator, in (1.17), and in

Caeiro et al. (2005) for theH-estimator, in (1.18), these estimators of ρ and β have

been also incorporated in the M̃L-estimators, leading to M̃L0(k) ≡ M̃Lβ̂01,ρ̂0
(k)

or to M̃L1(k) ≡ M̃Lβ̂11,ρ̂1
(k), with M̃L denoting both ML and ML in (1.15) and

(1.16), respectively.

The simulations show that the extreme value index estimators UHj(k) ≡

UHβ̂j1,ρ̂j
(k), with UH denoting again either ML or ML or WH or H, j equal

to either 0 or 1, according as |ρ| ≤ 1 or |ρ| > 1, seem to work reasonably well,

as illustrated in Figures 1, 2 and 3. In these figures we picture for the above

mentioned underlying models, and a sample of size n= 1000, the mean values

(E[•]) and the mean squared errors (MSE [•]) of the Hill estimator H, together

with UHj (left), UH ∗j ≡ UHβ̂(k;ρ̂j),ρ̂j
(right), with j = 0 or j = 1, according as

|ρ| ≤ 1 or |ρ|> 1 and the r.v.’s UH ≡ UH β,ρ (center). The discrepancy, in some

of the models, between the behavior of the estimators proposed in this paper,

the ones in the left figures, and the r.v.’s, in the central ones, suggests that

some improvement in the estimation of second order parameters β and ρ is still

welcome.

Remark 4.1. For the Fréchet model (Figure 1), the UHβ̂,ρ̂ estimators

exhibit a negative bias up to moderate values of k and consequently, as hinted

in Remark 2.1, the ML statistic is the one exhibiting the worst performance in

terms of bias and minimum mean squared error. The ML0 estimator, always quite

close to WH0, exhibits the best performance among the statistics considered.
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Figure 1: Underlying Fréchet parent with γ = 1 (ρ=−1).

Figure 2: Underlying GP parent with γ = 0.5 (ρ=−0.5).
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Figure 3: Underlying GP parent with γ = 2 (ρ=−2).

Things work the other way round, either with the r.v.’s UH (Figure 1, center) or

with the statistics UH ∗0 (Figure 1, right). The ML∗0 statistic is then the one with

the best performance.

Remark 4.2. For a GP model, we make the following comments:

1) The ML statistic behaves indeed as a “really unbiased” estimator of γ,

should we get to know the true values of β and ρ (see the central graphs

of Figures 2 and 3). Indeed b
ML

= 0 (see Remark 2.2), but we believe

that more than this happens, although we have no formal proof of the

unbiasedness of ML(k) for all k and for Burr and GP models, among

other possible parents.

2) For values of ρ>−1 (Figure 2), the estimators exhibit a positive bias,

overestimating the true value of the parameter, and the ML-statistic

is better than H, which on its turn behaves better than ML, this one

better than WH , both regarding bias and mean squared error and

in all situations (either when β and ρ are known or when β and ρ

are estimated at the larger level k1 or when only ρ is estimated at a

larger level k1, with β estimated at the same level than the extreme

value index).
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3) For ρ <−1 (Figure 3), we need to use ρ̂1 (instead of ρ̂0) or an hybrid

estimator like the one suggested in Gomes and Pestana (2004).

In all the simulated cases the ML1-statistic is always the best one,

being ML1, H1 and WH1 almost equivalent.

4.3. Simulated comparative behavior at optimal levels

In Table 1, for the above mentioned Fréchet(γ = 1), GP (γ = .5) and

GP (γ = 2) parents and for the r.v.’s UH ≡ UH β,ρ, we present the simulated val-

ues of the following characteristics at optimal levels: the optimal sample sample

fraction (OSF )/ mean value (E) (first row) and the mean squared error (MSE )/

Relative Efficiency (REFF ) indicator (second row). The simulated output is

now based on a multi-sample simulation of size 1000×10, and standard errors,

although not shown, are available from the authors. The OSF is, for any Tn(k),

OSFT ≡
k

(T )
0 (n)

n
:=

arg mink MSE
(
Tn(k)

)

n
,

and, relatively to the Hill estimator Hn(k) in (1.10), the REFF indicator is

REFFT :=

√
MSE

[
Hn

(
k

(H)
0 (n)

)]
/MSE

[
Tn
(
k

(T )
0 (n)

)]
.

For any value of n, and among the four r.v.’s, the largest REFF (equivalent to

smallest MSE ) is in bold and underlined.

It is clear from Table 1 the overall best performance of ML estimator,

whenever (β, ρ) is assumed to be known. Indeed, since b
ML

= 0, we were intuitively

expecting this type of performance. The choice is not so clear-cut when we

consider the estimation of the second order parameters, and either the statistics

UHj or the statistics UH ∗j . Tables 2, 3 and 4 are similar to Table 1, but for the

extreme value index estimators UHj and UH ∗j , j = 0 or 1 according as |ρ| ≤ 1 or

|ρ > 1. Again, for any value of n, and among any four estimators of the same type,

the largest REFF (equivalent to smallest MSE ) is also in bold and underlined

if it attains the largest value among all estimators, or only in bold if it attains

the largest value among estimators of the same type.

A few remarks:

• For Fréchet parents, and among the UH ∗0 estimators, the best perfor-

mance is associated to ML
∗

0 for n < 500 and to ML∗0 for n ≥ 500. Among

the UH0 estimators, ML0 exhibits the best performance for all n.
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• For GP parents with γ = 0.5, ML0 exhibits the best performance among

the UH0 statistics. ML∗0 is also the best among the UH ∗0 statistics,

behaving ML∗0 better than ML0, for all n.

• For GP parents with γ = 2, ML1 exhibits the best performance among

the UH1 statistics. ML∗1 is also the best among the UH ∗1 statistics.

Now, ML∗1 behaves better than ML1, for n ≥ 500 and for n < 500

ML1 performs better than ML∗1.

Table 1: Simulated OSF/E (first row) and MSE/REFF (second row)
at optimal levels of the r.v.’s under study.

n 100 200 500 1000 2000

Fréchet parent, γ = 1 (ρ = −1)

ML
0.642 / 0.986 0.599 / 1.017 0.517 / 1.037 0.473 / 1.039 0.429 / 1.012
0.015 / 1.678 0.009 / 1.734 0.004 / 1.832 0.002 / 1.909 0.001 / 2.001

ML
0.608 / 0.971 0.544 / 1.008 0.477 / 1.045 0.416 / 1.040 0.367 / 1.007
0.016 / 1.647 0.010 / 1.662 0.005 / 1.727 0.003 / 1.782 0.002 / 1.855

WH
0.580 / 0.960 0.513 / 1.019 0.450 / 1.052 0.395 / 1.041 0.357 / 1.003
0.018 / 1.539 0.011 / 1.577 0.005 / 1.658 0.003 / 1.723 0.002 / 1.805

H
0.587 / 0.963 0.537 / 1.012 0.482 / 1.048 0.436 / 1.041 0.379 / 1.008
0.018 / 1.560 0.010 / 1.609 0.005 / 1.710 0.003 / 1.786 0.001 / 1.874

GP parent, γ = 0.5 (ρ = −0.5)

ML
0.987 / 0.507 0.985 / 0.513 0.991 / 0.504 0.990 / 0.504 0.997 / 0.503
0.002 / 5.813 0.001 / 6.567 0.000 / 7.831 0.000 / 9.184 0.000 / 10.487

ML
0.295 / 0.565 0.240 / 0.545 0.183 / 0.530 0.157 / 0.531 0.124 / 0.523
0.009 / 2.529 0.006 / 2.561 0.003 / 2.591 0.002 / 2.697 0.001 / 2.753

WH
0.273 / 0.573 0.221 / 0.566 0.174 / 0.537 0.146 / 0.533 0.117 / 0.530
0.012 / 2.246 0.007 / 2.332 0.004 / 2.419 0.002 / 2.542 0.001 / 2.624

H
0.391 / 0.549 0.353 / 0.537 0.302 / 0.536 0.262 / 0.5200 0.208 / 0.521
0.007 / 2.918 0.004 / 3.128 0.002 / 3.367 0.001 / 3.597 0.001 / 3.835

GP parent, γ = 2 (ρ = −2)

ML
0.990 / 2.065 0.994 / 1.921 0.995 / 1.992 0.993 / 2.011 0.999 / 2.015
0.032 / 1.923 0.016 / 2.030 0.006 / 2.211 0.00 / 2.382 0.002 / 2.541

ML
0.731 / 2.111 0.677 / 1.956 0.633 / 2.033 0.588 / 2.047 0.549 / 2.063
0.050 / 1.530 0.027 / 1.544 0.012 / 1.573 0.007 / 1.602 0.004 / 1.640

WH
0.659 / 2.091 0.633 / 1.977 0.576 / 2.036 0.540 / 2.057 0.505 / 2.062
0.058 / 1.420 0.031 / 1.450 0.014 / 1.496 0.008 / 1.528 0.004 / 1.573

H
0.669 / 2.103 0.647 / 1.976 0.604 / 2.047 0.574 / 2.053 0.533 / 2.057
0.058 / 1.423 0.030 / 1.470 0.013 / 1.525 0.007 / 1.570 0.004 / 1.622
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Table 2: Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for Fréchet parents with γ = 1 (ρ=−1, β= 0.5).

n 100 200 500 1000 2000

H
0.326 / 1.026 0.281 / 1.069 0.222 / 1.056 0.174 / 1.055 0.138 / 1.031
0.044 / 1.000 0.026 / 1.000 0.013 / 1.000 0.008 / 1.000 0.005 / 1.000

ML0

0.569 / 0.820 0.592 / 0.966 0.826 / 0.977 0.808 / 1.010 0.999 / 0.985
0.037 / 1.084 0.021 / 1.113 0.010 / 1.185 0.005 / 1.269 0.003 / 1.402

ML0

0.847 / 0.959 0.802 / 1.027 0.758 / 1.008 0.727 / 1.026 0.709 / 0.998
0.019 / 1.518 0.012 / 1.485 0.006 / 1.538 0.003 / 1.641 0.002 / 1.766

WH0

0.816 / 0.963 0.756 / 1.014 0.702 / 1.004 0.678 / 1.030 0.650 / 1.001
0.020 / 1.494 0.012 / 1.467 0.006 / 1.517 0.003 / 1.616 0.001 / 1.731

H0

0.877 / 0.951 0.841 / 1.005 0.819 / 0.998 0.808 / 1.026 0.808 / 0.973
0.024 / 1.358 0.015 / 1.331 0.007 / 1.376 0.004 / 1.469 0.002 / 1.576

ML
∗

0

0.947 / 0.849 0.920 / 0.973 0.870 / 0.992 0.855 / 1.019 0.834 / 0.979
0.037 / 1.092 0.020 / 1.139 0.009 / 1.239 0.005 / 1.349 0.002 / 1.480

ML
∗

0

0.858 / 0.988 0.787 / 1.054 0.676 / 1.064 0.603 / 1.058 0.530 / 1.001
0.027 / 1.277 0.017 / 1.234 0.009 / 1.222 0.005 / 1.230 0.003 / 1.246

WH
∗

0

0.811 / 0.992 0.736 / 1.062 0.647 / 1.069 0.567 / 1.057 0.511 / 1.003
0.030 / 1.211 0.018 / 1.194 0.009 / 1.194 0.006 / 1.208 0.003 / 1.224

H∗

0

0.856 / 0.973 0.795 / 1.048 0.711 / 1.059 0.643 / 1.057 0.579 / 0.994
0.031 / 1.191 0.019 / 1.183 0.009 / 1.205 0.005 / 1.231 0.003 / 1.261

Table 3: Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for GP parents with γ = 0.5 (ρ=−0.5, β= 1).

n 100 200 500 1000 2000

H
0.103 / 0.742 0.077 / 0.646 0.051 / 0.632 0.040 / 0.602 0.028 / 0.585
0.058 / 1.000 0.037 / 1.000 0.020 / 1.000 0.014 / 1.000 0.009 / 1.000

ML0

0.306 / 0.636 0.216 / 0.633 0.107 / 0.606 0.076 / 0.583 0.051 / 0.558
0.023 / 1.572 0.017 / 1.474 0.011 / 1.383 0.008 / 1.339 0.006 / 1.274

ML0

0.211 / 0.674 0.149 / 0.618 0.101 / 0.606 0.073 / 0.588 0.049 / 0.558
0.029 / 1.418 0.019 / 1.383 0.011 / 1.338 0.008 / 1.310 0.006 / 1.258

WH0

0.202 / 0.669 0.144 / 0.614 0.100 / 0.607 0.071 / 0.586 0.049 / 0.558
0.029 / 1.416 0.019 / 1.382 0.011 / 1.336 0.008 / 1.308 0.006 / 1.257

H0

0.234 / 0.641 0.165 / 0.640 0.103 / 0.607 0.073 / 0.588 0.049 / 0.557
0.029 / 1.418 0.019 / 1.384 0.011 / 1.339 0.008 / 1.310 0.006 / 1.257

ML
∗

0

0.795 / 0.652 0.636 / 0.628 0.421 / 0.602 0.310 / 0.578 0.240 / 0.568
0.022 / 1.612 0.016 / 1.525 0.010 / 1.452 0.007 / 1.420 0.005 / 1.370

ML
∗

0

0.449 / 0.720 0.350 / 0.654 0.251 / 0.610 0.192 / 0.600 0.140 / 0.579
0.049 / 1.090 0.030 / 1.114 0.015 / 1.148 0.010 / 1.185 0.006 / 1.199

WH
∗

0

0.450 / 0.732 0.334 / 0.649 0.245 / 0.612 0.191 / 0.600 0.138 / 0.576
0.051 / 1.068 0.030 / 1.110 0.015 / 1.149 0.010 / 1.187 0.006 / 1.205

H∗

0

0.464 / 0.697 0.389 / 0.634 0.289 / 0.600 0.226 / 0.599 0.169 / 0.558
0.040 / 1.211 0.024 / 1.240 0.012 / 1.261 0.009 / 1.280 0.006 / 1.271
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Table 4: Simulated OSF/E (first row) and MSE/REFF (second row) at
optimal levels of the different estimators and r.v.’s under study,
for GP parents with γ = 2 (ρ=−2, β= 1).

n 100 200 500 1000 2000

H
0.415 / 2.179 0.359 / 1.968 0.319 / 2.018 0.290 / 2.068 0.251 / 2.069
0.117 / 1.000 0.064 / 1.000 0.030 / 1.000 0.018 / 1.000 0.010 / 1.000

ML1

0.817 / 2.184 0.647 / 2.012 0.663 / 2.048 0.657 / 2.077 1.000 / 2.094
0.071 / 1.282 0.043 / 1.221 0.021 / 1.194 0.013 / 1.173 0.007 / 1.180

ML1

0.631 / 2.140 0.558 / 2.008 0.478 / 2.044 0.399 / 2.050 0.358 / 2.040
0.079 / 1.215 0.046 / 1.184 0.022 / 1.168 0.013 / 1.158 0.008 / 1.153

WH1

0.623 / 2.155 0.554 / 2.024 0.470 / 2.048 0.396 / 2.051 0.349 / 2.041
0.081 / 1.197 0.047 / 1.171 0.023 / 1.159 0.013 / 1.153 0.008 / 1.149

H1

0.618 / 2.167 0.545 / 2.041 0.470 / 2.050 0.396 / 2.051 0.349 / 2.041
0.083 / 1.186 0.047 / 1.165 0.023 / 1.156 0.013 / 1.152 0.008 / 1.148

ML
∗

1

0.990 / 2.194 0.935 / 2.000 0.828 / 2.034 0.768 / 2.077 0.681 / 2.055
0.072 / 1.272 0.044 / 1.211 0.021 / 1.204 0.012 / 1.197 0.007 / 1.191

ML
∗

1

0.751 / 2.199 0.696 / 1.993 0.624 / 2.044 0.571 / 2.065 0.519 / 2.041
0.089 / 1.143 0.050 / 1.129 0.024 / 1.123 0.014 / 1.125 0.008 / 1.130

WH
∗

1

0.711 / 2.240 0.652 / 2.002 0.595 / 2.038 0.548 / 2.070 0.510 / 2.045
0.100 / 1.079 0.054 / 1.087 0.025 / 1.098 0.014 / 1.105 0.008 / 1.115

H
∗

1

0.710 / 2.240 0.657 / 2.001 0.604 / 2.041 0.561 / 2.071 0.513 / 2.041
0.10 / 1.0780 0.054 / 1.088 0.025 / 1.101 0.014 / 1.109 0.008 / 1.120

4.4. An overall conclusion

The main advantage of the estimators UHj , and particularly of the MLj

estimators in this paper, the ones with an overall better performance, lies on

the fact that we may estimate β and ρ adequately through β̂ and ρ̂ so that the

MSE of the new estimator is smaller than the MSE of Hill’s estimator for all k,

even when |ρ|> 1, a region where it has been difficult to find alternatives for the

Hill estimator. And this happens together with a higher stability of the sample

paths around the target value γ. These new estimators work indeed better than

the Hill estimator for all values of k, contrarily to the alternatives so far available

in the literature, like the alternatives UH ∗j , j = 0 or 1, also considered in this

paper for comparison.
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5. CASE-STUDIES IN THE FIELDS OF FINANCE AND

INSURANCE

5.1. Euro-UK Pound daily exchange rates

We shall first consider the performance of the above mentioned estimators

in the analysis of the Euro-UK Pound daily exchange rates from January 4, 1999

until December 14, 2004. This data has been collected by the European System of

Central Banks, and was obtained from http://www.bportugal.pt/rates/cambtx/.

In Figure 4 we picture the Daily Exchange Rates xt over the above mentioned

period and the Log-Returns, rt = 100×(lnxt − lnxt−1), the data to be analyzed.

Indeed, although conscious that the log-returns of any financial time-series are not

i.i.d., we also know that the semi-parametric behavior of estimators of rare event

parameters may be generalized to weak dependent data (see Drees, 2002, and

references therein). Semi-parametric estimators of extreme events’ parameters,

devised for i.i.d. processes, are usually based on the tail empirical process, and

remain consistent and asymptotically normal in a large class of weakly dependent

data.

Figure 4: Daily Exchange Rates (left) and Daily Log-Returns (right)
on Euro-UK Pound Exchange Rate.

The histogram in Figure 5 points to a heavy right tail. Indeed, the empirical

counterparts of the usual skewness and kurtosis coefficients are β̂1 = 0.424 and

β̂2 = 1.835, clearly greater than 0, the target value for an underlying normal

parent.

In Figure 6, and working with the n0 = 725 positive log-returns, we now

picture the sample paths of ρ̂(k; τ) in (3.7) for τ = 0, and 1 (left), as functions

of k. The sample paths of the ρ-estimates associated to τ = 0 and τ = 1 lead us
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Figure 5: Histogram of the Daily Log-Returns on the Euro-UK Pound.

to choose, on the basis of any stability criterion for large values of k, the esti-

mate associated to τ = 0. In Figure 6 we thus present the associated second order

parameters estimates, ρ̂0 = ρ̂0(721) = −0.65 (left) and β̂0 = β̂ρ̂0(721) = 1.03,

together with the sample paths of β̂(k; ρ̂0) in (1.14), for τ = 0 (center). The sam-

ple paths of the classical Hill estimator in (1.10) (H) and of three of reduced-bias,

second order extreme value index estimates discussed in this paper, associated

to ρ̂0 = −0.65 and β̂0 = 1.03, are also pictured in Figure 6 (right). We do not

picture the statistic WH0 because that statistic practically overlaps ML0.

Figure 6: Estimates of the second order parameter ρ (left), of the second
order parameter β (center) and of the extreme value index (right),
for the Daily Log-Returns on the Euro-UK Pound.

The Hill estimator exhibits a relevant bias, as may be seen from Figure 6,

and we are for sure a long way from the strict Pareto model. The other estimators,

ML0, ML0 and H0, which are “asymptotically unbiased”, reveal without doubt
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a bias much smaller than that of the Hill. All these statistics enable us to take

a decision upon the estimate of γ to be used, with the help of any stability crite-

rion, but the ML statistic is without doubt the one with smallest bias, among the

statistics considered. More important than this: we know that any estimate con-

sidered on the basis of ML0(k) (or any of the other three reduced-bias statistics)

performs for sure better than the estimate based on H(k) for any level k. Here,

we represent the estimate γ̂ ≡ γ̂
ML

= 0.30, the median of the ML estimates, for

thresholds k between
[
n
−2ρ̂/(1−2ρ̂)
0 /4

]
= 10 and

[
4×n

−2ρ̂/(1−2ρ̂)
0

]
= 165, chosen in

an heuristic way. If we use this same criterion on the estimates ML, WH and H

we are also led to the same estimate, γ̂
ML

≡ γ̂
WH

≡ γ̂
H

= 0.30. The development

of adequate techniques for the adaptive choice of the optimal threshold for

this type of second order reduced-bias extreme value index estimators is needed,

being indeed an interesting topic of research, but is outside the scope of the

present paper.

5.2. Automobile claims

We shall next consider an illustration of the performance of the above men-

tioned estimators, through the analysis of automobile claim amounts exceeding

1,200.000 Euros, over the period 1988–2001, and gathered from several European

insurance companies co-operating with the same re-insurer (Secura Belgian Re).

This data set has already been studied, for instance, in Beirlant et al. (2004).

Figure 7 is similar to Figure 5, but for the Secura data. It is now quite clear

the heaviness of the right tail. The empirical skewness and kurtosis coefficients

are β̂1 = 2.441 and β̂2 = 8.303. Here, the existence of left-censoring is also clear,

begin the main reason for the high skewness and kurtosis values.

Figure 7: Histogram or the Secura data.
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Finally, in Figure 8, working with the n= 371 automobile claims exceeding

1,200.000 Euro, we present the sample path of the ρ̂τ (left), ρ̂τ (center) estimates,

as function of k, for τ = 0 and τ = 1, together with the sample paths of estimates

of the extreme value index γ, provided by the Hill estimator, H, the M -estimator

and the M estimator (right).
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Figure 8: Estimates of the second order parameter ρ (left) and of the
extreme value index γ (right) for the automobile claims.

Again, the ML0 statistic is the one exhibiting the best performance, leading

us to the estimate γ̂ = 0.23.
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1. INTRODUCTION

Applications of change-point models are given in many areas of interest.

For example, medical researchers usually have interest to know if a new therapy

of leukemia produces a departure from the usual experience of a constant relapse

rate after the induction of a remission (see for example, Matthews and Farewell

[9], Matthews et al. [10] or Henderson and Matthews [6]). Bayesian analysis for

change-point models has been introduced by many authors. A Bayesian analysis

for a homogeneous Poisson process with a change-point has been introduced by

Raftery and Akman [11]. A Bayesian interval estimator has been derived for

a change-point in a Poisson process by West and Ogden [15] and a Bayesian

approach for lifetime data with a constant hazard function and censored data in

the presence of a change point by Achcar and Bolfarine [1]. Recently Loschi and

Cruz [7] presented a Bayesian approach to the multiple change point identification

problem in Poisson data.

In this paper, we consider the presence of two or more change-point for life-

time with constant hazards, generalizing previous work (see for example, Achcar

and Bolfarine [1]).

Consider a homogeneous Poisson process with one or more change-points

at unknown times. With a single change-point, the rate of occurrence at time s

is given by

(1.1) λ(s) =

{
λ1, 0≤ s≤ τ ,

λ2, s > τ .

The analysis of the Poisson process is based on the counting data in the

period [0, T ], where N(T ) = n is the number of events that occur at the ordered

times t1, t2, ..., tn.

With two change-points at unknown times τ1 and τ2 the rate of occurrences

are given by

(1.2) λ(s) =





λ1, 0 < s≤ τ1 ,

λ2, τ1 < s≤ τ2 ,

λ3, τ2 < s≤ T .

We also could have homogeneous Poisson processes with more than two

change-points.

The use of Bayesian methods has been considered by many authors for

homogeneous or nonhomogeneous Poisson processes in the presence of one change-

point (see for example, Raftery and Akman [11] or Ruggeri and Sivaganesan [13]).

Observe that times between failures for a homogeneous Poisson process

follow an exponential distribution.
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In this paper, we present a Bayesian analysis for interfailure data with

constant hazard function assuming more than one change-point and using MCMC

methods (see for example [4]).

The paper is organized as follows: in Section 2, we introduce the likelihood

function; in Section 3, we introduce a Bayesian analysis for the model, in Section 4,

we present some consideration on model selection; in Section 5, we introduce an

example with real data and finally, in Section 6, we present some conclusions.

2. THE LIKELIHOOD FUNCTION

Let xi = ti− ti−1, i = 1, 2, ..., n where t0 = 0, be the interfailure times and

assume a single-change-point model (1.1). In this way, we observe that xi has an

exponential distribution with parameter λ1 for
∑i

k=1 xk ≤ τ and an exponential

distribution with parameter λ2 for
∑i

k=1 xk > τ , i = 1, 2, ..., n. Assuming that

the change-point τ is taking the values ti, the likelihood function for λ1, λ2 and τ

is given by

(2.1) L(λ1, λ2 , τ) =

N(T )∏

i=1

(λ1e−λ1xi)ǫi (λ2 e−λ2xi)1−ǫi

where ǫi = 1 if
∑i

j=1 xj ≤ τ and ǫi = 0 if
∑i

j=1 xj ≥ τ . That is,

(2.2) L(λ1, λ2 , τ) = λ
N(τ)
1 e−λ1τ λ

N(T )−N(τ)
2 e−λ2(T−τ)

where N(τ) =
∑N(T )

i=1 ǫi, N(T ) = n, τ =
∑N(T )

i=1 xi ǫi and T −τ =
∑N(T )

i=1 xi (1−ǫi).

Let us assume a two-change-point model (1.2) with the change-points τ1

and τ2 taking discrete values τ1 = ti, τ2 = tj (ti < tj , i 6= j) with k1 = N(τ1) and

k2 = N(τ2). The likelihood function for λ1, λ2, λ3, τ1 and τ2 is given by

(2.3) L(λ1, λ2, λ3, τ1, τ2) =

n∏

i=1

(λ1e−λ1xi)ǫ1,i (λ2e−λ2xi)ǫ2,i (λ3e−λ3xi)ǫ3,i

where

ǫ1,i =

{
1 if

∑i
k=1 xk ≤ τ1 ,

0 if
∑i

k=1 xk > τ1 ,
(2.4)

ǫ2,i =

{
1 if τ1 <

∑j
k=i+1 xk ≤ τ2 ,

0 if
∑j

k=i+1 xk ≤ τ1 or
∑j

k=i+1 xk > τ2 ,
(2.5)

ǫ3,i =

{
1 if τ2 <

∑n
k=j+1 xk ,

0 if τ2 ≥
∑n

k=j+1 xk .
(2.6)
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That is,

L(λ1, λ2, λ3, τ1, τ2) =(2.7)

= λ
N(τ1)
1 e−λ1τ1 λ

N(τ2)−N(τ1)
2 e−λ2(τ2−τ1) λ

N(T )−N(τ2)
3 e−λ3(T−τ2)

where
∑N(T )

i=1 ǫ1,i = N(τ1),
∑N(T )

i=1 ǫ2,i = N(τ2)−N(τ1),
∑N(T )

i=1 ǫ3,i = N(T )−N(τ2)

and N(T ) = n. Observe that τ1 =
∑N(T )n

i=1 xi ǫ1,i, τ2 − τ1 =
∑N(T )n

i=1 xi ǫ2,i and

T − τ2 =
∑N(T )n

i=1 xi ǫ3,i.

In the same way, we could generalize for more than two change-points.

3. A BAYESIAN ANALYSIS

Assume the change-point model (1.1) with a single change-point τ .

Assume that τ is independent from λ1 and λ2, and also that λ1 is condi-

tionally independent from λ2, given τ = ti. Considering a noninformative prior

distribution for λ1 and λ2 given τ (see for example, Box and Tiao [2]), we have

(3.1) π
(
λ1, λ2, τ = ti

)
= π

(
λ1, λ2 | τ = ti

)
π
(
τ = ti

)
∝

1

λ1λ2
π
(
τ = ti

)

where λ1, λ2 > 0.

Assuming an uniform prior distribution π0(τ = ti) = 1/n, the joint poste-

rior distribution for λ1, λ2 and τ is given by

(3.2) π
(
λ1, λ2, τ | D

)
∝ λ

N(τ)−1
1 e−λ1τ λ

n−N(τ)−1
2 e−λ2(T−τ)

where D denotes the data set.

Observe that we are using a data dependent prior distribution for the dis-

crete change-point (see for example Achcar and Bolfarine [1]). Also observe that

the event {τ = ti} is equivalent to {N(ti) = i}, where the ti are the ordered oc-

currence epochs of failures. We also could consider an informative gamma prior

distribution for the parameters λ1 and λ2.

The marginal posterior distribution for τ is, from (3.2), given by

(3.3) π
(
τ | D

)
∝

Γ
[
N(τ)

]
Γ
[
n−N(τ)

]

τN(τ) (T − τ)n−N(τ)
.

Assuming τ = τ∗ known, the marginal posterior distribution for λ1 and λ2 are

given by

(3.4)
(i) λ1|τ

∗, D ∼ Gamma
[
N(τ∗), τ∗

]
,

(ii) λ2 |τ
∗, D ∼ Gamma

[
n−N(τ∗), T − τ∗

]
,

where Gamma[a,b] denotes a gamma distribution with mean a/b and variance a/b2.
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Assuming τ unknown, since the marginal posterior distribution for τ is

obtained analytically (see(3.3)), we use a mixed Gibbs sampling and Metropolis–

Hastings algorithm to generate the posterior distributions of λ1 and λ2. The

conditional posterior distributions for the Gibbs sampling algorithm are given by

(3.5)
(i) λ1|λ2, τ, D ∼ Gamma

[
N(τ), τ

]
,

(ii) λ2 |λ1, τ, D ∼ Gamma
[
n−N(τ), T − τ

]
.

Starting with initial values λ
(0)
1 and λ

(0)
2 , we follow the steps:

(i) Generate τ (i) from (3.3).

(ii) Generate λ
(i+1)
1 from π

(
λ1|λ

(i)
2 , τ (i),D

)
.

(iii) Generate λ
(i+1)
2 from π

(
λ2 |λ

(i+1)
1 , τ (i),D

)
.

We could monitor the convergence of the Gibbs samples using Gelman and

Rubin’s method that uses the analysis of variance technique to determine whether

further iterations are needed (see [5] for details).

A great simplification to get the posterior summaries of interest for the

constant hazard function model in the presence of a change-point is to use the

WinBugs software (see, Spiegelhalter et al. [14]) which requires only the specifi-

cation of the distribution for the data and prior distributions for the parameters.

Consider now, the change-point model (1.2) with two change-points τ1 and τ2

(with τ1 < τ2). The prior density for λ1, λ2, λ3, τ1 and τ2 is given by

π
(
λ1, λ2, λ3, τ1, τ2

)
=(3.6)

= π
(
λ1, λ2, λ3 | τ1 = ti, τ2 = tj

)
π0

(
τ1 = ti, τ2 = tj

)
I{ti<tj} ,

given τ1 = ti, τ2 = tj , (ti < tj , i 6= j).

Assuming τ1 and τ2 independent from λ1, λ2 and λ3, and also that λ1,

λ2 and λ3 are conditionally independent given τ1 and τ2, a noninformative joint

prior distribution for λ1, λ2, λ3 and τ1 and τ2 is given by

(3.7) π
(
λ1, λ2, λ3, τ1 = ti, τ2 = tj

)
∝

1

λ1λ2λ3
π0

(
τ1 = ti, τ2 = tj

)
I{ti<tj}

where λ1, λ2, λ3 > 0, I{ti<tj} = 1 if ti < tj and I{ti<tj} = 0 otherwise, for all i 6= j.

Assuming an uniform prior distribution for the discrete variables τ1 = ti
and τ2 = tj , where ti < tj , i, j = 1, ..., n, that is π0(τ1 = ti, τ2 = tj) = 2/n(n−1),

the joint posterior distribution for λ1, λ2, λ3, τ1 and τ2 is given by

π
(
λ1, λ2, λ3, τ1, τ2 |D

)
∝(3.8)

∝ λ
N(τ1)−1
1 e−λ1τ1 λ

N(τ2)−N(τ1)−1
2 e−λ2(τ2−τ1) λ

N(T )−N(τ2)−1
3 e−λ3(T−τ2)

where λ1, λ2, λ3 > 0 and τ1 < τ2.
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The joint marginal posterior distribution for τ1 and τ2 is given by

(3.9) π
(
τ1, τ2 |D

)
=

Γ
[
N(τ1)

]
Γ
[
N(τ2)−N(τ1)

]

τ
N(τ1)
1 (τ2− τ1)N(τ2)−N(τ1)

Γ
[
N(τ2)−N(τ1)

]

(T − τ2)N(T )−N(τ2)
.

We use the Metropolis–Hastings algorithm to generate τ1, τ2 from the joint

marginal posterior distribution (3.9) and the Gibbs sampling algorithm to gener-

ate λ1, λ2 and λ3. The conditional posterior distribution for the Gibbs sampling

algorithm are given by

λ1| λ2, λ3, τ1, τ2,D ∼ Gamma
[
N(τ1), τ1

]
,(3.10)

λ2 | λ1, λ3, τ1, τ2,D ∼ Gamma
[
N(τ2)−N(τ1), τ2− τ1

]
,(3.11)

λ3 | λ1, λ2, τ1, τ2,D ∼ Gamma
[
N(T )−N(τ2), T − τ2

]
.(3.12)

This marginalization process should be made with careful choice of the

lower and upper limits of summation as well as of the number of minimum

points between τ1 and τ2. We consider τ1 = ti for i = 1, ..., m1−1, τ2 = ti for

i = m2 +1, ..., n, where τ1 < τ2 and mj (j = 1, 2) is a positive integer such that

tmj = τj . Note that once τ1, (τ2) is known, possible candidates of τ1, (τ2) are

limited within {t1, ..., tm1−1}, ({tm2+1, ..., tn}).

Starting with the initial values λ
(0)
1 , λ

(0)
2 and λ

(0)
3 , we follow the steps:

(i) Generate τ
(i)
1 and τ

(i)
2 from the marginal posterior distributions (3.9).

(ii) Generate λ
(i+1)
1 from π

(
λ1|λ

(i)
2 , λ

(i)
3 , τ

(i)
1 , τ

(i)
2 ,D

)
.

(iii) Generate λ
(i+1)
2 from π

(
λ2 |λ

(i+1)
1 , λ

(i)
3 , τ

(i)
1 , τ

(i)
2 ,D

)
.

(iv) Generate λ
(i+1)
3 from π

(
λ3 |λ

(i+1)
1 , λ

(i+1)
2 , τ

(i)
1 , τ

(i)
2 ,D

)
.

Observe that the choices for m1 and m2 could have been made empirically

based on a preliminary analysis of the data set (empirical Bayesian methods).

In this way, we could use plots of the accumulated number of failures against

time of occurrence to get some information on the change-point.

4. SOME CONSIDERATIONS ON MODEL SELECTION

For model selection, we could use the predictive density for the interfailure

time xi given x
∼(i) = (x1, ..., xi−1, xi+1, ..., xn). The predictive density for xi given

x
∼(i) is

(4.1) ci = f
(
xi |x∼(i)

)
=

∫
f
(
xi | θ∼

)
π
(
θ
∼
|x
∼(i)

)
dθ
∼

where π
(
θ
∼
|x
∼(i)

)
is the posterior density for a vector of parameters θ

∼
given the

data x
∼(i).
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Using the Gibbs samples, (4.1) can be approximated by its Monte Carlo

estimates,

(4.2) f̂
(
xi |x∼(i)

)
=

1

M

M∑

j=1

f
(
xi | θ∼

(j)
)

,

where θ
∼

(j) are the generated Gibbs samples, j = 1, 2, ..., M .

We can use ci = f̂
(
xi |x∼(i)

)
in model selection. In this way, we consider plots

of ci versus i (i = 1, 2, ..., n) for different models; large values of ci (in average)

indicates a better model. We could also have choosen the model such that Pl =∏n
i=1 ci(l) is maximum (l indexes models). We could also have considered (see

Raftery [12]) the marginal likelihood of the whole data set D for a model Ml

given by

(4.3) P (D|Ml) =

∫

θl

L(D|θl, Ml) π(θl |Ml) dθl

where D is the data, Ml is the model specification (the number of change points),

θl is the vector of the parameters in Ml, L(D|θ, Ml) is the likelihood function

and π(θl |Ml) is the prior.

The Bayes factor criterion prefers model M1 to model M2 if P (D|M2) <

P (D|M1). A Monte Carlo estimate for the marginal likelihood P (D|Ml) is given

by

(4.4) P̂ (D|Ml) =
1

M

M∑

j=1

L
(
D|θ

(j)
l , Ml

)

where θ
(j)
l , j = 1, 2, ..., M , could have been generated through the use of impor-

tance sampling. The simplest estimator of this type results from taking the prior

as the importance sampling function (see Raftery [12]).

Other ways to estimate the marginal likelihood P (D|Ml) are proposed by

Raftery [12].

Considering a sample from the posterior distribution, we have

(4.5) P̂ (D|Ml) =


 1

M

M∑

j=1

1

L
(
D|θ

(j)
l , Ml

)



−1

.

In this case, the importance-sampling function is the posterior distribution.

A modification of the harmonic mean estimator (4.5) is proposed by Gelfand

and Dey [3], given by

(4.6) P̂ (D|Ml) =


 1

M

M∑

j=1

f
(
θ
(j)
l

)

L
(
D|θ

(j)
l , Ml

)
π0

(
θ
(j)
l

)



−1

where f(θl) is any probability density and π
0
(θl) is a prior probability density.
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5. AN EXAMPLE

In this section, we analyze a data set related to the number of mine acci-

dents in England from 1875 to 1951. To analyze this data set, we have assumed

the validity of a homogeneous Poisson process in the presence of change-points.

Considering the time intervals between explosions in mines, we introduced a

Bayesian analysis to get inference for the parameter of the exponential distribu-

tions and for the finite change-points.

In Table 1, we have the time intervals (in days) between explosions in mines,

involving more than 10 men killed, from December 6, 1875 to May 29, 1951 (data

introduced by Maguire, Pearson and Wynn [8]).

Table 1: Time intervals in days between explosions in mines.

378 36 15 31 215 11 137 4 15 72 96

124 50 120 203 176 55 93 59 315 59 61

1 13 189 345 20 81 286 114 108 188 233

28 22 61 78 99 326 275 54 217 113 32

23 151 361 312 354 58 275 78 17 1205 644

467 871 48 123 457 498 49 131 182 255 195

224 566 390 72 228 271 208 517 1613 54 326

1312 348 745 217 120 275 20 66 291 4 369

338 336 19 329 330 312 171 145 75 364 37
19 156 47 129 1630 29 217 7 18 1357

From a plot of N(ti) versus ti, i = 1, 2, ..., 109 (see Figure 1), we observe the

presence of two or more change-points. We could also have assumed the presence

of a random number of change-points (see for example, Ruggeri and Sivaganesan

[13]) but this case is beyond the scope of this paper. As an illustration of the

proposed model introduced in Section 1, we assume the presence of two change-

points. Assuming the two change-points model (1.2) to analyze the data set of

Table 1 and from Figure 1, we see that these two change-points are approximately

τ̂1 = t45 = 5231 and τ̂2 = t81 = 19053. We also assume the presence of only one

change-point and use Bayesian discrimination methods to decide for the best

model.

In Figure 1, we also have empirical estimates for the rates λj , j = 1, 2, 3,

obtained from the usual definition of the homogeneous Poisson processes N(t) ∝

λt + o(n), where N(t) is the accumulated number of occurrences in the interval

(0, t).
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Figure 1: Plot of N(ti) versus ti(days).

If we assume the change-point model (1.1) with a single change-point τ

with an uniform discrete prior, the mode of the marginal posterior distribution

for τ (see (3.3)) is given by τ∗ = 5382 (see Figure 2). Assuming τ∗ known, the

mean of the marginal posterior distributions (3.4) are given by λ̃1 = 0.008361 and

λ̃2 = 0.003065.
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Figure 2: Marginal posterior distribution for τ and, λ1 and λ2 with τ = τ∗.

Assuming one or two unknown change-points, we have obtained posterior

summaries (see Tables 2, 3, 4 and 5) through the use of MCMC algorithms.
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In all cases, we have considered a “burn-in-sample” of size 5,000; after this,

we have simulated 50,000 mixed Metropolis–Hastings and Gibbs samples taking

every 10th sample, to get approximated uncorrelated samples. The convergence

of the mixed algorithms was monitored using graphical methods and standard

existing indexes (see, for example, Gelman and Rubin [5]).

Considering the change-point model (1.1) with only one change-point τ ,

we have in Table 2, the posterior summaries for the parameters τ , λ1 and λ2

assuming the noninformative prior (3.1). In Figure 3, we have the approximate

marginal posterior densities.

Table 2: Posterior summaries (change-point model 1.1).

Mean S.D. 95% Cred. Inter.

τ 5813 932 (4086 ; 7364)

λ1 0.008059 0.001285 (0.005814 ; 0.010786)
λ2 0.003047 4.011E-4 (0.002289 ; 0.003884)
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Figure 3: Marginal posterior distribution (change-point model 1.1).
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Similar results could also have been obtained from the parametrization

k = N(tk), λ1 and λ2. Assuming an uniform prior distribution for N(ti) taking

the values {1, 2, ..., n} and Gamma(0.1, 0.1) prior distributions for λ1 and λ2,

we obtain by Gibbs sampling algorithms the approximate marginal posterior

densities for τ , λ1 and λ2. In Table 3 we have the posterior summaries of interest

using the WinBugs software. The code of the WinBugs program is given in

Appendix 1, assuming k = N(tk). Observe that k ∼= 46 corresponds to τ = 5382.

That is, we have obtained results similar to the previous ones.

Table 3: Posterior summaries (gamma priors for λ1 and λ2).

Mean S.D. 95% Cred. Inter.

k 45.63 5.186 (35.0 ; 53.0)

λ1 0.008322 0.001315 (0.006085 ; 0.01120)
λ2 0.003056 3.975E-4 (0.002344 ; 0.003892)

In Figure 4, we have the approximated marginal posterior densities

considering the 5,000 generated Gibbs samples.
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Figure 4: Marginal posterior distribution (gamma prior distribution for λ1 and λ2).
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Assuming the two change-point model (1.2), we have in Table 4, the pos-

terior summaries for the parameters λ1, λ2, λ3, τ1 and τ2 obtained from the

5,000 generated Gibbs samples using the conditional posterior distributions

(3.10)–(3.12). In Figure 5 we have the approximate marginal posterior densities.

Table 4: Posterior summaries (change-point model 1.2).

Mean S.D. 95% Cred. Inter.

τ1 5990 876 (4176 ; 7354)
τ2 17459 3162 (11287 ; 22741)
λ1 0.008036 0.001262 (0.005765 ; 0.010703)
λ2 0.002713 6.080E-4 (0.001655 ; 0.004053)
λ3 0.003450 7.646E-4 (0.002103 ; 0.005082)
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Figure 5: Marginal posterior distributions (change-point model 1.2).
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Similar results have been obtained from the parametrization k1 = N(tk1
),

k2 = N(tk2
), λ1, λ2 and λ3. In Table 5, we have the posterior summaries of

interest, obtained using the WinBugs software (code in Appendix 1), infor-

mative discrete prior distributions for the two change-points and independent

Gamma(0.1, 0.1) prior distributions for λ1, λ2 and λ3. Observe that k1
∼= 46

corresponds to τ1 = 5382 and k2
∼= 78 corresponds to τ2 = 17743. In Figure 6,

we have the approximate marginal posterior distributions considering the 5,000

generated Gibbs samples.

Table 5: Posterior summaries (two change-point and gamma priors
for λ1, λ2 and λ3).

Mean S.D. 95% Cred. Inter.

k1 46.22 4.237 (37.0 ; 53.0)

k2 78.29 10.45 (58.0 ; 97.0)

λ1 0.008349 0.001298 (0.006077 ; 0.01115)

λ2 0.002780 6.378E-4 (0.001606 ; 0.004134)
λ3 0.003445 7.392E-4 (0.002195 ; 0.005079)

In Figure 7, we have plots of the predictive densities ci = f(xi |x∼(i)),

i = 1, 2, ..., n, approximated by the Monte Carlo estimates (4.2) for both models

M1 (a single change-point model) and M2 (two change-points model). For model

M1, we have P1 =
∏n

i=1 ĉ1i = 7.896×10−303 and for model M2 we have P2 =∏n
i=1 ĉ2i = 9.5536×10−302. The ratio of these values is given by P2/P1 = 12.09.

In Table 6, we have different estimates (see (4.5) and (4.6)) for the marginal

likelihood functions considering models M1 (single change-point model) and M2

(two change-point model).

Table 6: Estimate values of the marginal likelihood.

Model P (D|Ml) using (4.5) P (D|Ml) using (4.6)

M1 7.7716 × 10−305 4.6420 × 10−304

M2 3.1256 × 10−304 2.5020 × 10−302

From Table 6, we calculate the Bayes factors Bij = P (D|Mi)/P (D|Mj),

i, j = 1, 2. The Bayes factors are given by B21 = 4.02 (using (4.5)) and B21 = 53.9

(using (4.6)). If compared to one change-point model, we observe a better fit of

the two change-point model M2 for the data set of Table 1, considering the three

model selection procedures.

It is important to point out that better models also could be considered to

analyze the data set of the Table 1, considering more than two change-points.
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Figure 6: Marginal posterior distributions (gamma prior distributions for λ1,
λ2 and λ3 an informative discrete prior distribution for τ1 and τ2).
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Figure 7: Plot of ci versus i (M1: +, M2 : ◦).
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6. CONCLUDING REMARKS

In this paper, we have observed that Bayesian inference for the parameters

of change-point models is easily obtained through the use of Markov Chain Monte

Carlo methods.

The use of recent software, such as WinBugs, to simulate samples for the

joint posterior distribution of interest gives a great simplification in the com-

putational work. It is important to point out that the usual classical inference

procedures usually are not appropriate for change-point models (see for example,

Mattews et al. [10]).

The proposed Bayesian methodology could also have been considered di-

rectly using the counting data modeled by homogeneous Poisson processes in the

presence of one or more change-points in place of the inter-failure data (see for

example, Raftery and Akman [11]).

Similar results could have been obtained for interfailure data with constant

hazards and more than two change-points.

The use of Monte Carlo estimates for the predictive densities f
(
xi |x∼(i)

)
,

i = 1, 2, ..., n, or for the marginal likelihood of the whole data set D for a model Ml,

gives simple ways to discriminate the different change-point models, a problem

of great practical interest.

APPENDIX

A. WinBugs code (one change-point)

Model

{

for(i in 1 : N) {

t[i] ∽ dexp(lambda[J[i]])

J[i]< −1+step(i−k−0.5)

punif[i]<−1/N

}

for(j in 1 : 2) {

lambda[j]∽ dgamma(0.1, 0.1)

}

k ∽ dcat(punif[ ])

}
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list(t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,

59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,

326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467,

871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208,

517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,

329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),

N=109)

list(k=50, lambda=c(0.5, 0.5))

B. WinBugs code (two change-point)

Model

{

for(i in 1 : N) {

t[i] ∽ dexp(lambda[J[i]])

J[i]< −1+step(i−k1−0.5)+step(i−k2−0.5)

}

for(j in 1 : 3) {

lambda[j]∽ dgamma(0.1, 0.1)

}

k1∽dcat(p1[ ])

k2∽dcat(p2[ ])

}

list(t=c(378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96, 124, 50, 120, 203, 176, 55, 93,

59, 315, 59, 61, 1, 13, 189, 345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99,

326, 275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17, 1205, 644, 467,

871, 48, 123, 457, 498, 49, 131, 182, 255, 195, 224, 566, 390, 72, 228, 271, 208,

517, 1613, 54, 326, 1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336, 19,

329, 330, 312, 171, 145, 75, 364, 37, 19, 156, 47, 129, 1630, 29, 217, 7, 18, 1357),

p1=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.1, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0), p2=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.10,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225,

0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0.0225, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0), N=109)

list(k1=45,k2=78,lambda=c(0.5,0.5,0.5))
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