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1. INTRODUCTION

A crucial component of survey sampling and statistical inference is estimating the

population mean, median and mode , which offers information about a population’s central

tendency. The efficiency and accuracy of estimation can be greatly increased when auxiliary

variables provide information about the population. While utilizing a single auxiliary variable

can increase estimation efficiency, doing so with two auxiliary variables can further improve

the estimation process, especially in the following situations:

1. Both auxiliary variables have a strong correlation with the study variable.

2. The auxiliary variables offer complementary information, which means they capture

distinct dimensions or aspects of the study variable.

The robustness will be improved if the second variable can make up for the lesser correlation

between the two auxiliary variables and the study variable. Using two auxiliary variables

will increase precision because there is a higher reduction in variance. There are several

applications for using two auxiliary variables. For example, in agriculture, it is used to es-

timate crop yield using rainfall and soil quality as auxiliary variables; in public health, it

is used to estimate disease prevalence using socioeconomic and demographic factors; and in

economics, it is used to estimate income distribution using employment status and income

level as auxiliary variables, among other applications. Lu and Yan (2014) proposed a class

of ratio estimators of a finite population mean using two auxiliary variable and Singh and

Sharma (2015) suggested a class of exponential ratio estimators of finite population mean

using two auxiliary variables. In stratified random sampling, Kumar et al. (2018) suggested

a simulation study on estimation of population mean using two auxiliary variables. Triveni

and Danish (2024) suggested an efficient population mean estimation via stratified sampling

with dual auxiliary information. Shukla et al. (2012), Tailor and Tailor (2008), Kadilar and

Cingi (2005) and Abu-Dayyeh et al. (2003) also introduced estimation of population mean

using two auxiliary variables. Awan and Shabbir (2014) gave an optimum regression esti-

mator for population mean using two auxiliary variables in simple random sampling. Singh

and Nigam (2022) proposed a generalized class of estimators for finite population mean using

two auxiliary variables in sample surveys. Grover and Kaur (2021) suggested an improved

regression type estimator of population mean with two auxiliary variables and its variant us-

ing robust regression method. Sharma and Singh (2014) improved ratio type estimator under

second order approximation and Verma et al. (2015) suggested some families of estimators in

stratified random sampling using two auxiliary variables.

An Exponentially Weighted Moving Average (EWMA) is a statistical method that gives more

weight to recent data points in order to smooth data and identify patterns over time. Older

data are given exponentially decreasing weights by the EWMA, which makes it more sensitive

to recent changes than a simple moving average (SMA), which gives all observations equal

weight. These estimators can greatly increase the efficiency of survey estimates by exploit-

ing auxiliary information and previous data, resulting in reduced mean squared errors when

compared to typical estimators. These methods are adaptable to a wide range of survey

types and complex survey designs, including those with unequal probability sampling and

missing data. This paper focuses on the use of EWMA for mean estimation, emphasizing its
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capacity to give reliable and adaptive estimates in dynamic contexts. First, Noor-ul Amin

(2020) suggested memory type ratio and product estimators for population mean for time-

based surveys then Aslam et al. (2020) proposed memory type ratio and product estimators

in stratified sampling. Aslam et al. (2023) gave memory type ratio and product estimators

under ranked-based sampling schemes. Noor-ul Amin et al. (2022) suggested variable accep-

tance sampling plan based on hybrid exponentially weighted moving averages. Aslam et al.

(2024) and Noor-ul Amin (2021) also suggested memory type estimators of population mean

using exponentially weighted moving averages for time scaled surveys. Sharma et al. (2024)

discussed estimation procedures for population mean using EWMA for time scaled survey.

Zahid et al. (2023) suggested combination of memory type ratio and product estimators un-

der extended EWMA statistic with application to wheat production. Although using two

auxiliary variables to estimate population mean has many benefits, there is a substantial

research gap regarding the use of the EWMA statistic in this context. To the best of our

knowledge, no studies have looked into this approach, which uses the EWMA statistic to

estimate population mean using two auxiliary variables.

In section 1, we first introduced mean estimation, followed by estimation utilizing two auxil-

iary variables and the EWMA statistic. Then, in section 2 we defined the estimators in the

literature for estimation of population mean using two auxiliary variables. We have proposed

a generalized family of memory type estimators in section 3. In section 4, we compared the

efficiency of the estimators. In section 5, we have done an empirical study and in section 6,

a comprehensive simulation study is conducted to compare the efficiency of the estimators.

In section 7, we discussed the outcomes of tables and figures. Finally in the last section that

is in section 8 we discussed the conclusion.

The EWMA statistic to estimate the population mean based on sample mean for t > 0 for

the study variable and auxiliary variables are defined as

Vt = δȳt + (1− δ)Vt−1 , Wt = δx̄t + (1− δ)Wt−1 and Zt = δz̄t + (1− δ)Zt−1

where δ is weight given to the data known as weight parameter or smoothing constant of

current sample observation.

E(Vt) = µy(1.1)

V ar(Vt) = V ar [δȳt + (1− δ) (δȳt−1 + (1− δ)Vt−2)]

= V ar
[
δȳt + (1− δ)δȳt−1 + (1− δ)2δȳt−2 + · · ·

]
= V ar(ȳt)δ

2
[
1 + (1− δ)2 + (1− δ)4 + · · ·

]
= V ar(ȳt)δ

2
∞∑
n=0

(1− δ)2n.(1.2)

The limiting variance of EWMA statistic Vt is given by

V ar(Vt) =
δ2V ar(ȳt)

2δ − δ2
= ∆V ar(ȳt)(1.3)

similarly,

(1.4) E(Wt) = µx

V ar(Wt) =
δ2V ar(x̄t)

2δ − δ2
= ∆V ar(x̄t)(1.5)
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(1.6) E(Zt) = µz

V ar(Zt) =
δ2Var(z̄t)

2δ − δ2
= ∆V ar(z̄t)(1.7)

where, ∆ = δ
2−δ .

To derive the MSE of the proposed memory type estimators, we consider the following nota-

tions:

Vt = Ȳ (1 + e0t) , Wt = X̄(1 + e1t) and Zt = Z̄(1 + e2t)

such that

E(e0t) = E(e1t) = E(e2t) = 0

E(e20t) = ∆fC2
y

E(e21t) = ∆fC2
x

E(e22t) = ∆fC2
z

E(e0te1t) = ∆fρyxCyCx

E(e0te2t) = ∆fρyzCyCz

E(e1te2t) = ∆fρxzCxCz

(1.8)

where, f = 1
n − 1

N , C2
y =

S2
y

Ȳ 2 , C
2
x = S2

x

X̄2 , C
2
z = S2

z

Z̄2 are the coefficient of variation of Y , X and

Z.

S2
y =

∑N
i=1(Yi− Ȳ )2/(N−1) , S2

x =
∑N

i=1(Xi−X̄)2/(N−1) and S2
z =

∑N
i=1(Zi−Z̄)2/(N−1)

are the population variances of study variable and auxiliary variables respectively.

ρyx =
Syx√
S2
yS

2
x

, ρyz =
Syz√
S2
yS

2
z

and ρxz = Sxz√
S2
xS

2
z

are the correlation coefficients between Y

and X, Y and Z and X and Z respectively.

2. REVIEW OF ESTIMATORS

Singh (1967) suggested a combination of ratio and product estimator of Ȳ using two

auxiliary variables for the estimation of population mean as

t1 = ȳ

(
X̄

x̄

)( z̄
Z̄

)
(2.1)

MSE(t1) = fȲ 2
[
C2
y + C2

x(1− 2ρyx) + C2
z (1 + 2(ρyz − ρxz))

]
.(2.2)

Abu-Dayyeh et al. (2003) suggested the following two forms of estimators of a finite population

mean using two auxiliary variables.

t2 = ȳ
( x̄
X̄

)γ1 ( z̄
Z̄

)γ2
(2.3)
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MSEmin(t2) = fȲ 2C2
y

(
1−

ρ2yx + ρ2yz − 2ρyxρyzρxz

1− ρ2xz

)
.(2.4)

The optimum values of γ1 and γ2 is given by;

γ1 =
−Cy(ρyx − ρyzρxz)

Cx(1− ρ2xz)

γ2 =
−Cy(ρyz − ρyxρxz)

Cz(1− ρ2xz)
(2.5)

t3 = λ1ȳ
( x̄
X̄

)γ1
+ λ2ȳ

( z̄
Z̄

)γ2
(2.6)

where, λ1 + λ2 = 1

MSE(t3) = fȲ 2

(
C2
y + λ21γ

2
1C

2
x + λ22γ

2
2C

2
z − 2λ1γ2ρyxCyCx

−2γ1λ2ρyzCyCz + 2λ1λ2γ1γ2ρxzCxCz

)
(2.7)

where,

λ1 =
γ22C

2
z − γ1ρyzCyCz + γ2ρyxCyCx − γ1γ2ρxzCxCz

γ21C
2
x + γ22C

2
z − 2γ1γ2ρxzCxCz

and λ2 = 1− λ1.(2.8)

Lu and Yan (2014) suggested a class of multivariate ratio estimators using information of two

auxiliary variables.

t4 = k1ȳ

(
a1X̄ + b1
a1x̄+ b1

)
+ k2ȳ

(
a2Z̄ + b2
a2z̄ + b2

)
(2.9)

where, k1 + k2 = 1

MSE(t4) = fȲ 2

(
C2
y + k21α

2
1C

2
x + k22α

2
2C

2
z − 2k1α1ρyxCyCx

−2k2α2ρyzCyCz + 2k1k2α1α2ρxzCxCz

)
(2.10)

where,

k1 =
α2
2C

2
z + α1ρyxCyCx − α2ρyzCyCz − α1α2ρxzCxCz

α2
1C

2
x + α2

2C
2
z − 2α1α2ρxzCxCz

and k2 = 1− k1(2.11)

α1 =
a1X̄

a1X̄ + b1
, α2 =

a2Z̄

a2Z̄ + b2
.(2.12)

3. PROPOSED ESTIMATOR

To the best of our knowledge no one has proposed the memory type estimator using

two auxiliary variables for the estimation of population mean. So, we have looked into this



6 M. Kumari P. Sharma P. Singh G. Ozel

approach and proposed the enhanced generalized family of memory type estimator for the

estimation of population mean using two auxiliary variables as

(3.1) ta = Vt

[
r1

(
Wt

X̄

)ψ
exp

(
p(X̄ −Wt)

p(X̄ +Wt) + 2q

)
+ r2

(
1 + log

(
Zt
Z̄

))]

where, r1 and r2 are suitable constants to be determined such that the MSE of ta is minimum,

p, ψ and q are either real numbers or functions of the known parameters of auxiliary variables

and r1 + r2 ̸= 1, expressing in terms of e0t, e1t and e2t we get,

ta = Ȳ (1 + e0t)

[
r1

(
X̄(1 + e1t)

X̄

)ψ
exp

(
p(X̄ − X̄(1 + e1t))

p(X̄ + X̄(1 + e1t)) + 2q

)

+r2

[
1 + log

(
Z̄(1 + e2t)

Z̄

)]]

= Ȳ (1 + e0t)

[
r1(1 + e1t)

ψ exp

(
−ue1t
2 + ue1t

)
+ r2 [1 + log(1 + e2t)]

]
(3.2)

where u = pX̄
pX̄+q

, expanding using Taylor’s series expansion upto first order approximation

we have

ta − Ȳ = (r1 + r2 − 1)Ȳ + r1Ȳ
(
e0t + e1t(ψ − u

2 ) + e21t

(
3u2

8 − ψu
2 + ψ(ψ−1)

2

)
+ e0te1t(ψ − u

2 )
)

+r2Ȳ
(
e0t + e2t + e0te2t −

e22t
2

)
(3.3)

(ta − Ȳ )2 = Ȳ 2 + r21Ȳ
2

(
1 + e20t + e21t

(
ψ − u

2

)2
+ 4e0te1t

(
ψ − u

2

)
+2e21t

(
3u2

8
− ψu

2
+
ψ(ψ − 1)

2

))
+r22Ȳ

2
(
1 + e20t + 4e0te2t

)
+2r1r2Ȳ

2
(
1 + e20t + 2e0te2t + e0te1t

(
ψ − u

2

)
+e1te2t

(
ψ − u

2

)
+ e21t

(
3u2

8
− ψu

2
+
ψ(ψ − 1)

2

)
− e22t

2

)
−2r1Ȳ

2

(
1 + e21t

(
3

8
u2 − ψu

2
+
ψ(ψ − 1)

2

)
+ e0te1t

(
ψ − u

2

))
−2r2Ȳ

2

(
1 + e0te2t +

e22t
2

)
(3.4)

taking expectations both sides we have;

MSE(ta) = Ȳ 2 + r21α+ r22β + 2r1r2γ − 2r1θ − 2r2ϕ(3.5)
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where,

α = Ȳ 2

[
1 + ∆f

(
C2
y + C2

x

(
ψ − u

2

)2
+ 4ρyxCyCx

(
ψ − u

2

)
+2C2

x

(
3u2

8
− ψu

2
+
ψ(ψ − 1)

2

))]
,(3.6)

β = Ȳ 2
[
1 + ∆f

(
C2
y + 4ρyzCyCz

)]
,(3.7)

γ = Ȳ 2
[
1 + ∆f

(
C2
y + 2ρyzCyCz + ρyxCyCx

(
ψ − u

2

)
+ρxzCxCz

(
ψ − u

2

)
+ C2

x

(
3u2

8
− ψu

2
+
ψ(ψ − 1)

2

)
− C2

z

2

)]
,(3.8)

θ = Ȳ 2

[
1 + ∆f

(
C2
x

(
3u2

8
− ψu

2
+
ψ(ψ − 1)

2

)
+ ρyxCyCx

(
ψ − u

2

))]
,(3.9)

ϕ = Ȳ 2

[
1 + ∆f

(
ρyzCyCz +

C2
z

2

)]
(3.10)

differentiating with respect to r1 and r2 and equating it with zero is given by;

r1 =
βθ − γϕ

αβ − γ2
(3.11)

r2 =
αϕ− γθ

αβ − γ2
(3.12)

substituting the values of r1 and r2, the minimum MSE is given by;

MSEmin(ta) = Ȳ 2 −
(
αϕ2 + βθ2 − 2γθϕ

αβ − γ2

)
.(3.13)

A set of estimators generated from ta using suitable values of r1, r2, ψ, p and q are listed

above in Table 1 and this table contains conventional parameters like quartile deviation Q2,
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coefficient of variation Cx and coefficient of skewness B1(x).

Subset of proposed estimator r1 r2 ψ p q

ta(1) = Vt 1 0 0 0 0

ta(2) = Vt
[(
Wt

X̄

)
+
(
1 + log

(
Zt

Z̄

))]
1 1 1 0 1

ta(3) = Vt

[(
Wt

X̄

)ψ
+
(
1 + log

(
Zt

Z̄

))]
1 1 ψ 0 1

ta(4) = Vt

[(
Wt

X̄

)−1
+ Vt

(
1 + log

(
Zt

Z̄

))]
1 1 −1 0 1

ta(5) = Vt
[
1 + log

(
Zt

Z̄

)]
0 1 1 1 1

ta(6) = Vt exp
(
X̄−Wt

X̄+Wt

)
1 0 0 1 0

ta(7) = Vt
[
r1
(
Wt

X̄

)
+ r2

(
1 + log

(
Zt

Z̄

))]
r1 r2 1 0 1

ta(8) = Vt

[
r1 exp

(
X̄−Wt

X̄+Wt

)
+ r2Vt

(
1 + log

(
Zt

Z̄

))]
r1 r2 0 1 0

ta(9) = r1Vt exp
(

(X̄−Wt)
(X̄+Wt)+2

)
r1 0 0 1 1

ta(10) = Vt

[
r1
(
Wt

X̄

)
exp

(
(X̄−Wt)

(X̄+Wt)+2

)
+ Vt

(
1 + log

(
Zt

Z̄

))]
r1 1 1 1 1

ta(11) = Vt

[(
Wt

X̄

)
exp

(
(X̄−Wt)
(X̄+Wt)

)
+ r2Vt

(
1 + log

(
Zt

Z̄

))]
1 r2 1 1 0

ta(12) = r2Vt
(
1 + log

(
Zt

Z̄

))
0 r2 0 0 0

ta(13) = r1Vt exp
(
X̄−Wt

X̄+Wt

)
r1 0 0 1 0

ta(14) = Vt

[
r1 exp

(
X̄−Wt

(X̄+Wt)+2

)
+
(
1 + log

(
Zt

Z̄

))]
r1 1 0 1 1

ta(15) = r1Vt
(
Wt

X̄

)
r1 0 1 0 0

ta(16) = Vt
(
Wt

X̄

)
1 0 1 0 0

ta(17) = Vt
(
Wt

X̄

)−1
1 0 −1 0 0

ta(18) = Vt
(
Wt

X̄

)−ψ
1 0 −ψ 0 0

ta(19) = r1Vt
(
Wt

X̄

)ψ
r1 0 ψ 0 0

ta(20) = Vt

[
r1
(
Wt

X̄

)ψ
+
(
1 + log

(
Zt

Z̄

))]
r1 1 ψ 0 1

ta(21) = Vt
[
Q2 +

(
1 + log

(
Zt

Z̄

))]
Q2 1 0 0 0

ta(22) = Vt

[
Q2

(
Wt

X̄

)
exp

(
X̄−Wt

X̄+Wt

)
+
(
1 + log

(
Zt

Z̄

))]
Q2 1 1 1 0

ta(23) = Q2Vt
(
Wt

X̄

)
exp

(
X̄−Wt

X̄+Wt

)
Q2 0 1 1 0

ta(24) = Q2Vt
[
1 + log

(
Zt

Z̄

)]
0 Q2 0 1 1

ta(25) = Vt
[(
Wt

X̄

)
+Q2

(
1 + log

(
Zt

Z̄

))]
1 Q2 1 0 1

ta(26) = Vt

[
r1 exp

(
X̄−Wt

(X̄+Wt)+2

)
+Q2Vt

(
1 + log

(
Zt

Z̄

))]
r1 Q2 0 1 1

ta(27) = CxVt
(
Wt

X̄

)
Cx 0 1 0 0

ta(28) = Vt

[
Cx
(
Wt

X̄

)ψ
exp

(
X̄−Wt

X̄+Wt

)
+
(
1 + log

(
Zt

Z̄

))]
Cx 1 ψ 1 0

ta(29) = CxVt
[
1 + log

(
Zt

Z̄

)]
0 Cx 0 0 1

ta(30) = Vt

[
B1(x)

(
Wt

X̄

)
exp

(
X̄−Wt

(X̄+Wt)+2

)
+
(
1 + log

(
Zt

Z̄

))]
B1(x) 1 1 1 1

ta(31) = Vt

[
r1
(
Wt

X̄

)ψ
exp

(
X̄−Wt

X̄+Wt

)
+B1(x)

(
1 + log

(
Zt

Z̄

))]
r1 B1(x) ψ 1 0

Table 1: Set of estimators generated from the class of estimator (ta).
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4. EFFICIENCY COMPARISON

We compared the efficiency of the proposed memory type estimator ta with the estima-

tors in the literature without EWMA for mean estimation utilizing two auxiliary variables in

order to demonstrate the superiority of the suggested estimators over the others.

MSE(t1)−MSE(ta) = fȲ 2
[
C2
y + C2

x (1− 2ρyx) + C2
z (1 + 2(ρyz − ρxz))

]
−
(
Ȳ 2 + r21α+ r22β + 2r1r2γ − 2r1θ − 2r2ϕ

)
≥ 0.(4.1)

MSE(t2)min −MSE(ta) = fȲ 2C2
y

(
1−

ρ2yx + ρ2yz − 2ρyxρyzρxz

1− ρ2xz

)
−
(
Ȳ 2 + r21α+ r22β + 2r1r2γ − 2r1θ − 2r2ϕ

)
≥ 0(4.2)

MSE(t3)−MSE(ta) = fȲ 2
[
C2
y + λ21γ

2
1C

2
x + λ22γ

2
2C

2
z − 2λ1γ1ρyxCyCx − 2λ2γ2ρyzCyCz

]
−
(
Ȳ 2 + r21α+ r22β + 2r1r2γ − 2r1θ − 2r2ϕ

)
≥ 0(4.3)

MSE(t4)−MSE(ta) = fȲ 2
[
C2
y + k21α

2
1C

2
x + k22α

2
2C

2
z − 2k1α1ρyxCyCx − 2k2α2ρyzCyCz

+2k1k2α1α2ρxzCxCz
]

−
(
Ȳ 2 + r21α+ r22β + 2r1r2γ − 2r1θ − 2r2ϕ

)
≥ 0.(4.4)

Equation 4.1, 4.2, 4.3 and 4.4 will always be greater than zero.

5. EMPIRICAL STUDY

To compare the performance of the proposed class of memory type estimators and the

estimators in literature, three population data sets has been taken.

Population 1 : The data has been taken from the book Feng and Shi (1996) and statistics

are calculated from the raw data.

Population 2 : Data has been taken from Steel and Torrie (1960). The log of leaf burn

in sec is taken as the study variable Y . Potassium and chlorine percentage is taken as the

auxiliary variables X and Z respectively.

Y = log of leaf burn in sec

X = potassium percentage

Z = clorine percentage

Population 3 : Data has been taken from Choudhury and Singh (2012). The number of

placebo children is taken as the study variable Y . The number of paralytic polio cases in the

placebo group and the number of paralytic polio cases in the ’not inoculated’ group is taken

as the auxiliary variables X and Z, respectively.

Y = number of ’placebo’ children

X = number of paralytic polio cases in the placebo group

Z = number of paralytic polio cases in the ’not inoculated’ group
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Parameters Population 1 Population 2 Population 3

N 180 30 34

n 70 6 10

Ȳ 13.9951 0.6860 4.92

X̄ 27.3981 4.6537 2.59

Z̄ 38.7167 0.8077 2.91

Cy 0.4180 0.4803 1.01232

Cx 0.4254 0.2295 1.23189

Cz 0.3339 0.7493 1.07203

ρyx 0.5630 0.1794 0.73259

ρyz 0.5273 0.4996 0.43796

ρxz 0.2589 0.4074 1.00366

Table 2: Population characteristics.

Population 1:

λ1 λ2 γ1 γ2 MSE(t3)

1.897944147 −0.897944147 0 1 0.452474178

0.406682515 0.593317485 −1 0 0.638501618

0.102055853 0.897944147 0 −1 0.452474178

0.220182044 0.779817956 −1 −1 0.722936698

0.879691935 0.120308065 −1 1 0.256776778

−0.06951526 1.06951526 1 −1 0.234692155

Table 3: MSE of estimator (t3) at different values of γ1 and γ2.

a1 a2 b1 b2 MSE(t4)

0 1 1 1 0.215693307

1 0 1 1 0.204064345

0 1 1 0 0.215693307

−1 0 −1 −1 0.204064345

−1 0 1 −1 0.204064345

0 −1 1 −1 0.215693307

0 −1 1 0 0.215693307

Table 4: MSE of estimator (t4) at different values of a1, a2, b1 and b2.
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ta
δ 0.2 0.5 0.7 0.9

α 195.8923612 195.9514357 196.005966 196.0803255

β 195.9519495 196.1302006 196.2947401 196.519112

γ 195.9132834 196.0142023 196.1073581 196.2343888

θ 195.8662071 195.8729731 195.8792188 195.8877355

ϕ 195.8873974 195.9365441 195.9819103 196.0437732

r1 0.984594605 0.984005659 0.983462069 0.98272089

r2 0.015270251 0.015588929 0.015883065 0.016284116

MSE(ta) 0.022763519 0.068269094 0.110248845 0.167454675

Table 5: MSE of proposed estimator (ta) at different values of δ.

Population 2:

λ1 λ2 γ1 γ2 MSE(t3)

0.6991 0.3009 1 1 0.012604807

1.0352 −0.0352 0 1 0.014518489

3.4137 −2.4137 −1 0 0.006997223

0.9648 0.0352 0 −1 0.014518489

1.3743 −0.3743 −1 −1 0.016094696

1.1019 −0.1019 −1 1 0.020275662

0.5727 0.4273 1 −1 0.008777011

Table 6: MSE of estimator (t3) at different values of γ1 and γ2.

a1 a2 b1 b2 MSE(t4)

1 1 1 1 0.011103102

0 1 1 1 0.010861877

1 0 1 1 0.014008924

0 1 1 0 0.010861877

−1 1 1 1 0.011271042

−1 1 −1 1 0.011103102

−1 −1 −1 −1 0.011103102

−1 0 −1 −1 0.014008924

−1 0 1 −1 0.014008924

1 −1 1 −1 0.011103102

0 −1 1 −1 0.010861877

0 −1 1 0 0.010861877

Table 7: MSE of estimator (t4) at different values of a1, a2, b1 and b2.
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ta
δ 0.2 0.5 0.7 0.9

α 0.47229578 0.475695341 0.478833397 0.483112565

β 0.477218435 0.490463305 0.502689339 0.519361203

γ 0.473832298 0.480304894 0.486279598 0.494426922

θ 0.470664768 0.470802305 0.470929263 0.471102386

ϕ 0.47380669 0.480228069 0.486155496 0.49423835

r1 0.120512971 0.097529431 0.076386945 0.047668717

r2 0.873192905 0.88362208 0.893215845 0.906247233

MSE(ta) 0.000150151 0.000338794 0.000381361 0.000237016

Table 8: MSE of proposed estimator (ta) at different values of δ.

Population 3:

λ1 λ2 γ1 γ2 MSE(t3)

0.3132 0.6868 −1 0 3.121005343

0.2050 0.7950 0 −1 3.632242825

0.7266 0.2734 −1 1 0.54254996

0.2042 0.7958 1 −1 1.711681397

Table 9: MSE of estimator (t3) at different values of γ1 and γ2.

a1 a2 b1 b2 MSE(t4)

0 1 1 1 1.415200544

1 0 1 1 0.811273057

0 1 1 0 1.415200544

−1 1 1 1 1.598161655

−1 0 −1 −1 0.811273057

−1 0 1 −1 0.811273057

0 −1 1 −1 1.415200544

0 −1 1 0 1.415200544

Table 10: MSE of estimator (t4) at different values of a1, a2, b1 and b2.



Enhanced mean estimation using memory type estimators with dual auxiliary variables 13

ta
δ 0.2 0.5 0.7 0.9

α 26.59415131 31.36965394 35.77781021 41.7889324

β 24.7619172 25.87295161 26.89852183 28.29702667

γ 25.36209907 27.67349722 29.80709551 32.71654772

θ 24.71868208 25.74324623 26.68899776 27.97865894

ϕ 24.40573345 24.80440035 25.17240057 25.67421905

r1 −0.451303419 −0.44474598 −0.438678911 −0.430383815

r2 1.44785782 1.434396723 1.421942255 1.404914097

MSE(ta) 0.02599369 0.076254698 0.120600458 0.177889707

Table 11: MSE of proposed estimator (ta) at different values of δ.

MSE

Estimators δ Population1 Population2 Population3

t1 0.55274 0.05832 0.28675

t2 0.20406 0.01085 0.86728

t3 0.23469 0.00699 0.54255

t4 0.20406 0.01086 0.81127

ta 0.2 0.02276 0.00015 0.02599

0.5 0.06827 0.00034 0.07625

0.7 0.11025 0.00038 0.12060

0.9 0.16745 0.00024 0.17789

Table 12: MSEs of estimators for different populations.
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Figure 1: MSEs of estimators for different populations

6. SIMULATION STUDY

A comprehensive simulation study is carried out to assess the effectiveness of the sug-

gested estimator over the estimators in literature. The following steps are used to compute

the mean squared error (MSE) and bias of the proposed estimator and the estimators in

literature.

a) Generate a population of size N = 1000. Let the mean vector µ = [50 30 20] for the

variables Y , X and Z and standard deviation vector σ = [10 5 5].

b) Select samples by using SRSWOR of size n = 50, 100, 200, 500.

c) To observe the effect of the smoothing constant, we have employed a range of δ values

i.e., δ = 0.01, 0.05, 0.10, 0.50.

d) MSE for each estimator is obtained by Equation 6.1 and Bias for each estimator is

obtained by Equation 6.2.

Compute the Bias and Mean Squared Error as

(6.1) Bias(k) =
1

1000

1000∑
i=1

(ki − ȳ)

(6.2) MSE(k) =
1

1000

1000∑
i=1

(ki − ȳ)2
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where, k = t1, t2, t3, t4 and ta

Estimators Sample size (n) δ Bias MSE

t1 50 0.0075 5.2262

100 0.0040 2.0959

200 0.0159 1.0405

500 −0.0016 0.2910

t2 50 0.0318 6.8404

100 −0.0507 2.8423

200 0.0246 1.3570

500 −0.0005 0.3504

t3 50 0.0076 3.7761

100 −0.0429 1.5930

200 0.0199 0.7590

500 −0.0002 0.1954

t4 50 −0.0107 1.6115

100 −0.0247 0.7019

200 0.0157 0.3316

500 0.0002 0.0874

ta 50 0.01 −0.0127 0.0099

0.05 −0.1085 0.0641

0.10 0.0558 0.1476

0.50 −0.0415 1.0598

100 0.01 0.0051 0.0039

0.05 0.0072 0.0445

0.10 0.0475 0.0851

0.50 0.0268 0.4520

200 0.01 0.0083 0.0019

0.05 0.0559 0.0163

0.10 0.0149 0.0286

0.50 0.0177 0.2183

500 0.01 −0.0028 0.0005

0.05 −0.0008 0.0031

0.10 0.0052 0.0108

0.50 −0.0050 0.0564

Table 13: MSE of the estimators at different sample sizes.
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Figure 2: MSEs of estimators for different populations

7. DISCUSSION

Table 2 summarizes the population characteristics of the three populations. Table 3-

Table 11 shows the calculated findings for mean squared errors. Table 12 shows a comparison

of the suggested memory type estimator to estimators from the literature. The MSE of the

estimator (t3) at different values of γ1 and γ2 is calculated in Table 3, Table 6 and Table 9

for the population 1, 2 and 3 respectively. In Table 4, Table 7 and Table 10, the MSE of

estimator (t4) is calculated at different values of a1, a2, b1 and b2 for the population 1, 2 and

3 respectively. The MSE of the proposed memory type estimator (ta) at different values of

δ is calculated in Table 5, Table 8 and Table 11 for the population 1, 2 and 3 respectively.

Table 3 shows that when γ1 = 1 and γ2 = −1, the estimator (t3) has the optimal MSE value,

Table 6 yields the optimum MSE value of the estimator (t3) when γ1 = −1 and γ2 = 0 and

Table 9 shows that the optimum MSE value of the estimator (t3) occurs when γ1 = −1 and

γ2 = 1 for the population 1, 2 and 3 respectively. Table 4 shows the optimum MSE value of

the estimator t4 when a1 = 1, a2 = 0, b1 = 1 and b2 = 1 , Table 7 yields the optimum MSE

value of the estimator (t4) when a1 = 0, a2 = 1, b1 = 1 and b2 = 0 and from Table 10 it can

be seen that the optimum MSE value of the estimator (t4) is when a1 = −1, a2 = 0, b1 = 1

and b2 = −1 for the population 1, 2 and 3 respectively.

The MSEs of the proposed class of memory type estimators for each δ value are smaller

than those of the standard estimator for predicting population mean utilizing two auxiliary

variables of the three populations, as shown in Table 12. Every population taken into con-

sideration has higher MSE values as the δ values increases from 0.01 to 0.50. The smoothing

constant δ is employed to make use of both past and current observations. Table 12 illustrates
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the impact of δ on efficiency. When the value of δ decreases, the efficiency of the suggested

EWMA estimator increases, as shown in Table 12.

Figure 1 displays the MSEs of the proposed class of memory type estimator and the estima-

tors in the literature for the three populations, namely Population 1, 2, and 3. In this figure,

ta represents the proposed class of memory type estimator, and the graph clearly shows that

the proposed class of estimator has less MSE than other estimators in the literature, imply-

ing that the proposed class of memory type estimator is more efficient than estimators in

literature using two auxiliary variables.

Table 13 has been obtained by simulation study, it shows the MSEs of the estimators in lit-

erature at different sample sizes (n = 50, 100, 200, 500) and the MSE of the proposed class of

memory type estimator at different values of δ (δ = 0.01, 0.05, 0.10, 0.50) and different sample

sizes (n = 50, 100, 200, 500). It can be seen from Table 13 that as the sample size increases

for an estimator, the value of MSE decreases and for the proposed class of memory type

estimator as the value of δ increases, the value of MSE also increases. Here, δ lies between

0 and 2. When δ is high, EWMA places more weight on the current observation and less on

past observations. As a result, the smoothed value is more sensitive to random fluctuations

and responsive to recent changes, which increases variability and leading to higher MSE.

This supports the concept of the EWMA and sampling. Figure 2 represents the MSEs of

estimators at different sample sizes and as we can see that the proposed class of memory type

estimator has less MSEs as compared to the estimators in literature. So, the proposed class

of memory type estimator is more efficient.

8. CONCLUSIONS

This study expands on the classic EWMA framework by including two auxiliary vari-

ables that increase mean estimation precision and accuracy. Auxiliary variables are correlated

with the variable of interest and give additional information that improves the effectiveness

of estimate processes. The suggested method combines EWMA’s adaptability with the pre-

dictive capacity of auxiliary variables to provide a robust estimator capable of detecting tiny

changes in the process mean. In order to estimate the population mean using two auxiliary

variables, we proposed a class of memory type estimators. It has been theoretically demon-

strated that the proposed class of memory type estimators are more efficient than Abu-Dayyeh

et al. (2003), Singh (1967) and Lu and Yan (2014) standard estimators. Additionally, the

outcomes of three numerical cases meet these theoretical requirements. The results empha-

size how crucial EWMA is for uses including environmental monitoring, financial forecasting,

and industrial quality control. This study advances our knowledge of adaptive statistical

techniques and how they function in real-time decision-making.
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