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Abstract:
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tion. For the average worth, the natural estimator is shown to be positively biased
with respect to Stein loss function and the Unique Minimum Risk Unbiased Estimator
UMRUE is obtained. For the simultaneous estimation problem, we have shown that
the natural estimator is positively biased with respect to Stein loss function and the
UMRUE is obtained. The inadmissibility of the natural estimator of the simultane-
ous estimation is also proved and a class of dominating estimators is obtained. Monte
Carlo simulation is undertaken to compute the biases and risks of the two problems
of estimation.
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1. INTRODUCTION

Estimating the parameter of the selected population is an important prac-

tical problem which arises in various disciplines such as agriculture, medicine and

industry. Say, we wish to select the most productive machine from p different

types of machines and then estimate the mean of the production of the selected

machine. The problem of estimation after selection has received considerable

attention from many researchers. Some references in this area include, Sackro-

witz and Samuel-Cahn (1984), Kumar and Gangopadhyay (2005), Misra, van der

Meulen and Branden (2006a, 2006b), Sill and Sampson (2007) and Vellaisamy

and Jain (2008). All these studies considered the problem of estimation when the

selection rule selects only one population. However sometimes we are interested

to select a subset of good populations (including the best) rather than only one

population (the best) and then estimating the parameters of the selected subset.

The problem of estimation after subset selection was initially formulated and

studied by Jayaratnam and Panchapakesan (1984) for two normal populations.

They proposed three classes of estimators for the average worth of the selected

subset and compared numerically their biases and mean squared errors. Jayara-

tnam and Panchapakesan (1986) considered the case of two independent exponen-

tial populations and they proved that the natural estimator of the average worth

of the selected subset is positively biased. They suggested an adjusted estimator

by adjusting the bias of the natural estimator and compared the bias and mean

squared error of the natural estimator with the adjusted estimator. Vellaisamy

(1992) considered the average worth estimation and simultaneous estimation of

the subset selected from independent gamma population with unknown scale

parameters and common known shape parameter. He proved that the natural

estimator of the average worth is positively biased and inadmissible and also, he

obtained the UMVUE of it using the UV method of Robbins (1988). Also, he

observed similar results for the simultaneous estimation of the selected subset.

Misra (1994) derived the UMVUE of the average worth of the selected subset

from p independent gamma populations with common known shape parameter

and unknown scale parameters. He also proved the inadmissibility of the natural

estimator of the average worth under squared error loss function by constructing

improved estimators. Vellaisamy (1996) considered the case of subset selection

from uniform populations. He proved for the simultaneous estimation of the pa-

rameters associated with the selected populations, the natural estimators as well

as the unbiased estimator are inadmissible under the squared error loss function

and the dominating ones were obtained. The problem of estimating the average

worth of the selected subset from exponential populations with a common un-

known location parameter and unknown scale parameters has been investigated

by Gangopadhyay and Kumar (2005). They derived the UMVUE of the average

worth of the selected subset and they also, compared, numerically, the bias and

the mean squared error of the UMVUE, BAEE and MLE of the average worth.
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They observed that the natural estimator dominates the unbiased estimator and

the natural estimator itself is inadmissible. The literatures, so far, deal with the

problem of estimating the parameters (average worth or simultaneous estimation)

of a selected subset containing the best population when the distributions of pop-

ulations are continuous. In this paper, we take up the problem of estimating the

parameters of the selected subset under the asymmetric loss function when the

distributions of populations are discrete. The loss function considered here is

Stein loss function defined as

L(θ, d) =
d

h(θ)
− log

(

d

h(θ)

)

− 1 ,(1.1)

where d is an estimate of h(θ) and log denotes the natural logarithm. The loss

function (1.1) was first introduced in James and Stein (1961) for estimation of the

multinormal covariance matrix. Also, it was considered by Dey and Srinivasan

(1985) and Dey and Chung (1991) for simultaneous estimation. In Section 2,

we introduce some notations, definitions and lemmas and formulate the problem.

In Section 3, the natural estimators of the average worth and simultaneous esti-

mation of the selected subset are shown to be positively biased with respect to

Stein loss function. In Section 4, the UMRUE’s of the average worth and simul-

taneous estimation are derived. In Section 5, the inadmissibility of the natural

estimator of the simultaneous estimation is proved by solving certain difference

inequality and a class of improved estimators is constructed. In Section 6, Monte

Carlo simulation is undertaken to compute the biases and risks of the estimators

under the two problems of estimation.

2. NOTATIONS, DEFINITIONS AND FORMULATION OF THE

PROBLEM

Let Π1, ...,Πp be p (p≥2) independent populations such that the random

variable Xi represents the population Πi has left-truncated Poisson p.d.f.

P (Xi = xi) =
θxi

i

xi! f(θi, t)
, xi = t, t+1, ...; t > 0; θi > 0; i = 1, ..., p ,

where f(θi, t) = eθi −∑t−1
k=o θ

k
i /k!. We assume that θ1, ..., θp are unknown param-

eters. Suppose from each population Πi we have a random sample Xi1, ..., Xin

and let Zi =
∑n

j=1Xij . It is well-known (see for example, Jani (1977)) that the

distribution of Zi is given by

P (Zi = zi) =
n! S(zi, n, t) θ

zi

i

zi! fn(θi, t)
, zi = nt, nt+1, ... ,
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where S(zi, n, t) is the Stirling number of the second kind and the UMVUE of θi

is given by

(2.1) δ(Zi) =

{

Zi S(Zi−1, n, t)/S(Zi, n, t), if Zi ≥ nt+1 ;

0, otherwise .

Without loss of generality, we consider the case n = 1. So that the UMVUE,

defined in (2.1), reduces to

(2.2) δ(Xi) =

{

Xi, if Xi ≥ t+1 ;

0, otherwise .

Let χ =
{

x : x= (x1, ..., xp), xi ≥ t, i= 1, ..., p
}

and Ω =
{

θ : θ = (θ1, ..., θp),

θi > 0, i = 1, ..., p
}

denote the sample space and the parameter space, respec-

tively, and let θ[1] ≥ θ[2] ≥ · · · ≥ θ[p] represent the ordered parameters and X(1) ≥
X(2) ≥ · · · ≥ X(p) represent the ordered values of X1, ..., Xp (use arbitrary order-

ing if some of the θi’s (Xi’s) are equal). The population associated with θ[1] is

called the best population. In the subset selection approach, we want to select a

non-empty subset from the p populations so that the best population is included

in the selected subset with a minimum pre-assigned probability P ∗(1/p < P ∗ < 1)

(Gupta (1965)). To select such a subset, we consider, in this paper, the following

modified selection rule which was suggested by Gupta and Huang (1975).

(2.3) R : Choose Πi in the subset iff Xi + 1 ≥ cX(1) ,

where c = c(p, P ∗) (0< c < 1) is some suitable constant satisfying the basic prob-

ability requirement

inf
θ∈Ω

Pθ

(

CS |R
)

= P ∗ ,

and CS stands for “Correct Selection” (i.e. the selection contains the best popula-

tion). Let X(1)i ≥ X(2)i ≥ · · · ≥ X(p−1)i denote the ordered values of X1, ..., Xi−1,

Xi+1, ..., Xp. Note that

{

Xi +1 ≥ cX(1)

}

=
{

Xi +1 ≥ cX(1)i

}

.

Suppose a subset (of random size) is selected using the rule R. The problems

that we are interested here are the estimation of the average worth M and the

simultaneous estimation of Q, defined by

M =

p
∑

i=1
θi Ii(X)

p
∑

i=1
Ii(X)

and

Q =
(

θ1I1(X), ..., θp Ip(X)
)

,

where Ii(X) = I
(

Xi +1 ≥ cX(1)i

)

and I(A) denotes the indicator function of an

event A. It can be seen that the dimension of the estimand M is random, as it
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varies with X, unlike in the case of classical estimation problem. The natural

analogues of M and Q for the selection problem are as follows

M̂1(X) =

p
∑

i=1
δ(Xi) Ii(X)

p
∑

i=1
Ii(X)

(2.4)

and

Q̂1(X) =
(

δ(X1)I1(X), ..., δ(Xp)Ip(X)
)

,(2.5)

and we will call them, the natural estimators of M and Q, respectively, where δ

is as in (2.2). The loss function (1.1) can be written for the case of estimating M

and Q as in the following

L(M, M̂) =
M̂

M
− log

(

M̂

M

)

− 1

and

L(Q, Q̂) =

p
∑

j=1

[

dj

θj

− log

(

dj

θj

)

− 1

]

Ij(X) ,

where M̂ is an estimate of M, dj is an estimate of θj and Q̂ = (d1, ..., dp). The

loss function is well defined in our problem, since we considered distributions

truncated at zero. Now, we introduce the following lemmas which will be used in

the next sections. The following lemma is from Chou (1991).

Lemma 2.1. Let f1 be a real-valued function defined on p-fold Cartesian

product of I
+, the set of positive integers, such that Eθ|f1(X)|<∞ and f1(x) = 0

if xi ≤ t. Then

Eθ f1(X)/θi = Eθ

(

f1(X+ ei)/δ(Xi +1)
)

,

where ei is the p-dimensional vector whose i-th coordinate is 1 and the rest are

zeros and δ is as in (2.2).

Lemma 2.2. Let f2 be a real-valued function defined on p-fold Cartesian

product of I
+ such that Eθ|f2(X)| <∞. Then

Eθ f2(X)θi = Eθ f2(X− ei)δ(Xi) ,

where δ is as in (2.2)

Lemma 2.3. If |w| ≤ 1/2, then log(1 + w) ≥ w − w2.
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Proof: Similar to the proof of Lemma 2.2 of Dey and Srinivasan (1985),

we observe that

log(1 + w) = w − w2

2
+
w3

3
− w4

4
+ · · ·

≥ w − w2

2
− |w|3

2
− |w|4

2
− · · ·

= w − w2

2

(

1 + |w| + |w|2 + · · ·
)

= w − w2

2
(

1 − |w|
)

≥ w − w2 ,

since |w| ≤ 1/2.

3. ESTIMATION OF M AND Q

In this section, the natural estimators ofM andQ are shown to be positively

biased with respect to Stein loss function. First of all we need to impose a

condition on the estimator δ to be unbiased under Stein loss function using the

definition of the risk-unbiasedness of Lehmann (1951).

Definition 3.1. An estimator η(Y ) of g(θ) is said to be risk-unbiased if

it satisfies

Eθ L
(

θ, η(Y )
)

≤ Eθ L
(

θ′, η(Y )
)

∀ θ′ 6= θ .(3.1)

Following Nematollahi and Motamed-Shariati (2009), the estimator η of θ

is said to be unbiased under Stein loss function if Eθ η(Y ) = θ, ∀ θ ∈ Ω, other-

wise, it is biased and its bias is Bθ(η) = Eθ

(

η(Y )− θ
)

. Clearly, this is the same

definition of the usual unbiasedness (unbiasedness under the squared error loss

function). Consider first the estimation problem of the average worth M . The es-

timator M̂ of M is said to be unbiased under Stein loss function if EθM̂ = EθM ,

otherwise, it is biased and its bias is Bθ(M̂,M) = Eθ(M̂ −M). Without loss of

generality, consider p = 2. Then, the average worth M can be written as

M =











θ1, if X1 > c−1(X2 + 1) ,

θ2, if X1 < cX2 − 1 ,
1
2(θ1 + θ2), if cX2 − 1 ≤ X1 ≤ c−1(X2 + 1) ,

(3.2)

and hence the natural estimator of M is

M̂1 =











δ(X1), if X1 > c−1(X2 + 1) ,

δ(X2), if X1 < cX2 − 1 ,
1
2

(

δ(X1) + δ(X2)
)

if cX2 − 1 ≤ X1 ≤ c−1(X2 + 1) ,

(3.3)

where δ is as in (2.2).
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Theorem 3.1. The natural estimator M̂1 of M is positively biased under

Stein loss function.

Proof: Without loss of generality consider p = 2. From (3.2) and (3.3),

it follows

Bθ(M̂1,M) = Eθ(M̂1−M)

= Eθ

(

δ(X1)− θ1
)

I
(

X1> c
−1(X2 +1)

)

+ Eθ

(

δ(X2)− θ2
)

I
(

X1< cX2−1
)

+ 0.5 Eθ

(

δ(X1)− θ1 + δ(X2)− θ2
)

I
(

cX2 −1 ≤X1≤ c−1(X2 +1)
)

.

Since δ(Xi) is unbiased estimator for θi, i= 1, 2, and

I
(

cX2 −1 ≤X1 ≤ c−1(X2 +1)
)

= 1 − I
(

X1 > c−1(X2 +1) − I(X1 < cX2 −1)
)

.

Then

Bθ(M̂1,M) = 0.5 Eθ

[

(

δ(X1)− θ1
)

−
(

δ(X2)− θ2
)

]

I
(

X1 > c−1(X2 +1)
)

+ 0.5 Eθ

[

(

δ(X2)− θ2
)

−
(

δ(X1)− θ1
)

]

I
(

X2 > c−1(X1 +1)
)

= 0.5A(θ1, θ2) + 0.5A(θ2, θ1) ,

where

A(θ1, θ2) = Eθ

(

δ(X1)−θ1
)

I
(

X1> c
−1(X2+1)

)

−Eθ

(

δ(X2)−θ2
)

I
(

X1> c
−1(X2+1)

)

,

and A(θ2, θ1) follows by interchanging the role of (X1, θ1) and (X2, θ2) in A(θ1, θ2).

Consider the term A(θ1, θ2).

A(θ1, θ2) = Eθ δ(X1) I
(

X1 > c−1(X2 +1)
)

− θ1Eθ I
(

X1 > c−1(X2 +1)
)

− Eθ δ(X2) I(X2 < cX1−1) + θ2Eθ I(X2 < cX1−1)

and by using Lemma 2.2 we get

A(θ1, θ2) = Eθ δ(X1) I
(

X1 > c−1(X2 +1)
)

− Eθ δ(X1) I
(

X1 > c−1(X2 +1) +1
)

− Eθ δ(X2) I(X2 < cX1−1) + Eθ δ(X2) I(X2 < cX1)

= Eθ δ(X1) I
(

c−1(X2 +1)<X1 ≤ c−1(X2 +1) +1
)

+ Eθ δ(X2) I
(

cX1−1≤X2 < cX1

)

> 0 .

This completes the proof.

Consider next the problem of estimatingQ. The estimator Q̂= (q1I1(X), ...,

qp Ip(X)) of Q is said to be unbiased under Stein loss function if Eθ qiIi(X) =

Eθ θiIi(X) ∀i, otherwise, it is biased and its bias is

Bθ(Q̂,Q) = Eθ

p
∑

i=1

(qi − θi) Ii(X) .
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Theorem 3.2. The natural estimator Q̂1 of Q is positively biased under

Stein loss function.

Proof: Observe that

Bθ(Q̂,Q) =

p
∑

i=1

Eθ δ(Xi) I
(

Xi +1≥ cX(1)i

)

−
p
∑

i=1

Eθ θiI
(

Xi +1≥ cX(1)i

)

=

p
∑

i=1

Eθ δ(Xi) I
(

Xi +1≥ cX(1)i

)

−
p
∑

i=1

Eθ δ(Xi) I
(

Xi ≥ cX(1)i

)

(using Lemma 2.2)

=

p
∑

i=1

Eθ δ(Xi) Ii
(

cX(1)i −1≤Xi < cX(1)i

)

> 0

since P
(

cX(1)i −1≤Xi < cX(1)i

)

> 0 for some i. This completes the proof.

4. THE UMRUE’s OF M AND Q

In this section we derive the UMRUE′s of M and Q using the UV method

of estimation of Robbins (1988) and the generalization of Misra (1994) of the

Lehmann–Scheffe theorem. These estimators are also the UMVUE′s since the

definition of risk-unbiasedness under Stein loss function coincides with the defini-

tion of usual unbiasedness. First, consider the UMRUE of the average worth M.

Let

Ui(X) =
I
(

Xi +1 ≥ cX(1)i

)

p
∑

j=1
I
(

Xj +1 ≥ cX(1)j

)

, i = 1, ..., p ,

thenM=
∑p

i=1 θiUi(X). From Lemma2.2, we have Eθ θiUi(X)=Eθ δ(Xi)Ui(X−ei).
Let M̂2 =

∑p
i=1Vi(X) and Vi(X) = δ(Xi)Ui(X−ei). Then, EθM = EθM̂2 and

hence M̂2 is an unbiased estimator of M . Let Y1 ≥ Y2 ≥ · · · ≥ Yp denote the

ordered values of X1, ..., Xp and Y = (Y1, ..., Yp). It is easy to see that

p
∑

i=1

Vi(X) =

p
∑

i=1

V ∗
i (Y ) .

Now, since

U∗
1 (Y ) =

I(Y1 +1 ≥ cY2)

I(Y1 +1 ≥ cY2) +
p
∑

j=2
I(Yj +1 ≥ cY1)

and

U∗
i (Y ) =

I(Yi +1 ≥ cY1)

I(Y1 +1 ≥ cY2) + I(Yi +1 ≥ cY1) +
p
∑

j=2,j 6=i

I(Yj +1 ≥ cY1)

, i= 2, ..., p ,
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we get

V ∗
1 (Y ) = δ(Y1)U

∗
1 (Y−e1)

=
δ(Y1) I(Y1≥ cY2)

I(Y1≥ cY2) +
p
∑

j=2
I
(

Yj +1 ≥ cmax(Y1−1, Y2)
)

=
δ(Y1)

1 + I(Y1 = Y2)
p
∑

j=2
I(Yj +1 ≥ cY1) + I(Y1>Y2)

p
∑

j=2
I
(

Yj +1 ≥ c(Y1−1)
)

and

V ∗
i (Y ) = δ(Yi)U

∗
i (Y −ei)

=
δ(Yi) I(Yi ≥ cY1)

1 + I(Yi ≥ cY1) +
p
∑

j=2,j 6=i

I(Yj +1 ≥ cY1)

, i = 2, ..., p .

To find an explicit form of V ∗(Y ), we need the following definitions. Let

S0 = empty set , Si =
{

Yj , j = 1, ..., p : Yj = Y1+mi

}

,

and mi =
∑i−1

j=1 #(Sj) where i= 1, ..., r, and 1≤ r ≤ p. Note that
∑r

i=1 #(Si) = p

and the subsets {Si}r
i=1 represent a partition of the set of variables Y = (Y1, ..., Yp).

LetW1, ...,Wr+1 be random variables such thatWi ∈ Si, i=1, ..., r andWr+1 =−1.

It is obvious that Wi+1<Wi andWi = Y1+mi
= Y2+mi

= · · · = Ymi+1
for i= 1, ..., r.

Define the following partition of χ

χ =

(

r−2
⋃

l=1

l+1
⋃

k=l

χ1,l,k

)

⋃

χ1,r−1,r−1

⋃

(

r−1
⋃

l=1

l
⋃

k=l−1

χ2,l,k

)

⋃

χ2,r,r−1

where

χ1,l,k =
{

X∈χ : Wl+1< cW1≤Wl+1 +1 , Wk+2 +1< c(W1−1) ≤Wk+1 +1
}

for l = 1, ..., r− 2; k = l, l+1 and l = r−1; k = l ,

and

χ2,l,k =
{

X∈χ : Wl+1 +1< cW1≤Wl , Wk+2 +1< c(W1−1) ≤Wk+1 +1
}

for l = 1, ..., r−1; k = l−1, l and l = r; k = l−1 .

Note that if Wl =Wl+1 +1 for some l = 1, ..., r, then χ2,l,k = empty set for all

k = l−1, l.

Case I: When X∈ χ1,l,k .

In this case we have

I
(

Wj ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ cW1

)

= 1 for j = 1, ..., l+1 ,

I
(

Wj +1 ≥ c(W1−1)
)

= 1 for j = 1, ..., k+1 ,
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then

I
(

Yj ≥ cY1

)

= 1 for j = 1, ...,ml+1 ,

I
(

Yj +1 ≥ cY1

)

= 1 for j = 1, ...,ml+2 ,

I
(

Yj +1 ≥ c(Y1−1)
)

= 1 for j = 1, ...,mk+2 .

So that

V ∗
1 (Y ) =

δ(Y1)

ml+2 I(Y1 = Y2) + mk+2 I(Y1> Y2)

and

V ∗
i (Y ) =

δ(Yi)

ml+2
, i= 2, ...,ml+1 .

Case II: When X∈ χ2,l,k .

Similar to the Case I, we obtain

I
(

Wj ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ cW1

)

= 1 for j = 1, ..., l ,

I
(

Wj +1 ≥ c(W1−1)
)

= 1 for j = 1, ..., k+1 ,

then

V ∗
1 (Y ) =

δ(Y1)

ml+1 I(Y1 = Y2) + mk+2 I(Y1> Y2)

and

V ∗
i (Y ) =

δ(Yi)

ml+1
, i= 2, ...,ml+1 .

Since (X1, ..., Xp) is sufficient and complete statistic for (θ1, ..., θp), the following

theorem is now established.

Theorem 4.1. The UMRUE of M is M̂2 =
∑ml+1

i=1 V ∗
i (Y ) where

V ∗
1 (Y ) =

δ(Y1)

mu I(Y1 = Y2) + mk+2 I(Y1> Y2)
,

V ∗
i (Y ) =

δ(Yi)

mu

, i = 2, 3, ...,ml+1 ,

and

u =

{

l + 2, if X ∈ χ1,l,k ,

l + 1, if X ∈ χ2,l,k .
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Consider next the UMRUE of the simultaneous estimation Q. Observe that

EθQ = Eθ

p
∑

i=1

θi I
(

Xi +1 ≥ cX(1)i

)

=

p
∑

i=1

Eθ θi I
(

Xi +1 ≥ cX(1)i

)

=

p
∑

i=1

Eθ δ(Xi) I
(

Xi ≥ cX(1)i

)

(using Lemma 2.2)

= Eθ

p
∑

i=1

δ(Xi) I
(

Xi ≥ cX(1)i

)

= Eθ Q̂2 (say) .

Hence the following theorem.

Theorem 4.2. The UMRUE of Q is Q̂2 whose the i-th component equals

to δ(Xi) I(Xi ≥ cX(1)i).

5. INADMISSIBILITY OF THE NATURAL ESTIMATOR OF Q

In this section, we prove the inadmissibility of the natural estimator Q1 of

the simultaneous estimation Q using the technique of Stein (1973). The basic

idea of Stein is to find an unbiased estimator ∆(X) of the risk difference ∆(θ) =

R(θ, δ+ψ) −R(θ, δ) and then finding a function ψ such that ∆(X) ≤ 0 ∀x and

∆(x) < 0 for some x. This technique has been used extensively in the simulta-

neous estimation problem when no selection involved (see for example Hudson

(1978), Hwang (1982) and Chou (1991)). Consider the following rival estimator

of Q̂1,

Q̂3 = Q̂1 +
(

φ1(X) I1(X), ..., φp(X) Ip(X)
)

(5.1)
=
(

(

δ(X1) +φ1(X)
)

I1(X), ...,
(

δ(Xp) +φp(X)
)

Ip(X)
)

,

where φi is any real-valued functions satisfying the conditions of Lemma 2.1.

First, we find an unbiased estimator of the risk difference of estimators Q̂3 and Q̂1.
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An unbiased estimator of the risk difference of Q̂3 and Q̂1 is

∆(θ) = R(Q, Q̂3) −R(Q, Q̂1)

= Eθ

p
∑

i=1

(

δ(Xi) +φi(X)

θi

− log

(

δ(Xi) +φi(X)

θi

)

−1

)

Ii(X) I(Xi ≥ t+1)

− Eθ

p
∑

i=1

(

δ(Xi)

θi

− log

(

δ(Xi)

θi

)

−1

)

Ii(X) I(Xi ≥ t+1)

= Eθ

p
∑

i=1

(

φi(X)

θi

− log

(

1 +
φi(X)

δ(Xi)

)

)

Ii(X) I(Xi ≥ t+1) .

Applying Lemma 2.1, we get

∆(θ) = Eθ

p
∑

i=1

(

φi(X+ei)

δ(Xi +1)
Ii(X+ei) I(Xi ≥ t)− log

(

1+
φi(X)

δ(Xi)

)

Ii(X) I(Xi ≥ t+1)

)

.

So that the following lemma is now established.

Lemma 5.1. An unbiased estimator of the risk difference of the estimators

Q̂3 and Q̂1 is given by

D(X) =

p
∑

i=1

(

φi(X+ei)

δ(Xi +1)
Ii(X+ei) I(Xi ≥ t) − log

(

1 +
φi(X)

δ(Xi)

)

Ii(X) I(Xi ≥ t+1)

)

.

(5.2)

Following Peng (1975) and Hudson (1978), we introduce the following

notations. Let

l = X(1) (the largest observation) ,

m = X(p) (the smallest observation) ,

Ni = #{j : Xj = i}, i=m, ..., l and j = 1, ..., p ,

N = (Nm, ..., Nl) .

If Xi = r, let

ψi(X) = ζr(N) ,

δ(Xi) =

{

r, r ≥ t+1 ,

0, r < t+1 ,

I(Xi ≥ t+1) = I(r ≥ t+1) ,

Ii(X) = I(r+1≥ c l) = Jr (say) .
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Then, we have

φi(X+ ei) = ζr+1(N− er + er+1) ,

δ(Xi +1) =

{

r +1, r ≥ t ,

0, r < t ,

I(Xi ≥ t) = I(r ≥ t) ,

Ii(X+ ei) = Jr+1 .

Define

⌊x⌋ge = smallest integer greater than or equal to x ,

[a]+ = max(0, a) .

Now, using the above notations, the unbiased estimator (5.2) becomes

D(X) =
l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r + 1

I(r≥ t)Jr+1 − log

(

1+
ζr(N)

r

)

I(r≥ t+1)Jr

)

.

(5.3)

Next, we consider a solution of a general difference inequality that will be use-

ful for constructing a class of improved estimators of the natural estimator Q̂1.

Consider the following general difference inequality

η(X) =
l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r + 1

I(r≥ t)Jr+1 −
(

ζr(N)

r
− ζ2

r (N)

r2

)

I(r≥ t+1)Jr

)

(5.4)

≤ 0 .

In the following theorem, we solve the general difference inequality (5.4) borrow-

ing some ideas from Dey and Chung (1991).

Theorem 5.1. Consider the difference inequality (5.4). The function

ζr(N) = − b r2

d+ w

represents a solution of the inequality where

(1) w =
l
∑

s=⌊cl−1⌋

Nss
2 ,

(2) d ≥ 9
l
∑

s=⌊cl−1⌋

Ns ,

(3) 0 < b ≤





l
∑

r=⌊cl−1⌋

Nr I(r≥ t+1) − 47

18





+

.
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Proof: It is clear that

η(X) =
l
∑

r=m

Nr

(

− b(r+1)

d+w+2r+1
I(r≥ t)Jr+1 +

(

b r

d+w
+

b2 r2

(d+w)2

)

I(r≥ t+1)Jr

)

≤ b
l
∑

r=⌊cl−1⌋ge

Nr

(

r

d+w
− (r+1)

d+w+ 2r+1
+

b r2

(d+w)2

)

I(r≥ t+1)

(

since Jr+1 I(r≥ t) ≥ Jr I(r≥ t+1)
)

≤ b
l
∑

r=⌊cl−1⌋ge

Nr(2r
2 + r− d−w)

(d+w) (d+w+ 2r+1)
I(r≥ 2) +

b2w

(d+w)2

≤ 2 bw

(d+w)2
+

3b
l
∑

r=⌊cl−1⌋ge

Nr r

(d+w)2
+

b
l
∑

r=⌊cl−1⌋ge

Nr

(d+w)2
−
b

l
∑

r=⌊cl−1⌋ge

Nr I(r≥ t+1)

(d+w)
+

b2w

(d+w)2
.

Since

w

d+w
≤ 1 ,

l
∑

r=⌊cl−1⌋ge

Nr

d+w
≤

l
∑

r=⌊cl−1⌋ge

Nr

d
≤ 1

9
(from assumption (2))

and

l
∑

r=⌊cl−1⌋ge

Nr r

d+w
≤

√

l
∑

r=⌊cl−1⌋ge

Nr

√

l
∑

r=⌊cl−1⌋ge

Nr r2

d+w
≤

√

l
∑

r=⌊cl−1⌋ge

Nr

√
w

2
√
d
√
w

≤ 1

6

it follows that

η(X) ≤
b

(

47/18 −
l
∑

r=⌊cl−1⌋ge

Nr I(r≥ t+1) + b

)

d+ w
.

Clearly, η(X) ≤ 0 if b ≤∑l
r=⌊cl−1⌋ge

Nr I(r≥ t+1) − 47/18. This completes the

proof of the theorem.

Now, we are in a position to construct classes of dominating estimators of

Q̂1 by solving the inequality D(x) ≤ 0 ∀x ∈ χ using Theorem 5.1, where D is as

in (5.3). In the following theorem, we construct a class of improved estimators of

the natural estimator Q̂1.

Theorem 5.2. Consider the rival estimator Q̂3 given in (5.1) where

φi(X) = ζr(N) = − b r2

d +
l
∑

s=⌊cl−1⌋ge

Nss2
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if Xi = r. Assume further,

(1) d ≥ 9
l
∑

s=⌊cl−1⌋ge

Ns ,

(2) 0 < b ≤



min

(

√
d ,

l
∑

s=⌊cl−1⌋ge

Ns I(s≥ t+1) − 47/18

)





+

.

Then, Q̂3 dominates Q̂1 in terms of risk where Q̂1 is as in (2.5).

Proof: Clearly, the ζr’s satisfy the conditions of Lemma 2.1. It is easily

seen that

∣

∣

∣

∣

ζr(N)

r

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−b r
d +

∑l
s=⌊cm−1⌋ge

Nss2

∣

∣

∣

∣

∣

≤ b r

d+ r2
≤ b r

2 r
√
d

≤ 1

2
,

since b ≤
√
d. Then using Lemma 2.3 in (5.3) gives us

D(X) ≤
l
∑

r=m

Nr

(

ζr+1(N+er+1−er)
r+1

I(r≥ t)Jr+1−
(

ζr(N)

r
− ζ2

r (N)

r2

)

I(r≥ t+1)Jr

)

= η(X) .

Applying Theorem 5.1 in the above inequality completes the proof the theorem.

The class of estimators in Theorem 5.2 dominates the natural estimator Q̂1,

so that the natural estimator (2.5) is inadmissible.

6. SIMULATION RESULTS

In this section, we compute the biases and risks of the estimators M̂1, M̂2,

Q̂1, Q̂2 and Q̂3 using the Monte Carlo simulation technique. Also, we compute

the percentages of the risk improvement of the estimator Q̂3 over the estimators

Q̂i, i= 1, 2. We follow the simulation procedure used by Tsue and Press (1982).

First the value of p is chosen and then a set of {θ1, ..., θp} of parameter values are

chosen at random within the range (c, d). In the second step, an observation Xi

is randomly chosen from zero-truncated Poisson distribution TP (θi), 1≤ i≤ p.

In step 3, the selection rule R, defined in (2.3), is used to select the subset.

To estimate the parameters associated with the selected populations, we com-

pute the biases of the estimators M̂1, Q̂1 and Q̂3 and the risks of the estimators
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M̂1, M̂2, Q̂1, Q̂2 and Q̂3. The above procedure is repeated 4 000 times and the

averages of the biases and risks are calculated. Then the percentage improve-

ments of the estimator Q̂3 over Q̂i, i= 1, 2, namely

RPI(Q̂i, Q̂3) =
R(Q, Q̂i) −R(Q, Q̂3)

R(Q, Q̂i)
× 100 , i = 1, 2 ,

are obtained. The above procedure is repeated a number of times with different

sets of parameters in (c, d) and then the percentages of risk improvement and av-

erages of biases are calculated and presented in Table 1 and Table 2, respectively.

The simulation is carried out using Matlab version 7.4 and considering the values

d = 9
∑l

s=⌊cl−1⌋ge
Ns and b =

[

min
(
√
d ,
∑l

s=⌊cl−1⌋ge
Ns I(s≥ 2)− 47/18

)]+
with

the number of populations p = 3, 5, 7, 10.

We observe the following facts from the simulation results. From Table 1,

the risks of the estimators decrease as the range of θi’s increases. For the per-

centages of the risk improvement, the two percentages increase for small values of

θi’s while decrease for large values and the highest values appear when all the θi’s

are in the interval (1.5, 3). From Table 2, clearly, the biases of M1, Q1 and Q3

are positive and gradually increasing as the range of θi’s increases. Also, Q1 has

bias less than Q3 and the bias of both of theme gradually increase as p increases.

Table 1: The risks of the estimators M1 and M2 and the percentage
improvement of Q3 over Q1 and Q2.

Range of θi’s

(0.0, 0.5) (0.5, 1.5) (1.5, 3.0) (3.0, 6.0) (6.0, 15.0)

p = 3

M1 1.23 0.60 0.42 0.34 0.32
M2 3.44 0.61 0.40 0.33 0.32

RPI
�
Q̂1, Q̂3

�
0.28 2.65 4.46 3.42 1.90

RPI
�
Q̂2, Q̂3

�
0.27 2.08 4.28 3.15 1.83

p = 5

M1 1.02 0.60 0.42 0.34 0.32
M2 2.81 0.60 0.37 0.32 0.31

RPI
�
Q̂1, Q̂3

�
1.07 9.72 16.89 12.34 6.43

RPI
�
Q̂2, Q̂3

�
1.07 8.97 16.53 12.05 6.30

p = 7

M1 0.93 0.57 0.42 0.34 0.32
M2 2.68 0.53 0.36 0.31 0.31

RPI
�
Q̂1, Q̂3

�
2.03 15.85 22.77 16.95 8.29

RPI
�
Q̂2, Q̂3

�
2.02 14.50 22.27 16.68 8.15

p = 10

M1 0.88 0.53 0.37 0.32 0.31
M2 3.04 0.62 0.36 0.31 0.30

RPI
�
Q̂1, Q̂3

�
2.79 19.33 27.36 20.75 10.08

RPI
�
Q̂2, Q̂3

�
2.79 19.32 27.32 20.52 10.07
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Table 2: The biases of the estimators M1, Q1 and Q3.

Range of θi’s

(0.0, 0.5) (0.5, 1.5) (1.5, 3.0) (3.0, 6.0) (6.0, 15.0)

p = 3
M1 0.44 1.42 2.56 4.67 9.95
Q1 1.31 4.17 7.56 13.84 29.68
Q3 1.30 4.08 7.31 13.50 29.31

p = 5
M1 0.43 1.33 2.59 4.80 10.62
Q1 2.15 6.54 12.70 23.61 52.68
Q3 2.12 5.96 11.09 21.52 50.39

p = 7
M1 0.44 1.43 2.60 4.64 10.85
Q1 3.10 9.78 17.85 32.12 75.44
Q3 3.00 8.39 14.80 28.24 71.21

p = 10
M1 0.41 1.31 2.55 4.42 10.56
Q1 4.07 13.11 25.48 44.17 105.55
Q3 3.89 10.79 20.17 37.52 98.31
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