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1. INTRODUCTION

Consider the standard partially linear model (PLM) expressed as follows:

(1.1) yi = x⊤
i β + f(ti) + εi,

where yi are the fully observed response variables, x⊤
i = (xi1, . . . , xip) refers to the ith row

consisting of p parametric covariates with p ≤ n, and (.)⊤ represents the transpose operation

on a vector or matrix. The vector β = (β1, . . . , βp)
⊤ is of dimension (p × 1) and contains

the regression coefficients. The values of the nonparametric covariate are given by ti, with

the unknown smooth function f(.) depicting its association with yi. The error terms εi are

random and are assumed to follow a normal distribution, given by εi ∼ N(0, σ2). The model

from Equation (1.1) can also be expressed in vector and matrix notation as:

(1.2) y = Xβ + f + ε.

Let y = (y1, . . . , yn)
⊤ be an (n × 1) vector representing the response variable, and

X an (n × p) design matrix. The vector f = {f(t1), . . . , f(tn)}⊤ represents an (n × 1)

collection of values of an unknown smooth function, while ε = (ε1, . . . , εn)
⊤ denotes an (n×1)

vector of random errors. For ease of interpretation, the nonparametric covariate ti ∈ [0, 1] is

used, and model (1.2) is specified without an intercept, assuming it is integrated within the

nonparametric part. Researchers have concentrated on estimating both the parametric and

nonparametric components in model 1.2 with uncensored datasets, notably by Ruppert et al.

(2003) and Ahmed (2014). Shrinkage estimation methods for model (1.2) leveraging kernel

smoothing have been examined by Ahmed et al. (2007) and Hossain et al. (2009), while

Raheem et al. (2012) analyzed shrinkage estimation using a B-spline method. Additional

significant studies have been conducted by Phukongtong et al. (2022) and Ahmed et al.

(2023).

In various real-world applications, particularly in fields such as medical research, reli-

ability engineering, and actuarial science, the dependent variable is often subject to right-

censoring. This occurs when the exact timing of an event (such as death, equipment failure,

or policy expiration) cannot be observed for some participants within the study period. For

instance, in a clinical trial, some patients may remain alive at the end of the study, leaving

their exact survival times unknown. This paper examines right-censored values yi due to a

censoring variable ci, preventing full data observation. We note {xi, ti, zi, δi}ni=1, involving

zi = min(yi, ci) and δi = I(yi < ci). The incomplete response variable is zi, and δi shows

if the ith observation is censored. If δi = 0, then zi is censored; otherwise, it is not. In

model (1.2), the right-censored response vector n×1 substitutes the fully observed responses

y = (y1, . . . , yn). We assume yi, ci, and zi are i.i.d., essential for further analysis. Ignoring

censoring can result in biased and inefficient estimators with larger variances, a loss of statis-

tical power due to reduced effective sample size, and potentially invalid hypothesis tests due

to violated assumptions, ultimately rendering the results unreliable. Additionally, censoring

complicates model selection and makes the asymptotic analysis of estimators more challeng-

ing. Therefore, employing methods that appropriately account for censoring is essential for

accurate inference, reliable prediction, valid hypothesis testing, and effective model selection.

For censorship given in model (1.2), we apply synthetic data transformation as per Aydin
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and Yilmaz (2018) and Yenilmez et al. (2022). Studies by Aydın et al. (2019) and Yenilmez

et al. (2022) have also addressed this for model (1.2).

Over the last ten years, there has been noteworthy interest in right-censored data,

particularly in selecting key variables and estimating sparse partially linear models. This

prevalence underscores the importance of developing statistical methods that can effectively

handle the complexities introduced by censoring, ensuring the reliability and validity of re-

search findings in these fields. When considering variable selection, incorporating all covari-

ates into the model (a full model) can lead to complex and hard-to-interpret estimations.

Conversely, a model with only a few key covariates (a submodel) might miss out on valuable

information from other variables, resulting in biased estimates. Therefore, developing parsi-

monious models and efficient estimators is critically important for effective variable selection,

accurate estimation, and reliable prediction.

This study explores a sparse partially linear model in the context of right-censored

data. The principal objective is to employ a shrinkage strategy that integrates a full model

(FM) with a submodel (SM) to derive more efficient shrinkage estimators, taking into account

the right-censored nature of the data. Altered estimators are proposed based on shrinkage

and pretest strategies, utilizing the transformation of synthetic data. These estimators ad-

dress the complexities associated with the substantial number of predictors in the parametric

component of the model (1.2) and the right-censored dependent variable. The nonparametric

component is represented using smoothing splines and the penalized least squares method

(PLS). It should be emphasized that this paper concentrates on scenarios where the predictor

count is low (p < n) for the derivation of the estimators and the execution of asymptotic

inferences. Nevertheless, simulations and data examples are also presented to illustrate the

scenario involving high-dimensional data (p > n).

The paper is structured as follows. Section 2 introduces synthetic data transformation

as a method to address the censoring issue. Section 3 discusses the comprehensive and

submodel estimators, along with shrinkage and pretest estimation methods, to complete the

estimation process. In Section 4, theoretical inferences and asymptotic properties of the

proposed estimators are discussed. Section 5 provides a detailed explanation of the selection

of shrinkage and smoothing parameters utilized in the estimation process. Sections 6 and 7

offer simulation and real data analyses for scenarios where p < n. Section 8 presents inferences

for the high-dimensional PLM in the context of right-censored data. Lastly, Section 9 delivers

the conclusions.

2. SOLUTION OF RIGHT-CENSORED DATA

Consider the probability distribution functions of survival (yi) and censoring times

(ci), denoted as F and G. For each data point s, the unknown distribution function of yi
is F (s) = P (yi ≤ s), and that of ci is G(s) = P (ci ≤ s). The model’s significance relies on

specific assumptions about the response, censoring, and explanatory variables as defined by

Stute (1999).

A1: yi and ci are identically and independently distributed conditional on the covariates

(xi, ti)
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A2: P (yi ≤ ci|yi,xi, ti) = P (yi ≤ ci|yi).

Common assumptions in survival analysis include A1 and A2. A1 ensures model accu-

racy with censored data, and violating it necessitates extra dataset information. A2 allows

a connection between (xi, ti) and ci, presuming covariates offer no extra insight on censoring

after the death time is known. For more details, see Stute (1999). Incomplete response vari-

able observations require data transformation since standard methods are inadequate. In the

presence of censorship, use observation pairs {(zi, δi), i = 1, . . . , n} instead of just yi. If G is

continuous and known, zi can be adjusted for an unbiased outcome.

(2.1) yiG =
δizi

1−G (zi)
, i = 1, 2, . . . , n,

where yiG shares the mean with yi. The above assumptions also support E [yiG | xi, ti] =

E [yi | xi, ti] = xiβ + f (ti). Note that yG =
{
yiG = (y1G . . . , ynG)

⊤
}

represents the vector

of transformed response variables. Often, the distribution (G) of the censoring variable is

unknown, as described in (2.1), necessitating the use of the Kaplan-Meier estimator as a

substitute for G.

(2.2) 1− Ĝ(s) =
n∏

i=1

(
n− i

n− i+ 1

)I[z(i)≤s,δ(i)=0]
, s ≥ 0,

where z(1) ≤ · · · ≤ z(n) are ordered values of zi, and δ(i) are the ordered values linked with z(i).

When the distribution G is unknown, we apply the following synthetic data transformation:

(2.3) yiĜ =
δizi

1− Ĝ (zi)
, i = 1, 2, . . . , n.

3. SEMIPARAMETRIC ESTIMATORS

When the response variable is censored by a random variable ci, it’s replaced in Model

(1.1) by the synthetic response variable yiĜ from (2.3). This section outlines estimating

the non-parametric component using the smoothing spline approach for partial residuals and

penalized least squares (PLS) based on synthetic responses. Introduce the smoothing matrix

Sλ that depends on the smoothing parameter λ > 0. Let v1 < v2 < · · · < vq be the unique

ordered knot values of the nonparametric component t1, t2, . . . tn, where q < n. An n × q

dimensional incidence matrix N expresses the relationship between ti and vi. Elements of N

are computed as Nij = 1 if ti = vj , and Nij = 0 otherwise. The matrix and vector form of

PLS for the model (1.1) follows:

(3.1) L (β, f) =
∥∥yĜ −Xβ −Nf

∥∥2
2
+ nλ

∫ 1

0

{
f ′′(t)

}2
dt,

where yĜ = (yiĜ, . . . , ynĜ) is the n× 1-dimensional vector of synthetic responses from (2.3).

The smoothing parameter λ > 0 controls the curve’s smoothness by regularizing the penalty

term
∫ 1
0 {f ′′(t)}2.

Simplifying the minimization criterion (3.1), the penalty term
∫ 1
0 {f ′′(t)}2 provides

a quadratic form f⊤Kf where K = Q⊤R−1Q. Note that Q is ((q − 2) × q) and R is
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((q − 2) × (q − 2)) are tri-diagonal matrices (see Aydın et al., 2019). Based on K, the

smoothing matrix is computed as Sλ = (In − nλK)−1 where In is an (n × n)-dimensional

identity matrix.

From the given information, the estimation of the nonparametric component f =

{f(ti)}ni=1 is realized by:

(3.2) f̂ (β) =
(
N⊤N+ nλK

)−1
N⊤ (

yĜ −Xβ
)
= Sλ

(
yĜ −Xβ

)
,

Sλ is a positive-definite matrix determined by the smoothing parameter λ. Equation (3.2)

is inactive as β is unknown. Post β estimates in Section 3.2, they substitute β in (3.2).

When ti values are distinct and ordered, In and Sλ simplify to the smoothing matrix Sλ =

(In + nλK)−1. Thus, with Sλ, partial residuals are derived, allowing the minimization crite-

rion (3.1) to be expressed in matrix and vector form,

(3.3) L (β) =
∥∥∥ỹĜ − X̃β

∥∥∥2
2
= (ỹĜ − X̃β)⊤(ỹĜ − X̃β),

where X̃ = (I− Sλ)X and ỹĜ = (I− Sλ)yĜ are partial residuals of both parametric covariate

and the response variable respectively. Hence, β without sparsity assumption on design

matrix X can be estimated by:

(3.4) β̂ =
(
X̃⊤X̃

)−1
X̃⊤ỹĜ.

Outlined below are the requisite conditions and assumptions necessary for deriving asymptotic

inferences using the smoothing splines method:

i Smoothness of the Nonparametric Function:

� The unknown smooth function f(·) ∈W τ [a, b], meaning that f(·) is (τ − 1) times

continuously differentiable on [a, b], and its τ -th derivative is square-integrable:∫ b

a

[
f (τ)(t)

]2
dt <∞.

ii Smoothing Splines and Knot Selection:

� Based on (ii), we use natural spline functions of degree 2τ−1 with knots at points

vj to estimate f(ti).

� Note that the derivatives exist only at the knot points vj .

iii Convergence Rates of the Nonparametric Estimator:

� Considering the degree 2τ − 1 = ψ, the expected squared difference between f(ti)

and its estimator f̂(ti) satisfies:

E

[(
f(ti)− f̂(ti)

)2
]
= O

(
λ2

)
+O

(
σ2

nλ(2τ−1)/(2τ)

)
,

where λ > 0 is the smoothing parameter, and σ2 is the variance of the error term.

� The optimal convergence rate is achieved when λ ≍ n−1/(2τ+1), which balances

the bias and variance terms.
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Given the assumptions stated above, the subsequent asymptotic expression for β̂ can be

formulated as follows:

Theorem 3.1. Following Gao (1995) Gao’s Theorem under the given assumptions,

the full model estimator β̂FM in the right-censored partially linear regression with smoothing

splines shares this asymptotic distribution:

√
n
(
β̂FM − β

)
d−→ N

(
0, σ2effB

−1
)
,

where σ2eff captures error variance σ2 and variability from right-censoring and smoothing

estimation f(·), and B is the limit of n−1X⊤X.

Proof of Theorem 3.1 is given in appendix.

3.1. Full model and submodel estimation

In this paper’s p ≤ n settings, model (1.2) is considered sparse. The design matrix is

split into X = (X1,X2) where X1, an n×p1 dimensional matrix, contains key variables, and

X2, an n × p2 dimensional matrix, either includes inactive covariates or is sparse when β2

holds. The regression coefficient vector is partitioned into β = (β⊤
1 ,β

⊤
2 )⊤, with β1 and β2

indicating strong (nonzero) and sparse signals with p1+p2 = p. The goal is to estimate pairs

(β1, f) when sparsity is met, i.e., β2 = 0. If not, shrinkage and pretest estimation borrow

from the full model, examined in simulations for both low and high dimensions. Based on

partitioned matrices X1 and X2 and coefficient vectors β1 and β2, the objective function

(3.3) is adjusted for full and submodel estimates

(3.5) L (β) =
∥∥∥ỹĜ − X̃1β1 − X̃2β2

∥∥∥2
2
= (ỹĜ − X̃1β1 − X̃2β2)

⊤(ỹĜ − X̃1β1 − X̃2β2).

Consider the full model (FM) and submodel (SM) estimates. The FM estimator of β1,

denoted as β̂FM
1 , is obtained by solving (3.5).

L (β) = (ỹĜ − X̃1β1 − X̃2β2)
⊤(ỹĜ − X̃1β1 − X̃2β2)

= ỹ⊤
Ĝ
ỹĜ − 2ỹ⊤

Ĝ
X̃⊤

1 β1 − 2ỹ⊤
Ĝ
X̃2β2 + 2β⊤

1 X̃
⊤
1 X̃2β2 + β⊤

1 X̃
⊤
1 β1X̃1 + β⊤

2 X̃
⊤
2 β2X̃2

L (β)

∂β1
= −2ỹ⊤

Ĝ
X̃1 + 2X̃⊤

1 X̃2β2 + 2X̃⊤
1 X̃1β1

L (β)

∂β2
= −2ỹ⊤

Ĝ
X̃2 + 2X̃⊤

1 X̃2β1 + 2X̃⊤
2 X̃2β2

after some algebraic operations based on L(β)
∂β1

= 0, and L(β)
∂β2

= 0 then β̂FM
1 can be given by:

(3.6) β̂FM
1 =

(
X̃⊤

1 M1X̃1

)−1
X̃⊤

1 M1ỹĜ

where

M1 = I− X̃2

(
X̃⊤

2 X̃2

)−1
X̃⊤

2 .
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After βFM
1 is obtained, let us assume the sparsity assumption β2 = 0 is ensured. Then,

the submatrix of sparse predictors X̃2 is removed from the model and submodel estimator

β̂SM
1 is obtained as follows:

(3.7) β̂SM
1 =

(
X̃⊤

1 X̃1

)−1
X̃⊤

1 ỹĜ.

The modified semiparametric least squares estimator for the submodel β̂SM
1 considers β̂SM

1

superior to β̂FM
1 if the model is sparse, meaning parameter vector β2 is near 0, expressed

as ∥β1∥0 ≪ p,, with ∥β1∥0 as nonzero elements in β1 and p as total parameters. Significant

deviation of sub-vector β2 from 0 affects estimation and prediction of β1. The submodel esti-

mator β̂SM
1 may be biased, inefficient, and inconsistent, while estimate β̂FM

1 stays consistent

for deviations of β2 from 0.

In the partially linear regression model, two main strategies, β̂FM
1 and β̂SM

1 , exist.

A reasonable compromise uses shrinkage and pretest methods as outlined by Ahmed et al.

(2007). This paper develops a robust estimator of β1 for censored responses, using these

methods to focus on key regression parameters while minimizing others.

3.2. Pretest and Shrinkage methods

This section discusses shrinkage and pretest estimation procedures for right-censored

partially linear models. These strategies, detailed by Ahmed (2014), Yüzbaşı et al. (2020),

and Ahmed et al. (2023), have been adapted with a synthetic data process as the censorship

solution is finalized here.

From the information given above, the shrinkage estimator of β1 by combining β̂FM
1

and β̂SM
1 that obtained by solving minimization criterion given in (3.5), as follows:

(3.8) β̂PS
1 = β̂SM

1 +
(
β̂FM
1 − β̂SM

1

) (
1− (p2 − 2) T −1

n

)
, p2 ≥ 3,

and positive-part of the given shrinkage estimator β̂PS
1 can be shown by:

(3.9) β̂PS
1 = β̂SM

1 +
(
β̂FM
1 − β̂SM

1

) (
1− (p2 − 2) T −1

n

)+
,

where T −1 is the inverse of the determined distance measure and α+ = max(0, α). Here, T
can be expressed based on Ũ1 = In − X̃1

(
X̃⊤

1 X̃1

)−1
X̃⊤

1 and the following estimate of β2.

Note that β2 is estimated using sparse set of partial residuals X̃2 with ordinary least squares

process

(3.10) β̂2 =
(
X̃⊤

2 Ũ1X̃2

)−1
X̃⊤

2 Ũ1ỹĜ.

Then, with (3.10), T is given by:

(3.11) T =
1

σ̂21

(
β̂2

)⊤ (
X̃⊤

2 Ũ1X̃2

)
β̂2,

where σ̂21 is the variance of the right-censored submodel, calculated as

(3.12) σ̂21 =
1

n− p1

(
ỹĜ − X̃1β̂

SM
1

)⊤ (
ỹĜ − X̃1β̂

SM
1

)
.
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After shrinkage estimation, a Pretest estimate can be performed by testing hypothesis H0 :

β2 = 0 for the model’s sparse coefficients. Consequently, the semiparametric pretest estimator

for the right-censored model is given by

(3.13) β̂PT
1 = β̂FM

1 −
(
β̂FM
1 − β̂SM

1

)
I (T ≤ νn,α) .

νn,α is the critical value based on the distribution of T at significance level α. As Ahmed

et al. (2007) noted, T follows the χ2
p2,α distribution as the sample size n approaches infinity.

(3.8)-(3.13), The paper finalizes its estimators through synthetic data transformation, un-

derscoring its contribution. The next section provides statistical inferences and asymptotic

properties for a clearer grasp of the estimators: β̂FM
1 , β̂SM

1 , β̂S
1 , β̂

PS
1 , and β̂PT

1 , considering

the impact of synthetic data.

4. STATISTICAL PROPERTIES

This section addresses the bias and variance of semi-parametric estimators for the low-

dimensional case p ≤ n, along with their asymptotic quadratic biases and variances. We also

consider censoring’s impact on asymptotic inferences.

Remark 4.1. In synthetic data transformation, suppose that the censorship as-

sumptions (A1-A2) are ensured. Then, as n −→ ∞, E
[
yiĜ | xi, ti

]
= E [yiG | xi, ti] =

E [yi | xi, ti] = xiβ + f (ti) (see Aydin and Yilmaz, 2018 for the proof).

Under regular conditions and Remark 4.1, this subsection offers key insights into the

bias, variance, and asymptotic properties of the semiparametric estimators.

4.1. Bias

To simplify notation, let β̂∗
1 be the estimator of β1 derived from pretest and shrinkage

methods. Since these procedures are interconvertible (see Ahmed et al., 2007), inferences are

focused on β̂∗, which also apply to variance and asymptotic analyses. Thus, the estimator’s

bias can be determined as follows:

Bias
(
β̂∗1

)
= E

[
β̂∗1

]
− β1

= E
[
β̂SM
1 + (β̂FM

1 − β̂SM
1 )(1− (p2 − 2)T −1)

]
− β1

if (1− (p2 − 2)T −1) notated asπ then,

= E
[
β̂SM
1

]
+ πE

[
β̂FM
1

]
− πE

[
β̂SM
1

]
− β1

= πE
[
β̂FM
1

]
+ (1− π)E

[
β̂SM
1

]
− β1

= πBias
[
β̂FM
1

]
+ (1− π)Bias

[
β̂SM
1

]
.

Thus, Bias
(
β̂∗
1

)
depends on individual biases and sparse coefficients. We examine the

asymptotic quadratic distributional bias with local alternatives, detailed in Section 4.3.
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4.2. Variance

The variance of shrinkage and pretest estimators is mainly affected by the SM and

FM estimators and their covariance. Hence, the general formula for V ar(β̂∗
1) assumes π =

(1− (p2 − 2)T −1) as stated above:

V ar(β̂∗
1) = π2V ar(β̂FM

1 ) + (1− π)2 V ar(β̂SM
1 ) + 2π(1− π)Cov

(
β̂FM
1 , β̂SM

1

)
.

Further details are provided in the next section for the asymptotic variance of the introduced

estimators.

4.3. Asymptotic behaviors

This section presents the asymptotic distributional risk (ADR) for shrinkage and pretest

estimators, including the asymptotic distributional bias (ADB) and quadratic distributional

bias (AQDB). Inferences about covariance matrices are based on ADR. The estimators em-

phasize consistency, asymptotic normality, and oracle properties, considering the design ma-

trix X, partial residuals X̃, and sparsity of true model coefficients β.

Consider local alternatives as parameter sequences that converge to the null hypothesis

at a rate based on sample size n. Essentially, these alternatives approach the null hypothesis

H0 : β̂
∗ = β as n −→ ∞. The sequence of local alternatives Mn is as follows:

(4.1) Mn : β2 =
ω√
n
, ω = (ω1, . . . , ωp2)

⊤ ∈ Rp2 .

Then, the quadratic loss function can be given by:

(4.2) L
(
β̂∗
1

)
= n

(
β̂∗
1 − β1

)⊤
V

(
β̂∗
1 − β1

)
,

where V is the positive-definite matrix. Accordingly, under local alternatives (4.1), non

degenerate asymptotic distribution function for the β̂∗
1 is shown as:

(4.3) F (∇) = lim
n→∞

P
(√

n
(
β̂∗
1 − β1

)
≤ ∇ | Mn

)
,

and from that ADR of β̂∗
1 is defined as follows:

(4.4) ADR
(
β̂∗
1

)
= tr

(
V

∫
Rp1

∫
∇∇⊤dF (∇)

)
= tr(VR),

where R is the dispersion matrix of the asymptotic distribution function F (∇). Hence, ADB

of β̂∗
1 can be derived as:

(4.5) ADB (β∗
1) = E

{
lim
n→∞

√
n (β∗

1 − β1)
}
.

Given extra conditions for design matrix’s partial residuals,

X̃: (i) 1
n max1≤j≤n x̃

⊤
j

(
X̃⊤X̃

)−1
x̃j → 0 when n → ∞, (ii) For positive definite matrix P̃,
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1
n

∑n
i=1 X̃

⊤X̃ → P̃ . Also, some notations are needed to show the ADB(β̂∗
1) that are given

below:

P̃ =

(
P̃11 P̃12

P̃21 P̃22

)
,∆ =

(
ω⊤P̃−1

22.1ω
)
σ−2, P̃22.1 = P̃22 − P̃21P̃

−1
11 P̃12

η =

(
φ1

φ2

)
= −λ2nP̃−1β,φ11.2 = φ1 − P̃12P̃

−1
22 ((β2 − ω)−φ2) ,

θ = φ11.2 − δ, δ = P̃−1
11 P̃12ω.

Dv(κ,∆) is the cumulative distribution function of a non-central χ2 distribution with v de-

grees of freedom, defined as:

(4.6) E
(
χ−2r
v (∆)

)
=

∫ ∞

0
κ−2rdDv(κ,∆).

Given these conditions and ensuring Remark 4.1, the ADB of the estimators inspired by

Theorem 1 in Yüzbaşı et al. (2020) are described as follows:

(4.7)

ADB
(
β̂FM
1

)
=−φ11.2,

ADB
(
β̂SM
1

)
=− θ,

ADB
(
β̂PT
1

)
=−φ11.2 − δDp2+2

(
χ2
p2,α; ∆

)
,

ADB
(
β̂S
1

)
=−φ11.2 − (p2 − 2) δ

(
χ−2
p2+2(∆)

)
,

ADB
(
β̂PS
1

)
=−φ11.2 − δDp2+2

(
χ2
p2,α; ∆

)
− (p2 − 2) δE

{
χ−2
p2+2(∆)I

(
χ2
p2+2(∆) > p2 − 2

)}
,

For proof of (4.7), refer to Yüzbaşı et al. (2020) regarding the synthetic data transformation

in Remark 4.1. The ADBs of the estimators in quadratic form, as mentioned earlier, are

presented using matrix AQDB. P̃11.2 = P̃11 − P̃12P̃
−1
22 P̃21:

(4.8) AQDB
(
β̂∗
1

)
= ADB

(
β̂∗
1

)⊤
P̃11.2ADB

(
β̂∗
1

)
,
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and using the definition of AQDB in equation (4.8), the following AQDBs can be obtained:

(4.9)

AQDB
(
β̂FM
1

)
= φ⊤

11.2P̃11.2φ11.2,

AQDB
(
β̂SM
1

)
= θ⊤P̃11.2θ,

AQDB
(
β̂PT
1

)
= φ⊤

11.2P̃11.2φ11.2 +φ⊤
11.2P̃11.2δDp2+2

(
χ2
p2,α; ∆

)
+ δ⊤P̃11.2φ11.2Dp2+2

(
χ2
p2,α; ∆

)
+ δ⊤P̃11.2δD2

p2+2

(
χ2
p2,α; ∆

)
,

AQDB
(
β̂S
1

)
= φ⊤

11.2P̃11.2φ11.2 + (p2 − 2)φ⊤
11.2P̃11.2δE

(
χ−2
p2+2(∆)

)
+ (p2 − 2) δ⊤P̃11.2φ11.2E

(
χ−2
p2+2(∆)

)
+ (p2 − 2)2 δ⊤P̃11.2δ

[
E
(
χ−2
p2+2(∆)

)]2
,

AQDB
(
β̂PS
1

)
= φ⊤

11.2P̃11.2φ11.2 +
(
δ⊤P̃11.2φ11.2 +φ⊤

11.2P̃11.2δ
)

× [Dp2+2 ((p2 − 2) ;∆)

+ (p2 − 2)E
{
χ−2
p2+2(∆)I

(
χ−2
p2+2(∆) > p2 − 2

)}]
+ δ⊤P̃11.2δ [Dp2+2 ((p2 − 2) ;∆)

+ (p2 − 2)E
{
χ−2
p2+2(∆)I

(
χ−2
p2+2(∆) > p2 − 2

)}]2
.

Based on the partitioned variance-covariance matrix P̃ and its defined sub-matrices, the

asymptotic covariance matrices are derived below:

(4.10)

Cov
(
β̂FM
1

)
=σ2P̃−1

11.2 +φ11.2φ
⊤
11.2,

Cov
(
β̂SM
1

)
=σ2P̃−1

11 + θθ⊤,

Cov
(
β̂PT
1

)
=σ2P̃−1

11.2 +φ11.2φ
⊤
11.2 + 2φ⊤

11.2δDp2+2

(
χ2
p2,α; ∆

)
+ σ2

(
P̃−1

11.2 − P̃−1
11

)
Dp2+2

(
χ2
p2,α; ∆

)
+ δδ⊤

[
2Dp2+2

(
χ2
p2,α; ∆

)
−Dp2+4

(
χ2
p2,α; ∆

)]
,

Cov
(
β̂S
1

)
=σ2P̃−1

11.2 +φ11.2φ
⊤
11.2 + 2 (p2 − 2) δφ⊤

11.2E
(
χ−2
p2+2(∆)

)
− (p2 − 2)σ2P̃−1

11 P̃12P̃
−1
22.1P̃21P̃

−1
11

{
2E

(
χ−2
p2+2(∆)

)
− (p2 − 2)E

(
χ−4
p2+2(∆)

)}
+ (p2 − 2) δδ⊤

{
2E

(
x−2
p2+2(∆)

)
−2E

(
χ−2
p2+4(∆)

)
− (p2 − 2)E

(
x−4
p2+4(∆)

)}
Cov

(
β̂PS
1

)
=Cov

(
β̂S
1

)
− 2δφ⊤

11.2E
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(
χ2
p2+2(∆) ≤ p2 − 2

))
+ (p2 − 2)σ2P̃−1

11 P̃12P̃
−1
22.1P̃21P̃

−1
11

×
[
2E

(
χ−2
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)E

(
χ−4
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))]
− σ2P̃−1

11 P̃12P̃
−1
22.1P̃21P̃

−1
11 Dp2+2 ((p2 − 2) ;∆)
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Note that proofs of (4.10) and (4.11) can be found in Yüzbaşı et al. (2020).

Regarding the AQDBs given in (4.9) the following inferences can be made under the

assumption P̃12 ̸= 0. (i) The AQDB(β̂FM
1 ) is a constant and (ii) AQDB(β̂SM

1 ) is an un-

bounded function based on θ and P̃11.2. (iii) ADQB(β̂PT
1 ) shows increases to its maximum

value and then decreases dependent on the increment of ∆ > 0. This inference is similar to

the ADQB(β̂S
1 ). (iv) Under different ∆ values, although ADQB(β̂PS

1 ) and ADQB(β̂S
1 ) have

close performances, β̂PS
1 shows slightly better performance than β̂S

1 in terms of quadratic

bias.

Thus, asymptotic distributional risk (ADR) for the three semiparametric estimators is

provided here:

(4.11)

ADR
(
β̂FM
1

)
= σ2 tr

(
VP̃−1

11.2

)
+φ⊤

11.2Vφ11.2,

ADR
(
β̂SM
1

)
= σ2 tr

(
VP̃−1

11

)
+ θ⊤Vθ,

ADR
(
β̂PT
1

)
= σ2 tr

(
VP̃−1

11.2

)
+φ⊤

11.2Vφ11.2 − 2φ⊤
11.2VδDp2+2

(
χ2
p2,α; ∆

)
− σ2 tr

(
VP̃−1

11.2 −VP̃−1
11

)
Dp2+2

(
χ2
p2,α; ∆

)
+ δ⊤Vδ

{
2Dp2+2

(
χ2
p2,α; ∆

)
−Dp2+4

(
χ2
p2,α; ∆

)}
,

ADR
(
β̂S
1

)
= σ2 tr

(
VP̃−1

11.2

)
+φ⊤

11.2Vφ11.2 + 2 (p2 − 2)φ⊤
11.2VδE

(
χ−2
p2+2(∆)

)
− (p2 − 2)σ2 tr

(
P̃21P̃

−1
11 VP̃−1

11 P̃12P̃
−1
22.1

){
2E

(
χ−2
p2+2(∆)

)
− (p2 − 2)E

(
χ−4
p2+2(∆)

)}
+ (p2 − 2) δ⊤Vδ

{
2E

(
χ−2
p2+2(∆)

)
− 2E

(
χ−2
p2+4(∆)

)
− (p2 − 2)E

(
χ−4
p2+4(∆)

)
+(p2 − 2)E

(
χ−4
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))]
ADR

(
β̂PS
1

)
= ADR

(
β̂S
1

)
− 2ϕ⊤

11.2V δE
({

1− (p2 − 2)χ−2
p2+2(∆)

}
I
(
χ2
p2+2(∆) ≤ p2 − 2

))
+ (p2 − 2)σ2 tr

(
P̃21P̃

−1
11 V P̃−1

11 P̃12P̃
−1
22.1

)
×
[
2E

(
χ−2
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))
− (p2 − 2)E

(
χ−4
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))]
− σ2 tr

(
P̃21P̃

−1
11 V P̃−1

11 P̃12P̃
−1
22.1

)
Dp2+2 ((p2 − 2) ;∆)

+ δ⊤V [2Dp2+2 ((p2 − 2) ;∆)−Dp2+4 ((p2 − 2) ;∆)]

− (p2 − 2) δ⊤V δ
[
2E

(
χ−2
p2+2(∆)I

(
χ2
p2+2(∆) ≤ p2 − 2

))
− 2E

(
χ−2
p2+4(∆)I

(
χ2
p2+4(∆) ≤ p2 − 2

))
.

If P̃12 = 0, then under the local alternatives Mn and for all ω ADRs given in (4.11) turns

into σ2 tr
(
VP̃−1

11

)
+ φ⊤

11.2Vφ11.2. Also, if P̃12 ̸= 0, then the following asymptotic analysis

can be made:
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Asymptotic analysis for ADR: (i) When ∆ > 0, then ADR
(
β̂SM
1

)
becomes unbounded

and ADR
(
β̂PT
1

)
≤ ADR

(
β̂FM
1

)
. (ii) For different values of ω regarding the ADRs, β̂PS

1

dominates the β̂S
1 and it can be written that ADR

(
β̂PS
1

)
≤ ADR

(
β̂S
1

)
≤ ADR

(
β̂FM
1

)
which

is ensured by the following property (iii). (iii) For all V and ω,ADR
(
β̂S
1

)
≤ ADR

(
β̂FM
1

)
,

if the following condition is ensured for the ξmax which denotes the maximum characteristic

root:
tr
(
P̃21P̃

−1
11 VP̃−1

11 P̃12P̃
−1
22.1

)
ξmax

(
P̃21P̃

−1
11 VP̃−1

11 P̃12P̃
−1
22.1

) ≥ p2 + 2

2
.

5. OPTIMIZATION OF SMOOTHING PARAMETER

Choosing the smoothing parameter λ > 0 is vital for efficiency in semiparametric

shrinkage strategies. This section outlines the method for selecting λ for smoothing splines.

The optimal λ is found using the improved Akaike Information Criterion, AICc(λ), which

corrects finite sample bias for accurate model fit, especially with small sample sizes (n) relative

to the number of parameters (p). The formula for AICc(λ) is:

(5.1) AICc (λ) = log
(
σ̂21

)
+ 1 +

[
2(p1 + 1)

n− p1 − 2

]
,

σ21 is defined in (3.12), while p1 indicates the covariate count for SM or FM based on either

penalty function.

6. SIMULATION STUDY

This section describes simulation experiments evaluating the semiparametric shrinkage

estimators’ performance for the right-censored partially linear model under p ≤ n. The SM

estimator uses predictors selected via the Akaike information criterion (AIC) available in

the R package ’AICcmodavg’ (Mazerolle and Mazerolle, 2017). Details on the simulation

design and data generation follow. A key parameter, ∆ = ∥β−β0∥2 ∈ [0, 2], is defined, with

β0 as the regression coefficient vector under sparsity, expressed as β0 =
(
β⊤
1 ,0

⊤
p2

)⊤
with a

(p2 × 1) dimensional vector of zeros. The experiments analyze the estimators’ behavior as

∆ changes. The simulation experiments include three sample sizes (n = 75, 150, 300), two

censoring levels (CL = 5%, 30%), two numbers of covariates (p = 20, 50), and four ∆ values

(∆ = 0.0, 0.5, 1.0, 2.0). Each configuration is repeated 500 times, and estimator performances

are evaluated using these metrics:

(6.1) ReMSE
(
β̂FM
1 , β̂∗

1

)
=

MSE
(
β̂FM
1

)
MSE

(
β̂∗
1

) ,

where in ReMSE (Relative Mean Squared Error) β̂∗ denotes the estimate of β1 by any

estimator, while (6.1) assesses parametric component performance. ReMSE serves as a per-
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formance measure in our simulation experiments to evaluate the accuracy of the paramet-

ric component estimators for the regression coefficients. It is defined by taking the mean

squared error (MSE) of a reference estimator which is β̂FM
1 here and dividing it by the

MSE of any of the introduced estimators (β̂∗
1), thereby providing a normalized metric that

facilitates direct comparisons across different estimators and simulation settings. This ratio

enables us to assess the relative performance of each estimator in capturing the true underly-

ing regression parameters within the right-censored partially linear model framework. Note

that ReMSE
(
β̂FM
1 , β̂∗

1

)
> 1 indicates that the introduced estimator performs better than

the reference estimator, suggesting more accuracy in estimating the regression coefficients.

Conversely, ReMSE
(
β̂FM
1 , β̂∗

1

)
< 1 signifies that the reference estimator outperforms the

introduced estimator.

The mean squared error (MSE) evaluates the quality of the nonparametric curve esti-

mate. Let f̂∗ be the estimate of f from any estimator; MSE(f̂∗) is then calculated by:

(6.2) MSE(f̂∗) = n−1

[
n∑

i=1

f (ti)− f̂∗ (ti)

]2

= n−1(f − f̂∗)⊤(f − f̂∗).

By considering the model (1.1), elements are generated as follows:

(6.3)
xi ∼MN [µp×1,Σp×p] ; ti = 2.5(i− 0.5)/n, f (ti) = −ti sin

(
−t2i

)
,

εi ∼ N (0, σε = 0.5)

and true regression coefficients are generated by the following equation:

(6.4) βj =


3 if j = 1, . . . , 5
βs ∆ > 0
0 otherwise.

If ∆ = 0, then βs = 0, implying β⊤
2 = 0⊤p2. Hence, sparsity is ensured. If ∆ > 0, then

∆ = β2s by definition of ∆. According to (6.4), the first 5 coefficients are nonzero, with

(p − 5) approximately or exactly sparse based on ∆. The outcomes from the estimator are

detailed in the subsections for parametric and nonparametric components, informed by the

simulation design and data generation processes.

6.1. Results of parametric component

Tables 1-3 show results for three sample sizes evaluating shrinkage and pretest estima-

tors. Table 1 includes ReMSE scores for estimated regression parameters using four methods,

along with censoring levels (CL), number of parameters (p), and ∆ values to observe estima-

tor behavior under various conditions.

Table 1 shows estimator tendencies for small samples. Performance decreases with

higher confidence levels (CL) and ∆. Greater model complexity (p) lowers performance. At

high sparsity (∆ = 0), β̂SM
1 is effective, but as sparsity lessens (∆), shrinkage estimators,

particularly β̂PT
1 , excel. β̂PS

1 performs well against censorship, except in CL = 30% and

p = 20, where it matches β̂PT
1 .
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p = 20 p = 50

CL ∆ β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1 β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1

5%

0 0.995 1.001 1.001 1.051 0.801 0.802 0.769 0.889
0.5 0.983 0.982 0.999 0.790 0.737 0.737 0.766 0.630
1 0.788 0.788 0.797 0.621 0.725 0.726 0.762 0.602
2 0.685 0.689 0.699 0.561 0.522 0.521 0.563 0.423

30%

0 0.901 0.969 0.921 1.077 0.712 0.712 0.803 0.663
0.5 0.914 0.965 0.924 0.764 0.682 0.682 0.703 0.531
1 0.711 0.758 0.733 0.455 0.572 0.573 0.600 0.418
2 0.509 0.554 0.545 0.451 0.377 0.377 0.411 0.212

Table 1: Calculated ReMSE scores when n = 75.

An increase in p generally reduces performance, expectedly due to model complexity.

β̂PT
1 handles small sample sizes better than other estimators. Figure 1 illustrates this, show-

ing larger ReMSE variance from SM compared to shrinkage estimators.

Figure 1: Boxplots of ReMSEs when n = 75 for different ∆ values.

p = 20 p = 50

CL ∆ β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1 β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1

5%

0 0.992 0.999 1.003 0.973 0.847 0.999 0.953 0.886
0.5 0.985 0.983 0.999 0.944 0.824 0.954 0.907 0.842
1 0.978 0.981 0.997 0.883 0.731 0.823 0.766 0.723
2 0.688 0.701 0.708 0.588 0.606 0.694 0.697 0.697

30%

0 0.615 0.771 0.777 0.798 0.562 0.595 0.619 0.666
0.5 0.691 0.690 0.669 0.355 0.634 0.694 0.582 0.412
1 0.613 0.627 0.597 0.391 0.508 0.503 0.561 0.309
2 0.487 0.506 0.460 0.395 0.490 0.521 0.558 0.393

Table 2: Calculated ReMSE scores when n = 150.
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Figure 2: Boxplots of ReMSEs when n = 150 for different ∆ values.

Table 2 presents ReMSEs for n = 150. Thus, the estimator performance is consistently

observed with n = 75 amid variations in n, CL, and p. Notably, average ReMSEs are more

stable, with narrower boxplots in Figure 2 due to large sample sizes.

p = 20 p = 50

CL ∆ β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1 β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1

5%

0 0.965 1.000 1.001 1.076 0.855 0.855 1.000 0.994
0.5 0.859 0.865 0.899 0.865 0.729 0.730 0.864 0.790
1 0.742 0.759 0.784 0.717 0.685 0.685 0.702 0.686
2 0.551 0.642 0.681 0.580 0.633 0.600 0.662 0.564

30%

0 0.841 1.000 1.011 0.853 0.736 0.800 0.898 0.769
0.5 0.594 0.698 0.765 0.639 0.437 0.468 0.512 0.363
1 0.472 0.559 0.559 0.457 0.358 0.401 0.398 0.225
2 0.466 0.435 0.472 0.293 0.219 0.231 0.243 0.122

Table 3: Calculated ReMSE scores when n = 300.
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Figure 3: Boxplots of ReMSEs when n = 300 for different ∆ values.

Under light censorship (CL = 5%), methods perform similarly even if p = 50. Under

heavy censorship, instability occurs, notably with β̂S
1 and β̂SM

1 , likely due to synthetic data

transformation increasing data and model variance. Inferences for n = 75 and n = 300 apply

to the ReMSEs in Table 3 and Figure 3, with more stable, higher ReMSEs. Tables and figures

show estimator performance declines as ∆ values rise under right-censored data.

6.2. Results of nonparametric component

This section presents results for the nonparametric component of the right-censored

model using shrinkage estimators. Table 4 shows that these estimators generally outperform

f̂SM in most cases. The differences are clearer when n = 75. For larger n, performances

are similar, as expected. With CL = 5%, as with the parametric component, f̂PS and f̂PT

perform best, followed by f̂S . Under heavy censoring (CL = 30%), f̂SM is the most sensitive.

Unlike in the parametric estimation, f̂S handles censorship better, especially for larger n and

p.

p = 20 p = 50

n CL f̂S f̂PS f̂PT f̂SM f̂S f̂PS f̂PT f̂SM

n = 75
5% 0.056 0.045 0.024 0.136 0.195 0.175 0.167 0.195
30% 0.405 0.620 0.497 0.857 0.415 0.415 0.455 0.734

n = 150
5% 0.023 0.023 0.025 0.024 0.184 0.181 0.177 0.181
30% 0.105 0.098 0.097 0.098 0.201 0.197 0.195 0.195

n = 300
5% 0.003 0.003 0.002 0.011 0.012 0.012 0.013 0.013
30% 0.043 0.045 0.047 0.048 0.061 0.086 0.081 0.091

Table 4: MSE scores of f̂(ti) obtained from the introduced estimators
for all simulation configurations
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Figures 4-5 show how censorship level (CL) and the number of variables (p) affect the

fitted curves. Table 4 lists MSE values for the estimated functions. In Figure 4, CL negatively

influences curves, with panel (b) deviating towards the x-axis compared to panel (a), aligning

synthetic with censored data and causing curves to approach zero.

Figure 4: Fitted curves obtained from the three estimators f̂S , f̂PS , f̂PT ,
and f̂SM for two simulation configurations to show the effect of
the censoring level CL.

Figure 5 illustrates fitted curves for p = 20 in panel (a) and a complex model with

p = 50 in panel (b). Although model complexity affects shrinkage estimator performance

under censorship in p < n, it minimally impacts the fitted curves.

Figure 5: Fitted curves obtained from the three estimators f̂S , f̂PS , f̂PT ,
and f̂SM for two simulation configurations to show the effect of
the number of parametric covariates p.

7. REAL-DATA EXAMPLE

We model the right-censored Hepatocellular Carcinoma dataset using modified shrink-

age estimators, comparing parametric and nonparametric components as in Section 6. The

dataset from Li et al. (2014) examines CXCL17 gene expression in hepatocellular carcinoma

with 227 data points and 48 variables. Due to insufficient data, 18 variables are excluded.
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Analysis uses 18 explanatory variables for the parametric part; the nonparametric part is

represented by the Age variable due to its relationship with the log of overall survival time

(OS). The data includes 84 right-censored OS points, matching heavy censoring levels from

simulation configurations CL = 37%-CL = 30%. Results appear in Table 5 and Figure 6.

Table 5 presents ReMSEs, MSEs of curves, model variances, and the number of covariates

n pFM
1 pSM

1 S PS PT SM FM

227 18 14
ReMSE(β̂) 0.863 1.000 0.701 0.885 -

MSE(f̂) 3.926 3.389 3.354 4.834 3.914
σ̂2
1 1.729 1.493 1.212 2.298 1.493

Table 5: Overall results for Hepatocellular dataset.

(pFM
1 , pSM1 ) for full and submodels. Shrinkage estimators, particularly βS

1 and βPS
1 , show

higher efficiency, confirmed by MSE(f) with smaller values. Performance differs between

SM-based models and shrinkage estimators. Figure 6 shows fitted curves with synthetic and

censored data in panel (a) and MSE bar plots in panel (b). In panel (a), f̂SM skews more

towards zeros due to censorship, as Table 5 confirms. Conversely, f̂PS and f̂PT better resist

censorship, contributing distinctively.

Figure 6: Panel (a): Estimated curves based on the three estimators.
Panel (b): Barplot for the MSE scores of estimated functions.

8. HIGH-DIMENSIONAL MODEL ESTIMATION

This section explores numerical studies through a simulation and a real data example

to assess modified shrinkage and pretest estimators in high-dimensional, right-censored sce-

narios. Due to the high dimensionality, suitable FM and SM choices are needed, employing

penalty functions as discussed in Section 1. Lasso penalty is used for βFM
1 , while the adap-

tive Lasso (aL) is used for βSM
1 due to its harsher penalty and fewer selected predictors.
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Subsequent subsections present the simulation study and real data example.

8.1. Simulation study

The simulation design follows 6 for p > n, using three sample sizes (n = 75, 150, 300),

two censoring levels (CL = 5%, 30%), two covariate counts (p = 500, 1000), and four ∆ values

(∆ = 0.0, 0.5, 1.0, 2.0). Configurations are repeated 500 times, evaluated on ReMSE (6.1) and

MSE (6.2). Data generation follows equation (6.3), with regression coefficients by equation

(6.4) for ∆ and p. Figure 7 illustrates regression coefficients for ∆ values, representing exactly

and approximately sparse models.

Figure 7: Generated βj ’s for different ∆ values when n = 75, CL =
5%, p = 500.

Figure 8: Selection of smoothing parameter λ and illustration of both ef-
fect of censorship levels when n=75 and effect of number of
covariates (p) when n=150 on the selection of the smoothing
parameter λ.

Figure 8 shows λ selection examining the effects of censorship level (CL in Panel (a))

and the number of explanatory variables (p in Panel (b)). In Panel (a), increased CL signif-
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icantly reduces λ, as expected from the data structure. Larger p values also lead to smaller

λ.

8.1.1. Results of the parametric component

In this section, we present results on β̂. Refer to Tables 6-7 and Figures 9-10 for an

overview. Table 6 shows ReMSE scores for n = 75 across different ∆ values. Notably, esti-

mator magnitudes decrease with higher ∆ values, confirming initial hypotheses. We examine

this performance decline, comparing estimators. β̂SM declines fastest with higher ∆ values,

while β̂PS and β̂PT show slower declines in ReMSE scores, along with β̂S . This analysis

highlights the estimators’ robustness and efficacy.

p = 500 p = 1000

CL ∆ β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1 β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1

5%

0 0.977 1.030 1.006 0.697 0.824 0.818 0.822 0.997
0.5 0.945 1.029 1.006 0.622 0.797 0.779 0.708 0.631
1 0.931 0.963 0.997 0.588 0.754 0.679 0.605 0.538
2 0.413 0.849 0.683 0.061 0.173 0.483 0.372 0.054

30%

0 0.852 0.818 1.019 1.435 0.462 0.699 1.003 0.513
0.5 0.762 0.736 0.995 0.507 0.348 0.642 0.993 0.438
1 0.531 0.675 0.989 0.438 0.345 0.507 0.943 0.323
2 0.244 0.538 0.979 0.091 0.090 0.341 0.930 0.109

Table 6: Calculated ReMSE scores when n = 75.

Censoring negatively impacts all estimators, with n = 75 showing resilience order as

β̂PT , β̂PS , and β̂S . Shrinkage and pretest strategies benefit performance despite censor-

ing. With more explanatory variables (p), estimation performance declines as complexity

increases. β̂PT is similarly affected, yet provides the best performance.

Table 7 highlights patterns where β̂PS and β̂PT remain stable as sample size (n) grows,

showing resilience to censoring and p variations. The performance gap among estimators

decreases unexpectedly. ∆’s influence on shrinkage and pretest strategies adapts to changes

in ∆, unlike its negative effect on β̂SM . These findings support earlier analyses, confirming

robustness and reliability.

Figures 9-10 confirm the table insights. In Figure 9, boxplots show ReMSE values

for n = 75 drop as ∆ increases, with β̂S and β̂PT declining less than β̂SM . When ∆ = 0,

β̂SM meets expectations. Figure 10 shows performances converge as sample size n grows.

Figure 10 highlights estimation variances due to model complexity. Panels (a-d) for CL = 5%

and CL = 30% in each plot show censoring effects. β̂PT and β̂PS perform more robustly

than β̂SM . Despite close results, β̂PT consistently outperforms, confirmed by detailed figure

analysis.
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p = 500 p = 1000

CL ∆ β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1 β̂S
1 β̂PS

1 β̂PT
1 β̂SM

1

5%

0 1.078 1.131 1.000 0.848 0.996 0.896 0.993 0.836
0.5 0.980 1.029 1.000 0.808 0.992 0.879 0.987 0.769
1 0.971 1.018 1.000 0.737 0.965 0.869 0.984 0.719
2 0.958 0.991 0.996 0.201 0.009 0.816 0.491 0.103

30%

0 1.333 1.058 1.000 0.859 1.011 1.091 0.958 0.818
0.5 1.014 1.022 1.000 0.846 0.991 1.012 0.945 0.759
1 1.002 0.977 1.000 0.789 0.964 1.011 0.925 0.700
2 1.010 0.974 1.000 0.609 0.260 0.850 0.257 0.259

Table 7: Calculated ReMSE scores when n = 300.

Figure 9: Boxplots of obtained ReMSE scores for the three estimators
β̂S
1 , β̂

PS
1 , β̂PT

1 and β̂SM
1 for different values of ∆ when n = 75.
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Figure 10:Boxplots of obtained ReMSE scores for the three estimators
when n = 300.

8.1.2. Results of the nonparametric component

Table 8 and Figures 11-12 show nonparametric component estimation results. MSE

values for estimated functions in Table 8 reveal the expected negative impact of censoring on

all three estimators’ prediction performances. A noticeable increase in MSE values occurs

with p = 1000. However, as sample sizes increase to n = 150 and n = 300, these negative

effects lessen, aligning the performances.

p = 500 p = 1000

n CL f̂S f̂PS f̂PT f̂SM f̂S f̂PS f̂PT f̂SM

n = 75
5% 0.043 0.043 0.051 0.056 0.335 0.320 0.310 0.633
30% 0.447 0.447 0.191 0.226 0.904 0.728 0.740 0.727

n = 150
5% 0.017 0.016 0.007 0.053 0.261 0.249 0.283 0.279
30% 0.099 0.077 0.081 0.121 0.351 0.179 0.206 0.301

n = 300
5% 0.005 0.005 0.003 0.010 0.014 0.014 0.012 0.015
30% 0.075 0.075 0.066 0.081 0.079 0.099 0.076 0.219

Table 8: MSE scores of estimated nonparametric component for all pos-
sible simulation configurations.

Examining these values reveals key insights. For n = 75, f̂PS and f̂S are notably

affected by censoring when p = 500. In contrast, f̂SM with p = 1000 shows higher MSE

values when CL = 30%, illustrating the shrinkage strategy’s benefit with censored data.

Across simulations, f̂PT consistently excels in estimating the non-parametric component.

Table 8 outcomes are visually shown in Figures 11-12 with panels (a) and (b). Figure

11 illustrates how sample size affects estimator performance. In panel (a), n = 75 with low

censoring (CL = 5%) trends toward zero, indicating failure in representation, while panel
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(b) shows n = 150’s improved representation under similar conditions. Figure 12 examines

censoring level effects on estimation performance. In panel (a), low censoring shifts f̂S and

f̂SM toward zero, but f̂PT and f̂PS are less impacted. At CL = 30%, representation by all

estimators declines significantly.

Figure 11:Fitted curves obtained from the three estimators f̂S , f̂PS , f̂PT ,
and f̂SM for two simulation configurations to show the effect of
the sample size n.

Figure 12:Fitted curves obtained from the three estimators f̂S , f̂PS , f̂PT ,
and f̂SM for two simulation configurations to show the effect of
the censoring level CL.

8.2. Real data example

We analyze the right-censored semiparametric regression model using the NSBC dataset,

which includes gene expressions from 115 tumors, as reported by Sørlie et al. (2003). Of the
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115 patients, 38 experienced an event, yielding a censoring rate of CL = 33%. The model’s

nonparametric part uses the univariate variable ti from the 393rd gene expression column,

while the parametric part involves 548 explanatory variables for estimating survival times.

The defined model for high-dimensional data is:

(8.1) survtimeiĜ = xiβ + f (ti) + εiĜ, i = 1, . . . , 115.

Here, xi =
{
(xi1, . . . , xip)

⊤ , i = 1, 2, . . . , n
}

represents the vectors of the high-dimensional

design matrix, and survtimeiĜ denotes the synthetic response variable. Model (8.1) estima-

tion results are shown in Table 9 and Figure 13. The smoothing parameter is set as λ = 0.735

by the AICc criterion, while shrinkage parameters are λLassos = 0.0075 and λaLass = 0.0272,

obtained through k-cross-validation with the ”glmnet” package in R.

Table 9 summarizes NSBC data analysis. ReMSE values show β̂PT and β̂PS outper-

form pFM , with β̂S following closely, matching simulation results. β̂SM underperforms in

parametric estimation. For f(ti), f̂
PT has the lowest MSE score, while f̂FM does well but is

complex. Despite similar σ̂21 values, shrinkage and pretest strategies reduce model variances.

n pFM
1 pSM

1 S PS PT SM FM

115 36 4
ReMSE(β̂) 0.977 1.000 1.000 0.845 -

MSE(f̂) 0.167 0.166 0.166 0.196 0.183
σ̂2
1 0.020 0.019 0.019 0.022 0.020

Table 9: Overall results for NSBC dataset.

Figure 13 shows function estimates for the non-parametric component (panel (a)) and

bar plots for MSE values (panel (b)). Panel (a) demonstrates that f̂PS and f̂PT better

represent the data than f̂SM , confirming Table 9 results. Gray shading in panel (a) high-

lights synthetic responses, emphasizing censoring effects. Panel (b) clearly shows estimator

differences.

Figure 13:Panel (a): Estimated curves based on the three estimators.
Panel (b): Barplot for the MSE scores of estimated functions.
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9. CONCLUSIONS

This paper examines modified estimators for right-censored, sparse semiparametric

regression models, offering theoretical inferences for both p < n and p > n cases. Using

synthetic data transformation, shrinkage, and pretest strategies, it presents a robust approach

for right-censored data. The estimators perform consistently across low and high-dimensional

datasets. To address high dimensionality, the Lasso function for FM and the adaptive Lasso

for SM are used. Simulations confirm their efficacy in complex or less sparse conditions

(∆ > 0). The effects of censoring level (CL) and parametric covariate count (p) are analyzed,

showing strong performance of pretest and shrinkage estimators. Empirical analysis with

Hepatocellular Carcinoma data (p < n) and NSBC dataset (p > n) further supports these

findings, with reliable results from the introduced estimators.

This paper presents innovative estimators that provide a basis for advancing right-

censored sparse semiparametric regression models in both low and high dimensions. These

tools will be crucial for future data analysis as dataset complexity increases.

Data availability statement: There are two real data examples in the paper. The

Hepatocellular Carcinoma dataset is publicly available in asaur package of R. To reach the

NSBC Dataset, see supplementary materials of Sørlie et al. (2003).
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Appendices

A1. Proof of Theorem 3.1

Under the assumptions (i-iii) provided in Section 3, we can proceed as follows:

Define the synthetic responses adjusted for right-censoring as:

yiĜ =
δizi

1− Ĝ(zi)
, where zi = min(yi, ci), δi = I(yi ≤ ci),

and Ĝ(zi) is the Kaplan-Meier estimator of the censoring distribution evaluated at zi.

The full model estimator β̂FM is obtained by minimizing the penalized least squares

criterion incorporating smoothing splines for the nonparametric component:

β̂FM =
(
X̃⊤

1 X̃1

)−1
X̃⊤

1 ỹĜ,
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where X̃1 includes the design matrix for the parametric covariates adjusted for the smoothing

spline estimates of f(ti), and ỹĜ are the transformed responses. Under regularity conditions,

as n→ ∞,
1

n
X̃⊤

1 X̃1
p−→ B,

where B is a positive definite matrix.

The sum 1√
n
X̃⊤

1 ϵ̃Ĝ converges in distribution to a multivariate normal distribution:

1√
n
X̃⊤

1 ϵ̃Ĝ
d−→ N

(
0, σ2effB

)
,

where ϵ̃Ĝ = ỹĜ − X̃1β and σ2eff encapsulates the additional variability from censoring and

smoothing.

Combining the above results, we have:

√
n
(
β̂FM − β

)
=

(
1

n
X̃⊤

1 X̃1

)−1 1√
n
X̃⊤

1 ϵ̃Ĝ
d−→ N

(
0, σ2effB

−1
)
.

Thus, under assumptions (i)-(viii), the estimator β̂FM is asymptotically normal with mean β

and covariance matrix σ2effB
−1.
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