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Abstract:

e In many areas of application, a typical requirement is to estimate a high quantile
X1—p of probability 1—p, a value, high enough, so that the chance of an exceedance
of that value is equal to p, small. The semi-parametric estimation of high quantiles
depends not only on the estimation of the tail index «y, the primary parameter of
extreme events, but also on an adequate estimation of a scale first order parameter.
The great majority of semi-parametric quantile estimators, in the literature, do not
enjoy the adequate behaviour, in the sense that they do not suffer the appropriate
linear shift in the presence of linear transformations of the data. Recently, and for
heavy tails (7 > 0), a new class of quantile estimators was introduced with such a
behaviour. They were named PORT-quantile estimators, with PORT standing for
peaks over random threshold. In this paper, also for heavy tails, we introduce a new
class of PORT-quantile estimators with the above mentioned behaviour, using the
PORT methodology and incorporating Hill and moment PORT-classes of tail index
estimators in one of the most recent classes of quantile estimators suggested in the
literature. Under convenient restrictions on the underlying model, these classes of
estimators are consistent and asymptotically normal for adequate k, the number of
top order statistics used in the semi-parametric estimation of x1_p.

Key-Words:

o statistics of extremes; heavy tails; high quantiles; semi-parametric estimation; PORT
methodology; asymptotic behaviour.

AMS Subject Classification:

o 62G32, 62E20.



246 Ligia Henriques-Rodrigues and M. Ivette Gomes



High Quantile Estimation and the PORT Methodology 247

1. INTRODUCTION

A model F is said to have a heavy right-tail whenever the right tail function,
F :=1— F, is a regularly varying function with a negative index of regular vari-
ation v = —1/, i.e., for every > 0, lim;_ .o F(tz)/F(t) = ~'/7. Then we are
in the domain of attraction for maxima of an extreme value (EV') distribution
function (d.f.),

EV,(z) = exp(—(1 +7x)_1/7) , x>—1/vy, v>0,

and we write F' € Dy(EV,>0). The parameter « is the tail index, one of the
primary parameters of rare events.

In a context of heavy tails, and with the notation U(t) := F (1 —1/t),t > 1,
F=(y) :=inf{x: F(x) > y} the generalized inverse function of the underlying
model F, the first order parameter (or tail index) 7 (> 0) appears, for every
x> 0, as the limiting value, as t — 0o, of the quotient (InU(tz) —InU(t))/Inx
(de Haan, 1970). Indeed, with the usual notation RV, for the class of regularly
varying functions with an index of regularly variation «, i.e., positive measurable
functions g such that g(tx)/g(t) — x, as t — oo and for all > 0, we can further
say

(1.1)  FeDm(EVyso) iff UeRV, iff 1-Fe€RV_;,, (Gnedenko, 1943).

Heavy-tailed distributions have recently been accepted as realistic models for
various phenomena in economics, ecology, bibliometrics and biometry, among
others. See, for instance, the recent books on the topic by Markovich (2007) and
Resnick (2007).

For small values of p, we want to extrapolate beyond the sample, estimating
a typical parameter in many areas of application, a high quantile x1—_,, i.e., a value
such that F(x1—p) =1 — p, or equivalently,

(1.2) Xi—p=U(1/p), p=pp—0, np,— K as n—o0, Kel0,1].

We are going to base inference on the largest k 4+ 1 order statistics, and
as usual in semi-parametric estimation of parameters of extreme events, we shall
assume that k is an intermediate sequence of integers in [1,n], i.e.,

(1.3) k=ky,—o0, k/n—0, as n — oo .

In order to derive the asymptotic non-degenerate behaviour of semi-para-
metric estimators of parameters of extreme events, we need more than the first-
order condition, U € RV,, provided in (1.1). A convenient condition is the fol-
lowing second-order condition, which guarantees that
(1.4) lim InU(tx) —InU(t) —vyInz _ a1 ’

t—00 A(t) p
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which we assume to hold for every x > 0, being p <0 the “shape” or, more
properly, the generalized shape second order parameter. The limit function in
(1.4) is necessarily of this given form and |A| € RV, (Geluk and de Haan, 1987).
Sometimes, only for the sake of simplicity, we shall assume to be working in a
sub-class of Hall-Welsh class of models (Hall and Welsh, 1985), where there exist
v>0,p<0,C>0and g # 0, such that, as t — oo,

(1.5) Ut) =Ct" (1 - AS“L) (1+ 0(1))>, with A(t) = yBt°.

Typical heavy-tailed models, such as the Fréchet, the Generalized Pareto
and the Student-t, belong to such a class. Then, the second-order condition in
equation (1.4) holds, with A(t) = v(t?, B3 # 0, p < 0. The parameters [ and p are
the so-called generalized scale and shape second-order parameters, respectively.

If condition (1.5) holds, U(t) ~ Ct?, as t — oo, and from (1.2), we have

Xi—p=U(1/p) ~ Cp™?, as p—0.

An obvious estimator of xi_, is thus apfﬁ, with C and 4 any consistent
estimators of C' and 7, respectively.

Given a sample (X1, Xo,..., X,), let us denote (X1., < Xoup < -+ < Xpip)
the set of associated ascending order statistics. Denoting Y a standard Pareto
model, i.e., a model such that F,(y) =1—1/y, y > 1, the universal uniform
transformation and the fact that Y, ., ~ (n/k) for intermediate k, enables us
to write X, ~ C(n/k)7, as n — oo, where the notation X, LY, means that
X, /Y, converges in probability to one, as n — oco. Consequently, an obvious
estimator of C, proposed in Hall (1982), is

C = Ciny = n_k:n(k/n)ﬁ

and
Qk,pnﬁ/ = Cp;V = n—k::n(k/npn)’y

is the obvious quantile-estimator at the level p (Weissman, 1978). The semi-
parametric estimation of high quantiles depends thus strongly on the estimation
of the tail index «, the primary parameter of extreme events.

In the classical approach, we often consider for 4 either the Hill estimator
(Hill, 1975) or the moment estimator (Dekkers et al., 1989), both based on the
k +1 top order statistics, denoted Xy := (X;,—gun, -+, Xn:n). The Hill estimator
is the average of the log-excesses,

k

Z (ln aniJrl:n —In Xn—k:n) s
i=1

T =

(1'6) Hk,n = Hn(l(k) = '/y\k,n,H =
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and the moment estimator has the functional expression,
~ 1 1 N2, @
(L7) My = Ma(Xp) = Fnar = ML) +1 - 3 {1 - (M) /Mzi,i} ,

with M,") defined by

(ln Xn—it1n —1In Xn—k:n)aa a=1,2.
1

(1.8) MO = MO(X;) =

| =

k
1=

Under the second order framework in (1.4) and for any intermediate se-
quence k, i.e. whenever (1.3) holds, we have for the Hill estimator H, in (1.6),
and for the moment estimator M, in (1.7), generally denoted by T, the validity
of the following asymptotic distributional representation,

d o Pr

(1.9) Ve, = 7+ Tk + b, A(n/k)(1+ 0p(1)) ,
where Py, 7 is asymptotically standard normal and
1 Y(1—p)+p
1.10 2i=92 byi=——, 02:=1+4% and b, =1 F
(1.10) i T o + v an " Y= p)

Most of the semi-parametric quantile estimators in the literature, like the
ones in Gomes and Figueiredo (2006), Gomes and Pestana (2007), Beirlant et al.
(2008), Caeiro and Gomes (2008), as well as in other papers on semi-parametric
quantile estimation prior to 2005 (see also, de Haan and Ferreira, 2006), do not
enjoy the adequate behaviour in the presence of linear transformations of the
data, a behaviour related with the fact that for any quantile x1—, we have

(1.11) X1-p(s +0X) = s+ dx1-p(X)
for any model X, real s and positive 4.
Recently, and for v > 0, Aratjo Santos et al. (2006) provided quantile es-

timators with the linear property in (1.11), based upon a sample of excesses over
a random threshold X, .,, denoted

(112) X(q) = (Xn:n - an:na T an+1:n - an:n>a Ng = [ncﬂ +1 )
where [z] denotes, as usual, the integer part of x, with:
e 0 < g <1, for distributions with a left endpoint, z,, := inf{z: F(z) > 0},
finite or infinite (the random threshold X, ., is an empirical quantile);

e ¢ =0, for distributions with a finite left endpoint x,, (the random thresh-
old is the minimum, X1.,).

Such estimators were named PORT-quantile estimators, with PORT standing
for peaks over random threshold, and are based on the PORT-Hill and PORT-
moment estimators, generically denoted T(q) = Ty.n(q) := Th(X@) for T =H
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or M, k <n—ng, and with H,(X}) and M, (X)) provided in (1.6) and (1.7),
respectively. They are given by

\(@
(113) Qk,pn,T(q) = (ank:n - an:n) () +an:n s

nPn

where T'(q) can more generally be any consistent estimator of the tail index -+,
made location/scale invariant by using any of the transformed samples X @ in
(1.12). The PORT-Hill and the PORT-moment estimators have been studied by
simulation in Gomes et al. (2008a).

The class of estimators suggested here is also a function of the sample of the
excesses X9 in (1.12). We use the PORT methodology and incorporate Hill and
moment PORT-classes of tail index estimators in one of the classes of quantile
estimators suggested in Caeiro and Gomes (2008), slightly modified in order to
satisfy the linear property in (1.11). More specifically, we shall consider quantile
estimators of the type,

A Xn—[k/Z]:n — Xn—km k 7(a)
(1'14) Qk,pn,T(Q) = 2T(q) 1 nPn + anin .

Under convenient restrictions on the underlying model, these classes of estimators
are consistent and asymptotically normal for adequate k, the number of top order
statistics used in the semi-parametric estimation of x1_p.

In Section 2 of this paper, we shall present a few introductory technical
details and asymptotic preliminary results associated with the PORT method-
ology. The asymptotic behaviour of the PORT-classes of tail index estimators
under study, together with the asymptotic comparison of the PORT-Hill and the
PORT-moment estimators at optimal levels, will be derived in Section 3. In Sec-
tion 4, we derive the asymptotic behaviour of the new classes of PORT-quantile
estimators. Finally, in Section 5, we draw some overall conclusions.

2. TECHNICAL DETAILS RELATED WITH THE PORT
METHODOLOGY

2.1. The second order framework for heavy-tailed models under a real
shift

If we introduce a deterministic shift, i.e. a new location, s # 0, in the under-
lying model X, with quantile function U, (¢), the transformed random variable (r.v.)
Y = X+ s has an associated quantile function given by Us(t) = U, (t) = U, (t) + s
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and condition (1.4) can be rewritten as

InUj(tz) — InU(t) — 1 P 1
2.1) lim nlUs(tr) —InUs(t) —yInzx oz ’
t—o0 Ag(?) Ps

for all x > 0, with |A4| € RV,,.

Let F' be a model with quantile function U(t) = U, (t), given in (1.5). Then

A
UY(t):C’t7<1+[(f)+80_1t_7+0(tp)>, as t— oo .

Therefore both Us(t) = U, (t) and U(t) = U, (t) are asymptotically equivalent to

C't7, but
p it p>—y
A R e
The function Ag(¢) in (2.1) can be chosen as

VS
_ £ —

0@ if p<—y

As(t) =< A(t) — %, if p=—v

A(t), it p>—v.

2.2. Asymptotic preliminary results in the PORT methodology

In this subsection we begin with the presentation of the asymptotic re-
sults for the statistics M]{(:C’Mn,q) = Mr(La) (Q((Q)), k < n — ng, based on the sample of

excesses X(@, 0 < g <1, in (1.12) and with M*(X},) provided in (1.8).

In the following, x, denotes the g-quantile of F: F'(x4) = ¢ (by convention
X0 = %, whenever finite) so that,

(2'2) an:n 2, Xq for 0<¢g<1.
n—0o0

We present, without proof, the following Lemma:

Lemma 2.1 (Araidjo Santos et al., 2006). If the second order condition
(1.4) holds, if k = ky, is an intermediate sequence, i.e. (1.3) holds, then, for any
real ¢, 0 < ¢ <1, with F(xq) =q (xo= x,, whenever finite), and for a = 1,2,

(a,q) 1 anz'Jrl:n — Xgq a_ 1
Min™ ~ % Z<1“ Xk — Xq ) - "p<U<n/k>> ‘
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Remark 2.1. Note that if ¢ € (0,1), Xp,:n — Xg = Op(1/y/n) and we
can assure that vk (Mk(;oil’q) - % le (ln(Xn_iH:n —Xq) —In(Xp—in — Xq))a) =
Op(VE/n/U(n/k)) = 0,y(1), for a =1,2.

Proposition 2.1. If the second order condition (1.4) holds and k =k,
is an intermediate sequence, i.e. (1.3) holds, the statistics M}go;,q) = M) (X(@),

with k < n —ng, M,(La)(l(k) given in (1.8) and X@ given in (1.12), satisfy for
a=1,2,

2.3 PSR Vs oo QRp— ¢ W—C PG D
4@ 27%(2+7) Xq

(2,9)
(24) Mk,n - k,n (1 4 7)2 U(n/k) (1 + Op(l)) :

Proof: The first moment of the log-excesses can be rewritten as

k k an:n
1 X*‘Jrl:n*Xn n 1 1 1_X_- -
M = = 1 nt a VA In| —_fn-itin
o k ; ! KXn—kin — an:n kn + k ; . 1— Xngin
- - n—k:n
Since In(1 4+ x) ~ z, as © — 0,
XTL m
1Zk:ln % 2 1§:<an;” _ Xngn >
k
= (X”q:" > 1Z<1_Xnk:">.
ank:n k Xn—i—i—l:n

i=1

If k =k, is intermediate, i.e. (1.3) holds, and {Y;}i=1, . x is a sequence
of independent and identically distributed (i.i.d.) standard Pareto r.v.’s, then
Yok X (n/k) and

U(n/k) % Zk: <1 B )?i’iff)

k
M+ e 5 o (YT ().

Given that E(Y ™) =1/(1++) and by the weak law of large numbers we get
(2.3).
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For a = 2 and using similar developments, we have

Ao 41 f:( Xnoivin  Xo_ )y (14 (1))>2
a5 Tlnjiy &~ i o

nkn

Il

k
M+ ot & 0 () (1) (140, (0)

Il

k
2 Ly
M) (Mé,ln - (v Y, ¥;77) (1 + OP(l))> '

Since E(InY Y~7) = 1/(14+v)? and by the weak law of large numbers we get
(2.4). O

Remark 2.2. It has been proved in Gomes and Martins (2001) that, under
the second order framework, in (1.4), and for levels k such that (1.3) holds, we
get for M, lgo;) = MY (X%), in (1.8), an asymptotic distributional representation of
the type

(1) n
v+ 75% + Al(_/];) (1+0p(1)) ,

M(2) d 272 " 2\/5722122) N 2y (1 — (1_p)2)
hn vk p(1—p)?

where, with {E;};>1 a sequence of i.i.d. standard exponential r.v.’s,

(@) vk o
7 = E Oé+1 ; a:1727
k VIQ2a+1) —T2(a+1) ( Z )>
(a)

is asymptotically standard normal. Moreover, the covariance structure of Z;

Il

A(n/k) (1 + op(l)) ,

is given by

T(a+B+1) — D(a+1)T(B+1)

8
CoIE ) = e e 1) JT@A ) T

3. ASYMPTOTIC BEHAVIOUR OF THE PORT-CLASSES OF
TAIL INDEX ESTIMATORS

In this section we present, under the validity of the second order condition in
(1.4), the asymptotic distributional representations of the PORT-Hill estimators,
Hin(q) := Hy(X@), and the PORT-moment estimators, My ,(q) := M, (X)),
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with functional expressions given by

k
1 Xn—i+1:n - Xn :n)
H = 5 = — ln .
ka(d) = ViemHig) = ; ( Xn—tin — Xngn

and
. 1 1 L2 (2,01t
Mien() = Genarg = MG +1- 5 {1 = (5001
respectively, k < n — ng, M,go;’q) = Méa) (L((Q)), M,S‘)‘) (X%) and X@ provided in
(1.8) and (1.12), respectively.

The following theorem has been proved in Aratjo Santos et al. (2006).

Theorem 3.1 (Aradjo Santos et al., 2006). If the second order condition
(1.4) holds, k = k,, is an intermediate sequence of positive integers, i.e. (1.3) holds,
and for any real q, 0 < q < 1, we have for T}, ,,(¢), with T denoting either H or M,
an asymptotic distributional representation of the type

= 4 LTP]C’T n c Xg o
B1) T = Tunla) L vt 7 (b A00/0) 4 ¢ 20 ) (1 0p(1)

where P, 7, given in (1.9), is asymptotically standard normal, 0T2 and b, are
provided in (1.10),

(3.2) O and ¢, = ———

For simplicity of notation, let us now distinguish the following regions:
e Ri:=7+p<0 A xq#0.

e Ro=v+p>0V (y+p<0Ax,=0).

o Ry:=7+p=0 A xq#0.

Corollary 3.1 (Aratjo Santos et al., 2006). Under the conditions of Theo-
rem 3.1, the following results hold:

o InRy, Tjn(q) 4 v+ 0, Pior/Vk + cpxq(1+0,(1)) /U(n/k). Consequently,
if Vk /U(n/k) — M\ finite, then

\/E(Tkm(q) — fy) 4, Normal(/\lcTXq, 03) .

n—oo

o InTRy, Tin(q) < v+ 0, Por/VE + b, A(n/k) (14 0,(1)). Consequently,
if Vk A(n/k) — )y finite, then

\/E(Tkjn(q) —7) LR Normal (A2b,., ai) .

n—oo
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d
o IRy, Tenl) = 7+ 0, Poa/VE + (bp A(n/k) + ¢ xq /U(n/K)) (1 + 0p(1)).
Consequently, if Vk /U(n/k) — A1 and Vk A(n/k) — Ao, with Ay and A
both finite, then

\/ig(Tk’n(q) - ) <, Normal(A1c, Xq + A2b,, 02) .

n—oo

3.1. Asymptotic comparison at optimal levels

We now proceed to an asymptotic comparison of the estimators at their
optimal levels in the lines of de Haan and Peng (1998), Gomes and Martins (2001),
Gomes et al. (2005, 2007b) and Gomes and Neves (2008). Suppose that 7y, ,, o(q)
now denoted ‘y\.(q)(k), is a general semi-parametric PORT-tail index estimator,
with distributional representation,

ﬁ

which holds for any intermediate k, and where Py, o is an asymptotically standard

(33)  Awgk) = 7+ Pk,.+(b.A<n/k>+c. Xo )(1+op<1>),

U(n/k)

normal r.v. Given the results presented in Corollary 3.1, the Asymptotic Mean
Square Error (AMSE) of 7,4 (k) is

2 2
Oe | 2 (Xq) :
A + c, 02(n k)’ in Rq
2
AMSE Fu(q) (k) = % + b2 A% (nfk), in Ry
i +<b +eg X >2A2(n/k) in R
5 ° (] 9 1 I
[ & CyB ’

where Vars (Jo(q) (k) := 02/k and

Xqg . (1) .
Co Tnfi) de’/U(n/k), in Ry
Biasso (Fu(q) (k) := { be Aln/k) = d¥ A(n/k), in Ry

c Xq n =: ES) n n .
(b.-i— .C’Yﬁ>A( /k) de’ A(n/k), Rs

Let kg o(q) = arg ming AMSE(’/}/\.(Q)(]C)) be the so-called optimal level for
the estimation of v through 7, (k), i.e., the level associated with a minimum
asymptotic mean squared error, and let us denote 7,0 e(q) = Ye(q) (k()’.(q)), the
estimator computed at its optimal level. The use of regular variation theory
enabled Dekkers and de Haan (1989) to prove that, whenever dsi) #0,1=1,2,3
in this study, there exists a function ¢(n) = ¢(n;p,v), dependent only on the
underlying model, and not on the estimator, but dependent here on i =1,2,3,
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such that lim, .~ @(n) AMSE(‘y\n()’.(q)) =: LMSE(;y\nQ.(q)) exists, with LMSE
standing for limiting mean-squared error. Moreover,

(1+2 2 Er
—;7 i (0.2)1+;w ((dsl)f)l“7 , in Ry
1
(34)  LMSE(Fnoe(q) = 2”2;1 (02) T ((d?))2)1*2”, in Ry
2p—1 7 NIz .
5 (0.2) 25 ((dES)) )1 % i Ry,

It is then sensible to consider the following;:

Definition 3.1. Given %, 7= ﬁmq)(k&ﬂ(q)) and Yy0,7,(g) = QTQ(q)(kOVTM))’
two biased PORT-estimators ’/Y\Tl(‘l) and /V\TQ @ for which distributional representa-
tions of the type (3.3) hold with constants (o, ,dy, ) and (o, ,dy, ), dy,,d, 70,
respectively, both computed at their optimal levels, the Asymptotic Root Effi-
ciency (AREFF) of ﬁTl(@ relatively to ?TQ([” is

LMSE (7,
AREFF = AREFF, |5 = (Zno,Ta(q)) |
@@ Y110 1@ LMSE (30,1 (g))

with LMSE given in (3.4).

Remark 3.1. Note that this measure was devised so that the higher the
AREFF measure is, the better the first estimator is.

Remark 3.2. The optimal levels kg r(, for the estimation of v through
Yr(o(k), with T" denoting either H or M are denoted by kg p(q) and ko rr(q) and
are given in Table 1.

Table 1: Optimal levels for the estimation of v through PORT-Hill and
PORT-moment estimators.

Region ko, H(q) Ko, n(q)
2/(1427)
e N T
) Cd+y)n’
IXql V27 72 xql V27

R; (W)”“‘m JTTFE (1= penr VO
B1v=2e R(—p) + Al 161V

( Cl—p)n—r >2/(12p) Cm(l—p)Qn—P 2/(1—2p)
1BC + xql vV—2p P?1B8C + x4l V—2p

Rs
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-2.00

Figure 1: Asymptotic efficiency of 7, relatively to 7, in the (v, p)-plane
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Proposition 3.1. The AREFF-indicator of 7,, ., relatively to 7, Is:

AREFF,

M(q)|H(e)

72

142

72

1+ ~2

02

1+ p?

e
1+2+

1+~ =

y

1(1—p)
Y(1—p)+p

1
]_ — p 1-2p
Pl

)

)

_1
1-2p

in Rq

in Ro

in 733.

This AREF F-measure is presented in Figure 1, where we can see that the
gain in efficiency for the PORT-moment estimator happens for a large region of
values of (7, p).
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1.03

1.03

1.03

1.09

1.05

1.02

1.01

1.01

1.01

1.01

1.01

1.02

1.02

1.02

1.02

1.02

1.02

1.03

1.09

1.05

1.02

1.00

1.00

1.00

1.00

1.01

1.01

1.01

1.02

1.02

1.02

1.02

1.02

1.09

1.05

1.02

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.01

1.01

1.02

1.02

1.02

1.09

1.05

1.02

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.01

1.01

1.01

1.01

1.02

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

1.00

1.00

1.00

1.01

1.01

1.01

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.01

1.01

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.01

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.09

1.05

1.02

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

I:||1<AREFFM(q)|H(q)511| -|11<AREFFM(q)|H(q)515| -|AREFFM(q)|H(q)>15

whenever x, # 0.

4.

ASYMPTOTIC BEHAVIOUR OF THE PORT-QUANTILE

ESTIMATORS

We first present the following result, proved in Ferreira et al. (2003), on the
asymptotic behaviour of intermediate order statistics:
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Proposition 4.1 (Ferreira et al., 2003). Under the second order frame-
work in (1.4) and for intermediate sequences of positive integers k, i.e. if (1.3)
holds,

Xocson £ 0G0 (1422 4 o, (4001

where By, is asymptotically standard normal, and

Cov(Bi, B;) = m(l_j/”), i<i.

j—1

We shall now consider and study the new PORT-quantile estimator, in
(1.14). We can state the following result:

Theorem 4.1. Let us assume that the second order condition in (1.4)
holds, with A(t) = vy [(tP, that k is an intermediate sequence of integers, i.e. (1.3)
holds, and that In(np,)/Vk — 0, as n — oo, with p, given in (1.2). Then, for
any real q, 0 < q <1, and with T denoting either H or M,

(4.1) ‘/E) <@’”’"’T(q) —1) 4

ln(% X1—pn
i JT P]ﬁT + \/E (bTA(n/k) + CT U(?qu/k‘)) (1 + Op(]'))

_ \/jég/)k) <T22:lil12 j:;_—f)) U(n/§1327£> 22:11112 (1+0p(1)),

with (b,,0,) and c, given in (1.10) and (3.2), respectively, and where Py 7 is
asymptotically standard normal.

Proof: The PORT-quantile estimator in (1.14) can be written as

- _ Xn—[k/2):n 1 BN X
Qhpn. () = n—kn{( Xoom 7@ 1 \npn) T X [

Therefore,

Qk,pn,T(q)_lepn _ Xn—[k/?}:n 1 1 i T(q)_'_ an:n . X1—pp
ank:n ank:n 2T(q)_1 npn ank:n ank:n .

As (2.2) holds, we can say that Xy, .n/ X,k = 0p(1), and using the second
order condition in (1.4), we can guarantee that

Xo-p/ogn  UQR) a ., r-1 )
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Since X1-p, = U(1/pn), the result in Proposition 4.1 enables us to write

n _k_ n
Xl-pn _ U(k ”pn) U(E)
Xn—k:n U(%) Xn—k:n

<n; (1 - ““;/k) (1+ o(l))) (1 - Wf;f“ - op(A(n/k>)>

_ <n‘;n>’y (1 - 7\% . A(T;/k:) a +Op(1))> |

1=

\'/4

and the use of the delta method leads us to

LT(q) kY X
23?%)_1 - g?ﬂ <1+<T<q>—7> (1“(7fpn)—§fff)<1+op<1>)>.

Therefore

ISH

~ d
Qkpn,T(q) = X1—pn =

() o = () - 322 )

By Aln/k) (2777 1)
+ N + 2@ 1) (1+op(1))}

(leprjU(n/k) (1 + ’Yfg N A(Z/k) (1+0p(1)))

x {(T(q) ) <ln<nl;n> - 3:%?) (14 0,(1))

VB | Aln/k) (2777 -1)
N TS (1+0,(1)) ¢,

II=

II=

+

using also the result presented in Proposition 4.1. Since

(vBu/VE + (An/R) [p) (1+ 0p(1)) ) = 0p(1/VR)

then

~ d
Qkpn,T(q) = X1—pn =

< (TfprjU(n/k){(T(q)_v) <1n<nl;n> - Z:Ef) (14 0p(1))

Vfg + A<ni)k()252f£—1) (1+ op(l))}.

_|_
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Notice that x1-p, = U(1/pn) = (k/(npn))” U(n/k), and then

Vk @k,pn,T(q) d N VEk _ 271n2
ln<$> ( X1—pn _1> - \/E(T(Q) 7) In %) (T(Q) 7) 27 -1
~ By, VE  A(n/k) (27 —1)

ln(%)

Using the distributional representation of T'(¢) in (3.1) and since In(k/(npy)) — oo,
(4.1) follows. O

m(L) p(27—1)

Corollary 4.1. Under the conditions of Theorem 4.1, the following results
hold:

e In Ry, i.e. for values of v+ p < 0 and x4 # 0,

oy (Bt ) & oo e

\/EX(] 27In2
1+ 0p(1)) .
U(n/k) m(%) =1 (L+op(D)

If Vk /U(n/k) — A\ finite, then

d 2
e Normal()\lcTXq,aT) .

\/E (@k,pn,T(q) _ 1>

In (i X1—pn
npn

e In Ry, ie. for values of v +p >0 or v+ p <0 and x4 =0,

VE ka,me(Q) _ d
In (&) < X1-py 1>
4 o P + Vk (bTA(n/k)) (1 + Op(l))

S )00

If Vk A(n/k) — o finite, then

d
2 Normal(A2b,., ai) :

vk (ék,pn,T(q) _1>

In (L X1 —Pn
npn



High Quantile Estimation and the PORT Methodology 261

e InRs3, i.e. for values of v+ p =0 and x4 # 0,

Vk (@k,pn,T(q) _1> d

ln(% X1—pn -
L o, Por+Vk (bTA(n/k) + ¢, U(i?/k;)) (14 0p(1))

_ x/lEA(n/k)< 271n2 2V+P—1) (\/EXq 2'In2 (1+0,(1)),
U

m(ﬁ) T21-1 p(27-1) n/k) ln(ﬁ> 27—1

If Vk/U(n/k) — A1 and vk A(n/k) — Mo, with A\ and Ao both finite,
then

<, Normal (A1 ¢, xq + A2b,, 0'3,) .

n—oo

Vk (@k,me(q) _1>
ln<$) X1—pn

Remark 4.1. Notice that, under a second order framework, the mean
value and the variance of the r.v. vk (:Y\k:,n,T(q) — y), provided in Corollary 3.1,
are equal to the ones of \/E(ék’me(q)/xl_pn — 1)/ln(k/(npn)).

Since In (k: /(n pn)) goes to infinity very slowly, we can state a pre-asymptotic
distributional representation, for moderate k and n:

Corollary 4.2. Under the conditions of Theorem 4.1 and for moderate
values of k and n, the following pre-asymptotic results hold:

o InTRy, if \/E/U(n/k:) — A1, finite, and with

oo [y 2 m2 1
A N YA
\/E (@kp T(q) ) d 72
SR —1) = Normal | pu, 0?1+ .
ln(k‘/(npn)) X1-py, T 02 1n2(k/(npn))
o InTRy, if Vk A(n/k) — Mo, finite, and with
1 27 In2 AR |
= Agb. |1+ — ,
e ( (k/(np)) <2v—1 p(27—1)b, ))

VE (Qrpra) > 2 Normal [ 1. 62 il
ln(k‘/(npn))< X1—py, 1) ~ Normal iz, o {1+ o2 1n2(k:/(npn)) '
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e InRs, if Vk/U(n/k) — A1 and Vk A(n/k) — o, with Ay and Xo both
finite, then, with

N \ ) 27 1n2 1
= C -
p+ o 161 Xq 27 =1 ¢, In(k/(npn))

b |14 1 <271n2_ 27te 1 )
2 m(k/(npn) \27=1 7 p(2=1)b, ) )

vk @/kvme(’I) > 4 2 72
ln(k/(npn)) ( - —1) = Normal( p1+ p2, o[ 1+ —UT2 1n2(k/(npn)) )

5. CONCLUSIONS

The new PORT-quantile estimator, defined in (1.14), is asymptotically
equivalent to the PORT-quantile estimator in (1.13), studied in Aratjo Santos
et al. (2006). Consequently, and for finite sample sizes, we do not expect a much
better behaviour of this new estimator comparatively to the one in (1.13). How-
ever, the use, in (1.14), of a PORT-version of a minimum-variance reduced-bias
extreme value index estimator, like the ones in Caeiro et al. (2005), Gomes et al.
(2007a) and Gomes et al. (2008b), leads to quantile estimators which overpass
the estimator in Caeiro and Gomes (2008) and enjoy the adequate behaviour
in the presence of linear transformations of the data. Also, the use of subsam-
pling procedures, similar to the ones in Hall and Scotto (2008), can improve this
estimation procedure. These are however topics out of the scope of this paper.
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