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1. Introduction

CCs are widely used for scrutinizing industry and manufacturing processes. Numerous

articles were published on monitoring and detecting shifts in processes or systems, which are

essential for effectively supervising equipment performance. Xie et al. (2000) published a

paper on controlling process reliability, highlighting the strengths and weaknesses of various

CCs, including Shewhart charts.

When various attributes of a process are monitored simultaneously, one of the most

commonly used methods is the T 2-Hotelling CCs. For example, Wibawati et al. (2022)

proposed a new version of the T 2-Hotelling CC based on a fuzzy neutrosophic concept to

address the challenges associated with the traditional Hotelling charts, which require well-

documented datasets. Imran et al. (2023) incorporated principal component analysis and the

T 2-Hotelling CC to develop a robust technique for monitoring compositional data transformed

by isometric log-ratio. Zaidi et al. (2023) combined the T 2-Hotelling statistic with a neural

network to detect undesirable shifts, such as outliers and trends, for a classification task.

Profiles are used in situations where the qualities of products or processes are defined

by a functional relationship between a response (dependent) variable and one or more ex-

planatory (independent) variables. Regression models emphasize prediction and quantifying

relationships, whereas profile models concentrate on describing and understanding the char-

acteristics of specific groups. Roshanbin et al. (2022) instructed a multi-objective economic-

statistical design for LPs. They considered three objective functions to model the cost: the

Lorenzen-Vance cost function, the In-Control (IC) ARL0, and the Out-Of-Control (OOC)

ARL1. Also, they established lower and upper bounds for ARL0 and ARL1, respectively.

Yeganeh and Shongwe (2023) conducted a study on profile monitoring of the cryptoclas-

tic markets using a novel cryptocurrency charting application. They applied their proposed

chart to monitor price variations for two of the most well-known cryptocurrencies, Bitcoin and

Ethereum. To validate their chart, they performed parameter adjustments and compared the

results with established technical indicators using a real dataset, ultimately demonstrating

the effectiveness of their novel method. Nancy et al. (2023) conducted a survey on regression

CC, which combines the conventional CC concept with regression methods for processes influ-

enced by interrelated independent variables. Their paper facilitates the selection of the most

suitable CC for researchers, based on the quality characteristics of the processes involved in

their research needs.

Nonparametric charts are exceptional because they do not require any assumptions

regarding the distribution of the variable. Consequently, misattributing an incorrect distri-

bution of the data can lead to significant economic losses. As a result, extensive research has

been conducted on the unknown distribution of data to identify changes in processes. Perdikis

et al. (2023) examined three nonparametric Shewhart CCs for assessing scale parameters in

finite-horizon production processes using nonparametric tests. A numerical analysis, along

with a real-world industrial example, was provided to demonstrate the effectiveness and prac-

tical application of these techniques.

ME possesses numerous outstanding features, including unbiasedness, suitability for

ill-posed data, and effectiveness with small sample sizes, which render its results acceptable
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across various applications. Additionally, ME has specific parameters that are learned from

the dataset. Dalleiger and Vreeken (2020) introduced a new version of ME called relaxed

ME, which utilizes dynamic factorization of the joint distribution to mitigate computational

complexity. They emphasized several important applications of ME, including classification

and pattern mining. Che et al. (2022) introduced a novel method for the decision-making

trial and evaluation laboratory based on ME techniques to optimize the normalization of

the direct matrix. This approach minimizes the information loss and enhances accuracy,

making it suitable for emergency management. Macedo (2024) introduced a two-stage ME

method for estimating model parameters and bootstrapping data replication in the time

series regression. This approach showed significant advantages over traditional methods, as

evidenced by both simulated and empirical examples. Here, we present another application

of ME for detecting minor undesired shifts in manufacturing processes.

In this paper, we propose a novel monitoring method for production processes that

moves beyond observing the corresponding mean. We utilize a straightforward LP approach

for this new CC. The LP establishes a functional relationship between a response variable

and a single explanatory variable, akin to a Linear Regression (LR) model. The objective

of this paper is to determine an appropriate control limit for the profile coefficients. We

introduce an innovative method for defining a CC based on a distribution-free framework.

Therefore, instead of relying on the default normal distribution, we derive the unknown joint

distribution of our model variables based on ME. The new CC is impressive when compared

to the charts presented in this article for monitoring manufactured products. A crucial step

in ME is to determine the unknown joint distribution of the available variables based on their

observations. In real-world applications, the joint distribution is often passive and must be

estimated effectively. Subsequently, we utilize this density to define an appropriate nonpara-

metric CC. Finally, the unknown profile coefficients are approximated using this specified

distribution. Besides, we apply the standard LR parameter estimators to compare with the

newly proposed method. We incorporate the algorithms of ME and LR CCs to enhance the

applicability and reproducibility of the results for users, along with a straightforward exam-

ple demonstrating their application. Finally, we conduct simulation studies to compare the

effectiveness of the explained CCs with the Fisher-based chart using the ARL as a metric.

Ultimately, we apply these charts to real data examples to evaluate their performance in

practice.

This paper has numerous applications across diverse challenges. For instance, Geng

et al. (2023) developed a non-LR model to monitor the freshness of chicken meat. Similarly,

Zhao et al. (2020) employed discrete element methods and fuzzy algorithms to analyze and

control soil compaction during seedbed preparation. These are some examples of where our

method can be effectively applied to facilitate decision-making.

The structure of this paper is organized as follows: In Section 2, the ME principle

is employed to determine the unknown distribution functions. Section 3 presents relevant

literature and fundamental definitions of profiles. In Section 4, both ME and LR are utilized

to estimate the coefficients necessary for establishing control limits based on the T 2-Hotelling

statistic. Simulation studies are discussed in Section 5. Section 6 provides an example using

authentic data from the semiconductor production process. Section 7 features a real-world

pharmaceutical example that demonstrates the effectiveness of ME. Finally, conclusions are

drawn in Section 8.
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2. Bivariate ME Distribution

Two significant principles in dynamic optimization are the Maximum Pontryagin (MP )

principle, presented in Kopp (1962), and the Lagrange method. In this context, we utilize the

ME principle, as introduced in Jaynes (1957), because our objective function is the Shan-

non entropy but the objective function in the Lagrange method can vary depending on the

specific problem at hand. Although the MP and ME methods are related, they are used in

different contexts and have distinct formulations tailored to their specific applications. The

MP is specifically used in optimal control theory, where the goal is to optimize a perfor-

mance criterion over time while considering the dynamics of a system. It incorporates the

Hamiltonian, which combines the objective functional and the system dynamics. In con-

trast, the ME introduces Lagrange multipliers to incorporate constraints directly into the

optimization process, allowing for the derivation of density functions that maximize entropy

subject to the constraints. The ME is more general and can be applied to various types

of optimization problems, particularly those involving static scenarios, whereas the MP is

specifically designed for dynamic control systems where the evolution of states over time is

critical. Thus, in many studies, including our case study, the results of the ME and MP can

be seen as complementary, but they are not necessarily equivalent. Each method provides

valuable insights within its own framework, depending on the nature of the problem being

addressed.

In this paper we focus on Shannon entropy, introduced by Shannon (1948). Shannon

entropy is widely utilized as an information criterion for approximating density functions. For

instance, the distributions of financial variables, stock returns, and incomes can be derived

from the ME by defining specific intentional constraints. The ME distribution is the most

unbiased density that satisfies the given constraints. In statistical terms, an estimator is

deemed unbiased if its mathematical expectation matches the true parameter it estimates.

For a given distribution, this implies that when we calculate the expected value based on

that distribution, it should equal the parameter the distribution is intended to estimate.

This means that the ME distribution refers to the concept that the resulting distribution

imposes the fewest additional assumptions beyond those specified in the constraints.

To determine the bivariateME, letX and Y be two random variables with joint density

function fX,Y (x, y). The joint Shannon entropy is defined as follows:

H(f) = −
∫ ∫

S(X,Y )
log(fX,Y (x, y)) fX,Y (x, y) dx dy,

where S(X,Y ) is the joint support set of X and Y .

Using ME to determine an unknown density function involves selecting constraints

that accurately reflect our understanding of the process while remaining as non-informative

as possible. The goal is to derive the distribution that best represents our state of knowledge

without introducing additional bias. Understanding the modeling process and the available

information are essential factors to consider when selecting appropriate constraints. This

includes experimental data, known parameters such as the mean and variance, as well as any

given physical laws. Knowledge of expected values, such as the mean or variance, can serve as

constraints. If real data exists, it facilitates selection, and constraints can be established based
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on the main characteristics associated with the data. Additionally, if further information is

available, such as skewness or kurtosis, it can also be incorporated into the constraints. Since

we investige the ME for the approximation of density functions, one crucial constraint is

normalization, which is defined as the integral of the function being equal to 1. Note that

while adding more constraints may enhance the model, it also complicates the solution.

As a consequence, we establish constraints for X and Y based on mathematical expec-

tations and the available data. Suppose mi(·)’s, for i = 1, . . . , r, are some arbitrary moment

functions based on the available information from the data at hand. For example, one choice

of mi(x, y) can be xy = n−1
∑n

j=1 xi yi, where the value is computed using the existing

dataset, and n represents the sample size. The functions hi(X,Y ), for i = 1, . . . , r, are de-

fined according to mi(·)’s. For instance, if mi(x, y) = xy, then its corresponding hi(X,Y ) is

XY . So, ME constraints are defined as:

E(hi(X,Y )|f) =

∫ ∫
S(X,Y )

hi(X,Y ) fX,Y (x, y) dx dy(2.1)

= mi(x, y), i = 1, . . . , r,

where r is the number of constraints and mi(x, y)s are known values. In Equation (2.1), x

and y represent the observations of X and Y , respectively, while f denotes their actual joint

density function, which remains undetermined. Therefore, our objective is to approximate

the function using the ME. To achieve this, we apply the Lagrange function, which is

constructed by Shannon entropy and the constraints outlined in (2.1):

L(f, λ0, . . . , λr) = −
∫ ∫

S(X,Y )
log(fX,Y (x, y)) fX,Y (x, y) dx dy

−λ0{
∫ ∫

S(X,Y )
fX,Y (x, y) dx dy − 1}

−Σr
i=1λi{

∫ ∫
S(X,Y )

hi(x, y) fX,Y (x, y) dx dy −mi(x, y)}.

The coefficient λ0 ensures that the resulting function is a valid density function based on the

following fact:

(2.2)

∫ ∫
S(X,Y )

fX,Y (x, y) dx dy = 1.

So, by differentiation of the Lagrange function for f , we get:

∂L(f, λ0, . . . , λr)

∂f
= − log(f)− 1− λ0 − Σr

i=1λi hi(X,Y ).

Then, by setting the equation equal to zero, the following equation must be solved for f :

∂L(f, λ0, . . . , λr)

∂f
= 0.

Finally, the ME density is derived:

(2.3) fX,Y (x, y) = exp(−1− λ0 − Σr
i=1λi hi(x, y)), (x, y) ∈ S(X,Y ).

The Lagrange coefficients λ0, . . . , λr are unknown and must be computed by substituting the

function in Equation (2.3) into the desired constraints (2.1) and (2.2). Consequently, the ME

coefficients are determined by solving the system of equations for the λ values. We provide

a more detailed explanation in Subsection 5.1. In the following section, we aim to calculate

the profile coefficients based on ME and compare them with those from LR.
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3. Profile Definition

Profiles can take various forms, including simple LPs, multivariate LPs, multiple LPs,

polynomial LPs, generalized LPs, and non-LPs. In this paper, we focus on simple LPs.

First, let us assume that there are n fixed-point observations from variable X, and k random

samples from variable Y corresponding to each observation of X. So, we have a vector of

observations form X and a matrix of samples form Y . In an IC situation, Y and X are

modeled with:

(3.1) yj
∼

= a+ b x
∼
+ εj

∼
, j = 1, . . . , k,

where k represents the total number of samples, each of size n. The term x
∼

denotes the

observations of X, and the intrinsic error εj
∼

is an independent random variable that follows a

normal distribution with a mean of zero and a fixed variance of σ2. The intercept a and slope

b are referred to as profile coefficients. The model described in equation (3.1) is analogous

to simple LR; however, the key difference lies in the witnessing of vector X. In LR, there

are different vectors of yj
∼

and xj
∼

for each sample, and the model is yj
∼

= a + b xj
∼

+ εj
∼

for

j = 1, . . . , k. In contrast, there are only different vectors of response variable yj
∼

in LP, and

the same vector of x
∼
is used as it is fixed in (3.1).

In this paper, our objective is to monitor the profile coefficients a and b of a process

over time, rather than focusing on the process means. We aim to observe potential shifts

resulting from changes in the coefficients.

4. Calculation of Profile Coefficients

This section introduces a novel nonparametric method for determining profile coeffi-

cients and the corresponding CC. This method does not require any fundamental assumptions

about the data, which is an advantage of the entropy principle. We compare the results of

our distribution-free method with the coefficients from LR. We refer to it as distribution-free

because we do not make any assumptions about the distributions of X and Y . We define a

two-dimensional vector (a, b), then apply the T 2-Hotelling statistic to reduce the dimension-

ality to 1. Let x
∼
= (x1, . . . , xn) represents the fixed observations of X and let k denotes the

sample numbers of Y , each with a length of n:

(y1
∼
, x
∼
), . . . , (yk

∼
, x
∼
).

Currently, we calculate (a, b) for k samples via ME and LR. Hence, we desire to present

some notations first:

m1
∼

= (â1−ME , b̂1−ME), . . . ,mk
∼

= (âk−ME , b̂k−ME),(4.1a)

l1
∼
= (â1−LR, b̂1−LR), . . . , lk

∼
= (âk−LR, b̂k−LR).(4.1b)
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Vector (â1−ME , b̂1−ME) includes the estimated values of coefficients in (3.1) using ME for

the first sample named as m1
∼
. The equivalent meaning is coming from (â1−LR, b̂1−LR) that is

called l1
∼
with LR approximation. In the next step, we estimate the unknown distribution of

each sample to calculate the corresponding coefficients m1
∼
, . . . ,mk

∼
. As mentioned in section

2, some constraints are necessary to compute ME distribution. We choose six conditions

presented as follows for j = 1, . . . , k:

(4.2)



∫ ∫
S(X,Yj)

fX,Yj (x, y) dx dy = 1,∫ ∫
S(X,Yj)

x fX,Yj (x, y) dx dy = x,∫ ∫
S(X,Yj)

y fX,Yj (x, y) dx dy = yj ,∫ ∫
S(X,Yj)

x2 fX,Yj (x, y) dx dy = x2,∫ ∫
S(X,Yj)

y2 fX,Yj (x, y) dx dy = y2j ,∫ ∫
S(X,Yj)

xy fX,Yj (x, y) dx dy = xyj .

We determine the Lagrange coefficients λ0, . . . , λ5 in such a way explained in (2.2) that the

final fX,Y (·, ·) is a valid joint density function. To achieve this, we substitute the function

from Equation (2.3) into the system of equations represented by (4.2). Subsequently, we solve

the equations for the Lagrange coefficients. The estimated joint distribution functions of X

and Y are obtained via ME for each sample (yj
∼
, x
∼
), where j = 1, . . . , k. As a result, we have

k distributions corresponding to each sample. The parameters a and b in ME are defined as

follows:

b̂j−ME =
Ej [(X − Ej(X))(Y − Ej(Yj))]

Ej [(X − Ej(X))2]
,(4.3a)

âj−ME = Ej(Yj)− b̂j−ME Ej(X), j = 1, . . . , k,(4.3b)

where Ej(·) represents the mathematical expectation based on the ME density function, the

index j corresponds to fX,Yj (x, y) for j = 1, . . . , k. The corresponding LR coefficients are

computed for k samples:

b̂j−LR =

∑n
i=1(Xi −X)(Yij − Y j)∑n

i=1(Xi −X)2
,(4.4a)

âj−LR = Y j − b̂j−LR X, j = 1, . . . , k.(4.4b)

For practical application, detailed information on calculating the coefficients is available in

Subsection 5.1.

Our goal is to plot m1
∼
, . . . ,mk

∼
and l1

∼
, . . . , lk

∼
to detect shifts of a process instead of

monitoring its means. To do this, we use T 2-Hotelling statistic for all samples j = 1, . . . , k

as below, and we name them T 2
j−ME and T 2

j−LR for ME and LR, respectively:

T 2
j−ME = (mj

∼
−m

∼
)′S−1

m (mj
∼
−m

∼
), j = 1, . . . , k,(4.5a)

T 2
j−LR = (lj

∼
− l

∼
)′S−1

l (lj
∼
− l

∼
), j = 1, . . . , k,(4.5b)

where m
∼

and l
∼

are two-dimension means related to m1
∼
, . . . ,mk

∼
and l1

∼
, . . . , lk

∼
. Sm and Sl

are the variance-covariance estimation matrices of m1
∼
, . . . ,mk

∼
and l1

∼
, . . . , lk

∼
, respectively. We
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define two Upper Control Limits (UCLs) to assess the status of T 2. The first UCL used here

is based on Fisher distribution, which is the same for T 2
j−ME and T 2

j−LR:

(4.6) UCLF =
p(k + 1)(k − 1)

k2 − pk
Fα,p,k−p,

where p represents the number of profile coefficients, and in this case, p = 2. When the

number of samples k exceeds 100, the control limits are adjusted to:

(4.7) UCLF =
p(k − 1)

k − p
Fα,p,k−p.

The second control limit is quantile of T 2
1−ME , . . . , T

2
k−ME and T 2

1−LR, . . . , T
2
k−LR . These

control limits are calculated separately for ME and LR:

UCLME = qME ,(4.8a)

UCLLR = qLR,(4.8b)

where qME and qLR are (1 − α)100% T 2-Hotelling quantile values of ME and LR, respec-

tively. α is the first type of error, sometimes determined as 0.05. We develop algorithms to

comprehensively explain monitoring data using the ME and LR methods.

The ME Algorithm:

1. Have k observation vectors of y
∼
and a vector x

∼
with n dimensions.

2. Calculate the unknown joint distributions of (yj
∼
, x
∼
) for j = 1, . . . , k via ME. To do

that, substitute (2.3) in system (4.2) and solve it for λ’s.

3. Compute values of (4.3a) and (4.3b) for each b̂j−ME and âj−ME using the jth distri-

bution. So, we have (4.1a).

4. Find (4.5a) values and plot the points.

5. Use UCLs (4.8a) along with either (4.6) or (4.7) to make a decision.

The LR Algorithm:

1. Have k observation vectors of y
∼
and a vector x

∼
with n dimensions.

2. Calculate (4.4), so we have (4.1b).

3. Compute (4.5b) and plot the result points.

4. Use UCLs (4.8b) in conjunction with either (4.6) or (4.7) to derive the results for

control situations.

These two methods are effective for detecting small shifts; however, the ME method is more

effective. The values of ARL0 and ARL1 are estimated for stepwise shifts in intercepts and

slopes in the simulation study section to support this assertion.
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5. Simulation Studies

In this section, we employ presented methods to identify shifts in a comprehensive

simulation study, as detailed in Subsection 5.2. ARL is the average number of IC samples

plotted before detecting an OOC point. The ARL0 is typically calculated based on the first

type of error, denoted as α, for uncorrelated data, as shown below:

(5.1) ARL0 =
1

α
,

where α represents the probability that an IC sample reaches the UCL. The term ARL0 is

used to evaluate the performance of control limits, while ARL1 is applied to detect shifts in

the process mean, referred to as OOC ARL, and defined as follows:

(5.2) ARL1 =
1

1− β
,

where β represents the second type of error, defined as the probability of remaining in the

statistical control when a mean shift occurs. Typically, the control monitoring of a process

comprises two phases: Phase I and Phase II. Appropriate control limits are established based

on Phase I. Next, it is assessed whether the process is IC and if these established control limits

are reliable for Phase II to detect unwanted changes. Furthermore, the parameters, including

ARL0, are calculated during this phase. The purpose is to promptly detect undesirable shifts

or changes in the process parameters.

5.1. Method Explanations with a Simple Example

Let’s examine a small simulation example and outline the steps for determining the

nonparametric control limits using the methods described in this article. The simulated data

is presented in Table 1. The applied constraints for the four samples in rows (j = 1, . . . , 4)

are:

(5.3)



∫ ∫
S(X,Yj)

fX,Yj (x, y) dx dy = 1,∫ ∫
S(X,Yj)

x fX,Yj (x, y) dx dy = x,∫ ∫
S(X,Yj)

y fX,Yj (x, y) dx dy = yj ,∫ ∫
S(X,Yj)

x y fX,Yj (x, y) dx dy = xyj .

Table 1: Simulated data in phase I.

sample
x

y xy
0.05 0.1 0.15 0.2

y

1 0.135 1.434 1.228 2.133 1.233 0.190
2 0.955 1.143 1.493 2.058 1.412 0.199
3 0.267 1.122 1.350 1.948 1.172 0.179
4 0.179 0.915 1.154 2.435 1.171 0.190
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The final condition in (5.3) involves a straightforward dependency factor between the vari-

ables. The Lagrange function is written for each sample j = 1, . . . , 4:

Lj(f, λ0, λ1, λ2, λ3) = −
∫ 7.435

0

∫ 5

0
log(fX,Yj (x, y)) fX,Yj (x, y) dx dy

−λ0{
∫ 7.435

0

∫ 5

0
fX,Yj (x, y) dx dy − 1}

−λ1{
∫ 7.435

0

∫ 5

0
x fX,Yj (x, y) dx dy − x}

−λ2{
∫ 7.435

0

∫ 5

0
y fX,Yj (x, y) dx dy − yj}

−λ3{
∫ 7.435

0

∫ 5

0
x y fX,Yj (x, y) dx dy − xyj}.

After taking the derivative with respect to fX,Yj (·) and setting it equal to zero, like the steps

in Section 2, we get the following function, which is a similar to (2.3):

(5.4)

fX,Yj (x, y) = exp(−1− λ0j − xλ1j − yλ2j − xyλ3j), j = 1, . . . , 4, x ∈ (0, 5), y ∈ (0, 7.435).

For simplicity, we nominate 1+λ0j as λ0j as a fixed term. The conditions are rewritten using

function (5.4) for each j = 1, . . . , 4:

(5.5)



∫ 7.435
0

∫ 5
0 exp(−λ0j − xλ1j − yλ2j − xyλ3j) dx dy = 1,∫ 7.435

0

∫ 5
0 x exp(−λ0j − xλ1j − yλ2j − xyλ3j) dx dy = 0.125,∫ 7.435

0

∫ 5
0 y exp(−λ0j − xλ1j − yλ2j − xyλ3j) dx dy = yj ,∫ 7.435

0

∫ 5
0 xy exp(−λ0j − xλ1j − yλ2j − xyλ3j) dx dy = xyj .

The system of equations (5.5) contains unknown parameters, λ0j , . . . , λ3j . ME coefficients

are calculated by solving this system of equations for λs. The number of samples is four,

so system (5.5) must be solved four times to obtain the ME distributions. The Lagrange

coefficients are presented in Table 2. For example, the approximated distribution of the first

sample is:

(5.6) fX,Y1(x, y) = exp(2.064− 9.558 x− 0.948 y + 1.024 x y), x ∈ (0, 5), y ∈ (0, 7.435).

Next, the profile coefficients must be computed using ME with the obtained distributions.

Table 2: Coefficients of ME for data in Table 1.

Sample λ0 λ1 λ2 λ3

1 −2.064 9.558 0.948 −1.024
2 −1.844 9.046 0.776 −0.656
3 −2.106 9.467 0.992 −1.022
4 −2.147 9.760 1.018 −1.157

Equation (4.3) is used to determine m1
∼
, . . . ,mk

∼
. For example, the procedure to obtain m1

∼
is
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as follows using (5.6):

E1(X) =

∫ 7.435

0

∫ 5

0
x fX,Y1(x, y) dx dy = 0.125,

E1[(X − E1(X))2] =

∫ 7.435

0

∫ 5

0
(x− E1(X))2 fX,Y1(x, y) dx dy = 0.018,

E1(Y1) =

∫ 7.435

0

∫ 5

0
y fX,Y1(x, y) dx dy = 1.233,

b̂1−ME =
1

E1[(X − E1(X))2]

∫ 7.435

0

∫ 5

0
(x− E1(X))(y − E1(Y1)) fX,Y1(x, y) dx dy

= 2.041,

â1−ME = E1(Y1)− b̂1−ME E1(X) = 0.977,

The profile coefficients for all samples are computed using ME and LR, as shown in Table 3.

The computation for the LR section of the table follows the traditional LR methodology. The

values of T 2
ME are derived from Equation (4.5a). UCLME , is set at the 95th percentile of the

T 2
ME values, which is equal to 1.938. UCLLR and UCLF are 2.006 and 71.25, respectively.

The Fisher-based limit is illogical as it is excessively high. The same steps are applied to the

data in phase II to determine T 2
ME . The difference between the calculations in phases I and

II lies in the computation of the T 2-Hotelling statistic. In this case, the formulations (4.5a)

and (4.5b) are utilized, incorporating m
∼
, Sm, l

∼
, and Sl from phase I, Montgomery (2019).

This example aims to demonstrate the practical implementation of the algorithms. In the

next subsection, a comprehensive example involving the ARL computation is presented.

Table 3: Profile coefficients via ME and LR with T 2-Hotelling.

Sample
ME LR

âME b̂ME T 2
ME âLR b̂LR T 2

LR

1 0.977 2.041 0.405 −0.215 11.576 0.107
2 1.236 1.409 1.976 0.498 7.318 2.036
3 0.937 1.878 1.725 −0.146 10.542 1.471
4 0.890 2.249 1.248 −0.581 14.014 1.836

5.2. Comprehensive Simulation Study

To initiate the simulation study, we generate 100 samples with n = 5 from the model

Y = 2 + 3X + ε, where ε follows a normal distribution with a mean of 0 and a variance of

0.1. When the process is IC, the error must follow a zero-mean normal distribution. If it

does not, the source of the error must be identified and eliminated. The fixed observations

of X for all 100 samples are (2, 2.2, 2.4, 2.1, 2.7). We propose six constraints for this data,

and the approximated density function using ME is:

(5.7) fX,Y (x, y) = exp(−λ0 − xλ1 − yλ2 − x2λ3 − y2λ4 − xyλ5), (x, y) ∈ S(X,Y ).
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We calculate UCLs of the Fisher, 95% quantile in ME, and LR:

(5.8)


UCLF = 6.304,

UCLME = 5.591,

UCLLR = 5.800.

To calculate ARL0 based on equation (5.1), we simulate 1000 batches of the correct model

once more. ARL0 for ME are:

ARL0 =


1

0.059 = 16.949 ≃ 17, UCL = UCLF ,

1
0.08 = 12.500 ≃ 13, UCL = UCLME ,

and the related ARL0 for LR are:

ARL0 =


1

0.047 = 21.277 ≃ 22, UCL = UCLF ,

1
0.058 = 17.241 ≃ 18, UCL = UCLLR.

Keep in mind that the standard ARL0 for α = 0.05 is 20. The values of ARL0 indicate

the number of samples required to trigger a false alarm when the process is IC. A higher

number of ARL0 values signifies a better selection of control limits, resulting in false alarms

occurring less frequently and later. Conversely, a lower ARL0 indicates accruing more false

alarms. Therefore, the optimal choice of UCL is UCLF in the LR context. We increase the

quantile percentage to 98.75%, and the corresponding UCL values are:

(5.9)


UCLF = 9.354,

UCLME = 11.348,

UCLLR = 6.905.

Then, we have:

ARL0 =


1

0.018 = 55.556 ≃ 56, UCL = UCLF ,

1
0.009 = 111.111 ≃ 112, UCL = UCLME ,

ARL0 =


1

0.01 = 100, UCL = UCLF ,

1
0.034 = 29.412 ≃ 30, UCL = UCLLR.

Interestingly, the results indicate a preference for ME, which exhibits the highest ARL0.

The standard ARL0 is 80 for α = 0.0125. We simulate datasets using shifted models and

testing methods to detect changes in the process means by ARL1, as defined in (5.2). Three

shifted models are presented that include intercepts, slopes, and a combination of both.
Model 1 : Y = (2 + s) + 3X + ε,
Model 2 : Y = 2 + (3 + s)X + ε,
Model 3 : Y = (2 + s) + (3 + s)X + ε,

where shift s is from 0.01 to 0.32:

s = {0.01, 0.02, 0.03, . . . , 0.3, 0.31, 0.32}.
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98.75% confidence.
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(f) Shifts in model 3 with
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Figure 1: βs for defined models with 95% and 98.75% confidences.

Figure 2: Illustrations of various etching profiles form of a DRIE process, adapted from Zou
et al. (2007).

The values of β are plotted for all models in Figures 1. Figures 1a, 1b, and 1c correspond

to the models using (5.8), while Figures 1d, 1e, and 1f are based on (5.9). The horizontal

and vertical axes represent shifts and β, respectively. Each plot presents four curves: two for

ME with different UCL values and two for LR. From all the plots, we can conclude that as

the number of shifts increases, the control limits become more sensitive to detecting changes

in a procedure.

For very small shifts in Figures 1a, 1b, and 1c, the ME method with the UCLME

performs better than the alternatives. However, as the shift values increase, the ordinary LR

method becomes more effective. Therefore, when production process standards are stringent,

the ME method proves advantageous. Conversely, when the standards are less stringent,

the complex calculations associated with ME can be avoided, making the use of LR more

appropriate. An increase in confidence indicates that the process standards are not as strict,
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suggesting that LR computations are preferable. Thus, the primary aim of the ME method

is to maintain high accuracy in the process; otherwise, the LR method is more suitable.

We provide the ARL1 for the models using equations (5.8) and (5.9) in Table 4, which

is based on stepwise shifts. Table 4 consists of three sections: the intercept, slope, and

mixed model. An additional column is included at the end to indicate which model has the

minimum value of ARL1. For small shifts, the ME using the UCLME exhibits the lowest

value. However, as the shifts become more significant, the optimal control limit is the LR

using the UCLLR.

When the intercept shifts from the origin, the data experiences slight changes. However,

when the slope changes, this alteration is amplified in the data, resulting in a more significant

impact. These unwanted changes become more pronounced when both the intercept and

slope are altered. Consequently, when only the intercept shifts, it becomes more challenging

to detect. Referring back to Table 4, the ME can identify small changes more quickly than

the LR method. If the technician’s objective is not to detect minor changes, the complex

computations involved in the entropy method can be bypassed in favor of using LR. The

effectiveness of the entropy method is most evident when the goal is to identify small changes.

The ME can be applied in various manufacturing processes that should not experi-

ence minor shifts. These processes are particularly sensitive in critical productions, such as

pharmaceutical production or high-cost procedures. Consequently, any potential changes are

detected promptly to prevent financial losses.

6. Semiconductor Production Process

In this section, we work on a profile dataset from Zou et al. (2007), whose process

is on deep reactive ion etching process (DRIE) from semiconductor manufacturing. They

mentioned the source of used data in the DRIE process as one of the most important quality

characteristics in the profile of a trench that may significantly impact the downstream oper-

ations, May et al. (1991). The desired profile is a smooth and vertical sidewall, as indicated

in the centre sample in Figure 2. The first dataset included 18 samples with size n = 11, and

the observed vector of independent variable is (−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5).
The second set, for phase II, consisted of 14 samples of the same size.

We aim to check the second phase of the process to see if there are possible defective

products. Zou et al. (2007) noted that the last sample of Phase II is OOC. Thus, our control

limits should detect these changes in the process. We calculate the UCLF and compare it with

UCLME and UCLLR. We compute ME distributions of all 18 samples considering (5.7) to

find the UCLME . We provide six Lagrange coefficients of ME according to constraints (4.2)

in Table 5. Profile coefficients of all 18 ME distributions are in Table 6 with T 2-Hotelling

values and LR results. The next step is to specify beneficial UCLs to monitor the rest of the

process:

(6.1)


UCLF = 8.151,

UCLME = 4.857,

UCLLR = 4.857.
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Table 4: ARL1’s for 95% and 98.75%.

Quantile 95% 98.75%
Minimum ARL1 ↓Methods LR ME LR ME

UCL UCLF UCLLR UCLF UCLME UCLF UCLLR UCLF UCLME

ARL0 22 18 17 13 100 30 56 112
← Maximum ARL0

UCLME - 98.75%

Shifts Intercept

0.01 22.727 17.241 17.543 12.500 83.333 27.027 43.478 62.5 UCLME - 95%
0.02 22.727 18.182 14.925 11.363 76.923 29.412 35.714 66.667 UCLME - 95%
0.03 13.889 11.765 10.101 8.620 38.465 17.241 18.182 25.641 UCLME - 95%
0.04 10.870 9.009 10.989 8.333 35.714 14.286 21.739 40.000 UCLME - 95%
0.05 6.897 5.988 9.433 7.299 21.739 8.333 20.408 32.258 UCLLR - 95%
0.06 5.814 4.902 7.299 6.060 16.393 7.092 18.519 31.25 UCLLR - 95%
0.07 4.854 4.274 6.896 5.847 11.494 5.988 14.085 23.256 UCLLR - 95%
0.08 3.268 3.003 6.060 4.784 6.803 3.717 12.346 19.231 UCLLR - 95%
0.09 2.747 2.469 5.000 3.861 5.263 3.067 10.526 17.544 UCLLR - 95%
0.10 2.132 1.953 4.424 3.484 3.817 2.381 10.101 15.625 UCLLR - 95%
0.15 1.217 1.185 1.745 1.557 1.538 1.242 3.322 4.950 UCLLR - 95%
0.20 1.012 1.009 1.165 1.119 1.063 1.018 1.575 1.965 UCLLR - 95%
0.30 1.000 1.000 1.000 1.000 1.000 1.000 1.007 1.022 -

Shifts Slope

0.01 26.316 19.231 13.888 10.526 111.111 32.258 43.478 76.923 UCLME - 95%
0.02 9.709 8.403 9.174 7.299 29.412 12.658 18.182 29.412 UCLME - 95%
0.04 2.703 4.464 4.901 3.676 5.236 3.049 10.753 18.182 LR - UCLF - 95%
0.06 1.374 1.328 2.192 1.886 1.980 1.449 4.202 6.803 UCLLR - 95%
0.07 1.136 1.115 1.485 1.353 1.395 1.188 2.358 3.289 UCLLR - 95%
0.09 1.014 1.010 1.081 1.053 1.057 1.022 1.325 1.639 UCLLR - 95%
0.10 1.001 1.001 1.033 1.015 1.008 1.003 1.178 1.348 UCLLR - 95%

Shifts Intercept and Slope

0.01 15.873 12.346 12.048 10.101 52.632 18.182 27.778 40.000 UCLME - 95%
0.02 5.051 4.329 7.751 6.211 11.905 5.917 18.182 31.250 UCLLR - 95%
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0.03 2.375 2.119 3.937 3.174 4.386 2.681 7.813 12.346 UCLLR - 95%
0.04 1.412 1.328 2.192 1.912 2.004 1.490 4.255 6.410 UCLLR - 95%
0.05 1.139 1.120 1.445 1.344 1.342 1.166 2.342 3.546 UCLLR - 95%
0.06 1.026 1.021 1.160 1.111 1.073 1.037 1.529 2.045 UCLLR - 95%
0.07 1.007 1.005 1.031 1.018 1.017 1.008 1.183 1.362 UCLLR - 95%
0.08 1.000 1.000 1.008 1.003 1.002 1.000 1.037 1.093 -
0.09 1.000 1.000 1.001 1.000 1.000 1.000 1.012 1.030 -
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.004 -
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We compute ME Lagrange coefficients of the 14 samples of phase II in Table 7 using (5.7).

The corresponding ME and LR profile coefficients, along with the T 2-Hotelling statistics,

are presented in Table 8. All coefficients and statistics are identical for the ME and LR.

Both methods identify the 14th sample as OOC, as highlighted in Table 8. The intriguing

part of the result is that the traditional Fisher CC cannot detect this shift. Back to Equation

(6.1), the proposed charts have the same UCL, but the Fisher-based has a higher UCL,

which makes the superiority of ME and LR performance. As a consequence, since ME and

LR results are the same, the LR is preferable due to its simpler computations. In the next

section, we tackle another example that shows the overall superiority of ME.

Table 5: The Lagrange coefficients of ME for IC DRIE process.

Number λ0 λ1 λ2 λ3 λ4 λ5

1 2.148 0.087 −0.734 0.204 0.258 −0.061
2 2.154 −0.014 −0.752 0.200 0.263 0.010

3 2.150 −0.072 −0.726 0.203 0.255 0.051

4 2.275 −0.043 −0.818 0.201 0.258 0.027

5 2.127 0.021 −0.847 0.200 0.307 −0.015
6 2.293 0.024 −0.808 0.200 0.251 −0.015
7 2.082 0.064 −0.563 0.203 0.216 −0.049
8 2.340 0.098 −0.907 0.203 0.276 −0.059
9 2.265 −0.090 −0.703 0.204 0.221 0.056

10 2.202 −0.013 −0.754 0.200 0.252 0.008

11 2.196 −0.163 −0.852 0.211 0.290 0.111

12 2.299 0.086 −0.799 0.203 0.246 −0.053
13 2.397 0.053 −0.812 0.201 0.231 −0.030
14 2.307 −0.005 −0.997 0.200 0.317 0.003

15 2.248 −0.027 −0.563 0.200 0.180 0.017

16 2.379 −0.044 −0.739 0.201 0.210 0.025

17 2.565 −0.075 −1.139 0.201 0.313 0.041

18 2.104 0.001 −0.605 0.200 0.225 −0.001

Table 6: ME and LR coefficients with T 2-Hotellings for IC data of DRIE process.

Number
ME LR

âME b̂ME T 2
ME âLR b̂LR T 2

LR

1 1.422 0.118 2.864 1.422 0.118 2.864

2 1.428 −0.018 0.700 1.428 −0.018 0.700

3 1.425 −0.099 1.985 1.425 −0.099 1.985

4 1.585 −0.053 0.376 1.585 −0.053 0.376

5 1.383 0.025 1.416 1.383 0.025 1.416

6 1.613 0.029 0.423 1.613 0.029 0.423

7 1.303 0.114 4.802 1.303 0.114 4.802

8 1.645 0.108 2.399 1.645 0.108 2.399

9 1.594 −0.128 2.166 1.594 −0.128 2.166

10 1.495 −0.017 0.138 1.495 −0.017 0.138

11 1.471 −0.192 5.170 1.471 −0.192 5.170

12 1.623 0.107 2.161 1.623 0.107 2.161

13 1.760 0.065 3.098 1.760 0.065 3.098
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14 1.572 −0.005 0.037 1.572 −0.005 0.037

15 1.565 −0.047 0.250 1.565 −0.047 0.250

16 1.758 −0.060 2.609 1.758 −0.060 2.606

17 1.818 −0.065 4.121 1.818 −0.065 4.121

18 1.347 0.002 1.936 1.347 0.002 1.936

Table 7: The Lagrange coefficients of ME for phase II of DRIE process.

Number λ0 λ1 λ2 λ3 λ4 λ5

1 2.351 0.094 −1.051 0.203 0.327 −0.059
2 2.266 −0.109 −0.814 0.205 0.259 0.069

3 2.237 −0.018 −0.720 0.200 0.232 0.012

4 2.218 0.1001 −0.799 0.204 0.265 −0.066
5 2.228 0.0389 −0.702 0.201 0.228 −0.025
6 2.173 0.0480 −0.635 0.201 0.218 −0.033
7 2.247 −0.000 −0.562 0.200 0.180 0.000

8 2.211 −0.020 −0.638 0.200 0.211 0.013

9 2.274 −0.077 −0.589 0.203 0.183 0.048

10 2.277 0.011 −0.738 0.200 0.230 −0.007
11 2.140 0.051 −0.611 0.202 0.218 −0.037
12 2.268 0.019 −0.563 0.200 0.176 −0.012
13 2.322 0.019 −0.787 0.200 0.237 −0.012
14 2.154 −0.08 −0.470 0.205 0.171 0.061

7. Pharmacy Profile Data

In the previous example, both charts act the same, but this example shows the prefer-

ence of ME. We choose a pharmaceutical industry profile dataset adapted from Shah et al.

(1998). In the pharmaceutical industry, many processes are under restricted statistical con-

trol. For instance, in the production of a particular tablet, many characteristics are observed

to ensure that the product is of a standard quality. Ma et al. (2000) indicate that the U.S.

food and drug administration had to define many conductance of scale-up and post-approval

changes for different types of shifts during production processes. In this regard, the statistical

quality CCs are influential in pharmaceutical processes.

There are six groups of profile data in Shah et al. (1998), each containing the response

variable in four columns as the cumulative dissolution of tablets at 30, 60, 90, and 180

minutes. The sample sizes have to be 12 according to the guidance of ”Dissolution Testing

of Immediate Release Solid Oral Dosage Forms”, Ma et al. (2000). The first group is a

pre-change as a dissolve reference in different minutes. The other five batches are from post-

change processes. The beneficial aspect is detecting the similarity or dissimilarity of 5 batches

from the reference group. For ME, we applied model (5.7) for the unknown approximation

of the density function. Then, we calculate T 2-Hotelling statistics for these profiles via ME
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and LR in Table 9. UCLs are at the confidence level of 0.9973:

(7.1)


UCLF = 26.977,

UCLME = 6.813,

UCLLR = 5.884.

Shah et al. (1998) declared that all batches have unwanted changes in the amount of dis-

solution. The dissolved values of batch 4 related to 30-minute are only dissimilar to the

reference data in this group. ME reflects this reality via different T 2-Hotelling values in

Table 9. Without any ambiguity, all batches except batch 4 are too different from the refer-

ence. Although all tablets of batch 4 are OOC based on UCLME , they are not as gigantic

as other batch values. The larger the T 2-Hotelling values, the greater the difference com-

pared to the reference batch. So, ME detects undesirable changes concerning the reference

group. Nine tablets in batch 4 are IC according to the T 2
ME and UCLF , which means that

the traditional way cannot realize changes. The result of LR in Table 9 is quite different.

LR does not completely detect changes in batch 1, and there are IC tablets in bold. Also,

29 IC samples exist related to UCLF pointed by stars. Moreover, some tablets in batch 1

are IC, which is far from the reality. LR decision has some shortcomings. Thus, the ME

power is straightforward, and other methods cannot indicate the post-change of the dataset

in batches.

We have other information from Shah et al. (1998). The dissolved differences of batch

2 are 15% more than the reference group at 30-minute, but the differences are reduced to less

than 8% at 60, 90, and 180-minutes. So, one of the diversity of batch 2 comes from 30-minute

data. We recalculate in the absence of 30-minute data in Table 10. Batch 4 at 30-minute

differs from the reference group more than 12%. The 30-minute data are excluded, and the

corresponding Hotelling statistic is recalculated in Table 10. The confidence level of these

UCLs are 0.9973%:

(7.2)


UCLF = 26.977,

UCLME = 7.895,

UCLLR = 7.233.

According to Table 10, in UCL (7.2) columns, T 2-Hotelling statistics are reduced for batches

2 and 4, which means that their discrepancies are diminished from the reference group. Batch

2 is still OOC, andME reflects it obviously, but batch 4 becomes more similar to the reference

mentioned in bold. The conclusion of LR shown in Table 10 is the same. All tablets are

OOC for batch 2. Almost all of them for batch 4 are IC, the same as the UCLME . Shah

et al. (1998) expressed about batch 3 that the differences are more than 12% at 90-minute

between this batch and the reference group, and the differences become less than 10% in the

absence of data for 90-minute. So, we remove the 90-minute data and recalculate it all. The

related T 2-Hotelling is in Table 10 with their related reference amounts. The used UCLs are

at the confidence level 0.9973:

(7.3)


UCLF = 26.977,

UCLME = 6.407,

UCLLR = 5.865.
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Table 8: ME and LR coefficients for DRIE process in phase II with T 2-Hotelling.

Number
ME LR

âME b̂ME T 2
ME âLR b̂LR T 2

LR

1 1.605 0.090 1.511 1.605 0.090 1.511

2 1.574 −0.134 2.303 1.574 −0.134 2.303

3 1.550 −0.025 0.052 1.550 −0.025 0.052

4 1.510 0.125 2.482 1.510 0.125 2.482

5 1.537 0.055 0.540 1.537 0.055 0.540

6 1.456 0.075 1.297 1.456 0.075 1.297

7 1.564 −0.001 0.023 1.564 −0.001 0.023

8 1.515 −0.031 0.137 1.515 −0.031 0.137

9 1.611 −0.131 2.347 1.611 −0.131 2.347

10 1.605 0.015 0.256 1.605 0.015 0.256

11 1.403 0.084 2.091 1.403 0.084 2.091

12 1.598 0.033 0.374 1.598 0.033 0.374

13 1.659 0.025 0.801 1.659 0.025 0.801

14 1.371 −0.178 5.773 1.371 −0.178 5.773

Table 9: T 2-Hotelling of tablets in phases I and II. The asterisk (∗) indicates the IC
values concerning UCLF , while the bold values pertain to the IC samples using UCLME and
UCLLR. The utilized control limits are in (7.1).

Number Reference Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

ME

1 0.910 2531250 40212322 24964618 16.395∗ 18160920

2 0.426 2528833 40139281 24937534 19.672∗ 18175083

3 0.942 2524719 40201702 24942289 20.274∗ 18143501

4 1.633 2524318 40165632 24924941 13.657∗ 18140501

5 6.867 2507804 40231679 24950972 38.401 18161265

6 0.705 2503931 40195131 24925518 20.163∗ 18155740

7 1.090 2525108 40156018 24964433 22.483∗ 18159950

8 2.198 2524320 40204586 24949374 17.023∗ 18157899

9 0.374 2527543 40223125 24961179 26.166∗ 18151208

10 1.313 2529049 40190721 24955811 23.062∗ 18171547

11 5.041 2523157 40213998 24946082 28.308 18163695

12 2.083 2512610 40188450 24942731 37.346 18160788

LR

1 0.754 3.606∗ 9.745∗ 22.387∗ 26.566∗ 30.804

2 0.546 1.257∗ 66.229 16.150∗ 35.799 30.211

3 1.066 4.799∗ 10.038∗ 16.779∗ 46.385 55.707

4 0.265 3.286∗ 50.992 37.221 23.326∗ 53.688

5 5.944 63.696 7.94085∗ 20.633∗ 43.577 25.901∗

6 1.112 77.022 23.14788∗ 11.417∗ 48.051 41.270

7 1.131 10.347∗ 49.88452 25.844∗ 42.771 36.815

8 1.893 5.028∗ 18.980∗ 19.095∗ 29.292 42.0778

9 0.490 0.781∗ 6.022∗ 27.745 39.823 46.064

10 1.574 2.557∗ 28.837 23.897∗ 39.109 24.267∗

11 3.910 11.328∗ 15.905∗ 7.477∗ 40.167 27.370

12 0.791 38.186 32.921 45.483 59.874 36.490



22 S.A. Fallah Mortezanejad et al.

Table 10: T 2-Hotelling in the absence of some data. The asterisk (∗) values mean IC samples
concerning UCLF , and the bold ones are the IC samples according to UCLME and UCLLR.

UCL (7.2) UCL (7.3) UCL (7.4)
Number Reference

except 30-
min

Batch 2
except
30-min

Batch 4
except
30-min

Reference
except
90-min

Batch 3
except
90-min

Reference
except
60-min

Batch 5
except
60-min

ME
1 0.860 32054088 0.860∗ 0.646 11342273 1.031 7100891
2 0.097 31966736 0.097∗ 0.662 11326617 0.333 7108760
3 1.074 32042515 1.074∗ 0.765 11329719 0.820 7094211
4 7.932 32003090 7.932∗ 0.989 11320807 0.752 7094148
5 6.674 32066905 6.674∗ 6.483 11335365 6.522 7095663
6 1.510 32024502 1.510∗ 0.674 11318497 0.699 7099653
7 0.479 31984663 0.480∗ 0.974 11343690 1.517 7102175
8 2.329 32042369 2.329∗ 3.084 11334122 2.885 7102262
9 0.370 32054088 0.370∗ 0.369 11341106 0.414 7097997
10 0.250 32041637 0.250∗ 1.375 11338460 1.626 7104667
11 5.784 32055156 5.784∗ 3.937 11330098 2.434 7100702
12 4.926 32031147 4.926∗ 1.024 11331677 0.892 7102083

LR
1 0.781 19.479∗ 0.781∗ 0.745 18.700∗ 0.811 9.815∗

2 0.104 31.607 0.104∗ 0.618 12.680∗ 0.414 14.402∗

3 1.064 10.549∗ 1.064∗ 0.814 15.636∗ 1.060 23.690∗

4 7.280 14.664∗ 7.280∗ 0.341 29.589 0.239 19.501∗

5 5.696 31.996 5.696∗ 5.938 19.4079∗ 5.935 8.271∗

6 1.456 10.165∗ 1.456∗ 0.947 8.489∗ 1.052 15.840∗

7 0.347 17.764∗ 0.349∗ 1.122 25.023∗ 1.404 14.091∗

8 2.091 16.018∗ 2.091∗ 2.987 17.193∗ 2.456 17.012∗

9 0.505 19.480∗ 0.505∗ 0.435 23.507∗ 0.548 18.130∗

10 0.336 9.787∗ 0.336∗ 1.513 22.448∗ 1.632 8.317∗

11 5.169 21.787∗ 5.170∗ 3.465 6.065∗ 2.043 6.871∗

12 3.795 10.816∗ 3.795∗ 0.593 38.090 0.337 18.874∗

The proportion of the reference and batch 3 in the absence of 90-minute data is strongly

rejected by ME using UCLF and UCLME (7.3). Although T 2-Hotelling values are too large

here, they are less than the calculated values in Table 9 related to batch 3. The result for LR

is the same, and all dissolutions are OOC, which declares that batch 3 is not equivalent to the

reference. We come across a very different result with T 2
LR and UCLF . Almost all of these

samples become IC, which is a massive disparity in decision-making. Further information

is that the difference between the batch 5 and the reference is more than 17% for dissolved

amounts of tablets at 60-minute data. It gets less than 10% when the 60-minute data are

absent. The T 2-Hotelling values are recalculated in Table 10. UCLs at the significant level

of 0.0027 are:

(7.4)


UCLF = 26.977,

UCLME = 6.414,

UCLLR = 5.831.

The likeness between batch 5 and the reference is denied by both methods in the absence of 60-

minute data. Although all T 2-Hotelling amounts viaME are less than the corresponding ones

in Table 9, they show the existing differences. This decreasing in values means the reduction of

perturbation in the samples that happened by removing the 60-minute. This pharmaceutical

example demonstrates the superiority of the ME method, which makes decisive decisions,
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while the LR method is unable to distinguish changes properly. Therefore, when the process

produces a vital product, quality control must be reliable enough.

8. Conclusion

In statistical quality CCs, the purpose is to find suitable limits to check processes

during time to keep them IC or to detect shifts as soon as possible to save money and

time. There are some methods for this aim, and most charts are according to process means

and normal distribution. To our knowledge, they are insufficient to detect different kinds

of shifts. Therefore, we present a profile investigation of change points according to their

coefficients. LP models are applied to implement our new nonparametric chart. We consider

two estimation methods. The first method is an entropy-based distribution-free novel CC,

compared with LR. We use a T 2-Hotelling statistic to handle vector dimensions.

We design a CC to detect changes in production processes by monitoring coefficients

rather than means. We define three shifted models and calculate β, ARL0, and ARL1 to

assess the chart performance. We conclude from the simulation results that both methods

can detect small shifts; however, the ME method demonstrates superior performance with

fewer false errors. In conclusion, we present two real datasets that contain change points

within the samples. The small shift is not discernible when analyzing mean CCs; however,

changes can be easily detected by ME and LR using profile data. Eventually, we present the

performance of charts in three scenarios: a simulation example, semiconductor production,

and pharmaceutical profiles. The effectiveness of the ME method in the second example is

relatively outstanding.
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