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1. INTRODUCTION

Within the Bayesian framework, it is typically assumed that non-sample information
is accessible prior to observing a random sample. This information is utilized to define the
prior distribution. However, in practical scenarios, such information is often unavailable.
Moreover, any chosen prior distribution can only serve as an approximation of the true
prior distribution. Consequently, selecting an appropriate prior distribution stands as one
of the major challenges in the Bayesian framework. This challenge becomes particularly
pronounced when one attempt to solve a statistical problem using a Bayesian approach,
but there is disagreement regarding the selection of the same prior distribution or the prior
parameters (hyperparameters). An often employed strategy to tackle the issue of uncertainty
in prior distributions within Bayesian statistics is to select a set of prior distributions and
compute a range of Bayesian estimators based on these choices. This approach is known as
the Robust Bayesian approach in the Bayesian literature (Hu and Xiao, 2023). The purpose
of this approach is to examine the robustness of the results obtained through a Bayesian
analysis when faced with uncertainty regarding the specific details of the analysis. In a robust
Bayesian approach, a standard Bayesian analysis is employed for all conceivable combinations
of prior distributions and likelihood functions chosen from the designated classes of priors.
The robust Bayesian approach involves pairing a class of the prior distributions with a class
of likelihood functions through Bayes’ theorem to obtain a class of posterior distributions. In
this approach, changing the prior within a given class of priors has an impact various Bayesian
quantities of interest such as posterior risk, Bayesian risk, and others. When applying the
robust Bayesian analysis, in practice, obtain a range of Bayes estimators. However, despite
having this range of Bayesian estimators, it remains unclear which specific value within the
range is the most suitable choice. Therefore, the question arises as to how to obtain an optimal
estimator based on the available range of Bayesian estimator values.To this end, there are
some methods such as Gamma-minimax (GM), Conditional Gamma Minimax (CGM) and
Posterior Regret Gamma Minimax (PRGM) (Hu and Xiao, 2023).

When calculating Bayesian quantities such as posterior risk, Bayesian risk, and Bayes
estimator, the choice of the prior distributions is not the only factor to consider. The selection
of loss function also plays a crucial role. Among the simplest and most commonly used loss
functions is the squared error loss function. This function is convex and symmetric, penalizing
overestimation and underestimation equally.

However, there are situations where the cost of overestimation may differ from that of
underestimation. In such cases, asymmetric loss functions such as Linex and Entropy are
more appropriate choices. It is important to note that none of these mentioned loss functions
are bounded. Nevertheless, certain scenarios may be necessitate the use of bounded loss
functions, such as inverted gamma, inverted normal, or other bounded alternatives. These
bounded loss functions are valuable when the nature of the problem under study requires
them. In this paper, we specifically consider the Reflected Gamma(RG) loss function denoted
as L(λ, d) which is expressed as follows:

(1.1) L(λ, d) = k

1−
(
λ

d

)γ

e
−γ

(
λ

d
−1

) ; λ > 0, d > 0
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where k represents the maximum loss, which should be a positive value. The shape parameter
γ is also positive and influences the penalty for deviations between the true scale parameter
λ and the estimator d chosen by the statistician. The RG loss function is designed to balance
the trade-off between underestimation and overestimation of the scale parameter λ. The loss
function (1.1) is referred to as Reflected Gamma(RG) since it is derived by inverting the
gamma density function. This function is a bounded function with lower and upper bounds
of 0 and k, respectively. It exhibits distinct properties depending on the range of the input
values. On the interval (0, 1), the RG loss function is decreasing, while on the interval (1,∞),
it is increasing. One important characteristic of the RG loss function is its asymmetry and
non-convexity. Unlike symmetric loss functions, the RG loss function penalizes underesti-
mation more severely than overestimation. This feature captures the preference for avoiding
underestimation in certain applications.

Let λ represent the parameter of interest, and let d denote an estimate of this parameter.
We denote the class of estimators as ∆, indicating that d belongs the set of the estimators ∆.
Additionally, we assumed that PR(d,λ) represents the Posterior Risk(PR) function associated
with the estimator d.

Definition 1.1. The estimator λ̂CGM ∈ ∆ is defined as the CGM estimator if the
following condition holds:

(1.2) inf
d∈∆

sup
π∈Γ

PR(d, λ) = sup
π∈Γ

PR(λ̂CGM , λ)

Definition 1.2. The estimator λ̂PRGM ∈ ∆ referred to as the PRGM estimator if
the following condition is satisfied:

(1.3) inf
d∈∆

sup
π∈Γ

ρ(d, λ) = sup
π∈Γ

ρ(λ̂PRGM , λ)

where ρ(d, λ) = PR(d, λ) − PR(λ̂, λ) represents the posterior regret, and λ̂ is the Bayesian
estimator of λ.

In this paper, we focus on deriving the CGM and PRGM estimators. To achieve this,
we present a formal definition of these estimators, along with a detailed discussion of their
specific characteristics and properties.

In the field of robust Bayesian methods, several researchers have made significant con-
tributions. Betrò and Ruggeri (1992) investigated the CGM estimator under convex loss
functions. Insua et al. (1995) derived the PRGM estimator using squared error loss func-
tion. Additionally, Boratyńska (2002) obtained the PRGM estimation for the mean of the
normal distribution under the Linex loss function. Boratynska (2005) focused on the GM
prediction for a random variable from distributions within the quadratic exponential family,
employing the squared error loss function. Other researchers have also contributed to robust
Bayesian prediction. Some notable examples are included Boratyńska (2006), Jozani and
Parsian (2008), Kamińska and Porosiński (2009), Kiapour and Nematollahi (2011), Karim-
nezhad et al. (2014), Karimnezhad and Moradi (2016), Boratyńska (2017), and Hu and Xiao
(2023).

The rest of this paper is organized as follows. Section 2 computes the posterior distri-
bution and subsequently derive the Bayesian estimator using the RG loss function. Sections
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3 and 4 focus on obtaining the CGM and PRGM estimators for the parameter λ, considering
the RG loss function and three different classes of prior distributions, respectively. Section
5 presents a simulation study, while Section 6 provides an analysis of real data. Finally,
concluding remarks are discussed in Section 7.

2. POSTERIOR DISTRIBUTION

In recent years, the Burr XII distribution has gained significant attention and has
been applied in various fields, including survival analysis and insurance statistics (Singh and
Maddala, 1976). This distribution is characterized by the following survival and density
functions:

S(t|α, λ) = (1 + tα)−λ, t > 0

f(t|α, λ) = αλtα−1(1 + tα)−(λ+1), t > 0,(2.1)

respectively, where α and λ are positive shape parameters. For each lifetime Ti, consider an
indicator function δi = 1, if Ti is observed lifetime and δi = 0 if Ti is right-censored lifetime at
censoring time C. Therefore, the data set is {(T ∗

i , δi); i = 1, 2, · · · , n}, where T∗
i = min {Ti,C}

and δi = I {Ti ≤ C}. The likelihood function for {(T ∗
i , δi); i = 1, 2, · · · , n} can be expressed

as follows:

(2.2) L(α, λ|t∗) =
n∏

i=1

{f(t∗i |α, λ)}
δi {S(t∗i |α, λ)}

1−δi .

where f(t∗i |α, λ) represents the density function of the Burr XII distribution with shape pa-
rameters α and λ, and S(t∗i |α, λ) represents the survival function of the Burr XII distribution
with the same shape parameters. In this likelihood function, the term {f(t∗i |α, λ)}

δi cor-
responds to the contribution of observed lifetimes to the Likelihood, while {S(t∗i |α, λ)}

1−δi

represents the contribution of right-censored lifetimes. By substituting the density function
f and survival function S with their respective expressions from (2.1), the likelihood function
can be rewritten as:

(2.3) L(t∗|α, λ) = α
∑n

i=1 δiλ
∑n

i=1 δi
{ n∏

i=1

(
t∗

α−1

i

1 + t∗
α

i

)δi
}
e−λW ,

where t∗ = (t∗1, t
∗
2 · · · t∗n)′ is the vector of observed and censored lifetimes, and W =

n∑
i=1

log(1+

t∗
α

i ). We assume that the shape parameter α is known. Additionally, the parameter λ is
assigned a Gamma prior distribution with shape parameter a > 0 and rate parameter b > 0.
This prior distribution for λ is specified as:

(2.4) π(λ|a, b) ∝ λa−1e−bλ, λ > 0, a > 0, b > 0.

Using Eqs. (2.3) and (2.4), the posterior distribution of parameter λ can be obtained as
follows:

π(λ|t∗,W, α, a, b) ∝ L(t∗|α, λ)π(λ|a, b) ∝ λa+
∑n

i=1 δi−1e−(b+W )λ, λ > 0, a > 0, b > 0,(2.5)
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which is a gamma distribution with shape and rate parameters a +
∑n

i=1 δi and b + W ,
respectively. The Posterior Risk (PR) of the estimator d under the RG loss function can be
given by

PR(d, λ) =

∫ ∞

0
L(d, λ)π(λ|t)dλ

=

∫ ∞

0
k
{
1−

(
λ

d

)γ

e
−γ(

λ

d
−1)}λa+

∑n
i=1 δi−1e−(b+W )λ(b+W )a+

∑n
i=1 δi

Γ(a+
∑n

i=1 δi)
dλ(2.6)

= k − k
Γ(a+

∑n
i=1 δi + γ)

Γ(a+
∑n

i=1 δi)

(b+W )a+
∑n

i=1 δi(
b+W +

γ

d

)a+γ+
∑n

i=1 δi
d−γeγ .

By evaluating this integral, we can obtain the posterior risk of the estimators d under RG loss
function, which provides a measure of expected risk associated with the estimator considering
the uncertainty in λ and the observed data. Assuming that γ is a positive integer, it can be
shown that

(2.7) Γ(a+

n∑
i=1

δi + γ) = Γ(a+

n∑
i=1

δi)

γ−1∏
j=0

(a+

n∑
i=1

δi + j).

Using Eq. (2.7), the Eq. (2.6) can be written as follows:

PR(d, λ) = k − k

γ−1∏
j=0

(
a+

n∑
i=1

δi + j

)
(b+W )a+

∑n
i=1 δi(

b+W +
γ

d

)a+γ+
∑n

i=1 δi
d−γeγ(2.8)

On differentiating Eq. (2.8) with respect to d, we have

∂PR(d, λ)

∂d
=kγeγd−γ−2

γ−1∏
j=0

(a+

n∑
i=1

δi + j)(b+W )a+
∑n

i=1 δi+1

×
(
b+W +

γ

d

)−a−γ−
∑n

i=1 δi−1 {
d−

a+
∑n

i=1 δi
b+W

}
.(2.9)

This equation represents the derivative of the Posterior Risk (PR) with respect to d, which
provides information about the rate of change of the PR as d varies. By analyzing last
Eq., we can gain insights into behavior of the PR and identify critical points or values of d
that minimize or maximize the PR. By solving the last Eq. with respect to d, the Bayesian
estimator of parameter λ under RG loss function is given by

(2.10) λ̂π =
a+

∑n
i=1 δi

b+W

which is increasing and decreasing function with respect to a and b, respectively. To obtain
the CGM and PRGM estimators for λ, three classes of prior distributions are considered:

Γa = {Gamma(a, b); a = a0 , b1 ≤ b ≤ b2},
Γb = {Gamma(a, b); b = b0 , a1 ≤ a ≤ a2},
Γa,b = {Gamma(a, b); a1 ≤ a ≤ a2 , b1 ≤ b ≤ b2},

where a0, a1, a2, b0, b1, b2, γ and k are known. It is also assumed that a0 ∈ (a1, a2)

and b0 ∈ (b1, b2). These classes of prior distributions provide flexibility in modeling the
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uncertainty in the shape parameters of the Gamma distribution prior to incorporating the
observed data. In the Γa(Γb) class, there is an agreement between two or more decision
makers on the value of the shape (rate) hyperparameter, but there is no agreement on the
rate (shape) hyperparameter. While in the third class Γa,b, there is no any agreement on the
value of any of the shape and rate hyperparameters.

3. CGM ESTIMATION

In this section, we discuss the CGM estimator of λ under the class Γa,b and the RG
loss function. Given that Eq. (2.8) is a function of the parameters a, b, and d, for simplicity,
we assume it is equal to PR(d, λ) = h(a, b, d). Then, the partial derivatives of h with respect
to a, b and d are computed as follows:

∂h(a, b, d)

∂a
=

d2(b+W ) + dγ

γ
C1(a, b, d)

{
log(1 +

γ

d(b+W )
)−

γ−1∑
j=0

1

a+
∑n

i=1 δi + j

}
,

∂h(a, b, d)

∂b
= dC1(a, b, d)

{
d−

a+
∑n

i=1 δi
b+W

}
,

∂h(a, b, d)

∂d
= (b+W )C1(a, b, d)

{
d−

a+
∑n

i=1 δi
b+W

}
,

where C1(a, b, d) is

C1(a, b, d) =kγeγd−γ−2


γ−1∏
j=0

(a+

n∑
i=1

δi + j)

 (b+W )a+
∑n

i=1 δi

×
(
b+W +

γ

d

)−a−
∑n

i=1 δi−γ−1

The root of the equation ∂h(a, b, d)

∂a
= 0 is

d1 = γ
{
(b+W )

(
− 1 + exp

{ γ−1∑
j=0

1

a+
∑n

i=1 δi + j

})}−1
.

Since d1 is an increasing (decreasing) function with respect to a ( b ), we have infa,b d1 = d1
and supa,b d1 = d̄1, where

d1 = γ

(b2 +W )

−1 + exp


γ−1∑
j=0

1

a1 +
∑n

i=1 δi + j




−1

,

d̄1 = γ

(b1 +W )

−1 + exp


γ−1∑
j=0

1

a2 +
∑n

i=1 δi + j




−1

.

It can be easily observed that

(3.1) ∂h(a, b, d)

∂a


> 0, d < d1

= 0, d = d1

< 0, d > d1.
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The root of the Eqs. ∂h(a, b, d)

∂d
= 0 and ∂h(a, b, d)

∂b
= 0 is as follows:

(3.2) d =
a+

∑n
i=1 δi

b+W
= d2 (say).

It is evident that:

(3.3) ∂h(a, b, d)

∂b
,
∂h(a, b, d)

∂d


> 0, d > d2

= 0, d = d2

< 0, d < d2.

Since d2 is an increasing function of a and a decreasing function of b, we have:

(3.4) inf
a,b

a+
∑n

i=1 δi
b+W

=
a1 +

∑n
i=1 δi

b2 +W
= d2,

(3.5) sup
a,b

a+
∑n

i=1 δi
b+W

=
a2 +

∑n
i=1 δi

b1 +W
= d̄2.

Since for all a and b, d1 has an upper bound, i.e., d1 < d2, we conclude that d1 < d2 and
d̄1 < d̄2.

Theorem 3.1. The CGM estimator of λ, denoted as λ̂, under the class of prior
Γa,b and RG loss function does not have a closed form expression. It needs to be obtained
numerically by solving the following equality:

(3.6)

(
b1 +W +

γ

λ̂

)a2+
∑n

i=1 δi+γ

(
b2 +W +

γ

λ̂

)a1+
∑n

i=1 δi+γ
=

(b1 +W )a2+
∑n

i=1 δi

(b2 +W )a1+
∑n

i=1 δi

γ−1∏
j=0

a2 +
∑n

i=1 δi + j

a1 +
∑n

i=1 δi + j
.

Proof: The CGM estimation of λ can be obtained by considering the following three
cases:

Case (I) : 0 < d < d1.
If d < d1, then h(a, b, d) is a increasing (decreasing) function of a (b and d) and therefore

inf
d<d1

sup
π∈Γa,b

h(a, b, d) = h(a2, b1, d1) =k − k
{ γ−1∏

j=0

(a2 +
n∑

i=1

δi + j)
}

(3.7)

× (b1 +W )a2+
∑n

i=1 δi

(b1 +W +
γ

d1
)a2+

∑n
i=1 δi+γ

.

Case (II) : d > d̄2.
For d > d̄2, h(a, b, d) is a decreasing (an increasing) function of a (b and d) and so

inf
d>d̄2

sup
π∈Γa,b

h(a, b, d) =h(a1, b2, d̄2)(3.8)

=k − k
{ γ−1∏

j=0

(a1 +
n∑

i=1

δi + j)
}
(ez)γ(1 + γz)−a1−

∑n
i=1 δi−γ ,

where z =
b1 +W

(b2 +W )(a2 +
∑n

i=1 δi)
=

1

(b2 +W )d̄2
.
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Case (III) : d1 < d < d̄2.
When d1 < d < d̄2, then according to d1 < d2, there are three situations to consider:

(1) d1 < d < d1 < d2 < d̄2,

(2) d1 < d1 < d < d2 < d̄2,

(3) d1 < d1 < d2 < d < d̄2.

In each case, h(a, b, d) behaves as follows: Increasing (decreasing), decreasing (decreas-
ing) and decreasing (increasing) function of a ( and b). Therefore, supπ∈Γa,b

h(a, b, d) =

max {h(a2, b1, d), h(a1, b1, d), h(a1, b2, d)}. Let l1(d) = h(a2, b1, d)− h(a1, b1, d). Then,

l1(d) = kd−γeγ
{ γ−1∏

j=0

(a1 +
n∑

i=1

δi + j)
(b1 +W )a1+

∑n
i=1 δi(

b1 +W +
γ

d

)a1+∑n
i=1 δi+γ

−
γ−1∏
j=0

(a2 +
n∑

i=1

δi + j)
(b1 +W )a2+

∑n
i=1 δi(

b1 +W +
γ

d

)a2+∑n
i=1 δi+γ

}
.

After differentiating l1(d) with respect to d, we get:

∂l1(d)

∂d
= −ga1,b1(d)

(
d−

a1 +
∑n

i=1 δi
b1 +W

)
+ ga2,b1(d)

(
d−

a2 +
∑n

i=1 δi
b1 +W

)
,

where

(3.9) ga,b(d) = kγeγd−γ−2
γ−1∏
j=0

(a+
n∑

i=1

δi + j)
(b+W )a+

∑n
i=1 δi+1(

b+W +
γ

d

)a+∑n
i=1 δi+γ+1

.

It is easy to verify that ∂l1(d)

∂d
< 0, l1(d1) > 0, l1(d̄2) < 0 and hence l1(d1)l1(d̄2) < 0.

Therefore, there exists d∗ ∈ (d1, d̄2) such that l1(d
∗) = 0, or equivalently, h(a2, b1, d

∗) =

h(a1, b1, d
∗). By solving this equation with respect to d∗, we obtain

(3.10) d∗ = γ

(b1 +W )

−1 +

γ−1∏
j=0

a2 +
∑n

i=1 δi + j

a1 +
∑n

i=1 δi + j


1

(a2 − a1)




−1

.

Now, we can observe the following:
∀d ∈ (d1, d

∗), l1(d) > 0 =⇒ h(a2, b1, d) > h(a1, b1, d) =⇒ supπ∈Γa,b
h(a, b, d) =

max{h(a2, b1, d), h(a1, b2, d)},
∀d ∈ (d∗, d̄2), l1(d) < 0 =⇒ h(a2, b1, d) < h(a1, b1, d) =⇒ supπ∈Γa,b

h(a, b, d) =

max{h(a1, b1, d), h(a1, b2, d)}.

Since h(a1, b1, d) < h(a1, b2, d),we have max{h(a1, b1, d), h(a1, b2, d)} = h(a1, b2, d).
Combining these cases, we conclude:

(3.11) sup
π∈Γa,b

h(a, b, d) =

{
max{h(a2, b1, d), h(a1, b2, d)}, d ∈ (d1, d

∗)

h(a1, b2, d), d ∈ (d∗, d̄2).



Some Robust Bayesian Estimators in the Burr XII Distribution ... 9

For d ∈ (d1, d
∗), we set l2(d) = h(a2, b1, d)− h(a1, b2, d). Then,

l2(d) = kd−γeγ
{ γ−1∏

j=0

(
a1 +

n∑
i=1

δi + j
) (b2 +W )a1+

∑n
i=1 δi(

b2 +W +
γ

d

)a1+∑n
i=1 δi+γ

−
γ−1∏
j=0

(
a2 +

n∑
i=1

δi + j
) (b1 +W )a2+

∑n
i=1 δi(

b1 +W +
γ

d

)a2+∑n
i=1 δi+γ

}
.

Taking derivative l2(d) with respect to d, we have

∂l2(d)

∂d
= −ga1,b2(d)

(
d−

a1 +
∑n

i=1 δi
b2 +W

)
+ ga2,b1(d)

(
d−

a2 +
∑n

i=1 δi
b1 +W

)
,

where ga,b(d) is defined in (3.9). Similarly, it can be shown that ∂l2(d)

∂d
< 0, l2(d1) > 0,

l2(d
∗) < 0 and hence l2(d1)l2(d

∗) < 0. So, there exists d∗1 ∈ (d1, d
∗) such that l2(d

∗
1) = 0, or

equivalently, h(a2, b1, d∗1) = h(a1, b2, d
∗
1). Therefore, d∗1 is obtained by solving the following

equation: (
b1 +W +

γ

d∗1

)a2+
∑n

i=1 δi+γ

(
b2 +W +

γ

d∗1

)a1+
∑n

i=1 δi+γ
=

(b1 +W )a2+
∑n

i=1 δi

(b2 +W )a1+
∑n

i=1 δi

γ−1∏
j=0

a2 +
∑n

i=1 δi + j

a1 +
∑n

i=1 δi + j
,

which does not have a closed form and its value can be found using numerical methods. It
can be easily shown that
∀d ∈ (d1, d

∗
1), l2(d) > 0 =⇒ h(a2, b1, d) > h(a1, b2, d) =⇒ max{h(a2, b1, d), h(a1, b2, d)} =

h(a2, b1, d),
∀d ∈ (d∗1, d

∗), l2(d) < 0 =⇒ h(a2, b1, d) < h(a1, b2, d) =⇒ max{h(a1, b1, d), h(a1, b2, d)} =

h(a1, b2, d).

Now, Eq. (3.11) can be written as follows:

sup
π∈Γa,b

h(a, b, d) =


h(a2, b1, d), d ∈ (d1, d

∗
1),

h(a1, b2, d), d ∈ (d∗1, d
∗),

h(a1, b2, d), d ∈ (d∗, d̄2),

or

sup
π∈Γa,b

h(a, b, d) =

{
h(a2, b1, d), d ∈ (d1, d

∗
1),

h(a1, b2, d), d ∈ (d∗1, d̄2).

According to the relation infd1<d<d̄2
supπ∈Γa,b

h(a, b, d) = min
{
infd1<d<d∗1

h(a2, b1, d),

infd∗1<d<d̄2
h(a1, b2, d)

}
, two situations should be discussed:

∀d ∈ (d1, d
∗
1),

∂h(a2, b1, d)

∂d
< 0 =⇒ inf

d1<d<d∗1
h(a2, b1, d) = h(a2, b1, d

∗
1) < h(a2, b1, d1),

∀d ∈ (d∗1, d̄2),
∂h(a1, b2, d)

∂d
> 0 =⇒ inf

d∗1<d<d̄2
h(a1, b2, d) = h(a1, b2, d

∗
1) < h(a1, b2, d̄2).

Since h(a2, b1, d
∗
1) = h(a1, b2, d

∗
1), we have

inf
d1<d<d̄2

sup
π∈Γa,b

h(a, b, d) = min {h(a2, b1, d∗1), h(a1, b2, d∗1)} = h(a2, b1, d
∗
1) = h(a1, b2, d

∗
1).
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Combining the three cases mentioned earlier, the process for obtaining the CGM estimation
of λ can be outlined as follows:

inf
d∈D

sup
π∈Γa,b

h(a, b, d) = min
{

inf
d1<d<d̄2

sup
π∈Γa,b

h(a, b, d), inf
d<d1

sup
π∈Γa,b

h(a, b, d)

, inf
d>d̄2

sup
π∈Γa,b

h(a, b, d)
}

= min
{
h(a2, b1, d

∗
1), h(a2, b1, d1), h(a1, b2, d̄2)

}
= h(a2, b1, d

∗
1) = h(a1, b2, d

∗
1).

which shows that d∗1 is the CGM estimator of λ.

CGM estimator of λ under the classes of priors Γa and Γb are given in the following two
propositions. These estimators can be obtained as special cases of Theorem 3.1.

Corollary 3.1. The CGM estimator of λ under the class of prior Γa and the RG
loss function is given by:

(3.12) λ̂ =
γ(A− 1)

(b2 +W )−A(b1 +W )
,

where A is defined as:

A =

(
b2 +W

b1 +W

) a0 +
∑n

i=1 δi
a0 +

∑n
i=1 δi + γ .

Corollary 3.2. The CGM estimator of λ under the class of prior Γb and the RG
loss function is given by:

(3.13) λ̂ =
γ

(b0 +W )
{
− 1 +

[∏γ−1
j=0

a2 +
∑n

i=1 δi + j

a1 +
∑n

i=1 δi + j

] 1

(a2 − a1)
} .

4. PRGM ESTIMATION

In this section, we derive the PRGM estimator of λ under the class Γa,b and the RG
loss function. By substituting (2.10) into (2.8), we obtain

PR(λ̂, λ) = k − keγ
γ−1∏
j=0

(a+
n∑

i=1

δi + j)
(a+

∑n
i=1 δi)

a+
∑n

i=1 δi

(a+
∑n

i=1 δi + γ)a+
∑n

i=1 δi+γ
.(4.1)



Some Robust Bayesian Estimators in the Burr XII Distribution ... 11

Now, by replacing (2.8) and (4.1) into the Eq. ρ(d, λ) = PR(d, λ)− PR(λ̂, λ), we have:

ρ(d, λ) = keγ
γ−1∏
j=0

(a+
n∑

i=1

δi + j)

×
{ (a+

∑n
i=1 δi)

a+
∑n

i=1 δi

(a+
∑n

i=1 δi + γ)a+
∑n

i=1 δi+γ
− (b+W )a+

∑n
i=1 δi

(b+W +
γ

d
)a+

∑n
i=1 δi+γ

d−γ
}

= h1(a, b, d), (say).(4.2)

The partial derivatives of h1(a, b, d) with respect to a, b and d as follows:

∂h1(a, b, d)

∂a
=− C2(a, b) +

{ γ−1∏
j=0

(a+

n∑
i=1

δi + j)
(d(b+W ))a+

∑n
i=1 δi

(γ + d(b+W ))(a+
∑n

i=1 δi+γ)
(4.3)

×
(
log(1 +

γ

d(b+W )
)−

γ−1∑
j=0

1

a+
∑n

i=1 δi + j

)}
,

∂h1(a, b, d)

∂b
= C3(a, b, d)

{
d−

a+
∑n

i=1 δi
b+W

}
,(4.4)

∂h1(a, b, d)

∂d
= C3(a, b, d)d

−1(b+W )

{
d−

a+
∑n

i=1 δi
b+W

}
.(4.5)

where C2(a, b) and C3(a, b, d) are as follows

C2(a, b) =
(a+

∑n
i=1 δi)

a+
∑n

i=1 δi

(a+
∑n

i=1 δi + γ)(a+
∑n

i=1 δi+γ)

γ−1∏
j=0

(a+
n∑

i=1

δi + j)

×
{
log
(
1 +

γ

a+
∑n

i=1 δi

)
−

γ−1∑
j=0

1

a+
∑n

i=1 δi + j

}
,

C3(a, b, d) = kγeγd−γ−1
γ−1∏
j=0

(a+

n∑
i=1

δi + j)(b+W )a+
∑n

i=1 δi
(
b+W +

γ

d

)−a−γ−
∑n

i=1 δi−1
,

respectively. In the process of deriving the function
∏γ−1

j=0 (a +
∑n

i=1 δi + j) with respect to
a, the following relationship has been used;

d

da
{
γ−1∏
j=0

(a+
n∑

i=1

δi + j)} =

γ−1∏
j=0

(a+
n∑

i=1

δi + j)

γ−1∑
j=0

1

a+
∑n

i=1 δi + j

By solving the Eq. ∂h1(a, b, d)

∂a
= 0 with respect to d, we can get the following expres-

sion;

log(1 +
γ

d(b+W )
)−

∑γ−1
j=0

1

a+
∑n

i=1 δi + j

log(1 +
γ

a+
∑n

i=1 δi
)−

∑γ−1
j=0

1

a+
∑n

i=1 δi + j

=

(
a+

∑n
i=1 δi

d(b+W )
)a+

∑n
i=1 δi(

d(b+W ) + γ

a+
∑n

i=1 δi + γ
)a+

∑n
i=1 δi+γ(4.6)
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It can be seen that the value of d2 in (3.2) satisfies the recent Eq., and therefore it is one of the
roots of the Eq. ∂h1(a, b, d)

∂a
= 0. Also, we can find an interval of the form (10d2, 35d2) such

that the function ∂h1(a, b, d)

∂a
changes sign within this interval. By the Intermediate Value

Theorem, there exist a d3 ∈ (10d2, 35d2) such that ∂h1(a, b, d)

∂a
|d=d3 = 0, that is, d3 is the root

of the Eq. ∂h1(a, b, d)

∂a
= 0. The mentioned root does not have a closed-form expression and

its value must be found using numerical methods. Thus, the Eq. ∂h1(a, b, d)

∂a
= 0 has two

roots d2 and d3 where d2 < d3. Since ∂h1(a, b, d)

∂b
|d=d2 =

∂h1(a, b, d)

∂d
|d=d2 = 0, it follows that

d2 is also the root of two equations ∂h1(a, b, d)

∂b
= 0 and ∂h1(a, b, d)

∂d
= 0. According to (3.4)

and (3.5), we have relations infa,b d2 = d2 and supa,b d2 = d̄2. Since for each a and b, d3 > d2,
we can conclude that d3 = infa,b d3 ≥ infa,b d2 = d2 and d̄3 = supa,b d3 ≥ supa,b d2 = d̄2.
Then, the behavior of the partial derivative of h1(a, b, d) with respect to a, b, and d is as
follows:

(4.7) ∂h1(a, b, d)

∂a



> 0, 0 < d < d2,

= 0, d = d2,

< 0, d2 < d < d3,

= 0, d = d3,

> 0, d > d3,

and

(4.8) ∂h1(a, b, d)

∂b
,
∂h1(a, b, d)

∂d


> 0, d > d2,

= 0, d = d2,

< 0, d < d2.

Theorem 4.1. The PRGM estimator of λ, denoted as λ̂, under the class of prior
Γa,b and the RG loss function does not have a closed form expression. It must to be obtained
numerically by solving the following equality:

(4.9) {A2 −A1} λ̂γ = A∗
2

(b1 +W )a2+
∑n

i=1 δi(
b1 +W +

γ

λ̂

)a2+
∑n

i=1 δi+γ
−A∗

1

(b2 +W )a1+
∑n

i=1 δi(
b2 +W +

γ

λ̂

)a1+
∑n

i=1 δi+γ
,

where

Al =

{
1 +

γ

al +
∑n

i=1 δi

}−(al+
∑n

i=1 δi)
γ−1∏
j=0

al +
∑n

i=1 δi + j

al +
∑n

i=1 δi + γ
; l = 1, 2

and

A∗
l =

γ−1∏
j=0

(al +
n∑

i=1

δi + j); l = 1, 2.

Proof: The PRGM estimation of λ can be obtained by considering the following
three cases:
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Case (I) : 0 < d < d2.
If d < d2, then h1(a, b, d) is an increasing function of a and a decreasing function of b
and d. Therefore

(4.10) inf
d<d2

sup
π∈Γa,b

h1(a, b, d) = h1(a2, b1, d2).

Case (II) : d > d̄3.
When d > d̄3, then h1(a, b, d) is a increasing function of a, b and d. Therefore

(4.11) inf
d>d̄3

sup
π∈Γa,b

h1(a, b, d) = h1(a2, b2, d̄3).

Case (III) : d2 < d < d̄3.

When d2 < d < d̄3, there are three situations to consider:

(1) d2 < d < d2 < d3 < d̄3,

(2) d2 < d2 < d < d3 < d̄3,

(3) d2 < d2 < d3 < d < d̄3.

According to Eqs. (4.3) and (4.4), it can be observed that for the three situations (1,
2, and 3), h1(a, b, d) exhibits different monotonic behaviors with respect to a and b:

case 1: h1(a, b, d) is an increasing function of a, and a decreasing function of b.

case 2: h1(a, b, d) is a decreasing function of a, and an increasing function of b.

case 3: h1(a, b, d) is an increasing function of both a and b.

Therefore, the supπ∈Γa,b
h1(a, b, d) for the last three situations will be h1(a2, b1, d),

h1(a1, b2, d) and h1(a2, b2, d), respectively. So, we have

(4.12) sup
π∈Γa,b

h1(a, b, d) = max {h1(a2, b1, d), h1(a1, b2, d), h1(a2, b2, d)} .

Let us set l3(d) = h1(a2, b2, d)− h1(a1, b2, d). Then, l3(d) is as follows

l3(d) =keγ
γ−1∏
j=0

(a2 +
n∑

i=1

δi + j)

×
{ (a2 +

∑n
i=1 δi)

a2+
∑n

i=1 δi

(a2 +
∑n

i=1 δi + γ)a2+
∑n

i=1 δi+γ
− (b2 +W )a2+

∑n
i=1 δid−γ(

b2 +W +
γ

d

)a2+∑n
i=1 δi+γ

}

− keγ
γ−1∏
j=0

(a1 +
n∑

i=1

δi + j)

×
{ (a1 +

∑n
i=1 δi)

a1+
∑n

i=1 δi

(a1 +
∑n

i=1 δi + γ)a1+
∑n

i=1 δi+γ
− (b2 +W )a1+

∑n
i=1 δid−γ(

b2 +W +
γ

d

)a1+∑n
i=1 δi+γ

}
.
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d

Figure 1: The graph of the function F (d) for the values α = 2 and λ = 2
based on the Burr XII Distribution.

After differentiating l3(d) with respect to d, we obtain

∂l3(d)

∂d
= ga2,b2(d) (d− d22)− ga1,b2(d) (d− d2)

= F (d), (say).(4.13)

where ga,b(d) and d2 are defined in Eqs. (3.9) and (3.4), respectively, and d22 =
a2 +

∑n
i=1 δi

b2 +W
.

After some algebraic manipulation, it can be shown that F (
d2
2
) > 0, F (d2) < 0, F (d22) < 0,

and F (2d22) > 0. Thus, by the Intermediate Value Theorem, there exist dl1 ∈ (
d2
2
, d2) and

dl2 ∈ (d22, 2d22) such that F (dl1) = 0 and F (dl2) = 0. Therefore, the Eq. ∂l3(d)

∂d
= 0 has two

roots, dl1 and dl2, which are obtained by solving the following Eq. with respect to d:

{(
1 +

γ

d(b2 +W )

)−(a2−a1)
γ−1∏
j=0

a2 +
∑n

i=1 δi + j

a1 +
∑n

i=1 δi + j

}
−
(
1 +

a2 − a1
d(b2 +W )− (a2 +

∑n
i=1 δi)

)
= 0.

However, these roots do not have a closed form expression and must be approximated using
numerical methods. From the plot of F (d) shown in Figure 1, it can be clearly observed and
verified that

(4.14) ∂l3(d)

∂d



> 0, 0 < d < dl1,

= 0, d = dl1,

< 0, dl1 < d < dl2,

= 0, d = dl2,

> 0, dl2 < d < d̄3

The mathematical proof of d̄2 < dl2 and dl2 < d̄3 is not straightforward; in fact, we have verified
the validity of these relationships through numerical calculations. According to (4.14), it is
evident that for d ∈ (dl1, d

l
2), we have ∂l3(d)

∂d < 0. Now, since (d2, d̄2) ⊂ (dl1, d
l
2), it follows that

for d ∈ (d2, d̄2), we have ∂l3(d)

∂d
< 0. It can be easily demonstrated that l3(d2) > 0, l3(d̄2) < 0
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and so l3(d̄2)l3(d2) < 0. Therefore there exists d∗1 ∈ (d2, d̄2) such that l3(d
∗
1) = 0. Similarly,

it can be shown that there exists d∗2 ∈ (dl2, d̄3) such that l3(d
∗
2) = 0. Both d∗1 and d∗2 do not

have closed-form expressions and therefore must be approximated using numerical methods.
It can also be easily demonstrated that

(4.15) l3(d)



> 0, d2 < d < d∗1,

= 0, d = d∗1,

< 0, d∗1 < d < d∗2,

= 0, d = d∗2,

> 0, d∗2 < d < d̄3.

This information allows us to divide the range d ∈ (d2, d̄3) into three situations:
1: For d ∈ (d2, d

∗
1), l3(d) > 0 =⇒ h1(a2, b2, d) > h1(a1, b2, d) =⇒ max{h1(a2, b2,

d), h1(a1, b2, d)} = h1(a2, b2, d),

2: For d ∈ (d∗1, d
∗
2), l3(d) < 0 =⇒ h1(a2, b2, d) < h1(a1, b2, d) =⇒ max{h1(a2, b2,

d), h1h(a1, b2, d)} = h1(a1, b2, d),

3: For d ∈ (d∗2, d̄3), l3(d) > 0 =⇒ h1(a2, b2, d) > h1(a1, b2, d) =⇒ max{h1(a2, b2,
d), h1(a1, b2, d)} = h1(a2, b2, d).

This analysis help us understand the behaviour of the function h1(a, b, d) and the
relationships among h1(a2, b1, d), h1(a2, b2, d) and h1(a1, b2, d) in different intervals of d within
the range (d2, d̄3).

Now, we can express Eq. (4.12) as follows:

(4.16) sup
π∈Γa,b

h1(a, b, d) =


max{h1(a2, b1, d), h1(a2, b2, d)}, d ∈ (d2, d

∗
1),

max{h1(a2, b1, d), h1(a1, b2, d)}, d ∈ (d∗1, d
∗
2),

max{h1(a2, b1, d), h1(a2, b2, d)}, d ∈ (d∗2, d̄3).

For d ∈ (d∗1, d
∗
2), let us define l4(d) = h1(a2, b1, d)− h1(a1, b2, d). Therefore,

l4(d) =keγ
γ−1∏
j=0

(a2 +
n∑

i=1

δi + j)

×
{ (a2 +

∑n
i=1 δi)

a2+
∑n

i=1 δi

(a2 +
∑n

i=1 δi + γ)a2+
∑n

i=1 δi+γ
− (b1 +W )a2+

∑n
i=1 δid−γ(

b1 +W +
γ

d

)a2+∑n
i=1 δi+γ

}

− keγ
γ−1∏
j=0

(a1 +
n∑

i=1

δi + j)

×
{ (a1 +

∑n
i=1 δi)

a1+
∑n

i=1 δi

(a1 +
∑n

i=1 δi + γ)a1+
∑n

i=1 δi+γ
− (b2 +W )a1+

∑n
i=1 δid−γ(

b2 +W +
γ

d

)a1+∑n
i=1 δi+γ

}
.

After differentiating l4(d) with respect to d and simplifying, we obtain:

∂l4(d)

∂d
= ga2,b1(d)

(
d− d̄2

)
− ga1,b2(d) (d− d2) ,

where d2, d̄2, and ga,b(d) are defined in Eqs. (3.4), (3.5), and (3.9), respectively. Similar to
l3(d) = 0, it can be shown that Eq. l4(d) = 0 also has two roots, as d∗3 and d∗4 where d∗3 < d∗4.
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These roots are obtained by solving the Eq. (4.9). Based on numerical calculations, it can
be shown that d∗1 < d∗3 < d∗2 < d∗4. Further, we have

(4.17) l4(d) =

{
> 0, d ∈ (d∗1, d

∗
3),

< 0, d ∈ (d∗3, d
∗
2).

Thus

max{h1(a2, b1, d), h1(a1, b2, d)} =

{
h1(a2, b1, d), d ∈ (d∗1, d

∗
3),

h1(a1, b2, d), d ∈ (d∗3, d
∗
2).

If we define l5(d) = h1(a2, b2, d) − h1(a2, b1, d), then l5(d̄2)l5(d
∗
1) < 0. Consequently, there

exists d∗ ∈ (d∗1, d̄2) such that l5(d
∗) = 0, where d∗ is given in Eq. (3.12) with a0 = a2. It

can be easily shown that for all d ∈ (d2, d
∗
1), l5(d) < 0 and for all d ∈ (d∗2, d̄2), l5(d) > 0, and

therefore

max{h1(a2, b2, d), h1(a2, b1, d)} =

{
h1(a2, b1, d), d ∈ (d2, d

∗
1),

h1(a2, b2, d), d ∈ (d∗2, d̄3).

Now, supπ∈Γa,b
h1(a, b, d) can be written as follows:

sup
π∈Γa,b

h1(a, b, d) =


h1(a2, b1, d), d ∈ (d2, d

∗
1),

h1(a2, b1, d), d ∈ (d∗2, d
∗
3),

h1(a1, b2, d), d ∈ (d∗3, d
∗
2),

h1(a2, b2, d), d ∈ (d∗2, d̄3),

or

sup
π∈Γa,b

h1(a, b, d) =


h1(a2, b1, d), d ∈ (d2, d

∗
3),

h1(a1, b2, d), d ∈ (d∗3, d
∗
2),

h1(a2, b2, d), d ∈ (d∗2, d̄3).

It is easy to show that

For d ∈ (d2, d
∗
3),

∂h1(a2, b1, d)

∂d
< 0 =⇒

inf
d2<d<d∗3

h1(a2, b1, d) = h1(a2, b1, d
∗
3) < h1(a2, b1, d2),

For d ∈ (d∗3, d
∗
2),

∂h1(a1, b2, d)

∂d
> 0 =⇒

inf
d∗3<d<d∗2

h1(a1, b2, d) = h1(a1, b2, d
∗
3) < h1(a1, b2, d

∗
2),

For d ∈ (d∗2, d̄3),
∂h1(a2, b2, d)

∂d
> 0 =⇒

inf
d∗2<d<d̄3

h1(a2, b2, d) = h1(a2, b2, d
∗
2) < h1(a2, b2, d̄3).

Now, infd2<d<d̄3
supπ∈Γa,b

h1(a, b, d) can be written as follows:

inf
d2<d<d̄3

sup
π∈Γa,b

h1(a, b, d)

= min
{

inf
d2<d<d∗3

h1(a2, b1, d), inf
d∗3<d<d∗2

h1(a1, b2, d), inf
d∗2<d<d̄3

h1(a2, b2, d)
}

= min{h1(a2, b1, d∗3), h1(a1, b2, d∗3), h1(a2, b2, d∗2)}
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Since h1(a2, b1, d
∗
3) = h1(a1, b2, d

∗
3), h1(a2, b2, d∗2) = h1(a1, b2, d

∗
2) and h1(a1, b2, d) is increasing

with respect to d on the interval (d∗3, d∗2) and so, we have

inf
d2<d<d̄3

sup
π∈Γa,b

h1(a, b, d) = h1(a1, b2, d
∗
3) = h1(a2, b1, d

∗
3).

By combining the results of three cases I, II and III, we have

inf
d∈D

sup
π∈Γa,b

h1(a, b, d)

= min

{
inf
d<d2

sup
π∈Γa,b

h1(a, b, d), inf
d2<d<d̄3

sup
π∈Γa,b

h1(a, b, d), inf
d>d̄3

sup
π∈Γa,b

h1(a, b, d)

}
= min

{
h1(a2, b1, d2), h1(a1, b2, d

∗
3), h1(a2, b2, d̄3)

}
Since h1(a2, b1, d) is decreasing with respect to d on (d2, d

∗
3), so h1(a2, b1, d2) > h1(a2, b1, d

∗
3) =

h1(a1, b2, d
∗
3). It can also be easily shown that h1(a2, b2, d̄3) > h1(a1, b2, d

∗
3), and so

inf
d∈D

sup
π∈Γa,b

h1(a, b, d) = h1(a2, b1, d
∗
3) = h1(a1, b2, d

∗
3),

which shows that d∗3 is a PRGM estimator of λ.

Corollary 4.1. The PRGM estimator of λ under the class of prior Γa and RG loss
function is as follows

(4.18) λ̂ =
γ(A− 1)

(b2 +W )−A(b1 +W )
,

where A is

A =

(
b2 +W

b1 +W

) a0 +
∑n

i=1 δi
a0 +

∑n
i=1 δi + γ .

By referring to Eqs. (3.12) and (4.18), it becomes apparent that when considering the class
Γa, CGM and PRGM estimators of λ demonstrate equivalence.

Corollary 4.2. The estimator PRGM of the parameter λ, denoted as λ̂, under the
class of prior Γb and the loss function RG does not have a closed form and it is obtained
numerically by solving the following Eq.{

A2 −A1}{λ̂(b0 +W )
}γ

=A∗
2

{
1 +

γ

λ̂(b0 +W )

}−a2−
∑n

i=1 δi−γ

−A∗
1

{
1 +

γ

λ̂(b0 +W )

}−a1−
∑n

i=1 δi−γ
,(4.19)

where

Al =

{
1 +

γ

al +
∑n

i=1 δi

}−(al+
∑n

i=1 δi)
γ−1∏
j=0

al +
∑n

i=1 δi + j

al +
∑n

i=1 δi + γ
; l = 1, 2,

and

A∗
l =

γ−1∏
j=0

(al +
n∑

i=1

δi + j); l = 1, 2.
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5. SIMULATION STUDY

In this section, we present a simulation study to evaluate the performance of the pro-
posed estimators. We generate N = 10000 random samples from the Burr XII distribution
using two sets of parameter values: α = 1, λ = 0.4 and α = 2, λ = 2. The sample sizes
considered are n = 20, 50, and 100. To introduce censoring, we set the censoring time such
that it corresponds to specific percentiles of the Burr XII distribution. The censoring per-
centages considered are %20, %35, %50, and %70. Specifically, we set the censoring time
equal to the 80th, 65th, 50th, and 30th percentiles of the Burr XII distribution, respectively.
For the simulation study, we fix values of k = 1, γ = 2, and consider different values for the
shape parameter a = 2, 5, 7, 9 and its range (a1, a2) = (1, 10). Similarly, we consider different
values for the rate parameter b = 3, 7, 11, 15 and its range (b1, b2) = (2, 16). By systematically
varying the parameters a and b within the specified ranges, we assess the performance of the
estimators across senarios. This approach enables us to evaluate robustness and accuracy of
the estimators under varying conditions.
In tables 1-6, we present the results of the simulation study, including the average biases and
risks of the Bayesian, CGM, and PRGM estimations of λ. The tables provide insights into
the performance of the estimators under different sample sizes, censoring percentages and the
classes Γa, Γb and Γa,b. The values related to risk calculations are indicated in parentheses.
Based on the data in these tables, we can draw the following conclusions:
1. The simulation study results show that as the sample size increases, the biases and risks
of both the robust (CGM and PRGM) and Bayesian estimators tend to decrease. This ob-
servation suggests that larger sample sizes lead to more accurate and precise estimations of
the parameter λ.
2. Across all classes (Γa, Γb and Γa,b), the simulation results show, the average biases and
risk of Bayesian, CGM, and PRGM estimates tend to increase as the censoring percentages
increase.
3. Under classes Γa and Γb, the robust estimators, i.e. CGM and PRGM, do not uniformly
domainate the Bayesian estimator.
4. In Tables 1-3, the bias values for both the robust and Bayesian estimators indicate over-
estimation. However, the results in Tables 4-6 show underestimation. Under the classes of
priors Γb and Γa,b, the CGM estimator outperforms in cases of overestimation. However, for
underestimation the PRGM estimator demonstrates better performance.
5. For large samples sizes, the risk values of CGM and PRGM estimators are nearly equiva-
lent.

6. REAL DATA ANALYSIS

In this section, we analyze a real dataset. The data represent the times to breakdown
of an insulating fluid between electrodes at a voltage of 34 kilovolt (see Nelson (2005)). The
observed breakdown times are as follows:

0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.5, 7.35,

8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89
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Table 1: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 1, λ = 0.4
and n = 20.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) 0.1034(0.0723) 0.0454(0.0435) 0.0454(0.0435) −0.0233(0.0529) 0.0326(0.0405) 0.0435(0.0420) 0.0477(0.0452) 0.0549(0.0467)

7(5) 0.0585(0.0481) 0.0454(0.0435) 0.0454(0.0435) 0.0389(0.0409) 0.0326(0.0405) 0.0435(0.0420) 0.0477(0.0452) 0.0549(0.0467)
11(7) 0.0210(0.0368) 0.0454(0.0435) 0.0454(0.0435) 0.0804(0.0541) 0.0326(0.0405) 0.0435(0.0420) 0.0477(0.0452) 0.0549(0.0467)
15(9) −0.0107(0.0369) 0.0454(0.0435) 0.0454(0.0435) 0.1219(0.0779) 0.0326(0.0405) 0.0435(0.0420) 0.0477(0.0452) 0.0549(0.0467)

35 3(2) 0.1197(0.0847) 0.0509(0.0487) 0.0509(0.0487) −0.0309(0.0669) 0.0334(0.0455) 0.0464(0.0466) 0.0532(0.0511) 0.0621(0.0524)
7(5) 0.0652(0539) 0.0509(0.0487) 0.0509(0.0487) 0.0421(0.0452) 0.0334(0.0455) 0.0464(0.0466) 0.0532(0.0511) 0.0621(0.0524)
11(7) 0.0212(0.0408) 0.0509(0.0487) 0.0509(0.0487) 0.0908(0.0611) 0.0334(0.0455) 0.0464(0.0466) 0.0532(0.0511) 0.0621(0.0524)
15(9) −0.0152(0.0431) 0.0509(0.0487) 0.0509(0.0487) 0.1394(0.0909) 0.0334(0.0455) 0.0464(0.0466) 0.0532(0.0511) 0.0621(0.0524)

50 3(2) 0.1457(0.1037) 0.0602(0.0547) 0.0602(0.0547) −0.0416(0.860) 0.0343(0.0507) 0.0507(0.0513) 0.0622(0.0583) 0.0741(0.0601)
7(5) 0.0758(0.0608) 0.0602(0.0547) 0.0602(0.0547) 0.0471(0.0495) 0.0343(0.0507) 0.0507(0.0513) 0.0622(0.0583) 0.0741(0.0601)
11(7) 0.0218(0.0442) 0.0602(0.0547) 0.0602(0.0547) 0.1063(0.0709) 0.0343(0.0507) 0.0507(0.0513) 0.0622(0.0583) 0.0741(0.0601)
15(9) −0.0211(0.0496) 0.0602(0.0547) 0.0602(0.0547) 0.1655(0.1109) 0.0343(0.0507) 0.0507(0.0513) 0.0622(0.0583) 0.0741(0.0601)

70 3(2) 0.2196(0.1604) 0.0896(0.0704) 0.0896(0.0704) −0.0626(0.1313) 0.0376(0.0615) 0.0633(0.0599) 0.0904(0.0771) 0.1128(0.0819)
7(5) 0.1053(0.0781) 0.0896(0.0704) 0.0896(0.0704) 0.0627(0.0574) 0.0376(0.0615) 0.0633(0.0599) 0.0904(0.0771) 0.1128(0.0819)
11(7) 0.0267(0.0485) 0.0896(0.0704) 0.0896(0.0704) 0.1462(0.0976) 0.0376(0.0615) 0.0633(0.0599) 0.0904(0.0771) 0.1128(0.0819)
15(9) −0.0307(0.0599) 0.0896(0.0704) 0.0896(0.0704) 0.2297(0.1645) 0.0376(0.0615) 0.0633(0.0599) 0.0904(0.0771) 0.1128(0.0819)

Table 2: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 1, λ = 0.4
and n = 50.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) 0.0427(0.0272) 0.0189(0.0208) 0.0189(0.0208) −0.0099(0.0232) 0.0164(0.0205) 0.0211(0.0208) 0.0203(0.0211) 0.0233(0.0213)

7(5) 0.0257(0.0221) 0.0189(0.0208) 0.0189(0.0208) 0.0178(0.0205) 0.0164(0.0205) 0.0211(0.0208) 0.0203(0.0211) 0.0233(0.0213)
11(7) 0.0101(0.0196) 0.0189(0.0208) 0.0189(0.0208) 0.0363(0.0235) 0.0164(0.0205) 0.0211(0.0208) 0.0203(0.0211) 0.0233(0.0213)
15(9) −0.0045(0.0196) 0.0189(0.0208) 0.0189(0.0208) 0.0548(0.0296) 0.0164(0.0205) 0.0211(0.0208) 0.0203(0.0211) 0.0233(0.0213)

35 3(2) 0.0504(0.0328) 0.0216(0.0244) 0.0216(0.0244) −0.0135(0.0292) 0.0179(0.0241) 0.0236(0.0245) 0.0232(0.0249) 0.0268(0.0251)
7(5) 0.0296(0.0260) 0.0216(0.0244) 0.0216(0.0244) 0.0199(0.0241) 0.0179(0.0241) 0.0236(0.0245) 0.0232(0.0249) 0.0268(0.0251)
11(7) 0.0107(0.0231) 0.0216(0.0244) 0.0216(0.0244) 0.0422(0.0277) 0.0179(0.0241) 0.0236(0.0245) 0.0232(0.0249) 0.0268(0.0251)
15(9) −0.0067(0.0237) 0.0216(0.0244) 0.0216(0.0244) 0.0645(0.0358) 0.0179(0.0241) 0.0236(0.0245) 0.0232(0.0249) 0.0268(0.0251)

50 3(2) 0.0626(0.0413) 0.0259(0.0293) 0.0259(0.0293) −0.0189(0.0382) 0.0201(0.0289) 0.0273(0.0292) 0.0277(0.0299) 0.0323(0.0302)
7(5) 0.0355(0.0314) 0.0259(0.0293) 0.0259(0.0293) 0.0232(0.0287) 0.0201(0.0289) 0.0273(0.0292) 0.0277(0.0299) 0.0323(0.0302)
11(7) 0.0116(0.0275) 0.0259(0.0293) 0.0259(0.0293) 0.0513(0.0337) 0.0201(0.0289) 0.0273(0.0292) 0.0277(0.0299) 0.0323(0.0302)
15(9) −0.0099(0.0291) 0.0259(0.0293) 0.0259(0.0293) 0.0793(0.0454) 0.0201(0.0289) 0.0273(0.0292) 0.0277(0.0299) 0.0323(0.0302)

70 3(2) 0.0981(0.0661) 0.0398(0.0403) 0.0398(0.0403) −0.0314(0.0626) 0.0262(0.0396) 0.0376(0.0397) 0.0416(0.0421) 0.0493(0.0426)
7(5) 0.0529(0.0441) 0.0398(0.0403) 0.0398(0.0403) 0.0333(0.0386) 0.0262(0.0396) 0.0376(0.0397) 0.0416(0.0421) 0.0493(0.0426)
11(7) 0.0152(0.0363) 0.0398(0.0403) 0.0398(0.0403) 0.0763(0.0493) 0.0262(0.0396) 0.0376(0.0397) 0.0416(0.0421) 0.0493(0.0426)
15(9) −0.0166(0.0408) 0.0398(0.0403) 0.0398(0.0403) 0.1194(0.0733) 0.0262(0.0396) 0.0376(0.0397) 0.0416(0.0421) 0.0493(0.0426)

Table 3: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 1, λ = 0.4
and n = 100.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) 0.0210(0.0131) 0.0091(0.0114) 0.0091(0.0114) −0.0056(0.0122) 0.0084(0.0114) 0.0108(0.0114) 0.0099(0.0114) 0.0114(0.0115)

7(5) 0.0128(0.0117) 0.0091(0.0114) 0.0091(0.0114) 0.0088(0.0113) 0.0084(0.0114) 0.0108(0.0114) 0.0099(0.0114) 0.0114(0.0115)
11(7) 0.0049(0.0111) 0.0091(0.0114) 0.0091(0.0114) 0.0184(0.0121) 0.0084(0.0114) 0.0108(0.0114) 0.0099(0.0114) 0.0114(0.0115)
15(9) −0.0027(0.0112) 0.0091(0.0114) 0.0091(0.0114) 0.0280(0.0139) 0.0084(0.0114) 0.0108(0.0114) 0.0099(0.0114) 0.0114(0.0115)

35 3(2) 0.0249(0.0158) 0.0104(0.0135) 0.0104(0.0135) −0.0076(0.0150) 0.0094(0.0134) 0.0124(0.0135) 0.0114(0.0136) 0.0133(0.0136)
7(5) 0.0149(0.0139) 0.0104(0.0135) 0.0104(0.0135) 0.0099(0.0134) 0.0094(0.0134) 0.0124(0.0135) 0.0114(0.0136) 0.0133(0.0136)
11(7) 0.0052(0.0132) 0.0104(0.0135) 0.0104(0.0135) 0.0217(0.0144) 0.0094(0.0134) 0.0124(0.0135) 0.0114(0.0136) 0.0133(0.0136)
15(9) −0.0039(0.0134) 0.0104(0.0135) 0.0104(0.0135) 0.0334(0.0168) 0.0094(0.0134) 0.0124(0.0135) 0.0114(0.0136) 0.0133(0.0136)

50 3(2) 0.0313(0.019) 0.0126(0.0167) 0.0126(0.0167) −0.0106(0.0197) 0.0109(0.0167) 0.0148(0.0168) 0.0137(0.0169) 0.0161(0.0169)
7(5) 0.0181(0.0174) 0.0126(0.0167) 0.0126(0.0167) 0.0118(0.0166) 0.0109(0.0167) 0.0148(0.0168) 0.0137(0.0169) 0.0161(0.0169)
11(7) 0.0057(0.0163) 0.0126(0.0167) 0.0126(0.0167) 0.0268(0.0179) 0.0109(0.0167) 0.0148(0.0168) 0.0137(0.0169) 0.0161(0.0169)
15(9) −0.0059(0.0169) 0.0126(0.0167) 0.0126(0.0167) 0.0417(0.0216) 0.0109(0.0167) 0.0148(0.0168) 0.0137(0.0169) 0.0161(0.0169)

70 3(2) 0.0499(0.0330) 0.0196(0.0252) 0.0196(0.0252) −0.0181(0.0337) 0.0154(0.0252) 0.0215(0.0252) 0.0211(0.0257) 0.0250(0.0256)
7(5) 0.0279(0.0265) 0.0196(0.0252) 0.0196(0.0252) 0.0177(0.0250) 0.0154(0.0252) 0.0215(0.0252) 0.0211(0.0257) 0.0250(0.0256)
11(7) 0.0079(0.0244) 0.0196(0.0252) 0.0196(0.0252) 0.0415(0.0278) 0.0154(0.0252) 0.0215(0.0252) 0.0211(0.0257) 0.0250(0.0256)
15(9) −0.0103(0.0264) 0.0196(0.0252) 0.0196(0.0252) 0.0653(0.0359) 0.0154(0.0252) 0.0215(0.0252) 0.0211(0.0257) 0.0250(0.0256)

This data sets were analyzed by Lio et al. (2010), Rao et al. (2015), Soliman (2005), Wu
et al. (2014), and Zimmer et al. (1998). Lio et al. (2010) and Zimmer et al. (1998) concluded
that the Burr XII distribution provides a good fit for this data set. The hazard function of
Burr XII distribution can exhibit either a decreasing or unimodal shape. A useful graphical
method to understand the shape of the hazard function of the data is the total time on test
(TTT) plot (Aarset, 1987). The TTT plot for this dataset is shown in Figure 2. Based to
this plot, there is an indication that the hazard function follows a decreasing pattern. Since
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Table 4: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 2, λ = 2
and n = 20.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) −0.0589(0.0366) −0.5912(0.1625) −0.5912(0.1625) −0.9329(0.4052) −0.7739(0.2695) −0.7429(0.2467) −0.5470(0.1423) −0.5302(0.1341)

7(5) −0.5870(0.1568) −0.5912(0.1625) −0.5912(0.1625) −0.7557(0.2557) −0.7739(0.2695) −0.7429(0.2467) −0.5470(0.1423) −0.5302(0.1341)
11(7) −0.8883(0.3605) −0.5912(0.1625) −0.5912(0.1625) −0.6376(0.1782) −0.7739(0.2695) −0.7429(0.2467) −0.5470(0.1423) −0.5302(0.1341)
15(9) −1.0833(0.5555) −0.5912(0.1625) −0.5912(0.1625) −0.5194(0.1181) −0.7739(0.2695) −0.7429(0.2467) −0.5407(0.1423) −0.5302(0.1341)

35 3(2) −0.0803(0.0420) −0.6435(0.1958) −0.6435(0.1958) −1.0262(0.4996) −0.8556(0.3386) −0.8209(0.3095) −0.5938(0.1701) −0.5717(0.1579)
7(5) −0.6572(0.1998) −0.6435(0.1958) −0.6435(0.1958) −0.8322(0.3184) −0.8556(0.3386) −0.8209(0.3095) −0.5938(0.1701) −0.5717(0.1579)
11(7) −0.9669(0.4371) −0.6435(0.1958) −0.6435(0.1958) −0.7029(0.2213) −0.8556(0.3386) −0.8209(0.3095) −0.5938(0.1701) −0.5717(0.1579)
15(9) −1.1603(0.6409) −0.6435(0.1958) −0.6435(0.1958) −0.5736(0.1454) −0.8556(0.3386) −0.8209(0.3095) −0.5938(0.1701) −0.5717(0.1579)

50 3(2) −0.1065(0.0493) −0.9556(0.2384) −0.9159(0.2384) −1.1389(0.6167) −0.9556(0.4317) −0.9159(0.3942) −0.6484(0.2058) −0.6166(0.1857)
7(5) −0.7437(0.2598) −0.9556(0.2384) −0.9159(0.2384) −0.9245(0.4015) −0.9556(0.4317) −0.9159(0.3942) −0.6484(0.2058) −0.6166(0.1857)
11(7) −1.0597(0.5331) −0.9556(0.2384) −0.7049(0.2384) −0.7815(0.2793) −0.9556(0.4317) −0.9159(0.3942) −0.6484(0.2058) −0.6166(0.1857)
15(9) −1.2486(0.7358) −0.9556(0.2384) −0.7049(0.2384) −0.6385(0.1819) −0.9556(0.4317) −0.9159(0.3942) −0.6484(0.2058) −0.6166(0.1857)

70 3(2) −0.1589(0.0608) −0.8086(0.3169) −0.8086(0.3169) −1.3329(0.8045) −1.1333(0.6112) −1.0819(0.5586) −0.7423(0.2726) −0.6747(0.2211)
7(5) −0.8987(0.3852) −0.8086(0.3169) −0.8086(0.3169) −1.0829(0.5595) −1.1333(0.6112) −1.0819(0.5586) −0.7423(0.2726) −0.6747(0.2211)
11(7) −1.2143(0.6975) −0.8086(0.3169) −0.8086(0.3169) −0.9162(0.3932) −1.1333(0.6112) −1.0819(0.5586) −0.7423(0.2726) −0.6747(0.2211)
15(9) −1.3892(0.8680) −0.8086(0.3169) −0.8086(0.3169) −0.7496(0.2533) −1.1333(0.6112) −1.0819(0.5586) −0.7423(0.2726) −0.6747(0.2211)

Table 5: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 2, λ = 2
and n = 50.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) −0.0219(0.0206) −0.3722(0.0657) −0.3722(0.0657) −0.5407(0.1257) −0.4418(0.0855) −0.4244(0.0795) −0.3515(0.0604) −0.3456(0.0587)

7(5) −0.3194(0.0524) −0.3722(0.0657) −0.3722(0.0.0657) −0.4368(0.0837) −0.4418(0.0855) −0.4244(0.0795) −0.3515(0.0604) −0.3456(0.0587)
11(7) −0.5388(0.1223) −0.3722(0.0657) −0.3722(0.0657) −0.3676(0.0619) −0.4418(0.0855) −0.4244(0.0795) −0.3515(0.0604) −0.3456(0.0587)
15(9) −0.7074(0.2134) −0.3722(0.0657) −0.3722(0.0657) −0.2983(0.0448) −0.4418(0.0855) −0.4244(0.0795) −0.3515(0.0604) −0.3456(0.0587)

35 3(2) −0.0364(0.0245) −0.4259(0.0862) −0.4259(0.0862) −0.6268(0.1741) −0.5147(0.1175) −0.4945(0.1089) −0.4011(0.0785) −0.3938(0.0760)
7(5) −0.3780(0.0713) −0.4259(0.0862) −0.4259(0.0862) −0.5077(0.1144) −0.5147(0.1175) −0.4945(0.1089) −0.4011(0.0785) −0.3938(0.0760)
11(7) −0.6181(0.1657) −0.4259(0.0862) −0.4259(0.0862) −0.4283(0.0836) −0.5147(0.1175) −0.4945(0.1089) −0.4011(0.0785) −0.3938(0.0760)
15(9) −0.7962(0.2812) −0.4259(0.0862) −0.4259(0.0862) −0.3489(0.0593) −0.5147(0.1175) −0.4945(0.1089) −0.4011(0.0785) −0.3938(0.0760)

50 3(2) −0.0514(0.0299) −0.4919(0.1158) −0.4919(0.1158) −0.7391(0.2503) −0.6095(0.1681) −0.5857(0.1552) −0.4609(0.1041) −0.4510(0.0999)
7(5) −0.4545(01011) −0.4919(0.1158) −0.4919(0.1158) −0.5993(0.1622) −0.6095(0.1681) −0.5857(0.1552) −0.4609(0.1041) −0.4510(0.0999)
11(7) −0.7192(0.2318) −0.4919(0.1158) −0.4919(0.1158) −0.5061(0.1167) −0.6095(0.1681) −0.5857(0.1552) −0.4609(0.1041) −0.4510(0.0999)
15(9) −0.9064(0.3784) −0.4919(0.1158) −0.4919(0.1158) −0.4129(0.0808) −0.6095(0.1681) −0.5857(0.1552) −0.4609(0.1041) −0.4510(0.0999)

70 3(2) −0.0799(0.0412) −0.6142(0.1829) −0.6142(0.1829) −0.9632(0.4428) −0.8012(0.3011) −0.7691(0.2761) −0.5696(0.1605) −0.5511(0.1502)
7(5) −0.6123(0.1804) −0.6142(0.1829) −0.6142(0.1829) −0.7812(0.2847) −0.8012(0.3011) −0.7691(0.2761) −0.5696(0.1605) −0.5511(0.1502)
11(7) −0.9135(0.3916) −0.6142(0.1829) −0.6142(0.1829) −0.6599(0.2001) −0.8012(0.3011) −0.7691(0.2761) −0.5696(0.1605) −0.5511(0.1502)
15(9) −1.1072(0.5836) −0.6142(0.1829) −0.6142(0.1829) −0.5386(0.1334) −0.8012(0.3011) −0.7691(0.2761) −0.5696(0.1605) −0.5511(0.1502)

Table 6: The average biases and risks (in parentheses) of the Bayes, CGM
and PRGM estimators for λ are presented under different cen-
soring percentages, in three class of priors with α = 2, λ = 2
and n = 100.

Γa Γb Γa,b

% censor b(a) bayesian CGM PRGM bayesian CGM PRGM CGM PRGM
20 3(2) −0.0119(0.0110) −0.2331(0.0275) −0.2331(0.0275) −0.3188(0.0436) −0.2590(0.0314) −0.2487(0.0296) −0.2227(0.0259) −0.2199(0.0255)

7(5) −0.1826(0.0208) −0.2331(0.0275) −0.2331(0.0275) −0.2574(0.0311) −0.2590(0.0314) −0.2487(0.0296) −0.2227(0.0259) −0.2199(0.0255)
11(7) −0.3263(0.0444) −0.2331(0.0275) −0.2331(0.0275) −0.2165(0.0245) −0.2590(0.0314) −0.2487(0.0296) −0.2227(0.0259) −0.2199(0.0255)
15(9) −0.4488(0.0787) −0.2331(0.0275) −0.2331(0.0275) −0.1756(0.0191) −0.2590(0.0314) −0.2487(0.0296) −0.2227(0.0259) −0.2199(0.0255)

35 3(2) −0.0187(0.0134) −0.2740(0.0371) −0.2740(0.0371) −0.3794(0.0619) −0.3093(0.0439) −0.2972(0.0412) −0.2612(0.0348) −0.2577(0.0341)
7(5) −0.2207(0.0284) −0.2740(0.0371) −0.2740(0.0371) −0.3070(0.0433) −0.3093(0.0439) −0.2972(0.0412) −0.2612(0.0348) −0.2577(0.0341)
11(7) −0.3853(0.0623) −0.2740(0.0371) −0.2740(0.0371) −0.2587(0.0335) −0.3093(0.0439) −0.2972(0.0412) −0.2612(0.0348) −0.2577(0.0341)
15(9) −0.5219(0.1099) −0.2740(0.0371) −0.2740(0.0371) −0.2105(0.0255) −0.3093(0.0439) −0.2972(0.0412) −0.2612(0.0348) −0.2577(0.0341)

50 3(2) −0.0268(0.0172) −0.3294(0.0529) −0.3294(0.0529) −0.4651(0.0945) −0.3803(0.0656) −0.3855(0.0613) −0.3129(0.0491) −0.3083(0.0479)
7(5) −0.2748(0.0414) −0.3294(0.0529) −0.3294(0.0529) −0.3768(0.0645) −0.3803(0.0656) −0.3855(0.0613) −0.3129(0.0491) −0.3083(0.0479)
11(7) −0.4674(0.9313) −0.3294(0.0529) −0.3294(0.0529) −0.3179(0.0488) −0.3803(0.0656) −0.3855(0.0613) −0.3129(0.0491) −0.3083(0.0479)
15(9) −0.6212(0.1624) −0.3294(0.0529) −0.3294(0.0529) −0.2590(0.0362) −0.3803(0.0656) −0.3855(0.0613) −0.3129(0.0491) −0.3083(0.0479)

70 3(2) −0.0486(0.0269) −0.4504(0.0987) −0.4504(0.0987) −0.6632(0.2014) −0.5460(0.1365) −0.5248(0.1265) −0.4241(0.0896) −0.4160(0.0865)
7(5) −0.4048(0.0835) −0.4504(0.0987) −0.4504(0.0987) −0.5382(0.1325) −0.5460(0.1365) −0.5248(0.1265) −0.4241(0.0896) −0.4160(0.0865)
11(7) −0.6509(0.1894) −0.4504(0.0987) −0.4504(0.0987) −0.4548(0.0967) −0.5460(0.1365) −0.5248(0.1265) −0.4241(0.0896) −0.4160(0.0865)
15(9) −0.8313(0.3139) −0.4504(0.0987) −0.4504(0.0987) −0.3714(0.0683) −0.5460(0.1365) −0.5248(0.1265) −0.4241(0.0896) −0.4160(0.0865)

the hazard function of the Burr XII distribution is decreasing, for 0 < α ≤ 1, α parameter
can be resonably be set to 1.

The original data is not censored, however we chose to right-censored any data larger
than 12. With this approach, approximately %30 of the data is right-censored. In Table 7,
the results related to the Bayesian, CGM and PRGM estimates of λ under the classes Γa, Γb,
and Γa,b are given. For the class Γa(Γb), it can be seen that with the increase in the value of
b(a), the values of Bayesian estimates decrease (increase). In general, in the class Γa(Γb), for
b = 3, 7(a = 2, 5) the values of the Bayesian estimations of λ are larger (smaller) compared
to the CGM and PRGM values, but for b = 11, 15(a = 7, 9) this result is reversed. Also, in
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Figure 2: The TTT plot for real dataset.

the classes Γb and Γa,b, the values of PRGM are greater than the values of CGM.

Table 7: Bayesian, CGM and PRGM estimations for λ under the classes
Γa, Γb and Γa,b in the real dataset.

class Bayes CGM PRGM
Γa 3 0.4850 0.4246 0.4246

b 7 0.4378 0.4246 0.4246
11 0.3990 0.4246 0.4246
15 0.3665 0.4246 0.4246

Γb 2 0.3479 0.4092 0.4216
a 5 0.4175 0.4092 0.4216

7 0.4639 0.4092 0.4216
9 0.5103 0.4092 0.4216

Γa,b - - 0.4263 0.4349
- - 0.4263 0.4349
- - 0.4263 0.4349
- - 0.4263 0.4349

7. CONCLUDING REMARKS

In this paper, we developed the Posterior Regret Gamma-Minimax and Conditional
Gamma-Minimax estimators for the parameter λ in the Burr XII distribution. These es-
timators are obtained under the reflected gamma loss function and were evaluated across
different classes of prior distributions (Γa, Γb and Γa,b). To assess the performance of the
robust estimators, we conducted a simulation study and analyzed a real dataset. In the simu-
lation study, we examined the biases and risks of robust Bayesian estimates of λ. The results
revealed that the robust estimators exhibited both overestimations and underestimations in
estimating λ, depending on the specific scenario and prior class. Furthermore, we investigated
the impact of the censoring on the bias and risk values of the robust Bayesian estimators.
The simulation study, demonstrated that as the volume of censorship increased, the biases
and risks of the estimators also increased. This observation suggests that higher levels of
censoring can introduce additional challenges and uncertainties in accurately estimating the
parameter λ.
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