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1. INTRODUCTION

When we study the reliability of some technological systems, we frequently

find very complex structures due to large numbers of system components and the

way the operating process uses such components. Indeed, there are situations

that cannot be modelled as a simple parallel (or series) system and are best

described as a series-parallel or parallel-series system. Examples of large systems

with complex structures arise in transport networks of gas, oil, water and other

fluids; also on telecommunication and electrical energy distribution networks and

on charge and discharge networks.

The asymptotic theory of extremes, established by Gnedenko ([5]) in 1943,

immediately leads to the identification of limit models for the reliability of sys-

tems with a large number of components in series or in parallel. Posterior results,

such as those by Smirnov ([8]), Chernoff and Teicher ([3]) and Kolowrocki ([6]

and [7]), have dealt with the same problem for homogeneous series-parallel (or

parallel-series) systems. In turn, our approach will use the characterization of

domains of attraction for minima for the known generalized extreme value distri-

butions, as developed by Balkema and de Haan ([1]). In this initial work, we will

restrict ourselves identifying limit laws in regular and homogeneous series-parallel

systems, whenever the lifetime distribution function of each component belongs

to some domain of attraction for minima.

1.1. Some basic notions of extreme value theory

Given a sequence of independent and identically distributed (i.i.d.) random

variables, {Xi}, i ≥ 1, with distribution function F , the random variable Mn =

max(X1, X2, ..., Xn), with n ≥ 1, has a known distribution function, given by

FMn(x) =
[

F (x)
]n

.

If there exists a pair of sequences (an, bn) where an > 0 and bn∈R ,∀n∈N,

and a nondegenerate distribution function G, such that, for all x where G is

continuous,

(1.1) P
[

Mn ≤ anx + bn

]

=
[

F (anx + bn)
]n

−→
n→∞

G(x) ,

then G must be a Gumbel, a Fréchet or a Weibull distribution, whose standard

forms are

Gumbel: Λ(x) = exp(−e−x), x ∈ R

Fréchet: Φα(x) = exp(−x−α), α > 0, x ≥ 0

Weibull: Ψα(x) = exp
(

−(−x)−α
)

, α < 0, x ≤ 0 .



230 Paula Reis and Lúısa Canto e Castro

These distributions can be represented uniquely in a parametric form, called the

von Mises–Jenkinson form or generalized extreme value distribution (GEV),

(1.2) Gγ(x) =

{

exp
(

−(1 + γx)−1/γ
)

, 1 + γx ≥ 0, γ 6= 0

exp(−e−x), x ∈ R, γ = 0 .

It is easy to see that

Gγ(x) =











Λ(x), γ = 0

Φ1/γ(1 + γx), γ > 0

Ψ−1/γ

(

−(1 + γx)
)

, γ < 0 .

Whenever the sequences an and bn exist on the above described conditions, or in

other words, verifying (1.1), we will say that the distribution function F belongs

to or is in the domain of attraction of G (for maxima) and we write F ∈ D(G).

The characterization of domains of attraction is closely related to the study

of regular variation. Our approach about the asymptotic behaviour of the distri-

bution function or of the reliability function for a series-parallel system, lies in

known results which involve regular varying functions. We say that a real valued

function, R, is regularly varying, with index ρ, at infinity and we write, R ∈ Rρ,

if it is positive and measurable in [a,+∞[, for some a > 0 and if ∀x > 0,

(1.3) lim
t→∞

R(tx)

R(t)
= xρ ,

for some ρ ∈ R. When ρ = 0, R is called a slowly varying function.

Gnedenko (1943), Balkema and de Haan (1972) established a relation be-

tween regular variation and the characterization of domains of attraction for

Weibull and Fréchet laws, described in the following Theorem:

Theorem 1.1.

(1) A distribution function F is in the domain of attraction of a Weibull

law, Ψα, iff the right end point1 xF <∞ and 1−F
(

xF − 1
x

)

∈ R−α,

when x → ∞. In this case, taking δn such that n
(

1−F (δn)
)

−→
n→∞

1,

we will have

Fn
(

xF + (xF − δn)x
)

−→ Ψα(x) , x < 0 .

(2) A distribution function F is in the domain of attraction of a Fréchet

law, Φα, iff 1−F ∈ R−α. In this case

Fn(anx) −→ Φα(x) , x > 0 ,

with an such that n
(

1−F (an)
)

−→
n→∞

1.

1Given a distribution function F , absolutely continuous, the right end point of its support is
x

F ≡ sup{x : F (x) < 1}.
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It must be noted that only distribution functions with infinite right end

point can be in D(Φα).

For the domain of attraction of a Gumbel law, we will use the characteri-

zation established by Balkema and de Haan ([1]):

Theorem 1.2. A distribution function F belongs to D(Λ) iff there exist a

positive function w satisfying lim
x→xF

w(x) = 1 and a differentiable, positive function

g such that

− lnF (x) = w(x) exp

{

−

∫ x

z0

1

g(u)
du

}

,

for some z0 and where we have lim
x→xF

g′(x) = 0.

The results developed for asymptotic extreme value theory for maxima are

readily adapted for minima, since mn = min
1≤i≤n

(Xi) = − max
1≤i≤n

(−Xi) = − max
1≤i≤n

(Yi).

If the sequence max
1≤i≤n

(−Xi) = max
1≤i≤n

(Yi) can be normalized, so as to admit a non

degenerate limit Z, then the distribution function Z will be of the same type as

Gγ , for some γ ∈ R. Hence the limit law for minima, conveniently normalized,

will verify

F−Z(x) = P
[

−Z ≤ x
]

= P
[

Z ≥ −x
]

= 1 − Gγ(−x) =: Hγ(x) .

Therefore, we say that the distribution function F of a random variable X is in

the domain of attraction for minima of Hγ , if the distribution function of −X is

in the domain of attraction (for maxima) of Gγ . In this case, there exists a pair

of sequences (an, bn) where an > 0 and bn ∈ R, ∀n∈N, such that

(1.4) 1 −
(

1 − F (anx + bn)
)n

−→
n→∞

Hγ(x) .

Remark 1.1. In most applications involving lifetimes the limit laws in

(1.4) are restricted to the case γ ≤ 0. In fact, a lifetime T is always nonnegative,

thus −T is a random variable with finite right end point and can only be in the

max-domain of attraction of a Weibull (γ < 0) or a Gumbel (γ = 0) (see Theorem

1.1 and Theorem 1.2). However, because there are systems with large durability,

we will also study the case γ > 0.

1.2. Regular and homogeneous series-parallel system

In reliability studies, we classify a system as being series-parallel if it is

composed by subsystems with components in series and if those subsystems are

organized in parallel (see Figure 1).
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Figure 1: Scheme of a regular homogeneous series-parallel system.

Let Eij , with i = 1, 2, ..., k and j = 1, 2, ..., li, be the components of a Series-

Parallel System S, formed by k subsystems in parallel of li components in series.

Let Xij be the lifetime of Eij , i.e., Xij represents the lifetime of the j-th compo-

nent of the i-th subsystem. We will assume that all Xij ’s are independent. The

lifetime T of the whole system is given by

T = max
1≤i≤k

(

min
1≤j≤li

Xij

)

.

The system S is called regular whenever

l1 = l2 = ... = lk = l ,

and it is homogeneous whenever the components Eij have the same reliability

function R(x) = P (Xij > x) = 1−F (x), with x ∈ ]−∞, +∞[, i.e., if the random

variables Xij have the same distribution function F (x) = P (Xij ≤ x).

Suppose now that k = kn and l = ln, i.e., (kn) and (ln) are sequences of

real numbers such that at least one of them has a limit equal to infinity when n

goes to infinity. Then we obtain sequences of regular systems whose families of

reliability functions, in the case of an homogeneous system, are defined by (see

in [6])

Rn(x) = 1 −
[

1 −
(

R(x)
)ln
]kn

, for x ∈ ]−∞, +∞[ and each n ∈ N ,

or in terms of the sequence of distribution functions,

Fn(x) = 1 −

(

1 −
[

1 −
(

R(x)
)ln
]kn
)

(1.5)
=
[

1 −
(

1 − F (x)
)ln
]kn

, for x ∈ ]−∞, +∞[ and each n ∈ N .

Assuming that F is in the domain of attraction of a law for minima, Hγ , our

purpose will be to analyse the asymptotic behaviour of the functions Rn(x) and

Fn(x) defined above. Although our goal is to treat this problem in its maximum

generality, in this paper we will only treat the case where kn goes to infinity.

More precisely, we will suppose that kn = n and investigate which should be the

asymptotic behaviour of ln, so that, using a suitable normalization, we can find

a nondegenerate limit for Fn.
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2. CHARACTERIZATION OF THE DOMAINS OF ATTRACTION

From (1.5), it follows that Fn(x) is the distribution function of the maxima

of kn i.i.d. random variables, each one with distribution function given by Hn(x) =
[

1−
(

1−F (x)
)ln], and we want to determine in which domain of attraction for

maxima belongs Hn(x). Now, assuming that F is in the domain of attraction for

minima of a law Hγ(x) = 1−Gγ(−x), then the asymptotic behaviour of the right

tail of Hn must be similar to the right tail of the minima law Hγ . In the next

paragraphs we will analyse the right tail behaviour of Hγ , for γ < 0, γ = 0 and

γ > 0, in order to identify the max-stable law to which it is attracted.

2.1. Case γ < 0 (Weibull for minima)

The function Hγ(x) is defined, for all x ∈ R, by

Hγ(x) = 1 − Gγ(−x)

=







1 − exp
(

−(1 − γx)−1/γ
)

, 1 − γx ≥ 0

0, 1 − γx < 0
(2.1)

=







1 − exp
(

−(1 − γx)−1/γ
)

, x ≥ 1
γ

0, x < 1
γ .

Since the right end point is infinite, we will first check whether or not Hγ is in

the Fréchet max-domain of attraction. By Theorem 1, and using (1.3) and (2.1),

we have

lim
t→+∞

1 − Hγ(tx)

1 − Hγ(t)
= lim

t→+∞

e−(1−γtx)−1/γ

e−(1−γt)−1/γ

= lim
t→+∞

exp

{

(

−(1 − γ tx)−1/γ
)

[

1 −

(

1 − γ t

1 − γ tx

)−1/γ
]}

= lim
t→+∞

exp







(

−(1 − γ tx)−1/γ
)



1 −

(

1
γt −1
1
γt − x

)−1/γ










=

{

0, x1/γ < 1

+∞, x1/γ > 1 .

It follows that 1−Hγ is not a regularly varying function at infinity and therefore

cannot belong to the Fréchet max-domain of attraction. We claim, however, that

Hγ ∈ D(Λ). In fact, since

lnHγ(x) = ln
(

1 −
(

1 − Hγ(x)
)

)

∼ −
(

1 − Hγ(x)
)

,
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when x → xHγ , we get −
ln Hγ(x)
1−Hγ(x) −→

x→xHγ
1. Without loss of generality, let us sup-

pose w(x) = −
ln Hγ(x)
1−Hγ(x) > 0, for all x, to get

− lnHγ(x) =

(

−
lnHγ(x)

1 − Hγ(x)

)

(

1 − Hγ(x)
)

= w(x) exp
(

−(1 − γx)−1/γ
)

= w(x) exp

{

−

∫ x

1/γ

1

g(u)
du

}

,

for x > 1
γ and where g(x) = (1 − γx)1/γ+1 > 0 is such that

lim
x→+∞

g′(x) = lim
x→+∞

[

−(γ + 1) (1− γx)1/γ
]

= 0 .

Consequently, by Theorem 1.2, Hγ(x) is in the Gumbel max-domain of attraction.

In this case, the attraction constants can be defined by (see [4])















bn : Hγ(bn) = exp

(

−
1

n

)

an : an =
1

k(bn)
,

where

k(bn) = −
H ′

γ(bn)

Hγ(bn) lnHγ(bn)
.

Now,

Hγ(bn) = exp

(

−
1

n

)

⇐⇒ (1 − γ bn)−1/γ = − ln

[

1 − exp

(

−
1

n

)]

⇐⇒ 1 − γ bn =

(

− ln

[

1 − exp

(

−
1

n

)])−γ

⇐⇒ bn =
1 −

(

− ln
[

1 − exp
(

− 1
n

)

])−γ

γ
.

On the other hand,

an =
1

k(bn)

= −
exp
(

− 1
n

)

ln
(

exp
(

− 1
n

)

)

(1 − γ bn)−1/γ−1
(

1 − exp
(

− 1
n

)

)

=
1

n
(

exp
(

1
n

)

− 1
)

(1 − γ bn)−1/γ−1

=
1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])γ+1 .
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It follows that

(2.2)































an =
1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])γ+1 ,

bn =
1 −

(

− ln
[

1 − exp
(

− 1
n

)

])−γ

γ
, γ < 0 .

2.2. Case γ > 0 (Fréchet for minima)

Let us suppose that the distribution function of the lifetime of each com-

ponent belongs to the domain of attraction of a Fréchet for minima. We have,

for x ∈ R,

Hγ(x) = 1 − Gγ(−x)

=







1 − exp
(

−(1 − γx)−1/γ
)

, x ≤ 1
γ

1 , x > 1
γ .

(2.3)

In this case, since xHγ = 1
γ , Hγ(x) cannot be in the Fréchet domain of

attraction for maxima, but it can, however, be in the max-domain of attraction

of a Weibull or a Gumbel. Now,

1 − Hγ

(

xHγ −
1

x

)

= exp

(

−

(

1 − γ

(

1

γ
−

1

x

))−1/γ
)

= exp

(

−

(

γ

x

)−1/γ
)

= e−γ−1/γ x1/γ
, γ > 0, x > 0 ,

so applying Theorem 1.2 and (2.3) we get

lim
t→∞

e−γ−1/γ (tx)1/γ

e−γ−1/γ t1/γ
= lim

t→∞
e−γ−1/γ t1/γ (x1/γ−1)

=

{

0 , x1/γ > 1

+∞ , x1/γ < 1 .

We conclude therefore that the function Hγ is not in the domain of attraction for

maxima of a Weibull. Following the same reasoning as in the previous case, we

now prove that Hγ verifies the representation given by Theorem 1.2, and so Hγ
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is in the Gumbel max-domain of attraction. In fact, with w(x) =−
ln Hγ(x)
1−Hγ(x) , we

have

− lnHγ(x) = w(x) exp
(

−(1 − γx)−1/γ
)

= w(x) exp

{

−

∫ x

−∞

1

g(u)
du

}

,

for x < 1
γ and where g(x) = (1 − γx)1/γ+1 > 0 is such that

lim
x→ 1

γ

g′(x) = lim
x→ 1

γ

[

−(γ +1) (1 − γx)1/γ
]

= 0 .

The possible attraction constants are defined by (see [4])














bn : Hγ(bn) = exp

(

−
1

n

)

an : an =
1

k(bn)
.

Calculations similar to the case γ < 0 yield

(2.4)































an =
1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])γ+1 ,

bn =
1 −

(

− ln
[

1 − exp
(

− 1
n

)

])−γ

γ
, γ > 0 .

2.3. Case γ = 0 (Gumbel for minima)

Finally we analyse the case where the lifetime of the components is in the

domain of attraction of a Gumbel for minima. The function H0(x) is defined, for

all x ∈ R, by

H0(x) = 1 − G0(−x) = 1 − exp
(

− exp(x)
)

,

so that

− lnH0(x) = w(x) exp

{

−

∫ x

−∞

eu du

}

,

with w(x) defined as in the previous cases. Once again, the conditions of Theorem

1.2 are verified, considering g(x) = e−x > 0, ∀x ∈ R, and therefore the distribu-

tion function H0(x) is in the max-domain of attraction of a Gumbel law. The

sequences (an) and (bn) are now given by

(2.5)



















an =
1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

]) ,

bn = ln
(

− ln
[

1 − exp
(

− 1
n

)

])

,
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since

H0(bn) = exp

(

−
1

n

)

⇐⇒ exp(−ebn) = 1 − exp

(

−
1

n

)

⇐⇒ ebn = − ln

[

1 − exp

(

−
1

n

)]

⇐⇒ bn = ln

(

− ln

[

1 − exp

(

−
1

n

)])

and

an =
1

k(bn)

= −

(

1 − exp
(

− exp(bn)
)

)

ln
(

1 − exp(− exp
(

bn)
)

)

exp(bn) exp
(

− exp(bn)
)

=
exp
(

− 1
n

)

ln
(

exp
(

− 1
n

)

)

ln
(

1 − exp
(

− 1
n

)

)(

1 − exp
(

− 1
n

)

)

=
1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

]) .

We can sum up the results derived in the last three paragraphs by saying

that for all γ ∈ R there are sequences (an) and (bn), with an > 0 and bn ∈ R, such

that

(2.6) Hn
γ (anx + bn) −→

n→∞
Λ(x) ,

i.e., all stable laws for minima are in the Gumbel max-domain of attraction.

3. LIMIT MODEL FOR THE RELIABILITY OF A REGULAR

AND HOMOGENEOUS SERIES-PARALLEL SYSTEM

Using the above results it is possible to obtain the limit behaviour for the

reliability of a regular series-parallel system, with a large number of components,

whose lifetimes are i.i.d. and belong to the domain of attraction of a stable law

for minima, which in turn allows us to establish the following result:

Theorem 3.1. Let F be a distribution function in the domain of attrac-

tion of Hγ(x), i.e., assume that there are sequences (an) and (bn), with an > 0

and bn ∈ R, ∀n ∈ N, such that

(3.1) 1 −
(

1 − F (anx + bn)
)n

= Hγ(x) + εn(x) = 1 − Gγ(−x) + εn(x) ,
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with εn(x) → 0, ∀x ∈ R and where Gγ(x) is defined in (1.2). Given a sequence

of integers such that ln
n n

n
ln en = o(1), with en = sup

x∈R

|εn(x)|, then for all γ ∈R,

there exist αn > 0 and βn ∈ R, ∀n∈N such that, for the sequence of distribution

functions, conveniently normalized, the following holds

(3.2) Fn(αnx + βn) =
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

for all x ∈ R, i.e., for a regular homogeneous series-parallel system, constituted

by n parallel subsystems of ln components in series, the sequence of reliability

functions,conveniently normalized, verifies

Rn(αnx + βn) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) ,

for all x ∈ R. Further we can consider αn = ana∗n, βn = anb∗n + bn with

(3.3) a∗n =
1 − γ b∗n

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])

and

(3.4) b∗n =



































−
1

γ









ln

n
(

− ln
[

1 − exp
(

− 1
n

)

])





γ

− 1



 , γ 6= 0

− ln





ln

n
(

− ln
[

1 − exp
(

− 1
n

)

])



 , γ = 0 .

Proof: Given the sequences (an) and (bn) for which (3.1) is valid and

taking (αn) and (βn) such that αn = ana∗n and βn = anb∗n + bn, we have
(

1 − F (αnx + βn)
)ln =

(

1 − F (ana∗nx + anb∗n + bn)
)ln

=

[

(

1 − F
(

an(a∗nx + b∗n) + bn

)

)n
]

ln
n

(3.5)

=
(

1 − Hγ(a∗nx + b∗n) + εn(a∗nx + b∗n)
)

ln
n

=
(

1 − Hγ(a∗nx + b∗n)
)

ln
n + ρn(x) .

First, we will analyse the component
(

1 − Hγ(a∗nx + b∗n)
)

ln
n and later we will

prove that nρn(x) → 0, ∀x ∈ R, where (ln), (a∗n) and (b∗n) satisfy the previously

mentioned conditions. Now, for γ 6= 0 we have, successively,

(

1 − Hγ(a∗nx + b∗n)
)

ln
n =

[

Gγ

(

−(a∗nx + b∗n)
)

]
ln
n

= exp







−

(

(

ln

n

)−γ

− γ

((

ln

n

)−γ

a∗nx +

(

ln

n

)−γ

b∗n

)

)−1/γ






(3.6)

= exp
{

−
(

1 − γ(α∗
nx + β∗

n)
)−1/γ

}

= 1 − Hγ(α∗
nx + β∗

n) ,
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with

(3.7)



















α∗
n =

(

ln

n

)−γ

a∗n

β∗
n =

(

ln

n

)−γ(
γb∗n − 1

γ

)

+
1

γ
.

Hence for αn = ana∗n, βn = anb∗n + bn and for α∗
n and β∗

n given by (3.7), we can

write

(3.8)
(

1 − F (αnx + βn)
)ln = 1 − Hγ(α∗

nx + β∗
n) + ρn(x) .

Using (3.3), (3.4) and (3.7) the sequence α∗
n verifies

α∗
n =

(

ln

n

)−γ

a∗n

=

(

ln

n

)−γ









1 +

(

ln

n
(

− ln
[

1−exp(− 1

n)
])

)γ

− 1

n
(

exp
(

1
n

)

−1
)(

− ln
[

1 − exp
(

− 1
n

)

])









=

(

ln

n

)−γ




(

ln
n

)γ

n
(

exp
(

1
n

)

−1
)(

− ln
[

1 − exp
(

− 1
n

)

])(

− ln
[

1 − exp
(

− 1
n

)

])γ





=
1

n
(

exp
(

1
n

)

−1
)(

− ln
[

1 − exp
(

− 1
n

)

])γ+1 .

Moreover, given (3.4) for γ 6= 0, ln = n
(

− ln
[

1 − exp
(

− 1
n

)])

(1 − γb∗n)1/γ and it

follows that

β∗
n =

(

ln

n

)−γ(
γb∗n − 1

γ

)

+
1

γ

=
n−γ

(

− ln
[

1 − exp
(

− 1
n

)

])−γ
(1 − γb∗n)−1 (γb∗n −1)

γ n−γ
+

1

γ

= −

(

− ln
[

1 − exp
(

− 1
n

)

])−γ
(1 − γb∗n)−1 (1 − γb∗n)

γ
+

1

γ

=
1 −

(

− ln
[

1 − exp
(

− 1
n

)

])−γ

γ
.

This means that (α∗
n) and (β∗

n) verify (2.2) and (2.4) and consequently are a suit-

able choice of sequences for the convergence of Hn
γ to the Gumbel law. To prove

that ρ(x) in (3.8) is such that nρ(x) goes to zero, we start by observing that since

n
(

exp
(

1
n

)

−1
)

∼ 1 and − ln
(

1− exp
(

− 1
n

))

∼ lnn, as n →∞, the constants (α∗
n)

and (β∗
n) are asymptotically given by

α∗
n ∼

1

(lnn)γ+1
and β∗

n ∼
1 − (lnn)−γ

γ
,
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and so using (3.7) we get,

a∗nx + b∗n =

(

ln

n

)γ

α∗
nx +

(

ln

n

)γ(
γβ∗

n −1

γ

)

+
1

γ
(3.9)

∼

(

ln

n lnn

)γ(
x

lnn
−

1

γ

)

+
1

γ
.

Moreover, from (3.6), (3.7) and (3.9) we obtain

(

1 − Hγ(a∗nx + b∗n)
)

ln
n
−1

∼

exp

{

−

(

1 − γ
(

1
(ln n)γ+1 x + 1−(ln n)−γ

γ

)

)−1/γ
}

exp

{

−

(

1 − γ
(

(

ln
n ln n

)γ ( x
ln n − 1

γ

)

+ 1
γ

)

)−1/γ
}

∼
exp

{

− lnn
(

1 − γ x
ln n

)−1/γ
}

exp
{

−n ln n
ln

(

1 − γ x
ln n

)−1/γ
}(3.10)

∼ exp

{

(

n

ln
−1

)

lnn

(

1 −
γ

lnn
x

)−1/γ
}

∼ n
n
ln

−1
,

when n → ∞ and ∀x ∈ R. Now, since Hγ is a continuous distribution function

on R, the convergence of εn(x) in (3.1) is naturally the uniform convergence and

we can write lim
n→∞

en = lim
n→∞

[

sup
x∈R

|εn(x)|
]

= 0. Furthermore, taking into account

that a∗nx + b∗n converges to xHγ , we also have εn(a∗nx + b∗n) → 0, uniformly in R,

when n →∞. These results, together with (3.10) and ln
n n

n
ln en → 0, when n →∞,

allow us to obtain the following approximation for ρn(x) in (3.5),

ρn(x) =
ln

n
εn(a

∗
nx + b∗n)

(

1 − Hγ(a∗nx + b∗n)
)

ln
n
−1

+ o(ξn)

∼
ln

n2
εn(a∗nx + b∗n)n

n
ln + o(ξn) ,

with ξn = ln
n2 n

n
ln en, so that nρn(x) → 0. To derive the main result in (3.2) for

γ 6= 0, observe that, using (3.8), we have

[

1 −
(

1 − F (αnx + βn)
)ln
]n

=

=
[

Hγ(α∗
nx + β∗

n) + ρn(x)
]n

=
[

Hγ(α∗
nx + β∗

n)
]n
[

1 +
ρn(x)

Hγ(α∗
nx + β∗

n)

]n

=
[

Hγ(α∗
nx + β∗

n)
]n
[

1 +
n ρn(x)

Hγ(α∗
nx + β∗

n)
+ o

(

nρn(x)

Hγ(α∗
nx + β∗

n)

)]

,
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where (α∗
n) and (β∗

n) are normalizing sequences for the convergence of
[

Hγ(α∗
nx +

β∗
n)
]n

to Λ(x). So since Hγ(α∗
nx + β∗

n) → 1, when n goes to infinity, we finally

obtain
Fn(αnx + βn) =

[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

or in other words,

Rn(αnx + βn) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) .

In the case γ = 0, we can also write

(3.11)
[

1 − H0(a
∗
nx + b∗n)

]
ln
n = 1 − H0(α

∗
nx + β∗

n) ,

where

(3.12)











α∗
n = a∗n

β∗
n = b∗n + ln

(

ln

n

)

.

Using (3.3), (3.4) and (3.12) it now follows that

α∗
n =

1

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

]) ,

and moreover

β∗
n = b∗n + ln

(

ln

n

)

= − ln





ln

n
(

− ln
[

1 − exp
(

− 1
n

)

])



+ ln

(

ln

n

)

= ln







ln
n
ln

n
(

− ln
[

1−exp(− 1

n)
])






= ln

(

− ln

[

1 − exp

(

−
1

n

)])

.

This means that the sequences (α∗
n) and (β∗

n) verify (2.5) and therefore are a

suitable choice of sequences for the convergence of Hn
0 to the Gumbel law. Given

that α∗
n ∼ 1

ln n and β∗
n ∼ ln(lnn) and given (3.12), we have the approximation

a∗nx + b∗n = α∗
nx +

(

β∗
n − ln

(

ln

n

))

∼
x

lnn
+ ln

(

n lnn

ln

)

.

Once again we can show that
(

1−H0(a
∗
nx+ b∗n)

)
ln
n ∼ n

n
ln and nρn(x) → 0, when

n →∞, ∀x ∈ R, yielding

Fn(αnx + βn) =
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

i.e.,
Rn(αnx + βn) −→

n→∞
1 − Λ(x) ,

which proves the result.
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Example 3.1. Let be X y Exp(1).

Observe that
(

1 − F

(

x

n

))n

=
(

e−
x
n
)n

= e−x = Ψ1(−x) = 1 − H−1(x) .

The conditions of theorem 3 are satisfied, setting an = 1
n , bn = 0 and εn(x) = 0,

∀x ∈ R. For any sequence ln, by now considering































a∗n =
1 + b∗n

n
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])

b∗n =





ln

n
(

− ln
[

1 − exp
(

− 1
n

)

])





−1

− 1

and


























αn =
1 + b∗n

n2
(

exp
(

1
n

)

− 1
)(

− ln
[

1 − exp
(

− 1
n

)

])

βn =

(

− ln
[

1 − exp
(

− 1
n

)

])

ln
−

1

n
,

we obtain

Fn(x) =
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

Λ(x) ,

i.e.,

Rn(x) = 1 −
[

1 −
(

1 − F (αnx + βn)
)ln
]n

−→
n→∞

1 − Λ(x) .

Remark 3.1. Note that if the sequence (ln) is constant and (kn) goes to

infinity then the limit models for the reliability of the system are the usual models

for maxima.
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