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1. INTRODUCTION

The partially linear model combines the traditional linear model with the nonparamet-

ric regression model, which is widely concerned because it makes the model more flexible.

However, nonparametric components often suffer from the “curse of dimensionality” and ap-

ply only to the low-dimensional covariates. To overcome the problem, the partially linear

single-index model (PLSIM) has played an important role in the studies. In this paper, we

consider the partially linear single-index model of the form

(1.1) Y = g(X⊤θ) +Z⊤β + ε,

where Y is the response variable, X ∈ Rp and Z ∈ Rq are two disjoint groups of covariates,

and ε is the error term satisfying E(ε|X,Z) = 0 and E(ε2|X,Z) = σ2 < ∞; g(·) is the

nonparametric link function which has a continuous second derivative, and θ ∈ Rp and

β ∈ Rq are the index parameter and link parameter vectors. For identifiability purpose, we

assume that ∥θ∥ = 1 and, without loss of generality, the the first nonzero component of θ is

positive, where ∥ · ∥ denotes the Euclidean metric.

Model (1.1) is a fairly general and flexible model. Because model (1.1) considers the

features of the single-index model and the linear model, it enjoys the merits of both. Sub-

sequently, PLSIM has stronger interpretability and broader application prospect. Moreover,

the PLSIM is not only less restrictive than the parametric model but also free from the

“curse of dimensionality” which is often encountered in multivariate nonparametric settings.

Among the available semiparametric models, the PLSIM plays an important role and has

been widely applied in practice. Various methods have been proposed in the literature for

estimating the unknown parameters and the nonparametric link function in the PLSIM. For

example, Carroll et al (1997) proposed the backfitting algorithm. However, the resulting

estimators may be unstable and undersmoothing the nonparametric function is necessary to

reduce the bias of the parametric estimators. Accordingly, Yu and Ruppert (2002) proposed

the penalized spline approach, which is computationally fast and stable. Xia and Härdle

(2006) developed the well-known minimizing average variance estimation (MAVE) method

for dimensionality reduction, which is an estimation method based on local linear smoothing

and a modified form of least squares in Härdle et al (1993). Wang et al (2010) proposed

a two-stage estimation procedure for the partially linear single-index model, which proves

the asymptotic normality of the estimators for the parametric components. Although Yu

and Ruppert (2002)’s procedure is useful, it may not yield efficient estimators; that is, the

asymptotic covariance of their estimators does not reach the semiparametric efficiency bound.

Therefore, we use the profile least-squares approach, which obtains an effective estimators

and provides an effective bound. Other latest interesting works in semiparamatric models

include Zhu and Xue (2006), Yan et al (2020), Liu et al (2021), Zou et al (2021), Cai and

Wang (2023), etc.

Although the PLSIM, as discussed earlier, stands out due to its interpretability and

broad applicability in various settings, these discussions often assume direct observability of

covariates. However in practical problems, covariates usually cannot be measured directly,

such as blood pressure, intelligence and obesity, etc, which will be affected to a certain extent

in the measurement process, resulting in measurement errors. If we ignore the measurement

errors, the estimators and inference may be biased and inconsistent. Hence, while the PLSIM
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has been widely applied, its reliance on directly observable covariates becomes a limitation

in the presence of measurement errors. In this paper, we are interested in variable selection

and estimation of θ, β and the nonparametric function g(·), in the presence of measurement

errors in both the parametric and the nonparametric part. More specifically, we assume an

additive measurement error model as

W = X +U ,

T = Z + V ,(1.2)

where W and T are the observed surrogates, and U and V are measurement errors, inde-

pendent of (X,Z, Y ), satisfying E(U) = 0p, E(V ) = 0q, Cov(U) = Σu and Cov(V ) = Σv.

For simplicity, we focus on the situation where Σu and Σv are known. Otherwise, Σu and Σv

need to be first estimated, e.g., by the replication experiments method in Liang and Carroll

(1999); Carroll et al (2006).

To eliminate the effects of measurement error, Cook and Stefanski (1994) developed

the SIMEX method to correct the estimates in the presence of additive measurement error.

Liang and Wang (2005) considered the partially linear single-index measurement error models

with the linear part containing the measurement error, where they applied the correction for

attenuation approach to obtain the efficient estimators of the parameters of interest. We note,

however, that the above methods are not applicable for the occurrence with measurement

errors in the nonparametric part of partially linear single-index models. In view of this, Lin

et al (2022) considered the PLSIM with measurement errors possibly in all the variables, and

proposed a new efficient estimation procedure based on the local linear smoothing and the

SIMEX, and further establish the asymptotic normality. More related works include Chen

and Cui (2009), Yang et al (2019), Huang and Zhao (2019), etc.

In practice, many explanatory variables are generally collected and need to be assessed

during the initial analysis. Deciding which covariates to keep in the final statistical model and

which variables are non-informative is practically interesting, but is always a tricky task for

data analysis. Variable selection is therefore of fundamental interest in statistical modeling

and analysis of data, and has become an integral part in most of the widely used statistics

packages. No doubt variable selection will continue to be an important basic strategy for

data analysis. Various methods for various models have been studied, for example, the

bridge regression proposed in Frank and Friedman (1993), the least absolute shrinkage and

selection operator (LASSO) proposed by Tibshirani (1996), the smoothly clipped absolute

deviation (SCAD) proposed by Fan and Li (2001), the adaptive LASSO proposed in Zhou

(2006), and so forth.

Tibshirani (1996) introduced LASSO to shrink the estimated coefficients of superfluous

variables to zero in linear regression models, thus achieving the selection of significant vari-

ables and the corresponding parameter estimators at the same time. Subsequently, Fan and

Li (2001) pointed out that Lasso method compresses model coefficients with large absolute

values too much, which may cause unnecessary bias of the model, proved that Lasso estima-

tion method does not have oracle properties, and proposed the SCAD approach that not only

selects important variables consistently, but also produces parameter estimators as efficiently

as if the true model were known, a property not possessed by the LASSO. In their research,

Fan and Li (2001) proposed that a good penalty function should result in an estimator with

three properties: sparsity, unbiased and continuity. The SCAD penalty estimator satisfies
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these properties and has the oracle property that the zero coefficient can be estimated to

be zero with probability one, and the nonzero coefficient estimator is asymptotically normal

and has the same variance structure as the estimator obtained from the real model. Hence,

we prefer to use the SCAD method for variable selection and estimation of the model. With

respect to the partially linear model with measurement errors, Liang and Li (2009) proposed

the penalized least squares estimation and penalized quantile estimation for the parame-

ters through applying the SCAD penalty function. Their variable selection procedures were

proven to be consistent and the resulting estimators share the oracle property. Liang et al

(2010) applied the profile likelihood to solve the PLSIM and also employ the SCAD approach

to simultaneously select variables and estimate regression coefficients, and possess the oracle

property.

In the partially linear single-index model, there are few literatures on variable selection

and estimation considering the presence of measurement errors in all variables. The main

content of this paper is to construct SCAD estimators of parameter vectors θ and β in this

situation. We combine the SIMEX method, the local linear smoothing and the bias-corrected

profile least-squares approach to obtain the SCAD estimators for both parameter vectors θ

and β, and reduce the bias of the estimators, filter out the variables that have little or no

obvious influence on the model, and improve the simplicity and interpretability of the model.

Furthermore, we establish the asymptotic results of the SCAD estimators, which include the

consistency and oracle properties. Simulation results are consistent with theoretical findings.

The rest of the paper is organized as follows. Section 2 presents the estimation method

and gives the asymptotic properties of the obtained estimators. Some implementing issues

including the a specific iterative algorithm and the choice of tuning parameters are discussed

in Section 3. In Section 4, Monte Carlo simulations are carried out to assess the performance

of the proposed estimation procedure. Section 5 is conclusion remark. Proofs of the main

results are placed in the Appendix.

2. METHODOLOGY AND ASYMPTOTIC PROPERTIES

In this section, we study the SCAD variable selection method for the partially linear

single-index model with measurement errors in both the parametric and the nonparametric

part, and then we establish the asymptotic properties of the estimators.

2.1. Methods

For the model (1.1) with measurement errors in (1.2), the naive estimator that ignores

measurement error often leads to inconsistent estimation. In this subsection, we extend the

SIMEX method to estimate g(·) and also apply the penalized least-squares approach to si-

multaneously estimate parameters and select important variables. Cook and Stefanski (1994)

proposed the well-known SIMEX for simulating and extrapolation. The SIMEX method con-

sists of the simulation step, the estimation step, and extrapolation step. It entailed additional

measurement error to the data with known increments, computing estimates from the addi-
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tionally contaminated data, establishing a trend between these estimates and the variance

of the addition errors, and extrapolation this trend back to the case without measurement

error.

Assume that {(Xi,Zi, Yi,Wi,Ti,Ui,Vi), i = 1, 2, · · · , n} is independent and identically

distributed (i.i.d.) copies of (X,Z, Y,W ,T ,U ,V ), where (Xi,Zi, Yi) satisfies the model

(1.1), and (Wi,Ti) satisfies the model (1.2). For each i = 1, 2, · · · , n, we generate a sequence

of variables

(2.1) Wib = Wi + (ωΣu)
1/2εib, b = 1, 2, · · · , B,

where εib ∼ N(0, Ip), Ip is a p× p identity matrix, B is a large but fixed integer, ω > 0 and

ω ∈ A = {ω1, ω2, · · · , ωM} is the grid of ω in the extrapolation step. This is the simulation

component of our method. Here ω controls how much additional independent measurement

error is added to the original Wi. Simulation evidence suggests that the extrapolantation

should be fitted for ω in a range of [0, ωM ] with 1 ≤ ωM ≤ 2, see Carroll et al (2006).

Because g(·) is nonparametric modeling, it is natural to consider local linear smooth-

ness. However, efficient estimation of the global parameters θ and β require the use of all

data, so their estimation relies on local linear smoothness. Suppose that g(·) has a continuous

second derivative. For any v in a neighborhood of u, we apply the linear approximation of

g(·) as

g(v) ≈ g(u) + g′(u)(v − u) ≡ a0 + a1(v − u),

where a0 = g(u), a1 = g′(u).

With the simulated Wib, for t in the domain of g(·) and any given θ and β, we minimize

(2.2)
n∑

i=1

[Yi − Ti
⊤β − a0 − a1(W

⊤
ib θ − t)]2Kh(W

⊤
ib θ − t)

with respect to (a0, a1)
⊤, and denote the resulted minimizer as â0 = ĝω,b(t;θ,β) and â1 =

ĝ′ω,b(t;θ,β). In (2.2), Kh(·) = h−1K(·/h), K(·) is a kernel function on R and h > 0 is

a bandwidth. Exact determination of ĝω(t;θ,β) for ω > 0 is generally not feasible, but

it can always be estimated arbitrarily well by generating a large number of independent

measurement error vectors, {εib, b = 1, · · · , B}, computing ĝω,b(t;θ,β) and approximating

ĝω(t;θ,β) by the sample mean of ĝω,b(t;θ,β) for b = 1, 2, · · · , B, that is

ĝω(t;θ,β) =
1

B

B∑
b=1

ĝω,b(t;θ,β).(2.3)

This is the estimation component of our method.

The extrapolation step of the proposal entails fitting a regression model of ĝω(t;θ,β)

on ω for ω ≥ 0 and using the model to extrapolate back to ω = −1. This yield the simulation-

extrapolation estimator,

ĝSIMEX(W
⊤
i θ;θ,β) = ĝ−1(W

⊤
i θ;θ,β) + ĝ′−1(W

⊤
i θ;θ,β)(W⊤

i θ),

where ĝ−1(W
⊤
i θ;θ,β) is extrapolation back to ω = −1 for average value ĝω,b(W

⊤
i θ;θ,β) and

similarly we obtain ĝ′−1(W
⊤
i θ;θ,β) for extrapolation for average value of ĝ′ω,b(W

⊤
i θ;θ,β).

This is the extrapolation component of our method.
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Given the estimator ĝSIMEX(t;θ,β), the bias-corrected profile least-squares estimators

of (θ⊤,β⊤)⊤ is obtained by minimizing the following function

(2.4) Q(θ,β) =
n∑

i=1

(Yi − ĝSIMEX(W
⊤
i θ;θ,β)− T⊤

i β)2 − nḡ′2(Λ)θ⊤Σuθ − nβ⊤Σvβ,

where ḡ′2(Λ) = n−1
∑n

i=1 ĝ
′2(W⊤

i θ).

In practice, the true model is often unknown a priori. An underfitted model can yield

biased estimates and predicted values, while an overfitted model can degrade the efficiency

of the parameter estimates and predictions. This motivates us to apply the penalized ap-

proach to simultaneously estimate parameters and select important variables. To this end,

we consider a penalized bias-corrected profile least-squares function

(2.5) L(θ,β) = Q(θ,β) + n

p∑
j=1

pλ1(|θj |) + n

q∑
k=1

pλ2(|βk|),

where Q(θ,β) is defined in (2.4), the penalty functions pλ1(·) and pλ2(·) in (2.5) are not

necessarily the same for all θ and β, respectively. For example, we may wish to keep important

predictors in a parametric model and hence not be willing to penalize their corresponding

parameters. For simplicity of presentation, we assume that the penalty function for all

coefficients are the same. For the purpose of selecting X-variable only, we simply set pλ2(·) =
0 and the resulting penalized bias-corrected profile least-squares function becomes

L(θ,β) = Q(θ,β) + n

p∑
j=1

pλ1(|θj |).

Similarly, if we are only interested in selecting Z-variable, then we set pλ1(·) = 0 so that

L(θ,β) = Q(θ,β) + n

q∑
k=1

pλ2(|βk|).

There are various penalty functions available in the literature. To obtain the oracle

property of Fan and Li (2001), we adopt their SCAD penalty, whose first derivative is

p′λ(τ) = λ

{
I(τ ≤ λ) +

(aλ− τ)+
(a− 1)λ

I(τ > λ)

}
,

and where pλ(0) = 0, a = 3.7 and (t)+ = max(t, 0). For the given tuning parameters, we

obtain the penalized the estimators by minimizing L(θ,β) in (2.5) with respect to θ and β.

For the sake of simplicity, we denote the resulting estimators by θ̂ and β̂.

2.2. Properties

In this section, we study the theoretical properties of the penalized profile bias-corrected

least-squares estimators with the SCAD penalty function. The following regularity conditions

are needed:
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(C1) The density function of X⊤θ, f(·), is Lipschitz continuous, bounded away from 0 and

has a continuous second derivative on its support.

(C2) The function g(·) has bounded continuous second derivative.

(C3) The kernel K(·) is a bounded, continuous and symmetric density function with a

bounded support satisfying the Lipschitz condition of order 1 and
∫
u2K(u)du ̸= 0.

(C4) The extrapolation function is theoretically exact.

(C5) nh2/(log n)2 → ∞ and nh8 → 0 as n → ∞.

(C6) The error term satisfies supE(ε2|X,Z) < ∞ and supE(ε4|X,Z) < ∞.

(C7) The matrices E{[X −E(X|W⊤θ)][X −E(X|W⊤θ)]⊤} and E{[Z−E(Z|W⊤θ)][Z−
E(Z|W⊤θ)]⊤} are positive-definite.

(C8) lim infn→∞ lim infθ→0+ p′λ1
(θ)/λ1 > 0 and lim infn→∞ lim infβ→0+ p′λ2

(β)/λ2 > 0.

The above conditions are imposed for mathematical simplicity and may be modified if

necessary. Conditions (C1) and (C2) are commonly used in the literature of the single-index

regression analysis. Condition (C3) is the usual assumption for the kernel function. Condition

(C4) is needed for the SIMEX method. Condition (C5) gives more regular conditions to

choose the bandwidths. Conditions (C6)–(C8) are the necessary conditions for deriving the

asymptotic normality and oracle property for the proposed estimators.

Let

θ0 = (θ10, · · · , θp0)⊤ = (θ⊤
10,θ

⊤
20)

⊤, β0 = (β10, · · · , βq0)⊤ = (β⊤
10,β

⊤
20)

⊤

be the true value of θ and β, respectively. Without loss of generality, assume that θ10 and

β10 consist of all nonzero components of θ0 and β0, respectively, and θ20 = 0, β20 = 0. Let

s and t respectively denote the dimension of θ10 and β10. Denote

an = max
1≤j≤p

{|p′λ1
(|θj0|)| : θj0 ̸= 0} , cn = max

1≤k≤q
{|p′λ2

(|βk0|)| : βk0 ̸= 0},

bn = max
1≤j≤p

{|p′′λ1
(|θj0|)| : θj0 ̸= 0} , dn = max

1≤k≤q
{|p′′λ2

(|θk0|)| : βk0 ̸= 0},(2.6)

and

R1 = (p′λ1
(|θ10|)sgn(θ10), · · · , p′λ1

(|θs0|)sgn(θs0))⊤,
R2 = (p′λ2

(|β10|)sgn(β10), · · · , p′λ2
(|βt0|)sgn(βt0))⊤,

Σ1 = diag{p′′λ1
(|θ10|), · · · , p′′λ1

(|θs0|)},(2.7)

Σ2 = diag{p′′λ2
(|β10|), · · · , p′′λ2

(|βt0|)}.

In what follows, A⊗2
= AA⊤ for any vector A. Let ξ̃i = ξi − E[ξ|W⊤θ = W⊤

i θ] for

any random variable or vector ξ. For example, T̃i = Ti − E[T |W⊤θ = W⊤
i θ]. Let Σu11 be

the (s, s) - left upper submatrix of Σu and Σv11 be the (t, t) - left upper submatrix of Σv. In

addition, we define (W1,X1) and (T1,Z1) in such a way that they consist of the first s and t

elements of (W ,X) and (T ,Z) respectively. We define (W̃1, X̃1) and (T̃1, Z̃1) analogously.

We have the following theorem, whose proof is given in the Appendix.
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Theorem 2.1. Suppose that the regularity conditions (C1)–(C8) hold. If bn → 0

and dn → 0 as n → ∞, then there exists a local minimizer (θ̂, β̂) of (2.5) such that the rate

is Op(n
−1/2 + an + cn), where an, cn and bn, dn are given by (2.6).

It is clear from Theorem 2.1 that the rate of convergence of the estimators θ̂ and

β̂ depends on λ1 and λ2. As long as the appropriate λ1 and λ2 are chosen, such that

an = cn = O(n−1/2), there exists a root-n consistent penalized estimators.

Theorem 2.2. Suppose that the regularity conditions (C1)–(C8) hold. If λ1 → 0,√
nλ1 → ∞ and λ2 → 0,

√
nλ2 → ∞ as n → ∞, then with probability tending to 1, the

penalized estimators θ̂ = (θ̂⊤
1 , θ̂

⊤
2 )

⊤ and β̂ = (β̂⊤
1 , β̂

⊤
2 )

⊤ in Theorem 2.1 must satisfy:

(i) Sparsity: θ̂2 = 0 and β̂2 = 0.

(ii) Asymptotic normality:

√
n
{
Γ4 − ΓW̃1Z̃1

Γ−1
3 Γ⊤

W̃1Z̃1

}(
θ̂1 − θ10

)
+

1√
n

{
ΓW̃1Z̃1

Γ−1
3 R2 −R1

}
L−→ N (0,Ωθ) ,

√
n
{
Γ3 − Γ⊤

W̃1Z̃1
Γ−1
4 ΓW̃1Z̃1

}(
β̂1 − β10

)
+

1√
n

{
Γ⊤
W̃1Z̃1

Γ−1
4 R1 −R2

}
L−→ N (0,Ωβ) ,

where “
L−→” is convergence in distribution, and all expected values are well defined.

ΓW̃1
= E(g′(W⊤

1 θ10)W̃1)
⊗2

, ΓW̃1Z̃1
= E(g′(W⊤

1 θ10)W̃1Z̃1), ΓX̃1
= E(g′(W⊤

1 θ10)X̃1)
⊗2

,

ΓZ̃1
= E(Z̃⊤

1 Z̃1), ΓU1 = E(g′(W⊤
1 θ10)U1)

⊗2
, Γ1 = E(ḡ′2(Λ)(U1U

⊤
1 − Σu11)θ10)

⊗2
, Γ2 =

E((V1V
⊤
1 − Σv11)β10)

⊗2
, Γ3 = ΓZ̃1

+ Σ2, Γ4 = ΓW̃1
− ḡ′2(Λ)Σu11 + Σ1, Γ∆1 = E(ε −

g′(X⊤
1 θ10)U

⊤
1 θ10−V ⊤

1 β10)
⊗2

, Γ∗
X̃1

= ΓX̃1
−ΓW̃1Z̃1

Γ−1
3 ΓZ̃1

Γ−1
3 Γ⊤

W̃1Z̃1
, Ωθ = Γ∗

X̃1
Γ∆1+ΓU1σ

2+

Γ1+ΓW̃1Z̃1
Γ−1
3 {Σv11σ

2+Γ2}Γ−1
3 Γ⊤

W̃1Z̃1
, Γ∗

Z̃1
= ΓZ̃1

−ΓW̃1Z̃1
Γ−1
4 ΓX̃1

Γ−1
4 ΓW̃1Z̃1

, Ωβ = Γ∗
Z̃1
Γ∆1+

Σv11σ2 + Γ2 + Γ⊤
W̃1Z̃1

Γ−1
4 {Γu11σ

2 + Γ1}Γ−1
4 ΓW̃1Z̃1

.

3. IMPLEMENTATION

3.1. Algorithm

In the previous section, the estimation method for the partially linear single-index

model with the SCAD penalty function, considering measurement errors, is presented. Since

θ and β have no explicit solutions, the traditional iterative algorithm can not be directly used

in optimization problem (2.5), but the optimization can still be achieved with this algorithm

after appropriate adjustment. The SCAD penalty functions are singular at the origin, and

they do not have continuous second order derivatives. Therefore, we can adopt the local

quadratic approximation of the penalty function proposed by Fan and Li (2001) to replace

the penalty function.
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More specifically, given the initial value β̂(0), and a specified small positive number ϵ.

For k = 1, · · · , q, when |β̂(0)
k | < ϵ, let β̂k = 0; when |β̂(0)

k | ≥ ϵ, we have

pλ2(|βk|) ≈ pλ2(|β̂
(0)
k |) +

p′λ2
(|β̂(0)

k |)

2|β̂(0)
k |

(
β2
k − β̂

(0)2
k

)
.(3.1)

Analogously, given the initial value θ̂(0), if |θ̂(0)k | < ϵ, k = 1, · · · , p, then let θ̂k = 0; otherwise,

we have

pλ1(|θj |) ≈ pλ1(|θ̂
(0)
j |) +

p′λ1
(|θ̂(0)j |)

2|θ̂(0)j |

(
θ2j − θ̂

(0)2
j

)
.

With the aid of the local quadratic approximation, minimizing (2.5) is equivalent to mini-

mizing
n∑

i=1

{
Yi − ĝ(W⊤

i θ̂(0); θ̂(0), β̂(0))− ĝ′(W⊤
i θ̂(0); θ̂(0), β̂(0))

(
W⊤

i θ −W⊤
i θ̂(0)

)
− T⊤

i β
}2

− nḡ′2(Λ)θ⊤Σuθ − nβ⊤Σvβ + n

p∑
j=1

p′λ1
(|θ̂(0)j |)

|θ̂(0)j |
θ2j + n

q∑
k=1

p′λ2
(|β̂(0)

k |)

|β̂(0)
k |

β2
k

=

n∑
i=1

{
Ỹi −

(
ĝ′(W⊤

i θ̂(0))W⊤
i T⊤

i

)( θ
β

)}2

+ n
(
θ⊤ β⊤ )( Σλ1(θ̂

(0))− ḡ′2(Λ)Σu 0

0 Σλ2(β̂
(0))− Σv

)(
θ
β

)(3.2)

where Ỹi = Yi− ĝ(W⊤
i θ̂(0))+ ĝ′(W⊤

i θ̂(0))W⊤
i θ̂(0), where ĝ and ĝ′ are part of the SIMEX esti-

mator. Σλ1(θ̂
(0)) = diag

{
p′λ1

(|θ̂(0)1 |)

|θ̂(0)1 |
, · · · ,

p′λ1
(|θ̂(0)p |)

|θ̂(0)p |

}
, Σλ2(β̂

(0)) = diag

{
p′λ2

(|β̂(0)
1 |)

|β̂(0)
1 |

, · · · ,
p′λ2

(|β̂(0)
q |)

|β̂(0)
q |

}
.

Note that (3.2) is an approximation of (2.5) by first-order Taylor expansion. On this basis,

optimization problem (3.2) is further implemented iteratively using the following algorithm.

Step 1 The initial estimators θ̂
(0)
1 and β̂(0) are obtained by the method of the unpenalized

profile least-squares, where we ignore measurement errors, replace (X,Z) by (W ,T ),

and set θ̂(0) = θ̂
(0)
1 /∥θ̂(0)

1 ∥ and l = 0.

Step 2 Use the current estimators θ̂(l) and β̂(l), find â0(u; θ̂
(l), β̂(l)) and â1(u; θ̂

(l), β̂(l)) by

minimizing (2.2), averaging as in (2.3), and extrapolating back to ω = −1, with θ̂(l)

and β̂(l) replacing θ and β.

Step 3 If θ̂
(l)
j and β̂

(l)
k are close to zero, then set θ̂j = 0 and β̂k = 0. Otherwise, by minimizing

(3.2), we update the estimators of (θ⊤,β⊤)⊤ by(
θ̂(l+1)

β̂(l+1)

)
=

{
n∑

i=1

(
ĝ′(W⊤

i θ̂(l))Wi

Ti

)(
ĝ′(W⊤

i θ̂(l))W⊤
i T⊤

i

)
+ n

(
Σλ1(θ̂

(l))− ḡ′2(Λ)Σu 0

0 Σλ2(β̂
(l))− Σv

)}−1

×
n∑

i=1

(
ĝ′(Wiθ̂

(l))Wi

Ti

)
Ỹi.

Step 4 Iterate Step 2 and Step 3 until convergence. We obtain the estimators of θ and β.

Step 5 With
(
θ̂, β̂

)
from Step 4, the final estimate of g(·) can be obtained by carrying out

Step 2.
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3.2. Tuning parameters selection

The bandwidth h is selected by applying leave-one-out cross validation method, which

minimizes

CV(h) =
1

n

n∑
i=1

{
Yi − ĝ(−i)(W

⊤
i θ̂(−i))− T⊤

i β̂(−i)

}2
,

over a grid of h’s, where θ̂(−i), β̂(−i) and ĝ(−i)(·) are the proposed estimators of θ, β, and

g(·) with the ith observation deleted. The CV bandwidth hCV is selected to minimize CV(h),

that is hCV = minCV(h).

Theorem 2.2 indicates that the proposed variable selection procedure possesses the

oracle property. However, this attractive feature relies on the tuning parameters. After the

selection of bandwidth h, we select tuning parameters λ1 and λ2. To this end, we describe the

tuning parameters selection procedure in detail. Because it is computationally expensive to

minimize BIC, defined below, with respect to the (p+ q)-dimensional tuning parameters, we

follow the approach of Fan and Li (2004) to set λ1 = λSE
(
θ̂uj

)
and λ2 = λSE

(
β̂u
k

)
, where λ

is the tuning parameter, and SE
(
θ̂uj

)
and SE

(
β̂u
k

)
are the standard errors of the unpenalized

profile least-squares estimators of θj and βk, respectively, for j = 1, · · · , p and k = 1, · · · , q.
Let the resulting SCAD estimators be θ̂λ and β̂λ. We then select λ by minimizing the

objective function

BIC(λ) = log (MSEλ) + DFλ log(n)/n,(3.3)

where MSEλ = 1
n

∑n
i=1

{(
Yi − ĝ(W⊤

i θ̂λ)− T⊤
i β̂λ

)2
− ḡ′2(Λ)θ̂⊤

λ Σuθ̂λ − β̂⊤
λ Σvβ̂λ

}
and DFλ

is the number of nonzero coefficients of both θ̂λ and β̂λ. Thus, the minimization problem

over λ will reduce to a one-dimensional minimization problem concerning. In special cases,

λ can be selected by minimizing BIC(λ) in the set of grid points on the bounded interval

[0, λmax], where λmax/
√
n → 0 as n → ∞. In practice, a plot of the BIC(λ) against λ can

be used to determine an appropriate λmax to ensure that the BIC(λ) reaches its minimum

around the middle of the range of λ. Then take the grid points of λ on [0, λmax], from which

the tuning parameters are selected, which can avoid excessive calculation in the minimization

of BIC(λ).

4. SIMULATIONS

In this section, we evaluate the finite sample performance of the proposed procedure

through Monte Carlo simulations. We compare our SCAD penalty method (denoted as

SIMEX+SCAD) with unpenalized estimators for complexity with considering measurement

errors (denoted as SIMEX). In our simulations, we also compare our proposed methods

with the naive estimator (denoted as Naive) and penalized naive estimator (denoted as

Naive+SCAD) that ignore measurement errors with a direct replacement of X and Z by

W and T . As a benchmark, the oracle estimators (denoted as Oracle) are computed and
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used for comparison, where the zero components are known a priori and X and Z can be

observed. It was computed as gold standard although it is unachievable in practice.

To evaluate the performance of the proposed variable selection estimation method, we

used the following criterions.

� The square of the R statistic: R2
θ = |θ̂⊤θ0|2/|θ⊤

0 θ0|2 and R2
β = |β̂⊤β0|2/|β⊤

0 β0|2.

� The numbers of zero coefficients and nonzero coefficients obtained by different methods:

“TN” was the average number of zero coefficients correctly estimated as zero, and “TP”

was the number of nonzero coefficients identified as nonzero.

The performance of the estimate of the link function g(·) is assessed by using the square root

of average square errors (RASE), defined by

(4.1) RASE(ĝ(·)) =

 1

ngrid

ngrid∑
j=1

(ĝ(tj)− g(tj))
2

1/2

,

where {tj , j = 1, · · · , ngrid} is a set of grid points at which the functions ĝ(·) are evaluated.

We considered ngrid = 200.

The data are generated from the following model

(4.2)


Y = g(X⊤θ0) +Z⊤β0 + ε,
W = X +U ,
T = Z + V ,

where θ0 = 1√
2
(0, 0, 0, 1, 1)⊤, β0 = (3, 2, 1, 0, 0, · · · , 0)⊤ and g(x) = ex. The dimension of

θ0 and β0 are p and q, respectively. Denoted X = (X1, · · · , Xp)
⊤ and Z = (Z1, · · · , Zq)

⊤,

where p = 5 and q = 10. We generated the covariates X1, · · · , Xp from uniform distribution

U(0, 1) independently, and the covariates Z1, · · · , Zq were generated from the multivariate

normal distribution with mean vector zero and the pairwise correlation between Zj and Zk

being ρ|j−k| with ρ = 0.5. Then the linear covariates were not independent and highly

correlated. The error ε is generated from normal distribution N(0, 0.22). The measurement

error U is normally distributed N(0, σ2
uIp), and V is normally distributed N(0, σ2

vIq), where
the measurement error variance σ2

u = σ2
v = 0.22.

Using the SIMEX algorithm, we consider widely used quadratic extrapolation function

a + bω + cω2 and take ω = 0, 0.2, · · · , 2 and B = 50. We use the Gaussian kernel K(u) =
1√
2π
e−

u2

2 . The sample sizes for the simulated data are n = 100, 200 and 400. For each setting,

we simulate 500 times to assess the performance. We report the results in Tables 1 and 2 .

From Table 1, one may have the following observations. (i) The proposed estimators

outperform SIMEX and two naive estimators. It can be observed that the proposed estimators

are close to the oracle estimators in terms of R2
θ and R2

β, which are close to 1. (ii) Generally,

with the sample size increasing, the proposed method’s performance improves. The proposed

method obtain the exactly same TNθ, TPθ, TNβ, TPβ as the gold standard with sample

size is not small. (iii) The purpose of dimension reduction cannot be reached for Naive

and SIMEX. The proposed method performed variable selection and parameter estimation
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simultaneously, which was able to delete most of the nonsignificant variables and achieve the

goal of dimension reduction. (iv) As a gold standard, the oracle estimators give the perfect

values of TNθ, TPθ, TNβ, TPβ.

From Table 2, one may have the following observations. (i) All the cases indicate that

the SIMEX method reduce the biases observed in the Naive method and the SIMEX+SCAD

Table 1: Simulation results over 500 replications when σu = σv = 0.2
(the values in the parentheses are the corresponding standard
errors).

n Method R2
θ TNθ TPθ R2

β TNβ TPβ RASE

100 SIMEX 0.9710(0.0208) 0.028 2 1.0089(0.0692) 0.072 3 0.3534(0.1895)
SIMEX+SCAD 0.9809(0.0270) 2.828 2 1.0001(0.0530) 6.998 3 0.3258(0.2158)

Naive 0.9513(0.0416) 0.026 2 0.9467(0.0520) 0.070 3 0.4135(0.1484)
Naive+SCAD 0.9884(0.0194) 2.936 2 0.9576(0.0449) 7.000 3 0.4094(0.1080)

Oracle 0.9989(0.0018) 3.000 2 0.9994(0.0168) 7.000 3 0.1181(0.0764)

200 SIMEX 0.9878(0.0091) 0.038 2 1.0094(0.0428) 0.088 3 0.2623(0.1178)
SIMEX+SCAD 0.9900(0.0143) 2.978 2 1.0043(0.0364) 7.000 3 0.2476(0.0971)

Naive 0.9772(0.0168) 0.030 2 0.9521(0.0354) 0.138 3 0.3924(0.0752)
Naive+SCAD 0.9944(0.0080) 2.996 2 0.9597(0.0323) 7.000 3 0.3981(0.0663)

Oracle 0.9994(0.0008) 3.000 2 0.9999(0.0118) 7.000 3 0.0873(0.0477)

400 SIMEX 0.9948(0.0036) 0.066 2 0.9979(0.0289) 0.172 3 0.2270(0.0740)
SIMEX+SCAD 0.9955(0.0063) 3.000 2 0.9975(0.0256) 7.000 3 0.2253(0.0771)

Naive 0.9896(0.0080) 0.040 2 0.9462(0.0244) 0.156 3 0.3915(0.0505)
Naive+SCAD 0.9975(0.0039) 3.000 2 0.9552(0.0222) 7.000 3 0.3975(0.0474)

Oracle 0.9997(0.0004) 3.000 2 0.9992(0.0086) 7.000 3 0.0689(0.0354)

Table 2: Biases and Standard errors of the estimators of nonzero coeffi-
cients when σu = σv = 0.2 (the values in the parentheses are
the corresponding standard errors)

n Method θ4 θ5 β1 β2 β3
100 SIMEX −0.0080(0.0603)−0.0128(0.0606) 0.0036(0.0910) 0.0012(0.0961) 0.0067(0.0980)

SIMEX+SCAD−0.0058(0.0991)−0.0080(0.0977) 0.0033(0.0847)−0.0070(0.1102) 0.0027(0.0867)
Naive −0.0142(0.0831)−0.0210(0.0841)−0.0256(0.0691)−0.0202(0.0739) −0.0364(0.0721)

Naive+SCAD −0.0016(0.0766)−0.0067(0.0767)−0.0246(0.0664)−0.0179(0.0725) −0.0225(0.0642)
Oracle 0.0000(0.0235)−0.0007(0.0236)−0.0003(0.0231)−0.0009(0.0258) 0.0002(0.0232)

200 SIMEX −0.0032(0.0405)−0.0054(0.0408) 0.0029(0.0539) 0.0067(0.0613) −0.0379(0.0607)
SIMEX+SCAD−0.0089(0.0716) 0.0018(0.0699) 0.0012(0.0500) 0.0056(0.0566)−0.0270 (0.0491)

Naive −0.0112(0.0556)−0.0050(0.0551)−0.0257(0.0457)−0.0096(0.0499) 0.0038(0.0489)
Naive+SCAD −0.0063(0.0531) 0.0023(0.0526)−0.0255(0.0434)−0.0089(0.0476) −0.0008(0.0425)

Oracle −0.0004(0.0167) 0.0000(0.0166)−0.0012(0.0165) 0.0008(0.0186) 0.0002 (0.0161)

400 SIMEX −0.0033(0.0259)−0.0005(0.0259) 0.0002(0.0371) 0.0009(0.0410) −0.0045(0.0391)
SIMEX+SCAD−0.0062(0.0474) 0.0030(0.0468) 0.0000(0.0355) 0.0005(0.0392) −0.0045(0.0336)

Naive −0.0068(0.0364)−0.0006(0.0361)−0.0272(0.0317)−0.0130(0.0336) −0.0419(0.0330)
Naive+SCAD −0.0043(0.0357) 0.0026(0.0350)−0.0263(0.0310)−0.0131(0.0328) −0.0288(0.0292)

Oracle −0.0010(0.0119) 0.0008(0.0119) 0.0003(0.0111)−0.0002(0.0123) −0.0013(0.0115)
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Figure 1: When σu = σv = 0.2 and n = 200, the nonparametric estimates
of the link function g(t).

is as good as Oracle. (ii) the bias and SE decrease as n increases. (iii) However, the standard

errors based on the SIMEX method are larger than those based on the naive method. An

intuitive explanation can be found in Yang et al (2019),

The nonparametric estimates of the link function g(t) with σu = σv = 0.2 and n = 200

are provided in Figure 1, and other cases are similar. From Figure 1, we see that the estimated

SIMEX curves are closer to the real link function curves than the estimated naive curves.

The SE of the SIMEX and naive estimators for the link function are not large, but the SE of

the SIMEX estimators are slightly larger than the naive estimators.

In summary, the proposed method performs well in both variable selection and param-

eter estimation.
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5. CONCLUSION

We studied variable selection and estimation in the partially linear single-index model

with measurement errors in all variables. By using local linear regression, SIMEX technique

and profile least square method, the SCAD penalty is successfully introduced to achieve ef-

ficient selection of variables. The introduction of SCAD penalty term not only performs

well in variable selection, but also achieves remarkable results in estimating parameters and

non-parametric link function. When the regularity condition is satisfied, the obtained esti-

mators have oracle property. Our research provides an innovative solution to the challenge

of measurement errors in multivariate analysis.

In this paper we do not consider the cases of the response variables are missing and more

complex cases, for example, the partially nonlinear single-index measurement error models

or partially linear multiple-index measurement error models, etc. These are further studies

and beyond the scope of this paper.
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APPENDIX

Proof of Theorem 2.1

Proof: Let γn = n−1/2+an+cn, v1 = (v11, · · · , v1p)⊤, v2 = (v21, · · · , v2q)⊤. We want

to show that for any given ϵ > 0, there exists a large constant C that satisfies ∥v1∥ = ∥v2∥ = C

such that

P

{
inf

∥v1∥=∥v2∥=C
L(θ0 + γnv1,β0 + γnv2) > L(θ0,β0)

}
≥ 1− ϵ.(0.1)

This implies with probability at least 1 − ϵ that there exists a local minimum in the ball

{θ0 + γnv1,β0 + γnv2 : ∥v1∥ = ∥v2∥ ≤ C}. Hence, there exists a local minimum such that

the rate of convergence of (θ⊤,β⊤)⊤ is Op(n
−1/2 + an + cn). Let

Q1(θ,β) =

n∑
i=1

(
Ỹi − ĝ′(W⊤

i θ̂;θ,β)W⊤
i θ − T⊤

i β
)2

− nḡ′2(Λ)θ⊤Σuθ − nβ⊤Σvβ,(0.2)

where Ỹi = Yi− ĝ(W⊤
i θ̂)+ ĝ′(W⊤

i θ̂)W⊤
i θ̂, where θ̂ and ĝ′ are part of the SIMEX estimator.

Note that (0.2) is an approximation of (2.4) by first-order Taylor expansion. Denote

Dn,1 =Q1(θ0 + γnv1,β0 + γnv2)−Q1(θ0,β0)

=
n∑

i=1

{(
Ỹi − ĝ′(W⊤

i θ̂)W⊤
i (θ0 + γnv1)− T⊤

i (β0 + γnv2)
)2

−
(
Ỹi − ĝ′(W⊤

i θ̂)W⊤
i θ0 − T⊤

i β0

)2}
− nḡ′2(Λ)

{
(θ0 + γnv1)

⊤Σu(θ0 + γnv1)− θ⊤
0 Σuθ0

}
− n

{
(β0 + γnv2)

⊤Σv(β0 + γnv2)− β⊤
0 Σvβ0

}
=

n∑
i=1

{(
ĝ′(W⊤

i θ̂)W⊤
i v1γn + T⊤

i v2γn

)2
− 2

(
ĝ′(W⊤

i θ̂)W⊤
i v1γn + T⊤

i v2γn

)
εi

}

− n
{
γ2n

(
ḡ′2(Λ)v⊤

1 Σuv1 + v⊤
2 Σvv2

)
+ 2γn

(
ḡ′2(Λ)θ⊤

0 Σuv1 + β⊤
0 Σvv2

)}
+ op(1)

(0.3)

and

Dn,2 = n

s∑
j=1

{pλ1(|θj0 + γnv1j |)− pλ1(|θj0|)}+ n

t∑
k=1

{pλ2(|βk0 + γnv2k|)− pλ2(|βk0|)} .

(0.4)
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Moreover, applying the Taylor expansion and the Cauchy – Schwarz inequality, we are able

to show that n−1Dn,2 is bounded by
√
sγnan∥v1∥+ γ2nbn∥v1∥2 +

√
tγncn∥v2∥+ γ2ndn∥v2∥2 ≤ Cγ2n(

√
s+ bnC +

√
t+ dnC).

When bn and dn tend to 0 and C is sufficiently large, the second term on the right-hand side

of Dn,1 in (0.3) dominates the first term uniformly in ∥v1∥ = ∥v2∥ = C. And Dn,2 in (0.4) is

also dominated by the second term of Dn,1 in (0.3). Hence, by choosing a sufficiently large

C, (0.1) holds. This completes the proof of the theorem.

Proof of Theorem 2.2

Proof: To prove Theorem 2.2, we now first prove the sparsity. It is sufficient to show

that with probability tending to 1 as n → ∞, for any θ1 and β1 satisfy ∥θ1−θ10∥ = Op(n
−1/2)

and ∥β1 − β10∥ = Op(n
−1/2), respectively. We next show that

L
{(

θ1
0

)
,

(
β1

0

)}
= min

(θ2,β2)∈C
L
{(

θ1
θ2

)
,

(
β1

β2

)}
,(0.5)

where C =
{
∥θ2∥ ≤ C∗n−1/2, ∥β2∥ ≤ C∗n−1/2

}
and C∗ is a positive constant.

Consider βk ∈
(
−C∗n−1/2, C∗n−1/2

)
for k = t+ 1, · · · , q. When βk ̸= 0, we have

∂L(θ,β)
∂βk

= lk(θ,β) + np′λ2(|βk|)sgn(βk),

where

lk(θ,β) =

n∑
i=1

{
−2
(
Yi − ĝ(W⊤

i θ;θ,β)− T⊤
i β
)(

T⊤
ik +

∂ĝ(W⊤
i θ;θ,β)

∂βk

)
− Σvβ

}

=

n∑
i=1

{
2
(
ĝ(W⊤

i θ;θ,β)− g(W⊤
i θ0) + T⊤

i (β − β0)− εi

)(
T⊤
ik +

∂ĝ(W⊤
i θ;θ,β)

∂βk

)
− Σvβ

}
.

Using the assumptions that ∥θ − θ0∥ = Op(n
−1/2) and ∥β − β0∥ = Op(n

−1/2), we have that

n−1lk(θ,β) is of the order Op(n
−1/2). Therefore,

∂L(θ,β)
∂βk

= nλ2

{
λ−1
2 p′λ2(|βk|)sgn(βk) +Op(n

−1/2/λ2)
}
.

Because of lim infn→∞ lim infβk→0+ λ−1
2 p′λ2(|βk|) > 0 and n−1/2/λ2 → 0, the sign of ∂L(θ,β)/∂βk

is solely determined by the sign of βk ∈
(
−C∗n−1/2, C∗n−1/2

)
and hence the signs are the

same.

Analogously, we can show that ∂L(θ,β)/∂θj and θj have same signs when θj ∈
(
−C∗n−1/2, C∗n−1/2

)
for j = s + 1, · · · , p. Consequently, the minimum is attained at θ2 = 0 and β2 = 0. This

completes the proof of (0.5).

We now demonstrate the asymptotic normality of θ̂1 and β̂1 given that sparsity holds.

It follows from (2.5) that θ̂1 and β̂1 satisfy(
∂L(θ̂1,β̂1)

∂θ1
∂L(θ̂1,β̂1)

∂β1

)
= l(θ̂1, β̂1) +

(
R1 − Σ1(θ̂1 − θ10)

R2 − Σ2(β̂1 − β10)

)
= 0,(0.6)
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where

l(θ̂1, β̂1) =
1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

){
εi −

(
ĝ(W⊤

i,1θ̂1)− g(X⊤
i,1θ10)

)
− T⊤

i,1(β̂1 − β10)− V ⊤
i,1β10

}

+

(
ḡ′2(Λ)Σu11θ̂1

Σv11β̂1

)
.

(0.7)

We have the asymptotic expansion of ĝ(t; θ̂, β̂) as

ĝ(t; θ̂, β̂)− g(t)

=
1

nf(t)

n∑
i=1

Kh(W
⊤
i θ − t)(Yi − T⊤

i β − g(W⊤
i θ))

− (β̂ − β)⊤E[T |W⊤θ = t]

− (θ̂ − θ)⊤E[g′(t)W |W⊤θ = t] + op(n
−1/2) + op(h

2).(0.8)

Note that the second and third terms on the right-hand side of (0.8) will converge to zero

faster than the first term, provided that the θ and β are consistent in a rate faster than√
nh + h2, where h is the bandwidth used in estimating g. This property has been used by

Carroll et al (1997) in their proofs implicitly. Following (0.7) and (0.8), we can further derive

that

l(θ̂1, β̂1) =
1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

){
(εi − g′(X⊤

i,1θ10)U
⊤
i,1θ10 − V ⊤

i,1β10)

− 1

nf(W⊤
i,1θ10)

n∑
j=1

Kh(W
⊤
j,1θ10 −W⊤

i,1θ10){Yj − T⊤
j,1β10 − g(W⊤

j,1θ10)}

−g′(W⊤
i,1θ10)W̃

⊤
i,1(θ̂1 − θ10)− T̃⊤

i,1(β̂1 − β10)
}
+

(
ḡ′2(Λ)Σu11θ̂1

Σv11β̂1

)
+ op(n

− 1
2 ) + op(h

2),

(0.9)

By interchanging the summations, kernel density estimation and Taylor expansion, the second

terms of the right-hand side equals

1

n

n∑
i=1

(
Yi − T⊤

i,1β10 − g(W⊤
i,1.θ10)

) 1

n

n∑
j=1

(
g′(W⊤

j,1θ10)Wj,1

Tj,1

)
Kh(W

⊤
j,1θ10 −W⊤

i,1θ10)

f(W⊤
j,1θ10)

,

which is asymptotically equivalent to

1

n

n∑
i=1

(
E[g′(W⊤θ)W |W⊤θ = W⊤

i,1θ10]

E[T |W⊤θ = W⊤
i,1θ10]

){
εi − g′(X⊤

i,1θ10)U
⊤
i,1θ10 − V ⊤

i,1β10

}
{
1 +Op(h

2) + op([nh]
−1/2)

}
.(0.10)

A combination of (0.9) and (0.10) yields

l(θ̂1, β̂1) =
1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

)(
εi − g′(X⊤

i,1θ10)U
⊤
i,1θ10 − V ⊤

i,1β10

)
− 1

n

n∑
i=1

(
E[g′(W⊤θ)W |W⊤θ = W⊤

i,1θ10]

E[T |W⊤θ = W⊤
i,1θ10]

)(
εi − g′(X⊤

i,1θ10)U
⊤
i,1θ10 − V ⊤

i,1β10

)

− 1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

){
g′(W⊤

i,1θ10)W̃
⊤
i,1(θ̂1 − θ10)− T̃⊤

i,1(β̂1 − β10)
}
+

(
ḡ′2(Λ)Σu11θ̂1

Σv11β̂1

)
.

(0.11)
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It follows that

1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

){
g′(W⊤

i,1θ10)W̃
⊤
i,1(θ̂1 − θ10)− T̃⊤

i,1(β̂1 − β10)
}
−
(
ḡ′2(Λ)Σu11θ̂1

Σv11β̂1

)

=
1

n

n∑
i=1

(
g′(W⊤

i,1θ10)Wi,1

Ti,1

)(
g′(W⊤

i,1θ10)W̃i,1 T̃i,1

)( θ̂1 − θ10
β̂1 − β10

)
−
(
ḡ′2(Λ)Σu11 0

0 Σv11

)(
θ̂1 − θ10
β̂1 − β10

)
−
(
ḡ′2(Λ)Σu11θ10

Σv11β10

)
=

1

n

n∑
i=1

(
g′2(W⊤

i,1θ10)Wi,1W̃
⊤
i,1 − ḡ′2(Λ)Σu11 g′(W⊤

i,1θ10)Wi,1T̃
⊤
i,1

g′(W⊤
i,1θ10)Ti,1W̃

⊤
i,1 Ti,1T̃

⊤
i,1 − Σv11

)(
θ̂1 − θ10
β̂1 − β10

)
−
(
ḡ′2(Λ)Σu11θ10

Σv11β10

)
.

So, when the LLN is applied, we have

l(θ̂1, β̂1) =− 1

n

n∑
i=1

(
g′2(W⊤

i,1θ10)Wi,1W̃
⊤
i,1 − ḡ′2(Λ)Σu11 g′(W⊤

i,1θ10)Wi,1T̃
⊤
i,1

g′(W⊤
i,1θ10)Ti,1W̃

⊤
i,1 Ti,1T̃

⊤
i,1 − Σv11

)(
θ̂1 − θ10
β̂1 − β10

)

+
1

n

n∑
i=1

(
g′(W⊤

i,1θ10)W̃i,1∆i,1 + ḡ′2(Λ)Σu11θ10
T̃i,1∆i,1 +Σv11β10

)
+ op(1),

where ∆i,1 = εi − g′(X⊤
i,1θ10)U

⊤
i,1θ10 −V ⊤

i,1β10. Moreover, the summand of the matrix over n

in the first term of the above equation converges to(
ΓW̃1

− ḡ′2(Λ)Σu11 ΓW̃1Z̃1

Γ⊤
W̃1Z̃1

ΓZ̃1

)
,

where ΓW̃1
= E(g′(W⊤

1 θ10)W̃1)
⊗2

, ΓW̃1Z̃1
= E(g′(W⊤

1 θ10)W̃1Z̃
⊤
1 ) and ΓZ̃1

= E(Z̃1Z̃
⊤
1 ).

These results, together with (0.6), lead to

√
n

(
ΓW̃1

− ḡ′2(Λ)Σu11 +Σ1 ΓW̃1Z̃1

Γ⊤
W̃1Z̃1

ΓZ̃1
+Σ2

)(
θ̂1 − θ10
β̂1 − β10

)
− 1√

n

(
R1

R2

)

=
1√
n

n∑
i=1

(
g′(W⊤

i,1θ10)W̃i,1∆i,1 + ḡ′2(Λ)Σu11θ10
T̃i,1∆i,1 +Σv11β10

)
+ op(1).

It follows that

√
n
(
ΓW̃1

− ḡ′2(Λ)Σu11 +Σ1

)(
θ̂1 − θ10

)
+
√
nΓW̃1Z̃1

(
β̂1 − β10

)
− 1√

n
R1

=
1√
n

n∑
i=1

{
g′(W⊤

i,1θ10)W̃i,1∆i,1 + ḡ′2(Λ)Σu11θ10

}
+ op(1)

and

√
nΓ⊤

W̃1Z̃1

(
θ̂1 − θ10

)
+
√
n
(
ΓZ̃1

+Σ2

)(
β̂1 − β10

)
− 1√

n
R2

=
1√
n

n∑
i=1

{
T̃i,1∆i,1 +Σv11β10

}
+ op(1).
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After simplification, we have

√
n
{
Γ4 − ΓW̃1Z̃1

Γ−1
3 Γ⊤

W̃1Z̃1

}(
θ̂1 − θ10

)
+

1√
n

{
ΓW̃1Z̃1

Γ−1
3 R2 −R1

}
=

1√
n

n∑
i=1

{(
g′(W⊤

i,1θ10)W̃i,1∆i,1 + ḡ′2(Λ)Σu11θ10

)
−
(
ΓW̃1Z̃1

Γ−1
3

)(
T̃i,1∆i,1 +Σv11β10

)}
+ op(1)

=
1√
n

n∑
i=1

{
(g′(W⊤

i,1θ10)X̃i,1 − ΓW̃1Z̃1
Γ−1
3 Z̃i,1)∆i,1 + g′(W⊤

i,1θ10)Ui,1εi + ΓW̃1Z̃1
Γ−1
3 (Vi,1V

⊤
i,1 − Σv11)β10

−ḡ′2(Λ)(Ui,1U
⊤
i,1 − Σu11)θ10 − ΓW̃1Z̃1

Γ−1
3 Vi,1εi

}(0.12)

and

√
n
{
Γ3 − Γ⊤

W̃1Z̃1
Γ−1
4 ΓZ̃1Z̃1

}(
β̂1 − β10

)
+

1√
n

{(
Γ⊤
W̃1Z̃1

Γ−1
4

)
R1 −R2

}
=

1√
n

n∑
i=1

{(
T̃i,1∆i,1 +Σv11β10

)
−
(
Γ⊤
W̃1Z̃1

Γ−1
4

)(
g′(W⊤

i,1θ10)W̃i,1∆i,1 + ḡ′2(Λ)Σu11θ10

)}
+ op(1)

=
1√
n

n∑
i=1

{
(Z̃i,1 − Γ⊤

W̃1Z̃1
Γ−1
4 g′(W⊤

i,1θ10)X̃i,1)∆i,1 + Vi,1εi − (Vi,1V
⊤
i,1 − Σv11)β10

+Γ⊤
W̃1Z̃1

Γ−1
4 ḡ′2(Λ)(Ui,1U

⊤
i,1 − Σu11)θ10 − Γ⊤

W̃1Z̃1
Γ−1
4 g′(W⊤

i,1θ10)Ui,1εi

}
+ op(1).

(0.13)

Equations (0.12) and (0.13), together with Slutsky’s theorem and the central limit theorem,

yield that

√
n
{
Γ4 − ΓW̃1Z̃1

Γ−1
3 Γ⊤

W̃1Z̃1

}(
θ̂1 − θ10

)
+

1√
n

{(
ΓW̃1Z̃1

Γ−1
3

)
R2 −R1

}
L−→ N(0,Ωθ)

and

√
n
{
Γ3 − Γ⊤

W̃1Z̃1
Γ−1
4 ΓW̃1Z̃1

}(
β̂1 − β10

)
+

1√
n

{(
Γ⊤
W̃1Z̃1

Γ−1
4

)
R1 −R2

}
L−→ N(0,Ωβ)

where

Ωθ =

{
E
(
g′(W⊤

1 θ10)X̃1

)⊗2

− ΓW̃1Z̃1
Γ−1
3 E{Z̃1Z̃

⊤
1 }Γ−1

3 Γ⊤
W̃1Z̃1

}
E(∆1)

⊗2

+ E
(
g′(W⊤

1 θ10)U1

)⊗2

σ2 + E
(
ḡ′2(Λ)(U1U

⊤
1 − Σu11)θ10

)⊗2

+ ΓW̃1Z̃1
Γ−1
3

{
Σv11σ

2 + E
(
(V1V

⊤
1 − Σv11)β10

)⊗2
}
Γ−1
3 Γ⊤

W̃1Z̃1
,

and

Ωβ =

{
E(Z̃1Z̃

⊤
1 )− Γ⊤

W̃1Z̃1
Γ−1
4 E

(
g′(W⊤

1 θ10)X̃1

)⊗2

Γ−1
4 ΓW̃1Z̃1

}
E(∆1)

⊗2

+ E
(
(V1V

⊤
1 − Σv11)β1

)⊗2

+Σv11σ
2

+ Γ⊤
W̃1Z̃1

Γ−1
4

{
E(g′(W⊤

1 θ10)U1)
⊗2

σ2+ E(ḡ′2(Λ)(U1U
⊤
1 − Σu11)θ10)

⊗2
}
Γ−1
4 ΓW̃1Z̃1

.

Because each element of
√
nΣ1,

√
nΣ2,

√
nR1 and

√
nR2 tends to zero, then we complete

the proof.
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