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Abstract:

• This paper is concerned with the estimation under squared-error loss of a normal
mean θ based on X∼ N (θ, 1) when |θ| ≤ m for a known m > 0. Nine estimators
are compared, namely the maximum likelihood estimator (mle), three dominators of
the mle obtained from Moors, from Charras and from Charras and van Eeden, two
minimax estimators from Casella and Strawderman, a Bayes estimator of Marchand
and Perron, the Pitman estimator and Bickel’s asymptotically-minimax estimator.
The comparisons are based on analytical as well as on graphical results concerning
their risk functions. In particular, we comment on their gain in accuracy from using
the restriction, as well as on their robustness with respect to misspecification of m.
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1. INTRODUCTION

The problem considered in this paper is the estimation under squared-error

loss of a normal mean θ based on X∼ N (θ, 1) when |θ| ≤ m for a known m > 0.

This estimation problem is considered by Casella and Strawderman (1981),

by Marchand and Perron (2001), by Bickel (1981) and by Gatsonis, MacGibbon

and Strawderman (1987). Casella and Strawderman show that, when 0<m≤mo

≈ 1.056742, there exists a unique minimax estimator of θ with respect to a sym-

metric two-point least-favourable prior on {−m,m}. They give an explicit ex-

pression for it and show that it dominates the maximum likelihood estimator

(mle) when m ≤ 1. They also give a class of minimax estimators for the case

where 1.4 ≤ m ≤ 1.6. These estimators are Bayes with respect to a symmetric

three-point prior on {−m, 0,m}. Bickel gives an estimator which is asymptoti-

cally minimax as m→ ∞ and Gatsonis, MacGibbon and Strawderman graphi-

cally compare these estimators and the Pitman estimator for several values of m.

Marchand and Perron consider the problem of estimating θ when X∼ Nk(θ, I)

with ‖θ‖ ≤ m and give conditions on m, k and the prior for Bayes estimators to

dominate the mle. An example of their results is that the Bayes estimator with

respect to the uniform prior on the boundary of the parameter space dominates

the mle when m ≤
√
k, generalizing the Casella–Strawderman result to k > 1.

Dominators for the mle can also be obtained from results of Charras (1979), of

Moors (1981, 1985) and of Charras and van Eeden (1991). These authors con-

sider estimation in restricted parameter spaces in a very general setting, give

conditions for inadmissibility for squared-error loss and either give methods of

constructing dominators (Moors and Charras and van Eeden) or prove the exis-

tence of dominators within a given class of estimators (Charras). Their conditions

are satisfied for the bounded-normal-mean problem and one of the purposes of

this paper is to find explicit expressions for these dominators and compare their

risk functions, analytically as well as graphically, with those of the mle, the

Casella–Strawderman minimax estimators, Bickel’s asymptotically minimax esti-

mator, the Pitman estimator and one of the Marchand–Perron Bayes estimators.

In these comparisons, questions of an estimator’s gain in accuracy obtained from

using the restriction are looked at, as well as how this gain depends on m and

how robust the estimators are with respect to misspecification of m.

One of our analytical results shows that, if and only if m ≤ 1, Moors’ dom-

inator of the mle of a bounded normal mean is the Casella–Strawderman min-

imax estimator, implying (by the Casella–Strawderman result for m ≤ 1) that

this Moors dominator of the mle is admissible when m ≤ 1. Another analytical

result we have is that the dominators in the Charras–van Eeden class are all

inadmissible. We also show, again analytically, that the estimator δo(x) ≡ 0

(which we call the “trivial estimator”) dominates the mle if and only if 0 < m ≤
m1 ≈ 0.5204372. Marchand and Perron (2001) show, as a special case of their
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results for a k ≥ 1-dimensional restricted normal mean, that (when k = 1) every

symmetric estimator dominates the mle when m ≤ mo ≈ .4837. Finally we find,

numerically, that the Marchand–Perron Bayes estimator considered by us has a

risk function which is, on the whole interval [−m,m], very close to that of one of

the Casella–Strawderman minimax estimators.

Explicit expressions for the estimators are presented in Section 2. Our nu-

merical comparisons are presented in the form of graphs and discussed in Section 3.

The proofs of the lemmas and theorems are given in Appendix A.

We know of only one other family of distributions for which Charras’s (1979)

and Moors’ (1981, 1985) dominators have been obtained and compared. These

results can be found in Perron (2003). He compares the mle with its Charras

and its Moors dominators, as well as with the Pitman estimator and the Bayes

estimator with respect to a prior proportional to
(

p(1− p)
)−1

for the case where

X∼ Bin(n, p) when p ∈ [a, 1− a] for a given a ∈ (0, 1/2). He gives an algorithm

for finding the Charras dominator.

2. THE ESTIMATORS

The problem of estimating a bounded normal mean based on X∼ N (θ, 1)

is a special case of the following problem: (X ,A) is a measurable space and

P = {Pθ, θ ∈D} is a family of probability measures on (X ,A) where D ⊂ R
k is

a subset of the set of θ for which Pθ is such a probability measure. Further, D

is convex and closed. The problem is to find, for a given loss function, “good”

estimators of θ based on a random vector X ∈ R
n defined on (X ,A), where δ(X)

is an estimator of θ if it satisfies Pθ

(

δ(X) ∈D
)

= 1 for all θ ∈D. Many analytical

results concerning admissibility and minimaxity for such models have, for various

loss functions, been obtained (see e.g. van Eeden (2006)).

The present section contains explicit expressions for each of the estimators

of a bounded normal mean considered in this paper. It also contains their known,

as well as our, analytical properties.

The maximum likelihood estimator

The mle of θ for our problem of estimating a bounded normal mean is given

by

δmle(X) =











−m if X ≤ −m
X if −m < X < m

m if X ≥ m .

It is well-known that this estimator is inadmissible for our problem.
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Casella and Strawderman’s minimax estimators

Casella and Strawderman (1981) give conditions for a Bayes estimator to

be minimax for estimating a bounded normal mean based on X ∼ N (θ, 1) with

squared-error loss. They show that a two-point symmetric prior on {−m,m} is

least favourable if m ≤ m0 ≈ 1.056742, implying that the corresponding Bayes

estimator is minimax. This m0 is the solution of R(0, δcs.2) −R(m, δcs.2) = 0,

where δcs.2 is the Bayes estimator which is given by

δcs.2(X) = m tanh(mX) .

The authors show that this minimax estimator dominates the mle when

m ≤ 1. They also give a class of minimax estimators for symmetric three-point

priors as follows: for a three-point prior π(0) = α and π(−m) = π(m) = (1−α)/2,

the Bayes estimator under squared-error loss is given by

(2.1) δcs.3(X) =
(1− α) m tanh(mX)

1− α+ α exp(m2/2)/ cosh(mX)
.

Casella and Strawderman show that, if α and m satisfy

(2.2) (m2 − 1)
(

m2 − 1 + exp(m2/2)
)−1 ≤ α ≤ 2

(

2 + exp(m2/2)
)−1

,

and α is such that R(0, δcs.3)−R(m, δcs.3) = 0, then δcs.3 is minimax for estimating

θ when |θ| ≤ m. They find numerically that these two conditions are satisfied

when 1.4 ≤ m ≤ 1.6.

A Bayes estimator of Marchand and Perron

Marchand and Perron (2001) consider the estimation, for squared-error loss,

of θ based on X ∼ Nk(θ, I) when ‖θ‖ ≤ m for a known m > 0. The purpose of

their paper is finding dominators of the mle. One of their classes of dominators

consists of Bayes estimators with respect priors of the form π(θ) = Ke−h(‖θ‖2),

where K is a normalizing constant. Their Corollary 4 gives sufficient conditions

on the triple (m,h, k) for the resulting Bayes estimator to dominate the mle.

For our case where k = 1, taking m>
√
k = 1, h(θ2) = −a θ2/2 and a the unique

solution to (see their Example 3 on the lines 4–16 of their page 1088)

(2.3)

∫ m

0
t2 e

a−1
2

t2 dt =

∫ m

0
e

a−1
2

t2 dt

assures that the first and second conditions of their Corollary 4 are satisfied.
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But, it shows that the third condition of Corollary 4 is not satisfied for this triple

(m,h, k) by using Corollary 4 on the authors’ page 1090 together with the fact

(see their Table 1 and the Remark 2 on their page 1088) that ∆E(p) is empty

when k = 1. So, this Bayes estimator might not dominate the mle. In order to

get some insight into this question of domination, we compare (in Section 3) this

Bayes estimator with a satisfying (2.3), with our other estimators for m = 1.5,

as well as for m = 1.8.

Marchand and Perron (2001) show that (2.3) has a unique solution and

that the corresponding Bayes estimator is given by

(2.4) δE(X) =
X

|X|

∫ m

0
t

3
2 I1/2(t|X|) e

(a−1)t2

2 dt
∫ m

0
t

1
2 I−1/2(t|X|) e

(a−1)t2

2 dt

,

where Iν(t) is the modified Bessel function of order ν (see e.g. Robert (1990)).

The following theorem gives an alternate expression for the estimator valid

for the case when a ∈ (0, 1). The theorem also gives an equality which is equiva-

lent to, and easier to solve than, (2.3) when a ∈ (0, 1).

Theorem 2.1. When a ∈ (0, 1), an alternate expression for the estimator

is

(2.5) δE(X) =
X

|X|
1√

1− a

∫ m
√

1−a

0
u sinh

(

u
|X|√
1− a

)

e−u2/2 du

∫ m
√

1−a

0
cosh

(

u
|X|√
1− a

)

e−u2/2 du

.

Moreover, when a ∈ (0, 1), (2.3) is equivalent to

(2.6) a

(

Φ
(

m
√

1− a
)

− 1

2

)

= m
√

1− a φ
(

m
√

1− a
)

,

where Φ(t) and φ(t) are the standard normal distribution function and density

function.

Moors’ dominating estimator of the mle

Moors (1981, 1985) considers the problem described in the beginning of

this section and gives sufficient conditions for “boundary estimators” to be inad-

missible for squared-error loss. Here, a boundary estimator is an estimator which

takes values on or near the boundary of D with positive probability for some

θ ∈ D. He assumes that the problem is invariant with respect to a finite group
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G= (g1, ..., gp) of measure preserving transformations from X to X and that the

induced group G̃ is commutative and satisfies

g̃(ad1 + bd2) = ag̃(d1) + bg̃(d2) for all d1, d2 ∈ D, all g̃ ∈ G̃ .

He then constructs random, closed, convex subsets DX of D with the prop-

erty that an estimator δ for which Pθ

(

δ(X) /∈DX

)

> 0 for some θ ∈ D is inad-

missible. These sets DX are defined as follows. Let pθ be the density of Pθ with

respect to a σ-finite measure ν defined on (X ,A) and let

α
(

X, ḡj(θ)
)

=
pḡj(θ)(X)

S(X; θ)
, j = 1, ..., p ,

where S(X; θ) =
∑p

j=1 pḡj(θ)(X) > 0. Further, he defines

hX(θ) =















p
∑

j=1

α
(

X, ḡj(θ)
)

ḡj(θ) when S(X; θ) > 0

θ when S(X; θ) = 0 .

ThenDX is the convex closure of the range of hX(θ) for θ ∈D and boundary

estimators δ(X), i.e. estimators δ(X) for which Pθ

(

δ(X) /∈DX

)

> 0 for some

θ ∈D, are inadmissible and are dominated by their projection unto D.

For the problem of estimating a bounded normal mean under squared-error

loss, Moors’ conditions are satisfied with p= 2, g1(x) = x and g2(x) = −x which

gives hX(θ) = θ tanh(θX), because pθ(x) = exp
(

−(x−θ)2/2
)

/
√

2π. So the subset

DX is given by

DX =
(

−m tanh(m|X|), m tanh(m|X|)
)

,

which implies by Moors that any estimator δ for which

Pθ

(

δ(X) /∈
(

−m tanh(m|X|), m tanh(m|X|)
)

> 0 for some θ ∈D

is inadmissible and is dominated by its projection unto D. Hence, Moors’ domi-

nator of the mle is given by

(2.7) δmr(X) =











−m tanh(m|X|) if X ≤ −m tanh(m|X|)
X if −m tanh(m|X|) <X < m tanh(m|X|)
m tanh(m|X|) if X ≥ m tanh(m|X|) .

The following theorem shows that, for m≤ 1, Moors’ dominating estimator

of the mle is Casella and Strawderman’s minimax estimator. We also obtain there

a more explicit expression for this dominator for the case where m > 1. The proof

of the theorem is given in Appendix A.
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Theorem 2.2. Moors’ dominator of the mle can also be written as

(i) if 0 < m ≤ 1 then δmr(X) = m tanh(mX);

(ii) if m > 1, then

δmr(X) =

{

m tanh(mX) if X ≥ ξ(m) or X ≤ −ξ(m)

X if − ξ(m) <X < ξ(m) ,

where ξ(m), r(m) < ξ(m) < m, is the unique root of u(x) = x−
m tanh(mx) = 0 for x > 0 and r(m) = 1

m ln
[

m+
√
m2 − 1

]

.

Charras’s and Charras and van Eeden’s dominators of the mle

Charras (1979) considers the problem as described in the beginning of this

section. He gives, for squared-error loss, conditions for boundary estimators to be

non-Bayes as well as conditions for them to be inadmissible, where a boundary

estimator is, for him, an estimator δ for which Pθ

(

δ(X) ∈ B
)

> 0 for some θ ∈D
and B is the boundary of D. For the case where k = 1 and θ ∈ [a, b] for known

−∞ < a < b <∞, he gives conditions for the existence of classes of dominators

of his boundary estimators and ways to construct them.

The inadmissibility results of Charras (1979) are published in Charras and

van Eeden (1991), but his dominators are only mentioned there. Instead, Char-

ras and van Eeden study a different class of dominators (proposed by a referee

of this Charras and van Eeden paper) of Charras’ boundary estimators. The

authors construct, for squared-error loss, a class of dominators δcve for boundary

estimators δ(X) of θ when θ ∈ [a, b] with −∞ < a < b <∞, where they suppose

that these boundary estimators δ satisfy

Pθ

(

δ(X) = a
)

> 0

Pθ

(

δ(X) = b
)

> 0

}

for all θ ∈ [a, b] .

They further suppose that, for each θo ∈ D,

(2.8) lim
θ→θo

∫

X
|pθ − pθo

| dν = 0 ,

where pθ is the density of Pθ with respect to the σ-finite measure ν.

The authors then show that there exists estimators of the form

(2.9) δcve(X) =











a+ ε1 if δ(X) ≤ a

δ(X) if a < δ(X) < b

b− ε2 if δ(X) ≥ b

where ε1 > 0, ε2 > 0 and ε1 + ε2 ≤ b− a, which dominate δ.
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This Charras–van Eeden result with a = −m and b = m clearly applies to

our problem of dominating the mle of a bounded normal mean, where because

of the symmetry of the problem, one can take 0 < ε1 = ε2 = ε ≤ m. This gives

a class of dominators of the mle of a bounded normal mean for squared-error

loss and using the results of Charras and van Eeden (1991) one finds that ε ∈
(0, εo], where εo = min

(

m
(

8Φ(−2m)/(1 + 2φ(−2m))
)

, m
)

, gives a dominator of

the mle. However, each of these dominators is inadmissible. This follows from

Brown (1986)’s necessary condition for admissibility for squared-error loss in the

estimation of the mean of an exponential-family distribution. He shows that an

admissible estimator has to be non-decreasing and our estimator δcve(X) is clearly

not non-decreasing, while the N (θ, 1) is an exponential-family distribution. This

inadmissibility result is summarized in the following theorem:

Theorem 2.3. Let X∼ N (θ, 1) with |θ| ≤ m for a known positive m.

Then the Charras–van Eeden dominators (2.9) of the mle are inadmissible for

squared-error loss.

We have not been able to find dominators for these inadmissible dominators

and so will not consider them any further in this paper.

We now present Charras’s (1979) method of obtaining dominators for his

boundary estimators and use it to find dominators of the mle in the bounded-

normal-mean problem.

Let δ be a Charras boundary estimator, then Charras considers the follow-

ing class of estimators

(2.10) δt(X) =











a(t) if δ(X) ≤ a(t)

δ(X) if a(t) < δ(X) < b(t)

b(t) if δ(X) ≥ b(t) ,

where a(t) and b(t), t ∈ [0, 1], take values in [a, b] with a(0) = a, b(0) = b,

a(1) = b(1), a(t) is non-decreasing and b(t) is non-increasing. He then gives

sufficient conditions on the functions a(t) and b(t), on the distribution of X and

of δ(X) and on the loss function, for δt to dominate δ. These conditions are

given in Appendix A. Here we give this domination result for the special case of

the bounded normal mean when a(t) = −m(1− t) and b(t) =m(1− t), t ∈ [0, 1].

Obviously, Charras’s conditions are satisfied in the bounded-normal-mean case

and his dominator of the mle can then be written as follows:

δch(X) =











−m(1− t) if X ≤ −m(1− t)

X if −m(1− t) < X < m(1− t)

m(1− t) if X ≥ m(1− t) .
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For simplicity of the proof we let ε = mt ∈ [0,m] and rewrite this dominator as

follows:

δch(X) =











−(m− ε) if X ≤ −(m− ε)

X if −(m− ε) < X < m− ε

m− ε if X ≥ m− ε .

Then the following theorem holds:

Theorem 2.4. LetX∼N (θ,1) with |θ| ≤m for a known m> 0. Then, for

squared-error loss, {δch : 0< ε≤ εm} is a class of dominating estimators of the mle,

where εm is the unique root to ψm(x) = 0, with ψm(x) = g(2m− x) + g(x) − 2x

and g(x) = 2xΦ(−x).

The proof of this theorem is given in Appendix A. It is Charras’s proof

applied to our special case.

The trivial estimator

For the estimator δo(X) ≡ 0 the following theorem holds. Its proof is in

Appendix A.

Theorem 2.5. Let m1 be the unique positive solution to u(2m) + 1/2−
m2 = 0, where u(x) = x2 Φ(−x)−Φ(−x)− xφ(x). Then, for squared-error loss,

the estimator δo dominates the mle if and only if 0 < m ≤ m1 ≈ 0.5204372.

A related result can be found in Marchand and Perron (2001). They present

dominators of the mle of θ when X∼ Nk(θ, I) with k ≥ 1, ‖θ‖ ≤ m and squared-

error loss. One of their results says that, when k = 1, any symmetric estimator

dominates the mle when m ≤ mo ≈ .4837.

The Pitman estimator

The Pitman estimator of θ for our problem is defined as the Bayes estimator

with respect to a uniform prior on [−m,m] and squared-error loss. This Bayes

estimator is the posterior mean of θ given X. Since the marginal density of X is

given by

p(X) =

∫ m

−m
pθ(X)π(θ) dθ =

1

2m

[

Φ(m−X) − Φ(−m−X)
]

,
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the posterior density of θ given X is given by

p(θ|X) =
pθ(X)π(θ)

p(X)

=
1

Φ(m−X) − Φ(−m−X)

1√
2π

exp

{

−(θ−X)2

2

}

1{|θ|≤m} .

Hence the Pitman estimator of θ is given by

δp(X) = E(θ|X) = X +

∫ m−X

−m−X
z φ(z) dz

Φ(m−X) − Φ(−m−X)

= X − φ(m−X) − φ(m+X)

Φ(m−X) − Φ(−m−X)
.

Bickel’s asymptotically minimax estimator

Bickel (1981) constructs, for squared-error loss, a class of asymptotically

minimax estimators for estimating a bounded normal mean. He constructs this

class in the following way:

Let, for |x| < 1, ψ̄ = π tan(π
2 x) and let

ψm(x) =







ψ̄(x) if |x| ≤ 1− a2
m

(

ψ̄(1− a2
m) + ψ̄′(1− a2

m)
(

x2 − (1− a2
m)
)

)

sgnx if |x| > 1− a2
m .

He then shows that an asymptotically minimax estimator δb is given by

δb(X) = X − 1

n
ψm

(

X

n

)

,

where n = m(1− am)−1, am < 1 and mam → ∞ as m→ ∞. Bickel (1981) sug-

gests taking am = m
1
8 which gives the following expression for ψm(x):























π tan

(

π

2
x

)

if |x| ≤ g(m)

[

π tan

(

π

2
g(m)

)

+
π2

2
sec2

(

π

2
g(m)

(

x− g(m)
)

)

]

sgnx if |x| > g(m) ,

where g(m) = 1 −m−1/4.

Then Bickel’s asymptotically minimax estimator of θ is given by

δb(X) = X − 1−m
1
8

m
ψm

(

(1−m− 1
8 )X

m

)

and the minimax value is given by 1 − π2

m2 + o(m2) as m→ ∞.
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3. NUMERICAL COMPARISONS

Appendix B contains graphs of the risk functions for squared-error loss of

the estimators δmle, δcs.2, δcs.3, δE, δmr, δch, δp and δb for several values of m. For

the estimator δcs.3 the value α = .341 (see (2.1)) is used, while for δch, ε = εm
(see Theorem 2.4) is used. For the estimator δE a value of m> 1 is needed.

Because of their symmetries, the risk functions are plotted only on the

positive part of the parameter space. Moreover to check the robustness of the

estimators with respect to misspecification of m, the risk functions are plotted

on a somewhat wider interval, namely the interval [0, 5m/4].

Figure 1 gives the risk functions for m = .5, .8, 1.0 and 1.5, while Figure 2

gives them for m = 1.8, 3, 5 and 10. The values of εm for these m (needed for

the estimator δch) are given in Table 1, while the values of a needed for δE are

given in Table 2.

Table 1: Values of εm for δch.

m .5 .8 1.0 1.5 1.8 ≥ 3

εm .276 .195 .101 .008 .001 .000

Table 2: Values of a for δE.

m 1.5 1.8 3 5 10

a 2.02 0.82 0.03 1.48×10−5 6.91×10−17

From the graphs one sees that

1. For m = .5, .8 and 1, δmr has the same risk function as Casella and

Strawderman’s minimax estimator δcs.2. This is in accordance with

our Theorem 2.2 which says that, for m ≤ 1, these estimators are the

same estimator.

2. Our Theorem 2.4 says that δch dominates δmle. This is clearly visible

in the graphs for m = .5, .8 and 1. For larger m there is little differ-

ence between the risk functions of these two estimators and, in fact,

little difference between the risk functions of δmle, δmr and δch, veri-

fying the intuitively obvious result that, as m→ ∞, the differences
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between these estimators converge almost surely to zero. This asymp-

totic result also holds for the estimators δmle, δp and δb, but for these

estimators it takes a larger m for the risk functions to be close.

3. From the graph for m= 1.5 it is seen that, risk-functionwise, there is

very little difference between δE and δcs.3. But δE is computationally

more complicated — two numerical integrations are needed to find a

and two more to compute the estimator, while δcs.3 is easily com-

putable from (2.1). For m = 1.8, no minimax estimator is available,

but for this value ofm, δE behaves relative to δP, as it does form = 1.5

— better for the smaller values of |θ|, worse for values of |θ| closer tom

with a fairly constant risk function. But the computational problems

with this estimator relative to the others might, for a user, well be the

determining factor concerning the question of which estimator to use.

4. In each of the graphs for m≥ 3, each of δmle, δmr, δch and δp are close to

being minimax with a minimax value ≈ 1. This is another example of

the above-mentioned asymptotic result because, for the unrestricted

case, the minimax value equals 1. Further, from the graphs for m ≤ 3

one sees that, for these estimators, the maximum value of the risk

function increases with m.

5. If one does not use the information that |θ| ≤ m, the best estimator

of θ is X. Its risk function (for squared-error loss) is constant and

equal to 1. From the graphs one can observe the gain in accuracy

with which one can estimate θ when the restriction on θ is used in

the construction of the estimator. One also sees that this gain (of

course) decreases as m increases. For m= .5, e.g., one can get a min-

imum gain (over Θ) of about 80.1%, for m = .8 this is about 62.6%,

for m= 1 about 55.0%, for m = 1.5 about 42.4%, for m = 1.8 about

28.7%, and for m = 3 about 3.9%. For the other values of m, this

minimum gain is about 0 for all the restricted estimators except the

Bickle’s asymptotic estimator δb. The risk function of Bickle’s estima-

tor is, for large m, parallel to the one for the unrestricted estimator,

X, under the squared-error loss. For m= 5, the minimum gain is

about 39.5% and for m= 10 about 9.9% for δb. So, it is “worth the

trouble” to use the information that |θ| ≤ m at least for values of m

that are not too large. Of course this increase in accuracy also occurs

in other restricted-parameter-space models, but there are not many

cases where numerical results about the gain in accuracy have been

obtained (see e.g. van Eeden (2006), Chapter 7, which also contains

robustness results for models other than the present one).

6. The graph for m= .5 gives an example of our Theorem 2.5, where it is

shown that, for m ≤ m1 ≈ 0.5204372, the trivial estimator dominates

δmle: in the graph the risk function of δmle is, on the whole interval

[−m,m], > than θ2.
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7. In each of the graphs we see that δp dominates each of the other

estimators, except δb, on the middle part of the parameter space, but

not near the endpoints.

8. For the estimator δb, the graph of its risk function is given for m= 5

and for m= 10. For those m, it dominates all the other estimators on

the middle part of the parameter space, but not near the endpoints.

9. Graphs of the risk functions of δmle, δcs.2, δp and δcs.3 for m = .5, .75,

1.5 and 2 can be found in Gatsonis, MacGibbon and Strawderman

(1987).

10. The robustness of the domination results with respect to miss-specifi-

cation of the parameter space can be observed by studying the be-

haviour of the risk functions for values of θ in the neighbourhood of

the value of m used to construct the estimators. For δmle, δmr and δch,

for instance, one sees that, for those m for which the risk functions

are not too close (i.e. for m = .5, .8 and 1), the domination results

hold on a small interval outside the parameter space.

11. The graphs for m= .5, .8 and1 seem to indicate that δmr dominates δch.

We do not know whether this holds in general.

APPENDIX

A. PROOFS OF THE RESULTS IN SECTION 2

In this section proofs are given for the results in Section 2.

A.1. Proofs for the Marchand–Perron estimator

Proof of Theorem 2.1: From Berry (1990) we have, for ν ≥ 0,

Iν(t) =

(

t

2

)ν ∞
∑

k=0

(

1
2 t
)2k

k! Γ(ν + k + 1)

and

(A.1) I1/2(t) =

√

2t

π

sinh(t)

t
.
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Further,

I3/2(t) = I−1/2(t)−
1

t
I1/2(t) and I3/2(t) = −

√

2t

π

sinh(t)

t2
+

√

2t

π

cosh(t)

t

give

(A.2) I−1/2(t) = I3/2(t) +
1

t
I1/2(t) =

√

2t

π

cosh(t)

t
.

Then, using (A.1) and (A.2) and putting, when a ∈ (0, 1), t = u(
√

1− a)−1 in

(2.4), gives (2.5).

For the proof of (2.6), note that, when a ∈ (0, 1), the right-hand side of

(2.3) can be written as

(A.3)

√

2π

1− a

{

Φ
(

m
√

1 − a
)

− 1

2

}

and the left-hand side of (2.3) as

(A.4)

√
2π

(1− a)3/2

{

Φ
(

m
√

1− a
)

− 1

2
−m

√
1− a φ

(

m
√

1− a
)

}

.

The result then follows from (A.3) and (A.4).

A.2. Proofs for Moors’ dominator δmr

The following lemma is needed for the proof of Theorem 2.2.

Lemma A.1. Let u(x) = x−m tanh(mx) and v(x) = x+m tanh(mx).

Then

(a) For 0 < m ≤ 1, u(x) and v(x) are increasing in x and have the same

sign as x.

(b) For m > 1, let r(m) = 1
m ln

[

m+
√
m2 − 1

]

.

Then:

(i) u(x) increases in x for x > r(m) and for x <−r(m). It decreases

for −r(m) < x < r(m).

(ii) 0 < r(m) < m.

(iii) u
(

r(m)
)

< 0.

(iv) There exists a unique ξ(m), r(m) < ξ(m) < m such that

u
(

−ξ(m)
)

= u
(

ξ(m)
)

= 0.
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Proof:

(a) For 0 < m ≤ 1, since u′(x) = 1−m2 sech2(mx), we have

u′(x)> 0 ⇔ exp(2mx)− 2m exp(mx) +1 = (emx−m)2 +1−m2 > 0 .

Consequently, when 0<m< 1, u′(x)> 0 for x ∈ (−∞,∞) and, when

m = 1, u′(x) > 0 for x 6= 0 and u′(0) = 0. So, u(x) increases in x

and u(x) has the same sign as x because u(0) = 0. Since v′(x) =

1 + m2 sech2(mx) > 0 for x ∈ (−∞,∞), we have v(x) increases in x

and v(x) has the same sign as x because v(0) = 0.

(b) (i) Since u′(x) = 1 −m2 sech2(mx), we have

u′(x) > 0 ⇔
∣

∣exp(mx) −m
∣

∣ >
√

m2 −1

⇔
{

x > r(m) > 0 if exp(mx) > m

x < −r(m) < 0 if exp(mx) < m .

So, u(x) increases in x when x > r(m) and when x < −r(m).

It decreases in x when −r(m) < x < r(m).

(ii) Let p(x) = x− ln
[

x+
√
x2−1

]

/x for x>1. Then p(m) =m−r(m)

for m> 1. Further, note that

(A.5) p(x) =
1

x
ln

(

exp(x2)

x+
√
x2 −1

)

>
1

x
ln

(

exp(x2)

2x

)

> 0 .

Since x > 1, x+
√
x2 −1 < 2x. So the first inequality in (A.5)

holds. Let q(x) = exp(x2) − 2x. Because q(1) = e− 2 > 0 and

q′(x) = 2
(

x exp(x2) −1
)

> 0 for x > 1, we have q(x)> 0, which

shows that the second inequality in (A.5) also holds for x > 1.

Hence, p(x) > 0 for x > 1 and so 0 < r(m) < m for m > 1.

(iii) Since

u
(

r(m)
)

= r(m) −m tanh
(

mr(m)
)

=
1

m
ln
(

m+
√

m2 −1
)

−
√

m2 −1 ,

we have

u
(

r(m)
)

< 0 ⇔ m
√

m2 −1 > ln
(

m+
√

m2 −1
)

⇔ f(m) > 0 ,

where f(x) = x
√
x2 −1 − ln

(

x+
√
x2 −1

)

for x > 1. Since

f(1) = 0 and

f ′(x) =
√

x2 −1 +
x2

√
x2 −1

− 1

x+
√
x2 −1

(

1 +
x√
x2 −1

)

=
√

x2 −1 +
x2

√
x2 −1

− 1√
x2 −1

= 2
√

x2 −1 > 0 ,
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for x > 1, we have f(x) increases in x and f(x) > f(1) = 0 for

x > 1. That is, u
(

r(m)
)

< 0 for m > 1.

(iv) By (i), u(x) increases for x > r(m) and for x < −r(m). It de-

creases for −r(m) < x < r(m). Since u
(

r(m)
)

< 0 (by (iii)) and

u(m)> 0 by the continuity and monotonicity of u(x), there ex-

ists a unique ξ(m), r(m)< ξ(m)<m, such that u
(

ξ(m)
)

= 0.

Proof of Theorem 2.2:

(i) When 0 < m ≤ 1, it follows from Lemma A.1 that

x ≤ −m tanh
(

m|x|
)

⇔ x ≤ 0

and
x ≥ m tanh

(

m|x|
)

⇔ x ≥ 0

and this shows that, when m ≤ 1, we can rewrite (2.7) as δmr(x) =

m tanh(mx) for x ∈ (−∞,∞).

(ii) When m > 1, let u(x) = x−m tanh(mx). By Lemma A.1, u(x) in-

creases in x when x > r(m) and when x < −r(m). It decreases in x

when −r(m)<x< r(m). Moreover, ξ(m) is the unique root of u(x) = 0

in [r(m),m]. Hence, u(0) = u
(

−ξ(m)
)

= u
(

ξ(m)
)

= 0, u(x)> 0 when

−ξ(m) < x < 0 and when x > ξ(m) and u(x) < 0 when x < −ξ(m)

and when 0 < x < ξ(m). So, when m > 1,

|x| < m tanh
(

m|x|
)

when |x| < ξ(m)

and
|x| > m tanh

(

m|x|
)

when |x| > ξ(m) .

This proves the result for the case where m > 1.

A.3. Proofs for the Charras dominator δch

Charras (1979) (see also Charras and van Eeden (1991)) gives conditions

for estimators of the form (2.10) to dominate a boundary estimator δ, i.e. an

estimator δ satisfying

(A.6)
Pθ

(

δ(X) = a
)

> 0

Pθ

(

δ(X) = b
)

> 0

}

for all θ ∈ [a, b] .

Charras’ conditions on a(t) and b(t) for (2.10) to dominate δ are

(a) a(t) and b(t) are continuous.
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(b) a(t) and b(t) have continuous right derivatives which are bounded in

absolute value on [0, 1].

(c) a(0) = a, b(0) = b and a(1) = b(1).

(d) For all t ∈ [0, 1], a′+(t) =
da(t)

dt+
> 0 and b′+ < 0.

His conditions on the distributions of X and δ(X) are

(1) Condition (2.8) is satisfied.

(2) The loss function L(θ, d) has, for all θ in a neighbourhood N of [a, b],

a partial derivative ∂L/∂d with respect to d which is, on N×N , con-

tinuous in d and in θ.

Moreover,

∂L(θ, d)

∂d











< 0 when d < θ

= 0 when d = θ

> 0 when d > θ .

(3) The estimator δ to be dominated satisfies (A.6).

(4) The estimator δ has, for each θ ∈ [a, b], a Lebesgue density on (a, b),

i.e. there exists a function f(y, θ) such that, for all (α, β) with a < α <

β < b,

Pθ

(

α < δ(X)< β
)

=

∫ β

α
f(y, θ) dy .

Moreover, that density is bounded on (a, b)×[a, b].

Clearly, these Charras conditions are satisfied for our bounded-normal-

mean problem.

Remark. Charras also has results for the case where δ has a discrete

distribution.

Our proof of Theorem 2.4 is a special case of Charras’ proof for his general

case and we need the following lemmas A.2, A.3 and A.4 for our proof. The

proofs of the lemmas A.2 and A.3 are straightforward and omitted.

Lemma A.2. Let u(x) = x2 Φ(−x) − Φ(−x) − xφ(x). Then:

(i) The risk function of δmle is given by

R(θ, δmle) = 1 + u(m+ θ) + u(m− θ) .(A.7)

(ii) The risk function of δch is given by

R(θ, δch) = 1 + u(m− ε+ θ) + u(m− ε− θ) .(A.8)
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Lemma A.3. Let g(x) = u′(x) = 2xΦ(−x). Then g′(x) = 2
(

Φ(−x)−xφ(x)
)

,

g′′(x) = 2(x2 − 2)φ(x) and the following properties of these functions hold:

(i) g′′(x) ≥ 0 if and only if |x| ≥
√

2 and g′′(x) → 0 as x→ ±∞.

(ii) g′(x) increases in x if and only if |x|>
√

2 ; g′(x) attains its maximum

at x=−
√

2, its minimum at x=
√

2 and g′(0) = 1. There is a unique

root η0 of g′(x) = 0, η0 ∈ (0,
√

2), g′(x) → 2 as x→−∞ and g′(x) → 0

as x→ ∞.

(iii) g(x) has the same sign as x for x ∈ (−∞,∞); g(x) increases in x if

x < η0 and decreases otherwise; g(x) attains its maximum at x = η0

and the unique root of g(x) = 0 is x = 0; g(x) → −∞ as x→ −∞
and g(x) → 0 as x→ ∞.

Lemma A.4. Let h(x, θ) = g(x+ θ) + g(x− θ), where (see the lemmas

A.2 and A.3) g(x) = u′(x) = 2xΦ(−x) and u(x) = x2 Φ(−x) − φ(−x) − xφ(x).

Then

(i) For fixed ε ∈ (0,m)

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m) = g(2m− ε) + g(ε) − 2 ε .

(ii) Let ψm(x) = g(2m− x) + g(x) − 2x for x ∈ [0,m]. Then ψ′
m(x)< 0,

ψm(0)> 0 and ψm(m)< 0, so there exists a unique root εm ∈ (0,m)

of ψm(x) = 0 with ψm(x) > 0 for 0 ≤ x < εm and ψm(x) < 0 for

εm < x ≤ m.

Proof:

(i) Consider

∂

∂θ
h(m− ε, θ) = g′(m− ε+ θ) − g′(m− ε− θ) .

For θ ∈ (m− ε,m] we have m− ε+ θ > 0 and m− ε− θ < 0. So (see

Lemma A.3) g′(m− ε+ θ) < g′(0) = 1 and g′(m− ε− θ) > g′(0) = 1.

Hence g′(m− ε+ θ) − g′(m− ε− θ) < 0 and so ∂
∂θh(m − ε, θ) < 0.

In other words, h(m− ε, θ) decreases as θ increases in (m− ε,m],

which implies that

min
θ∈[m−ε,m]

h(m− ε, θ) = h(m− ε,m) .

(ii) Note that h(m−ε,m) = g(2m−ε)+ g(ε)−2ε = ψm(ε). Since ψ′
m(x)=

−2−g′(2m−x)+g′(x), with (see Lemma A.3) g′(2m−x)>g′(
√

2)>−1

and g′(x)< 1, we have ψ′
m(x)< 0 for x ∈ [0,m].
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Proof of Theorem 2.4: First of all it is clear that, for all ε ∈ (0,m], δch

dominates δmle on [−m+ ε,m− ε]. Further, by symmetry, it is sufficient to look

at the behaviour of the risk functions on (m− ε,m].

Let

∆(θ, ε) = R(θ, δmle) −R(θ, δch) ,

then, by Lemma A.2,

∂

∂ε
∆(θ, ε) = − ∂

∂ε

[

u(m− ε+ θ) + u(m− ε− θ)
]

= u′(m− ε+ θ) + u′(m− ε− θ)

= g(m− ε+ θ) + g(m− ε− θ)

= h(m− ε, θ) ,

where h(x, θ) and g(x) are defined in Lemma A.4.

Then, by Lemma A.4 (i), we have

min
θ∈(m−ε,m]

h(m− ε, θ) = h(m− ε,m) = ψ(ε) > 0 ,

for ε ∈ (0, εm), where εm is given by (ii) in Lemma A.4, implying that, for

0 ≤ ε ≤ εm,
∂

∂ε
∆(θ, ε) ≥ h(m− ε,m) = ψ(ε) ≥ 0 .

But, ∆(m− ε, θ) > 0 for all ε ∈ (0,m], which proves the theorem.

A.4. Proof of Theorem 2.5

By Lemma A.2

∆o(θ,m) = R(θ, δmle) −R(θ, δo) = u(m+ θ) + u(m− θ) + 1 − θ2 .

So, it needs to be shown that u(2m)+1/2−m2 = 0 has a unique positive

root m1 and that

u(m+ θ) + u(m− θ) + 1 − θ2

{≥ 0 for all θ ∈ [0,m]

> 0 for some θ ∈ [0,m]

if and only if 0 < m < m1.

First note that (see Lemma A.3)

∆o(0,m) = 2u(m) + 1 > 0 for m > 0 .
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Further, with g(x) = u′(x) = 2xΦ(−x),

∂

∂θ
∆o(θ,m) = g(m+ θ) − g(m− θ) − 2 θ

and
∂2

∂θ2
∆o(θ,m) = g′(m+ θ) + g′(m− θ) − 2 ,

so that
∂

∂θ
∆o(θ,m)

∣

∣

θ=0
= 0 for all m > 0

and (see Lemma A.3)

∂2

∂θ2
∆o(θ,m) < 0 for all 0 ≤ θ ≤ m, m > 0 ,

implying that ∆o(θ,m) is, for each m > 0, decreasing in θ ∈ [0,m].

A necessary and sufficient condition for δo to dominate δmle for a given

m > 0 is therefore that ∆o(m,m) ≥ 0. But

∆o(m,m) = u(2m) + u(0) + 1 −m2 = u(2m) + 1/2 −m2

and this function has the following properties:

(1) ∆o(0, 0) = u(0) + 1/2 = 0;

(2)
d

dm
∆o(m,m) = 2

(

g(2m)−m
)

= 2m
(

4Φ(−2m)− 1
)

.

So

d

dm
∆o(m,m)







>
=
<







0 ⇐⇒ m







<
=
>







1

2
Φ−1

(

3

4

)

.

Further, ∆o(
√

2/2,
√

2/2) = u(
√

2)< 0 and thus there exists a unique m1> 0

with

∆o(m1,m1) = 0 and ∆o(m,m) > 0 for 1<m<m1 ,

which, together with the fact that ∆o(θ,m) is decreasing in θ for θ ∈ [0,m],

proves the result. Numerically we found m1 ≈ 0.5204372.
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B. GRAPHS FOR SECTION 3
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Figure 1: Risk functions of various estimators as a function of θ
for m = 0.5, 0.8, 1.0 and 1.5.
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Figure 2: Risk functions of various estimators as a function of θ
for m = 1.8, 3, 5 and 10.
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