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1. INTRODUCTION

Recently, an alternative measure of uncertainty, termed by extropy, was proposed by

Lad et al. (2015). For an absolutely continuous non-negative random variable X with prob-

ability density function f(x), the extropy of X is defined as

J(f) = −1

2

∫ ∞

0
f2(x) dx .

The properties of this measure such as the maximum extropy distribution and statistical

applications were presented in Lad et al. (2015). Also, fruitful results can be found in Qiu

(2017) and Qiu and Jia (2018b) related with extropy and residual extropy properties of

order statistics and record values. Furthermore, Qiu and Wang (2019) obtained some results

on extropy properties of mixed systems. The problem of estimation of extropy has been

considered by Alizadeh and Jarrahiferiz (2019).

For more recent works on extropy and its applications, one can also refer to Das (2017), Jose

and Sathar (2019), Kayal and Moharana (2017), Kelbert et al. (2017), Raqab and Qiu (2019),

Jahanshahi et al. (2020), Krishnan et al. (2020), Abdul Sathar and Dhanya Nair (2021),

Tahmasebi and Toomaj (2022), Jose and Sathar (2022), Irshad and Maya (2023), Toomaj

et al. (2023), Gupta and Chaudhary (2024), Tahmasebi et al. (2023) and Dhanya Nair and

Abdul Sathar (2023) and the references therein.

Let F and G be two continuous cdf’s with corresponding probability density functions (pdf’s)

f and g (with respect to Lebesgue measure). Then the relative extropy in a density f relative

to g defined over S is:

d = d(f, g) = 1
2

∫
S (f(x)− g(x))2dx

= −J(f)− J(g)−
∫
S f(x)g(x)dx ,

where J(f) and J(g) are the extropy with respect to f and g. Clearly, d(f, g) ≥ 0 and the

equality holds if and only if f = g. Also, d(f, g) = d(g, f). That is, relative extropy is

symmetric, though it does not satisfy the triangle inequality.

Given a random sample X1, ..., Xn from a population with absolutely continuous density

function f(x) concentrated on the interval [0,1], consider the problem of testing the hypoth-

esis H0 that the Xi’s are uniformly distributed. Several tests for H0 have been proposed in

the statistical literature. For example, Stephens (1974) used tests based on the empirical

distribution function and proposed tests for uniformity.

The present paper begins with some test statistics for testing a hypothesis that the sample

comes from a uniform distribution, denoted by U(0, 1), based on the maximum extropy. The

percentage points of the proposed test statistics are obtained for different sample sizes based

on 100,000 sample values generated by a Monte Carlo experiment. Also, power values of the

proposed tests are computed and power comparisons are performed and then results of our

simulation studies are described. Finally, the proposed tests are applied to a real data set for

illustration.
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2. The proposed tests

Let X1, ..., Xn be a random sample from a continuous distribution function F (x) with

density f(x) concentrated on the interval [0,1]. Let X(1) ≤ X(2) ≤ ... ≤ X(n) denote the order

statistics of the sample. Then, the hypothesis of interest is

H0 : f(x) = 1, 0 < x < 1,

against

H1 : f(x) ̸= 1, 0 < x < 1.

An important property of uniform distribution is that it obtains the maximum extropy among

all distributions that possess a pdf f and have a given support on (0,1). Based on this

property, we construct a test for uniformity.

Theorem 2.1. In the class of continuous distributions f , concentrated on [0,1], it

holds

J(f) ≤ J(U),

and the value of J(f) = −0.5, being uniquely attained by the U(0, 1) density.

Proof: See Qiu and Jia (2018a).

A consistent test of the hypothesis of uniformity is then given by

Tn = Ĵ(X),

where Ĵ(X) is the sample estimate of J(X). Here, we consider different estimators for extropy

and construct seven test statistics as follows. Clearly, small values of the test statistic will

reject the null hypothesis.

1. The first test statistic

Qiu and Jia (2018a) suggested an estimate of J(f) as

JQmn = − 1

2n

n∑
i=1

2m/n

X(i+m) −X(i−m)
,

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1,

X(i) = X(n) if i > n. Therefore, based on the Qiu and Jia (2018a)’s estimator we can

construct the following test statistic.

TQmn = − 1

2n

n∑
i=1

2m/n

X(i+m) −X(i−m)
.

Qiu and Jia (2018a) proved that JQmn → J(X) as n → ∞ , m → ∞ , m/n → 0,

consequently, under the null hypothesis H0, TQmn converges in probability to -0.5 as

n → ∞ and under an alternative distribution on [0,1] with absolutely continuous density

f , TQmn converges in probability to a number smaller than -0.5 as n → ∞.
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Guided by these properties, given any significance level α, and any finite sample size n,

our test procedure is then defined by the critical region

TQmn ≤ C∗
α,

where C∗
α is set so that the test has the desired level α for given n. For specific α and

n, the C∗
α can be obtained by Monte Carlo methods. We determine the C∗

α in follow.

Theorem 2.2. Let F be a completely unknown continuous distribution and G be

the null distribution with unspecified parameters. Then under H1, the test based on

TQmn is consistent.

Proof: From Qiu and Jia (2018a), we have

JQmn → J(f) as n → ∞, m → ∞, m/n → 0 .

Consequently, TQmn converges in probability to J(f) as n → ∞ and this completes

the proof of the theorem.

2. The second test statistic

Qiu and Jia (2018a) adjusted the weights of the estimator JQmn, in order to take into

account the fact that the differences are truncated around the smallest and the largest

data points. (i.e., X(i+m) − X(i−m) is replaced by X(i+m) − X(1) when i ≤ m and

X(i+m) −X(i−m) is replaced by X(n) −X(i−m) when i ≥ n−m+1). Their estimator is

given by

JQ2mn = − 1

2n

n∑
i=1

cim/n

X(i+m) −X(i−m)
,

where

ci =


1 + i−1

m , 1 ≤ i ≤ m,
2, m+ 1 ≤ i ≤ n−m,
1 + n−i

m , n−m+ 1 ≤ i ≤ n.

Therefore, we can propose the following test statistic.

TEmn = − 1

2n

n∑
i=1

cim/n

X(i+m) −X(i−m)
.

Since JQ2mn → J(X) as n → ∞, m → ∞, m/n → 0, the test based on TEmn is

consistent.

3. The third test statistic

The third estimator proposed by Qiu and Jia (2018a) is

JD = −1

2

∫ ∞

−∞
f̂2(x) dx ,

where f̂ is the kernel density function estimation of f and is defined by

f̂(x) =
1

nh

n∑
j=1

k

(
x−Xj

h

)
,
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where h is a bandwidth and k is a kernel function which satisfies∫ ∞

−∞
k(x)dx = 1 .

Usually, k will be a symmetric probability density function. Therefore, we have the

following test statistic.

TDn = −1

2

∫ 1

0
f̂2(x) dx .

4. The fourth test statistic

Alizadeh and Jarrahiferiz (2019), based on a local linear model, proposed an extropy

estimator as follows.

JCmn = − 1

2n

n∑
i=1


i+m∑

j=i−m
(X(j) − X̄(i))(j − i)

n
i+m∑

j=i−m
(X(j) − X̄(i))

2

 ,

where

X̄(i) =
1

2m+ 1

i+m∑
j=i−m

X(j) .

Therefore, we can construct the following test statistic.

TCmn = − 1

2n

n∑
i=1


i+m∑

j=i−m
(X(j) − X̄(i))(j − i)

n
i+m∑

j=i−m
(X(j) − X̄(i))

2

 .

5. The fifth test statistic

The second estimator proposed by Alizadeh and Jarrahiferiz (2019) is as

JBn = − 1

2n

n∑
i=1

f̂(Xi),

where

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) ,

and the kernel function is chosen to be the standard normal density function and the

bandwidth is chosen to be the normal optimal smoothing formula, h = 1.06sn− 1
5 , where

s is the sample standard deviation.

Therefore, we propose the following test statistic for uniformity test.

TBn = − 1

2n

n∑
i=1

f̂(Xi) .

6. The sixth test statistic

Alizadeh and Jarrahiferiz (2019), in a way different from that of Qiu and Jia (2018a),

modified the extropy estimator JQmn as

JNmn = − 1

2n

n∑
i=1

{si(n,m)},
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where

si(m,n) =


f̂(X(i)) , 1 ≤ i ≤ m,

2m/n
X(i+m)−X(i−m)

, m+ 1 ≤ i ≤ n−m,

f̂(X(i)), n−m+ 1 ≤ i ≤ n .

and

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) .

Therefore, the following test statistic is proposed.

TNmn = − 1

2n

n∑
i=1

{si(n,m)}.

7. The seventh test statistic

Alizadeh and Jarrahiferiz (2019) proposed a sample extropy estimator as

JAmn = − 1

2n

n∑
i=1

{
f̂(X(i+m)) + f̂(X(i−m))

2

}
,

where

f̂(Xi) =
1

nh

n∑
j=1

k(
Xi −Xj

h
) ,

and therefore we can propose the following test statistic.

TAmn = − 1

2n

n∑
i=1

{
f̂(X(i+m)) + f̂(X(i−m))

2

}
.

All of the above estimators are consistent and therefore the proposed test statistics are consis-

tent. Clearly, small values of the test statistics will reject the null hypothesis. In the following,

we perform a simulation study and obtain the critical values and powers the proposed tests.

3. Simulation study

Under the null hypothesis H0, the proposed test statistics converge in probability to

-0.5 as n → ∞ and under an alternative distribution on [0,1] with absolutely continuous

density f , they converge in probability to a number smaller than -0.5 as n → ∞.

Guided by these properties, given any significance level α, and any finite sample size n, test

procedures are then defined by the critical region

Tmn ≤ Cα,

where Cα is set so that the test has the desired level α for given n. For specific α and n, the

Cα can be obtained by Monte Carlo methods.

Clearly, the above test statistics are depended on value of m. Therefore, we propose the test

statistic

Tn = median
1≤m≤n/2

Tmn ,
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eliminating the dependency on the unknown integer parameter m. Consequently, seven pro-

posed test statistics for testing uniformity are as follows.

TQn = median
1≤m≤n/2

TQmn ,

TEn = median
1≤m≤n/2

TEmn ,

TDn = TDn ,

Cn = median
1≤m≤n/2

TCmn ,

TBn = TBn ,

TNn = median
1≤m≤n/2

TNmn ,

TAn = median
1≤m≤n/2

TAmn .

Clearly, we reject H0 for small values of the test statistics.

3.1. Percentage points

At the significance level α, we reject H0 if the value of the test statistic is smaller than

Cα, where Cα the critical value is obtained by the α−quantile of the distribution of the test

statistic under the null hypothesis H0.

Distribution of the test statistics under the null hypothesis cannot be evaluated analytically.

Therefore, the critical values of the test statistics are computed by the Monte Carlo method.

For selected values of the sample size n, 100,000 samples of size n from uniform distribution

are generated. For each sample, the test statistics are computed. For level α, the lower-tail

percentage points Cα of the distribution of the test statistics are estimated by the α per-

centiles of the empirical distribution function of the statistics based on the observed 100,000

samples. These estimates are presented in Table 1.

3.2. Power study

The Monte Carlo study of the proposed tests is carried out under seven alternative

distributions. The distribution function of the considered alternatives are as follows.

Ak : F (x) = 1− (1− x)k, 0 ≤ x ≤ 1 (for k = 1.5, 2) ;

Bk : F (x) =

{
2k−1xk, 0 ≤ x ≤ 0.5

1− 2k−1(1− x)k, 0.5 ≤ x ≤ 1
(for k = 1.5, 2, 3);

Ck : F (x) =

{
0.5− 2k−1(0.5− x)k, 0 ≤ x ≤ 0.5

0.5 + 2k−1(x− 0.5)k, 0.5 ≤ x ≤ 1
(for k = 1.5, 2).
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n TDn TQn TBn TEn TCn TNn TAn

10 -0.5949 -1.3534 -0.6883 -0.9445 -1.0857 -0.7066 -0.6392

20 -0.5182 -0.8995 -0.5790 -0.6815 -0.7618 -0.5843 -0.5310

30 -0.4957 -0.7887 -0.5453 -0.6148 -0.6840 -0.5456 -0.4981

40 -0.4840 -0.7393 -0.5277 -0.5842 -0.6489 -0.5261 -0.4805

50 -0.4773 -0.7109 -0.5175 -0.5670 -0.6288 -0.5152 -0.4705

60 -0.4729 -0.6917 -0.5109 -0.5558 -0.6157 -0.5083 -0.4634

70 -0.4701 -0.6782 -0.5056 -0.5480 -0.6063 -0.5028 -0.4585

80 -0.4679 -0.6691 -0.5024 -0.5424 -0.5996 -0.4997 -0.4548

90 -0.4657 -0.6608 -0.4988 -0.5376 -0.5938 -0.4964 -0.4517

100 -0.4645 -0.6547 -0.4965 -0.5341 -0.5898 -0.4940 -0.4493

Table 1: Critical values of the proposed test statistics at level 5%.

These alternatives were used by Stephens (1974) in his study of power comparisons of some

uniformity tests. According to Stephens, alternative A gives points closer to zero than ex-

pected under the hypothesis of uniformity. Alternative B gives points near 0.5 and alternative

C gives two points close to 0 and 1. The densities of the alternatives Ak, Bk and Ck are de-

picted in Figure 1.

For each sample size n, 100,000 samples of size n are generated from alternative distribution

and the proposed statistics are calculated. For level α, the power values of the tests are

estimated by the proportion of the 100,000 samples falling into the critical region. The power

estimates resulting based on a Monte Carlo study are given in Tables 2-5 for α = 0.05 and

n = 10, 20, 30, 50.

For each alternative, the bold type in these tables indicates the tests achieving the maximal

power.

Alternative TDn TQn TBn TEn TCn TNn TAn

A1.5 0.1212 0.1079 0.1288 0.1168 0.1123 0.1289 0.1338

A2 0.2471 0.2353 0.2854 0.2580 0.2477 0.2869 0.3002

B1.5 0.2370 0.1128 0.2138 0.1267 0.1201 0.2074 0.2127

B2 0.5208 0.2471 0.4737 0.2867 0.2702 0.4585 0.4727

B3 0.9049 0.6085 0.8740 0.6707 0.6441 0.8618 0.8701

C1.5 0.0112 0.0788 0.0191 0.0715 0.0743 0.0264 0.0200

C2 0.0072 0.1423 0.0184 0.1266 0.1302 0.0318 0.0189

Table 2: Power comparisons of the tests for n = 10 at the significance
level 0.05.

In Tables 2-5, it is evident that for small sample sizes the test TAn, against alternative
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Alternative TDn TQn TBn TEn TCn TNn TAn

A1.5 0.1950 0.2233 0.2261 0.2399 0.2316 0.2295 0.2429

A2 0.4452 0.5870 0.5595 0.6177 0.6012 0.5714 0.6048

B1.5 0.4397 0.2188 0.4009 0.2614 0.2392 0.3970 0.3881

B2 0.8604 0.5726 0.8239 0.6545 0.611 0.8207 0.8104

B3 0.9989 0.9618 0.9976 0.9840 0.9737 0.9975 0.9973

C1.5 0.0036 0.1235 0.0102 0.0970 0.1101 0.0147 0.0172

C2 0.0015 0.3095 0.0100 0.2353 0.2657 0.0198 0.0187

Table 3: Power comparisons of the tests for n = 20 at the significance
level 0.05.

Alternative TDn TQn TBn TEn TCn TNn TAn

A1.5 0.2582 0.3505 0.3149 0.3704 0.3589 0.3242 0.3433

A2 0.6196 0.8281 0.7619 0.8493 0.8388 0.7759 0.8084

B1.5 0.6086 0.3277 0.5656 0.4073 0.3605 0.5685 0.5428

B2 0.9664 0.7871 0.9539 0.8785 0.8296 0.9551 0.9448

B3 1.0000 0.9981 0.9999 0.9998 0.9991 0.9999 0.9999

C1.5 0.0017 0.1703 0.0081 0.1228 0.1555 0.0098 0.0164

C2 0.0002 0.4860 0.0066 0.3503 0.4243 0.0116 0.0186

Table 4: Power comparisons of the tests for n = 30 at the significance
level 0.05.

Alternative TDn TQn TBn TEn TCn TNn TAn

A1.5 0.3920 0.5698 0.4948 0.6144 0.5927 0.5143 0.5406

A2 0.8410 0.9780 0.9436 0.9845 0.9820 0.9527 0.9669

B1.5 0.8304 0.4947 0.7996 0.6683 0.5721 0.8034 0.7638

B2 0.9990 0.9575 0.9982 0.9912 0.9793 0.9983 0.9969

B3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

C1.5 0.0004 0.2606 0.0057 0.1734 0.2442 0.007 0.0147

C2 0.0000 0.7711 0.0064 0.6052 0.7140 0.0084 0.0264

Table 5: Power comparisons of the tests for n = 50 at the significance
level 0.05.

A, has the most power. Also, for large sample sizes the test TEn, against alternative A, has a

good performance in compared to the other tests. Against alternative B the test TDn has the

most power. The power differences between the test TDn and the other tests are substantial.

Against alternative C the test TQn has the most power and the power differences between
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this test and the other tests are substantial.

Generally, we can conclude that the proposed tests TAn and TEn have the most power

against alternative A, for small and large sample sizes, respectively. Also, the proposed tests

TDn and TQn have the most power against alternatives B and C, respectively.

3.3. Applications to real data

In this section, the proposed test procedures are applied to a real data set for illustra-

tion.

Example 3.1. We consider the data set discussed in Illowsky and Dean (2018) in

Page 317, Table 5.1. The data set consist of smiling times of 55 babies measured in seconds.

The data originally follows a uniform distribution U(0,23). We standardize the data to U(0,1).

For the transformed data the values of the proposed test statistics are obtained as

TDn = −0.4579 ; TQn = −0.6339; TBn = −0.4896; TEn = −0.5280;
TCn = −0.5771; TNn = −0.4880; TAn = −0.4416,

which belongs to the acceptance region. Hence, we accept the null hypothesis that the data

follows U(0,1).

4. Conclusions

In this article, we have presented seven tests for uniformity based on maximum extropy.

We have investigated the extropy estimators and then using them we constructed seven test

statistics for uniformity. The properties of the new tests have investigated. Percentage points

and power values of the proposed tests for different sample sizes against seven alternatives

were reported.

The power simulations for the new tests based on sample extropy showed that the tests are

viable for testing the hypothesis of uniformity. Finally, we have applied the proposed test

procedures to a real data set for illustration.
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