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1. Introduction

Statistical data often exhibits symmetry, indicating some kind of kurtosis. In real-life sit-

uations where the simple distribution does not adequately fit the data or is unsuitable for

modeling, researchers must develop new and flexible distributions to manage this problem. In

Tukey (1977), the family of g and h distributions was introduced, and due to their flexibility,

several researchers apply it in various fields. The subfamily of Tukey’s h distributions is of

particular interest because it encompasses several well-known symmetric distributions, such

as normal, Cauchy, t-student, and Laplace distribution (see Mart́ınez and Iglewicz, 1984, p.

363). Symmetric distributions are important due to their broad applications in numerous

fields (see Johnson and Kotz, 1970). Tukey’s h family of distributions has been used in

the statistical contexts, with the Lambert W function providing an explicit inverse of the

transformation of Tukey’s h distribution (see Georg, 2015; Jiménez, 2004). Hoaglin (1985)

and Headrick (2010, chapter 5) provide detailed studies on the transformation of Tukey’s h

distribution.

In this paper, we propose a symmetric transformation of Tukey’s g−h family of distributions,

incorporating the parameter g into the h-transformation. The appeal of this family lies in

its flexibility: starting from a symmetric variable with a probability density function (pdf ),

various distributions can be generated using the parameters g and h, which control skewness

and tail heaviness, respectively.

The paper is organized as follows: Section 2 presents the Tukey’s g− h family of generalized

distributions. Section 3 describes the symmetric transformation of Tukey’s g−h distribution,

Section 4 discusses statistical properties, including the derivation of the pdf, nth moment ex-

pressions, and quantile-based measures for the even moments. Section 5 outlines parameter

estimation using the method of moments. Section 6 demonstrates the adjustment method-

ology based on theoretical distributions and provides an illustrative example. Finally, the

conclusions are presented.

2. Tukey’s g − h family of generalized distributions

Tukey’s g − h family distributions was introduced by Tukey (1977) which was derived from

two nonlinear transformations

Y = Tg,h(Z) =

{
1
g (exp(gZ)− 1) exp(hZ2/2) if g ̸= 0,

Z exp(hZ2/2) if g = 0
(2.1)

where h ∈ R and Z be a continuous random variable (crv) with a standard normal distribu-

tion. The second function was introduced by Tukey (1960) under the assumption that h ≥ 0.

Recently Jiménez et al. (2015) introduced a generalization of Tukey’s g − h family of distri-

butions, replacing Z in (2.1) by other crv, U , with zero mean and unit variance such that its

pdf, fU (·), is symmetric around the origin. In Jiménez et al. (2015) the authors assume that

U has a Generalized Error Distribution of parameter α, denoted by U ∼ GED(α). It is said

that a crv U ∼ GED(α) if its pdf is given by1 (see Forbes et al., 2011, p. 86)

(2.2) fU
(
u;α

)
=

1

2λΓ (α+ 1)
exp

{
−
∣∣∣u
λ

∣∣∣ 1α} , u ∈ R, 0 < α ≤ 1,

1The GED(α) is also known as the error distribution with parameters a = 0, 2αb =
√

Γ(α)
Γ(3α)

and α = c
2
.
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where λ =
√

Γ(α)
Γ(3α) . Thus, they obtained the following transformation

Y = Tg,h(U) =

{
1
g (exp(gU)− 1) exp(hU2/2) if g ̸= 0,

U exp(hU2/2) if g = 0
(2.3)

Similarly as in the original transformation the parameters g and h control the skewness and

the tails heaviness of the Tukey’s g−h generalized distribution, respectively. The first function

given in (2.3) when h = 0 is known as the Tukey’s g generalized distribution and is denoted by

Tg,0(U). The second function given in (2.3) is known as the Tukey’s h generalized distribution,

this distribution has the characteristic of being symmetrical but shows an increasingly high

stretch tails according the value of the parameter h.

Proposition 2.1. The g-and-h distributions given in (2.3) can be expressed as

(2.4) Tg,h(U) = T
(1)
g,h (U) + T

(2)
g,h (U)

where

(2.5) T
(1)
g,h (U) =

sinh(gU)

g
exp

{
1

2
hU2

}
and T

(2)
g,h (U) =

cosh(gU)− 1

g
exp

{
1

2
hU2

}
.

When g → 0, these transformations reduce to2

T
(1)
0,h (U) = U exp(hU2/2) and T

(2)
0,h (U) = 0.

Proof: We can rewrite the expression given in (2.3) in terms of hyperbolic functions as

follows

Y = Tg,h(U) =
1

g
(sinh(gU) + cosh(gU)− 1) exp(hU2/2)

=
1

g
sinh(gU) exp(hU2/2)︸ ︷︷ ︸+

1

g
(cosh(gU)− 1) exp(hU2/2)︸ ︷︷ ︸

= T
(1)
g,h (U) + T

(2)
g,h (U),

These transformations are useful for modeling data that exhibit both skewness and heavy

tails, characteristics that cannot be adequately captured by a symmetric crv alone.

Remark 2.1. Note that we can obtain the same transformation as T
(1)
g,h (U) when g < 0,

because T
(1)
−g,h(U) = T

(1)
g,h (U), and also it satisfied that T

(1)
g,h (−U) = −T

(1)
g,h (U). The expressions

(2.3) and the first one given in (2.5) are related as:

T2g,h(U) = egUT (1)
g,h (U) for g ̸= 0.

Remark 2.2. Furthermore, these transformations satisfy that

(2.6)
(
T
(1)
g,h (U)

)2
−
(
T
(2)
g,h (U)

)2
=

2

g
T
(2)
g,h (U) exp(hU2/2).

2Note that T
(1)
0,h(U) coincides with the second function given in (2.3).
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2.1. Parametric representation of random variables using the Tukey’s g − h dis-

tribution

If we wish to approximate any crv X by using the transformation given in (2.3), we use the

linear model given in Hoaglin and Peters (1979):

X =A+BY with Y = Tg,h(U),(2.7)

where A and B are location and scale parameters, respectively. Since U is symmetric about

zero, we should estimate four parameters, which must also satisfy one of the following condi-

tions:

xq =A+BTg,h(uq) and x1−q =A+BTg,h(−uq),(2.8)

where q > 0.5 and xq, uq are the qth quantiles of the crv X and U , respectively. For any

univariate cumulative distribution function (cdf ) FU (·), and for 0 < q < 1, the qth quantile

is the quantity

F−1
U (q) = uq = inf{u : FU (u) ≥ q}.

Remark 2.3. When we assume that U ∼ GED(1/2) and h = 0 in equation (2.7), its

inverse is

U = T−1
g,0

(
X −A

B

)
=

1

g
ln

(
X − θ

η

)
X > θ(2.9)

where θ = A− B
g and η = B

g , these parameters are taken by convention to be positive. This

expression coincides with the lognormal system of distributions (SL) presented in Johnson

(1949, p. 155).

3. The symmetric transformation of Tukey’s g − h distribution

The g−h generalized distribution defined by the function given in (2.3) is a nonlinear trans-

form of a crv U and is parameterized by g and h. The second function given in (2.3) includes

distributions that increases kurtosis on the increasing magnitude of the parameter h. This

subfamily of distributions to help them get to have great importance in the statistical analy-

sis to be a suitable means to study symmetric distributions. Its distributional form includes

only the parameter h which fixes the amount of kurtosis. Many researchers consider that the

parameter g in (2.1) controls the skewness and g = 0 corresponds to symmetry, however, we

include the parameter g to obtain the symmetric transformation of Tukey’s g − h family of

generalized distributions.

Proposition 3.1. Let X and Y = T (U) be random variables, if there exists a relationship

of the form

(3.1) X = Me(X) +BT
(1)
g,h (U), with h ∈ R

where Me(X) = x0.5 and T
(1)
g,h (U) is given in (2.5), then the transformation T

(1)
g,h (U) = T̃g,h(U)

is said to be a symmetric transformation of the Tukey’s g − h family of distributions.
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Proof: According to Loynes (1966) when the distribution of a crv X is symmetric about

some point x0, i.e. has center of symmetry x0, then

xq − x0 =x0 − x1−q 0.5 < q < 1.(3.2)

Let X be a variable which we want to approximate by the transformation g−h, by replacing

expressions (2.8) in equation (3.2), we obtain

A+B
(
T
(1)
g,h (uq) + T

(2)
g,h (uq)

)
− x0 =x0 −

[
A+B

(
T
(1)
g,h (−uq) + T

(2)
g,h (−uq)

)]
.

Since T
(1)
g,h (−uq) = −T

(1)
g,h (uq) and T

(2)
g,h (−uq) = T

(2)
g,h (uq), after some calculations and simpli-

fying we have

x0 = A+BT
(2)
g,h (uq),

note that if g = 0, the value x0 is constant for all q. Since if a crv X has a pdf symmetric

and its expected value exists, this expected value equals the center of symmetry (see Schay,

2016, p. 176), then

E(X) = A+B E
[
T
(1)
g,h (U)

]︸ ︷︷ ︸
0

+BE
[
T
(2)
g,h (U)

]
= E

(
x0
)
.

Therefore

xq = A+BE
[
T
(2)
g,h (u0.5)

]︸ ︷︷ ︸+BT
(1)
g,h (uq)

= Me(X) +
B

g
sinh(guq) exp

{
1

2
hu2q

}
=

{
Me(X) + B

g sinh(guq) exp
{
1
2hu

2
q

}
if g ̸= 0

Me(X) +Buq exp
{
1
2hu

2
q

}
if g = 0

(3.3)

This expression enables the approximation of the quantiles of a symmetric crv X using

T
(1)
g,h (U).

Remark 3.1. When we assume that U ∼ GED(1/2) and h = 0 in equation (3.1), its

inverse is

U = δ sinh−1

(
X −Me(X)

η

)
with δ =

1

g
and η =

B

g
.(3.4)

This expression coincides with the unbounded system of symmetrical distributions (SU ) pre-

sented in Johnson (1949, p. 158), which are obtained when the shape parameter γ = 0. In

general, the inverse of the symmetric transformation of T̃g,h(U) can be obtained numerically.

Remark 3.2. Note that the second expression of (3.3) can also be obtained using the

Maclaurin’s series expansion of sinh(gu)
g (see details in McMahon, 1906, p. 23), for that, we

rewrite the expression (3.1) in terms of quantiles as

xq = Me(X) +B exp

{
1

2
hu2q

} ∞∑
k=0

g2k
u2k+1
q

(2k + 1)!
.

Here, when g → 0, only the first term of the expansion above is non-zero, and we obtain

xq = Me(X) +Buq exp

{
1

2
hu2q

}
,

this last equation coincides with expression (2.8) when A = Me(X) and yq = T0,h(uq).
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4. Statistical properties of the symmetric transformation of Tukey’s g − h fam-

ily

In this section, we discuss the statistical properties of the symmetric transformation of Tukey’s

g − h family of distributions.

4.1. Probability density function

In Jiménez (2004) by using the inverse function theorem obtained the following relation

(
F−1

)′
(F (uq)) =

d

dq
uq =

1

F ′ (uq)
=

1

f (uq)
(4.1)

where uq denotes the q-th quantile of the crv U , i.e., FU (uq) = q, and fU (·) is the pdf of

the crv U. Under the transformation in (3.1), the pdf of T̃g,h(U) is obtained by using the

following result

tg,h(yq) =
fU (uq)

T̃ ′
g,h (uq)

whenever |h|uq
tanh(guq)

g
< 1,(4.2)

where h < 0 and yq denotes the q-th quantile of the symmetric transformation:

T̃g,h(U) = T
(1)
g,h (U) =

{
sinh(gU)

g exp
{
1
2hU

2
}

if g ̸= 0,

U exp{1
2hU

2} if g = 0
(4.3)

and T̃ ′
g,h(uq) satisfies the following Ordinary Differential Equation (ODE):

T̃ ′
g,h (U) =

{
hUT̃g,h (U) + cosh(gU) exp{1

2hU
2} if g ̸= 0(

1 + hU2
)
exp{1

2hU
2} if g = 0

(4.4)

subject to the initial condition

T̃g,h(0) = 0.

Remark 4.1. By Equation (3.1) we have that xq = Me(X) +BT̃g,h(uq) and by using the

expression (4.1) then the pdf for the crv X is set as follows

fX(xq) = fX
(
Me(X) +BT̃g,h(uq)

)
=

1

|B|
tg,h(yq).(4.5)

If U ∼ GED(1/2), we can consider the following special cases

1. When h = 0, from (4.2) we have immediately

fX
(
x
)
=

1

|B|
tg,0(y) =

1√
B2

φ
(
1
g sinh

−1
(
x−Me(X)

η

))
cosh

(
sinh−1

(
x−Me(X)

η

))

=
1√
(ηg)2

φ

(
1
g ln

(
x−Me(X)

η +

√(
x−Me(X)

η

)2
+ 1

))

cosh

(
ln

(
x−Me(X)

η +

√(
x−Me(X)

η

)2
+ 1

))
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=
1√

2π(ηg)2

exp

{
− 1

2g2
ln2

(
x−Me(X)

η +

√(
x−Me(X)

η

)2
+ 1

)}
√(

x−Me(X)
η

)2
+ 1

,(4.6)

this last expression coincides with the pdf of SU given in Johnson (1949, p. 162).

2. When g = 0, by substituting into (4.2), we have

fX
(
x
)
=

1

|B|
t0,h(y) =

1√
B2

1

1 + u2
φ

(√
1 + h

h
u

)

=
1√

2πB2(1 + u2)
exp

{
−1

2

1 + h

h
u2
}
,(4.7)

where u2 is expressed in terms of the Lambert W function and it is given by (see Georg,

2015, p. 6)

u2 = W

(
h

(
x−Me(X)

B

)2
)
.

4.2. Cumulative distribution function

The following proposition provides an analytical expression for evaluate the cdf of the sym-

metric transformation of Tukey’s g − h distributions.

Proposition 4.1. The cumulative distribution function (cdf) of the symmetric transfor-

mation of Tukey’s g − h family of distributions, denoted by Fg,h(y), satisfies the following:∫ b

a
tg,h
(
u
)
du =

∫ T̃−1
g,h(b)

T̃−1
g,h(a)

fU (v) dv = FU

(
T̃−1
g,h

(
b
))

− FU

(
T̃−1
g,h

(
a
))

,(4.8)

where T̃−1
g,h (·) is the inverse function of the transformation given in (4.3).

Proof: From the expression (4.2), it follows that

∫ b

a
tg,h(y)dy =

∫ b

a

fU

(
T̃−1
g,h (y)

)
T̃ ′
g,h

(
T̃−1
g,h (y)

)dy.
We will solve this by making the following change of variable

v =T̃−1
g,h (y) dv =

dy

T̃ ′
g,h

(
T̃−1
g,h (y)

) ,(4.9)

then ∫ T̃−1
g,h

(
b
)

T̃−1
g,h

(
a
) fU (v) dv = FU

(
T̃−1
g,h

(
b
))

− FU

(
T̃−1
g,h

(
a
))

.

In other words, the cdf depends on the inverse of the transformation T̃g,h(U) and the cdf of

the cvr U .
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4.3. Moments of the symmetric transformation of Tukey’s g − h family of distri-

bution

Since both the pdf and the cdf can be explicitly defined, parameters estimation for Tukey’s

g − h family of generalized distributions can be carried out using the method of moments

or the quantile-based method proposed by Mahbubul et al. (2008). Recently, Möstel et al.

(2019) conducted a comparison of various methods for estimating Tukey’s g−h distributions,

particularly in cases where the likelihood function is not available in closed form

We use the following theorem to derive and explain the moments of the symmetric transfor-

mation of Tukey’s g − h family of distributions. Since that X has a pdf symmetric (when a

distribution is symmetric, the mode, median, and mean are all the same) about Me(X), then

the moments of odd order are zero and we can get the moments of even order as

Theorem 4.1. Let X = Me(X) +BT̃g,h(U) be the transformation given as in (3.1), then

the n-th moments of even order of the crv X are given by

E
[(
X −Me(X)

)2n]
=

2η2n
∞∫
0

[sinh2(gu)]n exp{h̃u2}fU (u)du if g ̸= 0,∫∞
0 u2n exp{h̃u2}fU (u)du if g = 0

(4.10)

where η = B/g, h̃ = nh and

(4.11) E(X) = A+ 2η

∫ ∞

0
(cosh(gu)− 1) exp

{
h

2
u2
}
fU (u)du.

Proof: Using the expression (3.1) when g ̸= 0 we obtain

E
[(
X −Me(X)

)2n]
=

1∫
0

(
xq −Me(X)

)2n
dq

= B2n

1∫
0

[
sinh(guq)

g
exp

{
h

2
u2q

}]2n
dq.

Now, we proceed with the variable change

w =uq = F−1
U (q) dw =duq =

dq

F ′
U (uq)

,(4.12)

here we use the expression given in (4.1), since F ′
U (w) = fU (w), we have

E
[(
X −Me(X)

)2n]︸ ︷︷ ︸ = η2n
∫ ∞

−∞
[sinh2(gw) exp{hw2}]nfU (w)dw

µ2n(X) = 2η2n
∫ ∞

0
[sinh(gw)]2n exp{h̃w2}fU (w)dw,(4.13)

where h̃ = nh. In the latter term, we used that fU (w) is a symmetric function around the

origin.
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4.4. Special cases of moments

In general, if U be a crv with pdf symmetric around the origin then the moment generating

function (mgf ) can be obtain as follows

MU (t) = E
(
etU
)
= 2

∫ ∞

0
cosh(tw)fU (w)dw.

Using the following result from the hyperbolic functions (McMahon, 1906)

[2 sinh(gw)]2n =
n−1∑
k=0

(−1)k
(
2n

k

)
[2 sinh(g̃w)]2,

where g̃ = (n− k)g. By substituting the above expression into (4.13) we get

(4.14) µ2n(X) = 4

(
η

2

)2n n−1∑
k=0

(−1)k
(
2n

k

)∫ ∞

0

[
cosh(2g̃w)− 1

]
exp{h̃w2}fU (w)dw.

However, it is not always reasonable to assume the existence of certain moments; their exis-

tence is guaranteed only within a specific range of values for the parameter h. According to

this restriction, we have the following cases:

1. Assume that U ∼ GED(1/2) and h < 1
2n , then expression (4.11) becomes

(4.15) E(X) = A+
η√
1− h

[
exp

{
1

2

g2

1− h

}
− 1

]
.

From equation (4.14) we obtain

µ2n(X) =


(
η
2

)2n 2√
1−2h̃

n−1∑
k=0

(−1)k
(
2n

k

)[
MU

(
2g̃√
1−2h̃

)
− 1

]
if g ̸= 0,

2B2n

2n[1−2h̃]
2n+1

2

Γ(2n)

Γ(n)
if g = 0

(4.16)

where MU (t) denotes the mgf of the standard normal crv and Γ(·) denotes the gamma

function.

2. Suppose that U ∼ GED(1) and h < 0, then expression (4.11) becomes

E(X) =A+ η

√
π

|h|

exp
1

2

[
g +

√
2√

|h|

]2Φ

[
−g +

√
2√

|h|

]
+ exp

1

2

[√
2− g√
|h|

]2
− exp

1

2

(√
2− g√
|h|

)2
Φ

(√
2− g√
|h|

)
− 2 exp

{
1

|h|

}
Φ

(
−

√
2

|h|

) .

From equation (4.14) we obtain3

µ2n(X) =



(
η
2

)2n 2√
n|h|

n−1∑
k=0

(−1)k
(
2n

k

){[
exp

{
α2

n,k

2

}
Φ(αn,k)

+exp
{

β2
n,k

2

}
Φ(βn,k)

]
− 2e

1
2n|h|Φ

(
−1√
n|h|

)}
if g ̸= 0,

2nB2n√
2n|h|

(
1

2n|h|

)2n
e

1
2n|h|

2n∑
k=0

(−1)k
(
2n

k

)[
Γ
(
k+1
2

)
−
∫ 1

2n|h|
0

√
uk−1e−udu

]
if g = 0

(4.17)

3We use the Table I of Fourier transforms (Oberhettinger, 1973, expression (79)).
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where αn,k and βn,k are the smaller and larger roots, respectively, of the quadratic

equation given below

(4.18)
[√

n|h|r + 1
]2 − 2(n− k)2g2 = 0.

5. Estimation of the parameters

In this section, we explain the estimation of the parameters of this class of symmetric transfor-

mation, which we can be accomplished using the method of moments. The 2n-th standardized

moment of the crv X is given by

βn(X) =
E[(X −Me(X))2n](
E[(X −Me(X))2]

)n =
µ2n(X)

µn
2 (X)

n ≥ 1

=
n−1∑
k=0

(−1)k

2n−1

(
2n

k

) ∫∞
0 [2 sinh(g̃w)]2 exp{h̃w2}fU (w)dw[∫∞
0 [2 sinh(gw)]2 exp{hw2}fU (w)dw

]n .(5.1)

Note that the above expression of the 2n-th standardized moment does not depend on the

parameter B. The formulas for calculating the fourth standardized moment, kurtosis (β2(X)),

and β3(X), are used to determine the values of g and h.

Remark 5.1. If U ∼ GED(1/2), from expression (4.16), then the variance of the crv X

is given by

(5.2) σ2
X =


η2√
1−2h

sinh
( g2

1−2h

)
exp

{ g2

1−2h

}
, if g ̸= 0, h < 1

2
B2√

(1−2h)3
if g = 0, h < 1

2 .

On the other hand, the 2n-th standardized moment of the crv X are given by

(5.3) βn(X) = κn(h)
n−1∑
k=0

(−1)k
(
2n

k

)
4 sinh

( (n−k)2g2

1−2nh

)
exp

{ (n−k)2g2

1−2nh

}[
4 sinh

( g2

1−2h

)
exp

{ g2

1−2h

}]n , n ≥ 1

where the coefficient is given by

κn(h) =

√
(1− 2h)n

1− 2nh
n = 1, 2, . . . .

Using the definition of hyperbolic sine function we can rewrite the expression (5.3) as follows:

(5.4) βn(X) =
κn(h)

2n−1

n−1∑
k=0

(−1)k
(
2n

k

)
exp

{2(n−k)2g2

1−2nh

}
− 1[

exp
{ 2g2

1−2h

}
− 1
]n , n ≥ 1,

subject to h < 1
2n . To determine the values of g and h, we can be solved the following system

of nonlinear equations

2β2(X)

κ2(h)
=

(
w2(g, h)− 1

w1(g, h)− 1

)2 (
w2

2 (g, h) + 2w2(g, h) + 3
)

4β3(X)

κ3(h)
=

(
w3(g, h)− 1

w1(g, h)− 1

)3 (
w6

3 (g, h) + 3w5
3 (g, h) + 6w4

3 (g, h) + 10w3
3 (g, h)(5.5)

+15w2
3 (g, h) + 15w3(g, h) + 10

)
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where

wn(g, h) = exp

{
2g2

1− 2nh

}
n = 1, 2, . . .

and we have that the scale parameter is given by

B =


|g|σX

4√1−2h√
sinh
(

g2

1−2h

) exp{− 1
2

g2

1−2h

}
if g ̸= 0,

(1− 2h)
3
4σX if g = 0.

Remark 5.2. When U ∼ GED(1/2) and h = 0 from (5.2) and (5.4) we get

2σ2
X = η2(w − 1)(w + 1) and 2β2(X) = w4 + 2w2 + 3(5.6)

where w = eg
2
, these expressions coincide with the variance and kurtosis for distributions of

systems SU given in Johnson (1949, p. 163), then the value of g is established as the solution

of (
exp

{
2g2
}
+ 1−

√
2(β2(X)− 1)

)(
exp

{
2g2
}
+ 1 +

√
2(β2(X)− 1)

)
= 0

i.e., if the kurtosis of the data set is known, the value g can be obtained by the solution of

(5.7) 2g2 = ln
(√

2(β2(X)− 1)− 1
)
.

Note that if β2(X) = 3, then g = 0. The scale parameter (if g ̸= 0) is given by

(5.8) η =
B

|g|
= σX

[√
2(β2(X)− 1)

2
− 1

]− 1
2

, β2(X) ̸= 3.

It is straightforward to show that (4.15) is equivalent to

(5.9) E(X) = x0.5 +
√
2

4

√√
2(β2(X)− 1)− 1− 1√√
2(β2(X)− 1)− 2

σX , β2(X) ̸= 3

i.e., it depends only on the median, standard deviation and kurtosis.

5.1. Parameter identification procedure based on quantiles

In Hoaglin (1985, p. 469) the qth lower half-spread and upper half-spread are defined as

(5.10) LHSq = X(u0.5)−X(−uq) and UHSq = X(uq)−X(u0.5)

where X(uq) = A+BTg,h(uq) with q > 0.5. By substituting expression (2.8), we obtain

UHSq + LHSq = X(uq)−X(−uq) = 2BT
(1)
g,h (uq)

it is called the quantile spread and is denoted as QSX(q). In David and Johnson (1956, p. 15),

a skewness function based on order statistics was proposed. When q = k/(n + 1), the qth

sample quantile corresponds to the kth order statistic. Based on this, the skewness measure

for the transformation given in (2.4), is defined as follows:

b2(q) =
UHSq − LHSq

UHSq + LHSq
=

T
(2)
g,h (uq)

T
(1)
g,h (uq)

=
eguq − 1

eguq + 1
.
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This expression relates the David-Johnson skewness to the parameter g. It reduces to Bow-

ley’s coefficient when q = 3
4 . For fixed q > 0.5, the values of b2(q) will be within the interval

(−1, 1), where 1 represents extreme right skewness (g → ∞) and −1 represents extreme left

skewness (g → −∞). Figure 1 shows David-Johnson coefficient as a monotonic increasing

function of g.

Figure 1: Relation between David-Johnson skewness and parameter g.

On the other hand, following a methodology similar to that of Slifker and Shapiro (1980,

p. 240), we derive a simple criterion that can be used to select the transformation given in

(2.4). To do this, we establish the following quantities:

m

p
=
X(3uq)−X(uq)

QSX(q)
=


(2 cosh(gu)+1)e

4hu2q−e−guq

e−guq+1
eguq if g ̸= 0 and h ̸= 0

3e
4hu2q−1
2 if g = 0 and h ̸= 0

e2guq if g ̸= 0 and h = 0

n

p
=
X(−uq)−X(−3uq)

QSX(q)
=


(2 cosh(gu)+1)e

4hu2q−eguq

eguq+1 e−guq if g ̸= 0 and h ̸= 0

3e
4hu2q−1
2 if g = 0 and h ̸= 0

e−2guq if g ̸= 0 and h = 0

where uq ∈ (0.51, 0.99), and its selection will depend on the amount of data. It follows

that

(5.11)
m

p

n

p
=


(2 cosh(gu)+1)e

4hu2q−eguq

eguq+1
(2 cosh(gu)+1)e

4hu2q−e−guq

e−guq+1
if g ̸= 0 and h ̸= 0

(3e
4hu2q−1)2

4 if g = 0 and h ̸= 0
1 if g ̸= 0 and h = 0.

Expression (5.11) can be used to choose between the two transformations depending on the

result obtained, i.e., using the percentiles of the ordered data, if we compute with these values

mn/p2 and we obtain that the result is equal to 1 then g ̸= 0 and h = 0. When the result

is less than 1, g = 0 and h < 0, in the case where h < 0, the existence of the moments of

the transformations is always guaranteed. In general, the second condition can be validated
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as

m

p
− n

p
=


((

2 cosh(guq) + 1
)2
e4hu

2
q − 1

)
b2(q) if g ̸= 0 and h ̸= 0

0 if g = 0 and h ̸= 0

2 sinh (2guq) if g ̸= 0 and h = 0.

Remark 5.3. When the distribution of a crv X is defined for positive values, in accordance

with Jiménez and Mart́ınez (2006), if it is satisfied that

xqx1−q = x20.5 0.5 < q < 1,(5.12)

then B = Ag and h = 0. We will briefly indicate how this can be proved. Let X be a variable

which we want to approximate using the transformation g − h. By substituting expressions

(2.8) into equation (5.12), we obtain[
A+B

(
T
(1)
g,h (uq) + T

(2)
g,h (uq)

)][
A+B

(
T
(1)
g,h (−uq) + T

(2)
g,h (−uq)

)]
=x20.5 g > 0.

By means of the quantile technique it is known that A = x0.5, after some calculations and

simplifying we have

B2
(
T
(2)
g,h (uq)

)2 −B2
(
T
(1)
g,h (uq)

)2
+ 2ABT

(2)
g,h (uq) = 0

2BT
(2)
g,h (uq)

(
A− η exp(hu2q/2)

)
= 0.

Here, we substitute the expression (2.6) in the last equation. This is satisfied when B = Ag

and h = 0. Expression (5.12) and the third condition in (5.11) are equivalent, both allowing

us to establish that h = 0.

6. Illustration

In this section we discuss some examples and applications of the results presented with two

examples. In the first example, we consider the symmetric distributions studied in Mart́ınez

and Iglewicz (1984, p. 363) and Pearson et al. (1977, p. 240). In the second example, we ex-

amined the available dataset from the web address https://lib.stat.cmu.edu/datasets/

pollen.data.

6.1. Symmetric distributions

We assume that U ∼ GED(1/2) and we use the values of β2(X) and β3(X) provided in Talacko

(1956) and Pearson et al. (1977, p. 240) to estimate the parameters g and h. Since both β2(X)

and β3(X) for these distributions are known, the parameters of symmetric transformation

of Tukey’s g − h distributions can be determined by numerically solving the equations given

in (5.5). In Table 1, we present the estimated values of the three parameters (B, g, h) for a

selected set of well-known symmetrical distributions. Our interest is to compare the results

from Mart́ınez and Iglewicz (1984, p. 363) with our proposed model. It is important to note

that the authors assume g = 0 for symmetric distributions, whereas in our approach using

the symmetric transformation of Tukey’s g−h distributions, the parameter g yields a nonzero

value.

https://lib.stat.cmu.edu/datasets/pollen.data
https://lib.stat.cmu.edu/datasets/pollen.data
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Table 1: Values for the parameters of the symmetric transformation of
Tukey’s g − h distributions.

Density Standard moments Estimates values
Function β2(X) β3(X) B g h

Uniform (0,1) 9
5

27
7

1434
3701

39
1052 −13

54
Beta (2,2) 15

7
125
21

4339
6251

17
1065 − 27

227
Normal (0,1) 3 15 1 0 0
SU (η = 1, δ = 3) 3.5287 24.776 1

3
1
3 0

HyperCsc 4 34 3471
3895

9659
13210 − 891

9640
t(10) 4 40 437

430
83

4847
56
939

Logistic 21
5

279
7

7045
8008

8072
11255 − 280

3537
HyperSec 5 61 989

1220
2550
2701 −1029

7558

Laplace
(
0, 1√

2

)
6 90 9374

12849
6337
5391 −1308

6467

Source: own elaboration

The distributions given in table 1 are characterized by their symmetry and heavier tails

compared to the normal distribution, making them flexible for modeling real-world data with

moderate extremes, especially in fields such as actuarial science, survival analysis and growth

modeling. In addition, the cases where h < 0 indicates that the respective crv has higher

moments.

Similar to the other pdf, we look for a two-normal mixture distribution (NMD) with equal

means and different variance given by

h(x; Λ) = ωφ
(
x;µ1, σ

2
1

)
+ (1− ω)φ

(
x;µ2, σ

2
2

)
x ∈ R,

where the parameter vector of the mixture model Λ = (µ1, σ
2
1;µ2, σ

2
2;ω) and φ

(
x;µk, σ

2
k

)
de-

notes the pdf of an univariate normal variable with mean µk and variance σ2
k. Here we wish to

observe that our model allows to approach the quantile of the mixture of two normal distri-

bution with equal means and different variance. In Table 2, we present the estimated values

of the three parameters (B, g, h) for a mixture of two univariate normal distributions.

Table 2: Values for the parameters of the NMD(Λ)

Mixture Parameters Standard moments Estimates values
pdf (µ1, σ1) (µ2, σ2) ω β2(X) β3(X) B g h

Normal (0, 1) (0, 3) 0.8 1275
169

274875
2197

361
395

3345
2002 −1499

3965
Normal (0, 1) (0, 3) 0.9 25

3
5125
27

5287
6438

873
616 −2156

8385

Source: own elaboration

6.2. Pollen data

We now use a set of 3848 observations of the variable “density” included in the data set Pollen

of the R package HistData. This dataset was used by Pewsey et al. (2012) and explored also

by Gómez-Déniz et al. (2019). In Table 3, we present a summary of some descriptive statistics.

In Table 4, we assume that U ∼ GED(1/2) and present the estimated parameters of the

Tukey’s h and T̃g,0(U) distributions; our interest is to compare with Pewsey et al. (2012)

with our proposed model.
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Table 3: Summary of descriptive statistics for the pollen density dataset

Mean Median Variance Skewness Kurtosis

1.6629× 10−4 −0.03045 9.8872 0.10979 3.19338

Source: own elaboration

Table 4: Estimates for adjusting the transformation of Tukey’s g−h dis-
tributions.

Density Estimated parameters Test of adjusted
Function (A, ϵ) (B, η) (g, λ) (h, γ) KS(%)

Tukey’s h −0.03045 3.073672 0 0.014938 0.9985

T̃g,0(U) −0.03045 14.40308 0.2133641 0 0.9311
SU −1.701606 11.01016 0.2701436 −0.5470736 0.8126
SN∗ −2.04 3.75 0.93 − 1.1645
Normal 0.0362174 3.156164 0 0 1.5477
∗Their parameters are drawn from (Pewsey et al., 2012, p. 12) and (Gómez-Déniz et al., 2019, p. 11)

Source: own elaboration

The lower value of the Kolmogorov-Smirnov (KS) test confirms that the data obey the pro-

posed transformation. The empirical probability density function (EPDF ) of the data are

shown in Figure 2 and compared with Figure 4 of Pewsey et al. (2012, p. 12).

Figure 2: Histogram and fitted density curves for pollen dataset.

7. Conclusions

This paper presents a symmetric transformation of the well-known Tukey’s h family of dis-

tributions for modeling symmetric data. We derive explicit formulas for the moments, and

using these, we estimate the transformation parameters via the method of moments. The

proposed model has the advantage that it provides flexibility, particularly when the data

distribution does not follow a normal distribution, i.e., when the distribution is leptokurtic.

From the proposed model we obtain some special cases of well-known symmetric distribu-
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tions, and also symmetrical Johnson’s SU distribution (when h = 0). Additionally, the model

generates a broad class of symmetric probability density functions (pdf ) by using the g and

h parameters of the symmetric transformation of Tukey’s g−h family of distributions, which

control skewness and tail heaviness, respectively
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symmetric distribution. Symmetry, 11(11):1410.

Headrick, T. C. (2010). Statistical Simulation: Power Method Polynomials and Other Transforma-
tions. Taylor & Francis Group, LLC, Chapman & Hall/CRC Press, Boca Raton, FL, USA.

Hoaglin, D. (1985). Summarizing shape numerically: the g-and-h distributions. In Hoaglin, D.,
Mosteller, F., and Tukey, J., editors, Exploring Data Tables, Trends, and Shapes, Wiley Series in
Probability and Mathematical Statistics, chapter 11, pages 461–513. John Wiley & Sons, New York.

Hoaglin, D. C. and Peters, S. C. (1979). Software for exploring distribution shape. Technical Report
LIDS-P-909, Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of
Technology.
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