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1. INTRODUCTION

Azzalini (1985) considered a generalized version of the normal distribution, namely the

skew normal distribution (SND) and this distribution has been further studied by several

authors such as Azzalini (1986), Henze (1986), Azzalini and Dalla Valle (1996), Branco and

Dey (2001) and Arnold and Beaver (2013), Tsujino and Kubokawa (2019), Das et al. (2023),

Arnold et al. (2023). Azzalini (1985) defined the SND as given below.

A random variable X is said to follow a skew normal distribution (SND) with skewness

parameter λ ∈ R = (−∞,∞), denoted by SND(λ), if its probability density function (p.d.f.)

is of the following form, for x ∈ R.

(1.1) g1(x;λ) = 2f(x)F (λx)

where f(·) and F (·) are respectively the p.d.f. and cumulative distribution function (c.d.f.)

of a standard normal variate. The SND(λ) is not suitable for the analysis of plurimodal

situations. In order to accommodate plurimodality, Kumar and Anusree (2011) developed a

modified version of the SND(λ) by considering a generalized mixture of the standard normal

and SND(λ) through the following p.d.f., in which x ∈ R, λ ∈ R and α ≥ −1.

(1.2) g2(x;λ, α) =
2

(α+ 2)
f(x)[1 + αF (λx)].

For developing a more flexible class of asymmetric normal models, Kim (2005) proposed a

two-piece version of the SND(λ) through the following p.d.f.

(1.3) g3(x;λ) =
2π f(x)F (λ|x|)
[π + 2 tan−1 (λ)]

.

The distribution of a random variable X with p.d.f. (1.2) and (1.3) hereafter are denoted

by MSND(λ, α) and TSND(λ), respectively. As a generalization of the TSND(λ), here we

introduce a two-piece version of the MSND(λ, α) and study some of its important properties.

We shall call this new class of two-piece MSND(λ, α) as “the two-piece modified skew normal

distribution [TMSND(λ, α)]”. The rest of the paper is organized as follows: The definition of

TMSND(λ, α) and some of its important properties are discussed in Section 2. In Section 3,

we obtain expressions for certain reliability measures and discuss some important aspect of

the distribution with respect to the mode of the distribution. In Section 4, the maximum

likelihood estimation of the parameters of the distribution is presented. In Section 5, practical

usefulness of the class is illustrated with the help of a real life data set and a simulation study

is undertaken for examining the performance of the estimators.

We need the following notation in the sequel. For any a ∈ R and b > 0, define

ξ(a; b) =

∞∫
a

f(x)

bx∫
0

f(y)dydx,(1.4)

so that

ξ(0, λ) =
tan−1(λ)

2π
(1.5)
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and for any reals a, b and s such that bx+ s > 0,

ξs(a; b) =

∞∫
a

f(x)

bx+s∫
0

f(y)dydx.(1.6)

2. DEFINITION AND PROPERTIES

In this section we first present the definition of a two-piece modified skew normal

distribution and discuss some of its important properties.

Definition 2.1. A random variable Z is said to follow a two-piece modified skew

normal distribution with parameters λ ∈ R and α ≥ −1 if its p.d.f. h(z;λ, α) is of the

following form:

(2.1) h(z;λ, α) =

{
2

(α+2)f(z)[1 +D(λ, α)F (−λz)], z < 0
2

(α+2)f(z)[1 +D(λ, α)F (λz)], z ≥ 0

where D(λ, α) = απ[π + 2 tan−1(λ)]−1.

The distribution of a random variable Z with p.d.f. (2.1) is denoted by TMSND(λ, α).

For some particular choices of λ and α the p.d.f. given in (2.1) of TMSND(λ, α) is shown

in Figure 1.

Figure 1: Probability plots of TMSND(2.5, α) for different choices of α =
0.84, 0.3,−0.1.

Clearly, the TMSND(λ, α) contains the following special cases.

a) TMSND(λ, 0) or TMSND(0, α) or the limiting case of the TMSND(λ, α) when λ →
−∞, α = 0 or λ → ∞, is the standard normal distribution;

b) the limiting case of the TMSND(λ, α) when α → ∞ is the TSND(λ);

c) the limiting case of the TMSND(λ, α) when λ → −∞ and α = −1 is the standard half

normal distribution.
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Now we derive certain structural properties of the TMSND(λ, α) through the following

results.

Result 2.1. If Z follows TMSND(λ, α) , then Y1 = −Z also follows TMSND(λ, α).

Proof: Let h (z;λ, α) be the p.d.f. of Z. Then, by the symmetric property of f, for

any y1 ∈ R, the p.d.f. h1(y1;λ, α) of Y1 is given by

h1 (y1;λ, α) = h (−y1;λ, α)

∣∣∣∣ dzdy1
∣∣∣∣

=

{
2

(α+2)f(y1)[1 +D(λ, α)F (−λy1)], y1 ≤ 0
2

(α+2)f(y1)[1 +D(λ, α)F (λy1)], y1 > 0,

which shows that Y1 = −Z follows TMSND(λ, α).

Result 2.2. If Z follows TMSND(λ, α) then, Y2 = Z2 has p.d.f. (2.2).

Proof: Let h (z;λ, α) be the p.d.f. of Z. Then, the p.d.f. h2(y2;λ, α) of Y2 is given

by

h2 (y2;λ, α) = h (z;λ, α)

∣∣∣∣ dzdy2
∣∣∣∣

= h (−√
y2;λ, α)

∣∣∣∣ dzdy2
∣∣∣∣+ h (

√
y2;λ, α)

∣∣∣∣ dzdy2
∣∣∣∣

=
1

(α+ 2)

(
f(
√
y2)

2
√
y2

)
[2 +D(λ, α) (F (λ

√
y2) + F (−λ

√
y2)] .

(2.2)

Remark 2.1. When λ = 0, the p.d.f. given in (2.2) reduces to the p.d.f. of a

Chi-square variate with one degree of freedom.

In order to find the distribution function of TMSND(λ, α), we need the following result.

Result 2.3. If Z is a TMSND(λ, α) , then for any real numbers d1, d2 such that

d1 ≤ d2, where ξ(a, b) is as given in (1.4).

P (d1 ≤ Z ≤ d2) =



2
(α+2) [F (d2)− F (d1)] +

D(λ,α)
(α+2) [F (d2)− F (d1)]+

D(λ,α)
(α+2) [2ξ(d1,−λ)− 2ξ(d2,−λ)] , d1 ≤ d2 < 0

2
(α+2) [F (d2)− F (d1)] +

D(λ,α)
(α+2) [F (d2)− F (d1)]+

D(λ,α)
(α+2) [2ξ(d1, λ)− 2ξ(d2, λ)] , 0 ≤ d1 ≤ d2

(2.3)
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Proof: For any d1 ≤ d2 < 0, by definition,

P (d1 ≤ Z ≤ d2) =

d2∫
d1

h(z;λ, α)dz

=

d2∫
d1

[
2

(α+ 2)
f(z) +

D(λ, α)

(α+ 2)
2f(z)F (−λz)

]
dz

=
2

(α+ 2)
[F (d2)− F (d1)] +

D(λ, α)

(α+ 2)
∗

[G(d2,−λ)−G(d1,−λ)]

(2.4)

where G(., λ) is the distribution function of the SND(λ).

Now, for the case 0 ≤ d1 ≤ d2,

P (d1 ≤ Z ≤ d2) =

d2∫
d1

h(z;λ, α)dz

=

d2∫
d1

[
2

(α+ 2)
f(z) +

D(λ, α)

(α+ 2)
2f(z)F (λz)

]
dz

=
2

(α+ 2)
[F (d2)− F (d1)] +

D(λ, α)

(α+ 2)
∗

[G(d2, λ)−G(d1, λ)].

(2.5)

Thus, from (2.4) and (2.5) we get (2.3).

Result 2.4. The c.d.f. H(z) of a random variable Z following TMSND(λ, α) with

p.d.f. (2.1) is the following, in which ξ(a; b) is as defined in (1.4).

H(z) =
2

(α+ 2)


F (z) + D(λ,α)

2 [F (z)− 2ξ(z,−λ)], z < 0

F (z) + D(λ,α)
2 [F (z)− 2ξ(z, λ) + 2 tan−1(λ)

π ], z ≥ 0

(2.6)

Proof: Let Z be a random variable with p.d.f. (2.1) and c.d.f. H(z).

Then by definition, we have,

H(z) =

{
L1, z < 0
L2, z ≥ 0,

(2.7)

where

L1 =
2

(α+ 2)

z∫
−∞

f(t)dt+
D(λ, α)

(α+ 2)

z∫
−∞

2f(t)F (−λt)dt

=
2

(α+ 2)
F (z) +

D(λ, α)

(α+ 2)
G(z,−λ)

=
2

(α+ 2)
F (z) +

D(λ, α)

(α+ 2)
[F (z)− 2ξ(z,−λ)](2.8)



6 C. Satheesh Kumar and M.R Anusree

and

L2 =

0∫
−∞

2

(α+ 2)
f(t)[1 +D(λ, α)F (−λt)]dt+

z∫
0

2

(α+ 2)
f(t)[1 +D(λ, α)F (λt)]dt

=
2

(α+ 2)

[
F (z) +

D(λ, α)

2
G(0,−λ)+

D(λ, α, ρ)

2
(G(z, λ)−G(0, λ))

]
=

2

(α+ 2)

[
F (z) +

D(λ, α)

2

(
1

2
− 2ξ(0,−λ)

)
+

D(λ, α)

2

(
F (z)− 2ξ(z, λ)− 1

2
− 2ξ(0, λ)

)]
.(2.9)

Considering ξ(0, ·) is as defined in (1.5), by substituting (2.8) and (2.9) in (2.7) we get

(2.6).

Result 2.5. The rth raw moment of TMSND(λ, α) with (2.1) is

µ
′
r =

2

α+ 2
γ

′
r +

D(λ, α)

α+ 2
η
′
r +

D(λ, α)

α+ 2
ζ
′
r

where γ
′
r and η

′
r are the respective rth raw moments of normal distribution and SND(−λ)

and ζ
′
r =

∞∫
0

xrf(z)[F (λz)− F (−λz)]dz

Proof: By the definition, the rth raw moment of TMSND(λ, α) is given by

µ
′
r = E(Xr)

=

0∫
−∞

2

α+ 2
xrf(z)[1 +D(λ, α)F (−λz)]dz +

∞∫
0

2

α+ 2
xrf(z)[1 +D(λ, α)F (λz)]dz
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=

∞∫
−∞

2

α+ 2
xrf(z)dz +

0∫
−∞

2D(λ, α)

α+ 2
xrf(z)F (−λz)dz +

∞∫
0

2D(λ, α)

α+ 2
xrf(z)F (λz)dz

=

∞∫
−∞

2

α+ 2
xrf(z)dz +

∞∫
−∞

2D(λ, α)

α+ 2
xrf(z)F (−λz)dz −

∞∫
0

2D(λ, α)

α+ 2
xrf(z)F (−λz)dz +

∞∫
0

2D(λ, α)

α+ 2
xrf(z)F (λz)dz

=
2

α+ 2
γ

′
r +

D(λ, α)

α+ 2
η
′
r +

D(λ, α)

α+ 2
ζ
′
r.

Corollary 2.2. The mean and variance of TMSND(λ, α) with p.d.f.(2.1) is

Mean,m =
2

α+ 2
γ

′
1 +

D(λ, α)

α+ 2
η
′
1 +

D(λ, α)

α+ 2
ζ
′
1

and

V ariance =
2

α+ 2
γ

′
2 +

D

α+ 2
η
′
2 +

D

α+ 2
ζ
′
2 −m2

where γ
′
i, η

′
i for i = 1, 2 are respectively the first and second raw moments of normal and

skew normal distributions. ζ
′
i for i = 1, 2 can be evaluated using Mathematical Softwares like

MATHCAD, MATHEMATICA and MATHLAB using the expression given in Result 2.4 .

Result 2.6. The Fisher Information Measure of TMSND(λ, α) with p.d.f.(2.1) is

I(λ, α) =

 V ar(U1 + U2) Cov
(
U1 + U2, V1 + V2 − 2

α+2

)
Cov

(
U1 + U2, V1 + V2 − 2

α+2

)
V ar

(
V1 + V2 − 2

α+2

) (2.10)

where

U1 = u1(Z) =

[
−D(λ, α)Z−1f(−λZ)

1 +D(λ, α)F (−λZ)
+

2(1 + λ2)−1D(λ, α)F (−λZ)

1 +D(λ, α)F (−λZ)

]
U2 = u2(Z) =

[
D(λ, α)Z−1f(λZ)

1 +D(λ, α)F (λZ)
+

2(1 + λ2)−1D(λ, α)F (λZ)

1 +D(λ, α)F (λZ)

]

V1 = v1(Z) = [α+ αD−1(λ, α)F−1(−λZ)]−1

V2 = v2(Z) = [α+ αD−1(λ, α)F−1(λZ)]−1.

Proof: The Fisher Information Matrix, I(λ, α) of TMSND (λ, α) with p.d.f. (2.1)

is given in terms of the variance covariance matrix as,

I(λ, α) =

[
Cov

{
∂

∂λ
log h(z;λ, α),

∂

∂α
log h(z;λ, α)

}]
(2.11)
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in which

∂

∂λ
[log h(z;λ, α)] =

∂

∂λ
log

{
2

α+ 2
f(z)[1 +D(λ, α)F (−λz)]

}
+

∂

∂λ
log

{
2

α+ 2
f(z)[1 +D(λ, α)F (λz)]

}
=

∂

∂λ
[2 log 2 + 2 log f(z)− 2 log(α+ 2)] +

∂

∂λ
log[1 +D(λ, α)F (−λz)] +

∂

∂λ
log[1 +D(λ, α)F (λz)]

=
D(λ, α)

[1 +D(λ, α)F (−λz)]

[
−1

z
f(−λz) +

2

1 + λ2
F (−λz)

]
+

D(λ, α)

[1 +D(λ, α)F (λz)]

[
−1

z
f(λz) +

2

1 + λ2
F (λz)

]
= u1(z) + u2(z).(2.12)

Similarly,

∂

∂α
log h(z;λ, α) =

∂

∂α
log

{
2

α+ 2
f(z)[1 +D(λ, α)F (−λz)]

}
+

∂

∂α
log

{
2

α+ 2
f(z)[1 +D(λ, α)F (λz)]

}
=

∂

∂α
[2 log 2 + 2 log f(z)− 2 log(α+ 2)]

+
∂

∂α
log[1 +D(λ, α)F (−λz)] +

∂

∂α
log[1 +D(λ, α)F (λz)]

= − 1

α+ 2
+

F (−λz)

[1 +D(λ, α)F (−λz)]

∂

∂α
D(λ, α)

− 1

α+ 2

F (λz)

[1 +D(λ, α)F (λz)]

∂

∂α
D(λ, α)

= − 1

α+ 2
+

F (−λz)

[1 +D(λ, α)F (−λz)]

1

α
D(λ, α)

− 1

α+ 2
+

F (λz)

[1 +D(λ, α)F (λz)]

1

α
D(λ, α)

= − 2

α+ 2
+ v1(z) + v2(z).(2.13)

Putting (2.13) and (2.12) into (2.11) we obtain (2.10).

Result 2.7. The characteristic function, ϕZ(t) of a random variable Z following

TMSND(λ, α) with (2.1) is the following, for any t ∈ R and i2 = −1.

ϕZ(t) =
2

(α+ 2)
e−

t2

2 [1 +D(λ, α)F (−iδt)]

− 2

(α+ 2)
D(λ, α)e−

t2

2 [ξk(−it,−λ)− ξ−k(−it, λ)](2.14)

where δ = λ√
1+λ2

and ξs(a, b) is defined in (1.6).
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Proof: Let Z follows TMSND(λ, α) with p.d.f. (2.1). By the definition of charac-

teristic function, for any t ∈ R we have

ϕZ (t) = E
(
eitZ

)
=

∞∫
−∞

eitzh(z;λ, α)dz.(2.15)

On substituting (2.1) in (2.15), we obtain the following.

ϕZ (t) =
2

(α+ 2)
e−

t2

2

1 +D(λ, α)

∞∫
−∞

1√
2π

e−
(z−it)2

2 F (−λz)dz−

D(λ, α)

∞∫
0

1√
2π

e−
(z−it)2

2 F (−λz)dz +D(λ, α)

∞∫
0

1√
2π

e−
(z−it)2

2 F (λz)dz

 .

(2.16)

If we put z − it = x in (2.16), we get

ϕZ (t) =
2

(α+ 2)
e−

t2

2

1 +D(λ, α)

∞∫
−∞

e−
x2

2 F (−λ(x+ it))dx√
2π


−D(λ, α)

∞∫
−it

e−
x2

2 F (−λ(x+ it))dx√
2π

+D(λ, α)

∞∫
−it

e−
x2

2 F (λ(x+ it))dx√
2π

=
2

(α+ 2)
e−

t2

2

1 +D(λ, α)F (−iδt)−D(λ, α)

∞∫
−it

f(x)F (−λ(x+ it))dx

+D(λ, α)

∞∫
−it

f(x)F (λ(x+ it))dx

 .

Now, rearrange the terms and put k = −λit in the above equation to get the following.

ϕZ (t) =
2

(α+ 2)
e−

t2

2 [1 +D(λ, α)F (−iδt)]−

2D(λ, α)

(α+ 2)
e−

t2

2

∞∫
−it

f(x)

 0∫
−∞

f(u)du+

−λx+k∫
0

f(u)du

dx+

+
2D(λ, α)

(α+ 2)
e−

t2

2

∞∫
−it

f(x)

 0∫
−∞

f(u)du+

λx−k∫
0

f(u)du

dx,
which implies (2.14).

Result 2.8. If Z follows TMSND(λ, α), thenX = µ+σZ is said to have a location

scale extension of the two-piece modified skew normal distribution with location parameter
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µ and scale parameter σ which is denoted as ETMSND(µ, σ;λ, α). The p.d.f. of X is given

by

h (x;µ, σ, λ, α) =


2

(α+2)σf
(x−µ

σ

) [
1 +D(λ, α)F

(
−λx−µ

σ

)]
, x < µ

2
(α+2)σf

(x−µ
σ

) [
1 +D(λ, α)F

(
λx−µ

σ

)]
, x ≥ µ,

(2.17)

in which µ, λ ∈ R, σ > 0 and α ≥ −1.

Result 2.9. ETMSND(µ, σ;λ, 0) or ETMSND(µ, σ; 0, α) or the limiting case of

the ETMSND(µ, σ;λ, α) when λ → −∞, α = 0 or λ → ∞, is the normal distribution with

parameters µ and σ.

Result 2.10. The limiting case of the ETMSND(µ, σ;λ, α) when α → ∞ is the

ETSND(µ, σ;λ).

Result 2.11. The limiting case of the ETMSND(µ, σ;λ, α) when λ → −∞ and

α = −1 is the half-normal distribution with parameters µ and σ.

Result 2.12. The characteristic function ϕX(t) of a random variable X having

ETMSND(µ, σ;λ, α) is the following, in which k = −λit, δ = λ√
1+λ2

. For i2 = −1 and

t ∈ R,

ϕX(t) =
2

(α+ 2)
eiµt−

t2σ2

2 [1 +D(λ, α)F (−iδσt)]

− 2

(α+ 2)
D(λ, α)eiµt−

t2σ2

2 [ξkσ(−itσ,−λ)− ξ−kσ(−itσ, λ)] .

Result 2.13. The c.d.f. H∗(t) of a random variable X with p.d.f. (2.17) is the

following

H∗(t) =
2

(α+ 2)


F
( t−µ

σ

)
+ D(λ,α)

2

[
F
( t−µ

σ

)
− 2ξ

(( t−µ
σ

)
,−λ

))
], t < µ

F
( t−µ

σ

)
+ D(λ,α)

2

[
F
( t−µ

σ

)
− 2ξ

(( t−µ
σ

)
, λ

)
+2 tan−1(λ)

π

]
, t ≥ µ.

3. RELIABILITY MEASURES AND MODE

Here first we present some reliability aspects of the TMSND(λ, α) and derive some

important results with respect to the mode of the distribution.
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Result 3.1. The reliability functionR(t) of a random variable Z having the TMSND(λ, α)

is the following, in which ξ(t, .) is as defined in (1.4).

R(t) = 1− 2

(α+ 2)


F (t) + D(λ,α)

2 [F (t)− 2ξ(t,−λ)] , t < 0

F (t) + D(λ,α)
2

[
F (t) + 2

π tan−1(λ)− 2ξ(t, λ)
]
.

Proof follows from the definition of reliability function R(t) = 1−H(t), where H(·) is
the c.d.f. of Z as obtained in Result 2.4.

Result 3.2. The failure rate r(t) of a random variable Z following the

TMSND(λ, α) with p.d.f. h(z;λ, α) is

r(t) =


2f(t)[1+D(λ,α)F (−λt)]

(α+2)−2(F (t)+D(λ,α)[F (t)−2ξ(t,−λ)]) , t < 0

2f(t)[1+D(λ,α)F (λt)]

(α+2)−2(F (t)+D(λ,α)[F (t)−2ξ(t,λ)+ 2
π
tan−1(λ)])

, t ≥ 0.

Proof follows from the definition of failure rate r(t) = h(t;λ,α)
R(t) , where R(t) is the relia-

bility function as given in Result 3.1.

Result 3.3. The mean residual life function, µ(t) of a random variable Z with p.d.f.

(2.17) is the following, in which δ = λ√
1+λ2

.

µ(t) =
2

R(t)(α+ 2)



f(t) +D(λ, α)f(t)F (−λt) + −δ
2
√
2π
D(λ, α)

− δ√
2π
D(λ, α)F

(
t
√
1 + λ2

)
+ δ

2
√
2π
D(λ, α)− t, t ≤ 0

f(t) +D(λ, α)f(t)F (λt) + δ
2
√
2π
D(λ, α)

δ√
2π
D(λ, α)F

(
t
√
1 + λ2

)
− t, t > 0.

(3.1)

Proof: By definition, the mean residual life function of Z following the TMSND(λ, α)

is given by

µ (t) = E (Z|Z > t)− t

=
2

R(t)(α+ 2)



0∫
t

zf(z) [1 +D(λ, α)F (−λz)] dz +
∞∫
0

zf(z)dz

−D(λ, α)
∞∫
0

zf(z)F (λz)dz − t, t ≤ 0

∞∫
t

zf(z) [1 +D(λ, α)F (λz)] dz − t, t > 0.

(3.2)
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Now for any t < 0,

0∫
t

zf(z)[1 +D(λ, α)F (−λz)]dz = −
0∫

t

f ′(z)[1 +D(λ, α)F (−λz)]dz

= f(t)− 1√
2π

−D(λ, α)

[
1

2
√
(2π)

− F (−λt)f(t)

]

+D(λ, α)λ

0∫
t

f(−λz)f(z)dz

= f(t)− 1√
2π

− D(λ, α)

2
√
2π

+D(λ, α)F (−λt)f(t)

−
λD(λ, α)

[
1
2 − F (t

√
1 + λ2)

]
√
2π

√
1 + λ2

(3.3)

and for any t > 0,

∞∫
t

zf(z)[1 +D(λ, α)F (λz)]dz = −
∞∫
t

f ′(z)[1 +D(λ, α)F (λz)]dz

= f(t) +D(λ, α)F (λt)f(t) +
λD(λ, α)√
2π

√
1 + λ2

−D(λ, α)
λ√

2π
√
1 + λ2

F (t
√

1 + λ2).(3.4)

In particular, when t = 0 in (3.4) we have

∞∫
0

zf(z)[1 +D(λ, α)F (λz)]dz =
1√
(2π)

+
D(λ, α)

2
√
2π

+
λD(λ, α)

2
√
2π

√
1 + λ2

.

(3.5)

Now on substituting (3.3), (3.4) and (3.5) in (3.2), we get (3.1).

Result 3.4. The reliability function, R∗(t) of a random variable X following

ETMSND(µ, σ;λ, α) is

R∗(t) = 1− 2

(α+ 2)


F
( t−µ

σ

)
+ D(λ,α)

2

[
F
( t−µ

σ

)
− 2ξ

( t−µ
σ ,−λ

)]
, t < µ

F
( t−µ

σ

)
+ D(λ,α)

2

[
F
( t−µ

σ

)
− 2ξ

( t−µ
σ , λ

)]
+

D(λ,α)
2

[
2
π tan−1(λ)

]
, t ≥ µ.

Result 3.5. The failure rate r1(t) of a random variable X following

ETPMSND(µ, σ;λ, α) is

r1(t) =


2f( t−µ

σ )[1+D(λ,α)F(λ1
t−µ
σ )]

σ(α+2)−2σ(F( t−µ
σ )+D(λ,α)[F( t−µ

σ )−2ξ( t−µ
σ

,−λ)])
, t < µ

2f( t−µ
σ )[1+D(λ,α)F(λ2

t−µ
σ )]

σ(α+2)−2σ(F( t−µ
σ )+D(λ,α)[F( t−µ

σ )−2ξ( t−µ
σ

,λ)+ 2
π
tan−1(λ)])

, t ≥ µ.
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Result 3.6. The p.d.f. of TMSND(λ, α) is bimodal with unimodes in the regions:

z ∈ (−∞, 0) and z ∈ [0,∞) subject to the conditions given below, in which for i = 0, 1.

ai =
Di(λ, α)(λz)1−if i(−λz)

[1 +D(λ, α)F (−λz)]i+1
,

bi =
Di(λ, α)(λz)1−if i(λz)

[1 +D(λ, α)F (λz)]i+1
.

Region z ∈ (−∞, 0): (i). For all α ≥ 0 for which either λ > 0 or λ < 0 with |a0| < a1
and

(ii). for all α < 0 for which either λ ≤ 0 or λ > 0 with |a1| > a0.

Region z ∈ [0,∞): (i). For all α ≥ 0 for which either λ > 0 or λ ≤ 0 with |b0| < b1 and

(ii). for all α < 0 for which either λ < 0 or λ > 0 with |b1| > b0.

Proof: In order to show that there exists unimodes in regions of z ∈ (−∞, 0) and

z ∈ [0,∞), it is enough to show that the second derivative of h(z;λ, α) is negative for all α,

λ in the respective regions.

For z ∈ (−∞, 0), we have

d2

dz2
{ln [h (z;λ, α)]} = −1 + λ2D(λ, α)f(−λz)[a0 − a1](3.6)

and for z ∈ [0,∞), we have

d2

dz2
{ln [h (z;λ, α)]} = −1− λ2D(λ, α)f(λz)[b0 + b1].(3.7)

Note that D(λ, α) is positive or negative according to α being positive or negative. Now for

the region z ∈ (−∞, 0), a0 is positive or negative according as the value of λ is negative or

positive and a1 is positive or negative according as the value of α is positive or negative. If

α ≥ 0, then (3.6) is negative either for λ > 0 or for λ < 0 if |a0| < a11 and for α < 0, (3.6)

is negative either for λ < 0 or for λ > 0 with |a1| > a0. Hence the p.d.f. given in (2.1) is

log-concave and thus unimodal under these cases [Ibagimove (1956)].

Now for the region z ∈ [0,∞), b0 is positive or negative according as the value of λ is positive

or negative and b1 is positive or negative according as the value of α is positive or negative.

If α ≥ 0, then (3.7) is negative either for λ > 0 or for λ < 0 if |b0| < b1. Now for α < 0, (3.7)

is negative either for λ < 0 or λ > 0 if |b1| > b0. Thus the p.d.f. given in (2.1) is log-concave

and hence unimodal under these conditions.

As a consequence of Result 3.6 we obtain the following result.

Result 3.7. The p.d.f. of TMSND(λ1, λ2, α) is plurimodal in the regions given

below:

Region z ∈ (−∞, 0): (i). For all α ≥ 0 for which λ < 0 with |a0| > a1 and

(ii). for all α < 0 for which λ > 0 with |a1| < a0 provided

|λ2D(λ, α)f(λz)(a0 − a1)| > 1 in both the cases.

Region z ∈ [0,∞): (i). for all α ≥ 0 for which λ ≤ 0 with |b0| > b1 and

(ii). for all α < 0 for which λ ≤ 0 with |b1| < b0 provided

|λ2D(λ, α)f(λz)(b0 + b1)| > 1 in both the cases .
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4. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, . . . , Xn be a random sample of size n from ETMSND(µ, σ;λ, α) with

p.d.f. (2.17). Let X(1), X(2), . . . , X(n) be the ordered sample. Assume that X(r) < µ <

X(r+1), for a particular r = 1, 2, . . . , n. Then the log-likelihood function (l) of the sample

is the following, in which ΣIj , j = 1, 2 denote the summation over the set Ij such that

I1 =
{
i : X(i) < µ , i = 1, 2, . . . , r

}
and I2 =

{
i : X(i) ≥ µ , i = r + 1, . . . , n

}
.

l = n ln

(
2

σ(α+ 2)

)
+
∑
I1

ln f

(
xi − µ

σ

)[
1 +D(λ, α)F

(
−λ(xi − µ)

σ

)]
+

∑
I2

ln f

(
xi − µ

σ

)[
1 +D(λ, α)F

(
λ(xi − µ)

σ

)]
.(4.1)

On differentiating (4.1) with respect to the parameters µ, σ, λ and α and equating to

zero, we obtain the following likelihood equations:

∑
I1

(xi − µ)

σ
+
∑
I2

(xi − µ)

σ
= D(λ, α)λ

∑
I1

−p (xi)+
∑
I2

q (xi)

 ,(4.2)

n

2σ2
=

1

2

∑
I1

(xi − µ)2

σ4
+

1

2

∑
I2

(xi − µ)2

σ4

+
D(λ, α)λ

2σ3

∑
I1

p (xi) (xi − µ) +
∑
I2

q (xi) (xi − µ)

 ,(4.3)

D(λ, α)

σ

∑
I1

p(xi)(xi − µ) +
∑
I2

q(xi)(xi − µ)

− = 0(4.4)

and

D(λ, α)
∑
I1

P (xi) +D(λ, α)
∑
I2

Q(xi) =
nα

(α+ 2)
,(4.5)

in which

p(xi) =
f
(
λ (xi−µ)

σ

)
[
[1 +D(λ, α, ρ)F

(
λ (xi−µ)

σ

)
]
] ,

q(xi) =
f
(
ρλ (xi−µ)

σ

)
[
[1 +D(λ, α, ρ)F

(
ρλ (xi−µ)

σ

)
]
] ,

P (xi) =
F
(
λ (xi−µ)

σ

)
[
[1 +D(λ, α, ρ)F

(
λ (xi−µ)

σ

)
]
]
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and

Q(xi) =
F
(
ρλ (xi−µ)

σ

)
[
[1 +D(λ, α, ρ)F

(
ρλ (xi−µ)

σ

)
]
] .

Solving the non-linear system of equations (4.2) to (4.5) by simultaneous solution method

using some mathematical softwares such as MATHCAD, MATLAB, MATHEMATICA etc.,

the maximum likelihood estimates (MLE) of the parameters of ETMSND(µ, σ;λ, α) can be

obtained.

5. NUMERICAL ILLUSTRATION

For illustrating the usefulness of the ETMSND(µ, σ;λ, α), here we considered the fol-

lowing IQ data set for 87 white males hired by a large insurance company in 1971 given in

Roberts (1988).

85 94 94 97 98 100 100 101 102 102 103 103 103 103 104 104 106 106 106 106 106 107 107

108 108 108 108 108 108 108 109 109 111 111 112 112 112 112 112 112 112 112 112 112 113

113 113 113 113 113 113 113 114 114 115 116 116 116 116 117 117 117 118 118 118 119 120

120 120 121 121 121 122 122 122 122 122 122 124 124 125 129 131 132 135 136 140.

Here we fitted the proposed model to the data set and compared with the existing models such

as the normal distribution N(µ, σ), the extended skew normal distriution ESND(µ, σ, λ),

the EMSND(µ, σ;λ, ρ), and the ETMSND(µ, σ;λ, α). For model comparison, we have

computed the information criterions such as the Akaike
′
s Information Criterion (AIC), the

Bayesian Information Criterion (BIC) and the corrected Akaike
′
s Information Criterion (AICc).

For numerical evaluation, we have used the MATHCAD softwares and the results obtained

are included in Table 1 along with the computed values of the log likelihood ”l”.

Distri N ESND EMSND ETMSND
bution: (µ, σ) (µ, σ, λ) (µ, σ;λ, α) (µ, σ;λ, α)

µ̂ 112.86 105.78 107.92 108.43
σ̂ 9.58 11.94 11.31 11.02

λ̂ - 1.14 0.75 0.49,-0.49
α̂ - - 0.75 -0.91
ρ̂ - - - -
l -319.6 -319.29 -315 -314

AIC 643.2 644.57 639 636
BIC 648.14 651.97 648 644
AICc 643.35 644.86 639.45 637.04

Table 1: Computed values of MLE and the l, AIC, BIC and AICc of the
parameters for various fitted models.

From Table 1, it can be seen that the ETMSND(µ, σ;λ, α) gives the best fit compared

to other existing models.
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6. SIMULATION

For examining the asymptotic properties of the maximum likelihood estimators of pa-

rameters of the distribution ETMSND(µ, σ;λ, α), we carried out a simulation study by

generating observations from the distribution with the help of R software for two sets of

parameters(µ = 0.3, σ = 0.3, λ = 0.3, α = 0.3 and µ = 0.3, σ = 0.4, λ = 0.3, α = 0.8). We

have considered 200 bootstrap samples of sizes 50, 100 and 150. To compare the performance

of the estimators with respect to their actual bias and mean square error (MSE). The results

,thus obtained are presened in Table 2.

n sample size

parameters Est Bias MSE Est Bias MSE

50 µ 0.32 0.14 0.00161 0.319 0.139 0.0016

σ 0.242 -0.634 0.012396 0.335 -0.555 0.00513

λ 0.342 -0.242 0.00211 0.346 -0.161 0.000363

α 0.732 0.061 0.00011 0.73 0.059 0.000114

100 µ 0.253 0.672 0.01817 0.282 0.654 0.00719

σ 0.204 -0.612 0.01160 0.321 -0.579 0.00547

λ -0.535 -1.106 0.03301 -0.607 -1.116 0.02908

α 0.724 0.056 0.00018 0.72 0.05 6.5E-05

150 µ 0.156 0.388 0.00593 0.148 0.368 0.00478

σ 0.123 -0.567 0.01109 0.235 -0.542 0.00464

λ -1.549 -2.126 0.14394 -1.231 -1.845 0.07705

α 0.12 -0.52 0.01381 0.154 -0.486 0.00486

Table 2: Estimate of the parameters and the corresponding bias and
mean square errors of the maximum likelihood estimates of the
parameters of the ETMSND(µ, σ;λ, α).

From Table 2, it can be observed that the bias approaches to zero and MSEs are in

the decreasing order as the sample size increases.
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