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1. INTRODUCTION

The ‘time of failure’ and ‘average life’ of a component, measured from

some specified time until it fails, is represented by a continuous random variable.

Extensively in recent years, one distribution that has been used as a model to deal

with such problems for product life is the Weibull distribution. Its applications in

life-testing problems and survival analysis have been widely advocated (Weibull,

1951; Berrettoni, 1964). It has been used as model with diverse types of items

such as ball bearing (Lieblein & Zelen, 1956), vacuum tube (Kao, 1959) and

electrical isolation (Nelson, 1972). Mittnik & Reachev (1993) found that the

Weibull distribution might be an adequate statistical model for stock returns.

Mann (1968) gave a variety of situations in which the distribution is used for

other types of failure data. Whittemore & Altschuler (1976) used it as a model

in biomedical applications.

The probability density function of the Weibull distribution is given by

(1.1) f(x; v, θ) =
v

θ
xv−1e−

xv

θ , x > 0, v > 0, θ > 0 ,

where the parameters v and θ are referred to as the shape and scale parameters

of the distribution, respectively.

For the special case v = 1, the Weibull distribution is the Exponential

distribution. For v = 2, is the Rayleigh distribution. For shape parameter values

in the range 3 ≤ v ≤ 4, the shape of the Weibull distribution is close to that of

the Normal distribution and for a large values of v, say v ≥ 10, the shape of the

Weibull distribution is close to that of a smallest extreme value distribution.

Pandey (1983), Pandey et al. (1989), Pandey & Singh (1993) considered

the estimation of the Weibull shape parameter in censored data. The prediction

problems in the Weibull distribution have been discussed by Engelhardt & Bain

(1973), Nigm (1989), Dellaportas & Wright (1991) and others. Montanari et al.

(1997), Singh & Shukla (2000), Hisada & Arizino (2002), Singh et al. (2002),

Tsionas (2002) and others considered the Weibull distribution in different con-

texts.

In many situations, the experimenter has some prior information about the

parameter in the form of a point guess value. To utilize this guess value, the

shrinkage estimators have been discussed by a number of authors, for details see

the article Casella & Lehmann (1998), Prakash & Singh (2006, 2008), Singh et al.

(2007). The shrinkage estimator performs better than the usual estimator when

a guess value is approximately the true value of the parameter and sample size

is small. A shrinkage estimator (Thompson, 1968) for the parameter θ when a
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prior point guess value θ0 of θ is available, is defined as

(1.2) S = k θ̂ + (1− k) θ0 , 0 ≤ k ≤ 1 .

Here θ̂ is any usual estimator of the parameter θ. The shrinkage procedure has

been applied in numerous problems, including mean survival time in epidemio-

logical studies (Harries & Shakarki, 1979), forecasting of the money supply (Tso,

1990), estimating mortality rates (Marshall, 1991) and improved estimation in

sample surveys (Wooff, 1985).

When positive and negative errors have different consequences, the use of

squared error loss function (SELF) in Bayesian estimation may not be appro-

priate. To overcome this difficulty, Varian (1975) and Zellner (1986) proposed an

asymmetric loss function known as the LINEX loss function (LLF). The invariant

version of LLF for any parameter θ is given by

(1.3) L(∆) = ea∆ − a∆ − 1 , a 6= 0 and ∆ =
θ̂ − θ

θ
.

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry

respectively. The positive (negative) value of ‘a’ is used when overestimation is

more (less) serious than underestimation. The loss function (1.3) is approximately

square error and almost symmetric if |a| is near to zero. A number of authors have

discussed the estimation procedures under LLF criterion. A Few recent works

under the Bayesian and/or the LLF criterions are Nigm et al. (2003), Bellhouse

(2004), Xu & Shi (2004), Ahmadi et al. (2005), Prakash & Singh (2006), Son &

Oh (2006), Singh et al. (2007), Ahmad et al. (2007), Prakash & Singh (2008),

among others.

Let x1, x2, ..., xn be the life times of n items put to test under model (1.1).

The maximum likelihood estimate of θ (when v is known) is given by

(1.4) θ̂ =

n
∑

i=1

xv
i

n
.

Consider Type-II censored sampling, where the test terminates as soon as the

rth item fails (r ≤ n). Let x1, x2, ..., xr be the observed failure times for the first

r components. Then the likelihood function for the r failure items is

(1.5) L
(

x1, x2, ..., xr | θ
)

=
vr

θr

r
∏

i=1

xv−1
i exp

{

−
r Tr

θ

}

,

where Tr = 1
r

{

∑r
i=1 xv

i + (n− r)xv
(r)

}

is a UMVU estimator (Sinha, 1986) of

the parameter θ and 2 rTr

θ
∽ χ2

2r .

The risks under the SELF and the LLF for Tr are given as

R(S)(Tr) =
θ2

r
and R(L)(Tr) = e−a

(

r

r− a

)r

− 1 ,
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where suffix S and L respectively, denote the risk taken under the SELF and the

LLF criterions.

If parameter v is known, the natural family of conjugate prior of θ is taken

as the inverted Gamma distribution with probability density function

(1.6) g1(θ) =
βα

Γ(α)
θ−α−1e−

β

θ , α > 0, β > 0 .

In the situation where the researchers have no prior information about the pa-

rameter θ, one may use the uniform, quasi or improper prior. A family of priors

is given by

(1.7) g2(θ) = θ−d e−
c d
θ , d > 0, c > 0 .

If d = 0, we get a diffuse prior and if d = 1, c = 0 a non-informative prior is

obtained. For a set of values of d and c, that satisfies the equality Γ(d− 1) =

(c d)d−1, makes g2(θ) as a proper prior.

If both of the parameters θ and v are unknown in model (1.1), the joint

prior distribution (Sinha, 1986) is considered as

(1.8) g(θ, v) = g1(θ) . h(v), h(v) =
1

ϑ
, 0 < v < ϑ, ϑ > 0 .

In the present paper, we suggest some Bayes shrinkage estimators for the scale

parameter of the two-parameter Weibull distribution in presence of a prior point

information when Type-II censored data is available under the SELF and the

LLF. The properties have been studied in terms of the relative efficiencies when

compared with the UMVU estimator. The properties of the minimax estimator

are also discussed in the last section.

2. THE BAYES SHRINKAGE ESTIMATORS (KNOWN SHAPE

PARAMETER)

The posterior density of the parameter θ under prior density g1(θ), is

(2.1) Z1(θ) =
(r Tr + β)α+r

Γ(α + r)
e−

(r Tr+β)
θ θ−α−r−1 ,

which is again an inverted Gamma distribution with the parameters (α + r) and

(r Tr + β). The Bayes estimator of the parameter θ under the SELF is obtained

as

(2.2) θ̂1 = Ep(θ) = ϕ1(r Tr + β) , ϕ1 = (α + r − 1)−1 .

Here, the suffix p indicates that the expectation is taken under posterior density.

We choose the parameters of the prior distribution g1(θ) such that E(θ̂1) = θ0,
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where θ0 is the point guess value of θ. This gives β = (α −1)θ0. Substituting β

in (2.2), we obtain the Bayes estimator for θ as

(2.3) θ̄1 = λ1 Tr + (1− λ1) θ0 , λ1 = r ϕ1, (α + r) > 1 .

This is similar to the shrinkage estimator defined in (1.2). We termed θ̄1 as the

Bayes shrinkage estimator.

The Bayes estimate of θ under the LLF (1.3) is obtained by simplifying the

equality

Ep

(

1

θ
e

a bθ2
θ

)

= ea Ep

(

1

θ

)

=⇒

(2.4)
=⇒ θ̂2 = ϕ2(r Tr + β), ϕ2 =

1

a

(

1 − exp
(

−
a

α + r +1

)

)

.

Again,

E(θ̂2) = θ0 =⇒ β = θ0 (1 − rϕ2)ϕ
−1
2 .

Hence, the Bayes shrinkage estimator for θ under the LLF with this choice of

constant is given by

(2.5) θ̄2 = λ2 Tr + (1− λ2) θ0 , λ2 = r ϕ2 .

The expressions of the risks of these estimators under the SELF and the LLF are

obtained as

R(S)(θ̂i) = r θ2 ϕ2
i +

(

θ (r ϕi − 1) + β ϕi

)2
,(2.6)

R(L)(θ̂i) = exp

(

a

(

ϕi β

θ
−1

))

(

1− a ϕi

)

−r
− 1 − a

(

r +
β

θ
− 1

)

,(2.7)

R(S)(θ̄i) = θ2

{

λ2
i

(

r + 1

r
+ δ (δ − 2)

)

+ (1− δ)2 (1− 2 λi)

}

(2.8)

and

R(L)(θ̄i) = ea((1−λi) δ− 1) (1 −
a λi

r
)−r − 1 + a (1 − δ) (1 − λi) ,(2.9)

where δ = θ
θ0

, i = 1, 2.

The posterior density of θ corresponding to g2(θ) is given as

(2.10) Z2(θ) =
(r Tr + c d)r+d−1

Γ(r + d − 1)
e−

(r Tr+c d)
θ θ−r−d .

This posterior distribution has the same form as the posterior (2.1). The only

change is that in the place of α and β there are d − 1 and c d, respectively. All

the results discussed in Section 3 hold if we substitute d = (α +1) and c = β
(α+1) .
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3. NUMERICAL ANALYSIS

The relative efficiencies of the Bayes shrinkage estimator θ̄i (i =1, 2) relative

to the UMVU estimator Tr under the SELF and the LLF criterions are defined

as

RE(S)(θ̄i, Tr) =
R(S)(Tr)

R(S)(θ̄i)
and

RE(L)(θ̄i, Tr) =
R(L)(Tr)

R(L)(θ̄i)
, i = 1, 2 .

The expressions of relative efficiencies are the functions of r, a, δ and α whereas

RE(S)(θ̄i, Tr) is independent with ‘a’. For the selected set of values r = 04(02)10;

a = 0.50(0.50)2.00; δ = 0.25(0.25)1.75 and α = 1.25, 1.50, 2.50, 5.00, 10, 20, the

relative efficiencies have been calculated and presented in Tables 1–4, respectively.

The numerical findings are presented here only for r = 04 when risk criterion is

the LLF.

Table 1: RE(S)(θ̄1, Tr).

r δ
α

1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.1191 1.2226 1.4362 1.2308 0.8525 0.6387
0.50 1.1245 1.2462 1.6575 2.0000 1.7423 1.4032
0.75 1.1278 1.2607 1.8264 3.2000 4.6621 4.9788

04 1.00 1.1289 1.2656 1.8906 4.0000 10.562 33.062
1.25 1.1278 1.2607 1.8264 3.2000 4.6621 4.9788
1.50 1.1245 1.2462 1.6575 2.0000 1.7423 1.4032
1.75 1.1191 1.2226 1.4362 1.2308 0.8525 0.6387

0.25 1.0787 1.1467 1.2903 1.1111 0.7273 0.4983
0.50 1.0823 1.1615 1.4286 1.6667 1.4286 1.0823
0.75 1.0844 1.1706 1.5267 2.3810 3.3898 3.6470

06 1.00 1.0851 1.1736 1.5625 2.7778 6.2500 17.361
1.25 1.0844 1.1706 1.5267 2.3810 3.3898 3.6470
1.50 1.0823 1.1615 1.4286 1.6667 1.4286 1.0823
1.75 1.0787 1.1467 1.2903 1.1111 0.7273 0.4983

0.25 1.0588 1.1094 1.2175 1.0588 0.6744 0.4317
0.50 1.0614 1.1202 1.3175 1.5000 1.2788 0.9275
0.75 1.0630 1.1267 1.3858 2.0000 2.7656 2.9816

08 1.00 1.0635 1.1289 1.4102 2.2500 4.5156 11.390
1.25 1.0630 1.1267 1.3858 2.0000 2.7656 2.9816
1.50 1.0614 1.1202 1.3175 1.5000 1.2788 0.9275
1.75 1.0588 1.1094 1.2175 1.0588 0.6744 0.4317

0.25 1.0469 1.0872 1.1739 1.0316 0.6497 0.3947
0.50 1.0490 1.0957 1.2521 1.4000 1.1934 0.8389
0.75 1.0502 1.1008 1.3042 1.7818 2.3967 2.5827

10 1.00 1.0506 1.1025 1.3225 1.9600 3.6100 8.4100
1.25 1.0502 1.1008 1.3042 1.7818 2.3967 2.5827
1.50 1.0490 1.0957 1.2521 1.4000 1.1934 0.8389
1.75 1.0469 1.0872 1.1739 1.0316 0.6497 0.3947



178 Gyan Prakash and D.C. Singh

Table 1 shows that the Bayes shrinkage estimator θ̄1 performs uniformly

well for small α ≤ 5.00 with respect to the UMVU estimator Tr under the SELF.

The effective interval (the interval in which the relative efficiency is more than

one) decreases with the sample size r as well as α increases under the SELF.

The efficiency attains maximum at the point δ = 1.00 and the gain in efficiency

decreases as r increases for all considered values of δ when other parametric values

are fixed. Further, the gains in efficiencies increase as α increases in the interval

0.75 ≤ δ ≤ 1.25 with other fixed parametric values.

On the other hand, when the risk criterion is the LLF (Table 2) the esti-

mator θ̄1 performs uniformly well with respect to Tr when sample size is small

r (≤ 06) for all considered values of parametric space but for a large sample size,

this property holds in the interval 0.50 ≤ δ ≤ 1.50. The gain in efficiency increases

when ‘a’ increases for all considered values of δ with small sample size r (≤ 06)

and in the interval δ ≤ 1.25 otherwise, under other fixed parametric values. Other

properties are similar to the SELF-criterion.

Table 2: RE(L)(θ̄1, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.1374 1.2835 1.6460 1.4888 1.0422 1.0173
0.50 1.1448 1.2954 1.8404 2.3580 2.0777 1.6762
0.75 1.1501 1.2968 1.9546 3.6144 5.4006 5.7685

0.50 1.00 1.1534 1.3007 1.9569 4.2400 11.414 36.177
1.25 1.1281 1.2613 1.8306 3.2413 4.8409 5.2728
1.50 1.1169 1.2311 1.6228 1.9921 1.7805 1.4433
1.75 1.1039 1.1738 1.3638 1.2135 1.1517 1.1352

0.25 1.1540 1.3182 1.9506 1.8884 1.3370 1.0178
0.50 1.1702 1.3510 2.0770 2.9135 2.6054 2.1057
0.75 1.1847 1.3757 2.1064 4.2662 6.5833 7.0413

1.00 1.00 1.1975 1.3914 2.1565 4.6862 12.955 41.695
1.25 1.1363 1.2782 1.8866 3.4259 5.2801 5.8795
1.50 1.1172 1.2321 1.6349 2.0697 1.9090 1.5603
1.75 1.1068 1.1814 1.3725 1.2466 1.1890 1.1618

0.25 1.1845 1.3822 2.3035 2.5672 1.8402 1.4108
0.50 1.2102 1.4372 2.4297 3.8543 3.5120 2.8440
0.75 1.2348 1.4861 2.4822 5.3708 8.6319 9.2565

1.50 1.00 1.2582 1.5275 2.5244 5.5108 15.782 51.739
1.25 1.1580 1.3225 2.0301 3.8550 6.1813 7.0553
1.50 1.1307 1.2594 1.7207 2.2881 2.1938 1.8118
1.75 1.1128 1.1942 1.4223 1.3606 1.1996 1.1738

0.25 1.2425 1.5052 2.7492 3.8948 2.8309 2.1846
0.50 1.2790 1.5879 3.0769 5.6791 5.3001 4.3013
0.75 1.3153 1.6677 3.2667 7.1635 12.675 13.647

2.00 1.00 1.3512 1.7432 3.2835 7.4945 21.480 71.977
1.25 1.2060 1.4211 2.3516 4.7975 8.0839 9.4870
1.50 1.1695 1.3370 1.9500 2.7951 2.8120 2.3530
1.75 1.1332 1.2540 1.5866 1.6381 1.2402 1.1918
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The Bayes shrinkage estimator θ̄2 performs well for all considered values

of the parametric space when α ≤ 10.00 with respect to Tr under the SELF.

The gain in efficiency increases when ‘a’ increases in the interval 0.75 ≤ δ ≤ 1.25

for all considered parametric values when α ≤ 10.00. Other properties of the

estimator θ̄2 are similar to the estimator θ̄1 under the SELF.

Table 3: RE(S)(θ̄2, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.4051 1.3797 1.2604 1.0111 1.0132 0.6178
0.50 1.8994 1.9341 1.9980 1.9079 1.6312 1.3636
0.75 2.4076 2.5485 3.0790 4.0782 4.8817 4.9465

0.50 1.00 2.6433 2.8504 3.7566 6.5691 14.537 39.850
1.25 2.4076 2.5485 3.0790 4.0782 4.8817 4.9465
1.50 1.8994 1.9341 1.9980 1.9079 1.6312 1.3636
1.75 1.4051 1.3797 1.2604 1.0111 1.0132 0.6178

0.25 1.3786 1.3502 1.2295 1.0921 1.0766 0.6157
0.50 1.9353 1.9611 2.0000 1.8922 1.6203 1.3596
0.75 2.5542 2.6919 3.2053 4.1529 4.8971 4.9425

1.00 1.00 2.8589 3.0737 4.0111 6.9016 15.026 40.651
1.25 2.5542 2.6919 3.2053 4.1529 4.8971 4.9425
1.50 1.9353 1.9611 2.0000 1.8922 1.6203 1.3596
1.75 1.3786 1.3502 1.2295 1.0921 1.0766 0.6157

0.25 1.3482 1.3183 1.1988 1.1738 1.0991 0.6137
0.50 1.9626 1.9806 1.9978 1.8760 1.6096 1.3557
0.75 2.7013 2.8351 3.3291 4.2240 4.9113 4.9383

1.50 1.00 3.0888 3.3113 4.2797 7.2479 15.528 41.465
1.25 2.7013 2.8351 3.3291 4.2240 4.9113 4.9383
1.50 1.9626 1.9806 1.9978 1.8760 1.6096 1.3557
1.75 1.3482 1.3183 1.1988 1.1738 1.0991 0.6137

0.25 1.3153 1.2850 1.1687 1.2563 1.1524 0.6117
0.50 1.9820 1.9930 1.9919 1.8595 1.5991 1.3518
0.75 2.8480 2.9772 3.4498 4.2914 4.9241 4.9341

2.00 1.00 3.3336 3.5638 4.5629 7.6084 16.044 42.293
1.25 2.8480 2.9772 3.4498 4.2914 4.9241 4.9341
1.50 1.9820 1.9930 1.9919 1.8595 1.5991 1.3518
1.75 1.3153 1.2850 1.1687 1.2563 1.1524 0.6117

Under the LLF criterion (Table 4), the estimator θ̄2 also performs well for

α ≤ 10.00 with respect to Tr and the gain in efficiency increases as ‘a’ increases

for all considered values of parametric space. Other properties of θ̄2 are similar

to the Bayes shrinkage estimator θ̄1 under the LLF criterion.

The gain in efficiency is larger for the Bayes shrinkage estimator θ̄2 under

the LLF-criterion with respect to the SELF-criterion.

Remark 3.1. One may obtain the results for the complete sample case

by replacing only the censored sample size r with the complete sample size n.
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Table 4: RE(L)(θ̄2, Tr).

r = 04 α

a δ 1.25 1.50 2.50 5.00 10.00 20.00

0.25 1.6696 1.6475 1.5223 1.2316 1.0475 0.7625
0.50 2.1863 2.2395 2.3499 2.2710 1.9461 1.6295
0.75 2.6513 2.8215 3.4666 4.6905 5.6626 5.7285

0.50 1.00 2.7676 2.9917 3.9753 7.0418 15.778 43.665
1.25 2.4211 2.5656 3.1147 4.1820 5.1063 5.2472
1.50 1.8671 1.9049 1.9857 1.9310 1.6731 1.4025
1.75 1.3451 1.3242 1.2403 1.0074 1.0002 0.6137

0.25 2.0557 2.0308 1.8866 1.5459 1.2075 0.9837
0.50 2.7072 2.7745 2.9142 2.8197 2.4254 2.0421
0.75 3.2546 3.4681 4.2746 5.7837 6.9391 6.9833

1.00 1.00 3.2684 3.5344 4.7001 8.3263 18.629 51.436
1.25 2.6878 2.8427 3.4322 4.5902 5.6420 5.8586
1.50 1.9502 1.9870 2.0702 2.0351 1.7908 1.5118
1.75 1.3584 1.3390 1.2455 1.0308 1.0102 0.6363

0.25 2.7217 2.6918 2.5135 2.0847 1.6518 1.3611
0.50 3.6007 3.6926 3.8833 3.7633 3.2503 2.7518
0.75 4.2805 4.5695 5.6579 7.6678 9.1522 9.1678

1.50 1.00 4.3134 4.6534 5.9421 10.564 23.661 65.268
1.25 3.1686 3.3496 4.0386 5.4076 6.7074 7.0433
1.50 2.1639 2.2055 2.3070 2.3004 2.0581 1.7507
1.75 1.4374 1.4204 1.3358 1.1282 1.0425 0.7064

0.25 4.0363 3.9961 3.7493 3.1458 2.5266 2.1040
0.50 5.3596 5.5001 5.7924 5.6237 4.8782 4.1525
0.75 6.2841 6.7235 8.3740 11.384 13.536 13.598

2.00 1.00 6.7483 6.8356 8.3882 14.978 33.669 92.906
1.25 4.1355 4.3749 5.2875 7.1208 8.9341 9.4941
1.50 2.6588 2.7148 2.8614 2.9034 2.6444 2.2679
1.75 1.6843 1.6704 1.5919 1.3743 1.0963 0.8737

4. THE BAYES SHRINKAGE ESTIMATORS

(UNKNOWN SHAPE PARAMETER)

When both parameters of the model (1.1) are unknown, the joint posterior

density with respect to g(θ, v), in (1.8), is obtained as

(4.1) Z3(θ, v) =
v′ θ−(α+r+1) e−

(r Tr+β)
θ

Γ(α + r)

∫ ϑ

0
v′(r Tr + β)−α−r dv

, v′ = vr

r
∏

i=1

xv−1
i .
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The marginal density of θ is obtained as

(4.2) Z4(θ) =

θ−(α+r+1)

∫ ϑ

0
v′e−

(r Tr+β)
θ dv

Γ(α + r)

∫ ϑ

0
v′(r Tr + β)−α−r dv

.

Hence, the Bayes estimate of the parameter θ under the SELF is obtained as

(4.3) θ̂3 =
I
(

v′, (α + r − 1)
)

(α + r − 1) I
(

v′, (α + r)
) ,

where I(ω1, ω2) =
∫ ϑ

0 (ω1) (r Tr + β)−ω2 dv.

Similarly, the Bayes estimate of the parameter θ under the LLF is

(4.4) I
(

v′′, (α + r−1)
)

= ea I
(

v′′, (α + r)
)

, v′′ = v′
(

1−
a θ̂4

r Tr + β

)

−α−r+1

.

The Bayes estimates of the parameter θ under the SELF and the LLF criterions

do not exist in the close form. Therefore, the risks under both risks criterion also

do not exist. Hence, the Bayes shrinkage estimator is not obtained in this case.

However, the numerical findings of the Bayes estimates and their risks under both

risks criterion are presented here by using the following example.

Example 4.1. Mann and Fertig (1973) give failure times of airplane com-

ponents subjected to a life test. The Weibull distribution has often been found a

suitable model in such situations. The data are Type-II censored: 13 components

were placed on test and test was terminated at time of 10th failure. Failure times

(in hours) of the 10 components that failed were

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00 .

The expressions of the Bayes estimates of θ and their risks under the SELF

and LLF risk criterion involve a, α, β, θ, n, ϑ and r. For the similar set of selected

values of ‘a’ and α as considered earlier with β = 0.50, 2.00, 5.00, 10.00, 20.00;

θ = 02, 04, 06 and ϑ = 02, 04, 06, 10, the numerical findings have been obtained

and we present them in Table 5–6.

Table 5 presents the numerical values of the Bayes estimate θ̂3 (SELF)

only for θ = 2.00 and their risks under the SELF and the LLF for (θ, ϑ, a) = 2.00

only. It is observed form the table that the magnitude of the risks under both

risk criterion increase (decrease) as β(α) increases when other considered values

of the parametric space are fixed. It also has been seen that the risks under

the LLF-criterion increases when ‘a’ increase with other fixed parametric values.

It is noted that there is a smaller magnitude of the risks under the LLF-criterion

than under the SELF-criterion.
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Table 5: The values of the Bayes estimate θ̂3.

ϑ β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

0.50 3.0896 2.9711 2.5581 1.8471 1.1469 0.6381
2.00 3.3315 3.2086 2.7774 2.0228 1.2637 0.7056

2.00 5.00 3.7889 3.6581 3.1954 2.3646 1.4946 0.8398
10.00 4.4901 4.3479 3.8411 2.9064 1.8722 1.0612
20.00 5.7463 5.5829 4.9988 3.8992 2.6010 1.4982

0.50 3.2633 3.1129 2.6198 1.8538 1.1469 0.6380
2.00 3.5547 3.3931 2.8622 2.0336 1.2637 0.7059

4.00 5.00 4.1258 3.9425 3.3383 2.3879 1.4950 0.8400
10.00 5.0506 4.8327 4.1115 2.9660 1.8744 1.0611
20.00 6.8305 6.5474 5.6050 4.0890 2.6171 1.4983

0.50 3.2631 3.1126 2.6195 1.8548 1.1446 0.6430
2.00 3.5546 3.3929 2.8618 2.0341 1.2629 0.7096

6.00 5.00 4.1260 3.9426 3.3382 2.3873 1.4966 0.8390
10.00 5.0507 4.8328 4.1118 2.9657 1.8749 1.0581
20.00 6.8306 6.5474 5.6047 4.0894 2.6163 1.5010

0.50 3.2469 3.0962 2.6104 1.8782 1.1311 0.6470
2.00 3.5399 3.3760 2.8443 2.0500 1.2632 0.7035

10.00 5.00 4.1247 3.9370 3.3183 2.3802 1.5201 0.8204
10.00 5.0715 4.8522 4.1168 2.9371 1.8978 1.0412
20.00 6.8295 6.5524 5.6308 4.1048 2.5871 1.5249

The values of risks of the Bayes estimator

(a, ϑ) = 2.00 β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

R(S)(θ̂3) 0.50
64.744 63.185 57.786 48.327 38.039 29.313

R(L)(θ̂3) 2.9978 2.9517 2.7875 2.4814 2.1149 1.7671

R(S)(θ̂3) 2.00
67.093 65.451 59.765 49.816 39.013 29.874

R(L)(θ̂3) 3.0694 3.0215 2.8510 2.5331 2.1525 1.7912

R(S)(θ̂3) 5.00
71.919 70.104 63.826 52.862 41.000 31.011

R(L)(θ̂3) 3.2130 3.1615 2.9784 2.6369 2.2278 1.8396

R(S)(θ̂3) 10.00
80.342 78.222 70.896 58.142 44.421 32.956

R(L)(θ̂3) 3.4530 3.3957 3.1915 2.8106 2.3540 1.9205

R(S)(θ̂3) 20.00
98.617 95.818 86.170 69.469 51.678 37.022

R(L)(θ̂3) 3.9354 3.8663 3.6201 3.1603 2.6083 2.0837

Table 6 presents the numerical values of the Bayes estimate θ̂4 (LLF) only

for θ = 2.00, ϑ = 2.00, 10.00 and a = 0.50, 2.00 and their risks under the SELF

and the LLF for (θ, ϑ, a) = 2.00 only. It is observed form the table that the

magnitudes of the risks under both risk criterions increase when ‘a’ increases

with other fixed parametric values. Other properties are similar to the Bayes

estimator θ̂3.
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Table 6: The values of the Bayes estimate θ̂4.

ϑ a β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

0.50 2.1562 2.2002 2.3762 2.8162 3.6963 5.4564
2.00 2.0055 2.0465 2.2102 2.6195 3.4381 5.0752

2.00

0.50 5.00 1.7637 1.7997 1.9436 2.3036 3.0234 4.4632
10.00 1.4743 1.5044 1.6248 1.9256 2.5274 3.7309
20.00 1.1174 1.1402 1.2314 1.4595 1.9156 2.8278

0.50 0.5390 0.5500 0.5940 0.7040 0.9241 1.3641
2.00 0.5014 0.5116 0.5525 0.6549 0.8595 1.2688

2.00 5.00 0.4409 0.4499 0.4859 0.5759 0.7559 1.1158
10.00 0.3686 0.3761 0.4062 0.4814 0.6318 0.9327
20.00 0.2794 0.2851 0.3079 0.3649 0.4789 0.7069

0.50 2.6221 2.6756 2.8896 3.4247 4.4950 6.6354
2.00 2.4649 2.5152 2.7164 3.2195 4.2255 6.2377

10.0

0.50 5.00 2.2106 2.2557 2.4362 2.8874 3.7897 5.5942
10.00 1.9024 1.9412 2.0965 2.4848 3.2613 4.8143
20.00 1.5133 1.5442 1.6677 1.9766 2.5942 3.8296

0.50 0.6555 0.6689 0.7224 0.8562 1.1237 1.6589
2.00 0.6162 0.6288 0.6791 0.8049 1.0564 1.5594

2.00 5.00 0.5527 0.5639 0.6091 0.7218 0.9474 1.3986
10.00 0.4756 0.4853 0.5241 0.6212 0.8153 1.2036
20.00 0.3783 0.3860 0.4169 0.4941 0.6486 0.9574

The values of risks of the Bayes estimator

(a, ϑ) = 2.00 β↓ α→ 1.25 1.50 2.50 5.00 10.00 20.00

R(S)(θ̂4) 0.50
13.445 13.395 13.198 12.713 11.774 10.022

R(L)(θ̂4) 0.9928 0.9899 0.9785 0.9501 0.8941 0.7853

R(S)(θ̂4) 2.00
13.550 13.502 13.313 12.846 11.939 10.241

R(L)(θ̂4) 0.9989 0.9961 0.9852 0.9580 0.9042 0.7995

R(S)(θ̂4) 5.00
13.734 13.690 13.514 13.079 12.232 10.634

R(L)(θ̂4) 1.0095 1.0070 0.9969 0.9717 0.9219 0.8246

R(S)(θ̂4) 10.00
13.983 13.944 13.786 13.395 12.632 11.179

R(L)(θ̂4) 1.0237 1.0215 1.0125 0.9901 0.9457 0.8586

R(S)(θ̂4) 20.00
14.341 14.308 14.177 13.853 13.215 11.987

R(L)(θ̂4) 1.0440 1.0421 1.0348 1.0164 0.9798 0.9078

5. THE MINIMAX ESTIMATORS AND THEIR PROPERTIES

The basic principle of this approach is to minimize the loss. The derivation

depends primarily on a theorem, which is due to Hodge & Lehmann (1950) and

can be stated as follows.
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Let τ = {Fθ : θ ∈Θ} be a family of distribution functions and D be a class

of estimators of the parameter θ. Suppose that d∗∈D is a Bayes estimator against

a prior distribution π(θ) on the parameter space Θ. Then the Bayes estimator d∗

is said to be the Minimax estimator if the risk function of d∗ is independent onΘ.

When the shape parameter v is considered to be known, the Bayes estimator

for the parameter θ corresponding to the SELF and LLF are given respectively

in equations (2.2) and (2.4). Further, the expressions of the risk for these Bayes

estimators corresponding to the considered loss criterion are given in equations

(2.6) and (2.7) respectively.

Both expressions of the risk involve the parameter θ. Hence, the Bayes

estimators θ̂1 and θ̂2 are not Minimax estimators. Thus, under the natural family

of the conjugate prior the Minimax estimators do not exist.

Now, the Bayes estimators corresponding to the posterior Z2(θ), given in

(2.10), are obtained respectively under both loss criteria as

θ̂5 = ϕ5 r Tr , ϕ5 = (d + r − 2)−1(5.1)

and

θ̂6 = ϕ6 r Tr , ϕ6 =
1

a

(

1− exp
(

−
a

d + r

)

)

.(5.2)

The risks of these Bayes estimators corresponding to the SELF and the LLF are

given respectively as

R(S)(θ̂i) = θ2
(

r (r +1)ϕ2
i + 1 − 2 r ϕi

)

(5.3)

and

R(L)(θ̂i) = e−a (1− a ϕi)
−r − 1 − a(r ϕi −1) , i = 5, 6 .(5.4)

It is observed that the Bayes estimators θ̂5 and θ̂6 are not the minimax estimators

corresponding to the loss criterion SELF. However, the risk of Bayes estimators

θ̂5 and θ̂6 are independent of the parameter θ under the LLF criterion. Hence,

both estimators θ̂5 and θ̂6 are Minimax estimators under the LLF loss criterion.

The following statistical problem (Minimax Estimation) is equivalent to

some two person zero sum game between the Statistician (Player-II) and Nature

(Player-I). Here the pure strategies of Nature are the different values of θ in the

interval (0,∞) and the mixed strategies of Nature are the prior densities of θ in

the interval (0,∞). The pure strategies of Statistician are all possible decision

functions in the interval (0,∞).

The expected value of the loss function is the risk function and it is the

gain of the Player-I. Further, the Bayes risk is defined as

R∗(η, θ̂B) = Eθ R(θ̂B) .
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Here, the expectation has been taken under the prior density of parameter θ.

If the loss function is continuous in both the estimator θ̂B and the parameter θ,

and convex in θ̂B for each value of θ then there exist measures η∗ and θ̂∗B for all

θ and θ̂B so that, the following relation holds:

R∗(η, θ̂∗B) ≤ R∗(η∗, θ̂∗B) ≤ R∗(η∗, θ̂B) .

The number R∗(η∗, θ̂∗B) is known as the value of the game, and η∗ and θ̂∗B are

the corresponding optimum strategies of the Player I and II. In statistical terms

η∗ is the least favorable prior density of θ and the estimator θ̂∗B is the minimax

estimator. In fact, the value of the game is the loss of the Player-II. Hence, the

optimum strategy of Player-II and the value of game are given as

Optimum Strategy Corresponding Loss Value of Game

θ̂5 = ϕ5 r Tr LLF e−a(1− aϕ5)
−r − 1 − a(r ϕ5−1)

θ̂6 = ϕ6 r Tr LLF e−a(1− aϕ6)
−r − 1 − a(r ϕ6−1)
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