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1. INTRODUCTION

Functional data analysis (FDA) is a branch of statistics that analyzes observations

treated as functions, curves, or surfaces. To represent the data in such a way, one needs

only to measure some variable over time or space, which is a scenario encountered in many

fields, such as brain imaging data, medical measurements over time, biological development,

meteorology, etc. Then the discrete data observed at so-called design time points can be

transformed into functional data. A time series is treated as the realization of some random

process and it is represented as a function, which is one functional observation. Such a

representation allows us to avoid many problems of classical multivariate statistical methods,

for example, the curse of dimensionality and missing data. Therefore, numerous methods have

been developed for classification, clustering, dimension reduction, regression, and statistical

hypothesis testing for functional data. We refer to the following monographs, where the

methodology, real data examples, and computational aspects are studied: Ferraty and Vieu

(2006), Horváth and Kokoszka (2012), Ramsay and Silverman (2005), and Zhang (2013).

In this paper, we review various aspects and strategies of the functional analysis of

variance (FANOVA), which is popular analysis of FDA. The methods are based on different

approaches, for example, dimension reduction (basis expansion, functional principal compo-

nents), random projections on multivariate data, and aggregating pointwise statistics. In

Section 2, we consider the two sample problem for functional data, which presents the use of

the functional principal component analysis. Section 3 is the longest in the present paper since

it concerns a popular issue of one-way analysis of variance for univariate functional data. In

separate subsections, we present the test procedures based on: basis function expansion, ran-

dom projections, aggregating pointwise test statistics, graphical approach, partially observed

functional data, and repeated measurements. In Section 4, we consider the less popular but

important problem of multivariate functional analysis of variance. Section 5 concludes the

paper. In the supplement, we present the simulation studies based on real data examples,

which show a small comparison of the tests considered and a way to do this for a particular

data set. Note that these methods are suitable not just for FANOVA, but for many other

problems in FDA. Thus, for each method, we also refer to another problems of FDA, where

they are used. Of course, this work does not exhaust the topic, it is a subjective presentation

of selected methods. For additional information and further considerations, we refer to the

given literature. To maintain the clarity of the presentation, some technical aspects (e.g.,

assumptions) may have been omitted.

For each case, we present the theory and the real data example illustrating the use

of the methods considered. Moreover, on GitHub https://github.com/ls-git-17/fda_

methods_fanova, there is another supplement to this paper, which contains the R code for

performing these examples and simulation studies in the supplement (R Core Team, 2024).

Since the implementation of some of the tests presented here is not available in free packages,

we give it in this repository.

https://github.com/ls-git-17/fda_methods_fanova
https://github.com/ls-git-17/fda_methods_fanova
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1.1. General assumptions and definitions

Let us now give a few general assumptions, notations, and comments, which will appear

in many places in this paper. First, as we mentioned above the functional data are observed

discretely. Assume that we measure some variable (e.g., temperature) in a given location

(e.g., in Poznań) and some time points (called design time points; e.g., every day of a year).

Then, the discrete functional data are the pairs (ti, xi), i = 1, . . . , n, where ti is the ith design

time point (e.g., the ith day in a year) and xi is the value of some variable (e.g., temperature)

observed in time point ti (i.e., xi = x(ti) for some function x). Second, one of the aspects,

that has a significant impact on the power of the test procedures, is the amount of correlation

of functional data. Writing the correlation of functional data, we think about the correlation

between observations at any two different design time points. Finally, we usually assume

that the functional data are random processes belonging to the Hilbert space Ld
2(I) of d-

dimensional vectors of square-integrable functions defined on the interval I = [a, b], a, b ∈ R.

This space is endowed with the following inner product:

⟨f ,g⟩d =

∫
I
f⊤(t)g(t)dt =

d∑
i=1

∫
I
fi(t)gi(t)dt =

d∑
i=1

⟨fi, gi⟩1

for f = (f1, . . . , fd)⊤,g = (g1, . . . , gd)⊤ ∈ Ld
2(I). Thus, the norm in this space is as follows:

∥f∥d =
√

⟨f , f⟩d =

√√√√ d∑
i=1

∫
I
f2
i (t)dt.

When d = 1, we consider the univariate functional data, while for d > 1, we have the

multivariate functional data.

1.2. Real data example

In this section, we describe the example of the real data set, which we will use for

illustrating most of the FDA methods considered in this paper. To reach a wider audience,

we use the Canadian weather data set, which is not very difficult and it is well-known and

freely available in the R package fda Ramsay (2023). In Figure 1, we present the map of

Canada with the points representing 35 weather stations. They are divided into three groups

Eastern, Western, and Northern Canada. The number of stations in these groups is 15, 15,

and 5, respectively. In each of these stations, different weather parameters are recorded.

Here, we consider two of them, namely temperature (in Celsius degrees) and precipitation

(in millimeters). In the data set, there are average daily temperature and rainfall (rounded

to 0.1mm) for each day of the year. Their trajectories are presented in Figure 2. Since the

variables are measured for each day of the year, we can model them are functional variables.

Thus, we have three samples of univariate functional variable (temperature or precipitation)

or multivariate functional features (temperature and precipitation), which are observed in

365 design time points. Figure 2 also presents the sample mean functions (defined later) for

each group separately. They are the estimates of the central tendency of functional variables,

and we will use them to compare the three groups under a central tendency. We can observe
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Figure 1: Map of Canada with noted weather stations in three different
regions.

that the Eastern and Western weather stations seem to have a similar average temperature,

while the temperature in Northern Canada is much smaller. The precipitation seems to be

different in different areas of Canada. In the following sections, we will try to verify these

observations using appropriate statistical methods for functional data.

2. TWO SAMPLE PROBLEM

In this section, we present the two sample problem for functional data and the test for

it proposed by Horváth et al. (2013). This test is a nice example of the functional method

based on the functional principal components (FPCs), which are very important in the FDA.

For example, the functional principal components are used for testing the stationarity of

functional time series (Horváth et al., 2014), functional regression (Nie et al., 2018), clustering

functional data (Wu et al., 2022), and classifying them (Chatterjee et al., 2023). The FPCs

are also applied to many practical problems. For review and some recent applications, we

refer to Ullah and Finch (2013) and Karuppusami et al. (2022), respectively. For the two

sample problems, there are however many other methods for example those presented in

Ghiglietti et al. (2017); Hall and Van Keilegom (2007); Horváth et al. (2009); Jiang et al.

(2019); Paparoditis and Sapatinas (2016); Zhang et al. (2010a,b,b).

Let X11, . . . , X1n1 and X21, . . . , X2n2 be two independent samples consisting of inde-

pendent stochastic processes, where n1, n2 ∈ N. We assume that Xij ∈ L1
2(I) and they satisfy

the model:

Xij(t) = µi(t) + εij(t), i = 1, 2, j = 1, . . . , ni, t ∈ I,

where µi are the mean functions and for each i = 1, 2, εij are independent and identically

distributed with E(εij(t)) = 0 and E∥εij∥41 < ∞. We are interested in testing the following
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Figure 2: Trajectories of the temperature and precipitation noted in Cana-
dian weather stations (first three columns) and the sample mean
functions (fourth column).

null hypothesis:

H0 : µ1 = µ2 in L1
2(I).

The test statistic is based on the natural estimators of µi, i.e., the sample mean functions

X̄i(t) =
1

ni

ni∑
j=1

Xij(t), t ∈ I

which are unbiased estimators for µi. The difference between these two sample mean functions

is then projected onto the space determined by the leading eigenfunctions of the covariance

operator Z = (1−θ)C1+θC2, where n1/(n1+n2) → θ ∈ [0, 1] and Ci is the covariance operator

of Xi1, i.e., Ci : L1
2(I) → L1

2(I) and (Cif)(·) =
∫
I Cov(Xi1(·), Xi1(t))f(t)dt for f ∈ L1

2(I)

(see, for example, Horváth and Kokoszka (2012) Chapter 2 for more detail). We assume that

the eigenvalues of Z satisfy τ1 > τ2 > · · · > τp > 0 and φ1, . . . , φp are the corresponding

eigenfunctions. Of course, they are not known in practice, so we use the eigenvalues τ̂k and

eigenvectors φ̂k of the empirical covariance function of the form:

Ẑ(s, t) =

2∑
i=1

n3−i

n1 + n2

1

ni

ni∑
j=1

(Xij(s) − X̄i(s))(Xij(t) − X̄i(t)).

Now, we project the difference X̄1 − X̄2 into the linear space spanned by φ̂1, . . . , φ̂p: âk =

⟨X̄1−X̄2, φ̂k⟩1 for k = 1, . . . , p. This means that instead of working with infinitely dimensional
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curve X̄1 − X̄2, we can work with p-dimensional vector â = (â1, . . . , âp)
⊤. Based on it, we

construct the following test statistic:

T =
n1n2

n1 + n2

p∑
k=1

â2k
τ̂k

.

Theorem 2.1 (Horváth et al. (2013)). Under H0 and the assumptions given above,

we have T
d→ χ2(p), where χ2(p) denotes a chi-square random variable with p degrees of

freedom.

By Theorem 2.1, we have the following critical region of the asymptotic test based on

T : {(xij) : T > χ2(1 − α, p)}, where χ2(β, p) is the β-quantile of a chi-square distribution

with p degrees of freedom and α ∈ (0, 1) is the significance level. If µ1 −µ2 is not orthogonal

to the linear span of φ1, . . . , φp, then this test is consistent. Simulation studies conducted

in Chapter 5 of Horváth and Kokoszka (2012) imply that this test controls the type I error

level and has sensible power for moderate and large sample sizes. This is confirmed in the

supplement.

As we noted, the test presented in this section is based on functional principal com-

ponents. Let us now explain why. Namely, the construction of the test is based on the

eigenfunctions φ̂1, . . . , φ̂p of the sample covariance operator Ẑ, which are defined as the em-

pirical functional principal components of the two samples we have. They are estimators of

the functional principal components defined as the eigenfunctions of covariance operator Z

(see, for example, Horváth and Kokoszka (2012) Chapter 3 for more detail). They play an

important role in many methods of functional data analysis, as they reduce the infinite di-

mension of functional data to the finite dimension of the multivariate vectors of so-called

scores (here âk). In this section, we can see how this technique can be used for the two

sample problem for functional data.

There is a question of how to choose the number p. Due to the functional principal

components application used here, the method based on the cumulative percentage of total

variance (CPV) explained is very popular and effective. Let

CPV (p) =

∑p
k=1 τ̂k∑n1+n2

k=1 τ̂k
.

One can use p for which CPV (p) exceeds a desired level, e.g., 85% or 95%. Of course, there

are also other methods for example those using information criteria or cross-validation.

To illustrate the above two-sample test, we consider three comparisons of mean temper-

ature: Eastern vs. Western, Eastern vs. Northern, and Western vs. Northern. All of them

are two sample problems for univariate functional data. The number of functional principal

components used in the test was chosen to have CPV (p) ≥ 95%. The results are presented

in Table 1. As we expected, there are no significant differences in average temperature in

Eastern and Western Canada, while Northern Canada is significantly colder than the two

other regions. Let us also observe that the number of chosen functional principal components

is rather small while satisfying the criterion CPV (p) ≥ 95%.
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Eastern-Western Eastern-Northern Western-Northern

Test statistic 1.2020 76.8028 26.1506
p-value 0.5483 1.1e-16 2.09e-6

p 2 3 2

Table 1: Results of two sample test for comparing temperature mean
functions in pairs of regions in Canada.

3. UNIVARIATE ANALYSIS OF VARIANCE

In this section, we focus on the analysis of variance (ANOVA) for univariate functional

data (d = 1), which was explored by many authors. We will present various methods in dif-

ferent scenarios. We mainly consider the case of independent observations, but in Section 3.3,

we also present the results for the repeated measures ANOVA for functional data.

3.1. ANOVA for independent functional samples

The one-way ANOVA problem for functional data can be formulated in the following

way. Let Xi1, . . . , Xini denote i-th sample of independent and identically distributed stochas-

tic processes SP (µi, γ) for i = 1, . . . , k, where SP (µ, γ) denotes a stochastic process with

mean function µ and covariance function γ. The k samples are assumed to be independent.

Moreover, we usually suppose that Xij ∈ L1
2(I). Let n = n1 + · · · + nk be the total sample

size. It is interesting to test the following equality:

(3.1) H0 : µ1 = · · · = µk in L1
2(I),

against H1 : ¬H0. We can observe that the null hypothesis considered in Section 2 is the

special case of (3.1), so almost every test presented in the present section can be applied to

the two sample problem for functional data.

3.1.1. Basis function expansion test

We start with the test procedure, which has some common characteristics with that

presented in Section 2. Namely, we present the tests based on a basis function representation

(expansion) of the functional data proposed in Górecki and Smaga (2015). The two-sample

test uses the expansion of functional observation based on functional principal components.

However, here we use the coefficients (scores) in the other way than in Section 2. A lot of

methods based on basis function expansion can be found in Ramsay and Silverman (2005),

for example, canonical correlation and discriminant analysis for functional data. It is also

popular in scalar-function regression model (Collazos et al., 2016; Smaga and Matsui, 2018).

Moreover, it can be used for the partially observed functional data (Kraus, 2019), which is

described in Section 3.2.
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Let {φl}∞l=0 be an orthonormal basis of L1
2(I). Note that the basis is fixed here, while

the functional principal components basis is data-dependent. The examples of fixed bases

used in the FDA are the Fourier, B-spline, and Legendre. Then, the functional observations

can be expanded as follows:

Xij(t) =

∞∑
l=0

cijlφl(t), t ∈ I,

where cijl are random variables with finite variance. Of course, in practice, we are not

able to use this infinite representation. However, by taking sufficiently many elements of

this expansion, we can approximate arbitrarily well any function in L1
2(I) (see Ramsay and

Silverman (2005)). For this reason, we assume that the observations Xij belong to a finite

subspace of L1
2(I) and they can be expressed as follows:

(3.2) Xij(t) =
K∑
l=0

cijlφl(t), t ∈ I

for sufficiently large K. The coefficients cijl can be estimated, for example, by the least

squares method. The optimum K in the sense of smoothness can be selected for each Xij

using, for instance, the Bayesian Information Criterion. Then from the values of K corre-

sponding to all processes, a modal value is selected as the common value for all Xij . For more

details about estimating coefficients cijl and choosing K see Krzyśko and Waszak (2013).

The coefficients (scores) cijl contain some information about the original functional

data. For this reason, the tests for (3.1) can be constructed based on them. The first idea is

to apply known tests for multivariate data to vectors of coefficients cij = (cij0, cij1, . . . , cijK)⊤,

which represent observations Xij . For the ANOVA problem for functional data, this was done

for example by Górecki and Smaga (2015), but this approach was not performing well. Thus,

we need a more sophisticated method. Before, we describe it, let us note that for other

problems with functional data, the approach presented in this paragraph can give very good

results (see, for example, Krzyśko and Waszak (2013)).

The test statistic of the classical ANOVA F -test for real random variables can be

adopted for functional data framework in the following way:

(3.3) F =
1

k−1

∑k
i=1 ni||X̄i − X̄||21

1
n−k

∑k
i=1

∑ni
j=1 ||Xij − X̄i||21

,

where X̄ = n−1
∑k

i=1

∑ni
j=1Xij and X̄i = n−1

i

∑ni
j=1Xij . Using the basis expansion (3.2), the

test statistic (3.3) can be expressed just by the coefficients cij , and it does not depend on the

basis functions φl. This is shown in the following

Proposition 1 (Górecki and Smaga (2015)). The statistic F given by (3.3) is equal

to
1

k−1(a− b)
1

n−k (c− a)
,

where

a =

k∑
i=1

1

ni

ni∑
m=1

ni∑
s=1

c⊤imcis, b =
1

n

k∑
i=1

ni∑
m=1

k∑
t=1

nt∑
v=1

c⊤imctv, c =
k∑

i=1

ni∑
j=1

c⊤ijcij .
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It can also be seen that any permutation of all Xij leaves the values of the sums b and c

unchanged. Moreover, it is known that the permutation test is exact under exchangeability,

i.e., in our framework, when all data have the same distribution. Thus, Górecki and Smaga

(2015) proposed to use the permutation method to construct a test based on (3.3). The

resulting test was denoted by FP. The permutation test has the following steps:

1. Compute the value of the test statistic F for the original sample data.

2. Create a new sample from the original data in the following way: From all observations

Xij , i = 1, . . . , k, j = 1, . . . , ni, select randomly without replacement n1 observations

for the first new group, then from the remainder of the observations choose randomly

without replacement n2 observations for the second new group, and so on.

3. Obtain the value of the test statistic based on the new sample data.

4. Repeat steps 2–3 B times. Let F1, . . . , FB denote the obtained values of the test statis-

tic.

5. The p-value of the permutation test is defined as (1/B)
∑B

i=1 I(Fi ≥ F ), where I is the

indicator.

This test controls the type I error very well and has comparable power to many other test

procedures while being the most powerful for some cases, e.g., the number of observations

and number of time points are small or under less correlated functional data (see simulation

study in Mrkvička et al. (2020) and in the supplement).

We illustrate the FANOVA test based on basis expansion in comparing the three groups

of weather stations in Canada. As a functional variable, we take the temperature once again.

To perform the test, we consider the Fourier basis and choose the number of K of basis

functions using BIC from the set {3, 5, . . . , 21}. Here, we consider just an odd number of basis

functions, which is dictated by the appropriate function in the fda package. This criterion

suggests K = 7. Figure 3 presents the raw temperature data and their smoothed version. We

can observe that the smoothing eliminated much of the noise in the data and the smoothed

data seem to appropriately represent the original ones. The value of the test statistic is

equal to 16.35013, while the p-value equals zero. Thus, we reject the null hypothesis (3.1)

and conclude that there are significant differences in mean functions in the three regions of

Canada.

3.1.2. Tests based on random projections

In this section, we present the projection-based tests proposed by Cuesta-Albertos and

Febrero-Bande (2010). In this method, we also project the functional data, but differently

than in the previous sections. We will present this method for the one-way classification, but

it can be adopted for various other experimental designs. Some other examples of the use of

random projections are for functional linear regression (Cuesta-Albertos et al., 2019), outlier

detection (Navarro-Esteban and Cuesta-Albertos, 2021), and testing statistical hypotheses

(Meléndez et al., 2021).
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Figure 3: In the left panel, the raw Canada temperature data are pre-
sented, while in the right panel, we have the smoothed data in
the Fourier basis with seven basis functions.

Let ξ be a Gaussian distribution on L1
2(I), whose all one-dimensional projections

are nondegenerate. Using the distribution ξ, we select randomly a function v from L1
2(I).

When (3.1) holds, then for every v ∈ L1
2(I), the following null hypothesis

Hv
0 : ⟨µ1, v⟩1 = · · · = ⟨µk, v⟩1

also holds. On the other hand, we also have the following result.

Theorem 3.1 (Cuesta-Albertos and Febrero-Bande (2010)). Under the above as-

sumptions, if µi ̸= µj for some i ̸= j, then ξ(v ∈ L1
2(I) : ⟨µ1, v⟩1 = · · · = ⟨µk, v⟩1) = 0.

Theorem 3.1 implies that if H0 fails, then for ξ-almost every v ∈ L1
2(I), Hv

0 also fails.

Therefore, we have a kind of equivalence between the null hypotheses H0 and Hv
0 . This

justifies the following projection-based test for H0:

1. Select, with Gaussian distribution, functions vm ∈ L1
2(I), m = 1, . . . , l, l ≥ 1.

2. Compute

πm
ij =

⟨Xij , vm⟩1
∥vm∥1

=

∫
I Xij(t)vm(t)dt√∫

I v
2
m(t)dt

for i = 1, . . . , k, j = 1, . . . , ni, m = 1, . . . , l.

3. For each m = 1, . . . , l, apply the appropriate one-way ANOVA test for πm
ij , i = 1, . . . , k,

j = 1, . . . , ni. Let p1, . . . , pl denote the obtained p-values.

4. Compute the final p-value for H0 as inf
{
lp(m)/m : m = 1, . . . , l

}
, where p(1) ≤ · · · ≤ p(l)

are the ordered p-values obtained in step 3.
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In step 1, one can use for example a Gaussian white noise or a standard Brownian

motion. The simulation results indicate that the projection-based tests with Gaussian white

noise (respectively standard Brownian motion) are the most powerful when the functional

data are higher (respectively less) correlated.

In step 2, we generate l random projections of all the functional data. For each of these

l random projections, we apply some ANOVA test separately in step 3. Thus, we perform l

tests on the real data. Moreover, in step 4, we correct the obtained p-values to control the false

discovery rate (FDR) using the procedure by Benjamini and Hochberg (1995). The reason

for these steps is that we want to eliminate the two drawbacks of the projection method: (1)

the loss of information, since a function is replaced by just one real number; (2) some random

instability in the procedure, because it may happen that running the procedure twice, we

obtain two different decisions.

To perform step 3, we can choose different tests. The first choice can be the standard

F test, but then we may need to inspect the projection data in terms of normality or equality

of variances. The other possibilities can also be applied. For instance, in the R package

fdANOVA (Górecki and Smaga, 2019), the ANOVA-type statistic (ATS) proposed by Brunner

et al. (1997), and the Wald-type permutation statistic (WTPS) by Pauly et al. (2015) are

implemented.

The last thing we should discuss is the number of projections l. It is a hyperparameter

and has to be independent concerning the data. The simulation results of Cuesta-Albertos

and Febrero-Bande (2010) and Górecki and Smaga (2017) suggest to chose l near 30. However,

if needed the greater values of l may also be used. The simulation studies imply that although

the greater l results in a more conservative projection-based test (i.e., the empirical sizes are

much smaller than the significance level α), the power of the test generally increases with l

(see also the supplement).

The random projection test is illustrated for the same problem as in Section 3.1.1.

We use different versions of it. Namely, we take different Gaussian processes (Gaussian

white noise, standard Brownian motion) and three final tests applied to random projections

(standard ANOVA test, ANOVA-type statistic, WTPS). For each of these six tests, we use

the number l of random projections ranging from 5 to 30. The p-values of all these tests are

presented in Figure 4. We can observe that all the tests reject the null hypothesis about the

equality of temperature mean functions. It seems that the ATS test is slightly less stable for

different l than the other tests.

3.1.3. Tests based on aggregating pointwise test statistics

In the earlier sections, we have presented the methods, which reduced the dimension

of the data by projecting them into finite dimensional spaces. However, some methods apply

directly to the discrete functional observations. In particular, such methods were developed

in Zhang (2013), Zhang and Liang (2013), and Zhang et al. (2019). The idea of these methods

is to appropriately aggregate the values of the pointwise test statistics, which are constructed

based on statistics of classical test procedures. The natural applications of tests based on

aggregating pointwise test statistics are the test procedures for verifying the equality of
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Figure 4: P -values of random projection test for comparing temperature
mean functions in three regions in Canada. l denotes the number
of projections used.

covariance functions Guo et al. (2018, 2019). However, they can be also used in the functional

regression model to test the significance of variables and their selection Smaga (2021).

For t ∈ I, let

SSRn(t) =
k∑

i=1

ni(X̄i(t) − X̄(t))2, SSEn(t) =
k∑

i=1

ni∑
j=1

(Xij(t) − X̄i(t))
2

denote the pointwise between-subject and within-subject variations respectively. In practice,

we obtain values of the about functions in the design time points. To infer based on them,

one needs to aggregate them into one real number (more precisely random variable). In the

FDA, the first idea for this is integration, which is very popular. Let us first consider the

L2-norm-based test Zhang (2013), which uses the following test statistic:

Sn =

∫
I

SSRn(t)dt.

Under (3.1), the distribution of Sn has similar shape to βχ2
d, i.e., the distribution of Sn is

nonnegative and generally skewed. The parameters β and d are determined by matching the

first two moments of Sn and βχ2
d. This method is called the Box-type approximation or the

two-cumulant approximation. We have β = tr(γ⊗2)/tr(γ), d = (k − 1)κ, κ = tr2(γ)/tr(γ⊗2),

γ⊗2(s, t) =
∫
I γ(s, u)γ(u, t)du, and tr(γ) =

∫
I γ(t, t)dt denotes the trace of γ(s, t). These

quantities are unknown in practice, thus we have to estimate them. The pooled sample

covariance function

(3.4) γ̂(s, t) =
1

n− k

k∑
i=1

ni∑
j=1

(Xij(s) − X̄i(s))(Xij(t) − X̄i(t))

is an unbiased estimator of γ(s, t). In the naive method, we just use the plugin method,

which results in L2N tests with the following critical region: {(xij) : Sn > β̂χ2(1 − α, d̂)}.

The bias-reduced method (resulting in L2B test), we have β̂ = ̂tr(γ⊗2)/tr(γ̂), d̂ = (k − 1)κ̂
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and κ̂ = t̂r2(γ)/ ̂tr(γ⊗2), where

̂tr(γ⊗2) =
(n− k)2

(n− k − 1)(n− k + 2)

(
tr(γ̂⊗2) − tr2(γ̂)

n− k

)
,

t̂r2(γ) =
(n− k)(n− k + 1)

(n− k − 1)(n− k + 2)

(
tr2(γ̂) − 2tr(γ̂⊗2)

n− k + 1

)
.

The L2-norm-based tests take into account just the between-subject variability, while

considering also the within-subject variability may result in the use of more information from

the data. The first of such procedures is the F -type test Zhang (2013), which uses the test

statistic

Fn =

∫
I SSRn(t)dt/(k − 1)∫
I SSEn(t)dt/(n− k)

.

Under (3.1), the distribution of Fn can be approximated by the F-distribution Fd1,d2 , where

d1 is the same as for the L2-norm-based test and d2 = (n − k)κ. To estimate the unknown

parameter κ, we can use the same methods as above, i.e., the naive and bias-reduced ones,

which result in the FN and FB tests, respectively.

In the above tests, SSRn and SSEn were aggregated separately. The next idea is to do

this together in the sense of aggregating the values of the pointwise F -test statistic for (3.1),

defined as

Fn(t) =
SSRn(t)

k − 1
/

SSEn(t)

n− k
.

The first test of this type is the globalizing pointwise F-test (the GPF test; Zhang and Liang

(2013)), which is based on the test statistic

Tn =

∫
I
Fn(t)dt.

Under (3.1), the distribution of Tn can be approximated by β̂wχ
2
d̂w

, where

β̂w = (n− k − 2)tr(γ̂⊗2
w )/((k − 1)(n− k)(b− a)),

d̂w = (k − 1)(n− k)2(b− a)2/((n− k − 2)2tr(γ̂⊗2
w ))

and γ̂w(s, t) = γ̂(s, t)/
√

γ̂(s, s)γ̂(t, t), where γ̂(s, t) is given by (3.4).

In the aforementioned test procedures, the integration was used to aggregate the values

of the pointwise test statistics. The other idea for this is taking the supremum. This is less

common, but it can result in a very powerful procedure. Zhang et al. (2019) proposed the

bootstrap tests based on the following max-type test statistic:

Fmax = sup
t∈I

{Fn(t)}.

Note that the Fmax method was already introduced earlier in neuroscience literature by

Winkler et al. (2014). To construct a test based on Fmax, the group-wise or pooled bootstrap

methods were used, since the distribution of Fmax seems to be very complicated. These

procedures are similar to the permutation test presented in Section 3.1.1, but selecting new

data in step 2 is made with replacement. In the group-wise bootstrap, we draw from each

sample separately, while in the pooled bootstrap, we chose from all observations. Such
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Figure 5: Pointwise test statistics.

bootstrap methods are also recommended for tests based on Sn, Fn, and Tn statistics, when

the k samples are not Gaussian and when the sample sizes are small. These bootstrap tests

are denoted by L2b, Fb, and GPFb, respectively.

Note that these tests were extended for testing the linear hypotheses and for weighted

functional data by Smaga and Zhang (2019, 2020), respectively. In practice, the values of the

pointwise test statistics SSRn, SSEn, and Fn are calculated in design time points, and then

integral and supremum are calculated by sum (or mean) and maximum, respectively.

The simulation results conducted in many papers suggest that the Fmax test is very

powerful for moderatory and highly correlated functional data. On the other hand, for less

correlated functional data, the GPF test seems to be the best, and it is followed by the Sn and

Fn tests. See also the supplement for simulation study based on real data example considered

in the next paragraph.

Let us now apply the tests based on aggregating pointwise test statistics to the FANOVA

problem for temperature in Canada. The pointwise test statistics are presented in Figure 5.

They suggest that the temperature in the three regions of Canada is the most different in

the first and last months of the year. This is some additional information, which we do not

obtain from the earlier tests considered. The significant differences in the three groups of

weather stations are confirmed by all tests considered in the present section (see Table 2).

L2N L2B Lb FN FB Fb GPF Fmax

Test stat. 303808.1 303808.1 303808.1 16.20986 16.20986 16.20986 17.23131 39.42033
p-value 1.51e-10 2.69e-11 0 2.02e-07 1.25e-07 0 4.78e-13 0

β̂ or d̂1 6235.936 5773.932 3.005511 3.120999 0.271331

d̂ or d̂2 3.005511 3.120999 48.08817 49.93598 3.931244

Table 2: Results of tests based on aggregating pointwise test statistics
for comparing temperature mean functions in three regions in
Canada.
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3.1.4. Graphical functional ANOVA test

In this section, we present the one-way graphical functional ANOVA test proposed by

Mrkvička et al. (2020). The results of this paper are a continuation of the work done in

Myllymäki et al. (2017) and Mrkvička et al. (2017), where a global envelope test was used in

multivariate settings. The test is based on permutations and ranks of the discrete functional

data, which distinguishes this method from the previously presented ones. Moreover, we

obtain a graphical interpretation, which automatically identifies which groups are responsible

for the potential rejection and also it identifies which parts of the functions are responsible

for the rejection. This may be very important for the interpretation of the result of the test.

This innovative graphical approach can also be applied to other problems related to functional

data analysis. For example, in Mrkvička et al. (2021), there are considered nonparametric

graphical tests of significance in functional general linear models.

We assume that all functions Xij are discretized in the same design time points t =

(t1, . . . , tm). When this is not true, we can apply a smoothing technique (see, for example,

Zhang (2013)) and then discretize smoothed Xij in a common grid of design time points.

To test the null hypothesis H0 in (3.1), one can use the vectors consisting of the sample

mean functions calculated in the design time points in t. Namely, let X̄ = (X̄1(t), . . . , X̄k(t))⊤,

where X̄i(t) = (X̄i(t1), . . . , X̄i(tm)), i = 1, . . . , k. The length of the vector X̄ is equal to k ·m
and it can be quite large. The one-way graphical functional ANOVA test is as follows:

1. Create a permutation sample from the raw functions Xij , i = 1, . . . , k, j = 1, . . . , ni.

2. Compute the vector X̄ for the permutation sample.

3. Repeat steps 1 and 2 B times to obtain the vectors X̄1, . . . , X̄B.

4. Apply the global rank envelope test to X̄1, . . . , X̄B.

Thus, the above procedure is the application of the global rank envelope test to the vector

X̄, which represents functional data. Let us now describe the global rank envelope test.

Assume that V = (V1, . . . , Vd) is a multivariate vector. Let V1 = (V11, . . . , V1d), . . . ,VB =

(VB1, . . . , VBd) be the vectors generated from V by permutation of its components under

the null hypothesis, and V1 = V. The test is based on ranks of the components of vectors

Vi. For m ∈ {1, . . . , d}, let Rim be the rank of an element Vim among V1m, . . . , VBm (the

elements of vectors V1, . . . ,VB for the mth coordinate) such that the lowest ranks correspond

to the most extreme values of the statistics, i = 1, . . . , B. Moreover, consider the vectors of

pointwise ordered ranks:

Ri = (Ri[1], . . . , Ri[d]), i = 1, . . . , B,

where

{Ri[1], . . . , Ri[d]} = {Ri1, . . . , Rid}, Ri[m] ≤ Ri[m′], m ≤ m′.

Then, the extreme rank length ordering for the vector Ri is defined as follows:

Rerl
i =

1

B

B∑
j=1

I(Rj ≺ Ri),
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where Rj ≺ Ri ⇔ ∃l ≤ d : Rj[m] = Ri[m]∀m < l, Rj[l] < Ri[l]. Using this order, we can

define the following p-value based on the extreme rank length ordering:

perl = 1 − 1

B

B∑
i=1

I(R1 ≺ Ri).

Mrkvička et al. (2020) proposed a new graphical envelope for graphical interpretation.

Assume that all the vectors Vi follow the same joint distribution. Then, one can construct

rank envelopes with level 1 − α as sets {Vα
l ,V

α
u} such that P (∃m ∈ {1, . . . , d} : Vm /∈

[V α
l,m, V α

u,m]) ≤ α. The contruction is as follows: Let Rerl
(α) be the largest value in the set

{Rerl
1 , . . . , Rerl

B } for which

1

B

B∑
i=1

I(Rerl
i < Rerl

(α)) ≤ α.

Then, we can define Iα = {i ∈ {1, . . . , s} : Rerl
i ≥ Rerl

(α)}, i.e., the index set of vectors whose

extreme rank length measure is larger than or equal to the critical value Rerl
(α). Finally, the

global extreme rank length envelope is defined as follows:

V α
l,m = min

i∈Iα
Vim, V α

u,m = max
i∈Iα

Vim.

It can be shown that the inference based on the perl and the global envelope specified by V α
l,m

and V α
u,m are equivalent. For the one-way graphical functional ANOVA test, it is formulated

in the following

Theorem 3.2 (Mrkvička et al. (2020)). Consider a one-way graphical functional anal-

ysis of variance test with test vector X̄. Let X̄α
l,m and X̄α

u,m define the 100(1 − α)% global

extreme rank length envelope. Then, assuming that there are no pointwise ties with proba-

bility 1 in the stochastic process SP (µ, γ), it holds that:

1. X̄1,m < X̄α
l,m or X̄1,m > X̄α

u,m for some m if and only if perl ≤ α, in which case the null

hypothesis is rejected;

2. X̄α
l,m ≤ X̄1,m ≤ X̄α

u,m for all m if and only if perl > α, in which case the null hypothesis

holds.

Mrkvička et al. (2020) conducted the simulation study, where they showed that their

test controls the type I error appropriately, and can be a good competitor to other test

procedures in terms of power (see also the supplement). However, it has an advantage in

interpretation, which in particular, we show in the following paragraph for the Canadian

weather data set.

When we apply the graphical functional ANOVA test to the temperature in the three

groups of weather stations in Canada, we obtain the p-value equal to 0.002, and thus we reject

the null hypothesis (3.1) similarly as before. However, additionally, we obtain a graphical

interpretation of the results. It is presented in Figure 6. We can see there the graphical

envelope for group means. For Eastern and Northern weather stations, we observe the values

of sample mean functions outside the envelope for some design time points. This suggests

the areas, where significant differences appear. For Eastern stations, this appears for the
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Figure 6: The one-way graphical functional ANOVA test for equality of
means of the temperature in Canada in the three groups using
the group means.

second half of the year, while for the Northern ones, this is true for almost the whole year.

It seems that there are no significant differences between the Western stations. Therefore,

the graphical functional ANOVA test can give more interpretation, which is important from

a practical point of view.

3.2. ANOVA for partially observed functional data

In this section, we present the tests for partially observed functional data proposed by

Kraus (2019). In the FDA, it is usually assumed that all functional data are completely,

densely, or sparsely observed in the same domain. Some applications have brought attention

to situations where each functional observation may be observed only on a subset of the

domain while no information about it is available on the complement. In such a way, we

obtain partially observed functional data. A nice example from medical research Kraus (2019)

is as follows: In the experiment, the evolution of the heart rate of humans was measured in the

period from 8 PM to 2 AM. Unfortunately, many of the participants of the experiment were

switching off the measuring device even for a few hours during this period of time. Thus, the

corresponding curves are not fully known. The proposed test procedures are the adaptation

of the tests presented in Sections 3.1.3 and 2. We refer to Kraus (2019) for references to other

statistical methods for partially observed functional data.

We assume that the values of the functions Xij are available on a subset Oij of I,

with no information on the complement of Oij . The observation sets may be non-random or

random, but they are assumed to be mutually independent and independent of Xij and to

consist of a finite union of intervals. Moreover, Kraus (2019) considered the heteroscedastic

case, i.e., the covariance functions in groups are γi and do not have to be equal.
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The group mean functions µi and the common mean function µ are estimated as follows:

µ̂i(t) =
Ji(t)

Ni(t)

ni∑
j=1

Oij(t)Xij(t), µ̂(t) =
k∑

i=1

ŵi(t)µ̂i(t),

where i = 1, . . . , k, t ∈ I, Oij(t) is the indicator that the value of Xij(t) is observed, Ni(t) =∑ni
j=1Oij(t) is the number of available observations at time t in the ith sample, Ji(t) =

I(Ni(t) > 0),

ŵi(t) =
Ni(t)/ĝ

2
i∑k

m=1Nm(t)/ĝ2m

is weight corresponding to the ith group, ĝ2i = tr(γ̂i), and γ̂i is the estimator of the covariance

function in the ith group of the form:

γ̂i(s, t) =
Ji(s, t)

Mi(s, t)

ni∑
j=1

Uij(s, t)(Xij(s) − µ̂ist(s))(Xij(t) − µ̂ist(t)),

Uij(s, t) = Oij(s)Oij(t), Mi(s, t) =
∑ni

j=1 Uij(s, t), Ji(s, t) = I(Mi(s, t) > 0), and

µ̂ist(s) =
Ji(s, t)

Mi(s, t)

ni∑
j=1

Uij(s, t)Xij(s).

The first test procedure is similar to the F -type test considered in Section 3.1.3. Namely,

the test statistic is as follows:

TL2 =

k∑
i=1

∫
I Ni(t)

1/2(µ̂i(t) − µ̂(t))2dt

ĝ2i
,

and we reject the null hypothesis for large values of this test statistic.

The second test is similar to the test based on the functional principal components

presented in Section 2. Let φ̂1, . . . , φ̂p be orthonormal linearly independent functions in

L1
2(I), which can be deterministic (as in Section 3.1.1) or data dependent (as in Section 2).

Then, the scores of the standardized contrast processes concerning the basis functions φ̂l are

defined as follows:

Qil = ⟨Ni(·)(µ̂i(·) − µ̂(·)), φ̂l⟩1/(ĝin
1/2
i ),

i = 1, . . . , k, l = 1, . . . , p. The score test statistic is given in the following way:

TQ = Q⊤V̂−Q,

where Q = (Q11, . . . , Q1l, . . . , Qk1, . . . , Qkl)
⊤ and V̂− is the pseudoinverse of the estimated

(kl) × (kl) covariance matrix of Q, whose entries are as follows:

V̂jl,fg =

∫
I2

π̂j(s)
1/2φ̂l(s)v̂jf (s, t)φ̂g(t)π̂f (t)1/2dsdt,

where j, f = 1, . . . , k, l, g = 1, . . . , l, π̂j(t) = Nj(t)/nj ,

v̂jf (s, t) =

k∑
i=1

(δji −Nj(s)
1/2ŵi(s)Ni(s)

−1/2)κ̂i(s, t)(δfi −Nf (t)1/2ŵi(t)Ni(t)
−1/2)

ĝ2j
,
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δji is the Kronecker delta, and κ̂i is an estimator of kernel of some operator (see Section 2.1

in Kraus (2019)).

The asymptotic null distribution of TL2 and TQ is given in the following theorem.

Theorem 3.3 (Kraus (2019)). For i = 1, . . . , k, assume that ni → ∞, ni/n → ai >

0, E∥Xi1∥21 < ∞ and all eigenvalues of γi have multiplicity 1. Let πij(t) = P (Oij(t) = 1)

and π̄i(t) = n−1
i

∑ni
j=1 πij(t), and there be a function πi(t) such that inft∈I πi(t) > 0 and

supt∈I |π̄i(t) − πi(t)| → 0 for ni → ∞. Then, under the null hypothesis:

1. TL2 is asymptotically distributed as
∑∞

l=1 τlCl, where Cl are independent random vari-

ables of the chi-square distribution with one degree of freedom and τl can be consistently

estimated by the eigenvalues of V̂.

2. Assume that there exist linearly independent non-random functions φ1, . . . , φp such

that ∥φ̂l − φl∥
p→ 0 for l = 1, . . . , p. Then, TQ is asymptotically chi-square distributed

with (k − 1)p degrees of freedom.

By Theorem 3.3, the asymptotic tests based on TL2 and TQ can be contructed. However,

the computational problems appear. Namely, for discrete functional data, the computation of

V̂ is very demanding in terms of computer memory, making the computation almost impossi-

ble or time-consuming. For this reason, Kraus (2019) proposed the following bootstrap-based

test procedures:

1. Calculate µ̂i and µ̂.

2. Calculate TL2 and the score vector Q.

3. Set Xij0 = Xij − µ̂i + µ̂.

4. For b = 1, . . . , B:

� For each i = 1, . . . , k, sample with replacement from fragments Xi10, . . . , Xini0 to

get X∗
i10, . . . , X

∗
ini0

.

� Calculate T ∗
L2,b and score vector Q∗

b from X∗
i10, . . . , X

∗
ini0

, i = 1, . . . , k.

5. Approximate the p-value of the F -type test using TL2 and T ∗
L2,b, b = 1, . . . , B.

6. Calculate the empirical covariance matrix V̂∗ of Q∗
b , b = 1, . . . , B and TQ = Q⊤V̂∗−Q.

7. Approximate the p-value of the projection test using TQ and the χ2((k− 1)p) distribu-

tion.

The simulation results of Kraus (2019) indicate that both bootstrap tests control the type I

error level and have sensible power, but the TQ test may be too liberal. This is confirmed in

the supplement.

Unfortunately, we do not have access to the heart rate data set. Thus, we will illustrate

the ANOVA test for partially observed functional data using the artificially modified temper-

ature data. Namely, we use one of the schemas from simulation studies in Kraus (2019) to
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Figure 7: Partially observed temperature data and the summary of miss-
ingness.

remove a part of the trajectories of the temperature. Figure 7 presents the obtained partially

observed temperature data for Western stations. In this particular case, for many stations,

the temperature data are available just for the first half of the year. Having so many gaps

in the trajectories, it is not possible to effectively apply the test procedures presented in

previous sections. Thus, we use the ANOVA test for partially observed functional data. The

values of test statistics are TL2 = 35.55663 and TQ = 199.4411. The corresponding p-values

of both tests are equal to zero. Thus, we reject the equality of mean functions in the three

groups, obtaining the same decision as for the fully observed functional data.

3.3. ANOVA for functional repeated measurements

In this section, we present the results of the repeated measures ANOVA for functional

data. For two sample and one-way ANOVA problems, the tests for this problem were consid-

ered in Mart́ınez-Camblor and Corral (2011), Smaga (2019a,b, 2020), and Kury lo and Smaga

(2024). They are based on the ideas of test procedures presented in Sections 3.1.2 and 3.1.3.

On the other hand, Acal and Aguilera (2023) considered the two-way ANOVA for repeated

functional observations using the basis function expansion test as in Section 3.1.1. Finally,

let us mention that Ditzhaus and Gaigall (2022) developed method for testing marginal ho-

mogeneity in paired design in Hilbert spaces.

The functional repeated measures analysis problem can be formulated as follows: We

have n subjects subjected to ℓ ≥ 2 (possibly) different conditions. The results of the experi-

ments are functional observations. Thus, we have a functional sample consisting of indepen-

dent stochastic processes X1, . . . , Xn defined on the interval [0, ℓ]. Assume that they satisfy

the following model proposed by Mart́ınez-Camblor and Corral (2011):

(3.5) Xj(t) = µ(t) + ej(t), j = 1, . . . , n, t ∈ [0, ℓ],

where µ is a fixed mean function, and ej is a random process with zero mean function
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and covariance function γ. Here, t ∈ [0, 1] corresponds to the first experimental condition,

t ∈ [1, 2] to the second, and so on. Thus, in this model, we ignore the possible time periods

between repetitions of the experiment, but this does not mean that they do not exist. It is

interesting to test the following null hypothesis:

(3.6) H0 : µ(t) = µ(t + 1) = · · · = µ(t + (ℓ− 1)), t ∈ [0, 1].

Rejecting H0 determines the presence of significant differences in the mean functions corre-

sponding to the experimental conditions.

Let us start with the tests that aggregate the pointwise test statistics (see Section 3.1.3).

Mart́ınez-Camblor and Corral (2011) and Smaga (2019b) proposed the tests based on the

following test statistic of the L2-norm type:

Cn(ℓ) =

∫ 1

0
SSA(t)dt,

where

SSA(t) = n
ℓ∑

i=1

(X̄i·(t) − X̄(t))2, t ∈ [0, 1],

is the pointwise sum of squares due to the hypothesis,

X̄i·(t) = n−1
n∑

j=1

Xj(t + (i− 1)), X̄(t) = N−1
ℓ∑

i=1

n∑
j=1

Xj(t + (i− 1)),

N = nℓ, i = 1, . . . , ℓ. On the other hand, Kury lo and Smaga (2024) proposed to use the

following test statistics:

Dn(ℓ) =

∫ 1

0
F (t)dt, En(ℓ) = sup

t∈[0,1]
F (t),

where

F (t) =
SSA(t)/(ℓ− 1)

SSR(t)/((ℓ− 1)(n− 1))
, t ∈ [0, 1],

is the pointwise counterpart of the F-type test statistic of classical test for real variables,

SSR(t) =

ℓ∑
i=1

n∑
j=1

(Xj(t + (i− 1)) − X̄i·(t) − X̄·j(t) + X̄(t))2

and X̄·j(t) = (1/ℓ)
∑ℓ

i=1Xj(t+ (i− 1)), j = 1, . . . , n. For the paired two-sample problem for

functional data, these test statistics were reduced to those considered by Smaga (2020).

To approximate the null distribution of test statistics, Kury lo and Smaga (2024) used

different resampling procedures. As the first method, they consider the permutation approach

proposed by Mart́ınez-Camblor and Corral (2011) and Smaga (2020). In the permutation

procedure (P1 for short), a permutation sample was created as follows: For each j = 1, . . . , n

separately, randomly permute the observations Xj(t), Xj(t+ 1), . . . , Xj(t+ (ℓ− 1)), t ∈ [0, 1]

corresponding to ℓ experimental conditions, and use them to form the permuted observation

Xb
j (t), t ∈ [0, ℓ].
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In the second permutation approach (P2 for short), permutation of the data is per-

formed as follows: We draw Xb
1(t), . . . , Xb

n(t) for t ∈ [0, 1] randomly without replacement

from the set

A = {X1(t), . . . , Xn(t), X1(t + 1), . . . , Xn(t + 1), . . . , X1(t + (ℓ− 1)), . . . , Xn(t + (ℓ− 1))}

for t ∈ [0, 1] containing all N observations; after that we draw Xb
1(t), . . . , Xb

n(t) for t ∈ [1, 2]

randomly without replacement from the remaining elements in A, and so on.

The first bootstrap approach is the nonparametric bootstrap approach (B1 for short).

In this approach, to select independent bootstrap samples Xb
1(t), . . . , Xb

n(t), t ∈ [0, ℓ], one

draws with replacement from the original sample X1(t), . . . , Xn(t), t ∈ [0, ℓ]. Moreover, SSA

for bootstrap samples is calculated as follows:

SSAb(t) = n

ℓ∑
i=1

(X̄b
i·(t) − X̄i·(t) − X̄b(t) + X̄(t))2,

where t ∈ [0, 1], and X̄b
i· and X̄b are the appropriate sample means computed on the bootstrap

sample.

In the second nonparametric bootstrap approach (B2 for short), we first have to cen-

ter the observations, i.e., X1,c(t) = X1(t) − X̄•(t), . . . , Xn,c(t) = Xn(t) − X̄•(t) for t ∈
[0, ℓ], where X̄•(t) = n−1

∑n
j=1Xj(t) is the sample mean function for the original sample

X1, . . . , Xn. Second, Xb
1(t), . . . , Xb

n(t) for t ∈ [0, 1] are randomly drawn with replacement

from X1,c(t), . . . , Xn,c(t), t ∈ [0, 1]; independently, Xb
1(t), . . . , Xb

n(t) for t ∈ [1, 2] are ran-

domly drawn with replacement from X1,c(t), . . . , Xn,c(t), t ∈ [1, 2], and so on.

In the parametric bootstrap approach (B3 for short), we generate the bootstrap samples

from the Gaussian process with zero mean function and covariance function equal to

γ̂(s, t) =
1

n− 1

n∑
j=1

(Xj(s) − X̄•(s))(Xj(t) − X̄•(t)), s, t ∈ [0, ℓ].

The simulation studies suggest that the best type I error control and power are achieved

by the En(ℓ)-based B1 and B3 tests. However, the tests based on the test statistic Dn(ℓ)

(especially permutation tests) also have good finite sample properties.

The other solution to test the null hypothesis (3.6) is the projection method similar

to that presented in Section 3.1.2 (Smaga, 2019a). Let µi(t) = µ(t + (i − 1)), t ∈ [0, 1],

i = 1, . . . , l. Then, we can proceed similarly as in Section 3.1.2 by identifying Xij(t) with

Xi(t + (j − 1)) and taking I = [0, 1] and k = ℓ. Of course, to perform step 3, we can apply

different test procedures for repeated measures ANOVA problem, which may be preceded

by a projection data inspection, for example, in terms of normality. In simulations, Smaga

(2019a) used a standard repeated measures ANOVA test. The main conclusions were similar

to those in Section 3.1.2.

Since in this section, we consider the repeated measures ANOVA, we use another ex-

ample than Canadian weather data. We show the data example investigated in Kury lo and

Smaga (2024). It uses the DTI data available in the R package refund (Goldsmith et al.,

2022). The DTI is a magnetic resonance imaging technique providing different measures of
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Figure 8: Trajectories for the FA profiles at four visits.
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Figure 9: Sample mean functions of the FA at different visits and point-
wise test statistics.

water diffusivity along brain white matter tracts. In the experiment, DTI brain scans were

recorded for multiple sclerosis (MS) patients at several visits. The aim was to assess the effect

of neurodegeneration on disability. Using DTI, the fractional anisotropy (FA) tract profiles

for the corpus callosum (CCA) were determined. For each patient and each visit, the FA

profiles are measured in 93 design time points. Thus, we treat these data as functional data

on [1, 93].

For illustrative purposes, Kury lo and Smaga (2024) selected the observations for n = 17

patients with ℓ = 4 successive visits. They are presented in Figure 8. It is of interest to check

whether the mean functions of the FA at different visits are the same or not. The sample

mean functions as well as the pointwise test statistics are presented in Figure 9. The sample

mean functions suggest that the mean functions increase at subsequent visits. The p-values

of the ANOVA for functional repeated measurements are presented in Table 3 and Figure 10.

We observe that almost all tests reject the equality of FA profiles for various visits. The
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Figure 10:P -values of the random projection tests by Smaga (2019a) for
the DTI data set.

exceptions are the P2 and B2 C17(4) tests, which have larger p-values due to their very

conservative character.

p-values

Test statistic P1 P2 B1 B2 B3

C17(4) = 1.096 0 0.321 0 0.317 0
D17(4) = 494.1 0 0.001 0 0 0
E17(4) = 24.4 0 0 0 0 0

Table 3: Results of the aggregating the pointwise test statistics proce-
dures by Kury lo and Smaga (2024) for the DTI data set.

4. MULTIVARIATE ANALYSIS OF VARIANCE

In the previous sections, we have studied the ANOVA problem for univariate functional

data, i.e., we have measured one functional variable, e.g., the temperature in given locations.

However, we can measure many functional features for one experimental unit, e.g., the tem-

perature, precipitation, atmospheric pressure, and wind speed in given locations. Then, we

have multivariate functional data and the MANOVA for them. The multivariate analysis

of variance for functional data was first considered in Górecki and Smaga (2017), while in

Qiu et al. (2021), the two sample tests were considered. Other statistical problems are also

considered for multivariate functional data. To show just a few examples, we refer to the

following papers: Tokushige et al. (2007) and Jacques and Preda (2014) - clustering; Górecki

et al. (2018) - principal component analysis, discriminant coordinates, canonical correlation

analysis; Górecki et al. (2019) - variable selection in multivariate functional data classification;

Górecki et al. (2020) - independence testing. Some recent applications of multivariate func-

tional data analysis are as follows: comparative study of countries’ competitiveness (Krzyśko
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et al., 2022); analysis of data observed on different (dimensional) domains (Happ and Greven,

2018); analysis of air pollution in the South of France (Bouveyron et al., 2022).

Let Xij = (Xij1, . . . , Xijd)⊤, i = 1, . . . , k, j = 1, . . . , ni denote k groups of vectors of

stochastic processes belonging to the space Ld
2(I). Let SPd(µ,Γ) denote a d-dimensional

stochastic process with mean vector µ = (µ1, . . . , µd)⊤ and covariance function Γ. Assuming

that the Xij are i.i.d. SPd(µi,Γ), i = 1, . . . , k, j = 1, . . . , ni, we are interested in testing the

equality of k mean vectors

(4.1) H0 : µ1 = · · · = µk in Ld
2(I).

For testing H0, Górecki and Smaga (2017) proposed the permutation tests based on a

basis function representation of the components of the stochastic processes Xij , i = 1, . . . , k,

j = 1, . . . , ni, similarly to the test presented in Section 3.1.1. We can assume that

(4.2) Xijm(t) =

Km∑
l=0

αijmlφl(t), t ∈ I, m = 1, . . . , d,

where {φl}∞l=0 is an orthonormal basis of the space L1
2(I), and αijml, l = 0, . . . ,Km, are

random variables and Var(αijml) < ∞. We can estimate the coefficients in the same way as

described in Section 3.1.1. Let

KM = max{K1, . . . ,Kd},
αijm = (αijm0, . . . , αijmKm , 0, . . . , 0) ∈ RKM+1,

φ = (φ0, . . . , φKM )⊤.

Then

(4.3) Xij(t) =

 αij1
...

αijd

φ(t) = αijφ(t), t ∈ I.

Let

E =
k∑

i=1

ni∑
j=1

∫
I

(
Xij(t) − X̄i(t)

) (
Xij(t) − X̄i(t)

)⊤
dt,

H =
k∑

i=1

ni

∫
I

(
X̄i(t) − X̄(t)

) (
X̄i(t) − X̄(t)

)⊤
dt,

where X̄i(t) = n−1
i

∑ni
j=1Xij(t) and X̄(t) = n−1

∑k
i=1

∑ni
j=1Xij(t) for i = 1, . . . , k, t ∈ I.

Similarly to the classical multivariate analysis of variance, the matrices E and H were used

to construct test statistics for H0. Using a basis function representation of the data, the

matrices E and H can be expressed in more useful forms, as is presented in the following

proposition.

Proposition 2 (Górecki and Smaga (2017)). If the components of stochastic pro-

cesses Xij , i = 1, . . . , k, j = 1, . . . , ni, are represented by a finite number of orthonormal

basis functions, i.e., the equation (4.3) holds, then E = A−B and H = B−C, where

A =
k∑

i=1

ni∑
j=1

αijα
⊤
ij , B =

k∑
i=1

1

ni

ni∑
j=1

ni∑
m=1

αijα
⊤
im, C =

1

n

k∑
i=1

ni∑
j=1

k∑
t=1

nt∑
u=1

αijα
⊤
tu.
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By Proposition 2, the matrices E and H can be designated only based on the coefficient

matrices αij , which is important for the practical implementation of the tests. For testing H0,

we considered the test statistics, which are constructed based on test statistics appearing

in MANOVA, namely the Wilks’ lambda statistic W = det(E)/ det(E + H), the Lawley-

Hotelling trace statistic LH = trace(HE−1), the Pillai trace statistic P = trace(H(H+E)−1)

and the Roy’s maximum root statistic R = λmax(HE−1). (λmax(M) denotes the maximum

eigenvalue of a matrix M.) We proposed the permutation tests based on these test statistics.

We observed that any permutation of the stochastic processes Xij leaves the values of the

sums A and C unchanged. This observation results in quite fast implementation of the

permutation tests.

Górecki and Smaga (2017) also proposed tests based on random projections, the idea for

which is the same as that in Section 3.1.2. Let µi = (µi1, . . . , µid)⊤, µij ∈ L1
2(I), i = 1, . . . , k,

j = 1, . . . , d, and a vector vm ∈ L1
2(I) is chosen randomly using the Gaussian distribution ξ

for m = 1, . . . , d. If the null hypothesis H0 holds, then the null hypothesis

HV
0 :

 ⟨v1, µ11⟩1
...

⟨vd, µ1d⟩1

 = · · · =

 ⟨v1, µl1⟩1
...

⟨vd, µld⟩1


also holds for every V = (v1, . . . , vd)⊤ ∈ Ld

2(I). Moreover, we have the following theorem.

Theorem 4.1 (Górecki and Smaga (2017)). Under the same assumptions about ξ

as in Section 3.1.2, if µij ∈ L1
2(I), i = 1, . . . , k, j = 1, . . . , d, and there exist r1, r2, s such

that µr1s ̸= µr2s, then (ξ × · · · × ξ)(A) = 0, where ξ × · · · × ξ is a product measure on the

space Ld
2(I) and the set A consists of all vectors V = (v1, . . . , vd)⊤ ∈ Ld

2(I) for which HV
0 is

true.

Theorem 4.1 shows that if H0 fails, then for (ξ×· · ·×ξ)-almost every V ∈ Ld
2(I), the null

hypothesis HV
0 also fails. Therefore, we concluded that a test for the multivariate analysis of

variance for random vectors applied to test HV
0 can be used to test the multivariate analysis

of variance problem for functional data. Thus, we can apply an analogous test procedure as

in Section 3.1.2. To perform step 3, we can use the classical MANOVA tests, namely the

Wilks’ lambda test, the Lawley-Hotelling trace test, the Pillai trace test, and Roy’s maximum

root test, but other tests can also be used.

Recently, Qiu et al. (2021) proposed another tests, but just for the two sample problem

(k = 2). Their tests are based on aggregating the following pointwise test statistic, similar

to Section 3.1.3:

Tn(t) =
n1n2

n
(X̄1(t) − X̄2(t))

⊤(Γ̂(t, t))−1(X̄1(t) − X̄2(t)),

where for s, t ∈ I

Γ̂(s, t) =
1

n− 2

2∑
i=1

ni∑
j=1

(Xij(s) − X̄i(s))(Xij(t) − X̄i(t))
⊤.

To obtain test statistics, the integration and supremum are used:

Tn =

∫
I
Tn(t)dt, Tn,max = sup

t∈I
Tn(t).
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The distribution of Tn is approximated by the similar procedure as in Section 3.1.3, while for

Tn,max, the nonparametric bootstrap is used.

Simulation results indicate that almost all of the above test procedures control the type

I error level and have sensible power. The main exception is the projection test based on Roy’s

test, which is extremely liberal. Naturally, the other projection tests can have conservative

behavior. These are confirmed in the supplement.

Finally, we present the application of the above test procedures to compare both tem-

perature and precipitation in Canada in one analysis. We want to test the null hypothe-

sis (4.1) for vectors of functional data for these two variables. First, we apply the FMANOVA

test by Górecki and Smaga (2017) for three groups of Canadian weather stations. For the per-

mutation tests based on a basis function representation, we use the Fourier basis with K1 = 7

and K2 = 3, which were chosen from the set {3, 5, . . . , 31} using BIC. The values of the test

statistics are equal to W = 0.4160014, LH = 1.210839, P = 0.6642867, R = 1.021993, and

the p-values of all tests equal zero. The p-values of the tests based on random projections

are also close to zero. Therefore, all tests reject the null hypothesis (4.1) and the significant

differences in vectors of mean functions for temperature and precipitation in Canada are

detected.

In the end, let us consider the two sample problem for comparing the temperature and

precipitation in Eastern and Western Canada. For this problem, the p-values of the tests by

Qiu et al. (2021) based on Tn and Tn,max are equal to 0.0009174405 and 0, respectively. Thus,

we reject the null hypothesis, which seems to be due to the differences in the precipitation

(see Figure 2).

5. CONCLUSIONS

We have presented methodological frameworks, their properties, and practical applica-

tions of functional analysis of variance. This analysis has led us to explore various widely

adopted approaches in the field of functional data analysis. These approaches are grounded in

diverse concepts, such as the aggregation of pointwise statistics, the expansion of functional

data using basis functions, the utilization of graphical envelopes, the application of principal

components analysis, and the incorporation of random projections. These techniques find

utility in a multitude of functional data analysis solutions, extending beyond the realm of

functional analysis of variance as discussed in this paper. Furthermore, their versatility allows

for their application to a wide range of issues within the field of functional data analysis.

SUPPLEMENT

The supplement presents the simulation studies based on real data examples.
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