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1. INTRODUCTION

The Lomax distribution was introduced by Lomax (1954) to model business failure

data. This distribution has, however, been applied to data from a wide range of areas. Some

of the areas include income and wealth data Atkinson and Harrison (1978), receiver operat-

ing characteristic curve analysis Campbell and Ratnaparkhi (1993), reliability and survival

analysis Hassan and Al-Ghamdi (2009); Hassan et al. (2016); Abujarad and Khan (2021);

Ogunde et al. (2023), bladder cancer data Rady et al. (2016), wind speed data Ahsan ul

Haq et al. (2020), COVID-19 death cases of Nepal Dhungana and Kumar (2022), insurance

claims data Hamed et al. (2022), and wireless channel modeling Sanchez and Lopez-Martinez

(2023); to mention but a few.

The Lomax distribution is a special Pareto distribution whose support is shifted to

start at zero. Its probability density function is

f(x) =
α

λ

(
1 +

x

λ

)−(α+1)
(1.1)

for x > 0, α > 0 and λ > 0, where α is a shape parameter and λ is a scale parameter. We

shall denote a random variable X having the probability density function (1.1) by L(α, λ).

If X ∼ L(α, λ) then its cumulative distribution function is

F (x) = 1−
(
1 +

x

λ

)−α

for x > 0, α > 0, and λ > 0. The mean and the variance of X ∼ L(α, λ) are

E (X) =
λ

α− 1
, α > 1(1.2)

and

Var (X) =
αλ2

(α− 1)2(α− 2)
, α > 2,(1.3)

respectively.

A number of different estimators for α and λ have been proposed in the literature.

Abd-Elfattah and Alharbey (2010) derived generalised probability weighted moments esti-

mators. Bayesian estimators have been considered by Nasiri and Hosseini (2012), Ferreira

et al. (2020) and He et al. (2023). Giles et al. (2013) studied the bias of maximum likeli-

hood estimators. Shakeel et al. (2017) compared the performance of L moments estimators,

trimmed L moments estimators and probability weighted moments estimators. Nombebe

et al. (2023) compared the performance of method of moments estimators, maximum likeli-

hood estimators, L moments estimators and some minimum distance estimators.

The maximum likelihood estimators and their bias-corrected versions do not have closed

forms. The aim of this paper is to propose closed form estimators based on a modified method

of moments. The proposed estimators have the potential to be applied easily to any applica-

tion area of the Lomax distribution. The advantages of the proposed estimators over others

include: i) they do not require numerical solving which can be prone to numerical errors;

ii) they do not require numerical solving which can be costly too; iii) they can provide deep
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insights into the underlying behavior and relationships between parameters, enhancing the-

oretical understanding; iv) they allow for straightforward sensitivity analysis; v) they can

be valuable in educational contexts for demonstrating principles and methods without the

distraction of numerical implementation details; vi) they can be used to make precise pre-

dictions and to develop models that are both interpretable and actionable; vii) practitioners

in some countries may not have access to software to compute estimators taking non-closed

forms; viii) many departments in Africa do not have more than a few computers and they

lack computer software; ix) there may be no real valued solutions when estimators require

solving of non-linear equations; x) even if real valued solutions exist they may not be unique.

Furthermore, the modified method of moments includes a bias correction mechanism,

producing estimators that are unbiased even in smaller samples, thus addressing the bias

problem effectively. The flexibility of modified method of moments estimators across different

sample sizes is another motivating factor. While maximum likelihood and traditional moment

estimators may underperform or become inefficient in small samples, the modified method of

estimators demonstrate reliability and robustness, providing consistent performance across

various sample sizes. Therefore, the motivation for the modified method of estimators lies

in its ability to balance simplicity, computational efficiency, and reduced bias, making it an

appealing alternative to more complex estimation methods.

Section 3 proposes closed form estimators for α and λ. Large sample properties of

these estimators including consistency and asymptotic normality are derived in Section 4.

A simulation study is conducted in Section 5 to compare the performance of the proposed

estimators with other estimators taking closed forms and based on moments, see Section 2.

However, maximum likelihood estimators, which do not have closed form expressions, are also

compared to the proposed estimators. Conclusions and future work are discussed in Section

6.

The calculations of this paper involve the generalised exponential integral defined by

Ep(z) = zp−1

∫ ∞

z

e−t

tp
dt

for z > 0.

2. SOME COMMON ESTIMATORS

Throughout, we suppose X1, X2, . . . , Xn are independent and identical copies of X ∼
L(α, λ). Let X1:n < X2:n < · · · < Xn:n denote the corresponding order statistics.
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2.1. MAXIMUM LIKELIHOOD ESTIMATORS

Maximum likelihood estimators for α and λ are the simultaneous solutions of

(2.1)

n

α
−

n∑
i=1

log

(
1 +

Xi

λ

)
= 0,

α+ 1

λ

n∑
i=1

Xi

λ+Xi
− n

λ
= 0.

The equations in (2.1) do not have closed form solutions and hence require iterative methods

to solve. Nombebe et al. (2023) explained one approach that can be used to carry out the

optimisation procedure. It can be shown that

√
n

 α̂MLE − α

λ̂MLE − λ

 −→
d

N

 0

0

 ,

 α2(α+ 1)2 αλ(α+ 1)(α+ 2)

αλ(α+ 1)(α+ 2) λ2(α+1)2(α+2)
α


as n → ∞, where α̂MLE and λ̂MLE denote maximum likelihood estimators of α and λ,

respectively.

2.2. L MOMENTS ESTIMATORS

The L moments method of parameter estimation was introduced by Hosking (1990) and

is based on comparing moments of linear combinations of order statistics to sample versions.

Given a random variable X, the rth population L moment is

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k:r)(2.2)

for r ≥ 1. The corresponding rth sample moment is

lr =

(
n

r

)−1∑∑
· · ·

∑
1≤i1<···<ir≤n

r−1
r−1∑
k=0

(−1)k
(
r − 1

k

)
Xir−k:n

for r = 1, 2, . . . , n. The first two sample moments are

l1 =
1

n

n∑
i=1

Xi:n = X(2.3)

and

l2 =
1

2

(
n

2

)−1∑∑
i>j

(Xi:n −Xj:n) =
2

n(n− 1)

n∑
i=1

(i− 1)Xi:n −X.(2.4)

For X ∼ L(α, λ), the first two population L moments are

λ1 =
λ

α− 1
(2.5)
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and

λ2 =
λα

2(α− 1)2
.(2.6)

Equating (2.3) and (2.4) to (2.5) and (2.6), respectively, Shakeel et al. (2017) obtained the

L moments estimators for the Lomax distribution as

α̂LM =
l2

2l2 − 1
, λ̂LM =

l1 (l1 − l2)

2l2 − 1
.

2.3. TRIMMED L MOMENTS ESTIMATORS

The method of trimmed L moments is due to Elamir and Seheult (2003). Given a

random variable X, the rth population trimmed L moment is

λ(t1,t2)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k+t1:r+t1+t2)(2.7)

for r ≥ 1, where t1 and t2 are non-negative integers. Unlike L moments, trimmed L moments

can be applied to distributions not having finite moments all orders (for example, the Lomax

distribution). If t1 = t2 = 0 then (2.7) reduces to (2.2). If t1 = t2 = t then (2.7) reduces to

λ(t)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (Xr−k+t:r+2t) .(2.8)

An unbiased estimator of (2.8) is

l(t)r =
1

r

n−t∑
k=r+t

[∑r−1
j=0(−1)j

(
r−1
j

)(
k−1

r+t−j−1

)(
n−k
t+j

)(
n

r+2t

) ]
Xk:n.(2.9)

The particular cases of (2.9) for r = 1, 2 and t = 1 are

l
(1)
1 = 6

n−1∑
k=2

(k − 1)(n− k)

n(n− 1)(n− 2)
Xk:n(2.10)

and

l
(1)
2 = 6

n−1∑
k=3

(k − 1)(n− k)(2k − n− 1)

n(n− 1)(n− 2)(n− 3)
Xk:n.(2.11)

For X ∼ L(α, λ), the first two population trimmed L moments for t1 = t2 = 1 are

λ
(1)
1 =

λ(5α− 1)

(2α− 1)(3α− 1)
(2.12)

and

λ
(1)
2 =

6λα2

(2α− 1)(3α− 1)(4α− 1)
.(2.13)

Equating (2.10) and (2.11) to (2.12) and (2.13), respectively, Shakeel et al. (2017) obtained

the trimmed L moments estimators for the Lomax distribution as

α̂TLM =
9l

(1)
2 +

√(
l
(1)
2

)2
+ 24l

(1)
1 l

(1)
2

2
(
20l

(1)
2 − 6l

(1)
1

) , λ̂TLM =
l
(1)
1 (2α̂TLM − 1) (3α̂TLM − 1)

5α̂TLM − 1
.
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2.4. METHOD OF MOMENTS ESTIMATORS

One of the most popular methods of estimation is the method of moments where the

estimation is made by comparing population moments to sample moments. The rth moment

of X ∼ L(α, λ) is

(2.14) E (Xr) =
λrΓ(α− r)Γ(1 + r)

Γ(α)

for α > r and r = 1, 2, . . .. From (2.14), we obtain the first two population moments as

(2.15)

E (X) =
λ

α− 1
,

E
(
X2

)
=

2λ2

(α− 1)(α− 2)
.

Comparing the population moments in (2.15) to the corresponding sample moments leads to

the method of moments estimators Nombebe et al. (2023)

α̂MM =
2
(

1
n

∑n
i=1X

2
i −X

2
)

1
n

∑n
i=1X

2
i − 2X

2 ,

λ̂MM =
X

(
1
n

∑n
i=1X

2
i

)
1
n

∑n
i=1X

2
i − 2X

2 .

2.5. PROBABILITY WEIGHTED MOMENTS ESTIMATORS

Greenwood et al. (1979) introduced a method based on Probability Weighted Moments

(PWMs). For a random variable X with cumulative distribution function FX , the PWM is

defined as Greenwood et al. (1979)

Mp,u,v = E {Xp [FX(X)]u [1− FX(X)]v} ,

where p, u and v are non-negative integers. An alternative form of the PWM is

Mp,u,v =

∫ 1

0
[Q (FX)]p [FX(X)]u [1− FX(X)]v dFX(x)

if the inverse cumulative distribution function Q(·) can be written in a closed form. Using

this alternative form, Shakeel et al. (2017) showed that for X ∼ L(α, λ),

M1,0,0 =
αλ

λ− 1
− λ(2.16)

and

M1,0,1 =
αλ

λ− 1
− λ− α2λ

(λ− 1)(2λ− 1)
+

λ

2
.(2.17)

Equating (2.16) and (2.17) to their sample counterparts, Shakeel et al. (2017) obtained the

probability weighted moments estimators for the Lomax distribution as

α̂PWM =
2M̂1,0,1 − M̂1,0,0

4M̂1,0,1 − M̂1,0,0

, λ̂PWM =
2M̂1,0,0M̂1,0,1

M̂1,0,0 − 4M̂1,0,1

.
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3. MODIFIED METHOD OF MOMENTS ESTIMATORS

In this section, we propose modified method of moments estimators for the Lomax

distribution. This is based on moments of the exponential function of X ∼ L(α, λ). Similar

approaches have been used by other researchers, see Ng et al. (2003) giving estimators for a

two-parameter Birnbaum-Saunders distribution and Ghitany et al. (2017) giving estimators

for a two-parameter weighted Lindley distribution.

Let X ∼ L(α, λ) then we can easily show that

(3.1) E
(
e−X

)
= αeλEα+1(λ)

and

(3.2) E
(
Xe−X

)
= αλeλ [Eα(λ)− Eα+1(λ)] .

Using integration by parts, we can also easily show that

(3.3) Eα+1(λ) =
1

α

[
e−λ − λEα(λ)

]
.

(3.3) can be used to rewrite (3.1) and (3.2) as

(3.4) E
(
e−X

)
= 1− λeλEα(λ)

and

(3.5) E
(
Xe−X

)
= αλ

(
1 +

λ

α

)
eλEα(λ)− λ = (α+ λ)λeλEα(λ)− λ,

respectively. Substituting (3.4) into (3.5) and simplifying gives

(3.6) E
(
Xe−X

)
= α

[
1− E

(
e−X

)]
− λE

(
e−X

)
.

Solving (1.2) and (3.6) simultaneously gives

α =
AB − C

AB +B − 1
,

λ =
A(1−B − C)

AB +B − 1
,

where A = E (X), B = E
(
e−X

)
and C = E

(
Xe−X

)
. Using the weak law of large numbers,

we can replace the expectations A = E (X), B = E
(
e−X

)
and C = E

(
Xe−X

)
by sample

versions to obtain the proposed estimators for α and λ given by

(3.7)

α̂ =
X

(
1
n

∑n
i=1 e

−Xi
)
− 1

n

∑n
i=1Xie

−Xi

X
(
1
n

∑n
i=1 e

−Xi
)
+ 1

n

∑n
i=1 e

−Xi − 1
,

λ̂ =
X

(
1− 1

n

∑n
i=1 e

−Xi − 1
n

∑n
i=1Xie

−Xi
)

X
(
1
n

∑n
i=1 e

−Xi
)
+ 1

n

∑n
i=1 e

−Xi − 1
.
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4. LARGE SAMPLE PROPERTIES

In this section, we show that the proposed estimators are strongly consistent and asymp-

totically normal. We also derive their asymptotic variances.

Theorem 4.1 The estimators α̂ and λ̂ given in (3.7) are strongly consistent for α and λ,

respectively.

Proof Consider a random sample of size n from X ∼ L(α, λ). Let P , Q and R be the means

of X, e−X and Xe−X , respectively. From (1.2), (3.4) and (3.5), we have

E (X) =
λ

α− 1
,

E
(
e−X

)
= 1− λeλEα(λ),

E
(
Xe−X

)
= (α+ λ)λeλEα(λ)− λ.

By the strong law of large numbers
P

Q

R

 →



λ

α− 1

1− λeλEα(λ)

(α+ λ)λeλEα(λ)− λ


almost surely as n → ∞. Define h(p, q, r) = pq−r

pq+q−1 and g(p, q, r) = p(1−q−r)
pq+q−1 . Note that

h(p, q, r) and g(p, q, r) are continuous at(
λ

α− 1
, 1− λeλEα(λ), (α+ λ)λeλEα(λ)− λ

)
.

Applying the continuous mapping theorem implies that α̂ and λ̂ converge almost surely to α

and λ, respectively, as n → ∞. The proof is complete. 2

Theorem 4.2 requires evaluation of some expectations and variances involving P , Q

and R. Using (1.3), we have

(4.1) Var
(√

n P
)
= Var (X) =

αλ2

(α− 1)2(α− 2)
.

We can show that

E
(
e−X

)2
= α(2λ)αe2λ

∫ ∞

2λ

e−t

tα+1
dt

= αe2λEα+1(2λ)

= αe2λ
[
e−2λ

α
− 2λ

α
Eα(2λ)

]
= 1− 2λe2λEα(2λ)

and therefore

(4.2) Var
(√

n Q
)
= Var

(
e−X

)
= 1− 2λe2λEα(2λ)−

[
1− λeλEα(λ)

]2
.
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We can also show that

E
(
Xe−X

)2
= αλ2e2λ [Eα−1(2λ)− 2Eα(2λ) + Eα+1(2λ)]

= αλ2e2λ
[
e−2λ

2λ
+

(1− α)

2λ
Eα(2λ)− 2Eα(2λ) +

e−2λ

α
− 2λ

α
Eα(2λ)

]
= λ

[
α

2
+ λ+

(
α(1− α)

2
− 2αλ− 2λ2

)
e2λEα(2λ)

]
and hence

(4.3)

Var
(√

n R
)
= λ

[
α

2
+ λ+

(
α(1− α)

2
− 2αλ− 2λ2

)
e2λEα(2λ)

]
−
[
(α+ λ)λeλEα(λ)− λ

]2
.

Using (1.2), (3.4) and (3.5), we can show that

(4.4) Cov
(√

n P ,
√
n Q

)
= Cov

(
X, e−X

)
=

αλ

α− 1

[
(α+ λ− 1)eλEα(λ)− 1

]
.

We can show that

E
(
X2e−X

)
= αλ2eλ [Eα−1(λ)− 2Eα(λ) + Eα+1(λ)]

= αλ2eλ
[
e−λ

λ
+

(1− α)

λ
Eα(λ)− 2Eα(λ) +

e−λ

α
− λ

α
Eα(λ)

]
= λ

[
α+ λ+

{
α(1− α)− 2αλ− λ2

}
eλEα(λ)

]
and then use (1.2) along with (3.5) to show that

(4.5)

Cov
(√

n P ,
√
n R

)
= Cov

(
X,Xe−X

)
=

αλ

α− 1

[
α+ λ− 1 +

{
(1− α)(α− 1)− 2αλ+ λ− λ2

}
eλEα(λ)

]
.

Similarly, we can show that

E
(
Xe−2X

)
= αλe2λ [Eα(2λ)− Eα+1(2λ)]

= αλe2λ
[
Eα(2λ)−

e−2λ

α
+

2λ

α
Eα(2λ)

]
= λ

[
(α+ 2λ) e2λEα(2λ)− 1

]
and then use (3.4) together with (3.5) to show that

Cov
(√

n Q,
√
n R

)
= Cov

(
e−X , Xe−X

)
= λ

[
(α+ 2λ)e2λEα(2λ)− 1−

{
1− λeλEα(λ)

}{
(α+ λ)eλEα(λ)− 1

}]
.(4.6)

Theorem 4.2 The estimators α̂ and λ̂ given in (3.7) are asymptotically normally distributed

as

√
n
(
α̂− α, λ̂− λ

)
d−→ N

(
02,MΣMT

)
as n → ∞, where

M =
1

D

 (α−1)2

λ

[
1− λeλEα(λ)

] (α−1)(α+λ)
λ

α−1
λ

(α− 1)2eλEα(λ) α+ λ 1

 ,



10 V. Nawa, S. Nadarajah and M. Kebe

Σ =


αλ2

(α−1)2(α−2)
αλ
α−1

[
(α+ λ− 1)eλEα(λ)− 1

]
Cov (P,R)

αλ
α−1

[
(α+ λ− 1)eλEα(λ)− 1

]
1− 2λe2λEα(2λ)−

[
1− λeλEα(λ)

]2
Cov (Q,R)

Cov (P,R) Cov (Q,R) Var (R)

 ,

Cov (P,R) =
αλ

α− 1

[
α+ λ− 1 +

{
(1− α)(α− 1)− 2αλ+ λ− λ2

}
eλEα(λ)

]
,

Cov (Q,R) = λ
[
(α+ 2λ)e2λEα(2λ)− 1−

{
1− λeλEα(λ)

}{
(α+ λ)eλEα(λ)− 1

}]
,

Var (R) = λ

[
α

2
+ λ+

(
α(1− α)

2
− 2αλ− 2λ2

)
e2λEα(2λ)

]
−
[
(α+ λ)λeλEα(λ)− λ

]2
and D = (α+ λ− 1)eλEα(λ)− 1 provided that α > 2.

Proof By the Central Limit Theorem

√
n
[(
P ,Q,R

)
− (p0, q0, r0)

] d−→ N (03,Σ)

as n → ∞, where

(p0, q0, r0) =

(
λ

α− 1
, 1− λeλEα(λ), (α+ λ)λeλEα(λ)− λ

)
,

Σ =


Var (P ) Cov (P,Q) Cov (P,R)

Cov (P,Q) Var (Q) Cov (Q,R)

Cov (P,R) Cov (Q,R) Var (R)


and the entries of Σ are given by (4.1)-(4.6). Using the delta method Kelley (1928)

√
n
(
α̂− α, λ̂− λ

)
d−→ N

(
02,MΣMT

)
as n → ∞, where

M =


∂h
∂p

∂h
∂q

∂h
∂r

∂g
∂p

∂g
∂q

∂g
∂r

 ,

where the partial derivatives in M are evaluated at

(p0, q0, r0) =

(
λ

α− 1
, 1− λeλEα(λ), (α+ λ)λeλEα(λ)− λ

)
.

Evaluating the partial derivatives gives the stated M. The proof is complete. 2
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5. COMPARISON OF ESTIMATORS

In this section, we compare variances and absolute biases of the method of moments

estimators, L moments estimators, trimmed L moments estimators, probability weighted

moments estimators, maximum likelihood estimators and our estimators for finite n less than

or equal to 50. The comparison was performed through a simulation scheme as follows.

i) select values for α and λ;

ii) set n = 5;

iii) simulate 10,000 random samples each of size n from the Lomax distribution;

iv) compute the estimators of α and λ using the six methods for each of the 10,000 samples;

v) use the values in step iv) to compute the variances and absolute biases;

vi) repeat steps iii) to v) for n = 6, 7, . . . , 50.

This scheme was executed for a wide range of values of α and λ. Figure 1 shows how the

variances compare versus n for α = 0.1 and λ = 0.001. Figure 2 shows how the variances

compare versus n for α = 0.1 and λ = 0.0001. Figure 3 shows how the variances compare

versus n for α = 0.1 and λ = 0.005. Figure 4 shows how the absolute biases compare versus

n for α = 0.1 and λ = 0.001. Figure 5 shows how the absolute biases compare versus n for

α = 0.1 and λ = 0.0001. Figure 6 shows how the absolute biases compare versus n for α = 0.1

and λ = 0.005. Since the y axes are in log scale, only the positive differences in variances /

absolute biases appear in the figures.
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Figure 1: Comparison of the variances for α = 0.1 and λ = 0.001:
Var (α̂LM )−Var (α̂MMM ) in the left of first row; Var (α̂MLE)−
Var (α̂MMM ) in the middle of first row; Var (α̂MM ) −
Var (α̂MMM ) in the right of first row; Var (α̂PWM ) −
Var (α̂MMM ) in the left of second row; Var (α̂TLM ) −
Var (α̂MMM ) in the middle of second row; Var

(
λ̂LM

)
−

Var
(
λ̂MMM

)
in the right of second row; Var

(
λ̂MM

)
−

Var
(
λ̂MMM

)
in the left of third row; Var

(
λ̂PWM

)
−

Var
(
λ̂MMM

)
in the middle of third row; Var

(
λ̂TLM

)
−

Var
(
λ̂MMM

)
in the right of third row. The y axes are in

log scale.
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Figure 2: Comparison of the variances for α = 0.1 and λ = 0.0001:
Var (α̂LM )−Var (α̂MMM ) in the left of first row; Var (α̂MLE)−
Var (α̂MMM ) in the middle of first row; Var (α̂MM ) −
Var (α̂MMM ) in the right of first row; Var (α̂PWM ) −
Var (α̂MMM ) in the left of second row; Var (α̂TLM ) −
Var (α̂MMM ) in the middle of second row; Var

(
λ̂LM

)
−

Var
(
λ̂MMM

)
in the right of second row; Var

(
λ̂MM

)
−

Var
(
λ̂MMM

)
in the left of third row; Var

(
λ̂PWM

)
−

Var
(
λ̂MMM

)
in the middle of third row; Var

(
λ̂TLM

)
−

Var
(
λ̂MMM

)
in the right of third row. The y axes are in

log scale.
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Figure 3: Comparison of the variances for α = 0.1 and λ = 0.005:
Var (α̂LM )−Var (α̂MMM ) in the left of first row; Var (α̂MLE)−
Var (α̂MMM ) in the middle of first row; Var (α̂MM ) −
Var (α̂MMM ) in the right of first row; Var (α̂PWM ) −
Var (α̂MMM ) in the left of second row; Var (α̂TLM ) −
Var (α̂MMM ) in the middle of second row; Var

(
λ̂LM

)
−

Var
(
λ̂MMM

)
in the right of second row; Var

(
λ̂MM

)
−

Var
(
λ̂MMM

)
in the left of third row; Var

(
λ̂PWM

)
−

Var
(
λ̂MMM

)
in the middle of third row; Var

(
λ̂TLM

)
−

Var
(
λ̂MMM

)
in the right of third row. The y axes are in

log scale.
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Figure 4: Comparison of the absolute biases for α = 0.1 and λ =
0.001: |Bias (α̂MM )| − |Bias (α̂MMM )| in the left of first
row; |Bias (α̂PWM )| − |Bias (α̂MMM )| in the middle of first
row; |Bias (α̂MLE)| − |Bias (α̂MMM )| in the right of first row;∣∣∣Bias (

λ̂MM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the left of second row;∣∣∣Bias (
λ̂LM

)∣∣∣− ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the middle of second row;∣∣∣Bias (
λ̂TLM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the right of second row;∣∣∣Bias (
λ̂PWM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in third row. The y axes

are in log scale.
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Figure 5: Comparison of the absolute biases for α = 0.1 and λ =
0.0001: |Bias (α̂MM )| − |Bias (α̂MMM )| in the left of first
row; |Bias (α̂PWM )| − |Bias (α̂MMM )| in the middle of first
row; |Bias (α̂MLE)| − |Bias (α̂MMM )| in the right of first row;∣∣∣Bias (

λ̂MM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the left of second row;∣∣∣Bias (
λ̂LM

)∣∣∣− ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the middle of second row;∣∣∣Bias (
λ̂TLM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the right of second row;∣∣∣Bias (
λ̂PWM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in third row. The y axes

are in log scale.
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Figure 6: Comparison of the absolute biases for α = 0.1 and λ =
0.005: |Bias (α̂MM )| − |Bias (α̂MMM )| in the left of first
row; |Bias (α̂PWM )| − |Bias (α̂MMM )| in the middle of first
row; |Bias (α̂MLE)| − |Bias (α̂MMM )| in the right of first row;∣∣∣Bias (

λ̂MM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the left of second row;∣∣∣Bias (
λ̂LM

)∣∣∣− ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the middle of second row;∣∣∣Bias (
λ̂TLM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in the right of second row;∣∣∣Bias (
λ̂PWM

)∣∣∣ − ∣∣∣Bias (
λ̂MMM

)∣∣∣ in third row. The y axes

are in log scale.

We see from Figure 1 that the proposed estimator for α is superior to L moments

estimator (with variance reducing by a factor of 10) for all n ≤ 25, maximum likelihood

estimator (with variance reducing by a factor of 1011) for all n ≤ 50, method of moments

estimator (with variance reducing by a factor of 104) for all n ≤ 50, probability weighted

moments estimator (with variance reducing by a factor of 104) for all n ≤ 50 and trimmed L

moments estimator (with variance reducing by a factor of 103) for all n ≤ 50. The proposed
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estimator for λ is superior to L moments estimator (with variance reducing by a factor of

1081) for all n ≤ 50, method of moments estimator (with variance reducing by a factor of

10124) for all n ≤ 50, probability weighted moments estimator (with variance reducing by a

factor of 10123) for all n ≤ 50 and trimmed L moments estimator (with variance reducing

by a factor of 1042) for all n ≤ 50. Only the maximum likelihood estimator for λ performed

better than the proposed estimator for λ for all n ≤ 50.

We see from Figure 2 that the proposed estimator for α is superior to L moments

estimator (with variance reducing by a factor of 10) for all n ≤ 40, maximum likelihood

estimator (with variance reducing by a factor of 1011) for all n ≤ 50, method of moments

estimator (with variance reducing by a factor of 102) for all n ≤ 50, probability weighted

moments estimator (with variance reducing by a factor of 103) for all n ≤ 50 and trimmed L

moments estimator (with variance reducing by a factor of 10) for all n ≤ 50. The proposed

estimator for λ is superior to L moments estimator (with variance reducing by a factor of

1094) for all n ≤ 50, method of moments estimator (with variance reducing by a factor of

10131) for all n ≤ 50, probability weighted moments estimator (with variance reducing by a

factor of 10127) for all n ≤ 50 and trimmed L moments estimator (with variance reducing

by a factor of 1041) for all n ≤ 50. Only the maximum likelihood estimator for λ performed

better than the proposed estimator for λ for all n ≤ 50.

We see from Figure 3 that the proposed estimator for α is superior to L moments

estimator (with variance reducing by a factor of 1) for all n ≤ 29, maximum likelihood

estimator (with variance reducing by a factor of 1011) for all n ≤ 50, method of moments

estimator (with variance reducing by a factor of 102) for all n ≤ 50, probability weighted

moments estimator (with variance reducing by a factor of 103) for all n ≤ 50 and trimmed L

moments estimator (with variance reducing by a factor of 102) for all n ≤ 50. The proposed

estimator for λ is superior to L moments estimator (with variance reducing by a factor of

1086) for all n ≤ 50, method of moments estimator (with variance reducing by a factor of

10126) for all n ≤ 50, probability weighted moments estimator (with variance reducing by a

factor of 10124) for all n ≤ 50 and trimmed L moments estimator (with variance reducing

by a factor of 1048) for all n ≤ 50. Only the maximum likelihood estimator for λ performed

better than the proposed estimator for λ for all n ≤ 50.

We see from Figure 4 that the proposed estimator for α is superior to method of

moments estimator (with absolute bias reducing by a factor of 2) for all n ≤ 50, probability

weighted moments estimator (with absolute bias reducing by a factor of 2) for all n ≤ 50

and maximum likelihood estimator (with absolute bias reducing by a factor of 2 · 105) for all
n ≤ 10. The L moments and trimmed L moments estimators for α performed better than the

proposed estimator for α for all n ≤ 50. The proposed estimator for λ is superior to method

of moments estimator (with absolute bias reducing by a factor of 1075) for all n ≤ 50, L

moments estimator (with absolute bias reducing by a factor of 1057) for all n ≤ 50, trimmed

L moments estimator (with absolute bias reducing by a factor of 1018) for all n ≤ 50 and

probability weighted moments estimator (with absolute bias reducing by a factor of 1074) for

all n ≤ 50. Only the maximum likelihood estimator for λ performed better than the proposed

estimator for λ for all n ≤ 50.

We see from Figure 5 that the proposed estimator for α is superior to method of

moments estimator (with absolute bias reducing by a factor of 1.8) for all n ≤ 50, probability

weighted moments estimator (with absolute bias reducing by a factor of 5) for all n ≤ 50
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and maximum likelihood estimator (with absolute bias reducing by a factor of 105) for all

n ≤ 9. The L moments and trimmed L moments estimators for α performed better than the

proposed estimator for α for all n ≤ 50. The proposed estimator for λ is superior to method

of moments estimator (with absolute bias reducing by a factor of 1061) for all n ≤ 50, L

moments estimator (with absolute bias reducing by a factor of 1046) for all n ≤ 50, trimmed

L moments estimator (with absolute bias reducing by a factor of 1019) for all n ≤ 50 and

probability weighted moments estimator (with absolute bias reducing by a factor of 1061) for

all n ≤ 50. Only the maximum likelihood estimator for λ performed better than the proposed

estimator for λ for all n ≤ 50.

We see from Figure 6 that the proposed estimator for α is superior to method of

moments estimator (with absolute bias reducing by a factor of 20) for all n ≤ 50, probability

weighted moments estimator (with absolute bias reducing by a factor of 10) for all n ≤ 50

and maximum likelihood estimator (with absolute bias reducing by a factor of 5 · 104) for all
n ≤ 10. The L moments and trimmed L moments estimators for α performed better than the

proposed estimator for α for all n ≤ 50. The proposed estimator for λ is superior to method

of moments estimator (with absolute bias reducing by a factor of 1062) for all n ≤ 50, L

moments estimator (with absolute bias reducing by a factor of 1035) for all n ≤ 50, trimmed

L moments estimator (with absolute bias reducing by a factor of 1022) for all n ≤ 50 and

probability weighted moments estimator (with absolute bias reducing by a factor of 1061) for

all n ≤ 50. Only the maximum likelihood estimator for λ performed better than the proposed

estimator for λ for all n ≤ 50.

The conclusions were similar to those based on Figures 1 to 6 for other small values

of α and λ. All computations in this section were performed using the base package of the

R software (R Core Team, 2024). None of the contributed packages in the R software were

used.

6. CONCLUSIONS

We have proposed new closed form estimators for the shape and scale parameters

of the Lomax distribution. We have established their strong consistency and asymptotic

normality, deriving among others asymptotic variances of the estimators. We have conducted

a simulation study to compare their performance versus method of moments estimators taking

closed forms, L moments estimators taking closed forms, trimmed L moments estimators

closed forms, probability weighted moments estimators taking closed forms and maximum

likelihood estimators not taking closed forms. The performance was assessed in terms of

absolute biases and variances for sample sizes less than or equal to 50. The proposed estimator

for the shape parameter performed better than all of the estimators but the L moments and

trimmed L moments estimators in terms of absolute bias. The proposed estimator for the

shape parameter performed better than all of the estimators in terms of variance. The

proposed estimator for the scale parameter performed better than all of the estimators but

the maximum likelihood estimator in terms of absolute bias. The proposed estimator for

the scale parameter performed better than all of the estimators but the maximum likelihood

estimator in terms of variance. The relative performance of the proposed estimators over

others were often of several orders of magnitude.



20 V. Nawa, S. Nadarajah and M. Kebe

The mean squared error is the sum of variance and the square of absolute bias. Hence,

the conclusions are the same with respect to mean square error. That is, the proposed

estimator for the shape parameter is better than all of the estimators but the L moments and

trimmed L moments estimators in terms of mean squared error; the proposed estimator for

the scale parameter is better than all of the estimators but the maximum likelihood estimator

in terms of mean square error.

In summary, the proposed modified method of moments estimators offer a valuable

alternative for parameter estimation in the Lomax distribution, especially when dealing with

small sample sizes or in situations where computational resources are limited. Their closed

form nature makes them particularly attractive for quick and reliable estimation in practical

applications.

Future work is to derive new closed form estimators for the parameters of bivariate

Lomax distributions, multivariate Lomax distributions, matrix variate Lomax distributions

and complex variate Lomax distributions. We could explore the performance of the proposed

estimators in various applied contexts such as reliability analysis, income modeling, or sur-

vival data. Additionally, investigating the robustness of the estimators to outliers or model

misspecification could provide further insights into their practical utility.
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