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1. INTRODUCTION

Count data are collected in many scientific fields, not only for one variable of interest,

but also for two (or more) dependent variables. For example, some of these areas are accident

and insurance studies (Gómez-Dèniz, 2016; Gómez-Dèniz et al., 2012; Papageorgiou, 1986),

ecology (Holgate, 1966), biology, sociology and demography (Rao et al., 1973; Papageorgiou

and David, 1994). Very often in univariate or bivariate count data samples, the variance or

the marginal variances are greater than the mean or the marginal means respectively, as in

the bivariate data sets recorded in the above papers. Therefore, for modeling them we should

employ univariate distributions with the property of over-dispersion or bivariate models with

over-dispersed marginals.

A recently developed class of distributions with this property based on the seminal

paper by Sankaran (1970) and applications in a variety of areas is the class of Poisson-

Lindley distributions. Among its members, we refer to the univariate models derived by

Chesneau et al. (2023); Atikankul (2023); Irshad et al. (2023); Bhati et al. (2015); Mahmoudi

and Zakerzadeh (2010), and to the bivariate or multivariate models by Irshad et al. (2024);

Vardaki and Papageorgiou (2024); Papageorgiou and Vardaki (2022); Gómez-Dèniz et al.

(2012).

The purpose of this paper is threefold. (i) To introduce and study an alternative univari-

ate Poisson generalized Lindley (APGL) distribution, which appears as marginal distribution

in all bivariate models presented in this paper. In addition, utilizing the general methodology

developed by Papageorgiou and Vardaki (2022) we introduce two alternative bivariate PGL

distributions and examine their characteristics in detail. (ii) To demonstrate that the univari-

ate new Poisson generalized Lindley (PGL) distribution introduced by Atikankul (2023) and

Irshad et al. (2023) and the bivariate PGL distribution introduced by Irshad et al. (2024),

as well as various versions of them, can be derived not only by mixing but also by employing

the techniques of generalization and addition of random variables (r.v.’s). Finally, (iii) To

indicate possible applicability of our bivariate models to automobile insurance problems by

fitting them to various sets of claims data.

The rest of the paper is organized as follows. In Section 2, we point out that the

new PGL distribution introduced by Atikankul (2023) is the same distribution introduced

by Irshad et al. (2023) under the name two-parameter Poisson generalized Lindley (TPPGL)

distribution and it is also related to the models of Bakouch et al. (2022) and Mahmoudi

and Zakerzadeh (2010). A derivation of the PGL distribution as convolution of Sankaran’s

Poisson-Lindley with a negative binomial is also given. In Section 3, we introduce and study

in detail a univariate APGL distribution, demonstrating that this model can be derived by the

techniques of mixing, generalizing and addition of r.v.’s. In Subsection 4.1 the bivariate PGL

distribution introduced by Irshad et al. (2024) as a mixture of two independent Poissons with a

PGL distribution is briefly mentioned. However, in Subsection 4.2 we derive another bivariate

PGL distribution by using the PGL as the mixing distribution of a bivariate correlated Poisson

model.

In Section 5, we obtain a bivariate PGL distribution by generalizing a bivariate binomial

distribution assuming that its exponent follows a PGL model and we examine in detail several
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of its properties. In Section 6, we derive the three bivariate PGL distributions described in

Subsections 4.1, 4.2 and Section 5 by adding bivariate distributions previously studied in the

literature. In Section 7, we fit the bivariate models which we introduced in Subsection 4.2

and Section 5 to different sets of automobile insurance claims data. In Subsections 8.1 we fit

our models described in Subsection 7.1 to two additional sets of automobile insurance claims

data. In addition in Subsections 8.1 and 8.2 comparisons of our models with other models

fitted to the same data sets are given. Finally, Section 9 concludes.

2. THE NEW POISSON GENERALIZED LINDLEY (PGL) DISTRIBUTION

The new PGL distribution was introduced by Atikankul (2023) and also by Irshad et al.

(2023) under the name two-parameter Poisson generalized Lindley (TPPGL) distribution, as

a Poisson mixture. In particular, they assumed that the Poisson parameter is a continuous

random variable (r.v.) Λ, following the new generalized Lindley distribution studied by

Abouammoh et al. (2015) et al. (2015), with probability density function (p.d.f.)

f(λ; θ, α) =
θα

(θ + 1)

λα−2(λ+ α− 1)

Γ(α)
e−θλ, λ > 0, α > 1, θ > 0,(2.1)

and moment generating function (m.g.f.)

MΛ(s) =
θα

θ + 1

θ − s+ 1

(θ − s)α
.(2.2)

It is well known that a discrete r.v. Y derived as a Poisson mixture, has probability generating

function (p.g.f.) given by the relation

GY (s) =MΛ(s− 1).(2.3)

Consequently, if the m.g.f. of the r.v. Λ is given by equation (2.2), we obtain

GY (s) =
θα

θ + 1

θ − s+ 2

(θ − s+ 1)α
.(2.4)

Calculating the y-th derivative of GY (s) with respect to s, we have

∂Gy(s)

∂sy
=

θα

θ + 1

Γ (α+ y − 1)

Γ (α)

(α− 1)(θ − s+ 2) + y

(θ − s+ 1)α+y
.(2.5)

From equation (2.5) we immediately obtain expressions for the probabilities

P (Y = y; θ, α) =
1

y!

θα

θ + 1

Γ (α+ y − 1)

Γ (α)

(α− 1)(θ + 2) + y

(θ + 1)α+y
,(2.6)

y = 0, 1, . . ., α > 1, θ > 0 and the factorial moments

µ[r]:Y =
Γ (α+ r − 1)

Γ (α)

(α− 1)(θ + 1) + r

θr(θ + 1)
, r = 1, 2, . . .(2.7)

where

µ[r]:Y = E(Y (r)) and Y (r) = Y (Y − 1) . . . (Y − r + 1).
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From equation (2.7)

E(Y ) =
(α− 1)θ + α

θ(θ + 1)
.(2.8)

A simple characterization of the distributions of the r.v.’s Λ and Y is given by the fol-

lowing lemma, derived by a theorem proved by Papageorgiou and Vardaki (2022) for Poisson

mixtures.

Lemma 2.1. For Poisson mixtures of the form (2.3) with Λ > 0 a continuous r.v.,

the conditional expectation

E[Λ | Y = y] =
α+ y − 1

θ + 1

(α− 1)(θ + 2) + y + 1

(α− 1)(θ + 2) + y
(2.9)

determines uniquely both the distributions of Λ and Y .

2.1. Another derivation and relation with other distributions

Proposition 2.1. Consider two independent r.v.’s Y1 and Y2. If Y1 follows a Poisson-

Lindley distribution (Sankaran, 1970) with p.g.f. given by the equation

GY1(s) =
θ2

θ + 1

θ − s+ 2

(θ − s+ 1)2
(2.10)

and Y2 is distributed as a negative binomial with parameters α > 2,
θ

1 + θ
and p.g.f. given

by the equation

GY2(s) =

(
θ

1 + θ − s

)α−2

.(2.11)

Then, the r.v. Y1 + Y2 follows a distribution with p.g.f.

GY1+Y2(s) = GY1(s)GY2(s)

=
θα

θ + 1

θ − s+ 2

(θ − s+ 1)α
,

which is the p.g.f. of a PGL distribution with parameters, α > 2, θ > 0.

Corollary 2.1. If the negative binomial r.v. Y2 with p.g.f. given by equation (2.11)

is replaced by a geometric r.v. Y3 with p.g.f.

GY3(s) =
θ

1 + θ − s
,(2.12)

then the distribution of the sum Y1+Y3 is a PGL distribution with parameters α = 3, θ > 0.

Consequently, its p.g.f. and probability function (p.f.) are given by the equations

GY (s) =
θ3

θ + 1

θ − s+ 2

(θ − s+ 1)3
(2.13)
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and from equation (2.6)

P (Y = y; θ) =
θ3

θ + 1

(y + 1)[2(θ + 2) + y]

2(θ + 1)y+3
(2.14)

respectively.

It is of interest to note that the above procedure was used by Bakouch et al. (2022)

to derive and extensively study a distribution named by them SPLG, with p.g.f. given by

equation (2.13) and p.f. given, after some re-arranging, by equation (2.14) respectively.

Proposition 2.2. Consider two independent r.v.’s Y and Y3. The r.v. Y is a PGL

with p.g.f. given by equation (2.4) and the r.v. Y3 is geometric with p.g.f. given by equation

(2.12). Then the distribution of the sum

Y4 = Y + Y3

follows a generalized Poisson-Lindley distribution with parameters α > 1, θ > 0 and p.g.f.

GY4(s) =
θα+1

θ + 1

θ − s+ 2

(θ − s+ 1)α+1

introduced by Mahmoudi and Zakerzadeh (2010).

Remark 2.1. When α = 2 the PGL distribution with p.g.f. defined by equation

(2.4), becomes the Poisson-Lindley model with p.g.f. given by equation (2.10).

Remark 2.2. As expected the addition of two Poisson-Lindley r.v.’s with the same

parameter θ and p.g.f. given by equation (2.10) results to a distribution with p.g.f.

GX1+X1 =
θ4

(θ + 1)2
(θ − s+ 2)2

(θ − s+ 1)4

which corresponds to the distribution obtained and studied by Chesneau et al. (2023).

3. AN ALTERNATIVE POISSON GENERALIZED LINDLEY (APGL) DIS-

TRIBUTION

The main motivation of introducing and studying this distribution is that it appears

as marginal distribution in bivariate versions of PGL models derived in Sections 4 and 5.

This distribution is also of interest since it has simple forms for its p.g.f., p.f. and moments.

Furthermore, it has the properties of overdispersion, monotonicity and increasing failure

rate (IFR). In addition, it is derived by the different procedures of mixing, generalizing and

addition of r.v.’s.
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3.1. Derivation and properties

Consider a mixture of a Poisson distribution with parameter ϕλ where ϕ > 0 and λ

is a r.v. following a new generalized Lindley distribution with p.d.f. and m.g.f. given by

equations (2.1) and (2.2) respectively. Then the p.g.f. of the mixed r.v. Z is

GZ(s) =MΛ(θ(s− 1))

=
θα

θ + 1

θ + ϕ− ϕs+ 1

(θ + ϕ− ϕs)α
.(3.1)

Since

∂zG(s)

∂sz
= ϕz

θα

θ + 1

Γ (α+ z − 1)

Γ (α)

(α− 1)(θ + ϕ− ϕs+ 1) + z

(θ + ϕ− ϕs)α+z
,(3.2)

we obtain

P (Z = z;ϕ, θ, α) =
ϕz

z!

θα

θ + 1

Γ (α+ z − 1)

Γ (α)

(α− 1)(θ + ϕ+ 1) + z

(θ + ϕ)α+z
,

α > 1, θ, ϕ > 0(3.3)

and

µ[r]:Z = ϕrµ[r]:Y .(3.4)

Consequently,

E(Z) = ϕ
(α− 1)θ + α

θ(θ + 1)
(3.5)

and

V ar(Z) = ϕ
ϕ((α− 1)θ2 + 2αθ + α) + θ(θ + 1)((α− 1)θ + α)

θ2(θ + 1)2
.

The dispersion index DIZ is greater than one. This is expected, since from relation

(3.4)

V ar(Z) = ϕ2[V ar(Y )− E(Y )] + ϕE(Y )

= c(Y ) + E(Z) where c(Y ) > 0.

Since Atikankul (2023) proved that DIY > 1, also DIZ > 1. In fact,

DIZ =
ϕ((α− 1)θ2 + 2αθ + α)

θ(θ + 1)((α− 1)θ + α)
+ 1.

The probabilities can be calculated recursively by using the relation

P (Z = z + 1) =
ϕ

θ + ϕ

α+ z − 1

z + 1

(α− 1)(θ + ϕ+ 1) + z + 1

(α− 1)(θ + ϕ+ 1) + z
P (Z = z)

with

P (Z = 0) = GZ(0) =
θα

θ + 1

θ + ϕ+ 1

(θ + ϕ)α
.
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The APGL distribution is unimodal and IFR. This can be proved by following an

approach suggested by Johnson et al. (2005, p. 209) and used among others by Bhati et al.

(2015) and Atikankul (2023).

The expression

P (Z = z + 1)

P (Z = z)
=

ϕ

θ + ϕ

α+ z − 1

z + 1

(
1 +

1

(α− 1)(θ + ϕ+ 1) + z

)
is clearly a decreasing function of z implying unimodality.

Furthermore, for α > 2 the ratio

P (Z = z + 2)P (Z = z)

P (Z = z + 1)P (Z = z + 1)
=
z + 1

z + 2

α+ z

α+ z − 1

[
1− 1

[(α− 1)(θ + ϕ+ 1) + z + 1]2

]
< 1.

As such, P (Z = z) is log-concave and hence the APGL distribution has an increased failure

rate (IFR).

Remark 3.1. When α = 2, equation (3.1) becomes

GZ(s) =
θ2

θ + 1

θ + ϕ− ϕs+ 1

(θ + ϕ− ϕs)2
,(3.6)

which is the p.g.f. of a two-parameter Poisson-Lindley distribution discussed by Gómez-

Dèniz et al. (2012). This distribution also appeared as marginal distribution of the bivariate

version of the one-parameter Poisson-Lindley distribution introduced and studied by the

above authors.

Remark 3.2. When ϕ = 1, as expected, the APGL distribution becomes the PGL

distribution.

3.2. Additional derivations

Proposition 3.1. Consider a r.v. Z1 with p.g.f.

E(sZ1 | N = n) = (q + ps)n, 0 < p < 1, q = 1− p

and N is a non-negative inter-valued r.v. with p.f. P (N = n) and p.g.f.

E(sN ) = hN (s).(3.7)

Then the p.g.f. of the r.v. Z1 is

GZ1(s) = hN (q + ps).

If N is distributed as a PGL distribution with p.g.f. given by equation (2.4) then

GZ1(s) =
θα

θ + 1

θ + p− ps+ 1

(θ + p− ps)α
(3.8)

which is the p.g.f. of an APGL distribution with parameters α > 1, 0 < p < 1, θ > 0.
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Remark 3.3. When α = 2 equation (3.8) becomes

GZ1(s) =
θ2

θ + 1

θ + p− ps+ 1

(θ + p− ps)2
.(3.9)

This is the p.g.f. of a Binomial-discrete Poisson-Lindley distribution introduced and studied

by Chesneau et al. (2022). However, it should be noted that the above distribution has also

appeared as a marginal distribution in two of the bivariate Poisson-Lindley models developed

by Papageorgiou and Vardaki (2022).

Proposition 3.2. Consider two independent r.v.’s Z and Z2. Let the r.v. Z follow

a two-parameter Poisson-Lindley distribution with p.g.f. given by equation (3.6) and Z2 be

distributed as a negative binomial with parameters α > 2,
θ

θ + ϕ
and p.g.f.

GZ2(s) =

(
θ

θ + ϕ− ϕs

)α−2

.

Then the r.v. Z + Z2 follows a distribution with p.g.f.

GZ+Z2(s) =
θα

θ + 1

θ + ϕ− ϕs+ 1

(θ + ϕ− ϕs)α
,

which is the p.g.f. of an APGL distribution with parameters, α > 2, ϕ, θ > 0.

4. BIVARIATE PGL DISTRIBUTIONS DERIVED BY MIXING

A general family of mixed (compounded) bivariate Poisson distributions with p.g.f.

GX1,X2(s1, s2) = exp{λ[ϕ1(s1 − 1) + ϕ2(s2 − 1) + ϕ12(s1s2 − 1)]},(4.1)

where ϕ1, ϕ2, ϕ12 are positive constants and λ is a r.v. with m.g.f. MΛ(·) was examined by

Kocherlakota and Kocherlakota (1992, Chapter 8). They proved that

GX1,X2(s1, s2) =MΛ[ϕ1(s1 − 1) + ϕ2(s2 − 1) + ϕ12(s1s2 − 1)]

and this representation enabled them to derive several general properties.

Two simpler forms of the equation (4.1) are

GX1,X2(s1, s2) =MΛ[ϕ1(s1 − 1) + ϕ2(s2 − 1)](4.2)

and

GX1,X2(s1, s2) =MΛ[q(s1 − 1) + p(s1s2 − 1)],(4.3)

where 0 < p < 1 and q = 1− p.

Equation (4.2) was utilized by Gómez-Dèniz et al. (2012) to derive a bivariate Poisson-

Lindley distribution and by Irshad et al. (2024) to introduce a bivariate PGL model. Al-

ternatively, Papageorgiou and Vardaki (2022) derived some general properties of the class

of distributions with p.g.f. given by equation (4.3) and examined a number of illustrative

examples.
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4.1. A bivariate PGL distribution based on the structure (4.2)

This model with p.g.f.

GX1,X2(s1, s2) =
θα

θ + 1

θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2 + 1

(ϕ+ ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2)α
(4.4)

was introduced and studied by Irshad et al. (2024).

The marginals X1 and X2 are AGPL distributions with parameters (ϕ1, θ, α) and

(ϕ2, θ, α) respectively. Consequently, all characteristics of these distributions can be ob-

tained from the corresponding characteristics of the APGL distribution examined in Section

3.

4.2. A bivariate PGL distribution based on the structure (4.3)

Assume that the m.g.f. of a r.v. Λ is given by equation (2.2). Then equation (4.3)

becomes

GX1,X2(s1, s2) =
θα

θ + 1

θ − qs1 − ps1s2 + 2

(θ − qs1 − ps1s2 + 1)α
,(4.5)

which is the p.g.f. of a bivariate PGL distribution with parameters α > 1, 0 < p < 1, θ > 0.

The marginals X1 and X2 have p.g.f.’s

GX1(s1) =
θα

θ + 1

θ − s1 + 2

(θ − s1 + 1)α
(4.6)

and

GX2(s2) =
θα

θ + 1

θ + p− ps2 + 1

(θ + p− ps2)α
(4.7)

respectively. Consequently, the r.v. X1, follows a PGL distribution documented in Section

2, but X2 follows an APGL distribution extensively studied in Section 3. For a bivariate

discrete r.v. (X1, X2) with p.g.f. GX1,X2(s1, s2) given by equation (4.5), the conditional

p.g.f. GX2|X1=x1
(s) of X2 on X1 is

GX2|X1=x1
(s) = (q + ps)x1 .

Also, the conditional p.g.f. GX1|X2=x2
(s) of X1 on X2 is

GX1|X2=x2
(s) = sx2

(α− 1)(θ − qs+ 1) + α+ x2 − 1

(θ − qs+ 1)α+x2

(θ + p)α+x2

(α− 1)(θ + p) + α+ x2 − 1
.

(4.8)

Their derivation is based on the following result due to Subrahmaniam (1966).

For a bivariate discrete r.v. (X1, X2) with p.g.f. GX1,X2(s1, s2), the conditional p.g.f.

of X2 on X1 is

GX2|X1=x1
(s) =

G(x1,0)(0, s)

Gx1,0)(0, 1)
(4.9)
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where

G(x1,x2)(u, v) =
∂x1+x2G(s1, s2)

∂sx1
1 ∂s

x2
2

∣∣∣∣s1=u

s2=v

.

Since

P (X2 | X1 = x1) =

(
x1
x2

)
px2qx1−x2(4.10)

and the p.f. of the marginal distribution of X1 is given by equation (2.6), we have

P (X1 = x1, X2 = x2) =

(
x1
x2

)
px2qx1−x2P (X1 = x1)

=
θα

(θ + 1)

px2qx1−x2

x2!(x1 − x2)!

Γ (α+ x1 − 1)

Γ (α)

(α− 1)(θ + 2) + x1
(θ + 1)α+x1

.

The probabilities can be calculated using the recurrences

P (X1 = x1 + 1, X2 = x2) =
q

θ + 1

α+ x1 − 1

x1 + 1− x2

(α− 1)(θ + 2) + x1 + 1

(α− 1)(θ + 2) + x1

P (X1 = x1, X2 = x2), x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1,(4.11)

P (X1 = x1, X2 = x2 + 1) =
p

q

x1 − x2
x2 + 1

P (X1 = x2, X2 = x2),

x1 = 1, 2, . . . , x2 = 0, 1, . . . , x1 − 1.(4.12)

It is worth noting that this recurrence does not depend on the parameters α or θ. In addition,

P (X1 = 0, X2 = 0) = G(0, 0) =
θα

θ + 1

θ + 2

(θ + 1)α
.(4.13)

Moments of the marginal distributions can be oftained from Sections 2 and 3. In particular,

the marginal mean of the r.v. X1 is given by equation (2.8) and

E(X2) = p
(α− 1)θ + α

θ(θ + 1)
.(4.14)

Differentiating equation (4.5) we obtain

E(X1X2) = p
(α− 1)θ2 + α2θ + α2 + α

θ2(θ + 1)
.

Hence,

Cov(X1, X2) = p
(α− 1)θ3 + (3α− 2)θ2 + 3αθ + α

θ2(θ + 1)

which is positive.

The conditional expectation E[X1 | X2 = x2] is given by

E[X1 | X2 = x2] = x2 +
q

θ + p

α+ x2 − 1

α− 1

(α− 1)(θ + p) + α+ x2
(α− 1)(θ + p) + α+ x2 − 1

.
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5. BIVARIATE PGL DISTRIBUTION DERIVED BY GENERALIZING

Bivariate Poisson-Lindley distributions derived by generalizing a bivariate binomial

model with respect to its exponent were examined by Papageorgiou and Vardaki (2022).

In this section we introduce and study a bivariate Poisson generalized Lindley distribution

obtained by this technique.

5.1. Probabilities and Moments

Consider a bivariate binomial distribution with p.g.f.

E(sX1
1 sX2

2 | N = n) = (qs1 + ps2)
n, 0 < p < 1,

q = 1− p, where N is a non-negative integer valued r.v. with p.g.f. h
(s)
N .

Consequently, the joint distribution of X1 and X2 is given by the p.g.f.

GX1,X2(s1, s2) = hN (qs1 + ps2).(5.1)

If N follows a PGL distribution with p.g.f. given by equation (2.4) then

GX1,X2(s1, s2) =
θα

θ + 1

θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)α
.(5.2)

The p.g.f.’s of the marginals are

GX1(s1) =
θα

θ + 1

θ + q − qs1 + 1

(θ + q − qs1)α

and

GX2(s2) =
θα

θ + 1

θ + p− ps2 + 1

(θ + p− ps2)α
.

Both marginals are APGL distributions with parameters α > 1, θ > 0, 0 < q < 1 and α > 1,

θ > 0, 0 < p < 1 respectively. However, the p.g.f. of the distribution of the sum X1 + X2

given by

GX1+X2(s) =
θα

θ + 1

θ − s+ 2

(θ − s+ 1)α

is a PGL distribution with parameters α > 1, θ > 0.

From equation (5.1) we obtain

∂x1+x2G(s1, s2)

∂sx1
1 ∂s

x2
2

= qx1px2h
(x1+x2)
N (qs1 + ps2).(5.3)

Consequently,

P (X1 = x1, X2 = x2) =
qx1px2

x1!x2!
h
(x1+x2)
N (0)

=

(
x1 + x2
x1

)
qx1px2P (N = x1 + x2).
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Since N follows a PGL distribution, from equation (2.6)

P (X1 = x1, X2 = x2) =
θα

θ + 1

qx1px2

x1!x2!

Γ (α+ x1 + x2 − 1)

Γ (α)

(α− 1)(θ + 2) + x1 + x2
(θ + 1)α+x1+x2

,

xi = 0, 1, . . . , i = 1, 2.(5.4)

Furthermore from equation (5.3)

µ[r,k] = qrpkµ[r+k]:N

where

µ[r,k] = E(X
(r)
1 X

(k)
2 ).

In addition, from equation (2.7)

µ[r,k] = qrpk
Γ (α+ r + k − 1)

Γ (α)

(α− 1)(θ + 1) + r + k

θr+k(θ + 1)
, r, k = 0, 1, 2, . . .

with

E(X1) = q
(α− 1)θ + α

θ(θ + 1)
,(5.5)

E(X2) = p
(α− 1)θ + α

θ(θ + 1)
,(5.6)

E(X1X2) = αpq
(α− 1)(θ + 1) + 2

θ2(θ + 1)

and

Cov(X1, X2) = pq
(α− 1)θ2 + 2αθ + α

θ2(θ + 1)2

which is positive.

From equation (5.4) the following simple recurrences for the probabilities are obtained

P (X1 = x1 + 1, X2 = x2) =
q

θ + 1

α+ x1 + x2 − 1

x1 + 1

(α− 1)(θ + 2) + x1 + x2 + 1

(α− 1)(θ + 2) + x1 + x2

P (X1 = x1, X2 = x2), xi = 0, 1, . . . , i = 1, 2(5.7)

and

P (X1 = x1, X2 = x2 + 1) =
p

θ + 1

α+ x1 + x2 − 1

x2 + 1

(α− 1)(θ + 2) + x1 + x2 + 1

(α− 1)(θ + 2) + x1 + x2

P (X1 = x1, X2 = x2), xi = 0, 1, . . . , i = 1, 2(5.8)

with P (X1 = 0, X2 = 0) given by equation (4.13).

5.2. Conditional probabilities and moments

From equations (5.1) and (4.9) we can obtain that

GX2|X1=x1
(s) =

h
(x1)
N (ps)

h
(x1)
N (p)

.(5.9)
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Utilizing equation (2.5)

GX2|X1=x1
(s) =

(α− 1)(θ − ps+ 2) + x1
(θ − ps+ 1)α+x1

(θ + q)α+x1

(α− 1)(θ + q + 1) + x1
.

Also, since

∂x2

∂sx2
G

(s)
X2|X1=x1

= px2
h
(x1+x2)
N (ps)

h
(x1)
N (p)

(5.10)

P (X2 = x2 | X1 = x1) =
px2

x2!

Γ (α+ x1 + x2 − 1)

Γ (α+ x1 − 1)

(α− 1)(θ + 2) + x1 + x2
(α− 1)(θ + q + 1) + x1

(θ + q)α+x1

(θ + 1)α+x1+x2
.

These probabilities can be calculated recursively from the relation

P (X2 = x2 + 1 | X1 = x1) =
px2

(x1 + 1)

(α+ x1 + x2 − 1)

(θ + 1)

(α− 1)(θ + 2) + x1 + x2 + 1

(α− 1)(θ + 2) + x1 + x2

P (X2 = x2 | X1 = x1), xi = 0, 1, . . . , i = 1.2

with

P (X2 = 0 | X1 = x1) =
(α− 1)(θ + 2) + x1

(α− 1)(θ + q + 1) + x1

(θ + q)α+x1

(θ + 1)α+x1
.

Similar relations can be derived for P (X1 | X2 = x2).

In addition from equation (5.10)

µ[r|X1=x1] = pr
h
(x1+r)
N (p)

h
(x1)
N (p)

and from equation (2.5)

µ[r|X1=x1] =
pr

(θ + q)r
Γ (α+ x1 + r − 1)

Γ (α+ x1 − 1)

(α− 1)(θ + q + 1) + x1 + r

(α− 1)(θ + q + 1) + x1
.

Consequently,

E[X2 | X1 = x1] = p
α+ x1 − 1

θ + q

(α− 1)(θ + q + 1) + x1 + 1

(α− 1)(θ + q + 1) + x1
.

6. Bivariate PGL distributions derived by addition of r.v.’s

Since the univariate PGL distribution can be obtained as the convolution of a Poisson-

Lindley model with a negative binomial distribution, bivariate PGL distributions can also be

derived by addition of r.v.’s.

The technique of constructing bivariate models by adding r.v.’s is well known in the lit-

erature, see for example Holgate (1966); Papageorgiou (1986); Kocherlakota (1989); Kocher-

lakota and Kocherlakota (1992).

In this section we obtain bivariate PGL distributions generated by the general structure

R1 = U1 + V1

R2 = U2 + V2,
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where (U1, U2) and (V1, V2) are independently distributed bivariate discrete r.v.’s. Then the

p.g.f. of (R1, R2) is given by

GR1,R2(s1, s2) = GU1,U2(s1, s2)GV1,V2(s1, s2).

This structure was initially suggested by Papageorgiou and Piperigou (1997) and also reported

by Johnson et al. (1997, p. 138).

Proposition 6.1. Let us assume that the bivariate r.v. (U1, U2) follows a bivariate

Poisson-Lindley distribution with parameters θ > 0, ϕ1 > 0, ϕ2 > 0 introduced by Gómez-

Dèniz et al. (2012) and has p.g.f.

GU1,U2(s1, s2) =
θ2

θ + 1

θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2 + 1

(θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2)2
.

Also let the r.v. (V1, V2) follow a negative trinomial distribution with parameters α > 2,
ϕ1

θ + ϕ1 + ϕ2
,

ϕ2
θ + ϕ1 + ϕ2

and p.g.f. given by the equation

GV1,V2(s1, s2) =

(
θ

θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2

)α−2

.

Then the p.g.f. of the r.v. (R1, R2) is

GR1,R2(s1, s2) =
θα

θ + 1

θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2 + 1

(θ + ϕ1 + ϕ2 − ϕ1s1 − ϕ2s2)α
,

which is a bivariate PGL distribution with parameters α > 2, θ, ϕi > 0, i = 1, 2 mentioned

in Subsection 4.1.

Proposition 6.2. Consider a bivariate Poisson-Lindley distribution with parame-

ters 0 < p < 1, θ > 0 introduced by Papageorgiou and Vardaki (2022) and p.g.f. given by

the equation

GU1,U2(s1, s2) =
θ2

θ + 1

θ − qs1 − ps1s2 + 2

(θ − qs1 − ps1s2)2
.

In addition, assume that (V1, V2) follows a negative binomial-Bernoulli model with parameters

α > 2,
q

θ + 1
,

p

θ + 1
and p.g.f. given by the equation

G(V1,V2)(s1, s2) =

(
θ

θ − qs1 − ps1s2 + 1

)α−2

.

Models of this form were introduced by Cacoullos and Papageorgiou (1982). Then the p.g.f.

of the r.v., (R1, R2) is

GR1,R2(s1, s2) =
θα

θ + 1

θ − qs1 − ps1s2 + 2

(θ − qs1 − ps1s2 + 1)α
,

which is a bivariate PGL distribution with parameters α > 2, 0 < p < 1, θ > 0 discussed in

Subsection 4.2.
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Proposition 6.3. Assume that the r.v. (U1, U2) follows a distribution with p.g.f.

given by equation (4.5) and (V1, V2) is distributed as a geometric-Bernoulli with p.g.f.

GV1,V2(s1, s2) =
θ

θ − qs1 − ps1s2
.

Then the p.g.f. of the r.v. (R1, R2) is given by the equation

GR1,R2(s1, s2) =
θα+1

θ + 1

θ − qs1 − ps1s2 + 2

(θ − qs1 − ps1s2 + 1)α+1

with parameters α > 1, 0 < p < 1, θ > 0.

This distribution was introduced by Papageorgiou and Vardaki (2022) and it is a bi-

variate version of the generalized Poisson-Lindley distribution introduced and studied by

Mahmoudi and Zakerzadeh (2010).

Proposition 6.4. Suppose that (U1, U2) follows bivariate Poisson-Lindley distribu-

tion with parameters 0 < p < 1, θ > 0 introduced by Papageorgiou and Vardaki (2022) and

p.g.f. given by the equation

GU1,U2(s1, s2) =
θ2

θ + 1

θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)2

and (V1, V2) follows a negative trinomial distribution with parameters α > 2,
q

θ + 1
,

p

θ + 1
and p.g.f.

GV1,V2(s1, s2) =

(
θ

θ − qs1 − ps2 + 1

)α−2

.

Then the r.v. (R1, R2) has the p.g.f.

GR1,R2(s1, s2) =
θα

θ + 1

θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)α
,

which is a bivariate PGL distribution with parameters α > 2, 0 < p < 1, θ > 0 studied in

Section 5.

Proposition 6.5. Assume that (U1, U2) follows a distribution with p.g.f. given by

equation (5.2) and (V1, V2) is distributed as a bivariate geometric with p.g.f.

GV1,V2(s1, s2) =
θ

θ − qs1 − ps2 + 1
.

Then, the p.g.f. of the r.v. (R1, R2) is given by the equation

GR1,R2(s1, s2) =
θα+1

θ + 1

θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)α+1

with parameters α > 1, 0 < p < 1, θ > 0.

This distribution was introduced and studied by Papageorgiou and Vardaki (2022) and

it is another bivariate version of the generalized Poisson-Lindley distribution introduced by

Mahmoudi and Zakerzadeh (2010).
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7. EXAMPLES FROM AUTOMOBILE INSURANCE CLAIMS DATA

In this section we indicate possible applications of the bivariate PGL distributions

introduced in Subsection 4.2 and Section 5 to real data sets previously reported in the liter-

ature. For this reason, we assumed that α = 3 in agreement with the univariate PGL model

developed by Bakouch et al. (2022). Furthermore, for α = 2 the resulting model becomes a

bivariate Poisson-Lindley distribution introduced by Papageorgiou and Vardaki (2022). Since

there are structural differences between the models considered in Subsection 4.2 and the one

in Section 5, we fitted them to different sets of data.

Both sets of data have positive correlation and originate from portfolios of automobile

insurance claims. The first set reported by Gómez-Dèniz (2016) refers to the number of claims

(variable X1) and the size of claims (variable X2) in an Australian portfolio containing 67856

one year insurance policies taken out in 2004 or 2005. The second set previously used, among

others, by Partrat (1994) and Gómez-Dèniz et al. (2012) refers to claims corresponding to

a large automobile insurance portfolio in France, including 181038 liability policies issued

during the year 1989. The yearly claim frequencies have been divided into material damage

and bodily injury, corresponding to variables X1 and X2.

7.1. Fitting bivariate PGL distributions derived in Subsection 4.2

For α = 3 and θ replaced by θ1 from equations (4.5), (2.8) and (4.14) the p.g.f. and

the marginal means of the resulting distribution are

GX1,X2(s1, s2) =
θ31

θ1 + 1

θ1 − qs1 − ps1s2 + 2

(θ1 − qs1 − ps1s2 + 1)3
,(7.1)

E(X1) =
2θ1 + 3

θ1(θ1 + 1)
.(7.2)

and

E(X2) = p
2θ1 + 3

θ1(θ1 + 1)
.(7.3)

In addition, from equation (4.11)

P (X1 = x1 + 1, X2 = x2) =
q

θ1 + 1

x1 + 2

x1 + 1− x2

2θ1 + x1 + 5

2θ1 + x1 + 4
P (X1 = x1, X2 = x2),

x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1.(7.4)

The recurrence for P (X1 = x1, X2 = x2 + 1), as expected, is given by equation (4.12).

Also from equation (4.13) or from (7.1)

P (X1 = 0, X2 = 0) =
θ31(θ1 + 2)

(θ1 + 1)4
.(7.5)

For α = 2 and θ replaced by θ2, the corresponding characteristics of this bivariate model are

GX1,X2(s1, s2) =
θ22

θ2 + 1

θ2 − qs1 − ps1s2 + 2

(θ2 − qs1 − ps1s2 + 1)2
,(7.6)
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E(X1) =
θ2 + 2

θ2(θ2 + 1)
,(7.7)

E(X2) = p
θ2 + 2

θ2(θ2 + 1)
,(7.8)

P (X1 = x1 + 1, X2 = x2) =
q

θ2 + 1

x1 + 1

x1 + 1− x2

θ2 + x1 + 3

θ2 + x1 + 2
P (X1 = x1, X2 = x2),

x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1.(7.9)

P (X1 = x1, X2 = x2 + 1) is given by equation (4.12) and

P (X1 = 0, X2 = 0) =
θ2(θ2 + 2)

(θ2 + 1)3
.(7.10)

Moment estimators are easily derived by using the marginal means. For both models

p̃ =
X̄2

X̄1
.

However, estimators for the parameters θ1 or θ2 result as the solution of a quadratic

equation. In particular, from equation (7.2)

θ̃1 =
−(X̄1 − 2) +

√
(X̄1 − 2)2 + 12X̄1

2X̄1
.

Similarly, from equation (7.7)

θ̃2 =
−(X̄1 − 1) +

√
(X̄1 − 1)2 + 8X̄1

2X̄1
.

Table 1 presents number of claims (X1) and total number of claims with claim size

larger than a threshold monetary value (X2) ψ = 500 from a portfolio of 67856 automobile

insurance policies; see Gómez-Dèniz (2016). The first line represents the observed frequencies

and the second and third lines the expected frequencies for the models given by equation (7.1),

(α = 3) and equation (7.6), (α = 2) respectively. Calculated parameter estimates and χ2

values are also given.
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Size of claims
0 1 2 3 4 Total

Number of claims

0 63232 63232
63175.84 63175.84
63252.78 63252.78

1 1840 2493 4333
1842.57 2592.71 4435.28
1783.02 2508.92 4291.94

2 37 117 117 271
40.29 113.40 79.78 233.47
50.10 140.99 99.20 290.29

3 1 5 5 7 18
0.78 3.31 4.66 2.18 10.93
1.40 5.93 8.34 3.91 19.58

4 0 0 1 0 1 2
0.01 0.08 0.17 0.16 0.06 0.48
0.04 0.22 0.47 0.44 0.15 1.32

65110 2615 123 7 1 67856
Total 65059.49 2709.50 84.61 2.34 0.06 67856

65087.34 2656.06 108.01 4.35 0.15 67855.91

For α = 3 p̃ = 0.584566 θ̃1 = 27.963303 χ2(3) = 3.245

For α = 2 p̃ = 0.584566 θ̃2 = 14.624072 χ2(3) = 10.295

Table 1: Observed and expected frequencies for 65856 observations with claim size larger

than 500.

To compute the bivariate probabilities for model (7.1), (α = 3) we used the recurrences,

see also equations (7.4) and (4.12)

P (X1 = x1 + 1, X2 = 0) =
q

θ1 + 1

x1 + 2

x1 + 1

2θ1 + x1 + 5

2θ1 + x1 + 4
P (X1 = x1, X2 = 0),

x1 = 0, 1, 2, 3
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and

P (X1 = x1, X2 = x2 + 1) =
p

q

x1 − x2
x2 + 1

P (X1 = x1, X2 = x2),

x1 = 1, 2, 3, 4, x2 = 0, 1, 2, 3,(7.11)

with P (X1 = 0, X2 = 0) given by equation (7.5).

For model (7.6), (α = 2), from equation (7.9),

P (X1 = x1 + 1, X2 = 0) =
q

θ2 + 1

θ2 + x1 + 3

θ2 + x1 + 2
P (X1 = x1, X2 = 0),

x1 = 0, 1, 2, 3.

The required relations P (X1 = x1, X2 = x2 + 1) and P (X1 = 0, X2 = 0) are given by

equations (7.11) and (7.10) respectively.

Since X̄1 = 0.072757 and X̄2 = 0.042531 parameter estimates and χ2 values are also

reported in Table 1. To compute the chi squared test statistic, for this set of data, we follow

an approach suggested by Gómez-Dèniz (2016). We grouped classes to produce a theoretical

class of 5 or larger. The degrees of freedom of the relative χ2 statistic obtained were n0−k−2,

where n0 is the number of classes considered and k the number of parameters.

Seven categories were considered by grouping the classes {(1, 1), (2, 2), (3, 3)}, {(3, 0),
(3, 1)}, {(3, 2), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)}. The calculated χ2 values were χ2 = 3.245 (for

α = 3) and χ2 = 10.295 (for α = 2) with 3 degrees of freedom. Since the 5% critical value

of χ2 with the same degrees of freedom is 7.815 we can assume that the model with p.g.f.

given by equation (7.1), (α = 3) provides a satisfactory fit to the set of insurance claims data

under consideration.

7.2. Fitting the bivariate PGL distribution derived in Section 5

In the previous subsection we considered two versions of the bivariate PGL distribution

with p.g.f. given by equation (4.5) for α = 3 and α = 2. In this subsection we consider the

bivariate PGL distribution with p.g.f. given by equation (5.2) and we examine only the case

for α = 3. The corresponding version of this model for α = 2, becomes a bivariate Poisson-

Lindley distribution introduced by Papageorgiou and Vardaki (2022) and fitted to the same

set of 181038 observations by Vardaki and Papageorgiou (2024).

For α = 3 from equations (5.2), (5.5), (5.6), (5.7) and (5.8) the p.g.f., marginal means

and recurrences for probabilities become

GX1,X2(s1, s2) =
θ3

θ + 1

θ − qs1 − ps2 + 2

(θ − qs1 − ps2 + 1)3
(7.12)

E(X1) = q
2θ + 3

θ(θ + 1)
(7.13)

E(X2) = p
2θ + 3

θ(θ + 1)
(7.14)
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P (X1 = x1 + 1, X2 = x2) =
q

θ + 1

x1 + x2 + 2

x1 + 1

2θ + x1 + x2 + 5

2θ + x1 + x2 + 4

P (X1 = x1, X2 = x2), xi = 0, 1, . . . , i = 1, 2,(7.15)

P (X1 = x1, X2 = x2 + 1) =
p

θ + 1

x1 + x2 + 2

x2 + 1

2θ + x1 + x2 + 5

2θ + x1 + x2 + 4

P (X1 = x1, X2 = x2), xi = 0, 1, . . . , i = 1, 2.(7.16)

We observe that

E(X1 +X2) =
2θ + 3

θ(θ + 1)
.(7.17)

Consequently, moment estimators are derived by using the marginal means. In particular

from equation (7.17)

θ̃ =
−(X̄1 + X̄2 − 2) +

√
(X̄1 + X̄2 − 2)2 + 12(X̄1 + X̄2)

2(X̄1 + X̄2)

and from equations (7.13) and (7.14)

p̃ =
X̄2

X̄1 + X̄2
.

Table 2 presents material damage (X1) and bodily injury (X2) claims from a portfolio of

181038 liability policies, see Partrat (1994); Gómez-Déniz (2012). The first line represents

observed frequencies and the second one the expected frequencies for the model given by

equation (7.12), (α = 3). Calculated parameter estimates and χ2 value are also included.
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Bodily injury
0 1 ≥ 2 Total

Material damage

0 171345 918 2 172265
171221.11 920.71 3.71 172145.53

1 8273 73 0 8346
8493.32 68.50 0.37 8562.19

2 389 5 0 394
315.93 3.40 0.02 319.35

3 31 1 0 32
10.44 0.14 0.00 10.58

≥ 4 1 0 0 1
0.32 0.01 0.00 0.33

Total 180039 997 2 181038
181041.12 992.76 4.10 181037.98

α = 3 p̃ = 0.097802 θ̃ = 35.856181 χ2(3) = 5.265

Table 2: Material damage (X1) and bodily injury (X2) claims from a portfolio of 181038

liability policies.

To compute the bivariate probabilities we used the recurrence, see also equation (7.15)

P (X1 = x1 + 1, X2 = 0) =
q

θ + 1

x1 + 2

x1 + 1

2θ + x1 + 5

2θ + x1 + 4
P (X1 = x1, X2 = 0), x1 = 0, 1, 2, 3.

In addition we use the recurrence (7.16) for x1 = 0, 1, . . . , 4 and x2 = 0, 1. The probability

P (X1 = 0, X2 = 0) is given by equation (7.5).

Since X̄1 = 0.051006 and X̄2 = 0.005529 parameter estimates and the corresponding

χ2 value are given in Table 2.

Seven categories were considered for computing the χ2 goodness of fit test by grouping

the classes {(1, 0), (2, 0), (3, 0)} and {(1, 2), (2, 2), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)}. The calcu-

lated χ2 value was χ2 = 5.265 with 3 degrees of freedom (which is below 7.815, the 5% critical

value of χ2 with three degrees of freedom). Therefore, it appears that the model fits the data

satisfactory.
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8. ON DISTRIBUTIONS FITTED TO DATA SETS FROM AUTOMOBILE

INSURANCE PORTFOLIOS CONSIDERED IN THE PREVIOUS SEC-

TION

Our initial intention was simply to demonstrate the applicability of our models defined

by equations (7.1), (7.6) and (7.12) by using real data sets. However, since the data sets

selected, as well as alternative arrangements of them, were previously considered by a number

of other researchers a comparison of our models with relative models can be of interest.

8.1. Models fitted to accident data reporting claim frequencies and size of claims

In automobile insurance, bonus-malus systems (BMS) are used to determine that fair

premiums are paid by all policyholders.

Gómez-Dèniz (2016) initially and other authors subsequently (Gómez-Dèniz and Calderin-

Ojeda, 2018, 2020; Moumeesri and Pongsart, 2022; Hernawati et al., 2017) proposed models

derived by Bayesian methodoloty to determine premiums based on a BMS system that distin-

guished two types of claims. Those less than a threshold or critical monetary value denoted

by ψ and those that exceed this value. They used a portfolio of 67856 one year automobile

insurance policies taken out in 2004 or 2005. The data set is available at the website of the

Faculty of Business and Economics, Macquaire University (Sydney, Australia), see also, De-

Jong and Heller (2008). Out of the 67856 policies in that portfolio, 4624 claims were made.

There were 4333 policyholders who made claims once, 271 twice, 18 three times and 2 four

times.

Table 1 records these data when the threshold value is ψ = 500. Gómez-Dèniz (2016)

fitted these data by using a four parameter Poisson gamma-binomial beta distribution. He

reported a satisfactory fit after grouping cells to satisfy the rule of five. The same set of data

was fitted by Moumeesri and Pongsart (2022) utilizing two bivariate models, each one with

three parameters, a Poisson exponential-binomial beta and a Poisson-Lindley-binomial beta.

In their calculation of the χ2 goodness of fit tests they did not report any grouping of the

expected frequencies. They concluded that the Poisson-Lindley-binomial beta distribution

gave a better fit to the data.

For threshold values ψ = 1000 and ψ = 3000 Gómez-Dèniz and Calderin-Ojeda (2020)

fitted both the resulting data set tables by two bivariate distributions. A two parameter

bivariate Poisson type model and from this distribution by using Bayesian methodology they

obtained a four parameter bivariate Poisson gamma-binomial beta distribution similar to the

model used by Gómez-Dèniz (2016). Combining cells to comply with the rule of five, they

reported that although their Poisson gamma-binomial beta distribution fitted both sets of

data adequately the corresponding fits of the bivariate Poisson models can not be considered

as satisfactory. For comparison purposes we have fitted our model considered in Subsection

7.1 to both sets of data given by Gómez-Dèniz and Calderin-Ojeda (2020).

Tables 3 and 4 present the number of claim (X1) from a portfolio of 67856 automobile

insurance policies (Gómez-Dèniz and Calderin-Ojeda, 2020) when the claim value is larger

than a threshold monetary value (X2) ψ = 1000 and ψ = 3000 respectively. The first line

represents the observed frequencies and the second and third lines the expected frequencies
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for the models given by equation (7.1), (α = 3) and equation (7.6), (α = 2) respectively.

Calculated parameter estimates and χ2 values are also given.

To comply with the rule of five for computing the χ2 goodness of fit test, eight categories

were considered by grouping the classes {(1, 1), (2, 1)} and {(3, 2), (3, 3), (4, 0), (4, 1), (4, 2),
(4, 3), (4, 4)}. Table 4 presents the corresponding results when ψ = 3000. In this case we have

used seven categories by grouping the classes {(1, 1), (2, 1)} and {(3, 1), (3, 2), (3, 3), (4, 0), (4, 1),
(4, 2), (4, 3), (4, 4)}. For the bivariate Poisson-Lindley distribution defined by model (7.6),

(α = 2) the calculated χ2 values were for ψ = 1000 χ2 = 1.542 with three degrees of freedom

and for ψ = 3000 χ2 = 2.443 with four degrees of freedom (which are below 9.488 the 5%

critical value of the χ2 with four degrees of freedom). Therefore, it appears that the bivariate

Poisson-Lindley distribution fitted both sets of data satisfactory. For ψ = 274 and ψ = 3755

tables of the derived data sets were given by Hernawati et al. (2017). They fitted both sets of

data using a three parameter bivariate Poisson exponential-binomial beta distribution. They

did not report any groupings in the calculation of the χ2 goodness of fit tests. It appears

that their model gave a better fit for the 274 observations.

Results on trivariate extensions and multiple threshold values were given by Gómez-

Dèniz and Calderin-Ojeda (2018).

8.2. Models fitted to accident data reporting claim frequencies on material dam-

age and bodily injury

The set of data recorded in Table 2, consists of claims experience of a large automobile

portfolio in France including 181038 liability policies observed during the year 1989. The

corresponding yearly claim frequencies have been divided into material damage and bodily

injury claims. This set of data was used by several authors to illustrate the applicability of

various bivariate models.
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Size of claims
0 1 2 3 4 Total

Number of claims

0 63232 63232
63175.84 63175.84
63252.78 63252.78

1 2551 1782 4333
2624.15 1811.12 4435.27
2539.35 1752.60 4291.95

2 109 114 48 271
81.73 112.81 38.93 233.47

101.63 140.28 48.41 290.32

3 5 6 6 1 18
2.26 4.69 3.23 0.74 10.92
4.06 8.40 5.80 1.29 19.55

4 1 0 0 1 0 2
0.06 0.16 0.69 0.08 0.01 1.00
0.16 0.45 0.46 0.21 0.04 1.32

65898 1902 54 2 0 67856
Total 65884.04 1928.78 42.85 0.82 0.01 67856.50

65897.98 1901.73 54.67 1.50 0.04 67855.92

For α = 3 p̃ = 0.408345 θ̃1 = 27.963303 χ2(4) = 20.662

For α = 2 p̃ = 0.408345 θ̃2 = 14.624072 χ2(4) = 1.542

Table 3: Observed and expected frequencies for 67856 observations with claim size larger

than 1000.



On a Poisson Generalized Lindley Distribution 25

Size of claims
0 1 2 3 4 Total

Number of claims

0 63232 63232
63175.84 63175.84
63252.78 63252.78

1 3576 757 4333
3688.72 746.37 4435.09
3569.52 722.42 4291.94

2 216 44 11 271
161.49 65.35 6.61 233.45
200.79 54.75 8.22 290.28

3 12 4 2 0 18
6.28 3.81 0.77 0.05 10.91

11.26 6.84 1.38 0.09 19.57

4 2 0 0 0 0 2
0.23 0.19 0.06 0.01 0.00 0.49
0.63 0.51 0.16 0.02 0.00 1.32

67038 805 13 0 0 67856
Total 67032.56 815.72 7.44 0.06 0.00 67855.78

67034.98 811.04 9.76 0.11 0.00 67855.89

For α = 3 p̃ = 0.168321 θ̃1 = 27.963303 χ2(3) = 31.778

For α = 2 p̃ = 0.168321 θ̃2 = 14.624072 χ2(3) = 2.443

Table 4: Observed and expected frequencies for 67856 observations with claim size larger

than 3000.

Partrat (1994) initially fitted a standard bivariate Poisson, a bivariate Poisson-Gamma

and a bivariate Poisson-inverse Gaussian distribution, each with three parameters, to this set

of data. He concluded that the standard bivariate Poisson model should be rejected but the

other two models gave a satisfactory fit, with the bivariate Poisson-inverse Gaussian giving

a better fit. Gómez-Dèniz et al. (2012) fitted a three parameter bivariate Poisson-Lindley

distribution and a three parameter bivariate Sarmanov model. They suggested that both

models performed better than the bivariate Poisson-Gamma and the bivariate Poisson-inverse
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Gaussian considered by Partrat (1994).

Vernic (1997) fitted the same set of data with a six parameter bivariate generalized

Poisson model and Diafouka et al. (2022) with a five parameter bivariate Katz’s distribution.

Finally, Vardaki and Papageorgiou (2024) used a two parameter bivariate Poisson-Lindley

distribution which gave a satisfactory fit.

It is worth noting that only Vardaki and Papageorgiou (2024) used the same grouping

categories suggested by Gómez-Dèniz and Calderin-Ojeda (2020). All other authors used

different grouping categories.

9. Conclusions

In this paper using p.g.f.’s, five univariate and bivariate PGL distributions, with two

of them already appeared in the literature, were derived by addition of r.v.’s. Similar models

like the univariate generalized Poisson-Lindley distribution introduced by Mahmoudi and

Zakerzadeh (2010), as well as its bivariate versions can be also obtained by adding r.v.’s.

We also introduced a univariate APGL distribution which appears as marginal distribution

in all bivariate models examined and it also has the attractive properties of over-dispersion,

monotonicity and IFR. In addition, we considered two bivariate PGL distributions derived

one by mixing and the other by generalization; a variety of properties including various

recurrences and conditional expectations were obtained. Finally, applications of our bivariate

distributions to various sets of automobile insurance claims data were given. It appears

that our models are appropriate for fitting bivariate data when there is a large number

of observations in the (0, 0) cell. Furthermore, it is possible worth examining, if alternative

bivariate models introduced by Papageorgiou and Vardaki (2022) can be useful in interpreting

these types of data.
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