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1. INTRODUCTION

Proportion data is frequently encounter in diverse disciplines such as economics, finance,

reliability, medical, biology, chemistry, etc. It is known that when the values of a random

variable are reported in percentage or fraction of the whole, it is referred to as proportion

data. Such variables encompass all possible values within the unit interval and require an

appropriate probability distribution to effectively model the observed data. Modeling ap-

proaches on the bounded interval have received considerable attention since they are related

to specific issues such as the acceptance rate, recovery rate, mortality rate, scores, proportion

of the educational measurements, etc. In the last decade, a lot of research have been done for

developing distributions that are defined on a bounded interval. Various techniques are used

to generate these distributions such as random variable transformation, function composition,

and generation of new families of distributions.

Beta distribution is one of the popularly known examples of the bounded distribution

which has different density shapes and is widely used in different areas of applied sciences.

Several alternative models have been defined on the bounded interval in the statistical dis-

tribution literature in order to provide better results. Topp-Leone and Kumaraswamy distri-

butions are also well known example of the unit distribution introduced by Topp and Leone

(1955) and Kumaraswamy (1980), respectively. These models have received great attention

in the past years in diverse areas of the applied sciences. However, these models do not have a

closed expression for the moments and are mathematically less tractable. Due to growing in-

terest in study of the bounded distributions, some new families of the unit distributions have

been proposed and studied in the recent literature. Some new among these are, namely, unit-

inverse gaussian distribution Ghitany et al. (2019), unit-Lindley distribution Mazucheli et al.

(2019), unit Weibull Mazucheli et al. (2020), unit log-log distribution Ribeiro-Reis (2021),

unit-bimodal Mart́ınez-Flórez et al. (2024), unit Muth distribution Maya et al. (2024), Ko-

rkmaz and Korkmaz (2023), and unit generalized half-normal distribution Mazucheli et al.

(2023).

Recently, by means of the omega function, Dombi et al. (2019) proposed a new proba-

bility distribution on the bounded domain and discussed its applications in reliability theory.

A random variable U is said to have omega distribution with parameters α, β, and d, denoted

by OMG(α, β, d) if its density function is given by

(1.1) fU (x;α, β, d) = 2αβxβ−1 d2β

d2β − x2β
ω
(−2α,β)
d (x), 0 < x < d,

where α > 0, β > 0, d > 0, and ω
(α,β)
d (x) =

(
dβ+xβ

dβ−xβ

)αdβ/2
denotes the omega function. The

hazard function of the omega distribution can be monotonic, constant, and bathtub shapes.

Therefore, it can used in modeling diverse class of real phenomena. Dombi et al. (2019)

showed that the limiting omega distribution is just the Weibull distribution and can be used

in place of the Weibull distribution. For some more developments and discussion about omega

distribution one can refer to Okorie and Nadarajah (2019), Alsubie et al. (2021), Birbiçer

and Genç (2023), Jónás and Bakouch (2022), and Özbilen and Genç (2022). Specially, when

d = 1, the omega distribution corresponds to the unit omega distribution (see Prataviera and

Cordeiro (2024)) supported on the unit interval. Its density and distribution functions (DF)
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are given by

(1.2) fU (x;α, β) = 2αβxβ−1 1

1− x2β
ω
(−2α,β)
1 (x), 0 < x < 1

and

(1.3) FU (x;α, β) = 1− ω
(−2α,β)
1 (x), 0 < x < 1,

respectively. Birbiçer and Genç (2023) showed that the unit omega distribution is actually

a unit exponentiated half logistic distribution. That is, the random variable X = e−Z has

the unit omega distribution when Z is the exponentiated half logistic random variable. The

distribution function of the unit omega is mathematically simple and independent special

functions and anticipate ease in exploring its important statistical properties and statistical

inference in the model. It can have different shapes including U-shaped, J-shaped, reversed

J-shaped, left and right skewed and are used in various applications related to reliability.

By the means of the quadratic rank transformation, Shaw and Buckley (2007) intro-

duced a new class of transmuted distributions using baseline distribution. We say that a

random variable Y has the transmuted distribution if its distribution is expressed as

(1.4) Gθ(y) = (1 + θ)H(y)− θH2(y), y ∈ R,

where H(·) is the baseline distribution and |θ| ≤ 1. One can see that the transmuted dis-

tribution defined in (1.4) can be obtained from the combination of distribution functions of

the smallest and largest order statistics from the baseline distribution in a sample of size 2.

Transmutation of the baseline distribution is a powerful tool to construct the skewed proba-

bility distribution and have been used by several researchers in the recent years. Granzotto

et al. (2017) proposed the cubic rank transmuted distribution and discussed its important

statistical properties. In addition to these publications, there are several papers in the lit-

erature that discussed the fundamental characteristics of various new quadratic and cubic

transmuted distributions, readers can see Merovci (2013), Elbatal (2013), Tian et al. (2014),

Khan and King (2014), Kemaloglu and Yilmaz (2017), Alizadeh et al. (2018), Kharazmi and

Balakrishnan (2021), Chhetri et al. (2022), and Taniş and Saraçoğlu (2023). Recently, Bal-

akrishnan and He (2021) formulated a record-based transmuted map to generate new class

of probability models from the baseline distribution. They showed that the record-based

transmuted distribution are expressed via the relation

(1.5) Fp(x) = H(x) + pH(x) logH(x), x ∈ R,

where 0 ≤ p ≤ 1, and H(·), H(·) denotes the distribution function (DF) and survival function

(SF) of the baseline distribution, respectively. Balakrishnan and He (2021) also introduced

some new record-based transmuted (RT) probability distribution, namely, RT-exponential

distribution, RT-Weibull distribution, and RT-Linear exponential distribution. Tanış and

Saraçoğlu (2022) discussed the different estimation for parameters estimation of the RT-

Weibull distribution and demonstrated its real application. The RT-generalized linear expo-

nential distribution is proposed and studied by Arshad et al. (2024). They also analyzed the

lifetime data sets using it.

This paper aims to introduce a new record-based transmuted generalization of the

unit omega distribution and study its important properties. The proposed distribution is a

more broad family of probability distributions and includes the unit omega distribution as a
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submodel. Its density and hazard function can be used to handle a vast class of data that

arises in a variety of domains. These functions have various shapes, including as increasing,

decreasing, and bathtub shapes.

The organization of the article is as follows: Section 2 presents the mathematical frame-

work of the proposed RTUOMG distribution. We derive the expressions for the DF, density,

hazard function, quantile function, moments, incomplete moments, inverted moments, mo-

ment generating function, lorenz curve, and bonferroni curve of the RTUOMG distribution.

Section 3 presents some concepts of stochastic ordering and some results related to ordered

statistic of the proposed distribution. In Section 4, the maximum likelihood estimators, least

squares and weighted least squares estimators, Cramér-von Mises estimators, and Anderson-

Darling estimators of the parameters are explored. Section 5 presents the detailed Monte

Carlo simulation study to validate the performances of the estimators through the absolute

bias and mean squared error measures. Finally, in Section 6, two real data sets are analyzed

to show the applicability of RTUOMG distribution in real situations.

2. RECORD-BASED TRANSMUTED UNIT-OMEGA DISTRIBUTION

Let Y1, Y2, . . . be a sequence of independent and identically distributed (iid) random

variables having DF H(·). Let YU(1) and YU(2) denote the first two upper records from the

sequence of iid random variables. Now, define a random variable X as

X =

{
YU(1), with probability 1− p

YU(2), with probability p,

where 0 ≤ p ≤ 1. The DF of X is obtained as follows (see Balakrishnan and He (2021)):

FX(x) =(1− p)P (YU(1) ≤ x) + pP (YU(2) ≤ x)

=(1− p)H(x) + p

[
1−H(x)

1∑
r=0

(− logH(x))r

r!

]

=(1− p)H(x) + p[1−H(x)(1− logH(x))]

=H(x) + pH(x) logH(x), x ∈ R,(2.1)

where H(x) = 1 − H(x) is SF of the baseline distribution H(x). The density function and

hazard function (HF) of X are respectively, given by

(2.2) fX(x) = h(x)[1− p− p logH(x)], x ∈ R

and

(2.3) rX(x) = r(x)
1− p− p logH(x)

1− p logH(x)
, x ∈ R,

where h(x) is the density function of the baseline distribution, and r(x) denotes the HF of

the baseline distribution and is defined as r(x) = h(x)/H(x).

We say that a random variable X follows the record-based transmuted unit omega

distribution (denoted by X ∼ RTUOMG(α, β, p)) if its distribution function is given by

(2.4) FX(x;α, β, p) = 1− ω
(−2α,β)
1 (x) + pω

(−2α,β)
1 (x) log

(
ω
(−2α,β)
1 (x)

)
,
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where 0 < x < 1, α > 0, β > 0 and p ∈ [0, 1]. The corresponding density function of the

RTUOMG distribution is given by

(2.5) fX(x;α, β, p) =

(
2αβxβ−1

1− x2β

)
ω
(−2α,β)
1 (x)

[
1− p− p log

(
ω
(−2α,β)
1 (x)

)]
.

It may be seen that when p = 0, the RTUOMG distribution reduces to OMG distribution.

Also, one can easily show that FX(x) ≤ H(x), ∀x ∈ (0, 1). The HF of the the RTUOMG

distribution is

(2.6) rX(x;α, β, p) =
2αβxβ−1

(1− x2β)

⎧⎨
⎩
1− p− p log

(
ω
(−2α,β)
1 (x)

)
1 + p log

(
ω
(−2α,β)
1 (x)

)
⎫⎬
⎭ .

For different values of the model parameters α, β, and p, the plots of the probability density

function (PDF) and HF are shown in the Figure 1 and Figure 2, respectively. From these

figures, we see that the PDF and HF of the RTUOMG distribution takes different shapes

and suggest applicability of the model in diverse areas.
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Figure 1: PDF plots of RTUOMG distribution.
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Figure 2: HF plots of RTUOMG distribution.
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2.1. Quantile function

The quantile function of the RTUOMG distribution can be derived in terms of the

Lambert W function which is defined as

W (ξ)eW (ξ) = ξ,

where ξ is a complex number. When ξ ≥ −1/e, it has two branches, namely, principal branch

(Wo) and negative branch (W−1). For a detailed discussion about the Lambert W function

one can refer to a recent paper by Jodrá and Arshad (2022).

Theorem 2.1. Let X be a random variable having RTUOMG(α, β, p) distribution.

Then, the quantile function Q(u) is

(2.7) Q(u) =

⎡
⎢⎣e

−1
α

{
W−1

(
u−1

pe1/p

)
+ 1

p

}
− 1

e
−1
α

{
W−1

(
u−1

pe1/p

)
+ 1

p

}
+ 1

⎤
⎥⎦

1
β

, 0 < u < 1.

Proof: For u ∈ (0, 1), the solution of F (x) = u yields the quantile function. Now,

we have {
1− p log

(
1 + xβ

1− xβ

)−α
}(

1 + xβ

1− xβ

)−α

=1− u

{
−1

p
+ log

(
1 + xβ

1− xβ

)−α
}
e
log

(
1+xβ

1−xβ

)−α

− 1
p
=
u− 1

pe
1
p

.

It can be verified that (u − 1)/pe1/p ∈ [−1/e, 0), and −1
p + log

(
1+xβ

1−xβ

)−α ∈ (−∞,−1]. Now,

using the W−1 function in the above equation, we get

(2.8) W−1

(
u− 1

pe
1
p

)
=

−1

p
+ log

(
1 + xβ

1− xβ

)−α

.

On solving (2.8) for x, completes the proof of the theorem.

Next, we have the following lemmas which are needed to derive various types of the moments.

Lemma 2.1. For λ > 0 and μ > 0, we have (see Lee et al. (2011))

(2.9)

∫ 1

0
xλ−1(1− x)μ−1(1− βx)−νdx = B(λ, μ) 2F1(ν, λ;λ+ μ;β),

where B(α, β) and 2F1(α, β; γ;x) are the beta function and Gauss hypergeometric function,

respectively, defined by

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt

and

2F1(α, β; γ;x) =

∞∑
i=0

(α)i(β)i
(γ)i

xi

i!
,

where (n)i = n(n+ 1)(n+ 2) . . . (n+ i− 1) denotes the falling factorial.
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Lemma 2.2. [Formula 1.513.1 in Gradshteyn and Ryzhik (2014)]. If y2 < 1, then

(2.10) log

(
1 + y

1− y

)
= 2

∞∑
k=1

1

2k − 1
y2k−1.

Lemma 2.3. For Re(a) > Re(b) > 0, |arg(1 − x)| < π, we have (see Özarslan and

Ustaoğlu (2019))

(2.11)

∫ λ

0
yb−1(1− y)a−b−1(1− xy)−αdy = B(b, a− b) 2δ1(α, [b, a;λ], x),

where B(α, β) is the beta function defined in Lemma 2.1 and 2δ1(α, [b, a;λ], x) represents the

incomplete gauss hypergeometric function defined by

2δ1(α, [b, a;λ], x) =

∞∑
i=0

(α)i[b, a;λ]i
xi

i!
,

where [b, a;λ]i denotes the incomplete Pochhammer ratio which is introduced in terms of the

incomplete beta function as follows

[b, a;λ]i =
Bλ(b+ i, a− b)

B(b, a− b)
,

where Bλ(m,n) is known as incomplete beta function and given by

Bλ(m,n) =

∫ λ

0
tm−1(1− t)n−1dt, Re(m) > 0, Re(n) > 0, 0 ≤ λ < 1.

2.2. Moments and measures

The rth order moment is defined by

μ′
r = E[Xr] =

∫
xrfX(x)dx.

Proposition 2.1. Let X ∼ RTUOMG(α, β, p). Then

(2.12)

μ′
r =2α(1− p)B

( r
β
+ 1, α

)
2F1

(
α+ 1,

r

β
+ 1;

r

β
+ α+ 1;−1

)

+ 4pα2
∞∑
k=1

[
1

2k − 1
B
( r
β
+ 2k, α

)
2F1

(
α+ 1,

r

β
+ 2k;

r

β
+ 2k + α;−1

)]
.

Proof: We have

μ′
r =

∫ 1

0
xr
(
2αβxβ−1

1− x2β

)
ω
(−2α,β)
1 (x)

[
1− p− p log

(
ω
(−2α,β)
1 (x)

)]
dx

=

∫ 1

0
xr

2αβxβ−1

1− x2β

(
1 + xβ

1− xβ

)−α [
1− p+ pα log

(
1 + xβ

1− xβ

)]
dx.
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Setting y = xβ , we get

μ′
r =

∫ 1

0
y

r
β

2α

1− y2

(
1 + y

1− y

)−α [
1− p+ pα log

(
1 + y

1− y

)]
dy.

Using Lemma 2.2, we get

μ′
r = 2α

∫ 1

0

y
r
β

(1 + y)(1− y)

(
1 + y

1− y

)−α
[
1− p+ 2pα

∞∑
k=1

1

2k − 1
y2k−1

]
dy.

By an use of the Lemma 2.1 and simple calculation completes the proof.

The coefficient of Skewness (CS) and the coefficient of Kurtosis (CK) using first four moment

are respectively, defined as

CS =
μ′
3 − 3μ′

2μ
′
1 + 2μ′

1
3

μ2
3
2

and

CK =
μ′
4 − 4μ′

1μ
′
3 + 6μ′

1
2μ′

2 − 3μ′
1
4

μ2
2

,

where μ2 is variance and is defined as μ2 = μ′
2 − (μ′

1)
2.

In Table 1, we find a compilation of statistical moments, variance, CS, and CK for various

parameter values of the RTUOMG(α, β, p) distribution. Additionally, the Figure 3 provides

a visual representation of how skewness and kurtosis change across different parameter con-

figurations.

2.3. Moment generating function

For a random variable X, the moment generating function (MGF) MX(t) is defined as

MX(t) = E(etX) provided the expectation exists in some neighborhood of the origin.

Let X ∼ RTUOMG(α, β, p). Then, the MGF MRTUOMG(t) of X is

MRTUOMG(t) =

∫ 1

0
etxfX(x)dx =

∞∑
r=0

tr

r!

∫ 1

0
xrfX(x)dx

= 2α(1− p)

∞∑
r=0

{
tr

r!
B
( r
β
+ 1, α

)
2F1

(
α+ 1,

r

β
+ 1;

r

β
+ 1 + α;−1

)}

+ 4pα2
∞∑
r=0

{
tr

r!

∞∑
k=1

[
1

2k − 1
B
( r
β
+ 2k, α

)
2F1

(
α+ 1,

r

β
+ 2k;

r

β
+ 2k + α;−1

)]}
.

Next, we present the incomplete moments for the RTUOMG distribution.

2.4. Incomplete moment

The rth incomplete moment is defined as

φr(z) =

∫ z

0
xrfX(x)dx.
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Proposition 2.2. Let X ∼ RTUOMG(α, β, p). Then

(2.13)

φr(z) = 2α(1− p)B
( r
β
+ 1, α

)
2δ1

(
α+ 1,

[
r

β
+ 1, α+

r

β
+ 1; zβ

]
,−1

)

+ 4pα2
∞∑
k=1

[
1

2k − 1
B
( r
β
+ 2k, α

)
2δ1

(
α+ 1,

[
r

β
+ 2k, α+

r

β
+ 2k; zβ

]
,−1

)]
.

One can easily establish the proof of the Proposition 2.2 with simple calculation and using

the Lemma 2.2-2.3.

2.5. Inverted moments

The rth inverted moment of RTUOMG distribution defined by

μ∗
r =

∫
x−rfX(x)dx

Proposition 2.3. Let X ∼ RTUOMG(α, β, p). Then, the rth inverted moment is

μ∗
r = 2α(1− p)B

(
1− r

β
, α
)

2F1

(
α+ 1, 1− r

β
; 1− r

β
+ α;−1

)

+ 4pα2
∞∑
k=1

[
1

2k − 1
B
(
2k − r

β
, α
)

2F1

(
α+ 1, 2k − r

β
; 2k − r

β
+ α;−1

)]
.(2.14)

2.6. Lorenz and Bonferroni curve

The Lorenz curve measure the uncertainty in data. It is defined in terms of the incom-

plete moment and mean as

(2.15) L(x) =
φ1(z)

E(X)
.

For the RTUOMG distribution, the expression of the Lorenz curve L can be obtained with

the help of (2.12) and (2.13).

The Bonferroni curve is obtained using the Lorenz curve as

(2.16) B(x) =
L(x)

FX(x)
.

For the RTUOMG distribution, we can calculate B(x) by values of the its component.

3. STOCHASTIC ORDERING AND ORDER STATISTICS

In distribution theory and statistics, a stochastic ordering quantifies the concept of one

random variable being bigger than another. A random variable X is said to be smaller than

a random variable Y if
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Table 1: Mean, variance, coefficient of skewness (CS), and coefficient of
kurtosis (CK) for different values of parameters α, β, and p.

β p α μ′
1 μ′

2 μ′
3 μ′

4 μ2 CS CK

0.7 0.2 0.50 0.5542510 0.4285096 0.3644273 0.3239216 0.1213154 -0.1787491 1.5419750
1.25 0.2901651 0.1567514 0.1047541 0.0777581 0.0725556 0.8782454 2.6772931
2.00 0.1805073 0.0711336 0.0378631 0.0235777 0.0385507 1.4672175 4.6838320
2.75 0.1247350 0.0373275 0.0160948 0.0084739 0.0217687 1.8706299 6.7571180
3.50 0.0923828 0.0217244 0.0077187 0.0034674 0.0131898 2.1617793 8.6740660
4.25 0.0718269 0.0136545 0.0040625 0.0015718 0.0084954 2.3771614 10.355870
5.00 0.0578708 0.0091041 0.0023016 0.0007740 0.0057551 2.5393587 11.790823
5.75 0.0479085 0.0063591 0.0013840 0.0004081 0.0040639 2.6634355 12.997680
6.50 0.0405136 0.0046111 0.0008741 0.0002279 0.0029698 2.7597558 14.006293

α p β
1.5 0.5 0.50 0.2310710 0.1156176 0.0734855 0.0524786 0.0622238 1.1605455 3.368963

1.25 0.4610186 0.2805956 0.1949608 0.1463780 0.0680574 0.1604957 1.978038
2.00 0.5881271 0.4001152 0.2959190 0.2310710 0.0542216 -0.2517045 2.168528
2.75 0.6672679 0.4872244 0.3768347 0.3033692 0.0419780 -0.4994430 2.523453
3.50 0.7210560 0.5528266 0.4420729 0.3645541 0.0329048 -0.6698945 2.881894
4.25 0.7599340 0.6037974 0.4954208 0.4165299 0.0262978 -0.7959642 3.211055
5.00 0.7893271 0.6444595 0.5397056 0.4610186 0.0214221 -0.8936171 3.505502
5.75 0.8123212 0.6776175 0.5769850 0.4994245 0.0177518 -0.9717678 3.767074
6.50 0.8307971 0.7051561 0.6087628 0.5328590 0.0149322 -1.0358663 3.999452

α β p
0.5 0.3 0.1 0.3710223 0.2728817 0.2271800 0.1993273 0.1352242 0.5146700 1.679386

0.2 0.4031998 0.3038938 0.2565056 0.2271873 0.1413237 0.3766815 1.533736
0.3 0.4353719 0.3349045 0.2858282 0.2550473 0.1453558 0.2427470 1.437843
0.4 0.4675487 0.3659152 0.3151508 0.2829073 0.1473134 0.1116919 1.386651
0.5 0.4997255 0.3969259 0.3444733 0.3107672 0.1472004 -0.0177101 1.377406
0.6 0.5319022 0.4279366 0.3737959 0.3386272 0.1450166 -0.1465645 1.409213
0.7 0.5640815 0.4589473 0.4031185 0.3664872 0.1407593 -0.2757944 1.482790
0.8 0.5962576 0.4899580 0.4324410 0.3943472 0.1344348 -0.4060726 1.600227
0.9 0.6284332 0.5209687 0.4617636 0.4222072 0.1260404 -0.5373839 1.764014

1. Stochastic order X ≤st Y if FX(x) ≥ FY (x) ∀ x,

2. Hazard rate order X ≤hr Y if hX(x) ≥ hY (x) ∀ x,

3. Mean residual life order X ≤mrl Y if mX(x) ≥ mY (x) ∀ x,

4. Likelihood ratio order X ≤lr Y if fX(x)
fY (x) decreases in x.

Shaked and Shanthikumar (2007) discussed the following interconnections

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y ⇒ X ≤st Y .

Next, we have the following result.

Theorem 3.1. Let X ∼ RTUOMG(α1, β1, p1) and Y ∼ RTUOMG(α2, β2, p2). If

α1 > α2, β1 = β2 = β, and p1 = p2 = p, then X ≤lr Y . Hence, X ≤hr Y,X ≤mrl Y and

X ≤st Y .

Proof: We have

fX(x)

fY (x)
=

2α1β1xβ1−1

1−x2β1

(
ω
(−2α1,β1)
1 (x)

){
1− p1

(
1 + log

(
ω
(−2α1,β1)
1 (x)

))}
2α2β2xβ2−1

1−x2β2

(
ω
(−2α2,β2)
1 (x)

){
1− p2

(
1 + log

(
ω
(−2α2,β2)
1 (x)

))} .
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Figure 3: Graph of Skewness and Kurtosis for different parameters.

Taking log and differentiating both sides with respect to x, we get

d

dx
log

{
fX(x)

fY (x)

}
=

β1 − 1

x
− β2 − 1

x
− 2α1β1x

β1−1

1− x2β1
+

2α2β2x
β2−1

1− x2β2
− 2β2x

2β2−1

1− x2β2
+

2β1x
2β1−1

1− x2β1

+

2α1β1p1xβ1−1

1−x2β1{
1− p1

(
1 + log

(
1+xβ1

1−xβ1

)−α1
)} −

2α2β2p2xβ2−1

1−x2β2{
1− p2

(
1 + log

(
1+xβ2

1−xβ2

)−α2
)} .
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Now, if β1 = β2 = β, p1 = p2 = p, then

(3.1)

=
2βxβ−1

1− x2β
(α2−α1)+

2βpxβ−1

1− x2β

⎧⎪⎪⎨
⎪⎪⎩

α1{
1− p

(
1 + log

(
1+xβ

1−xβ

)−α1
)} − α2{

1− p

(
1 + log

(
1+xβ

1−xβ

)−α2
)}

⎫⎪⎪⎬
⎪⎪⎭ .

Now, we can see from equation (3.1), if β1 = β2 = β, p1 = p2 = p, and α1 > α2, then
d
dx log

{
fX(x)
fY (x)

}
≤ 0 implies that X ≤lr Y . Consequently, the other relations also holds.

3.1. Order statistics

Let us consider a random sampleX1, X2, . . . , Xn taken from the RTUOMG distribution,

with corresponding order statistics X(1), X(2), . . . , X(n). The PDF of the rth order statistic

X(r) (where r = 1, 2, . . . , n) is given by

(3.2) fX(r)
(x) =

f(x)

B(r, n− r + 1)

r−1∑
i=0

(
r − 1

i

)
(−1)i (1− F (x))n+i−r .

The CDF of rth order statistics (Xr) are given by (see P. Singh and Dhar Das (2023))

FX(r)
(x) =

n∑
j=r

(
n

j

)
F j(x)[1− F (x)]n−j .

This expression can also be written as

(3.3) FX(r)
(x) =

n∑
j=r

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−1)lF j+l(x).

The PDF and CDF of rth order statistics of RTUOMG distribution are respectively, given as

(3.4)

fX(r)
(x) =

f(x)

B(r, n− r + 1)

r−1∑
i=0

(
r − 1

i

)
(−1)i

[
ω
(−2α,β)
1 (x)− pω

(−2α,β)
1 (x) log

{
ω
(−2α,β)
1 (x)

}]n+i−r

and

(3.5)

FX(r)
(x) =

n∑
j=r

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−1)l

[
1− ω

(−2α,β)
1 (x) + pω

(−2α,β)
1 (x) log

{
ω
(−2α,β)
1 (x)

}]j+l
.

In addition, the PDFs of the smallest and largest order statistics are

fX(1)
(x) = nf(x)

[
ω
(−2α,β)
1 (x)− pω

(−2α,β)
1 (x) log

{
ω
(−2α,β)
1 (x)

}]n−1

and

fX(n)
(x) = nf(x)

n−1∑
i=0

(
n− 1

i

)
(−1)i

[
ω
(−2α,β)
1 (x)− pω

(−2α,β)
1 (x) log

{
ω
(−2α,β)
1 (x)

}]i
,

respectively.
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3.2. Record statistics

Let X1, X2, . . . , Xn be a sequence of random variables from the RTUOMG distribution,

and let U1, U2, . . . , Un and L1, L2, . . . , Ln be the first n upper and lower record statistics,

respectively, observed from the sequence X1, X2, . . . , Xn. Then, the PDF of nth upper (Un)

and lower (Ln) record statistic are respectively, given by (see Sakthivel and Nandhini (2022))

(3.6) fUn(un) =
(− log[1− F (un)])

(n−1)

(n− 1)!
f(un), un > 0

and

(3.7) fLn(ln) =
(− log[F (ln)])

(n−1)

(n− 1)!
f(ln), ln > 0.

Furthermore, by substituting the CDF of the RTUOMG distribution, we get

fUn(un) =

(
− log

[
ω
(−2α,β)
1 (un)− pω

(−2α,β)
1 (un) logω

(−2α,β)
1 (un)

])(n−1)

(n− 1)!
f(un), un > 0

and

fLn(ln) =

(
− log

[
1− ω

(−2α,β)
1 (ln) + pω

(−2α,β)
1 (ln) logω

(−2α,β)
1 (ln)

])(n−1)

(n− 1)!
f(ln), ln > 0.

Moreover, the joint PDF of first n upper records R = (R1, R2, . . . Rn) is given by

fR(r) =

n−1∏
j=1

h(rj)f(rn).

Hence,

fR(r) =

⎧⎨
⎩

n−1∏
j=1

(
2αβrβ−1

j

1− r2βj

)[
1− p− p logω

(−2α,β)
1 (rj)

1 + p logω
(−2α,β)
1 (rj)

]⎫⎬
⎭ f(rn),

where r = (r1, r2, . . . , rn) denotes the observed value of R = (R1, R2, . . . Rn) with r1 < r2 <

. . . < rn, and f(.) denotes the pdf in equation (2.5).

4. PARAMETERS ESTIMATION

This section examines the estimation of unknown parameters of RTUOMG(α, β, p)

distribution. Several methods of point estimation such as maximum likelihood (ML), ordinary

least square (OLS), weighted least square (WLS), Cramér-von Mises (CvM), and Anderson

Darling (AD) are applied to calculate the estimators for unknown parameters of the proposed

distribution.
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4.1. Maximum likelihood (ML) estimation

Let X1, X2, . . . , Xn be a random sample of size n taken from the RTUOMG(α, β, p)

distribution. Then, the log-likelihood function can be written as

L(α, β, p|x) = n log 2α+ n log β + (β − 1)

n∑
i=1

log xi −
n∑

i=1

log(1− x2βi )− α

n∑
i=1

log

(
1 + xβi

1− xβi

)

+
n∑

i=1

log

{
1− p+ pα log

(
1 + xβi

1− xβi

)}
,

where x = (x1, x2, . . . , xn). The maximum likelihood (ML) estimators, α̂ML, β̂ML, and p̂ML

of α, β, and p are calculated by simultaneously solving the following non-linear equations.

(4.1)

∂L(α, β, p|x)
∂α

=
n

α
−

n∑
i=1

log

(
1 + xβi

1− xβi

)
+ p

n∑
i=1

⎡
⎢⎢⎣

log

(
1+xβ

i

1−xβ
i

)

1− p+ pα log

(
1+xβ

i

1−xβ
i

)
⎤
⎥⎥⎦ = 0,

∂L(α, β, p|x)
∂β

=
n

β
+

n∑
i=1

log xi + 2

n∑
i=1

x2βi log xi

1− x2βi
− 2α

n∑
i=1

xβi log xi

1− x2βi

+ 2pα

n∑
i=0

⎡
⎢⎢⎣

xβ
i log xi

1−x2β
i

1− p+ pα log

(
1+xβ

i

1−xβ
i

)
⎤
⎥⎥⎦ = 0,

∂L(α, β, p|x)
∂p

=

n∑
i=1

⎡
⎢⎢⎣

α log

(
1+xβ

i

1−xβ
i

)
− 1

1− p+ pα log

(
1+xβ

i

1−xβ
i

)
⎤
⎥⎥⎦ = 0.

There are several numerical techniques such as Broyden-Flecther-Goldfarb-Shanno (BFGS)

and Nelder-Mead (NM) that can be use to solve the above non-linear equations obtained in

(4.1). These techniques can be easily applied using optim() function in R-programming.

4.2. Ordinary least squares (OLS) and weighted least squares (WLS) estimation:

It is common practice to estimate the distribution parameters using the relationship

between the empirical cumulative distribution function and order statistics. These ideas form

the foundation of the weighted least squares and ordinary least squares estimation concepts.

Let X1, X2, . . . , Xn be a random sample from the distribution F (x). Then, the empirical

distribution function is defined as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I denotes the indicator function. According to Swain et al. (1988), the OLS estimators

of unknown parameters can be obtained by minimizing the sum of squares differences between
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the vector of uniformized order statistics and the corresponding vector of expected values.

Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample X1, X2, . . . , Xn of

size n taken from RTUOMG distribution. Then, the mean and variance of the transformed

variable F (X(i)) are as follows

E(F (X(i))) =
i

n+ 1
; i = 1, 2, . . . , n

and

V (F (X(i))) =
i(n− i+ 1)

(n+ 1)2(n+ 2)
; i = 1, 2, . . . , n.

Based on the mean and variance of F (X(i)), we can employ the following two methods of

least squares estimation.

Ordinary least squares (OLS) estimation: The OLS estimators, α̂OLS , β̂OLS , and p̂OLS

of RTUOMG(α, β, p) distribution can be obtained by minimizing the following equation

(4.2) Z(α, β, p) =

n∑
i=1

(
F (X(i))−

i

n+ 1

)2

.

By considering the distribution function given in equation (2.4) and equation (4.2), we can

derive the following three non-linear equations by taking partial derivatives with respect to

parameters α, β, and p

(4.3)
∂

∂α
Z(α, β, p) =

n∑
i=1

(
∂F (Xi, α, β, p)

∂α

)(
F (X(i))−

i

n+ 1

)
= 0,

(4.4)
∂

∂β
Z(α, β, p) =

n∑
i=1

(
∂F (Xi, α, β, p)

∂β

)(
F (X(i))−

i

n+ 1

)
= 0,

(4.5)
∂

∂p
Z(α, β, p) =

n∑
i=1

(
∂F (Xi, α, β, p)

∂p

)(
F (X(i))−

i

n+ 1

)
= 0.

These equations capture the relationship between the observed data and the parameters of

interest. The solution of equations (4.3)-(4.5) can be obtained by using a non-linear equation

solver technique such as Broyden-Flecther-Goldfarb-Shanno (BFGS) and Nelder-Mead (NM)

technique etc.

Weighted least squares (WLS) estimation: The WLS estimator follows a similar pro-

cedure to the OLS estimator, where the objective is to minimize the weighted sum of squares

differences. The WLS estimators, α̂WLS , β̂WLS , and p̂WLS for the unknown parameters α,

β, and p can be computed by minimizing

W (α, β, p) =
n∑

i=1

ηi

(
F (X(i))−

i

n+ 1

)2

,

with respect to the unknown parameters. This function is minimized by adjusting the values

of α, β, and p such that the sum of squared differences between the observed values F (X(i))

and the corresponding expected values i
n+1 is minimized through weight factor ηi. The

factor ηi is derived from the inverse of the variance of F (X(i)) and depends on the specific

distribution being considered.
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4.3. Cramér-von Mises (CvM) estimation:

Cramér-von Mises (CvM) estimator is one type of goodness-of-fit estimator and based

on Cramér-von Mises statistics (see Dey et al. (2018)). This estimator is basically based on

the difference between the empirical distribution function and the theoretical distribution

function. Therefore, the CvM estimators, α̂CvM , β̂CvM , and p̂CvM of unknown parameters

can be obtained by minimizing the following equation with respect to parameters α, β, and p

C(α, β, p) =
1

12n
+

n∑
i=1

(
F (X(i))−

2i− 1

2n

)2

.

4.4. Anderson-Darling (AD) estimation:

Anderson and Darling (1952) suggested an estimator based on Anderson-Darling statis-

tic which minimizes the Anderson-Darling distance between the empirical and theoretical

distribution function. The AD estimators, α̂AD, β̂AD, and p̂AD of unknown parameters can

be computed by minimizing the following equation with respect to parameters α, β, and p

Q(α, β, p) = −n− 1

n

n∑
i=1

(2i− 1)
[
logF (X(i)) + log F̄ (X(n+1−i))

]
,

where F̄ (x) = 1 − F (x) denotes the SF of RTUOMG distribution. For more details of this

technique, one may refer to Boos (1982) and Arshad et al. (2024).

5. SIMULATION STUDY

In this section, a well-organized Monte Carlo simulation study is carried out to evaluate

the performance of ML, OLS, WLS, CvM, and AD estimators of unknown parameters of

proposed RTUOMG(α, β, p) distribution. A well known Broyden-Fletcher-Goldfarb-Shanno

(BFGS) technique introduced by Broyden (1970), Fletcher (1970), Goldfarb (1970), and

Shanno (1970) is used to obtain the estimates of population parameters α, β, and p. This

optimization is performed using optim(·) function which involves the BFGS technique. For a

detailed information about this algorithm, one can refer to ‘stats’ package of R (version 4.2.1)

programming library. In present simulation, we generate the data of different sample sizes (n)

such as 25, 50, 100, 150, 200, and 250 with different combinations of parameter values (α, β, p)

using inverse cumulative distribution function method. The absolute biases and mean squared

errors (MSEs) of considered estimators are calculated using 500 repetitions for each sample

sizes. The functional form of these measures are as follows; absolute bias=N−1
∑N

i=1 |(η̂i−η)|,
mean squared errors (MSEs)= N−1

∑N
i=1(η̂i − η)2, where η = (α, β, p) is the true value of

the parameter, η̂i = (α̂i, β̂i, p̂i) is the estimated value of the parameter η for the ith repeated

sample, and N be the number of repeated samples. The main findings of this simulation study

are reported in Table 2-5. Table 2 presents the absolute biases and MSEs of the estimators for
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fix settings of parameters η = (0.3, 0.4, 0.8). From Table 2, it can be observe that the absolute

biases and MSEs of all the considered estimators are decreases as the sample sizes increases.

Therefore, we can say that all considered estimators are consistent. The similar performance

of considered estimators are obtained in case of other settings of parameter values. One more

observation, we analyze that the ML estimation technique performs well at the estimation of

small setting of parameters i.e. ∀ α, β, p ∈ (0, 1) while AD estimation technique works better

for the estimation of α ≥ 1 and β, p ∈ (0, 1). Moreover, in case of β ≥ 1 and α, p ∈ (0, 1)

or α, β ≥ 1 and p ∈ (0, 0.5), AD estimation technique works better for the estimation of α,

β and ML technique performs better to estimate the parameter p in terms of absolute bias

and MSEs. The CvM technique works worse in all situations. Based on the results of the

simulation study, we recommended the maximum likelihood (ML), Anderson-Darling (AD),

and weighted least squares (WLS) estimation technique for the estimation of parameters of

the proposed distribution.

Table 2: Absolute biases and MSEs of the estimators for settings of pa-
rameters η = (0.3, 0.4, 0.8).

N = 500 ↓Sample Absolute Bias MSE

Estimators (n) α̂ β̂ p̂ α̂ β̂ p̂

ML 25 0.0575402 0.5636601 0.3744900 0.0051212 0.7029732 0.2106772
50 0.0460293 0.4086689 0.3399031 0.0033725 0.2802979 0.1763369
100 0.0360543 0.3303454 0.2885562 0.0021142 0.1552839 0.1273787
150 0.0303397 0.3070048 0.2578554 0.0015002 0.1224424 0.0988758
200 0.0262740 0.3058071 0.2467511 0.0010812 0.1132115 0.0823941
250 0.0229363 0.3081646 0.2442920 0.0007905 0.1094451 0.0744624

OLS 25 0.0684853 0.3996601 0.4082226 0.0071143 0.4539321 0.2519106
50 0.0579523 0.3564157 0.3997664 0.0051239 0.2856817 0.2362091
100 0.0425999 0.2906173 0.3190678 0.0030105 0.1527906 0.1524894
150 0.0334161 0.2740858 0.2768188 0.0018788 0.1192181 0.1120023
200 0.0278311 0.2632146 0.2493752 0.0013178 0.1026786 0.0881649
250 0.0242371 0.2575848 0.2375982 0.0009229 0.0908743 0.0742529

WLS 25 0.0669899 0.4007772 0.4041653 0.0067799 0.4072548 0.2491423
50 0.0541343 0.3419191 0.3724363 0.0045822 0.2584859 0.2145772
100 0.0402377 0.2854043 0.3030421 0.0027186 0.1350776 0.1414393
150 0.0312444 0.2712038 0.2613837 0.0016816 0.1098474 0.1024181
200 0.0255624 0.2651793 0.2359697 0.0010919 0.0973379 0.0782198
250 0.0223360 0.2699729 0.2281872 0.0007785 0.0926324 0.0681823

CvM 25 0.0636285 0.5163060 0.3927234 0.0063881 0.7009315 0.2354711
50 0.0542338 0.4067139 0.3903516 0.0045268 0.3618528 0.2260682
100 0.0402142 0.3101414 0.3128003 0.0026977 0.1739882 0.1457470
150 0.0315371 0.2878147 0.2728989 0.0016897 0.1308638 0.1080854
200 0.0264091 0.2739417 0.2463895 0.0012001 0.1104116 0.0858663
250 0.0230677 0.2661871 0.2354335 0.0008426 0.0966527 0.0726858

AD 25 0.0610353 0.4128566 0.3822879 0.0057994 0.4160725 0.2267281
50 0.0506099 0.3458641 0.3624216 0.0041280 0.2184971 0.2018953
100 0.0387137 0.2924843 0.2995147 0.0024893 0.1366311 0.1349263
150 0.0305515 0.2820945 0.2624722 0.0015762 0.1141870 0.1003933
200 0.0254312 0.2755060 0.2394694 0.0010539 0.1018982 0.0786142
250 0.0221263 0.2774801 0.2309920 0.0007644 0.0963062 0.0690289
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Table 3: Absolute biases and MSEs of the estimators for settings of pa-
rameters η = (1.5, 0.4, 0.8).

N = 500 ↓Sample Absolute Bias MSE

Estimators (n) α̂ β̂ p̂ α̂ β̂ p̂

ML 25 0.3497333 0.2236051 0.5125836 0.19385894 0.06425815 0.3318941
50 0.2597831 0.1979366 0.4998509 0.09421299 0.04653150 0.3204776
100 0.2012286 0.1674090 0.4492008 0.05820005 0.03379105 0.2773317
150 0.1763568 0.1426037 0.3938933 0.04577178 0.02613773 0.2301613
200 0.1439343 0.1229506 0.3423611 0.03364347 0.02047264 0.1833536
250 0.1175313 0.1062177 0.3001589 0.02341726 0.01611237 0.1463373

OLS 25 0.4566141 0.1802872 0.7527976 0.26447902 0.05098879 0.5877450
50 0.4078215 0.1784580 0.7482363 0.20304339 0.04229995 0.5834461
100 0.3974076 0.1773041 0.7411818 0.18009355 0.03623652 0.5748995
150 0.3867420 0.1744949 0.7320833 0.16853860 0.03349793 0.5649600
200 0.3831334 0.1725529 0.7240970 0.16285928 0.03189547 0.5550598
250 0.3961742 0.1784412 0.7531013 0.16773712 0.03318493 0.5836874

WLS 25 0.3860936 0.1761375 0.6553208 0.21006981 0.04876736 0.5005673
50 0.3308242 0.1740738 0.6410506 0.14698090 0.03912981 0.4807757
100 0.3087392 0.1753061 0.6455267 0.12307668 0.03483763 0.4748319
150 0.3066162 0.1774102 0.6589561 0.11804590 0.03419037 0.4836404
200 0.3157362 0.1813900 0.6782137 0.12059840 0.03468639 0.4995112
250 0.3336347 0.1888402 0.7200899 0.12782737 0.03683236 0.5432789

CvM 25 0.4082337 0.2211056 0.7438294 0.23055472 0.07281502 0.5790463
50 0.3582042 0.1981327 0.7386132 0.16498067 0.05151793 0.5736056
100 0.3711385 0.1861582 0.7329617 0.16097120 0.03948357 0.5664762
150 0.3794644 0.1830302 0.7413456 0.16140139 0.03630204 0.5745171
200 0.3780736 0.1792293 0.7321075 0.15716656 0.03411290 0.5631307
250 0.3880864 0.1830108 0.7549924 0.16130300 0.03469556 0.5851894

AD 25 0.2909188 0.1619203 0.4006342 0.14709415 0.04011143 0.2089489
50 0.2072535 0.1499430 0.4088768 0.06392817 0.03124702 0.2141149
100 0.1627509 0.1383655 0.3970670 0.03965682 0.02430970 0.2038295
150 0.1396941 0.1368092 0.4086397 0.02952598 0.02346276 0.2107771
200 0.1340009 0.1400162 0.4203310 0.02649028 0.02333142 0.2161384
250 0.1246115 0.1459661 0.4383566 0.02279590 0.02426058 0.2238062
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Table 4: Absolute biases and MSEs of the estimators for setting of pa-
rameters η = (0.5, 1.4, 0.7).

N = 500 ↓Sample Absolute Bias MSE

Estimators (n) α̂ β̂ p̂ α̂ β̂ p̂

ML 25 0.1120347 0.4778450 0.3510794 0.0192453 0.4553152 0.1653206
50 0.0882323 0.4759241 0.3538716 0.0115647 0.3755231 0.1699393
100 0.0730091 0.4901289 0.3268296 0.0082510 0.3552174 0.1474419
150 0.0644513 0.5374551 0.3064261 0.0065860 0.3798693 0.1310115
200 0.0584768 0.5666936 0.2965667 0.0053447 0.3882113 0.1181616
250 0.0520851 0.6055517 0.2937361 0.0041196 0.4195092 0.1085803

OLS 25 0.1169415 0.5490052 0.3767365 0.0207611 0.5735533 0.1939783
50 0.0955362 0.4938152 0.3775485 0.0136563 0.3935783 0.1906785
100 0.0742208 0.4622377 0.3252509 0.0087476 0.3337550 0.1456954
150 0.0597227 0.4525198 0.2898479 0.0059388 0.2942829 0.1148964
200 0.0489766 0.4411952 0.2581814 0.0041646 0.2647838 0.0910280
250 0.0439092 0.4310606 0.2446191 0.0032173 0.2441803 0.0794551

WLS 25 0.1137814 0.5097649 0.3640515 0.0199774 0.4917461 0.1856189
50 0.0897559 0.4689411 0.3441709 0.0123696 0.3905042 0.1703281
100 0.0703048 0.4475743 0.3138069 0.0079280 0.2959510 0.1348477
150 0.0572977 0.4514203 0.2805834 0.0056517 0.2817592 0.1106532
200 0.0467773 0.4539823 0.2526273 0.0037037 0.2667118 0.0868828
250 0.0408495 0.4603980 0.2358324 0.0027702 0.2676532 0.0752283

CvM 25 0.1153831 0.5903472 0.3593871 0.0212673 0.7178636 0.1758703
50 0.0933515 0.5122568 0.3659089 0.0129054 0.4440887 0.1778830
100 0.0710206 0.4625675 0.3228048 0.0080142 0.3361106 0.1407267
150 0.0573306 0.4648073 0.2886636 0.0054565 0.3091565 0.1126145
200 0.0471177 0.4544770 0.2583327 0.0038578 0.2761777 0.0900179
250 0.0420647 0.4416537 0.2438570 0.0029645 0.2553325 0.0782985

AD 25 0.1082465 0.4530197 0.3458671 0.0182808 0.3655762 0.1621560
50 0.0881673 0.4225620 0.3487991 0.0118716 0.2853728 0.1611526
100 0.0696419 0.4106469 0.3230672 0.0077281 0.2279476 0.1324356
150 0.0562887 0.4263870 0.3067596 0.0053736 0.2224153 0.1148221
200 0.0489789 0.4455409 0.2952685 0.0040292 0.2305750 0.1036650
250 0.0434670 0.4665140 0.2900217 0.0030678 0.2463197 0.0952949
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Table 5: Absolute biases and MSEs of the estimators for setting of pa-
rameters η = (2.5, 3, 0.2).

N = 500 ↓Sample Absolute Bias MSE

Estimators (n) α̂ β̂ p̂ α̂ β̂ p̂

ML 25 0.8061627 0.4544024 0.1484790 1.4487436 0.3635223 0.0359888
50 0.4895446 0.3169428 0.1301799 0.4510390 0.1720310 0.0260875
100 0.3099033 0.2278899 0.1101981 0.1644552 0.0861656 0.0161722
150 0.2312480 0.1948946 0.1026410 0.0930790 0.0607583 0.0125469
200 0.1849125 0.1793090 0.0922127 0.0583091 0.0469182 0.0093837
250 0.1519173 0.1785981 0.0936273 0.0380139 0.0435949 0.0093413

OLS 25 0.6721036 0.5160953 0.1965019 0.9517571 0.4045551 0.0566855
50 0.4528296 0.3629825 0.1719837 0.3543042 0.2104053 0.0432459
100 0.2923195 0.2512083 0.1513627 0.1444090 0.0976153 0.0327181
150 0.2309553 0.1999917 0.1387837 0.0850821 0.0607940 0.0274345
200 0.1967073 0.1628344 0.1302848 0.0587973 0.0396424 0.0227732
250 0.1877359 0.1322615 0.1191776 0.0522507 0.0278735 0.0187148

WLS 25 0.6634569 0.4632552 0.2016422 0.8629090 0.3438677 0.0626860
50 0.4572236 0.3234613 0.1733783 0.3559206 0.1814369 0.0474915
100 0.3155410 0.2245553 0.1436479 0.1673690 0.0811050 0.0315608
150 0.2360105 0.1821378 0.1233989 0.0900462 0.0535859 0.0214425
200 0.2038839 0.1476566 0.1091343 0.0651935 0.0329917 0.0147964
250 0.1805628 0.1366309 0.1015546 0.0500695 0.0285151 0.0120991

CvM 25 0.8235136 0.4981632 0.1845208 1.6105885 0.4277520 0.0491581
50 0.4949517 0.3507950 0.1657580 0.4490723 0.2131639 0.0397025
100 0.3015803 0.2441061 0.1494132 0.1613265 0.0950858 0.0316030
150 0.2275366 0.1979540 0.1366198 0.0856153 0.0597272 0.0261653
200 0.1919231 0.1591142 0.1271712 0.0570228 0.0378875 0.0212320
250 0.1851113 0.1315436 0.1184449 0.0511737 0.0274468 0.0182570

AD 25 0.6703474 0.4422730 0.1777463 0.9582408 0.3274166 0.0476750
50 0.4453855 0.3134355 0.1599620 0.3374060 0.1693089 0.0382549
100 0.3046488 0.2203649 0.1362785 0.1534672 0.0796048 0.0256305
150 0.2329083 0.1824005 0.1257978 0.0882921 0.0528154 0.0203533
200 0.1950100 0.1504189 0.1149436 0.0590851 0.0343346 0.0154094
250 0.1768263 0.1350550 0.1087862 0.0466696 0.0284675 0.0129945
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6. DATA ANALYSIS

In this section, we have analyzed two different datasets to assess the usefulness of pro-

posed distribution in modeling real life data. Considered data set are also fitted to some well

known distributions such as unit omega (UOMG) Prataviera and Cordeiro (2024), comple-

mentary unit gompertz (CUG), complementary unit lomax (CUL) Guerra et al. (2021), and

unit weibull (UW) distribution Mazucheli et al. (2020). The probability density and distri-

bution functions of these fitted distributions are presented in Table 6. First of all, we have

Table 6: Probability density and distribution function of considered dis-
tributions.

Distribution Density Function Distribution Function

UOMG 2αβxβ−1

(1−x2β)

(
1+xβ

1−xβ

)−α

1−
(

1+xβ

1−xβ

)−α

; α > 0, β > 0, x ∈ (0, 1)

CUG β log 2

(1−μ)−β−1
(1− x)−(β+1)2

(
(1−x)−β−1

1−(1−μ)−β

)
1− 2

(
(1−x)−β−1

1−(1−μ)−β

)
; β > 0, μ ∈ (0, 1), x ∈ (0, 1)

CUL log 2
β(1−x)

[
log

(
1− β−1 log(1− μ)

)]−1
1− [

1− β−1 log(1− x)
]( − log 2

log[1−β−1 log(1−μ)]

)
;

× [
1− β−1 log(1− x)

]( − log 2

log[1−β−1 log(1−μ)]

)
−1

β > 0, μ ∈ (0, 1), x ∈ (0, 1)

UW 1
x
αβ(− log x)β−1e−α(− log x)β e−α(− log x)β ; α > 0, β > 0, x ∈ (0, 1)

performed the exploratory data analysis and obtain the MLEs of the RTUOMG distribution

with four other taken distributions. Then, we have done a comparative study of RTUOMG

distribution with UOMG, CUG, CUL, and UW distribution. To determine the performance

and appropriateness of fitted distributions, we use some selection statistics such as the value

of -2log-likelihood function of fitted distribution, Akaike’s information criteria (AIC) of fitted

model and some goodness of fit test statistics; Kolmogorov-Smirnov (KS), Cramer von Mises

(CvM), and Anderson-Darling (AD) along with their p-values. The goodness of fit statis-

tic with smaller value and highest p-value gives the better fit of distribution. The functional

form of these measures and their performing algorithm are easily available in R-programming

library.

Data Analysis 1: Here, we consider a bladder cancer data (see Lee and Wang (2003)) about

the remission times (in months) of 128 patients. To avoid the biased results, first, we have

performed the outlier analysis using boxplot technique and extract one extreme observation

79.05* from data set. Since, the aim of this analysis is to verify the usefulness of proposed

distribution with support (0, 1). Therefore, the final data set of 127 observations divided by

100 are as follows; {0.0008, 0.0209, 0.0348, 0.0487, 0.0694, 0.0866, 0.1311, 0.2363, 0.0020,
0.0223, 0.0352, 0.0498, 0.0697, 0.0902, 0.1329, 0.0040, 0.0226, 0.0357, 0.0506, 0.0709, 0.0922,

0.1380, 0.2574, 0.0050, 0.0246, 0.0364, 0.0509, 0.0726, 0.0947, 0.1424, 0.2582, 0.0051, 0.0254,

0.0370, 0.0517, 0.0728, 0.0974, 0.1476, 0.2631, 0.0081, 0.0262, 0.0382, 0.0532, 0.0732, 0.1006,

0.1477, 0.3215, 0.0264, 0.0388, 0.0532, 0.0739, 0.1034, 0.1483, 0.3426, 0.0090, 0.0269, 0.0418,

0.0534, 0.0759, 0.1066, 0.1596, 0.3666, 0.0105, 0.0269, 0.0423, 0.0541, 0.0762, 0.1075, 0.1662,

0.4301, 0.0119, 0.0275, 0.0426, 0.0541, 0.0763, 0.1712, 0.4612, 0.0126, 0.0283, 0.0433, 0.0549,
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0.0766, 0.1125, 0.1714, 0.0135, 0.0287, 0.0562, 0.0787, 0.1164, 0.1736, 0.0140, 0.0302, 0.0434,

0.0571, 0.0793, 0.1179, 0.1810, 0.0146, 0.0440, 0.0585, 0.0826, 0.1198, 0.1913, 0.0176, 0.0325,

0.0450, 0.0625, 0.0837, 0.1202, 0.0202, 0.0331, 0.0451, 0.0654, 0.0853, 0.1203, 0.2028, 0.0202,

0.0336, 0.0676, 0.1207, 0.2173, 0.0207, 0.0336, 0.0693, 0.0865, 0.1263, 0.2269}. The basic

information of bladder cancer data are presented in Table 7. The reported value of skewness

and kurtosis indicate that data is positively skewed with high kurtosis. For modelling this

positive skewed and high kurtosis data a distribution defined on support (0,1) is needed.

We have fit the RTUOMG distribution with four other considered distributions for this

Table 7: The descriptive statistic for bladder cancer data set.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum Skewness Kurtosis
0.00080 0.03335 0.06250 0.08817 0.11715 0.46120 2.08009 5.09506
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Figure 4: Fitted CDFs and PDFs for bladder cancer data.

data set and calculated MLEs with their standard errors are reported in Table 8. As well

as, the fitted empirical and theoretical CDFs and PDFs plots using MLEs are displayed in

Figure 4. These fitted figures reveals a good fit of bladder cancer data set with RTUOMG

distribution. Further, we have evaluated the values of −2 logL and AIC = 2k−2 logL, where

k is the number of parameters and L denotes the maximized value of the likelihood function.

To analyze the appropriateness of RTUOMG distribution, three other selection statistics,

namely, KS, CvM, and AD along with their corresponding p-values are also calculated and

reported in Table 9. The smallest value of AIC and goodness of fit statistics (with their high

p-value) supports the best fit of RTUOMG distribution among other considered distributions.

Data Analysis 2: Here, we consider a failure times (in weeks) data set of 50 components

(see Tanış and Saraçoğlu (2022)). The values of data set divided by 100 are as follows;

{0.00013, 0.00065, 0.00111, 0.00111, 0.00163, 0.00309, 0.00426, 0.00535, 0.00684, 0.00747,
0.00997, 0.01284, 0.01304, 0.01647, 0.01829, 0.02336, 0.02838, 0.03269 0.03977, 0.03981,

0.04520, 0.04789, 0.04849, 0.05202, 0.05291, 0.05349 0.05911, 0.06018, 0.06427, 0.06456,

0.06572, 0.07023, 0.07087, 0.07291 0.07787, 0.08596, 0.09388, 0.10261, 0.10713, 0.11658,
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Table 8: The MLEs and (standard error*) for bladder cancer data set.

Distribution MLEs (standard errors*)

RTUOMG α̂ = 7.08299 (1.79777*) β̂ = 1.11156 (0.076196*) p̂ = 0.01 (0.19155*)

UOMG α̂ = 7.33820 (1.26419*) β̂ = 1.13426 (0.07418*)

CUG μ̂ = 0.06533 (0.00660*) β̂ = 0.01000 (0.77332*)

CUL μ̂ = 0.06255 (0.00646*) β̂ = 1.42330 (2.04066*)

UW α̂ = 0.03608 (0.00928*) β̂ = 2.84277 (0.18084*)

Table 9: Model selection statistics for bladder cancer data set.

n = 127 KS CvM AD

Model −2 logL AIC Statistic P-value Statistic P-value Statistic P-value

RTUOMG -365.0942 -359.0942 0.0655 0.6468 0.1077 0.5492 0.6613 0.5917
UOMG -362.3548 -358.3548 0.0693 0.5759 0.1145 0.5188 0.6694 0.5846
CUG -362.3154 -358.3154 0.0786 0.4121 0.1557 0.3730 1.0273 0.3431
CUL -362.9674 -358.9674 0.0891 0.2654 0.1701 0.3341 1.1275 0.2967
UW -358.6090 -354.6090 0.0679 0.6011 0.1546 0.3764 1.0428 0.3354

0.13006, 0.13388, 0.13842, 0.17152, 0.17283, 0.19418, 0.23471, 0.24777, 0.32795, 0.48105}.
The descriptive statistics of failure times data set are given in Table 10. The MLEs estima-

tors with their standard errors and model selection statistics fitted to the failure times data

are reported in Table 11-12. Figure 5 shows the graph of fitted CDFs and PDFs obtained

from the estimates in Table 11. The RTUOMG distribution fits this data better than the

UOMG, CUG, CUL, and UW distribution in terms of lowest values of AIC and goodness of

fit statistics (with their high p-values).

Table 10: The descriptive statistic for failure times data set.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum Skewness Kurtosis
0.00013 0.01390 0.05320 0.07821 0.10043 0.48105 2.37799 7.22886
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Figure 5: Fitted CDFs and PDFs for failure times data.
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Table 11: The MLEs and (standard error*) for failure times data set.

Distribution MLEs (standard errors*)

RTUOMG α̂ = 4.84868 (1.11256*) β̂ = 0.687588 (0.15471*) p̂ = 0.526608 (0.422478*)

UOMG α̂ = 4.27178 (1.03678*) β̂ = 0.818416 (0.08980*)

CUG μ̂ = 0.05885 (0.00965*) β̂ = 0.01000 (1.03830*)

CUL μ̂ = 0.04708 (0.00915*) β̂ = 0.21444 (0.18292*)

UW α̂ = 0.05624 (0.02112*) β̂ = 2.12460 (0.22026*)

Table 12: Model selection statistics for failure times data set.

n = 50 KS CvM AD

Model −2 logL AIC Statistic P-value Statistic P-value Statistic P-value

RTUOMG -159.8693 -153.8693 0.1003 0.6960 0.0638 0.7920 0.3342 0.9100
UOMG -156.5532 -152.5532 0.0973 0.7306 0.0676 0.7684 0.4231 0.8248
CUG -152.4296 -148.4296 0.1207 0.4597 0.1702 0.3343 1.6746 0.1399
CUL -156.3623 -152.3623 0.0892 0.8212 0.0889 0.6443 0.8247 0.4629
UW -154.2329 -150.2329 0.1483 0.2214 0.1817 0.3064 0.9602 0.3784

7. CONCLUSION

In this paper, we have proposed a new record-based transmuted generalization of the unit

omega distribution and call it RTUOMG distribution. We derived mathematical expressions

for the various important statistical quantities and graphically demonstrated the behavior of

the density and hazard function. We adopted the five different types of estimation techniques

for estimating the unknown parameters of the proposed distribution. Using the Monte Carlo

algorithm, a well organized simulation study has been performed to understand the behavior

of the considered estimators for the RTUOMG distribution with respect to absolute biases

and MSEs under different setups of parameters. Based on simulation results, we recommend

to use ML, AD, and WLS estimation technique for estimating the parameters of RTUOMG

distribution. Moreover, the utility of the RTUOMG distribution has been also compared with

some other considered distributions by analyzing two real life data sets. A dominating nature

of RTUOMG distribution shows the more effectiveness and flexibility in real life modeling.
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