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1. INTRODUCTION

Let Y be a random variable with an arbitrary (continuous) cumulative distribution

function (CDF), denoted as G(y). If this CDF is raised to the exponent α(α > 0), denoted as

Gα(y), then we obtain a exponentiated-G distribution with parameter α (Lehmann, 1953). To

simplify notation, we will refer to this distribution as α-G. The probability density function

(PDF) of the α-G distribution is given by

f(y) = αg(y)Gα−1(y),

where, g(y) = dG(y)/dy corresponds the PDF of G(·), called the baseline distribution. It

is important to observe that when the parameter α takes on the value 1, we obtain, as a

particular case, the baseline model of the α-G distribution.

Several probabilistic models within the α-G family of distributions have been proposed

in the literature. For instance, the exponentiated exponential (EE) distribution, introduced

in Gupta and Kundu (2001), extends the exponential distribution and finds application in

survival data analysis within medical and engineering domains. Similarly, the exponenti-

ated Weibull (EW) distribution, proposed in Mudholkar and Srivastava (1993), extends the

Weibull distribution and offers versatility in representing failure rate functions. Note that, the

EE distribution becomes a special case of the EW model when the shape parameter κ equals

1. Additionally, the exponentiated Fréchet (EF) (Nadarajah and Kotz, 2003), exponentiated

Rayleigh (ER)(Kundu and Raqab, 2005), exponentiated Birnbaum-Saunders (EBS) (Cordeiro

et al., 2013), exponentiated Lomax (EL) (Abdul-Moniem and Abdel-Hameed, 2012), expo-

nentiated Gompertz (EG) (A. El-Gohary, 2013), exponentiated Gumbel (EGU) (Nadarajah,

2006), exponentiated log-logistic (ELL) (Rosaiah et al., 2006) and exponentiated general-

ized Birnbaum-Saunders (EGBS) (Gallardo and Santos-Neto, 2021) distribution have been

introduced to generalize their respective baseline distributions and explore their mathemat-

ical properties. These models find applications in various fields such as reliability analysis,

survival studies, and statistical modeling. Furthermore, studies have investigated their theo-

retical properties and applied them to real-world datasets.

In this paper, we introduce the reparametrized α-G distribution family and outline its

general mathematical properties. This family proves valuable for modeling distribution quan-

tiles, as it is indexed by a parameter ητ , representing the quantile of interest. Our proposal

will generalize a wide range of existing distribution families, thereby providing significant

flexibility for modeling data.

This article is structured as follows: Section 2 introduces the PDF and CDF of the

reparametrized α-G distribution family, along with its submodels derived by changing the

baseline distribution G(y). We also discuss the survival function S(y), failure rate function

h(y), and cumulative failure rate function H(y) for this family. Moreover, we outline the

parameter estimation process using maximum likelihood and present general mathematical

properties applicable to various submodels by selecting different base distributions G. Section

3 reviews the Weibull model and its key mathematical properties, including a reparameteri-

zation based on the median. In Section 4, we introduce a specific case of the reparametrized

α-G distribution family, known as the reparameterized exponentiated Weibull model (REW),

and detail the parameter estimation procedure. Section 5 presents Monte Carlo simulations
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to assess the performance of maximum likelihood estimators for the REW model and cal-

culate descriptive statistics such as variance, coefficient of skewness, coefficient of kurtosis,

percentage relative bias in absolute value, and mean squared error. We also evaluate asymp-

totic confidence intervals numerically. Section 6 demonstrates the application of the theory

to real-world data. Finally, Section 7 offers concluding remarks.

2. REPARAMETRIZED α-G DISTRIBUTION FAMILY

If the α-G distribution is indexed by its median, η, and for any quantile τ (0 < τ < 1),

we can rewrite the parameter α as follows (Gallardo and Santos-Neto, 2021):

Gα(η) = τ(
1

2

)α

= τ

log

(
1

2

)α

= log(τ)

−α log(2) = log(τ)

α = − log(τ)

log(2)
.

where Gα(η) represents the CDF of the α-G distribution, and ατ = α becomes a known fixed

value depending on the quantile of interest. Now, the parameter η = ητ represents the τth

quantile of this distribution family.

The PDF and CDF of the reparametrized ατ -G distribution family are given respec-

tively by:

(2.1) f(y) = ατg(y)G
ατ−1(y),

and

(2.2) F (y) = Gατ (y).

Additionally, if the baseline distribution is not indexed by the median, we need to

reparameterize the baseline distribution for this to occur. Note that the reparametrized

ατ -G distribution family includes all submodels of the family of α-G distributions that are

indexed by the median or have the median in closed form.

Furthermore, the survival function (SF), the failure rate function (FRT), and the cumu-

lative failure rate function (CFR) for the reparametrized ατ -G distribution family are given

respectively by:

S(y) = 1− F (y) = 1−Gατ (y),

h(y) = ατg(y)G
ατ−1(y)[1−Gατ (y)]−1,
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and

H(y) = − log[1−Gατ (y)].

Table 1 presents some submodels of the reparametrized ατ -G distribution family. These

submodels are derived from equations (2.1) and (2.2) by substituting G(y) and g(y), which

are the CDF and PDF, respectively, of the baseline distribution. For instance, the REW

model is derived using the reparameterized Weibull baseline distribution.

2.1. Maximum Likelihood Method

Let Y1, . . . , Yn denote a random sample of size n from the reparametrized ατ -G distri-

bution family, and let θ represent the parameter vector of dimension q, where ητ ∈ θ. The

likelihood function for this family can be expressed as:

L(θ) =
n∏

i=1

f(yi;θ) =
n∏

i=1

ατg(yi;θ)G
ατ−1(yi;θ)

=(ατ )
n

n∏
i=1

g(yi;θ)
n∏

i=1

Gατ−1(yi;θ).

The logarithm of the likelihood function, ℓ(θ) = log [L(θ)], is given by:

ℓ(θ) =n log(ατ ) +
n∑

i=1

log [g(yi;θ)] + (ατ − 1)
n∑

i=1

log [G(yi;θ)] .

The score vector is defined by:

U(θ) =

(
∂ℓ(θ)

∂θ

)⊤
,

and its elements, for j = 1, . . . , q, are:

∂ℓ(θ)

∂θj
=

n∑
i=1

1

g(yi;θ)

∂g(yi;θ)

∂θj
+ (ατ − 1)

n∑
i=1

1

G(yi;θ)

∂G(yi;θ)

∂θj
.

The maximum likelihood estimators (MLEs) of θ are solutions to the system of equa-

tions U(θ) = 0 However, in this case, the system of equations does not have a closed-form

solution. Therefore, the MLEs must be obtained using some numerical method. Here, we

employ the quasi-Newton method, specifically BFGS, as described in Press et al. (1992). In

the R programming language (Team, 2020), we can utilize the BFGS method through the

optim() function.
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The corresponding Fisher information matrix is a q × q matrix denoted by I(θ) =

E
(
U(θ)U(θ)⊤

)
. If certain regularity conditions (Cox and Hinkley, 1974) for the likelihood

function are satisfied, then E (U(θ)) = 0 and I(θ) = −E
(
∂2ℓ(θ)/∂θ∂θ⊤). Therefore, its

elements can be expressed as:

E
(
−∂2ℓ(θ)

∂θi∂θj

)
=nE

(
1

g2(Y ;θ)

∂g(Y ;θ)

∂θi

∂g(Y ;θ)

∂θj

)
+ n(ατ − 1)E

(
1

G2(Y ;θ)

∂G(Y ;θ)

∂θi

∂G(Y ;θ)

∂θj

)
− nE

(
1

g(Y ;θ)

∂2g(Y ;θ)

∂θi∂θj

)
− nE

(
1

G(Y ;θ)

∂2G(Y ;θ)

∂θi∂θj

)
.

According to Lehmann and Casella (1998), when certain regularity conditions are sat-

isfied, the MLEs θ̂ are asymptotically distributed as a q-variate normal distribution. In other

words: √
n(θ̂ − θ)

a∼ Nq

(
0, I−1(θ)

)
,

where
a∼ denotes asymptotically distributed. This result can be utilized to construct asymp-

totic confidence intervals and perform hypothesis tests for the parameters of the reparametrized

ατ -G distribution family. Additionally, when it is difficult to obtain the Fisher information

matrix I(θ), we can substitute I(θ) with the observed Fisher information matrix, −L̈(θ),

evaluated at θ = θ̂, where L̈ =
(
∂2ℓ(θ)/∂θ∂θ⊤).

The asymptotic confidence intervals with (1 − γ) × 100% confidence level for the pa-

rameter θj are given by:

θ̂j ± z(1−γ/2)
√
vj ,

where z(1−γ/2) represents the (1− γ/2)th quantile of the standard normal distribution. The

asymptotic variance vj of θ̂j is the jth diagonal element of the matrix I(θ)−1 evaluated at θ̂.
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3. BASELINE DISTRIBUTION FOR THE REW DISTRIBUTION

In this section, we introduce the baseline distribution for the REW distribution. The

Weibull distribution, proposed by Weibull (1939), is a probabilistic model characterized by

shape parameter (κ > 0) and scale parameter (β > 0). Its PDF is given by:

g(y;κ, β) =
κ

βκ
y(κ−1) exp

[
−
(
y

β

)κ]
, for y > 0.

The cumulative distribution function is defined as:

G(y;κ, β) =

{
0, if y ≤ 0;
1− exp[−(y/β)κ], if y > 0.

Additionally, its mean and variance are:

E(Y ) = βΓ

(
1

κ
+ 1

)
and V ar(Y ) = β2

[
Γ

(
1 +

2

κ

)
− Γ2

(
1

κ
+ 1

)]
,

respectively. The median of the Weibull distribution is η = β[log(2)]1/κ.

Reparameterizing the Weibull distribution in terms of the median, we use a new param-

eterization where β = η/[log(2)]
1
κ . Thus, the PDF of the reparameterizedWeibull distribution

is:

g(y;κ, η) =
κ log(2)y(κ−1)2

−
(
y

η

)κ

ηκ
,(3.1)

and its CDF is:

G(y;κ, η) =


0, if y ≤ 0;

1− 2
−
(
y

η

)κ

, if y > 0.

(3.2)

4. REW distribution

The PDF and CDF of the REW distribution are obtained by applying equations (3.1)

and (3.2) to equations (2.1) and (2.2), respectively. Consequently,

f(y;κ, ητ , ατ ) =
log(2)ατ κ y

κ−12
− yκ

ηκτ

ηκτ

(
1− 2

− yκ

ηκτ

)ατ−1

,

and

F (y;κ, ητ , ατ ) =

0, if y ≤ 0;(
1− 2

− yκ

ηκτ

)ατ

, if y > 0,
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respectively.

Figure 1 displays the density curves of the REW distribution for various values of

the parameter κ ∈ {1.5, 2.5, 5} and τ = {0.25, 0.50, 0.75}, with ητ = 1. Note that the

parameter κ controls the level of kurtosis of the distribution. The higher the value of κ, the

flatter the curve becomes. Conversely, τ appears to influence the degree of asymmetry of the

distribution. Increasing the value of τ enhances the asymmetry of the curve.
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Figure 1: REW densities for different values of κ and τ with ητ = 1.

4.1. Maximum Likelihood Method

Let Y1, . . . , Yn be a random sample of size n from the REW distribution with parameter

vector θ = (κ, ητ , ατ )
⊤, where ατ is known. The likelihood function can be written as:

L(θ) =
[log(2)]n (ατ )

n κn (
∏n

i=1 yi)
κ−1 2

−
∑n

i=1 yκi
ηκτ

ηnκτ

n∏
i=1

(
1− 2

− yκi
ηκτ

)ατ−1

The logarithm of the likelihood function ℓ(κ, ητ , ατ ) = log [L(κ, ητ , ατ )] is given by:

ℓ(κ, ητ , ατ | yi) =n log [log(2)] + n log (ατ ) + n log(κ) + (κ− 1)

n∑
i=1

log (yi)

− 1

ηκτ

n∑
i=1

yκi log(2)− nκ log(ητ ) + (ατ − 1)

n∑
i=1

log

(
1− 2

− yκi
ηκτ

)
.
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5. SIMULATION

In this Section, we present the analyses and numerical results of the Monte Carlo

simulations. The simulation codes were written using the R programming language in its

version 3.5.1 (Team, 2020) available for free at www.r-project.org/. Additionally, the

graphs were carried out using the R software. The R language was created by Ross Ihaka and

Robert Gentleman. In the Monte Carlo simulations, the numerical method BFGS (Press

et al., 1992) and the optim function were used. According to Cordeiro et al. (2011) the

initial values for the parameters can be obtained from the fit model baseline . Therefore, the

initial values used for the shape parameter κ of the REW model were given by the estimates

of the method of moments of the Weibull baseline distribution and for the parameter ητ the

initial values were given by the quantile of the model. The results are displayed in tables and

figures. The measures used to evaluate the behavior of the point estimates obtained by the

maximum likelihood method for the REW distribution were: CSκ and CSητ are coefficient

of skewness for κ e ητ , respectivelly , CKκ e CKητ coefficient of skewness of kurtosis κ e ητ ,

respectivelly, percentual relative bias in absolute value for κ and τ (RBκ e RBητ respectivelly.

In addition, (VARκ and VARητ are variances for κ e ητ , respectivelly). Finally, mean squared

error (MSEκ e MSEητ . In the simulation, 5000 Monte Carlo replicas were carried out, the

sample sizes considered were n = 10, 30, 50, and 100. In this work, we consider the following

values for the shape parameter κ ∈ {1.5, 2.5, 5}. In, Figure 1 we have some values of shape

parameter κ can be indicate degree of kurtosis. Therefore, The values of κ was fixed for some

different degrees kurtosis, strong asymmetry, moderate and weak. Without loss of generality,

the parameter ητ was considered fixed, with ητ = 1 in all Monte Carlo experiments. We also

consider τ ∈ {0.25, 0.50, 0.75} to study the behavior of the parameters for different values

of τ . Furthermore, we present the numerical results of the simulations for the asymptotic

confidence intervals (CI).

In Table 2 we can observe that when the sample size increases, the variance, mean

squared error, and percentage relative bias in absolute value decrease in allκ e τ values .

Furthermore, it can be seen that for fixed values of κ and n when the value of τ increases

the percentage relative bias in absolute value, the variance and the mean squared error for

κ also increase. Therefore, the estimates of the κ parameter performed better for smaller

values of τ . In addition, for fixed values of κ and n, the ητ estimator performed better

for values of τ = 0.5. Also, it is noted that, for fixed values of τ and n, when the value

of the shape parameter κ increases, the variance and mean squared error also increase and

the estimator κ̂ showed similar behavior when compared to estimates of relative percentage

bias in absolute value. Furthermore, we can observe that, for small sample sizes n = 10, the

estimator κ̂ presented largekurtosis. Additionally, for n = 10, κ = 5 and τ ∈ {0.25, 0.50, 0.75}
the estimator κ̂ presented large variance and mean squared error, Finally, we can observe that

when sample size increase , the coefficient of skewness and coefficient of kurtosis close to zero

and 3 respectivelly.

According to Table 3, we can observe that all confidence intervals contain true value

parameter of κ and ητ . In addition, all confidence intervals (CI) were calculated with nomi-

nal coverage level (1 − γ) equal to 0.95. Furthermore, note that the mean lengths of the

confidence intervals (MLCI) for the parameter κ, when κ = 1.5 and varying values of

τ ∈ {0.25, 0.50, 0.75} presented similar MLCI for fixed sample sizes. For example, κ = 1.5,

www.r-project.org/
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n = 100 and τ ∈ {0.25, 0.50, 0.75} the MLCI were equal to 0.428, 0.451 and 0.496, respec-

tively. Similarly, the same behavior can be seen in the case where κ = 2.5 and varying the

values of τ ∈ {0.25, 0.50, 0.75}, that is, the CI presented close to MLCI for fixed sample

sizes. It is also noted that, with κ = 5 and varying the values of τ ∈ {0.25, 0.50, 0.75} the CI

showed similar MLCI for fixed sample sizes. Furthermore, we can observe that for sample

sizes and fixed τ as the value of the parameter κ increases the MLCI also increases. For ex-

ample, for κ = 1.5, τ = 0.25 and n = 100 the MLCI was equal to 0.428. On the other hand,

for κ = 5, τ = 0.25 and fixed n = 100 the MLCI was equal to 1.428. This indicates that

the smaller the value of the κ parameter, the better the interval estimate to the κ parameter.

Additionally, considering fixed κ values and fixed sample sizes as the τ value increases the

MLCI to the parameter ητ also increases. This shows that the smaller the value of τ , the

better the interval estimate for the parameter ητ . It is also noticed that, for all confidence

intervals, with the increase in the sample size the MLCI decreases, that is, as the sample

size grows the interval estimates for the parameters improve.

In Figures 2-4 we illustrate the histograms of the 5000 maximum likelihood estimates

for the REW model parameters. The line segments indicate the length of the confidence

interval. It can be seen in Figures 2-4 that, as the sample size increases regardless of the

values of κ and τ , the empirical distribution becomes more symmetrical around the parameter

κ. To evaluate the interval estimates, the probability of empirical coverage of the asymptotic

intervals denoted in Table 3 by CP, was calculated, to the empirical coverage probability on

the left denoted by LIE and the empirical coverage probability on the right denoted by LSD,

with nominal coverage level (1 − γ) equal to 0.95 for all sample sizes. According to Table

3, it is noted that for all sample sizes, the coverage probability for the shape parameter κ is

close to 0.95, so the interval estimate for κ is accurate, that is, with a small coverage error.

The observed coverage probabilities for the ητ parameter were better for larger sample sizes.

Therefore, as the sample size increases, the coverage probabilities observed for parameter

ητ approach the nominal coverage probability of 0.95. Furthermore, when the sample size

increase, the confidence intervals tend to balanced of coverage probability. In addition the

histograms tend to normal distribution.
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Figure 2: Empirical distribution of κ̂ with τ = 0.25 and ητ = 1 fixed.



14 B.V. Santos, M. Santos-Neto and F.J.A. Cysneiros

0.5 1.0 1.5 2.0 2.5 3.0

1
.7

1
8

0
.9

8
8

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.2
4

n
 =

 3
0

(a) κ = 1.5

0.5 1.0 1.5 2.0 2.5 3.0

1
.6

2
6

1
.0

5
7

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.3
4

n
 =

 5
0

(b) κ = 1.5

0.5 1.0 1.5 2.0 2.5 3.0

1
.7

0
2

1
.2

5
1

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.5
2

n
 =

 1
0

0

(c) κ = 1.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

2
.8

6
4

1
.6

4
7

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.2
4

n
 =

 3
0

(d) κ = 2.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

2
.7

0
9

1
.7

6
1

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.3
4

n
 =

 5
0

(e) κ = 2.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

2
.8

3
6

2
.0

8
4

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%

9
5

.5
2

n
 =

 1
0

0

(f) κ = 2.5

3 4 5 6 7 8 9

5
.7

2
8

3
.2

9
4

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%
9

5
.2

4

n
 =

 3
0

(g) κ = 5

3 4 5 6 7 8 9

5
.4

1
9

3
.5

2
2

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%
9

5
.3

4

n
 =

 5
0

(h) κ = 5

3 4 5 6 7 8 9

5
.6

7
2

4
.1

6
9

C
o

n
fi
d

e
n

c
e

 I
n

te
rv

a
l 
9

5
%

κ

C
o
v
e

ra
g

e
 R

a
te

 9
5

%
9

5
.5

2

n
 =

 1
0

0

(i) κ = 5

Figure 3: Empirical distribution of κ̂ with τ = 0.5 and ητ = 1 fixed.
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Figure 4: Empirical distribution of κ̂ with τ = 0.75 and ητ = 1 fixed.

6. APPLICATION

In this application, we utilized the dataset concerning the breaking stress of carbon

fibers (in GBa) (Nichols and Padgett, 2006). The dataset comprises 100 measurements and
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is available in the AdequacyModel (Marinho et al., 2019) package of R. To access it, simply

execute the command data(carbone).

In Table 4, we provide several descriptive statistics for this dataset. These measures

were obtained using the basicStats() function from the fbasic package in R. It can be

observed that the mean breaking stress of carbon fibers is 2.62. The distribution of the data

shows a slight positive skewness. Moreover, the distribution exhibits a mesokurtic shape.

To fit the data, we used the goodness.fit() function from the AdequacyModel package.

Mean Q1 Median Q3 Variance Skewness Kurtosis Minimum Maximum n
2.62 1.84 2.70 3.22 1.03 0.36 0.04 0.39 5.56 100

Table 4: Descriptive measures.

The maximum likelihood estimates and their standard errors are presented in Table 5. The

dataset was fitted considering the distributions: REE, REW, REBS, and RELL. Additionally,

we considered the following values of τ : 0.25, 0.5, and 0.75.

To analyze which distribution provided the best fit, we considered the following crite-

ria: Akaike information criterion (AIC) (Sakamoto et al., 1983), consistent Akaike informa-

tion criterion (CAIC) (Akaike, 1973), Bayesian information criterion (BIC) (Schwarz, 1978),

Anderson-Darling (A∗) (Anderson and Darling, 1954), Cramér-Von Mises (W∗) (Cramér,

1928; Von Mises, 1928), and Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933) with its as-

sociated p-value. Therefore, the model selection process determines the most suitable model

among the fitted models based on the lowest values of these statistics. The values of these

statistics are presented in Table 6.

Overall, the REW distribution showed the best fit according to the criteria used. How-

ever, for the 75th quantile the RELL distribution exhibited the lowest values for the statistics

used and the highest p-value for the Kolmogorov-Smirnov test. In Figure 5, we present the

fit of these distributions to the studied dataset.

7. FINAL REMARKS

In this paper, we propose a new class of distributions indexed by a parameter represent-

ing the (τ×100)-th quantile. This is highly useful in various fields as there is often interest in

modeling quantiles. Additionally, the results presented here generalize several existing works.

We conducted Monte Carlo simulation studies to investigate the properties of maximum like-

lihood estimators and asymptotic confidence intervals for the REW distribution.

Moreover, we noted that the asymptotic confidence intervals for the parameter κ ex-



Reparametrized Exponentiated-G Distribution Family: Properties and Applications 17

τ Models ητ κ β λ

REE 1.2429
(0.0919)

0.25 REW 1.8827 1.9429
(0.1003) (0.1471)

REBS 1.7280 0.5797
(0.0872) (0.0417)

RELL 1.8357 3.1394
(0.0889) (0.2505)

REE 1.8170
(0.1817)

0.50 REW 2.5816 2.7928
(0.1085) (0.2141)

REBS 2.3660 0.4621
(0.1064) (0.0327)

RELL 2.4984 4.1178
(0.1054) (0.3441)

REE 3.2339
(0.4919)

0.75 REW 3.4316 4.6236
(0.1205) (0.3639)

REBS 3.2074 0.3425
(0.1519) (0.0246)

RELL 3.2382 6.5582
(0.1191) (0.5854)

Table 5: Maximum likelihood estimates of the parameters and estimates
of the corresponding standard errors (in parentheses).

τ Models AIC CAIC BIC A∗ W ∗ KS p-value

REE 340.209 340.249 342.814 0.830 0.162 0.210 0.000
0.25 REW 287.420 287.544 292.631 0.503 0.096 0.077 0.585

REBS 304.785 304.909 309.995 1.670 0.307 0.129 0.070
RELL 308.544 308.667 313.754 2.161 0.399 0.108 0.191

REE 394.742 394.782 397.347 0.764 0.149 0.320 0.000
0.50 REW 287.059 287.182 292.269 0.416 0.062 0.060 0.858

REBS 304.122 304.245 309.332 1.618 0.298 0.130 0.066
RELL 296.559 296.683 301.769 1.241 0.239 0.090 0.389

REE 489.636 489.676 492.241 0.750 0.146 0.480 0.000
0.75 REW 294.857 294.981 300.067 0.869 0.109 0.092 0.363

REBS 302.183 302.307 307.393 1.467 0.271 0.129 0.071
RELL 286.662 286.786 291.873 0.364 0.066 0.059 0.879

Table 6: AIC, CAIC, BIC, A∗, W ∗, and KS (with their p-value) statistics
for the dataset on the stress at breakage of carbon fibers (in
GBa).

hibited better coverage rates. Finally, we applied the proposed distribution family to a real

dataset. In this application, we observed that the REW distribution had the best fit for

lower quantiles, while for the 75th quantile, the RELL distribution showed a superior fit. For

future studies, we intend to propose a regression model based on this class of distributions
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Figure 5: Histogram with estimated densities for the REW and RELL
distributions for the dataset on the breaking stress of carbon
fibers (in GBa).

capable of modeling quantiles of data with different characteristics.
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