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1. INTRODUCTION

In the literature of count time series analysis, researchers frequently observe a specific
type of time series known as ”zero-inflated” time series in real-world applications. The concept
of zero inflation arises when a significant part of the observations is exactly equal to zero, and
this deviation from the expected distribution can have influences for modeling and analysis.
Ignoring zero inflation can have two primary effects. Firstly, the estimated parameters and
standard errors may be biased. Secondly, the excessive presence of null values can lead to
overdispersion, a phenomenon explained by Zuur et al. (2009). Several fields provide examples
of this phenomenon. For instance, in finance, the transaction volume of a stock may exhibit
zero inflation during non-trading periods like weekends or holidays. In epidemiology, disease
counts may have an excess of zeros during periods of low transmission or when a particular
disease is absent in a population. Additionally, even in biomedical and public health fields,
certain rare diseases with low infection rates can give rise to count time series with a significant
number of zeros.

In recent years, the analysis of zero-inflation count data has received increasing atten-
tion, leading to the development of several proposed models. The concept of zero inflation
was initially introduced by Neyman (1939) and Feller (1943) to solve the problem of exces-
sive zeros. Since then, extensive research has been devoted to developing models specifically
adapted to zero-inflation count data. Notable examples include the hurdle model, introduced
by Mullahy (1986), the zero-inflated Poisson model, studied by Lambert (1992), and the two-
part model, also known as the zero-altered model, studied by Heilbron (1994). These models
have made an important contribution to the field, and have made it possible to solve the
complex problems associated with zero-inflated count data. Jazi et al. (2012) conducted a re-
cent study that introduced a new stationary first-order integer-valued autoregressive process
which is characterized by the zero inflated Poisson innovations distribution. Furthermore,
Piancastelli and Barreto-Souza (2019) explored the inferential aspects of the zero-infated
Poisson INAR(1) process. Even more, Yang et al. (2013) and Yang et al. (2015) proposed a
zero-inflated autoregressive model in which the autocorrelation is expressed as a function of
previous responses. Particularly for observation-driven processes, Zhu (2012) proposed zero
inflated Poisson and negative binomial INGARCH models to effectively represent count time
series data that exhibit an excess of zero values.

These models offer enhanced flexibility and are considered as valuable extensions of
the Poisson and negative binomial INGARCH models, respectively. Furthermore, Lee et al.
(2021) investigate statistical inferences, such as estimating parameters and conducting change
tests for count time series models where the conditional distribution of current observations
given past information is modeled using a zero-inflated one-parameter exponential family.
More generally, a zero-inflated model can be understood as a combination of two distribu-
tions: one with a concentrated probability mass at zero, representing the excess zeros, and
another non-degenerate distribution, such as the Poisson or negative binomial distribution,
representing the remaining non-zero values.

Gladyshev (1961) introduced the concept of time series with periodic variations in
mean, variance and covariance, commonly known as periodically correlated processes, whose
presence in time series is reinforced by real-life applications in many practical fields. Indeed,
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we can mention without claiming to be exhaustive the analysis of births in Quebec conducted
by Manaa and Bentarzi (2021b), the investigation of daytime road accidents by Manaa and
Bentarzi (2021a) and Souakri and Bentarzi (2022), the examination of the number of cases
of campylobacterosis infections by Ouzzani and Bentarzi (2019), and Manaa and Bentarzi
(2021c). The recent study of monthly short-term disability claims by Bentarzi and Souakri
(2023), and Manaa and Souakri (2024) presented an analysis of the daily number of COVID-
19 deaths in Finland.

However, although many non-negative integer-valued time series found in diverse fields
such as epidemiology, economics, environment, criminology and others exhibit periodic pat-
terns in their autocovariance structures, the zero inflated Poisson INGARCH model, which
provides advantages such as positivity, discreteness nature, time-varying volatility, overdis-
persion and excess zeros, fails to capture this periodicity. This characteristic, which cannot be
adequately represented or described by integer-valued time series models with time-invariant
parameters, is still not taken into account. As a consequence, a good reason and motivation
were given to extend this class of time-invariant models to the Poisson INGARCH model with
zero-inflated periodic coefficients which generalizes the periodic Poisson INGARCH model in-
troduced by Bentarzi and Bentarzi (2017).

In the following section, we present the definition and certain properties of the zero-
inflated Poisson distribution. The basic notations and definitions related to a periodic zero-
inflated Poisson integer-valued generalized autoregressive conditional heteroskedastic model,
which is denoted as PZIP-INGARCH for brevity, are presented in Section 3. In Section 4,
we investigate the existence of higher moments and provide a precise expression using model
parameters for their calculation. Also, we examine the periodic stationarity problem of the
proposed model and both first and second order conditions for stationarity are established.
Section 5 focuses on the analysis of the autocovariance structure of the underlying periodic
model while presenting an explicit expression for the autocorrelation function. Based on the
EM algorithm introduced by Dempster et al. (1977), the unknown periodic parameters of
our models are estimated using the conditional maximum likelihood estimation method, in
Section 6. In Section 7, we examine the performance of the proposed estimation method
through a simulation study. Also an application on the daily number of COVID-19 deaths
in Finland data set is provided in Section 8. Section 9 summarizes the conclusions drawn
from our study. Finally, in Section 10, we include an Appendix that provides additional
calculations and demonstrations.

2. ZERO INFLATED POISSON DISTRIBUTION

For the purposes of this study, we recall the definition of the zero-inflated distribution.
A stochastic process {εt; t ∈ Z} is said to follow a zero-inflated Poisson distribution with
periodic parameters ϱt and λt, which we denote by ZIP (ϱt, λt), if its probability mass
function can be expressed as follows :

P (εt = k) =

 ϱt + (1− ϱt) e
−λt , if k = 0,

(1− ϱt)
e−λtλkt
k!

, if k = 1, 2, ...
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or equivalently,

P (εt = k) = ϱtδk,0 + (1− ϱt)
e−λtλkt
k!

, for k = 0, 1, 2, ...

with, λt > 0, and ϱt ∈
(
max

[
−1,− e−λt

1− e−λt

]
, 1

)
controls the inflation or deflation of zeros

for ϱt > 0 and ϱt < 0, respectively, where δk,0 is the Kronecker delta, i.e., δk,0 is 1 when
k = 0 and is 0 when k ̸= 0. The Poisson distribution is obtained as a particular case by
choosing ϱt = 0. It is important to note that this probability mass function of zero inflated
Poisson with periodic parameters is a version of the zero inflated Poisson distribution, with
time-invariant parameters and which is presented by Jazi et al. (2012) and it was given by
the following probability mass function :

P (εt = k) =

 ϱ+ (1− ϱ) e−λ, if k = 0,

(1− ϱ)
e−λλk

k!
, if k = 1, 2, ...

or equivalently,

P (εt = k) = ϱδk,0 + (1− ϱ)
e−λλk

k!
, for k = 0, 1, 2, ...

Given that λ > 0 and ϱ ∈
(
max

[
−1,− e−λ

1− e−λ

]
, 1

)
, the parameter ϱ controls the inflation

or deflation of zeros for ϱ > 0 and ϱ < 0, respectively. Additionally, δk,0 represents the
Kronecker delta, i.e., δk,0 is 1 when k = 0 and is zero when k ̸= 0. The Poisson distribution
is obtained as a particular case by choosing ϱ = 0. To review some important properties
of the zero inflated Poisson distribution, and as it indicated in Zhu (2012), the probability
generating function is

g (z) = ϱ+ (1− ϱ) eλ(z−1).

Also, from Lemma 1 in Ferland et al. (2006) we know that the uncentered moments of εt
satisfy

E (εmt ) = (1− ϱ)
∑m

i=0

{
m

i

}
λi,

where
{
m
i

}
is the Stirling number of the second kind. From this relation, we can obtain easily

the mean and the variance,

E (εt) = λ (1− ϱ) , V ar (εt) = λ (1− ϱ) (1 + λϱ) .

It should be noted that, according to Fisher’s dispersion index, the variance is greater than
the mean, i.e.,

Iε =
σ2ε
µε

=
λ (1− ϱ) (1 + λϱ)

λ (1− ϱ)
= 1 + λϱ > 1.

3. PERIODIC ZERO INFLATED POISSON INGARCH MODEL

As Zhu (2012) mentions, an integer-valued stochastic process {yt; t ∈ Z} satisfies the
zero inflated Poisson integer-valued generalized autoregressive conditional heteroskedastic
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ZIP-INGARCH(p,q) model, at orders p and q, conditional on past information Ft−1, if it is
provided by:

(3.1) yt| Ft−1 ; ZIP (ϱ, λt) ,
λt = α0 +

∑p
i=1 αiyt−i +

∑q
j=1 βjλt−j ,

where, α0 > 0, αi ≥ 0, and βj ≥ 0, i = 1, ..., p, j = 1, ..., q, p ≥ 0, q ≥ 0, and Ft−1 is
the σ-field generated by {yt−1, yt−2, . . .}. In the sense of Gladyshev (1961), a periodically
correlated integer-valued process {yt; t ∈ Z} is said to satisfy a periodic zero inflated Poisson
integer-valued generalized autoregressive conditional heteroskedastic model, with period S

and orders p and q, noted in short by PZIP-INGARCH(p, q), if it takes the following form:

(3.2) yt| Ft−1 ; ZIP (ϱt, λt) ,
λt = α0,t +

∑p
i=1 αi,tyt−i +

∑q
j=1 βj,tλt−j ,

where, 0 < ϱt < 1, and Ft−1 denotes, as usually, the σ-field generated by {yt−1, yt−2, . . .}.
The parameters αi,t, i = 0, 1, ..., p, βj,t, j = 1, ..., q, and ϱt are periodic in time t, with period
S, i.e., αi,t+vS = αi,t, βj,t+vS = βj,t and ϱt+vS = ϱt, t, v ∈ Z. The following conditions for
αi,t’s must be imposed : α0,t > 0, and αi,t ≥ 0, i = 1, ..., p and βj,t ≥ 0, j = 1, ..., q, t ∈ Z, to
guarantee that zero or negative conditional variances are not possible. A particular case, the
periodic ZIP-INGARCH(1, 1) model, i.e., the case when p = q = 1, is the main focus of this
paper:

(3.3) yt| Ft−1 ; ZIP (ϱt, λt) ,
λt = α0,t + α1,tyt−1 + βtλt−1,

where, the parameters ϱt, αi,t, i = 0, 1, and βt are periodic in t, with period S, i.e., ϱi,t+vS =

ϱi,t, αi,t+vS = αi,t, i = 0, 1, and βt+vS = βt, t, v ∈ Z. Moreover, these parameters are such
that : α0,t > 0, α1,t ≥ 0, and βt ≥ 0, t ∈ Z. The conditional mean and conditional variance
of yt are given, respectively, by

E (yt| Ft−1) = λt (1− ϱt) , V ar (yt| Ft−1) = λt (1− ϱt) (1 + λtϱt) .

Letting t = s+ τS, s = 1, ..., S and τ ∈ Z, the last model can be rewritten in the equivalent
form

(3.4) ys+τS | Fs−1+τS ; ZIP (ϱs, λs+τS) ,
λs+τS = α0,s + α1,sys−1+τS + βsλs−1+τS .

This model extends the following time-invariant ZIP-INGARCH(1, 1) model, studied by Zhu
(2012), to the time periodic case :

(3.5) yt| Ft−1 ; ZIP (ϱ, λt)
λt = α0 + α1yt−1 + βλt−1.

Note that if ϱs = 0, s = 1, ..., S, the zero inflated Poisson distribution becomes the Pois-
son distribution so that the periodic ZIP-INGARCH(1, 1) model turns into the periodic
INGARCH(1, 1) model introduced by Bentarzi and Bentarzi (2017).

4. HIGHER-ORDER MOMENTS: EXISTENCE AND CALCULATION

In this section, we aim to identify the conditions under which the m-th order moment E (ymt )

exists and to derive its explicit formula in terms of the model parameters. Specifically, we
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present the periodic stationarity conditions for the first and second moments and derive
their closed-form expressions. Also, we calculate the skewness and kurtosis coefficients using
specific cases such as E

(
y4t
)
, E
(
y3t
)
, E
(
y2t
)

and E (yt).

4.1. Higher-order moment calculation of λt and yt

In this paragraph, we aim to determine the condition for the existence the m-th order moment
E (ymt ), for the model satisfying (3.3). Furthermore, under this condition, we are able to
derive the explicit expressions for E (λmt ) and E (ymt ). To present the main result, we need to
introduce three m-column vectors with the following definitions, Λ(m)

t =
(
λmt , λ

m−1
t , ..., λt

)′,
α
(m)
0,t =

(
αm
0,t, α

m−1
0,t , ..., α0,t

)′
, µ(m)

y,t
=
(
E (ymt ) ,E

(
ym−1
t

)
, ...,E (yt)

)′, and two squared m×m

matrices Θ
(m)
t and Ω

(m)
t with elements given, respectively, for i, j = 1, ...,m, by

(4.1) Θ
(m)
t =


ψm−i+1,t

ϕ
(m−i+1)
m−j+1,t

0

if i = j,
if i < j,
otherwise.

, Ω
(m)
t =


ω
(m−i+1)
m−i+1,t

ω
(m−i+1)
m−j+1,t

0

if i = j,
if i < j,
otherwise.

with,

ψm,i = (1− ϱi−1)
∑m

j=1

(
m
j

)
αj
1,iβ

m−j
i + βmi , ω

(m)
k,t = (1− ϱt)

{
m

k

}
,(4.2)

ϕ
(m)
i,t =

(
m
i

)
αm−i
0,t ψi,t +

∑m

j=i+1

∑j−1

k=j−i
K(m,t)

j,k+1,j−i,

and,
K(m,t)

i,j,k =
(
m
i

)(
i
j

){j − 1

k

}
(1− ϱt−1)α

m−i
0,t αj

1,tβ
i−j
t .

Proposition 4.1. The unconditional m-th order moment E (λmt ), exists and is finite
if and only if :

(4.3)
∏S

i=1
ψm,i < 1,

where ψm,i is given in (4.2). Then, the closed form of the unconditional vector m-th order
moment E

(
Λ
(m)
t

)
is, under this condition, given by :

E
(
Λ
(m)
s+τS

)
=
(
Im −Ψ

(m)
s,S

)−1∑S

i=1
Ψ

(m)
s,i−1α

(m)
0,s−i+1, s = 1, ..., S,

where Ψ
(m)
s,j =

∏j
i=1Θ

(m)
s−i+1, and the elements of the m×m matrix Θ

(m)
s are given in (4.1).

Proof of Proposition 4.1: see Appendix

Remark 4.1. For any periodic parameter χ with a negative index, it can be equiv-
alently redefined using its corresponding positive index as follows:

χ−i = χS−i, i = 0, 1, ..., S − 1.
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In the case of time-invariant model (3.5), i.e. S = 1, the results of Proposition 4.1 can be
presented by the following corollary. First, we need also to introduce these notations

(4.4) Θ(m) =


ψm−i+1

ϕm−i+1,m−j+1

0

if i = j,
if i < j,
otherwise.

, Ω(m) =


ωm−i+1,m−i+1

ωm−i+1,m−j+1

0

if i = j,
if i < j,
otherwise.

,

with,

ψm = (1− ϱ)
∑m

j=1

(
m
j

)
αj
1β

m−j + βm, ωm,k = (1− ϱ)

{
m

k

}
,(4.5)

ϕi,m =
(
m
i

)
αm−i
0 ψi +

∑m

j=i+1

∑j−1

k=j−i
K(m)

j,k+1,j−i,

and,
K(m)

i,j,k =
(
m
i

)(
i
j

){ j

j − k

}
(1− ϱ)αm−i

0 αj
1β

i−j .

Corollary 4.1. The unconditional m-th order moment E (λmt ) exists and is finite,
if and only if

(4.6) ψm < 1,

with ψm given in (4.5). Then, the unconditional vector moment E
(
Λ
(m)
t

)
is, under this

condition, given by :
E
(
Λ
(m)
t

)
=
(
Im −Θ(m)

)−1
α
(m)
0 ,

where the elements of the matrix Θ(m) are given in (4.4).

Once the unconditional vector moments E
(
Λ
(m)
t

)
have been calculated, the following lemma

gives the unconditional vector moments µ(m)
y,s

.

Lemma 4.1. The unconditional vector moment µ(m)
y,s

of the process {yt; t ∈ Z} is,

under condition (4.3), given in terms of the unconditional vector moment E
(
Λ
(m)
s

)
, by the

vector form below :
µ(m)
y,s

= Ω(m)
s E

(
Λ(m)
s

)
,

where the elements of the m×m matrix Ω
(m)
s are given in (4.1).

Proof: The proof is straightforward.

Corollary 4.2. The unconditional vector moment µ(m)
y,s

of the periodically correlated
process {yt; t ∈ Z} is, under the condition (4.3), given by

µ(m)
y,s

= Ω(m)
s

(
I −Ψ

(m)
s,S

)−1∑S

i=1
Ψ

(m)
s,i−1α

(m)
0,s−i+1,

where, Ψ(m)
s,j =

∏j
i=1Θ

(m)
s−i+1 and the m×m matrices Θ

(m)
s and Ω

(m)
s are defined in (4.1).
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Proof: The proof is straightforward.

In the case of time-invariant model (3.5), i.e. S = 1, the results of Lemma 4.1 can be
presented by the following corollary.

Corollary 4.3. The unconditional vector moment µ(m)
y

of the process {yt; t ∈ Z},
satisfying the model (3.5), is, under the condition (4.6), given by

µ(m)
y

= Ω(m)E
(
Λ
(m)
t

)
,

where the elements of the m×m matrix Ω(m) are given in (4.4).

4.2. Periodic stationarity conditions

This paragraph is devoted to present the explicit expressions for the periodic mean and
variance, with respect to the first and second-order moments, which are special cases of
Proposition 4.1.

Proposition 4.2. The periodically correlated non negative integer-valued process
{yt; t ∈ Z}, satisfying the model (3.3), is periodically stationary in mean, if and only if,

(4.7)
∏S

i=1
((1− ϱi−1)α1,i + βi) < 1.

Then, the periodic mean µy,s = E (ys) = (1− ϱs)E (λs), s = 1, ..., S, is, under this condition,
provided by:

µy,s =
1− ϱs

1−
∏S

i=1 (α1,i (1− ϱi−1) + βi)

∑S

j=1

(∏j−1

i=1
(α1,s−i+1 + βs−i+1)

)
α0,s−j+1,

with the convention
∏j

i=1 xi = 1 if j < 1.

Proof of Proposition 4.2: see Appendix

In what follows, we suppose that the process {yt; t ∈ Z} follows a PZIP-INARCH(1) model
(i.e., q = 0), then the corollary below provides the mean periodic stationarity condition.

Corollary 4.4. The periodically correlated non negative integer-valued process {yt; t ∈ Z},
satisfying the periodic ZIP-INARCH(1) model, is periodiccally stationary in mean, if and only
if :

(4.8)
∏S

i=1
(1− ϱi−1)α1,i < 1.

Then, under this condition, the closed form of the mean E (ys) = µy,s, s = 1, ..., S, is given
by :

µy,s =
1− ϱs

1−
∏S

i=1 α1,i (1− ϱi−1)

∑S

j=1

(∏j−1

i=1
α1,s−i+1 (1− ϱs−i)

)
α0,s−j+1.
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For the time-invariant model (3.5), i.e. S = 1, the results of Proposition 4.2 can be presented
by the following corollary.

Corollary 4.5. The non negative integer-valued process {yt; t ∈ Z}, satisfying the
ZIP-INGARCH(1, 1) model (3.5), is stationary in mean, if and only if :

(1− ϱ)α1 + β < 1.

Then, the closed forms of the mean E (yt) = µy of such process is, under this condition given
by :

µy = (1− (α1 (1− ϱ) + β))−1 α0 (1− ϱ) .

In the following proposition, we provide the closed-form expression for the periodic variance
under the periodic stationarity condition with respect to the second order moment for the
process {yt; t ∈ Z} satisfying (3.3).

Proposition 4.3. The periodically correlated non negative integer-valued process
{yt; t ∈ Z} satisfying the model (3.3) is periodically stationary in second order, if and only
if,

(4.9)
∏S

i=1

(
(1− ϱi−1) (α1,i + βi)

2 + ϱi−1β
2
i

)
< 1.

Then, under this condition, the closed-form of the variance V ar (ys) = γ
(s)
y (0), s = 1, ..., S,

and the variance V ar (λs) = γ
(s)
λ (0) are given by :

γ
(s)
λ (0) =

1

1−
(∏S

i=1 ψ2,i

) ∑S
j=1

(∏j−1
i=1 ψ2,s−i+1

)
𝟋s−j+1,

γ
(s)
y (0) =

1− ϱt

1−
(∏S

i=1 ψ2,i

) ∑S
j=1

(∏j−1
i=1 ψ2,s−i+1

)
𝟋s−j+1 + µy,s +

ϱt
1− ϱt

µ2y,s.

with ψ2,t = (1− ϱt−1) (α1,t + βt)
2 + ϱt−1β

2
t , 𝟋s = α2

1,s (1− ϱs−1) (1 + ϱs−1µλ,s−1)µλ,s−1 and
µy,s = (1− ϱs)µλ,s is given in Proposition 4.2, with the convention

∏j
i=1 xi = 1 if j < 1.

Proof of Proposition 4.3: see Appendix

In particular, we suppose that the process {yt; t ∈ Z} follows a PZIP-INARCH(1) model
(i.e., q = 0). The next corollary gives the periodic stationarity in second order.

Corollary 4.6. The periodically correlated non negative integer-valued process {yt; t ∈ Z},
satisfying the periodic ZIP-INARCH(1) model, is periodically stationary in second order, if
and only if

(4.10)
∏S

i=1
(1− ϱi−1)α

2
1,i < 1.

Then, the closed-form of the variance V ar (ys) = γ
(s)
y (0), s = 1, ..., S, of such process and

the variance V ar (λs) = γ
(s)
λ (0) are, under this condition, given by :

γ
(s)
λ (0) =

1

1−
(∏S

i=1 Λ2,i

)∑S

j=1

(∏j−1

i=1
Λ2,s−i+1

)
𝟋s−j+1,

γ(s)y (0) =
1− ϱs

1−
(∏S

i=1 Λ2,i

)∑S

j=1

(∏j−1

i=1
Λ2,s−i+1

)
𝟋s−j+1 + µy,s +

ϱt
1− ϱt

µ2y,s,
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where Λ2,s = α2
1,s (1− ϱs−1), 𝟋s = α2

1,s (1− ϱs−1) (1 + ϱs−1µλ,s−1)µλ,s−1 and µy,s = (1− ϱs)µλ,s

is given in Corollary 4.4, with the convention
∏j

i=1 xi = 1 if j < 1.

In the case of time invariant model (3.5), i.e. S = 1, the results of Proposition 4.3 can be
presented by the following corollary.

Corollary 4.7. The non negative integer-valued process {yt; t ∈ Z}, satisfying the
ZIP-INGARCH(1, 1) model (3.5), is stationary in second order, if and only if,

(1− ϱ) (α1 + β)2 + ϱβ2 < 1.

Then, under this condition, the closed-form of the V ar (yt) = γy (0) the variance V ar (λt) =
γλ (0) are given by

γλ (0) =
α2
1 (1− ϱ) (1 + ϱµλ)µλ

1−
[
(1− ϱ) (α1 + β)2 + ϱβ2

] , γy (0) =
(1− ϱ)

(
1− β2 − 2 (1− ϱ)α1β

)
(1 + ϱµλ)µλ

1−
[
(1− ϱ) (α1 + β)2 + ϱβ2

] .

4.3. Skewness and kurtosis coefficients

In this paragraph, we present the results of calculating the first four moments of the processes
{λt; t ∈ Z} and {yt; t ∈ Z}. These results are necessary to establish a corollary that provides
the skewness and kurtosis coefficients.

Corollary 4.8. The first four unconditional moments exist and their closed-forms
are, under the condition (4.3) for m = 4, given by

E
(
Λ
(4)
s+τS

)
=
(
I −Ψ

(4)
s,S

)−1∑S

i=1
Ψ

(4)
s,i−1α

(4)
0,s−i+1,

where, α(4)
0,t =

(
α4
0,t, α

3
0,t, α

2
0,t, α0,t

)′
, Ψ

(4)
s,i =

∏j
i=1Θ

(4)
s−i+1 and the periodic 4× 4 matrix Θ

(4)
s ,

for s = 1, ..., S, and i, j = 1, ..., 4, is given by

Θ(4)
s =


ψ4−i+1,s

α
(i,j)
s

0

if i = j,
if i < j,
otherwise.

where,

ψ1,s = βs + α1,s (1− ϱs−1) , ψ2,s = β2s +
(
2α1,sβs + α2

1,s

)
(1− ϱs−1) ,

ψ3,s = β3s +
(
3α1,sβ

2
s + 3α2

1,sβs + α3
1,s

)
(1− ϱs−1) ,

ψ4,s = β4s +
(
6β2sα

2
1,s + 4βsα

3
1,s + α4

1,s + 4α1,sβ
3
s

)
(1− ϱs−1) ,

and,

α(1,2)
s = 4α0,sβ

3
s +

(
4α0,sα

3
1,s + 12

(
α0,sα1,sβ

2
s + α3

1,sβs + α0,sα
2
1,sβs

)
+ 6

(
α2
1,sβ

2
s + α4

1,s

))
(1− ϱs−1) ,

α(1,3)
s = 6α2

0,sβ
2
s +

(
4α3

1,sβs + 12
(
α0,sα

2
1,sβs + α2

0,sα1,sβs + α0,sα
3
1,s

)
+ 7α4

1,s + 6α2
0,sα

2
1,s

)
(1− ϱs−1) ,

α(1,4)
s = 4α3

0,sβs +
(
α4
1,s + 4

(
α0,sα

3
1,s + α3

0,sα1,s

)
+ 6α2

0,sα
2
1,s

)
(1− ϱs−1) ,

α(2,3)
s = 3α0,sβ

2
s +

(
3α3

1,s + 3
(
α2
1,sβs + α0,sα

2
1,s

)
+ 6α0,sα1,sβs

)
(1− ϱs−1) ,

α(2,4)
s = 3α2

0,sβs +
(
α3
1,s + 3α0,sα

2
1,s + 3α2

0,sα1,s

)
(1− ϱs−1) ,

α(3,4)
s = 2α0,sβs +

(
α2
1,s + 2α0,sα1,s

)
(1− ϱs−1) .
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Corollary 4.9. The first four unconditional moments of the periodically correlated
process {yt; t ∈ Z}, satisfying the periodic PZIP-INGARCH(1, 1) model (3.3) are, under the
condition (4.3) for m = 4, given by

µ(4)
y,s

= Ω(4)
s

(
I −Ψ

(4)
s,S

)−1∑S

i=1
Ψ

(4)
s,i−1α

(4)
0,s−i+1,

where, Ψ(4)
s,j =

∏j
i=1Θ

(4)
s−i+1 and the matrix Ω

(4)
s is given by

Ω(4)
s =


(1− ϱs) 6 (1− ϱs) 7 (1− ϱs) (1− ϱs)

0 (1− ϱs) 3 (1− ϱs) (1− ϱs)
0 0 (1− ϱs) (1− ϱs)
0 0 0 (1− ϱs)

 ,

and the matrix Θ
(4)
s is given by (4.4).

Proof: The proof is straightforward.

Corollary 4.10. The skewness and the kurtosis coefficients of the periodically corre-
lated process {yt; t ∈ Z}, satisfying the periodic ZIP-INGARCH(1, 1) model (3.3) are, under
the condition (4.3) for m = 4, given, for s = 1, ..., S, by :

Kurs = µ∗(4)y,s

/(
µ∗(2)y,s

)2
=
(
µ(4)y,s − 4µy,sµ

(3)
y,s + 6µ2y,sµ

(2)
y,s − 3µ4y,s

)/(
µ(2)y,s − µ2y,s

)2
,

and
Sks = µ∗(3)y,s

/(
µ∗(2)y,s

)3/2
=
(
µ(3)y,s − 3µy,sµ

(2)
y,s + 2µ3y,s

)/(
µ(2)y,s − µ2y,s

)3/2
,

where, µ(4)y,s, µ
(3)
y,s, µ

(2)
y,s, and µy,s are given, in terms of the parameters of the model, by

Corollary 4.9.

5. AUTOCOVARIANCE STRUCTURE

The following proposition establishes the autocovariance structure of the process {yt; t ∈ Z}
satisfying the periodic ZIP-INGARCH(1, 1) model.

Proposition 5.1. The autocovariance structure of the periodically correlated integer-
valued processes {yt; t ∈ Z} and {λt; t ∈ Z} satisfying the model (3.3) are, under the condi-
tions (4.7) and (4.9), given as follows :

γ
(s)
y (0) =

1− ϱs

1−
(∏S

i=1 ψ2,i

) ∑S
j=1

(∏j−1
i=1 ψ2,s−i+1

)
𝟋s−j+1 +

ϱt
1− ϱt

µ2y,s + µy,s,

γ
(s)
y (h) =

(∏h−1
i=1 ψ1,s−i+1

)
(1− ϱs)

(
(α1,s−h+1 + βs−h+1) γ

(s−h)
y (0)

−βs−h+1

(
1 +

ϱs−h

1−ϱs−h
µy,s−h

)
µy,s−h

)
,

γ
(s)
λ (0) =

1

1−
(∏S

i=1 ψ2,i

) S∑
j=1

(
j−1∏
i=1

ψ2,s−i+1

)
𝟋s−j+1, γ

(s)
λ (h) =

(
h∏

i=1
ψ1,s−i+1

)
γ
(s−h)
λ (0) ,

where, ψ1,s = (1− ϱs−1)α1,s+βs, ψ2,s = (1− ϱs−1) (α1,s + βs)
2+ϱs−1β

2
s , µy,s = (1− ϱs)µλ,s

and 𝟋s = α2
1,s (1− ϱs−1) (1 + ϱs−1µλ,s−1)µλ,s−1 with the convention

∏j
i=1 xi = 1 if j < 1.
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Proof of Proposition 5.1: see Appendix

Corollary 5.1. The autocorrelation functions of the periodically correlated integer-
valued processes {yt; t ∈ Z} and {λt; t ∈ Z} satisfying the model (3.3) are, under the condi-
tion (4.7), given, for ν = 1, ..., S and k ∈ N, as follows :

ρ
(s)
y (ν + kS) =

√
γ
(s−ν)
y (0)

/
γ
(s)
y (0)

(∏S
i=1 ψ1,i

)k
(
∏ν

i=1 ψ1,s−i+1)×(
(1− ϱs)

(
(α1,s−ν+1 + βs−ν+1)−

(
1 +

ϱs−νµy,s−ν

1− ϱs−ν

)
βs−ν+1µy,s−ν

/
γ
(s−ν)
y (0)

))
,

ρ
(s)
λ (ν + kS) =

√
γ
(s−ν)
λ (0)

/
γ
(s)
λ (0)

(∏S

i=1
ψ1,i

)k (∏ν

i=1
ψ1,s−i+1

)
.

In the following, we will consider a special cases of Proposition 5.1. Suppose that the process
{yt; t ∈ Z} follows a PZIP-INARCH(1) model, (i.e., q = 0), then the following corollary gives
the autocovariance structure.

Corollary 5.2. The autocovariance structure of the periodically correlated integer-
valued processes {yt; t ∈ Z} and {λt; t ∈ Z} satisfying the PZIP-INARCH(1) are, the con-
ditions (4.8) and (4.10), given as follows :

γ
(s)
y (0) =

1− ϱs

1−
(∏S

i=1 Λ2,i

) ∑S
j=1

(∏j−1
i=1 Λ2,s−i+1δs

)
𝟋s−j+1 + µy,s +

ϱt
1− ϱt

µ2y,s,

γ
(s)
λ (0) =

1

1−
(∏S

i=1 Λ2,i

) ∑S
j=1

(∏j−1
i=1 Λ2,s−i+1

)
𝟋s−j+1,

γ
(s)
λ (h) =

(∏h
i=1 Λ1,s−i+1

)
γ
(s−h)
λ (0) , γ

(s)
y (h) =

(∏h
i=1 Λ1,s−i+1

)
γ
(s−h)
y (0) ,

with Λi,s = αi
1,s (1− ϱs−1) , i = 1, 2.

Corollary 5.3. The autocorrelation functions of the periodically correlated integer-
valued processes {yt; t ∈ Z} and {λt; t ∈ Z} satisfying the PZIP-INARCH(1) model are,
under the condition (4.8), given, for ν = 1, ..., S and k ∈ N, as follows :

ρ(s)y (ν + kS) =

(∏S

i=1
Λ1,i

)k (∏ν

i=1
Λ1,s−i+1

)√
γ
(s−ν)
λ (0)

/
γ
(s)
λ (0).

ρ
(s)
λ (ν + kS) =

(∏S

i=1
Λ1,i

)k (∏ν

i=1
Λ1,s−i+1

)√
γ
(s−ν)
λ (0)

/
γ
(s)
λ (0).

with Λ1,s = α1,s (1− ϱs−1)

6. MAXIMUM LIKELIHOOD ESTIMATION

This section discusses the parameter estimation issues of the PZIP-INGARCH(1, 1) model
presented in (3.3), using the conditional maximum likelihood (CML) approach. Indeed,
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the estimation of parameters is straightforward, achieved by maximizing the conditional
likelihood function via the EM algorithm introduced by Dempster et al. (1977). In the
E-step, the conditional expectation of missing data is computed, while in the M-step, the
parameters are obtained by maximizing the log-likelihood function. Suppose that we have
an observation y = (y1, y2, ..., yn) generated according to model (3.3). Now suppose we have
the ability to distinguish between zeros generated by the generate zero process and zeros
generated by the Poisson process. In other words, suppose we can observe Zt = 1 when
yt is from the generate zero process and Zt = 0 when yt is from the Poisson process. The
distribution of Zt is given by P (Zt = 1) = 1 − P (Zt = 0) = ϱt. Let Z = (Z1, Z2, ..., Zn)

denote the vector containing the unobserved data, and θt = (α0,t, α1,t, βt) , φt
= (ϱt, θt) . The

distribution of Z|φ
t

is given by

P
(
Z|φ

t

)
= ϱZt

t (1− ϱt)
1−Zt ,

and the distribution of y
∣∣Z,φ

t
is

P
(
y
∣∣Z,φ

t

)
=
∏n

t=2

(
λytt exp (−λt)

yt!

)1−Zt

.

Then, the complete data conditional likelihood function of the parameter vector φ
t

can be
expressed as follows

L
(
y;φ

t

)
=
∏n

t=2
ϱZt
t

(
(1− ϱt)

λytt exp (−λt)
yt!

)1−Zt

,

then, the complete data conditional log-likelihood is given by

(6.1) L
(
y;φ

t

)
=
∑n

t=2
[Zt log (ϱt) + (1− Zt) (log (1− ϱt) + yt log (λt)− λt − log (yt!))] .

Letting, for simplicity of notation, the size of the observation be a multiple of S, i.e., n = NS,

N ∈ N∗, and replacing t = s+ τS, with s = 1, ..., S and τ = 0, 1, ..., N − 1, then the complete
data conditional log-likelihood function can be written in the form :

L
(
y;φ

s

)
=
∑N−1

τ=0

∑S

s=1
[Zs+τS log (ϱs) + (1− Zs+τS) (log (1− ϱs)) +

(1− Zs+τS) (ys+τS log (λs+τS)− λs+τS − log (ys+τS !))] .

The first derivatives of the conditional log-likelihood with respect to ϱs and θi,s, s = 1, 2, ..., S,

i = 1, 2, 3, are given as follows:

∂L
∂ϱs

=
∑N−1

τ=0

(
Zs+τS

ϱs
− 1− Zs+τS

1− ϱs

)
,

∂L
∂θi,s

=
∑N−1

τ=0
(1− Zs+τS)

(
ys+τS

λs+τS
− 1

)
∂λs+τS

∂θi,s
, i = 1, 2, 3.

To estimate the parameters by maximizing the log likelihood function, an iterative EM algo-
rithm is employed. It consists of an E-step and an M-step described as follows:

E-step: The parameters φ
s

in the i-th iteration are assumed to be known. The missing
data Zs+τS are replaced by their conditional expectations on the parameters φ

s
and on the

observed data y, which are denoted by πs+τS , hence

πs+τS =

{ ϱs
ϱs + (1− ϱs) exp (−λs+τS)

0

if ys+τS = 0,
otherwise.



14 A. Manaa and R. Souakri

M-step: The missing data Zs+τS are assumed now to be known. To estimate the parameters,
we have to maximize the log-likelihood function by setting derivatives ∂L

∂ϱs
and ∂L

∂θi,s
, i =

1, 2, 3, equal to zero. The solutions are as follows:

ϱ̂s =
1

N − 1

∑N−1

τ=0
πs+τS ,

(6.2)
∑N−1

τ=0
(1− πs+τS)

(
ys+τS

λs+τS
− 1

)
∂λs+τS

∂θi,s
= 0, for i = 1, 2, 3.

Due to the unavailability of closed form solutions for equation (6.2), we employ a standard
Newton-Raphson algorithm in order to derive estimates.

− ∂2L
∂θi,s∂θj,s

=
∑N−1

τ=0
(1− πs+τS)

(
ys+τS

λ2s+τS

∂λs+τS

∂θi,s

∂λs+τS

∂θj,s
−
(
ys+τS

λs+τS
− 1

)
∂2L

∂θi,s∂θj,s

)
,

the estimates value of θs can be obtained by the following iterative equation

θ(i+1)
s = θ(i)s −

[
∂2L
∂θs∂θ

′
s

∣∣∣∣
θ
(i)
s

]−1
∂L
∂θs

∣∣∣∣
θ
(i)
s

.

To estimate φ
s
, the iterative process is repeated until convergence is achieved. The EM

algorithm employs a criterion to check for convergence, which is:∣∣∣∣∣φ
(i+1)
s,j − φ

(i+1)
s,j

φ
(i)
s,j

∣∣∣∣∣ ≤ 10−5.

Remark 6.1. Our choice to use the EM algorithm is based on its simplicity and
practical application. However, an alternative approach is to directly maximize the log-
likelihood function. For the PZIP-INGARCH(1, 1) model, the likelihood function can be
expressed as follows: ∏n

t=1

[
ϱtδyt,0 + (1− ϱt)

e−λtλytt
yt!

]
,

then the log-likelihood function is given by :

(6.3)
∑n

t=1
log

(
ϱtδyt,0 + (1− ϱt)

e−λtλytt
yt!

)
,

letting n = NS, N ∈ N∗, and replacing t = s+ τS, with s = 1, ..., S and τ = 0, 1, ..., N − 1,
into equation (6.3), we obtain:

∑N−1

τ=0

∑S

s=1
log

(
ϱsδys+τS ,0 + (1− ϱs)

e−λs+τSλ
ys+τS

s+τS

ys+τS !

)
.

7. NUMERICAL SIMULATION

In this section, a Monte Carlo study was conducted to assess the performance of the con-
ditional maximum likelihood (CML) estimation method. Four different time series datasets
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were used, with sample sizes ranging from small to medium and relatively large. The datasets
were generated on the basis of two models: the PZIP-INGARCH(1, 1) model and the PZIP-
INARCH(1) model, both with a period of S = 4. To analyze the PZIP-INGARCH(1, 1)

model, two models, namely Model 1 and Model 2, are considered. Similarly, Model 3 and
Model 4 are employed to analyze the PZIP-INARCH(1) model. The selected parameters in
each model guarantee the first-order periodic stationarity condition.

The main objective of this study was to illustrate specific empirical estimation properties.
To achieve this, we generated 1000 distinct series for various sample sizes (180, 300, 500,

1000, 1500, 2000, 3000). Each data generation process was repeated 1000 times. The mean
estimates and their root mean square error (RMSE) are presented in Tables 1, 2, 3, and 4.
In addition, graphical representations illustrating the trajectory of each generated data are
provided in Figure 1. The true parameter values of these models are presented below:

PZIP-INGARCH (1, 1) models
Model 1: α0 = (2.5, 1, 2, 3) , α1 = (0.5, 0.6, 0.45, 0.4) ,β = (0.1, 0.3, 0.4, 0.2) , ϱ = (0.1, 0.4, 0.5, 0.35) ,
Model 2: α0 = (3, 2, 1.5, 1) , α1 = (0.3, 0.1, 0.5, 0.4) , β = (0.6, 0.35, 0.15, 0.25) , ϱ = (0.3, 0.5, 0.4, 0.6) .

PZIP-INARCH (1) models
Model 3 : α0 = (1, 3, 2, 4) , α1 = (0.3, 0.1, 0.15, 0.25) , ϱ = (0.2, 0.35, 0.45, 0.1) ,

Model 4 : α0 = (2, 4, 3, 5) , α1 = (0.5, 0.4, 0.65, 0.35) , ϱ = (0.45, 0.55, 0.65, 0.35) .

Table 1: Sample mean and root mean square error RMSE (in bracket) for Model 1.

T.V Size 180 300 500 1000 1500 2000 3000
2.5 α̂0,1 2.1107

(1.1222)
2.2269
(0.9103)

2.3699
(0.6381)

2.4643
(0.4845)

2.4679
(0.3905)

2.4831
(0.3464)

2.4842
(0.2824)

1 α̂0,2 1.0439
(0.9117)

1.0740
(0.7999)

1.0021
(0.6775)

1.0077
(0.5119)

1.0111
(0.4286)

1.0088
(0.3860)

1.0048
(0.3016)

2 α̂0,3 1.9890
(1.2763)

1.9497
(1.0316)

2.0218
(0.8262)

2.0054
(0.5741)

2.0039
(0.4392)

1.9926
(0.3848)

1.9886
(0.3071)

3 α̂0,4 2.7693
(1.2575)

2.9082
(1.0069)

2.9462
(0.7584)

2.9961
(0.5082)

2.9895
(0.4563)

2.9871
(0.3689)

2.9906
(0.3097)

0.5 α̂1,1 0.5055
(0.1247)

0.4974
(0.0915)

0.5028
(0.0722)

0.4981
(0.0487)

0.5025
(0.0403)

0.4995
(0.0347)

0.4996
(0.0292)

0.6 α̂1,2 0.6002
(0.1906)

0.6045
(0.1454)

0.5988
(0.1055)

0.6033
(0.0753)

0.6015
(0.0589)

0.6009
(0.0506)

0.6002
(0.0441)

0.45 α̂1,3 0.4548
(0.1868)

0.4560
(0.1438)

0.4484
(0.1044)

0.4511
(0.0736)

0.4478
(0.0587)

0.4518
(0.0517)

0.4505
(0.0413)

0.4 α̂1,4 0.3911
(0.1552)

0.3995
(0.1212)

0.4030
(0.0884)

0.4000
(0.0621)

0.4022
(0.0500)

0.3997
(0.0431)

0.4002
(0.0361)

0.1 β̂1 0.1734
(0.2205)

0.1531
(0.1779)

0.1243
(0.1252)

0.1072
(0.0939)

0.1057
(0.0764)

0.1036
(0.0668)

0.1035
(0.0559)

0.3 β̂2 0.2869
(0.2432)

0.2837
(0.2040)

0.2969
(0.1671)

0.2970
(0.1236)

0.2924
(0.1013)

0.2967
(0.0887)

0.2980
(0.0686)

0.4 β̂3 0.4076
(0.2759)

0.4068
(0.2230)

0.3947
(0.1738)

0.3972
(0.1196)

0.4026
(0.0907)

0.3987
(0.0826)

0.4012
(0.0661)

0.2 β̂4 0.2482
(0.2418)

0.2202
(0.1874)

0.2082
(0.1463)

0.2003
(0.0967)

0.2006
(0.0847)

0.2036
(0.0699)

0.2020
(0.0589)

0.1 ϱ̂1 0.0932
(0.0495)

0.0966
(0.0387)

0.0973
(0.0304)

0.0992
(0.0207)

0.0990
(0.0172)

0.0991
(0.0141)

0.0995
(0.0123)

0.4 ϱ̂2 0.3930
(0.0749)

0.3990
(0.0597)

0.3976
(0.0450)

0.3998
(0.0321)

0.3993
(0.0255)

0.3996
(0.0223)

0.4009
(0.0185)

0.5 ϱ̂3 0.4964
(0.0774)

0.4961
(0.0583)

0.5001
(0.0453)

0.5008
(0.0318)

0.5005
(0.0260)

0.4994
(0.0234)

0.4993
(0.0190)

0.35 ϱ̂4 0.3514
(0.0743)

0.3471
(0.0575)

0.3508
(0.0436)

0.3477
(0.0301)

0.3500
(0.0251)

0.3495
(0.0219)

0.3502
(0.0176)
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 1: The trajectory of data generated by various models.

Table 2: Sample mean and root mean square error RMSE (in bracket) for Model 2.

T.V Size 180 300 500 1000 1500 2000 3000
3 α̂0,1 3.0081

(0.9583)
2.9773
(0.8369)

2.9833
(0.6952)

2.9835
(0.5126)

2.9420
(0.4619)

2.9902
(0.3748)

2.9697
(0.3297)

2 α̂0,2 1.9102
(1.5376)

1.8546
(1.4495)

1.9776
(1.3042)

2.0077
(1.0461)

2.0508
(0.8729)

2.0271
(0.8033)

2.0040
(0.6537)

1.5 α̂0,3 1.1089
(1.0450)

1.1613
(0.9897)

1.2037
(0.9651)

1.2741
(0.8851)

1.3149
(0.8013)

1.3373
(0.7411)

1.3900
(0.6605)

1 α̂0,4 0.8716
(0.7427)

0.9202
(0.6589)

0.9711
(0.5626)

0.9492
(0.4515)

1.0137
(0.3672)

0.9946
(0.3216)

1.0042
(0.2472)

0.3 α̂1,1 0.3274
(0.2577)

0.3035
(0.2024)

0.3031
(0.1606)

0.2958
(0.1088)

0.2977
(0.0931)

0.2996
(0.0754)

0.2970
(0.0636)

0.1 α̂1,2 0.1308
(0.1359)

0.1160
(0.1058)

0.1048
(0.0836)

0.1019
(0.0611)

0.0993
(0.0522)

0.1015
(0.0480)

0.0990
(0.0393)

0.5 α̂1,3 0.5076
(0.1726)

0.5064
(0.1355)

0.4968
(0.1012)

0.5000
(0.0699)

0.5014
(0.0555)

0.5019
(0.0491)

0.5006
(0.0391)

0.4 α̂1,4 0.4262
(0.2175)

0.4137
(0.1662)

0.4072
(0.1237)

0.4004
(0.0874)

0.3994
(0.0729)

0.4018
(0.0632)

0.3985
(0.0509)

0.6 β̂1 0.5879
(0.3648)

0.6095
(0.3145)

0.6064
(0.2705)

0.6136
(0.1982)

0.6220
(0.1852)

0.6093
(0.1508)

0.6154
(0.1295)

0.35 β̂2 0.3471
(0.3368)

0.3695
(0.3117)

0.3521
(0.2798)

0.3467
(0.2224)

0.3406
(0.1841)

0.3438
(0.1716)

0.3493
(0.1396)

0.15 β̂3 0.2428
(0.2685)

0.2285
(0.2476)

0.2246
(0.2403)

0.2048
(0.2188)

0.1955
(0.1998)

0.1896
(0.1849)

0.1774
(0.1662)

0.25 β̂4 0.2730
(0.2561)

0.2651
(0.2250)

0.2512
(0.1831)

0.2653
(0.1434)

0.2463
(0.1146)

0.2474
(0.1020)

0.2463
(0.0760)

0.3 ϱ̂1 0.2946
(0.0705)

0.2942
(0.0568)

0.3002
(0.0421)

0.2989
(0.0294)

0.3001
(0.0238)

0.2992
(0.0208)

0.2998
(0.0176)

0.5 ϱ̂2 0.4953
(0.0735)

0.4969
(0.0575)

0.4986
(0.0452)

0.4970
(0.0318)

0.5006
(0.0262)

0.4995
(0.0224)

0.4996
(0.0185)

0.4 ϱ̂3 0.3917
(0.0846)

0.3964
(0.0621)

0.3969
(0.0483)

0.3979
(0.0343)

0.3987
(0.0281)

0.4000
(0.0239)

0.3997
(0.0198)

0.6 ϱ̂4 0.5864
(0.0877)

0.5905
(0.0669)

0.5962
(0.0502)

0.5970
(0.0367)

0.5980
(0.0291)

0.5986
(0.0248)

0.5981
(0.0206)

By analyzing Tables 1, 2, 3, and 4, it becomes clear that the estimation method used exhibits
enhanced performance as the value of n increases for the both PZIP-INGARCH(1, 1) and
PZIP-INARCH(1) models. This is due to the fact that as the sample size n increases, all
parameter estimators converge and the root mean square error (RMSE) decreases. Conse-
quently, our CML-vector estimators θ̂s,CML are empirically consistent for all the parameters
under analysis.
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Table 3: Sample mean and root mean square error RMSE (in bracket) for Model 3.

T.V Size 180 300 500 1000 1500 2000 3000

1 α̂0,1 0.9953
(0.4922)

1.0065
(0.3335)

0.9885
(0.2539)

0.9944
(0.1800)

0.9898
(0.1494)

0.9975
(0.1252)

1.0001
(0.1073)

3 α̂0,2 2.9777
(0.5181)

2.9540
(0.3601)

2.9709
(0.2927)

2.9888
(0.2002)

2.9910
(0.1694)

3.0007
(0.1477)

2.9941
(0.1219)

2 α̂0,3 1.9523
(0.5373)

1.9445
(0.3702)

1.9795
(0.2887)

1.9940
(0.2090)

1.9987
(0.1633)

1.9952
(0.1457)

1.9957
(0.1155)

4 α̂0,4 3.9726
(0.4230)

3.9837
(0.3131)

3.9945
(0.2562)

3.9961
(0.1747)

3.9999
(0.1447)

3.9997
(0.1252)

3.9989
(0.0999)

0.3 α̂1,1 0.2936
(0.1239)

0.2960
(0.0901)

0.3006
(0.0631)

0.2994
(0.0442)

0.3024
(0.0368)

0.3003
(0.0327)

0.3006
(0.0268)

0.1 α̂1,2 0.0964
(0.2360)

0.1235
(0.1389)

0.1112
(0.1058)

0.1058
(0.0807)

0.1012
(0.0671)

0.1010
(0.0603)

0.1008
(0.0516)

0.15 α̂1,3 0.1533
(0.1994)

0.1610
(0.1256)

0.1524
(0.1001)

0.1489
(0.0699)

0.1490
(0.0574)

0.1494
(0.0502)

0.1517
(0.0430)

0.25 α̂1,4 0.2486
(0.2298)

0.2496
(0.1645)

0.2517
(0.1271)

0.2487
(0.0915)

0.2484
(0.0726)

0.2478
(0.0647)

0.2509
(0.0515)

0.2 ϱ̂1 0.1862
(0.0854)

0.1882
(0.0667)

0.1957
(0.0519)

0.1964
(0.0359)

0.1975
(0.0290)

0.1978
(0.0238)

0.1983
(0.0212)

0.35 ϱ̂2 0.3423
(0.0771)

0.3484
(0.0583)

0.3466
(0.0436)

0.3508
(0.0326)

0.3481
(0.0255)

0.3484
(0.0230)

0.3503
(0.0180)

0.45 ϱ̂3 0.4342
(0.0874)

0.4424
(0.0684)

0.4464
(0.0519)

0.4502
(0.0366)

0.4496
(0.0291)

0.4487
(0.0253)

0.4492
(0.0209)

0.1 ϱ̂4 0.0976
(0.0475)

0.1004
(0.0373)

0.0999
(0.0291)

0.0999
(0.0199)

0.0993
(0.0169)

0.0996
(0.0142)

0.0996
(0.0120)

Table 4: Sample mean and root mean square error RMSE (in bracket) for Model 4.

T.V Size 180 300 500 1000 1500 2000 3000

2 α̂0,1 1.9691
(0.9648)

1.9730
(0.4199)

2.0028
(0.3259)

1.9928
(0.2279)

1.9942
(0.1814)

2.0019
(0.1597)

1.9940
(0.1275)

4 α̂0,2 3.9900
(0.7660)

3.9818
(0.4630)

4.0165
(0.3737)

3.9955
(0.2651)

4.0042
(0.2040)

4.0066
(0.1824)

3.9965
(0.1442)

3 α̂0,3 3.4390
(9.3253)

3.0008
(0.4929)

2.9878
(0.3761)

3.0006
(0.2571)

3.0094
(0.2087)

3.0017
(0.1872)

3.0046
(0.1527)

5 α̂0,4 5.0389
(0.6767)

5.0019
(0.3994)

4.9896
(0.3004)

4.9954
(0.2167)

4.9997
(0.1708)

5.0037
(0.1458)

5.0045
(0.1182)

0.5 α̂1,1 0.5011
(0.2013)

0.5037
(0.1091)

0.4980
(0.0824)

0.5003
(0.0562)

0.5015
(0.0441)

0.5023
(0.0391)

0.5013
(0.0309)

0.4 α̂1,2 0.4232
(0.1973)

0.4015
(0.1671)

0.3945
(0.1257)

0.3985
(0.0949)

0.3983
(0.0731)

0.3969
(0.0620)

0.4019
(0.0509)

0.65 α̂1,3 0.2859
(0.1997)

0.6498
(0.1733)

0.6510
(0.1390)

0.6448
(0.0953)

0.6457
(0.0774)

0.6506
(0.0673)

0.6470
(0.0519)

0.35 α̂1,4 0.3303
(0.1872)

0.3503
(0.1562)

0.3551
(0.1152)

0.3527
(0.0824)

0.3464
(0.0628)

0.3500
(0.0558)

0.3480
(0.0446)

0.45 ϱ̂1 0.4354
(0.0835)

0.4419
(0.0647)

0.4470
(0.0483)

0.4494
(0.0349)

0.4486
(0.0275)

0.4492
(0.0241)

0.4490
(0.0191)

0.55 ϱ̂2 0.5497
(0.0753)

0.5494
(0.0588)

0.5498
(0.0430)

0.5499
(0.0314)

0.5499
(0.0258)

0.5510
(0.0223)

0.5495
(0.0180)

0.65 ϱ̂3 0.6459
(0.0764)

0.6477
(0.0569)

0.6502
(0.0428)

0.6501
(0.0322)

0.6506
(0.0261)

0.6509
(0.0215)

0.6508
(0.0172)

0.35 ϱ̂4 0.3472
(0.0708)

0.3521
(0.0557)

0.3511
(0.0444)

0.3509
(0.0309)

0.3500
(0.0251)

0.3508
(0.0220)

0.3495
(0.0177)
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8. REAL DATA EXAMPLE

This section analyzes a dataset containing 320 recorded instances of daily COVID-19 death
rates in Finland from January 1, 2021, to November 16, 2021. The focus is on two key
features: zero value excess and periodic patterns. Figure 2 presents a visual representation of
the time series, while Table 5 summarizes descriptive statistics. Additionally, Table 6 details
the empirical periodic mean, variance, Fisher’s dispersion index, and zero inflation index.

Figure 2: Trajectory of the daily COVID-19 time series.

Table 5: Several descriptive statistics for the COVID-19 time series.

Sample size Min Max Median Mean Variance Fisher index Skewness Kurtosis
320 0 13 2 2.3875 5.8807 2.4631 1.5681 6.0471

Table 6: Empirical periodic mean, variance, Fisher index, and zero inflation index for the
dataset.

s 1 2 3 4 5 6 7

µy,s 2.4783 2.3043 2.5217 1.7826 1.6957 3.4000 2.5556
σ2y,s 5.0995 4.0386 6.2106 3.9517 3.0609 12.2909 5.4798

FIy,s 2.0577 1.7526 2.4629 2.2168 1.8051 3.6150 2.1442
p0,s 0.1522 0.2174 0.2174 0.3478 0.3696 0.2000 0.1333
zis 0.2403 0.3377 0.3948 0.4076 0.4130 0.5266 0.2116

Tables 5 and 6 show that the daily count of COVID-19 deaths in the Finland time series
exhibits a higher level of dispersion. In addition, Puig and Valero (2006) introduced a zero
inflation index zis to measure the departure from the Poisson model:

zis = 1 + log (p0,s) /µy,s, s = 1, ..., 7,

where, p0,s is proportion of 0’s and µy,s is the mean in each period s = 1, ..., 7. Notice that,
zis = 0, if X (X is a count variable) is Poisson distributed and zis > 0, if X is zero inflate.
From Table 6, the zero inflation index is zis > 0, for s = 1, ..., 7, which indicates that there
is a zero inflation. Consequently, it appears that the models proposed by the authors in this
work, PZIP-INGARCH(1, 1) and PZIP-INARCH(1), are well suited to effectively capture the
patterns within the time series, as well as accounting for the presence of zero values.
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Figure 3: ACF and PACF of the COVID-19 time series.

Furthermore, an analysis of the autocorrelation function (ACF) and partial autocorrelation
function (PACF), as shown in Figure 3, reveals a clear periodic pattern in the time series
with a period of S = 7 (peaks marked at lags of S = 7, 14, ...). This periodicity is due to the
fact that data are collected every day.

(a) PZIP-INGARCH(1,1) model (b) PZIP-INARCH(1) model

(c) ZIP-INGARCH(1,1) model (d) ZIP-INARCH(1) model

Figure 4: ACF and PACF of the residual time series

The data is well described by the PZIP-INGARCH(1, 1) and PZIP-INARCH(1) models, as
confirmed by the empirical residual autocorrelation function (ACF) and the partial autocor-
relation function (PACF). Indeed, the residuals show no statistically significant autocorrela-
tion, as shown in Figure 4. So, the adequacy of the models is not statistically rejected. Also,
the periodic behavior of the residual autocorrelation in the fitted PZIP-INGARCH(1, 1) and
PZIP-INARCH(1) models has been fully captured, which indicates that these models capture
the periodic feature of the data set with a period of S = 7. However, the ZIP-INGARCH(1, 1)

and ZIP-INARCH(1) models exhibit a significant autocorrelation, and some periodicity in
the residual autocorrelation function persists, especially in the 7th lag, which indicates that
they don’t fully account for the periodic structure of the data.

Furthermore, Table 7 provides the parameter estimation results and the corresponding stan-
dard errors, computed numerically using the bootstrap method, for the proposed PZIP-
INGARCH(1, 1) and PZIP-INARCH(1) models, as well as for several existing models. This
comparison is based on the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), and the sum of squared errors (SSE). The proposed models show signifi-
cant improvements over the existing ones (including, ZIP-INAR(1) model Jazi et al. (2012),
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Table 7: Fitting results of different models.

Model Para. CML AIC BIC SSE
ZIP- φ 0.3717

(0.0365)
1274.38 1285.69 2200

INAR(1) ϱ 0.4045
(0.0473)

λ 2.5174
(0.1632)

ZIP- α0 1.5182
(0.1380)

1299.25 1310.55 1990

INARCH(1) α1 0.4674
(0.0562)

ϱ 0.1127
(0.0256)

ZIP- α0 0.0212
(0.0275)

1197.63 1212.70 1796

INGARCH(1, 1) α1 0.1313
(0.0384)

β 0.8683
(0.0456)

ϱ 0.0395
(0.0268)

INAR(1) φ 0.3181
(0.0508)

1360.79 1368.33 2312

λ 1.6265
(0.1330)

s 1 2 3 4 5 6 7
PINAR7 (1) φs 0.2604

(0.1134)
0.4534
(0.1208)

0.4638
(0.0799)

0.4956
(0.1353)

0.2072
(0.1887)

0.2660
(0.1068)

0.3162
(0.1373)

1314.76 1367.52 2075

λs 1.7790
(0.3005)

1.1808
(0.3054)

1.4530
(0.1971)

0.5328
(0.2802)

1.3264
(0.3980)

2.9744
(0.3936)

1.4804
(0.3941)

PZIP- α0,s 1.5065
(0.3898)

0.6587
(0.3528)

0.6451
(0.1988)

0.3051
(0.1647)

1.9143
(0.4456)

2.8194
(0.4260)

1.2387
(0.2961)

1244.86 1316.46 1903

INARCH7 (1) α1,s 0.3892
(0.1372)

0.7205
(0.1544)

0.8485
(0.1188)

0.5859
(0.0836)

0.2337
(0.1670)

0.7880
(0.2042)

0.3873
(0.0851)

ϱs 0.0262
(0.0398)

0.0497
(0.0549)

0.0307
(0.0423)

0.0000
(0.0455)

0.2871
(0.0896)

0.1770
(0.0681)

0.0000
(0.0145)

PZIP- α0,s 0.0000
(0.2131)

0.0000
(0.1956)

0.0000
(0.1289)

0.0000
(0.0986)

0.3329
(0.2389)

0.1936
(0.2747)

0.0000
(0.0962)

1174.49 1257.40 1592

INGARCH7 (1, 1) α1,s 0.0378
(0.0881)

0.1528
(0.1052)

0.4727
(0.1459)

0.2995
(0.1010)

0.0000
(0.0932)

0.2765
(0.1112)

0.1203
(0.1012)

βs 0.8962
(0.1542)

0.8063
(0.1764)

0.6216
(0.1741)

0.5310
(0.1348)

1.000
(0.1227)

1.000
(0.1040)

0.7164
(0.1443)

ϱs 0.0000
(0.0348)

0.0000
(0.0494)

0.0000
(0.0264)

0.0000
(0.0551)

0.2190
(0.0952)

0.0726
(0.0536)

0.0000
(0.0274)

ZIP-INARCH(1), ZIP-INGARCH(1, 1) models Zhu (2012), Poisson INAR(1) model Al-Osh
and Alzaid (1987), and the periodic PINAR7 (1) model Monteiro et al. (2010)), particularly
in terms of AIC and SSE, where they achieve lower values. However, the BIC values for
the proposed models are higher compared to the ZIP-INGARCH(1, 1) and ZIP-INARCH(1)

models. This difference is mostly due to the higher number of estimated parameters in our
models.

(a) PZIP-INGARCH(1,1) model (b) PZIP-INARCH(1) model

(c) ZIP-INGARCH(1,1) model (d) ZIP-INARCH(1) model

Figure 5: Comparison between the adjustments of the different models.
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Figure 5 shows the adjusted series for each model, such as the series values are shown in blue,
while the red line denotes the adjusted series. The fitted values of the PZIP-INGARCH(1, 1)

model appear to be quite overlapped with the actual data points in the dataset.

9. CONCLUSION

In this paper, we have introduced a particular version of the PZIP-INGARCH(p, q) model
developed to address overdispersion, hidden periodicity in autocovariance structures, and
excess zeros in integer-valued time series. The conditions for the existence of higher-order
moments and their closed-form expressions are derived, and periodic stationarity for the first
and second moments is established. Additionally, we have analyzed the periodic autocovari-
ance structure and derived a closed-form expression for the periodic autocorrelation function.
To estimate the unknown periodic parameters, the CML method is employed via EM algo-
rithm. Through a simulation study, the performance of the obtained estimators is assisted.
An application to the daily COVID-19 death counts in Finland shows that the model offers
better performance and better captures the unique characteristics of the data.

10. APPENDIX

Proof of Proposition 4.1: The conditional mean E (λmt | Ft−1) is given by

E (λmt | Ft−1) =
∑m

i=0

(
m
i

)
αm−i
0,t (α1,tyt−1 + βtλt−1)

i

=
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j
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(
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∣∣∣Ft−2

)
.

It is well known that the j-th moment of a zero inflated Poisson variable with parameters
ϱt and λt is given, while using the formula of Stirling numbers of the second kind, by :
E
(
yjt

∣∣∣Ft−1

)
= (1− ϱt)

∑j
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λkt . Then we have :

E (λmt | Ft−2) = αm
0,t +

m∑
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(
i
j

)
αj
1,tβ

i−j
t λi−j

t−1

[
j∑

k=1

{
j

k

}
(1− ϱt−1)λ

k
t−1

]

= αm
0,t + ψm,tλ

m
t−1 +

m−1∑
i=1

(
m
i

)
αm−i
0,t ψi,tλ

i
t−1 +

∑m

i=1

∑i

j=1

∑j−1

k=1

(
m
i

)(
i
j

)
(1− ϱt−1)α

m−i
0,t αj

1,tβ
i−j
t

{
j

k

}
λ
i−(j−k)
t−1 ,

which can be written in the form

E (λmt | Ft−2) = αm
0,t + ψm,tλ

m
t−1 +

m−1∑
i=1

(
m
i

)
αm−i
0,t ψi,tλ

i
t−1 +

m∑
i=1

i∑
j=1

j−1∑
k=1

K(m,t)
i,j,k λ

i−k
t−1,

with,
K(m,t)

i,j,k =
(
m
i

)(
i
j

){
j−1
k

}
(1− ϱt−1)α

m−i
0,t αj

1,tβ
i−j
t ,

ψm,t = (1− ϱt−1)
∑m

j=1

(
m
j

)
αj
1,tβ

m−j
t + βmt .
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the last two sums in the precedent expression can be rearranged as follows∑m−1

i=1

(
m
i

)
αm−i
0,t ψi,tλ

i
t−1 +

∑m

i=1

∑i

j=1

∑j−1

k=1
K(m,t)

i,j,k λ
i−k
t =

∑m−1

i=1
ϕ
(m)
i,t λ

i
t−1,

where,
ϕ
(m)
i,t =

(
m
i

)
αm−i
0,t ψi,t +

∑m

j=i+1

∑j−1

k=j−i
K(m,t)

j,k+1,j−i,

Hence, we have
E (λmt | Ft−2) = αm

0,t + ψm,tλ
m
t−1 +

∑m−1

i=1
ϕ
(m)
i,t λ

i
t−1.

Replacing i by m, m− 1, m− 2,..., 3, 2, 1, we obtain the following matrix difference equation

E
(
Λ
(m)
t

∣∣∣Ft−2

)
= Θ

(m)
t Λ

(m)
t−1 + α

(m)
0,t ,

where the elements of the m×m-matrix Θ
(m)
t are given in (4.1). Iterating the last equation

n times, we obtain

E
(
Λ
(m)
t

∣∣∣Ft−2−n

)
=
∑n

j=0

(∏j

i=1
Θ

(m)
t−i+1

)
α
(m)
0,t−j +

(∏n+1

i=1
Θ

(m)
t−i+1

)
Λ
(m)
t−(n+1).

Letting n = kS − 2, then we have, while taking account of the matrix Θ
(m)
t and the column

vector α(m)
0,t

E
(
Λ
(m)
t

∣∣∣Ft−kS

)
=
∑kS−2

j=0

(∏j

i=1
Θ

(m)
t−i+1

)
α
(m)
0,t−j +

(∏kS−1

i=1
Θ

(m)
t−i+1

)
Λ
(m)
t−(kS−1),

which can be written in the form

E
(
Λ
(m)
t

∣∣∣Ft−kS

)
=
∑k−2

l=0

(∏S
i=1Θ

(m)
t−i+1

)l∑S
j=1

(∏j−1
i=1 Θ

(m)
t−i+1

)
α
(m)
0,t−(lS+j)+1+(∏S

i=1Θ
(m)
t−i+1

)k−1 [∑S−1
j=1

(∏j−1
i=1 Θ

(m)
t−i+1

)
α
(m)
0,t−(lS+j)+1 +

(∏S−1
i=1 Θ

(m)
t−i+1

)
Λ
(m)
t−(kS−1)

]
.

Replacing t by s+ τS and taking account of the periodicity, we obtain

E
(
Λ
(m)
t

∣∣∣Ft−(k−τ)S

)
=
∑k−2

l=0

(∏S
i=1Θ

(m)
s−i+1

)l∑S
j=1

(∏j−1
i=1 Θ

(m)
s−i+1

)
α
(m)
0,s−j+1+(∏S

i=1Θ
(m)
s−i+1

)k−1 [∑S−1
j=1

(∏j−1
i=1 Θ

(m)
s−i+1

)
α
(m)
0,s−j+1 +

(∏S−1
i=1 Θ

(m)
s−i+1

)
Λ
(m)
s−((k−τ)S−1)

]
.

Since the matrices Θ
(m)
s−i+1, i = 1, ..., S are upper-triangular with eigenvalues ψm,s−i+1,

ψm−1,s−i+1, ..., ψ2,s−i+1, ψ1,s−i+1, then a sufficient condition for the matrix
(∏S

i=1Θ
(m)
s−i+1

)k−1

to converge, as k → ∞, to the null matrix is that∏S

i=1
ψm,i < 1, with ψm,t =

∑m

j=1

(
m
j

)
αj
1,tβ

m−j
t + βmt .

Under this condition, we have, the closed-form of the vector

E
(
Λ
(m)
t

)
= lim

k→∞
E
(
Λ
(m)
t

∣∣∣Ft−(k−τ)S

)
=

∞∑
l=0

(
S∏

i=1

Θ
(m)
s−i+1

)l S∑
j=1

(
j−1∏
i=1

Θ
(m)
s−i+1

)
α
(m)
0,s−j+1,

=
(
I −Ψ

(m)
s,S

)−1∑S

i=1
Ψ

(m)
s,i−1α

(m)
0,s−i+1, where Ψ

(m)
s,j =

∏j

i=1
Θ

(m)
s−i+1.
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Proof of Proposition 4.2: The proof follows directly from Proposition 4.1 by
setting m = 1.

Proof of Proposition 4.3: The proof follows directly from Proposition 4.1 by
setting m = 1 and m = 2.

Proof of Proposition 5.1: The variances γ(s)λ (0) and γ
(s)
y (0) were established in

Proposition 4.3. The autocovariance γ(s)y (1), can be calculated as follows :

γ(s)y (1) = Cov (ys; ys−1) ,

= (α1,s + βs) (1− ϱs) γ
(s−1)
y (0)− βs (1− ϱs)

(
1 +

ϱs−1

1− ϱs−1
µy,s−1

)
µy,s−1,

More generally, let us calculate the autocovariance γ(s)y (h), h ≥ 2,

γ(s)y (h) = Cov (ys; ys−h) =
1− ϱs
1− ϱs−1

ψ1,sγ
(s−1)
y (h− 1) , h ≥ 2.

Iterating the last equation m times and replacing m by h− 1 then using (4.1), we obtain

γ(s)y (h) =

(∏h−1

i=1
ψ1,s−i+1

)
1− ϱs

1− ϱs−h+1
γ(s−h)
y (1) =

(∏h−1

i=1
ψ1,s−i+1

)
(1− ϱs)×(

(α1,s−h+1 + βs−h+1) γ
(s−h)
y (0)− βs−h+1

(
1 +

ϱs−h

1− ϱs−h
µy,s−h

)
µy,s−h

)
The autocovariance γ(s)λ (h) , h ≥ 1, is given as follows :

γ
(s)
λ (h) = Cov (λs;λs−h) = (α1,s (1− ϱs−1) + βs) γ

(s−1)
λ (h− 1) .

Iterating the equation m times and replacing m by h, we obtain

γ
(s)
λ (h) =

(∏h

i=1
ψ1,s−i+1

)
γ
(s−h)
λ (0) .
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