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1. INTRODUCTION

Several domains have found use for Neutrosophic theory. These include the study of the

static model from a Neutrosophic perspective, the integration of renewable energy employing

a range of resources, including wind turbines, and COVID-19 and its Omicron mutation.

While in real issues there exist unclear facts, in conventional mathematics sharpness is the

most important precondition. Mathematics based on uncertainty must be applied to tackle

these problems. Many scientists and engineers are interested in uncertainty modeling be-

cause it helps them to identify and interpret the valuable information that is concealed in

uncertain data. Despite being a vital instrument with real-world applications, the theory of

Neutrosophic probability has not received much attention. Still, some research has been done

on it. Neutrosopic statistics encompasses several domains, such as probability distributions,

test methods, correlation, regression analysis, and so on. In recent years, more research has

been done in these areas.

In recent years, many academics have been creating a variety of studies based on neu-

trosophic statistics. Smarandache (1998) launched the first studies on neutrosophic statistics.

This new field of study applies fuzzy logic to uncertain environments and is a generalization

of that environment. Neutronistic statistics is essential to statistics and other study domains

because it can manage collections of values in an interval format. There are useful appli-

cations for the neutrosophic theory of probability, which makes it necessary. There has not

been much research done in this field. In recent years, several writers have directed more of

their attention toward the neutrosophic statistics method and its applications in other do-

mains.13. Patro and Smarandache (2016) introduced the neutrosophic statistical distribution

along with additional issues and their resolutions. Alhasan and Smarandache (2019) used the

DUS-Weibull transformation to develop a novel neutrosophic model. Alhabib et al. (2018)

investigated a few neutrosophic probability distributions by extending the Poisson, exponen-

tial, and uniform distributions from classical probability distributions to the neutrosophic

class. Sherwani et al. (2021c) studied the applications and properties of neutrosophic beta

distribution. Neutrosophic normal distribution was developed by Sherwani et al. (2021a).

The neutrosophic exponential distribution was interoduced by Duan et al. (2021). The neu-

trosophic random variables were developed by Zeina and Hatip (2021). They explored several

statistical examples and properties. Other applications of neutrosophic statistics in a variety

of fields have been done by different researchers such as process capacity analysis, Aslam et al.

(2019); sampling plans and quality control, Aslam (2019); and the indeterminacy environ-

ment in social science, Aslam and Arif (2018). Smarandache (2023) examined the evolution of

plithogenic and neutrosophic probability and statistics between 1998 and 2021, emphasizing

its uses in the medical domains. In order to manage data in unpredictable contexts, Sher-

wani et al. (2021b) extends classical statistics notions by introducing crucial measurements of

central tendency and dispersion inside neutrosophic statistics. Altounji et al. (2023) investi-

gated the use of a quadratic loss function to estimate parameters from a neutrosophic gamma

distribution. The study focuses on the concepts of neutrosophic loss and risk functions, and

posterior risk minimization.

The motivation for this research stems from the limitations of the neutrosophic log-

logistic distribution introduced by Rao (2023). Rao’s model was developed under the as-

sumption that each observation is uncertain and falls between two specific ranges, where the
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uncertainty or indeterminacy lies between two values of a single observation for the random

variable. For example, if the random variable represents the lifetime of a product, an obser-

vation might ambiguously suggest that the lifetime is between 20-25 hours, and this applies

similarly to subsequent observations. Rao (2023) addressed this by considering the neutro-

sophic random variable as XN ∈ (XL, XU ) follows the log-logistic distribution. In contrast,

our proposed methodology addresses a different type of uncertainty or indeterminacy com-

monly encountered in real-life applications, where ambiguity or indeterminacy exists only in

the upper limit of the recorded observation. For instance, when recording the lifetime of

a product, we might know that the product lasts at least 20 hours, but we are uncertain

about the exact upper limit. In such cases, the lower limit is known, while the ambiguity

lies in the upper limit. To address this type of neutrosophic data, we propose a new neu-

trosophic log-logistic distribution, where the neutrosophic random variable is expressed as

XN = XL + INXL = (1 + IN )XL where IN being the indeterminate factor that determines

the upper limit of the observation.

1.1. Neutrosophic Random Variable

As part of an interdisciplinary National Science Foundation project, Smarandache

(2000) expands on classical theories of probability, fuzzy sets, and fuzzy logic to create neu-

trosophic probability, sets, and logic, highlighting their applicability in domains like artificial

intelligence, neural networks, evolutionary programming, dynamic systems, and quantum

mechanics. According to his, neutrosophic statistics possess a neutrosophic probability dis-

tribution as they are random variables. The values of a neutrosophic statistic behave in

a certain way over an extended period of time when they are computed for several identi-

cal samples. The information used in neutrosophic statistics may be confusing, inaccurate,

doubtful, partial, or even unknown. The following is the conventional form for neutrosophic

numbers, which is based on classical statistics.

XN = E + I.

Two components make up data: E represents the precise or determined portion of the

data, whereas I represents the uncertain, inexact, or indeterminate portion of the data. To

identify the neutrosophic random variable, use N in the subscript such asXN . Let suppose the

random variable X occurred from any probability distribution and if we consider that there

is ambiguity in the values of random variable then the neutrosophic random variable XN ∈
(XL, XU ) generates the neutrosophic values of data. According to this, the neutrosophic

variable is defined as XN = XL + INXL = (1 + IN )XL indeterminate and determined parts

are described by XL and INXL, respectively. Additionally, the expectation properties, mean

and variance of theXN = XL+INXL = (1+IN )XL are defined as E(XN )r = (1+IN )E(XL)
r;

mean is E(XN ) = (1 + IN )rE(XL) , and variance is V ar(XN ) = (1 + IN )2V ar(XL).
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1.2. Log-logistic Distribution

The log-logistic distribution (LLD) also named as Fisk distribution is first presented

and developed by Fisk (1961) for useful in survival analysis, economic, wealth, and networking

diffusion time data applications. LLD is the special case of Burr-XII distribution. According

to Gupta et al. (1999), the LLD is more useful in survival analysis because of its increasing

and decreasing hazard function characteristics. The probability density function (p.d.f.)

and cumulative distribution function (c.d.f.) of a continuous random variable Xi with i =

1, 2, . . . , n follows LLD with shape parameter β and scale parameter α as.

(1.1) F (x;α, β) =
(x/α)β

(1 + (x/α)β)
, x, α, β > 0,

and

(1.2) f(x;α, β) =
(β/α)(x/α)β−1

[1 + (x/α)β]2
, x, α, β > 0.

The structure of the rest of the article is as follows: Overview of the neutrosophic notion

and p.d.f., c.d.f. of LLD are presented in section 1. The formulation of the neutrosophic log-

logistic distribution is established in Section 2. Neutrosophic reliability measures are covered

in detail in section 3. In section 4, we address some neutrosophic entropies supported by

statistical results and pictorial depictions. In section 5, parameter estimation like maximum

likelihood estimation method is shown, section 6 represents the simualtion study in two

part one is simualtion study for entorpies and secondly estimation process is validated by

a simulation exercise. In Section 7, the established models and methodologies are applied

to real-world neutrosophic datasets to show their usefulness. Section 7 of the publication

provides an overview of the findings.

2. Formulation of Neutrosophic Log Logistic distribution.

The novel approach for neutrosophic random variable can be defined as XN = XL +

INXL with IN ∈ (IL, IU ), where XL and INXL represent the determined and indetermined

portion of the data. Assume that this neutrosophic random variable follows the neutrosophic

log-logistic distribution with parameters αN and βN .The neutrosophic probability density

function and neutrosophic cumulative distribution function of the LLD are given by

(2.1) FN (xN ;αN , βN ) =
[(1 + IN )xL/αN ]βN

1 + [(1 + IN )xL/αN ]βN
, xN , αN , βN > 0,

and

(2.2) fN (xN ;αN , βN ) =

(
βN
αN

)
(1 + IN )[(1 + IN )xL/αN ]βN−1

[1 + {(1 + IN )xL/αN}βN ]2
, xN , αN , βN > 0
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Theorem 2.1. Consider that the neutrosophic random variable XN ∈ (1 + IN )XL,

where XN follows the p.d.f. given in (2.2), is a valid p.d.f.

Proof: Consider the p.d.f. given in (2.2), then integrating it over the domain of XN

as

(
βN
αN

)∫ ∞

0

(1 + IN )[(1 + IN )xL/αN ]βN−1

[1 + {(1 + IN )xL/αN}βN ]2
dx = 1

Let
(
(1+IN )xN

αN

)βN

= u, substituting this into the above expression and simplifying it we get,

∫ ∞

0

1

(1 + u)2
du = 1

This integral is equal to one, hence it proved that the function given in (2.2) is a valid

p.d.f.

Theorem 2.2. Let the random variable XN ∈ (1 + IN )XL follows the p.d.f. given

in (2.2) whose c.d.f. in (2.1) is a valid distribution function.

Proof: A c.d.f. is a valid function if it fulfills the properties F (−∞) and F (+∞) = 1.

Let the c.d.f. in (2.1) and

lim
x→0

FN (xN ;αN , βN ) =
[(1 + IN )0/αN ]βN

1 + [(1 + IN )0/αN ]βN
=

0

1
= 0

lim
x→∞

FN (xN ;αN , βN ) =
1

1 + [(1 + IN )∞/αN ]βN
=

1

1 + 1
∞

= 1

Hence, proved that (2.1) is a valid distribution function.



6 S. Bashir, B. Masood, I. Shehzadi and M. Aslam

Figure 1: Density plots for the NLL distribution for different values of IN ,
and parameters.

Figure 1 emphasize the impact of parameter changes on uncertainty representation by showing

how parameters affect Neutrosophic density. Neutrosophic density functions for several values

of IN , αN , and βN , are shown. The density curves flatten as IN , increases from 0.10 to

0.80 (figure a to c), showing less variation and less uncertainty between parameter settings.

Particularly at smaller IN , the red curve consistently displays the largest peak, with specified

αN and βN values. All of the curves in the figure (d) have sharp peaks at lower xN with

the green curve displaying the maximum density and indicating higher density at lower xN
values.
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3. Neutrosophic Reliability measures

In this section the various reliability related properties including the reliabiltiy fucniton,

hazard rate fucntion (HRF), cumulaitve hazard function, reversed hazard fucntion, odd ratio,

mills ratio and elascity for the NLLD has been derived. The neutrosophic moments are also

discuused in this section.

The survival function of the neutrosophic LL distribution is derived as:

(3.1) R(x) =
1[

1 +
{

(1+IN )xL

αN

}]βN
.

The neutrosophic hazard function for the proposed model is:

(3.2) h(x) =

(
βN
αN

) [
(1+IN )xL

αN

]βN−1[
1 +

{
(1+IN )xL

αN

}βN
] .

The cumulative hazard function of the NLL distribution is obtained as:

(3.3) H(x) = − log

[
1 +

(
(1 + IN )xL

αN

)βN
]
.

The reversed hazard function is derived as:

(3.4) r(x) =

(
βN
αN

)
(1 + IN )[

(1+IN )xL

αN

] [
1 +

{
(1+IN )xL

αN

}βN
] .

The Odd ratio is obtained as given:

(3.5) O(x) =

[
(1 + IN )xL

αN

]βN

.

The Mills ratio of the model is derived as:

(3.6) M(x) =

(
βN
αN

) [
1 +

{
(1+IN )xL

αN

}βN
]

(1 + IN )
[
(1+IN )xL

αN

]βN−1
.

The Elasticity of the NLL distribution is derived as:

(3.7) ϵ(x) =

(
βN
αN

)
xL(1 + IN )[

(1+IN )xL

αN

] [
1 +

{
(1+IN )xL

αN

}βN
] .
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The neutrosophic rth moments for the NLLD is defined as:

µ′
r = E[(1 + IN )Xr] = (1 + IN )rαrB

(
1− r

βN
, 1 +

r

βN

)
.

The rth moment exist when r
βN

< 1 ⇒ r < βN . So, the final expression is:

(3.8) µ′
r = E[(1 + IN )Xr] =

(1 + IN )αr
Nπ

(
r
βN

)
sin

(
πr
βN

) .

Theorem 3.1. Consider the mean of a neutrosophic random variable is defined as

µ′
1 = E[(1 + IN )X]. Substituting r = 1 in eq. (3.8) , the neutrosophic mean for the NLLD is

obtained as:

µ′
r = E[(1 + IN )X].

(3.9) µ′
1 =

(1 + IN )αN

(
π
βN

)
sin

(
π
βN

) .

Theorem 3.2. The formula for the neutrosophic variance is given as:

σ2
N = E[(1 + IN )X2]− [E((1 + IN )X)]2

To find E[(1 + IN )X2], take r = 2 in the rth moment expression as:

µ′
2 = E[(1 + IN )X2] =

(1 + IN )α2
Nπ

(
2
βN

)
sin

(
2π
βN

)
So, the neutrosophic variance is:

σ2
N =

(1 + IN )α2
Nπ

(
2
βN

)
sin

(
2π
βN

) −

(1 + IN )αNπ/βN

sin
(

π
βN

)
2

or equivalenlty,

(3.10) σ2
N = (1 + IN )α2

N

 π
(

2
βN

)
sin

(
2π
βN

) −
(1 + IN )

(
π
βN

)2

sin2
(

π
βN

)
 , β > 2
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4. Neutrosophic entropies

Neutrosophic Entropy is a measure of uncertainty that is frequently used in information

theory to determine exact insights in unclear situations. It is rarely used to get accurate

measurements and parameter estimations. Either there is uncertainty or confusion, or the

value cannot be computed and measured exactly. In this section, we proposed four types

of neutrosophic entropies of the NLL distribution that are neutrosophic Shannon Entropy,

neutrosophic Rényi entropy, neutrosophic Tsallis Entropy and neutrosophic Arimoto Entropy.

4.1. Neutrosophic Shannon Entropy (NSE) of NLL distribution

The NLL distribution’s Shannon entropy is suggested using the neutrosophic concept.

The expression of neutrosophic Shannon entropy is obtained as:

H(xN ) = −
∫ ∞

0
f(xN ) log(f(xN )) dx

or

(4.1) H(XN ) = −

∫ ∞

0

βN
αN

(1 + IN )
(

(1+IN )xL
αN

)β−1

[
1 +

{
(1+IN )xL

αN

}β
]2 log


βN
αN

(1 + IN )
(

(1+IN )xL
αN

)β−1

[
1 +

{
(1+IN )xL

αN

}β
]2

 dx

4.2. Neutrosophic Rényi entropy (NRE) of NLL distribution

The neutrosophic Rényi entropy is derived as:

R(xN ) =
1

1− v
log

[∫ ∞

0
(f(xN ))v dx

]
, v > 0, v ̸= 1

or

(4.2) R(xN ) =
1

1− v
log

∫ ∞

0


βN

αN
(1 + IN )

(
(1+IN )xL

αN

)βN−1

[
1 +

(
(1+IN )xL

αN

)βN
]2


v

dx, v > 0, v ̸= 1
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4.3. Neutrosophic Arimoto entropy (NAE) of NLL distribution

The neutrosophic arimoto entropy is derived as:

A(xN ) =
1

1− v
log

[{∫ ∞

0
(f(xN ))v dx

} 1
v

− 1

]
, v > 0, v ̸= 1

or

(4.3) A(xN ) =
1

1− v
log



∫ ∞

0


βN
αN

(1 + IN )
(

(1+IN )xL
αN

)βN−1

[
1 +

(
(1+IN )xL

αN

)βN
]2


v

dx


1
v

− 1

 , v > 0, v ̸= 1

4.4. Neutrosophic Tsallis entropy (NTE) of NLL distribution

The neutrosophic tsallis entropy is derived as:

T (xN ) =
1

v − 1

[
1−

∫ ∞

0
(f(xN ))v dx

]
, v > 0, v ̸= 1

or

(4.4) T (xN ) =
1

v − 1

1−
∫ ∞

0


βN
αN

(1 + IN )
(

(1+IN )xL
αN

)βN−1

[
1 +

{
(1+IN )xL

αN

}βN
]2


v

dx

 , v > 0, v ̸= 1

5. Parameter estimation

In this section, the maximum likelihood estimation is used to estimate the neutrosophic

parameters for the NLLD and a Monte Carlo simulation study is presented to show the

efficiency of the estimated parameters.

5.1. Maximum likelihood estimation method

Suppose that (1 + IN )XN1, (1 + IN )XN2, . . . , (1 + IN )XNn, be a neutrosophic random

samples of NLL distribution then log-likelihood function is derived as:
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l(αN , βN ) = n log(βN )− n log(αN ) + (βN − 1)
n∑

i=1

log

(
(1 + IN )xL

αN

)

− 2
n∑

i=1

log

[
1 +

(
(1 + IN )xL

αN

)βN
]

(5.1)

To find the values of the parameters, taking derivative of the above expression with respect

to α and β as:

(5.2)
∂l(θ)

∂αN
= − n

αN
− (βN − 1)

n∑
i=1

(
1

αN

)
+ 2

n∑
i=1

βN

(
(1+IN )xL

αN

)βN

αN

[
1 +

(
(1+IN )xL

αN

)βN
] ,

and

(5.3)
∂l(θ)

∂βN
=

n

βN
+

n∑
i=1

log

(
(1 + IN )xL

αN

)
− 2

n∑
i=1

(
(1+IN )xL

αN

)βN

log
(
(1+IN )xL

αN

)
1 +

(
(1+IN )xL

αN

)βN
.

The equations (5.2) and (5.3) are nonlinear and cannot be solved mathematically therefore

RStudio and MATHEMATICA are used to get the estimated values of parameters for simu-

lations and applications.

6. Simulation study

In order to assess the efficiency and performance of the proposed methods, we conduct a

simulation study in this part.The two sub-sections of the simulation study are as follows: the

first one addresses the proposed entropy measures, and the second one evaluates the efficacy

of the Maximum Likelihood Estimation (MLE) technique for estimating the parameters for

the NLLD.

6.1. Simulation study for entropy measures

In this section a simulation study for the proposed entropy measures is performed to

check the efficacy of the proposed measures.

i. The theoretical entropy measures i.e. Shannon, Renyi, Tsallis and Arimoto are com-

puted for selected interval values for the neutrosophic parameters of NLLD.
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ii. We generated the neutrosophic random numbers of from the NLLD by using the quantile

function by taking a sample of size n = 1000 from a size of N = 10, 000.

iii. Then computed the estimates for the parameters α and β in the neutrosophic forms.

iv. And then putting the estimates into the equations (4.1), (4.2), (4.3), and (4.4), the

proposed entropy measures are obtained.

v. This process is repeated 1000 random samples and with different parameters to assess

the efficiency of the proposed measures.

vi. The INαand INβ
are calculated from the given formulas such as:

INα =
αU − αL

αU
and INβ

=
βU − βL

βU

natbib adjustbox

Table 1: Neutrosophic Shannon Entropy

INα, αN βN NSE

0.83, [0.50002, 2.9997]

[5.50853, 7.00636] [-1.0055, 0.5456]
[5.50612, 7.00816] [-1.0051, 0.5453]
[5.50471, 7.00992] [-1.0048, 0.5451]
[5.50614, 7.01071] [-1.0051, 0.5449]
[5.50490, 7.00769] [-1.0049, 0.5454]
[5.50608, 7.00962] [-1.0051, 0.5451]
[5.50864, 7.01162] [-1.0050, 0.5454]
[5.50745, 7.00727] [-1.0053, 0.5454]

INβ , βN αN NSE

0.21, [5.50471, 7.00992]

[0.50002, 2.9997] [-0.5932, 0.9568]
[0.50007, 3.00002] [-0.5931, 0.9569]
[0.50002, 2.99966] [-0.5932, 0.9567]
[0.50002, 3.00034] [-0.5932, 0.9569]
[0.50006, 3.00053] [-0.5931, 0.9569]
[0.50006, 3.00042] [-0.5932, 0.9569]
[0.50007, 2.99966] [-0.5931, 0.9567]
[0.49993, 3.00080] [-0.5934, 0.9570]
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Table 2: Neutrosophic Renyi, Tsallis and Arimoto entropies for ν = 0.5

INα, αN βN NRE NTE NAE

0.83, [0.50002, 2.9997]

[5.50853, 7.00636] [-0.8396, 0.7007] [-0.5431, 1.1143] [-0.4693, 1.4247]
[5.50612, 7.00816] [-0.8392, 0.7005] [-0.5427, 1.1139] [-0.4691, 1.4240]
[5.50471, 7.00992] [-0.8389, 0.7002] [-0.5425, 1.1134] [-0.4689, 1.4233]
[5.50614, 7.01071] [-0.8392, 0.7001] [-0.5427, 1.1132] [-0.4691, 1.4230]
[5.50490, 7.00769] [-0.8389, 0.7005] [-0.5425, 1.1140] [-0.4689, 1.4242]
[5.50608, 7.00962] [-0.8391, 0.7002] [-0.5427, 1.1135] [-0.4691, 1.4235]
[5.50864, 7.01162] [-0.8396, 0.7000] [-0.5431, 1.1130] [-0.4693, 1.4227]
[5.50745, 7.00727] [-0.8394, 0.7006] [-0.5429, 1.1141] [-0.4692, 1.4244]

INβ , βN αN NRE NTE NAE

0.21, [5.50471, 7.00992]

[0.50002, 2.9997] [-0.4273, 1.1119] [-0.2094, 1.8251] [-0.1985, 2.6578]
[0.50007, 3.00002] [-0.4272, 1.1119] [-0.2093, 1.8251] [-0.1984, 2.6578]
[0.50002, 2.99966] [-0.4273, 1.1118] [-0.2094, 1.8249] [-0.1985, 2.6574]
[0.50002, 3.00034] [-0.4273, 1.1120] [-0.2094, 1.8253] [-0.1985, 2.6578]
[0.50006, 3.00053] [-0.4273, 1.1121] [-0.2094, 1.8254] [-0.1984, 2.6585]
[0.50002, 3.00042] [-0.4273, 1.1121] [-0.2094, 1.8254] [-0.1985, 2.6583]
[0.50007, 2.99966] [-0.4273, 1.1118] [-0.2093, 1.8249] [-0.1984, 2.6574]
[0.49993, 3.00080] [-0.4275, 1.1122] [-0.2096, 1.8256] [-0.1986, 2.6588]
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Figure 2: Plot of NSE for LLD.

Figure 3: Plot of NRE for LLD.
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Figure 4: Plot of NTE for LLD.

Figure 5: Plot of NAE for LLD.
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Table 3: Classical Shannon Entropy (Shannon entropy for classical Lind-
ley)

α β SE

0.10006

2.00279 -0.99653

2.00181 -0.99604

2.00256 -0.99644

2.00270 -0.99648

2.00284 -0.99653

2.00129 -0.99578

2.00262 -0.99641

2.00357 -0.99692

2.00256

0.10002 -0.99681

0.09999 -0.99711

0.10006 -0.99641

0.10004 -0.99651

0.10004 -0.99661

0.10004 -0.99631

0.10002 -0.99651

0.10007 -0.99631

Table 4: Classical Renyi, Tsallis and Arimoto entropies (Renyi, Tsallis
and Arimoto for classical Lindley) for ν = 0.5

α β RE TE AE

0.10006

2.00279 -0.01611 -0.01604 -0.01598

2.00181 -0.01485 -0.01479 -0.01474

2.00256 -0.01581 -0.01575 -0.01569

2.00270 -0.01599 -0.01593 -0.01586

2.00284 -0.01617 -0.01610 -0.01604

2.00129 -0.01418 -0.01413 -0.01408

2.00159 -0.01582 -0.01576 -0.01570

2.00357 -0.01710 -0.01703 -0.01696

2.00256

0.10000 -0.99681 -0.01615 -0.01607

0.09999 -0.99711 -0.01644 -0.01637

0.10006 -0.99641 -0.01585 -0.01578

0.10004 -0.99651 -0.01611 -0.01605

0.10004 -0.99661 -0.01611 -0.01607

0.10004 -0.99631 -0.01598 -0.01597

0.10002 -0.99651 -0.01614 -0.01608

0.10007 -0.99631 -0.01615 -0.01609

In the Table 1 firstly for fixed value of αN and IN is calculated by αN but varying

the values of βN , the NSE values are estimated, secondly for fixed values of βN ,and IN is
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calculated by βN , but varying the values of αN , the NSE values are estimated. A similar

trend is shown in the table to estimate the values of NTE, NRE and NAE. Rather in Tables

3-4, the same trend follows but taking IN = 0 which means the resultant entropy are not

neutrosophic.

From Tables 1-2 it is observed that for the interval values of parameters the entropies are

also observed in intervals. The following pattern from Tables 1-2 is seen: as β increase NSE,

NRE, NAE and NTE are decreases and as α the NSE, NRE, NAE and NTE are increases.

Moreover, it is also observed as ν is from 0.5 to 0.7 the NRE, NTE and NAE are decreasing.

While from Tables 3-4 it are observed that the entropies are without interval because it is

simulated from the classical LLD. But in in case of interval data or ambiguous data the

entropies should also be in interval form. Therefore, use of neutrosophic entropies is logical

in ambiguous data sets. As a more flexible and accurate measure of disorder or uncertainty,

neutrosophic entropies are better than classical distribution entropies because they take into

consideration the indeterminacy and uncertainty in the data. What traditional entropies

cannot manage, they successfully capture ambiguous or partial information. Since there is

ambiguity and partial truth in real-world datasets, this makes them more appropriate. In

graphical representation, Figures 2-5 provide upper and lower bounds that are consistent for

all indices, and they depict several neutrosophic entropy measures (Shannon, Tsallis, Renyi,

and Arimoto) for different indices. This consistency shows that these entropy measures

reflect data uncertainty well and with little variance. The flexibility of neutrosophic models

in handling data ambiguity is demonstrated by the stability of both boundaries across varying

entropies.

6.2. Simulation study for MLE

The performance of the estimated parameters for the NLLD is evaluated by a Monte

Carlo simulation study carried out in this section. By employing the neutrosophic root

mean square error and the neutrosophic average biased, the performance of the neutrosophic

maximum likelihood estimator is obtained. The mathematical expressions of the neutrosophic

average bias and neutrosophic root mean square are:

ABN =
1

N

N∑
i=1

∣∣∣θ̂Ni − θN

∣∣∣ ,

RMSEN =
1

N

N∑
i=1

(
θ̂Ni − θN

)2
,

and

MRE =
1

N

N∑
i=1

∣∣∣∣∣ θ̂Ni − θN
θN

∣∣∣∣∣
2

.

With the R language software, a Monte Carlo simulation is run with different sample sizes

while keeping the neutrosophic parameters constant at α = [0.1, 0.5] and β = [0.1, 0.5]. An
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uncertain dataset with interval values of parameters is constructed using the NLL distribu-

tion. The simulation is repeated N = 10,000 times with sample sizes of n = 50, 100, 300,

and 500, respectively. Next, a computation is made, and Tables 5-7 display the results of the

neutrosophic maximum likelihood estimators’ performance. In Table 5-6, INα is calculated

from αN , and INβ
is calculated from βN . While in Table 7, IN is set as 0.

Table 5: Parameter’s Bias, Average Bias, Mean Standard Error (MSE),
and Mean Relative Error (MRE) for INα with αN = [0.1, 0.5],
βN = [1.0, 1.5], and INα = 0.88 calculated from αN .

Sizes MLE Estimates INα, αN = 0.88, [0.1, 0.5] βN = [1.0, 1.5]

50

Bias [0.1025, 0.5067] [1.0260, 1.5383]

Average Bias [0.0198, 0.0663] [0.0986, 0.1492]

MSE [0.0007, 0.0070] [0.0163, 0.0363]

MRE [0.1981, 0.1326] [0.0986, 0.0994]

100

Bias [0.1017, 0.5020] [1.0114, 1.5190]

Average Bias [0.0141, 0.0463] [0.0679, 0.1027]

MSE [0.0003, 0.0034] [0.0074, 0.0169]

MRE [0.1405, 0.0926] [0.0679, 0.0685]

300

Bias [0.1004, 0.5006] [1.0049, 1.5063]

Average Bias [0.0079, 0.0267] [0.0383, 0.0589]

MSE [0.0001, 0.0011] [0.0023, 0.0054]

MRE [0.0792, 0.0534] [0.0383, 0.0393]

500

Bias [0.1002, 0.5003] [1.0029, 1.5032]

Average Bias [0.0062, 0.0204] [0.0300, 0.0454]

MSE [0.0001, 0.0007] [0.0014, 0.0033]

MRE [0.0619, 0.0409] [0.0300, 0.0303]
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Table 6: Parameter’s Bias, Average Bias, Mean Standard Error (MSE),
and Mean Relative Error (MRE) for αN = [0.1, 0.5], βN =
[1.0, 1.5] and INβ = 0.33 calculated from βN .

Sizes MLE Estimates αN = [0.1, 0.5] INβ, βN = 0.33, [1.0, 1.5]

50

Bias [0.1030, 0.5074] [1.0263, 1.5413]

Average Bias [0.0200, 0.0656] [0.1000, 0.1473]

MSE [0.0007, 0.0069] [0.0166, 0.0356]

MRE [0.2001, 0.1311] [0.1000, 0.0982]

100

Bias [0.1013, 0.5029] [1.0131, 1.5187]

Average Bias [0.0139, 0.0465] [0.0691, 0.1018]

MSE [0.0003, 0.0034] [0.0077, 0.0166]

MRE [0.1393, 0.0931] [0.0691, 0.0679]

300

Bias [0.1005, 0.5000] [1.0045, 1.5060]

Average Bias [0.0080, 0.0266] [0.0383, 0.0591]

MSE [0.0001, 0.0011] [0.0023, 0.0055]

MRE [0.0797, 0.0532] [0.0383, 0.0394]

500

Bias [0.1002, 0.5005] [1.0027, 1.5041]

Average Bias [0.0062, 0.0205] [0.0298, 0.0455]

MSE [0.0001, 0.0007] [0.0014, 0.0033]

MRE [0.0620, 0.0409] [0.0298, 0.0303]

Table 7: Classical Parameter’s Bias, Average Bias, Mean Standard Error
(MSE), and Mean Relative Error (MRE) for αN = [0.1, 0.5],
βN = [1.0, 1.5], and IN = 0.

Sizes MLE Estimates α = 0.1 β = 1.0

50

Bias 0.1029 1.0227

Average Bias 0.0201 0.0985

MSE 0.0007 0.0160

MRE 0.2013 0.0985

100

Bias 0.1016 1.0118

Average Bias 0.0140 0.0676

MSE 0.0003 0.0074

MRE 0.1401 0.0676

300

Bias 0.1006 1.0041

Average Bias 0.0081 0.0390

MSE 0.0001 0.0024

MRE 0.0807 0.0390

500

Bias 0.1003 1.0027

Average Bias 0.0063 0.0300

MSE 0.0001 0.0014

MRE 0.0625 0.0300
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From Tables 5-6, it is observed that the resultant measures such as bias, average bias,

MSE and MRE are also in the interval form due to neutrosophic parameters while in table

the indeterminant factor IN is obtained from α and in Table 6 this factor is obtained from β.

It is also observed that as sample size increases the bias, MSE and MRE for parameters are

reducing. From 7 demonstrates that the results are consistent with classical statistical mea-

sures and decrease in error with increasing sample size when the indeterminacy factor IN = 0

indicates that there is no ambiguity in the data. This emphasizes that neutrosophic measure-

ments are not seen when there is no uncertainty. Nonetheless, this emphasizes how crucial

neutrosophic modeling is for datasets that are inherently uncertain, since it can handle un-

certainty more skillfully and produce estimates that are more trustworthy. When uncertainty

exists, neutrosophic technique is essential since it provides a notable benefit over conventional

methods.

7. Applications

This section uses a practical application based on three real-world datasets to quantify

interest in the NLL distribution when the data contains complicated or uncertain values.

To determine which model is optimal, a few model selection techniques are employed to

evaluate the suggested distribution’s performance and contrast it with rival distributions.

Presented below are the three datasets. Some model selection criteria, including the Consis-

tent Akaike Information Criterion (CAIC), the Hannan-Quinn Information Criterion (HQIC),

the Bayesian Information Criterion (BIC), and the Akaike Information Criterion (AIC). The

lowest value is regarded as the best for each of these criteria. Additionally, the KS-test is

employed.

It is important to clear that all three datasets are in neutrosophic form available on the

referenced sources. In this research while modeling the densities for all the three datasets we

used the lower values and upper values are not used rather upper values are calculated by

applying the indeterminant factor (IN ) into it.

Covid-19 dataset: Dataset 1 shows a 30-day COVID-19 data from the Netherlands that was

recorded between March 31, 2020, and April 30, 2020. The data consist of rough mortality

rate taken from ?.

[14.918, 15.66390] [10.056, 11.18880] [12.274, 12.88770] [10.289, 10.80345] [10.832, 11.37360]
[7.099, 7.45395] [5.928, 6.22440] [13.211, 13.87155] [7.968, 8.36640] [7.584, 7.96320]
[5.555, 5.83275] [6.027, 6.32835] [4.097, 4.30185] [3.611, 3.79155] [4.960, 5.20800]
[5.048, 5.30040] [2.857, 2.99985] [6.940, 7.28700] [5.307, 5.57235] [5.431, 5.70255]
[4.462, 4.68510] [3.883, 4.07715] [3.461, 3.63405] [3.647, 3.82935] [1.974, 2.07270]
[1.273, 1.33665] [1.416, 1.48680] [4.235, 4.44675]

Alloy melting dataset: Dataset 2 represents the measurements of alloy melting points that

are taken from Kacprzyk et al. (2018).

Batteries lifetime dataset: The third dataset concerns the batteries lifetime taken from

Aslam (2020). Below is the lifetime of 23 batteries in 100h.
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[563.3, 545.5] [529.4, 511.6] [523.1, 503.5] [470.1, 449.2] [506.7, 489.0]

[495.6, 479.1] [495.3, 467.9] [520.9, 495.6] [496.9, 472.8] [542.9, 519.1]

[505.4, 484.0] [550.7, 525.9] [517.7, 500.9] [499.2, 483.0] [500.6, 480.0]

[516.8, 499.6] [535.0, 515.1] [489.3, 464.4]

[2.9, 3.99] [12.65, 17.4] [17.4, 23.93] [26.07, 35.84]

[5.24, 7.2] [13.24, 18.21] [17.8, 24.48] [30.29, 41.65]

[6.56, 9.02] [13.67, 18.79] [19.01, 26.14] [43.97, 60.46]

[7.14, 9.82] [13.88, 19.09] [19.34, 26.59] [48.09, 66.13]

[11.6, 15.96] [15.64, 21.51] [23.13, 31.81] [73.48, 98.04]

[12.14, 16.69] [17.05, 23.45] [23.34, 32.09]

Table 8: Neutrosophic statistics of datasets by using the proposed distri-
bution for IN = 0.05.

Descriptives COVID-19 Alloy Melting Lifetime Batteries

Mean [6.5389, 6.8659] [6.95e-06, 6.66e-05] [21.2216, 29.1340]

Variance [32.2161, 36.3698] [264269.6, 243959.7] [542.8737, 1009.091]

Median [5.3231, 5.5962] [512.9543, 492.6982] [16.3864, 22.5306]

Lower Quartile [3.6385, 3.8186] [498.6709, 478.0587] [10.7213, 14.7589]

Upper Quartile [7.7876, 8.2011] [527.6469, 507.7860] [25.0450, 34.3947]

Skewness [11.2136, 9.3485] [1.0033, 1.1311] [6.2431, 2.4635]

Kurtosis [612.0019, 582.1537] [-1.9912, -1.9900] [116.4486, 68.9212]

7.1. Discussion

Table 8 represents the descriptive measures for the three data sets. The average time

by mean and median are described in the interval form. Such as the average mortality rate for

the COVID-19 data is between the interval [6.5389, 6.8659] by using mean or [5.3231, 5.5962]

by using the median. The variance is also lying in the interval. Lower quartile shows that

25% of the patients has equal to or less than the mortality rate between the interval [3.6385,

3.8186] and 75% has equal to or less than the mortality rate between the interval [7.7876,

8.2011]. The interval values of skewness and kurtosis show that the COVID-19 data is heavily

positively skewed and leptokurtic. Similarly, the descriptions can be explained from the alloy

melting and lifetime of batteries data sets. The average alloy melting point lies between

the interval [6.96× 10−6, 6.66× 10−5] or [512.9543, 492.6982] by using the mean or median,

respectively. The alloy melting point data is slightly positively skewed and platykurtic. The

average lifetime of batteries between the interval [21.2216, 29.1340] or [16.3864, 22.5306] by

using the mean or median, respectively. 25% of the batteries have lifetime less than or equal

to between the interval [10.7213, 14.7589] and 75% have less than or equal to between the

interval [25.0450, 34.3947]. Lifetime of batteries data is positively skewed and leptokurtic.

From these findings it is clear that when the data is not clear and has uncertainty between the

values then the resultant measures should also be in the uncertain forms as lying between the

two ranges or bounds which can only be modeled by the neutrosophic probability distributions

unlike classical probability distribution. Table 9 shows the estimated parameters from the

three data sets. Tables 10-12 demonstrate the modeling of the NLL distribution on the

three data sets mortality rate of COVID-19, alloy melting point, and lifetime of batteries
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respectively. The proposed NLLD is not only fulfilling the goodness fit criteria but also

showing more compatibility and flexibility over the other neutrosophic distribution. From

Table 9 it is seen that NLLD shows lesser values of goodness of fit and higher P-values than

the other competitive model which shows that it performs better fit than the neutrosophic

Burr-III distribution. From Table 11, even the proposed distribution fulfills the goodness of

fit criteria for the alloy melting point data, but the neutrosophic Burr-III distribution does

not provide good fit criteria which shows the applicability of the NLLD in such data sets.

From Table 12, the NLLD is more compatible over the others. It is also seen that classical

Burr-XII does not show the goodness of fit for all three neutrosophic data sets due to the

reason that classical probability distributions are not appropriate to model the neutrosophic

data sets.

8. Conclusion

A novel neutrosophic Log Logistic distribution is proposed in this research article due

to its wide applications in the lifetime datasets. The classical LLD is widely used in survival

analysis, economic, wealth and networking datasets but in many realistic scenarios the true

and exact value for the observation is not possible to record and, in such cases, modeling

classical LLD is not appropriate. Rao (2023) introduced the NLLD to handle the situations

when the dataset is ambiguous between the two interval values. In many cases when the

dataset is ambiguous, and the values are not lying between the two bounds/intervals rather

the values or recorded observation has indeterminacy of appearing with lower bound only and

upper bound is unknow. For example, if the room temperature is recorded in a way that the

observations fluctuate, and it is recorded as 300C or more then lower bound is certain, but

uncertainty or indeterminacy is with the upper bound. To handle such type of indeterminant

dataset, the NLLD is proposed with various of its neutrosophic properties, neutrosophic

reliability measures, neutrosophic moments, neutrosophic entropies with simulation study are

presented in the article. The neutrosophic parameters of the proposed density are estimated

by MLE and to assess the performance a simulation study is conducted with the results that

as sample size increases the bias, MSE and MRE are reducing. Finally, the proposed NLLD is

modeled on three lifetime datasets mortality rate of COVID-19 in Netherland, alloy melting

point, and lifetime of batteries. NLLD is more flexible and optimal than the neutrosophic

Burr-III distribution. It is also seen that the classical Burr-XII distribution depicts very low

p value for KS test and illustrates that modeling of classical probability distributions are not

appropriate for the neutrosophic datasets.
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