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1. INTRODUCTION

In the conventional theory of survey sampling, it is presumed during the data collection

that the observed value is the actual value of the data; but in practise, these assumptions

are not met, and the observed value of the data fluctuates with the measurement errors. The

reader is referred to Murthy, 1967 and Cochran, 1968 for the thorough study of measurement

errors. The discrepancy between the variable’s true and observed values is known as the mea-

surement error which is arises due to the faulty instrument, faulty experimental techniques,

interviewers, participants, and data interpreters used. The effects of measurement error mix-

ing with data on the statistical characteristics of the estimates of parameter are typically

not covered in books. The effects of measurement error in linear and nonlinear regression

modelling have been covered by Cheng and Van Ness, 1999 and Carroll et al., 2006 in their

books, but not in the context of sample surveys. Shalabh, 1997 examined the impact of

measurement errors on the ratio estimators. Later on, the impact of the measurement errors

was examined by several authors by proposing various improved and modified estimators for

the parameters of interest. Manisha and Singh, 2000 investigated a class of estimators of

population mean under measurement errors. Sahoo et al., 2006 proposed the regression and

ratio estimators under the case of measurement errors. Singh and Karpe, 2009 introduced

the estimation procedure of the ratio and product of two population means utilizing auxiliary

information in the presence of measurement errors. Tariq et al., 2021 proposed the variance

estimators in the presence of measurement errors utilizing auxiliary information, while, Tariq

et al., 2022 developed a generalized variance estimator utilizing auxiliary information in the

presence and absence of measurement errors. Bhushan et al., 2023b suggested novel logarith-

mic type estimators in the case of measurement errors.

All these authors assumed that the measurement errors in the study and auxiliary variables

are independent, but assuming measurement errors in both study and auxiliary variables may

be inadequate because the same surveyor collects the data on both the variables. As a result,

they will be correlated and dependent, and the underlying comportment of the data may be

accountable for this dependability in the measurement errors. Shalabh and Tsai, 2017 was

the pioneer who developed the concept of correlated measurement errors. They examined the

effect of correlated measurement errors over the efficiency of the traditional ratio and product

estimators of population mean. Bhushan et al., 2023d evaluated the performance of the novel

logarithmic estimators under correlated measurement errors, while, Bhushan et al., 2023c

developed some classes of robust estimators to assess the effect of correlated measurement

errors. Kumar et al., 2023 studied the impact of correlated measurement errors utilizing some

efficient classes of estimators.

McIntyre, 1952 developed the concept of ranked set sampling to efficiently estimate the pro-

duction of the mean pasture. It has been proved an efficient alternative of the simple random

sampling. It can be used where the ranking of the observations is much easier than obtaining

their exact values. These situations frequently occur in the fields of medicine, forestry, envi-

ronmental monitoring, reliability estimation, etc. Halls and Dell, 1966 investigated the RSS

for forage yields. Chen et al., 2007 developed improved procedures for disease prevalence

estimation under RSS. Das et al., 2018 introduced the Bayesian estimation of measles vacci-

nation coverage under RSS. Zamanzade, 2019 developed EDF-based tests of exponentiality
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under pair RSS. Zamanzade et al., 2020 suggested an efficient estimation of cumulative dis-

tribution function utilizing moving extreme RSS with application to reliability. Apart from

this, the ranked set sampling has also been applied to almost all statistical problems including

estimation of the population mean, population variance, population proportion, cumulative

distribution function, statistical quality control, etc. Al-Omari and Bouza, 2014 proposed

ratio estimators of population mean with missing values under RSS. Alam et al., 2022 pro-

posed estimation of population variance under RSS utilizing ratio of auxiliary information

with study variable. Al-Omari and Haq, 2012 suggested improved quality control charts for

monitoring the process mean under double RSS. Ahmed et al., 2019 suggested predictive

estimation of population mean under RSS.

In various decision making problems, a complete structure of the data must be required to

draw the valid and effective conclusions. But situations may arise when the structure of the

data are incomplete and if the conclusion is drawn it will be invalid and inherently affect the

statistical properties such as unbiasedness and efficiency. Imputation is a well-known tech-

nique to dealt with the missing data. There are several imputation methods that have been

proposed by different authors for the estimation of the parameter of interests. Lee et al., 1994

suggested variance estimation in survey sampling with imputed values. Heitjan and Basu,

1996 discriminated between ‘missing at random’ and ‘missing completely at random’ ap-

proaches. Bhushan and Pandey, 2018 examined optimality of ratio type estimation methods

for population mean in presence of missing data. Yadav and Prasad, 2023 suggested expo-

nential methods of estimation under robust regression quantile regression methods. Bhushan

et al., 2022 developed the estimation of population mean in presence of missing data under

simple random sampling. But no work is available to dealt with issue of missing data pro-

vided the data are tainted with the correlated measurement errors.

In this study, we have three objectives. The first objective is to construct the fundamen-

tal theory under missing completely at random for the ranked set sampling in the case of

missing data provided the data are tainted with the correlated measurement errors. The sec-

ond objective is to adapt imputations such as the usual mean, ratio, logarithmic imputation

methods and to propose Searls type logarithmic imputation methods for estimating the pop-

ulation mean without altering the initial responses while imputing the missing values. The

third objective is to study the effect of the correlated measurement errors on the performance

of the adapted and suggested imputation methods.

In Section 2, we develop the theory and terminology considered throughout this article.

In Section 3, we adapt some fundamental imputations such as mean, ratio, and logarithmic

imputation methods. In Section 4, we suggest Searls type logarithmic imputation methods

and their properties to estimate the population mean as well as to evaluate the impact of

the correlated measurement errors under ranked set sampling. In Section 5, we establish the

efficiency comparison to study the performance of theimputation methods. Section 6 presents

a thorough simulation and the key notes of the simulation results, while the application of

the adapted and proposed methods is presented in Section 7. The conclusion is presented in

Section 8.



4 Shashi Bhushan and Anoop Kumar

2. Methodology and notation

The methodology and notations are described under following subsections.

2.1. Methodology

Correlated measurement errors represent systematic biases or inaccuracies in measure-

ments that consistently occur throughout multiple data points or observations. These errors

may stem from different sources, namely, instrumental bias, environmental conditions, ob-

server bias, sampling bias, or data processing errors. These errors may occur in different

real-life situations across different fields. Some related examples are discussed below:

• In medical diagnosis, the correlated measurement errors may occur when several di-

agnostic tests for the same condition produce consistent but inaccurate results. For

example, if multiple blood tests for a certain disease consistently produce higher or

lower values due to a systematic error in the testing equipment or procedure, it may

lead to correlated measurement errors across patients.

• The correlated measurement errors may arise in climate data collection when multi-

ple weather stations in a region are affected by the same environmental factors, like

urban heat islands or nearby industrial activities. If these factors systematically bias

temperature or precipitation measurements across stations, it can lead to correlated

measurement errors in the recorded climate data.

• In financial reporting, the correlated measurement errors may occur when companies

within the same industry adopt similar accounting practices or face similar economic

challenges. For instance, if multiple companies overstate their revenues due to aggres-

sive revenue recognition policies during economic downturns, it can lead to correlated

measurement errors in financial statements across the industry.

• In educational testing, the correlated measurement errors may arise when students

from similar socio-economic backgrounds or educational backgrounds perform consis-

tently better or worse on standardized tests due to factors unrelated to their actual

knowledge or abilities. For example, if students from affluent neighborhoods receive

better preparation or resources for standardized tests compared to students from dis-

advantaged communities, it can lead to correlated errors in test scores across schools

or districts.

• The correlated measurement errors may occur in market research surveys when respon-

dents from the same demographic group or geographic region provide systematically

biased responses due to shared cultural norms or experiences. For example, if respon-

dents from a particular age group tend to overestimate their willingness to purchase a

certain product due to social pressure or peer influence, it can lead to correlated errors

in market research data across surveys.
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2.2. Notation

In the standard ranked set sampling, one initially defines a set size H. Then, H2

sample units are randomly selected from the population and separated into H sets, each

having size H. The units in each set are given to judgment ranking without getting real

measurements. The ith judgement order statistic is selected from the ith (i = 1, 2, ...,H) set,

and the remaining unquantified units are replaced to the population. This develops a cycle of

ranked set sampling. The complete cycle may be replicated K times to obtain a ranked set

sample of size n = HK. The ith judgement order statistic for the lth cycle is X[i]l. The ranking

procedure may contain some errors, which is shown by the usage of square brackets, whereas

the square brackets are changed to round brackets if the rankings are perfect. As compared

to SRS of equivalent size, the RSS frequently results in more effective inference. This is due

to the fact that a ranked set sample includes information from both the preliminary rankings

and the quantified observations in addition to the information provided by the observations

themselves.

Suppose that the true measurements on jth unit of the study and auxiliary variables are Xj

and Yj , respectively. Although true measurements on these units cannot be obtained due to

some reasons, they may still be measured as xj and yj using the ME vj and uj for the jth

unit of the corresponding variables. Let xj = Xj + vj and yj = Yj + uj , where j = 1, 2, ..., n.

Let (ȳ, x̄) be the sample means, (µy, µx) be the population means, (σ2
y , σ

2
x) be the population

variances, (Cy, Cx) be the population coefficients of variation of variables (y, x), respectively,

and ρxy be the coefficient of correlation between variables x and y. The MEs (uj , vj) are

also unobservable having means of (0, 0), variances (σ2
u, σ2

v), the population coefficients of

variation (Cu, Cv), and cor relation coefficient of ρuv.

Let the number of responding units be H1 = HP out of the drawn H units where P is the

probability that ith respondent follow the group of the responding units gr and (1−P ) be the

probability that ith respondent follow the non-responding group ḡr provided that s = gr ∪ ḡr.
Let r = HKP be the responding units out of sampled n units such that n > r. The value

Yi, i ∈ gr is observable for each unit, except for the units i ∈ r̄u the values are missing and

require imputation to construct the full structure of the data to make a correct conclusion.

The known auxiliary variable population data assist to execute the imputation of missing Y

values. Suppose x̄r,rss =
∑H1

i=1

∑K
l=1 x(i:i)l/HKP and ȳr,rss =

∑H1
i=1

∑K
l=1 y[i:i]l/HKP are the

traditional estimators of µx and µy, respectively, such that x(i:i)j and y[i:i]l are the ith order

statistics and ith judgement order in the ith sample of size H in the cycle l for variables X

and Y , respectively. For easiness, we have denoted (x(i:i)l, y[i:i]l) by (x(i), y[i]), respectively.

To determine the mean square error (MSE) of the proposed estimators under MEs, we use

the following notations: ȳr,rss = µy(1 + δ0), x̄r,rss = µx(1 + δ1), and x̄n,rss = µx(1 + δ2)

provided that E(δ0) = E(δ1) = E(δ2) = 0 and

E(δ2
0) = (∝∗ C2

y −W 2∗
y + ∝∗ C2

u −W 2∗
u ) = V ∗02,

E(δ2
1) = (∝∗ C2

x −W 2∗
x + ∝∗ C2

v −W 2∗
v ) = V ∗20,

E(δ2
2) = (∝ C2

x −W 2
x+ ∝ C2

v −W 2
v ) = V20,

E(δ0δ1) = (∝∗ ρxyCxCy −W ∗xy+ ∝∗ ρuvCuCv −W ∗uv) = V ∗11,

E(δ0δ2) = (∝ ρxyCxCy −Wxy+ ∝ ρuvCuCv −Wuv) = V11,

E(δ1δ2) = E(δ2
2) = (∝ C2

x −W 2
x+ ∝ C2

v −W 2
v ) = V20,
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where ∝= 1/HK, ∝∗= 1/HKP , Cx = Sx/µx, Cv = Sv/µx, Cy = Sy/µy, Cu = Su/µy, W
2
x =∑H

i=1(µx
(i)
− µx)2/H2Kµ2

x, W 2∗
x =

∑H
i=1(µx

(i)
− µx)2/H2KPµ2

x, W 2∗
y =

∑H
i=1(µy

[i]
−

µy)
2/H2KPµ2

y, Wxy =
∑H

i=1(µx
(i)
−µx)(µy

[i]
−µy)/H2Kµxµy, W

∗
xy =

∑H
i=1(µx

(i)
−µx)(µy

[i]
−

µy)/H
2KPµxµy, W

2
u =

∑H
i=1(µu

[i]
−µu)2/H2Kµ2

y, W
2∗
u =

∑H
i=1(µu

[i]
−µu)2/H2KPµ2

y, W
2
v =∑H

i=1(µv
(i)
− µv)

2/H2Kµ2
x, W 2∗

v =
∑H

i=1(µv
(i)
− µv)

2/H2KPµ2
x, Wuv[i] =

∑H
i=1(µu

[i]
−

µy)(µx
(i)
−µv)/H2Kµuµv, W ∗uv =

∑H
i=1(µu

[i]
−µy)(µx

(i)
−µv)/H2KPµuµv, µx

(i)
= E(x(i)),

and µy
[i]

= E(y[i]).

The above results can be easily extended from Al-Omari and Bouza (2014).

3. Adapted imputation methods

This part adapts some basic imputations to dealt with the missing data problems when

the data are tainted with the correlated measurement errors.

3.1. Mean imputation method

We propose mean imputation of the population mean by extending the results of Lee

et al., 1994, for single value imputation, when y values of the ith sample unit under ranked set

sampling is missing and requires imputation. The techniques of imputation for population

mean are given as

y.im =

{
y[i] for i ∈ gr
ȳr,rss for i ∈ ḡr

The resultant estimator is given by

tm = ȳr,rss

The variance of the estimator tm is given by

V ar(tm) = µ2
yV
∗

02(3.1)

Considering the additional auxiliary information into account, the imputation methods are

categorized as

Strategy I: If µx is available and x̄n,rss is utilized.

Strategy II: If µx is available and x̄r,rss is utilized.

Strategy III: If µx is unavailable and x̄n,rss, x̄r,rss are utilized.

3.2. Traditional ratio imputation methods

Motivated by Ahmed et al., 2006 and Shalabh and Tsai, 2017, the classical ratio im-

putation methods in presence of correlated measurement errors under RSS are given as
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Strategy I

y.ir1 =

{
y[i] for i ∈ gr

1
n−r

[
nȳr,rss

µx
x̄n,rss

− rȳr,rss
]

for i ∈ ḡr

Strategy II

y.ir2 =

{
y[i] for i ∈ gr

1
n−r

[
nȳr,rss

µx
x̄r,rss

− rȳr,rss
]

for i ∈ ḡr

Strategy III

y.ir3 =

{
y[i] for i ∈ gr

1
n−r

[
nȳr,rss

x̄n,rss

x̄r,rss
− rȳr,rss

]
for i ∈ ḡr

The resulting estimators under the above strategies will be given by

tr1 = ȳr,rss
µx

x̄n,rss

tr2 = ȳr,rss
µx
x̄r,rss

tr3 = ȳr,rss
x̄n,rss
x̄r,rss

The MSE equations of the above resultant estimators are given by

MSE(tr1) = µ2
y(V

∗
02 + V20 − 2V11)(3.2)

MSE(tr2) = µ2
y(V

∗
02 + V ∗20 − 2V ∗11)(3.3)

MSE(tr3) = µ2
y{V ∗02 + (V ∗20 − V20)− 2(V ∗11 − V11)}(3.4)

3.3. Traditional logarithmic imputation methods

Following Bhushan et al., 2022 and Bhushan et al., 2023a, the traditional logarithmic

imputation methods in the case of correlated measurement errors under RSS are as follows:

Strategy I

y.il1 =

y[i] for i ∈ gr
1

n−r

{
nȳr,rss

{
1 + log

(
x̄n,rss

µx

)}Λ1

− rȳr,rss
}

for i ∈ ḡr

Strategy II

y.il2 =

y[i] for i ∈ gr
1

n−r

{
nȳr,rss

{
1 + log

(
x̄r,rss
µx

)}Λ2

− rȳr,rss
}

for i ∈ ḡr

Strategy III

y.il3 =

y[i] for i ∈ gr
1

n−r

{
nȳr,rss

{
1 + log

(
x̄r,rss
x̄n,rss

)}Λ3

− rȳr,rss
}

for i ∈ ḡr
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The resulting estimators under the above strategies will be given by

tl1 = ȳr,rss

{
1 + log

(
x̄n,rss
µx

)}Λ1

tl2 = ȳr,rss

{
1 + log

(
x̄r,rss
µx

)}Λ2

tl3 = ȳr,rss

{
1 + log

(
x̄r,rss
x̄n,rss

)}Λ3

where Λ1, Λ2, and Λ3 are duly selected scalars.

The minimum mean square error of the resultant logarithmic estimators tg1 , tg2 , and tg3 at the

optimum values of Λ1(opt) = V11/V20, Λ2(opt) = V ∗11/V
∗

20, and Λ3(opt) = (V ∗11−V11)/(V ∗20−V20),

respectively, is expressed by

min.MSE(tl1) = µ2
y

(
V ∗02 −

V 2
11

V20

)
(3.5)

min.MSE(tl2) = µ2
y

(
V ∗02 −

V ∗
2

11

V ∗20

)
(3.6)

min.MSE(tl3) = µ2
y

{
V ∗02 −

(V ∗11 − V11)2

(V ∗20 − V20)

}
(3.7)

4. Suggested imputation methods

The survey researchers are always intended to improve the efficiency of their proposed

estimators. Searls, 1964 proposed in his noteworthy research that multiplying a tuning pa-

rameter in the estimator, improves its efficiency. Taking Searls proposal into consideration,

we multiplied a tuning parameter in the traditional logarithmic imputation methods and de-

veloped Searls type logarithmic imputation methods for the estimation of population mean

in the presence of missing data when the data are tainted with the correlated measurement

errors. The developed imputation methods are as follows:

Strategy I

y.isl1 =

y[i] for i ∈ gr
1

n−r

{
nΨ1ȳr,rss

{
1 + log

(
x̄n,rss

µx

)}Λ1

− rȳr,rss
}

for i ∈ ḡr

Strategy II

y.isl2 =

y[i] for i ∈ gr
1

n−r

{
nΨ2ȳr,rss

{
1 + log

(
x̄r,rss
µx

)}Λ2

− rȳr,rss
}

for i ∈ ḡr

Strategy III

y.isl3 =

y[i] for i ∈ gr
1

n−r

{
nΨ3ȳr,rss

{
1 + log

(
x̄r,rss
x̄n,rss

)}Λ3

− rȳr,rss
}

for i ∈ ḡr
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The resulting estimators under the above strategies will be given by

Tsl1 = Ψ1ȳr,rss

{
1 + log

(
x̄n,rss
µx

)}Λ1

Tsl2 = Ψ2ȳr,rss

{
1 + log

(
x̄r,rss
µx

)}Λ2

Tsl3 = Ψ3ȳr,rss

{
1 + log

(
x̄r,rss
x̄n,rss

)}Λ3

where Ψj , j = 1, 2, 3 and Λj are appropriately selected scalars.

Remark 4.1. The logarithmic imputation methods y.ilj and the resultant logarith-

mic estimators tlj are special cases of the Searls type logarithmic imputation methods y.islj
and the resultant Searls type logarithmic estimators Tslj for Ψj = 1.

Theorem 4.1. The minimum MSE of the resultant Searls type logarithmic esti-

mators Tslj , j = 1, 2, 3 is stated as

min.MSE(Tslj ) = µ2
y

(
1−

G2
j

Fj

)
(4.1)

Proof: Expressing the estimator Tsl1 in terms of errors as

Tsl1 = Ψ1µy(1 + δ0)

{
1 + log

(
µx(1 + δ2)

µx

)}Λ1

= Ψ1µy(1 + δ0)

{
1 + δ2 −

δ2
1

2
+ ...

}Λ1

= Ψ1µy(1 + δ0)

{
1 + Λ1

(
δ2 −

δ2
2

2

)
+

Λ1(Λ1 − 1)

2!
δ2

}
= Ψ1µy

{
1 + δ0 + Λ1δ2 + Λ1δ0δ2 −

Λ1

2
δ2

2 +
Λ1(Λ1 − 1)

2
δ2

2

}
(4.2)

Subtracting µy both sides to (4.2) furnishes (4.3):

Tsl1 − µy = µy

[
Ψ1

{
1 + δ0 + Λ1δ2 + Λ1δ0δ2 −

Λ1

2
δ2

2 +
Λ1(Λ1 − 1)

2
δ2

2

}
− 1

]
(4.3)

Taking the expectation on each side of (4.3), we obtain

Bias(Tsl1) = µy

[
Ψ1

{
1 +

(
Λ2

1

2
− Λ1

)
V20 + Λ1V11

}
− 1

]
Do square and take the expectation on each side of (4.3), we obtain

MSE(Tsl1) = µ2
y

[
1 + Ψ2

1 {1 + V ∗02 + 2Λ1(Λ1 − 1)V20 + 4Λ1V11}
−2Ψ1

{
1 +

(
Λ2
1

2 − Λ1

)
V20 + Λ1V11

} ]
= µ2

y(1 + Ψ2
1F1 − 2Ψ1G1)(4.4)
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where F1 = 1 + V ∗02 + 2Λ1(Λ1 − 1)V20 + 4Λ1V11 and G1 = 1 +
(

Λ2
1

2 − Λ1

)
V20 + Λ1V11.

Minimization of the (4.4) w.r.t. Λ1 provides:

Ψ1(opt) =
G1

F1

Use of Ψ1(opt) in (4.4) provides:

minMSE(Tsl1) = µ2
y

(
1− G2

1

F1

)
In the same way, we can obtain the minimum MSE of the rest of the resultant proposed

estimators Tslj , j = 2, 3. We may usually write

MSE(Tslj ) = µ2
y(1 + Ψ2

j Fj − 2ΨjGj)(4.5)

where F2 = 1+V ∗02+2Λ2(Λ2−1)V ∗20+4Λ2V
∗

11, G2 = 1+
(

Λ2
2

2 − Λ2

)
V ∗20+Λ2V

∗
11, F3 = 1+V ∗02+

2Λ3(Λ3−1)(V ∗20−V20) + 4Λ3(V ∗11−V11), and G3 = 1 +
(

Λ2
3

2 − Λ3

)
(V ∗20−V20) + Λ3(V ∗11−V11).

Minimization of (4.5) w.r.t. Ψj provides:

Ψj(opt) =
Gj
Fj

Use of Ψj(opt) in (4.5) provides:

minMSE(Tslj ) = µ2
y

(
1−

G2
j

Fj

)
Note that minimizing Ψj and Λj simultaneously is a tough task. Thus, putting Ψj = 1 in the

respective estimators and minimizing the MSE w.r.t. Λj provides the optimum values of Λj
as

Λ1(opt) = −V11

V20
,

Λ2(opt) = −V
∗

11

V ∗20

,

Λ3(opt) = −(V ∗11 − V11)

(V ∗20 − V20)
.

Remark 4.2. By setting ρuv = 0 in the above results provides the case of uncorre-

lated measurement errors. These results are more extensive and all-encompassing, and they

specifically contain the results of the uncorrelated measurement errors.

5. Efficiency conditions

In this section, the proposed Searls type logarithmic imputation methods are compared

with the adapted imputation methods and the efficiency conditions are derived under the

following lemmas:
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Lemma 5.1. The performance of the suggested estimators Tslj is better than the

usual mean estimator tm, if

MSE(Tslj ) < V ar(tm)

=⇒ µ2
y

(
1−

G2
j

Fj

)
< µ2

yV
∗

02

=⇒
G2
j

Fj
>1− V ∗02

Lemma 5.2. (i). The performance of the suggested estimators Tsl1 is better than

the ratio estimator tr1 under strategy I, if

G2
1

F1
>1− V ∗02 − V20 + 2V11

(ii). The performance of the suggested estimators Tsl2 is better than the the ratio estimator

tr2 under strategy II, if

G2
2

F2
>1− V ∗02 − V ∗20 + 2V ∗11

(iii). The performance of the suggested estimators Tsl3 is better than the ratio estimator tr3
under strategy III, if

G2
3

F3
>1− V ∗02 − (V ∗20 − V20) + 2(V ∗11 − V11)

Lemma 5.3. (i). The performance of the suggested estimators Tsl1 is better than

the traditional logarithmic estimator tl1 under strategy I, if

G2
1

F1
>1− V ∗02 +

V 2
11

V20

(ii). The performance of the suggested estimators Tsl2 is better than the traditional logarith-

mic estimator tl2 under strategy II, if

G2
2

F2
>1− V ∗02 +

V 2∗
11

V ∗20

(iii). The performance of the suggested estimators Tsl3 is better than the traditional loga-

rithmic estimator tl3 under strategy III, if

G2
3

F3
>1− V ∗02 +

(V ∗11 − V11)2

(V ∗20 − V20)

The suggested imputation methods perform better than the adapted imputation meth-

ods if the efficiency conditions derived under the above lemmas are satisfied. These conditions

are further evaluated through a comprehensive simulation.
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6. Simulation

A thorough simulation is undertaken on an artificial population to enhance the theoret-

ical results as well as to see the impact of the correlated measurement errors on the adapted

and proposed imputation methods and the resulting estimators. The following points delin-

eate the simulation algorithm:

(i). A population of size N = 1200 is generated utilizing a four-variable multivariate normal

distribution in R software as W = (X,Y, u, v)′ with the mean vector µw = (µx, µy, 0, 0)′

and covariance matrix:
σ2
x ρxyσxσy 0 0

ρxyσxσy σ2
y 0 0

0 0 σ2
u ρuvσuσv

0 0 ρuvσuσv σ2
v

 .

The parameters considered to generate the population are given as: µy = 7, µx = 16,

σ2
y = 125, σ2

x = 181, ρxy = (−0.9, − 0.5, − 0.1, 0, 0.5, 0.9), σ2
u = (5, 10), σ2

v = (5, 10),

and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9).

(ii). Select 15000 ranked set samples of size n = 15 with set size H = 3 and number of cycle

K = 5 from the above population by employing ranked set sampling.

(iii). Consider the samples selected in step (ii), the 15,000 values of each resulting estimator

are obtained.

(iv). Utilizing the parameters considered in (i), the MSE of the several estimators is de-

termined for the responding probability P = 0.67 (when a cycle contains one missing

value) as well as for different combinations of MEs such as 5%, 10%, 15%, and 20%.

The MSE is calculated employing the following expression:

MSE =
1

15, 000

15,000∑
i=1

(T ∗i − µy)2

where T ∗i = tm, tr1 , tr2 , tr3 , tl1 , tl2 , tl3 , Tsl1 , Tsl2 , Tsl3 .

Tables 1-2 contains the findings of the simulation.

6.1. Key notes

Table 1 and Table 2 provide the simulation findings (MSE) of the resultant adapted

and suggested propositions. The key notes are construed in the following points:

(1). The findings of Table 1 are given for different combinations of (σ2
u, σ2

v). For (σ2
u,

σ2
v)=(5,5), it is observed that:



On study of CME using RSS based logarithmic imputation methods 13

• The sequential increase in the values of ρxy from 0 to 0.9 reduces the MSE of the

ratio estimator tr1 under strategy I, (For example: it can be seen from Table 1

that for ρxy = 0 and ρuv = −0.9, the MSE of the estimator tr1 is 14.64, whereas for

ρxy = 0.9 and ρuv = −0.9, the MSE of the estimator tr1 is 12.69). The sequential

increase in the size and direction of ρuv from −0.9 to 0.9 also reduces the MSE,

(For example: it can be seen from Table 1 that for ρxy = 0, when ρuv = −0.9, the

MSE of the estimator tr1 is 14.64 and when ρuv = 0.9, the MSE of the estimator

tr1 is 14.23). All these findings are evident from Figure 1. Furthermore, the MSE

of the ratio estimators tr2 and tr3 for the strategies II and III, respectively, follow

a similar style for which the figures may be supplied, if necessary.

• The sequential increase in the values of ρxy from 0 to 0.9 reduces the MSE of the

traditional logarithmic estimator tl1 under strategy I, (For example: it is noticed

from Table 1 that for ρxy = 0 and ρuv = −0.9, the MSE of the estimator tl1
is 11.57, whereas for ρxy = 0.9 and ρuv = −0.9, the MSE of the estimator tl1
is 11.07). The sequential increase in the size and direction of ρuv from −0.9 to

0 increases the MSE, while decreases for the values of ρuv from 0 to 0.9, (For

example: it is noticed from Table 1 that for ρxy = 0.5, when ρuv = −0.9, the MSE

of the estimator tl1 is 11.37 and when ρuv = 0.9, the MSE of the estimator tl1 is

11.25). All these findings are evident from Figure 2. The MSE of the traditional

logarithmic estimators tl2 and tl3 for strategies II and III, respectively, follow a

similar style for which the figures may be supplied, if necessary.

• The sequential increase in the values of ρxy from 0 to 0.9 grows the MSE of the

suggested Searls type logarithmic estimator Tsl1 under strategy I, (For example:

it is observed from Table 1 that for ρxy = 0 and ρuv = −0.9, the MSE of the

estimator Tsl1 is 8.10, whereas for ρxy = 0.9 and ρuv = −0.9, the MSE of the

estimator Tsl1 is 8.30). But the sequential increase in the size and direction of ρuv
from −0.9 to 0.9 reduces the MSE of the estimator Tsl1 , (For example: it is noticed

from Table 1 that for ρxy = 0.5, when ρuv = −0.9, the MSE of the estimator Tsl1
is 8.31 and when ρuv = 0.9, the MSE of the estimator Tsl1 is 8.20). All these

findings are evident from Figure 3. The MSE of the ratio estimators Tsl2 and Tsl3
for strategies II and III, respectively, follow a similar style for which the figures

may be supplied, if necessary.

• Additionally, the ratio and logarithmic estimators under the corresponding strate-

gies for various values of correlation coefficients are repressed by the suggested

Searls type logarithmic estimators.

• The above observations may easily be noticed for the rest of the combinations of

σ2
u and σ2

v , i.e., (σ2
u, σ2

v)=(5, 10), (σ2
u, σ2

v)=(10, 5), and (σ2
u, σ2

v)=(10, 10).

(2). The findings of Table 2 are given for different percentages of measurement errors such

as 5%, 10%, 15%, and 20%. For ME=5%, it is observed that:

• The sequential increase in the values of ρxy from 0 to 0.9 reduces the MSE of the

ratio estimator tr1 under strategy I, (For example: we can see from Table 2 that

for ρxy = 0 and ρuv = −0.9, the MSE of the estimator tr1 is 14.90, whereas for

ρxy = 0.9 and ρuv = −0.9, the MSE of the estimator tr1 is 12.98). The sequential

increase in the size and direction of ρuv from −0.9 to 0.9 also reduces the MSE,

(For example: we can see from Table 2 that for ρxy = 0.5, when ρuv = −0.9, the

MSE of the estimator tr1 is 13.70 and when ρuv = 0.9, the MSE of the estimator
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tr1 is 13.05). All these findings are evident from Figure 4. Furthermore, the MSE

of the ratio estimators tr2 and tr3 for the strategies II and III, respectively, follow

a similar style for which the figures may be supplied, if necessary.

• The sequential increase in the values of ρxy from 0 to 0.9 reduces the MSE of the

traditional logarithmic estimator tl1 under strategy I, (For example: it is noticed

from Table 2 that for ρxy = 0 and ρuv = −0.9, the MSE of the estimator tl1
is 11.69, whereas for ρxy = 0.9 and ρuv = −0.9, the MSE of the estimator tr1
is 11.25). The sequential increase in the size and direction of ρuv from −0.9 to

0 increases the MSE, while decreases for the values of ρuv from 0 to 0.9, (For

example: it is noticed from Table 2 that for ρxy = 0.5, when ρuv = −0.9, the MSE

of the estimator tl1 is 11.52 and when ρuv = 0.9, the MSE of the estimator tl1 is

11.34). All these findings are evident from Figure 5. The MSE of the traditional

logarithmic estimators tl2 and tl3 for strategies II and III, respectively, follow a

similar style for which the figures may be supplied, if necessary.

• The sequential increase in the values of ρxy from 0 to 0.9 grows the MSE of the

suggested Searls type logarithmic estimator Tsl1 under strategy I, (For example:

it is observed from Table 2 that for ρxy = 0 and ρuv = −0.9, the MSE of the

estimator Tsl1 is 8.18, whereas for ρxy = 0.9 and ρuv = −0.9, the MSE of the

estimator Tsl1 is 8.42). But the sequential increase in the size and direction of ρuv
from −0.9 to 0.9 reduces the MSE of the estimator Tsl1 , (For example: it is noticed

from Table 2 that for ρxy = 0.5, when ρuv = −0.9, the MSE of the estimator Tsl1
is 8.41 and when ρuv = 0.9, the MSE of the estimator Tsl1 is 8.24). All these

findings are evident from Figure 6. The MSE of the ratio estimators Tsl2 and Tsl3
for strategies II and III, respectively, follow a similar style for which the figures

may be supplied, if necessary.

• Additionally, the ratio and logarithmic estimators under the corresponding strate-

gies for various values of correlation coefficients are repressed by the suggested

Searls type logarithmic estimators.

• The above observations may easily be noticed for the rest of the percentages of

ME, i.e., 10%, 15%, and 20%.

7. Real data application

The real data example is illustrative in nature. The measurement error can be estimated

with help of cross checks performed during the collection of data, such checks are routine in

large scale surveys. In this part, the adapted and suggested imputation methods are executed

over a real data set based on the humidity of Lahore, Pakistan. The climate of Lahore is

a local steppe climate. A little rainfall take place during the year in Lahore. The mean

yearly temperature observed in Lahore is recorded to be 75.1 F . Approximately 25.0 inch of

rainfall occurs on a yearly basis. Lahore is located in the northern hemisphere. The balmy

days of Summer commence at the end of June and conclude in September. This period

encompasses the months: June, July, August, September. In this article, we considered daily

based maximum percentage of humidity. The humidity (%) in the year 2022 is considered as

study variable y, while in the year 2021 is considered as auxiliary variable x. The imputation
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Table 1: MSE of the estimators for different values of σ2
u and σ2

v
Strategy I Strategy II Strategy III

σ2
u σ2

v ρxy ρuv tm tr1 tl1 Tsl1 tr2 tl2 Tsl2 tr3 tl3 Tsl3
5 5 0 -0.9 12.10 14.64 11.57 8.10 15.89 11.31 8.57 13.35 11.84 8.33

-0.5 12.12 14.56 11.60 8.10 15.76 11.34 8.56 13.32 11.86 8.31
0 12.17 14.49 11.64 8.12 15.64 11.38 8.57 13.31 11.91 8.31

0.5 12.12 14.35 11.59 8.08 15.44 11.33 8.52 13.22 11.86 8.26
0.9 12.11 14.23 11.57 8.05 15.28 11.31 8.49 13.15 11.84 8.22

0.5 -0.9 12.07 13.43 11.37 8.31 14.10 11.03 8.86 12.74 11.72 8.46
-0.5 12.08 13.35 11.37 8.30 13.97 11.01 8.87 12.71 11.73 8.44
0 12.13 13.28 11.38 8.29 13.84 11.01 8.89 12.70 11.76 8.44

0.5 12.08 13.13 11.30 8.24 13.64 10.92 8.85 12.60 11.70 8.38
0.9 12.07 13.01 11.25 8.20 13.47 10.85 8.84 12.53 11.67 8.34

0.9 -0.9 12.21 12.69 11.07 8.30 12.93 10.50 9.22 12.45 11.65 8.51
-0.5 12.23 12.60 11.04 8.27 12.79 10.45 9.23 12.41 11.64 8.49
0 12.27 12.53 11.02 8.26 12.65 10.40 9.27 12.40 11.66 8.48

0.5 12.23 12.36 10.92 8.18 12.43 10.27 9.25 12.30 11.58 8.42
0.9 12.21 12.24 10.84 8.13 12.25 10.16 9.25 12.22 11.54 8.39

5 10 0 -0.9 12.11 14.78 11.58 8.12 16.10 11.32 8.59 13.42 11.85 8.35
-0.5 12.13 14.67 11.61 8.12 15.92 11.36 8.57 13.38 11.88 8.33
0 12.17 14.55 11.65 8.12 15.72 11.40 8.56 13.34 11.92 8.31

0.5 12.14 14.37 11.62 8.08 15.47 11.37 8.51 13.24 11.89 8.25
0.9 12.11 14.21 11.58 8.04 15.24 11.32 8.47 13.14 11.85 8.20

0.5 -0.9 12.07 13.58 11.41 8.34 14.33 11.09 8.86 12.81 11.74 8.48
-0.5 12.09 13.46 11.40 8.32 14.14 11.07 8.87 12.77 11.75 8.46
0 12.13 13.34 11.40 8.30 13.93 11.04 8.88 12.72 11.77 8.44

0.5 12.10 13.15 11.32 8.24 13.67 10.94 8.85 12.62 11.72 8.38
0.9 12.07 12.98 11.24 8.18 13.43 10.83 8.83 12.52 11.66 8.32

0.9 -0.9 12.21 12.86 11.14 8.35 13.18 10.61 9.21 12.53 11.68 8.54
-0.5 12.24 12.73 11.09 8.31 12.97 10.53 9.23 12.48 11.67 8.51
0 12.27 12.59 11.05 8.27 12.75 10.45 9.25 12.43 11.67 8.48

0.5 12.25 12.39 10.94 8.19 12.47 10.29 9.24 12.32 11.60 8.42
0.9 12.22 12.21 10.82 8.11 12.21 10.14 9.24 12.21 11.53 8.36

10 5 0 -0.9 12.53 15.14 11.99 8.35 16.43 11.72 8.83 13.82 12.26 8.59
-0.5 12.53 15.02 12.01 8.34 16.24 11.74 8.80 13.76 12.27 8.55
0 12.52 14.85 12.00 8.32 16.00 11.74 8.76 13.67 12.26 8.50

0.5 12.53 14.72 12.00 8.30 15.79 11.74 8.74 13.61 12.27 8.47
0.9 12.52 14.56 11.98 8.27 15.57 11.71 8.70 13.53 12.25 8.43

0.5 -0.9 12.49 13.94 11.82 8.58 14.66 11.48 9.12 13.2 12.16 8.73
-0.5 12.50 13.81 11.79 8.55 14.45 11.44 9.11 13.14 12.15 8.70
0 12.48 13.64 11.73 8.51 14.21 11.37 9.09 13.05 12.11 8.65

0.5 12.50 13.49 11.70 8.47 13.98 11.30 9.09 12.99 12.10 8.61
0.9 12.48 13.33 11.63 8.42 13.75 11.21 9.08 12.90 12.06 8.57

0.9 -0.9 12.63 13.21 11.53 8.60 13.50 10.99 9.48 12.92 12.09 8.80
-0.5 12.64 13.07 11.47 8.55 13.28 10.90 9.48 12.85 12.06 8.76
0 12.63 12.89 11.38 8.48 13.02 10.76 9.48 12.75 12.01 8.71

0.5 12.64 12.73 11.30 8.42 12.77 10.64 9.50 12.68 11.98 8.67
0.9 12.63 12.55 11.20 8.35 12.52 10.49 9.50 12.59 11.92 8.62

10 10 0 -0.9 12.52 15.32 11.99 8.36 16.70 11.72 8.85 13.90 12.26 8.61
-0.5 12.56 15.16 12.04 8.37 16.44 11.79 8.83 13.84 12.31 8.59
0 12.65 15.03 12.14 8.40 16.20 11.88 8.83 13.82 12.40 8.58

0.5 12.56 14.74 12.04 8.31 15.81 11.78 8.74 13.64 12.31 8.47
0.9 12.53 14.51 11.99 8.26 15.48 11.72 8.69 13.51 12.27 8.40

0.5 -0.9 12.49 14.12 11.85 8.62 14.93 11.54 9.12 13.29 12.17 8.77
-0.5 12.52 13.96 11.85 8.59 14.67 11.52 9.12 13.23 12.19 8.73
0 12.62 13.82 11.88 8.59 14.41 11.52 9.16 13.21 12.25 8.72

0.5 12.52 13.52 11.72 8.48 14.01 11.33 9.09 13.01 12.13 8.61
0.9 12.49 13.28 11.61 8.40 13.66 11.18 9.07 12.88 12.06 8.54

0.9 -0.9 12.70 13.44 11.69 8.69 13.81 11.20 9.48 13.06 12.20 8.88
-0.5 12.70 13.22 11.61 8.62 13.48 11.07 9.48 12.96 12.16 8.83
0 12.76 13.08 11.53 8.57 13.23 10.93 9.54 12.92 12.16 8.78

0.5 12.70 12.67 11.33 8.41 12.66 10.65 9.50 12.69 12.02 8.69
0.9 12.69 12.44 11.18 8.31 12.31 10.44 9.52 12.57 11.95 8.65

methods are applied over the humidity data of Lahore. Initially, we have generated the values

of measurement errors U and V from normal distribution with 0 means and 5% variance of

the σ2
y and σ2

x. Then, the values of σ2
u, σ2

v , and ρuv are obtained. Following are the necessary

descriptive statistics: N=365, n = 15, H = 3, K = 5, P = 0.67, Ȳ= 87.04, X̄=86.09,

σ2
y=230.03, σ2

x=179.84, σ2
u = 116.38, σ2

v = 80.13, ρxy=0.83, and ρuv = 0.05.
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Figure 1: MSE of the estimator tr1 revealed in Table 1 for (σ2
u, σ2

v)=(5,
5), ρxy = (0, 0.5, 0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9)
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Figure 2: MSE of the estimator tl1 revealed in Table 1 for (σ2
u, σ2

v)=(5,
5), ρxy = (0, 0.5, 0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9)

For the above data, the MSE of the proposed estimators is calculated and the outcomes are

displayed in Table 3 which show the outperformance of the suggested estimators over the

adapted estimators.
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Figure 4: MSE of the estimator tr1 revealed in Table 2 for ME=5%, ρxy =
(0, 0.5, 0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9)

8. Conclusion

In survey sampling, the estimation of population mean in the presence of missing data

when the data are tainted with the correlated measurement errors, is a challenging task. As

mentioned earlier such problems are easily identified while performing cross checks done by a

supervisor over the data collected by an investigator. The researcher can easily identify such
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Table 2: MSE of the estimators for different percentages of ME
Strategy I Strategy II Strategy III

% of ME ρxy ρuv tm tr1 tl1 Tsl1 tr2 tl2 Tsl2 tr3 tl3 Tsl3
5% 0 -0.9 12.22 14.90 11.69 8.18 16.22 11.43 8.66 13.54 11.96 8.42

-0.5 12.23 14.77 11.71 8.18 16.02 11.46 8.63 13.48 11.98 8.39
0 12.29 14.66 11.77 8.19 15.83 11.52 8.63 13.46 12.04 8.38

0.5 12.25 14.46 11.72 8.14 15.55 11.47 8.57 13.34 11.99 8.31
0.9 12.22 14.28 11.68 8.10 15.30 11.42 8.53 13.23 11.95 8.25

0.5 -0.9 12.18 13.70 11.52 8.41 14.45 11.20 8.93 12.93 11.86 8.55
-0.5 12.20 13.56 11.51 8.38 14.24 11.17 8.93 12.87 11.86 8.52

0 12.25 13.45 11.52 8.37 14.03 11.15 8.95 12.84 11.89 8.51
0.5 12.21 13.24 11.42 8.30 13.75 11.03 8.91 12.72 11.82 8.44
0.9 12.18 13.05 11.34 8.24 13.49 10.92 8.89 12.61 11.76 8.38

0.9 -0.9 12.32 12.98 11.25 8.42 13.30 10.72 9.28 12.64 11.79 8.61
-0.5 12.34 12.83 11.20 8.38 13.07 10.63 9.29 12.58 11.78 8.58

0 12.40 12.70 11.17 8.34 12.85 10.56 9.33 12.55 11.79 8.56
0.5 12.35 12.48 11.03 8.25 12.54 10.38 9.31 12.41 11.70 8.48
0.9 12.32 12.28 10.91 8.16 12.26 10.21 9.31 12.30 11.63 8.42

10% 0 -0.9 12.74 15.83 12.19 8.51 17.36 11.92 9.01 14.26 12.47 8.79
-0.5 12.78 15.59 12.28 8.51 16.97 12.02 8.96 14.16 12.53 8.73

0 12.90 15.36 12.40 8.54 16.58 12.15 8.95 14.11 12.65 8.71
0.5 12.81 14.97 12.29 8.44 16.03 12.04 8.84 13.87 12.55 8.58
0.9 12.74 14.61 12.18 8.34 15.53 11.91 8.76 13.66 12.46 8.46

0.5 -0.9 12.70 14.65 12.12 8.79 15.61 11.83 9.26 13.66 12.41 8.95
-0.5 12.75 14.39 12.12 8.76 15.20 11.81 9.25 13.56 12.44 8.89

0 12.86 14.16 12.15 8.74 14.80 11.80 9.28 13.50 12.51 8.86
0.5 12.77 13.74 11.96 8.60 14.22 11.56 9.21 13.25 12.37 8.72
0.9 12.70 13.37 11.76 8.46 13.69 11.30 9.17 13.03 12.24 8.60

0.9 -0.9 12.93 14.05 12.05 8.92 14.60 11.61 9.61 13.48 12.50 9.09
-0.5 12.95 13.72 11.95 8.83 14.11 11.46 9.60 13.33 12.45 9.02

0 12.97 13.34 11.80 8.71 13.52 11.22 9.62 13.15 12.39 8.95
0.5 12.94 12.89 11.55 8.53 12.87 10.86 9.62 12.92 12.26 8.81
0.9 12.93 12.53 11.32 8.38 12.34 10.53 9.65 12.73 12.14 8.73

15% 0 -0.9 13.26 16.77 12.67 8.82 18.50 12.38 9.39 14.99 12.97 9.16
-0.5 13.33 16.40 12.83 8.83 17.91 12.57 9.29 14.85 13.08 9.07

0 13.50 16.07 13.02 8.87 17.33 12.78 9.27 14.77 13.26 9.04
0.5 13.33 15.46 12.82 8.70 16.50 12.57 9.08 14.38 13.08 8.82
0.9 13.28 14.94 12.68 8.58 15.76 12.39 9.00 14.10 12.99 8.67

0.5 -0.9 13.22 15.61 12.68 9.16 16.78 12.42 9.61 14.40 12.96 9.34
-0.5 13.30 15.22 12.72 9.12 16.17 12.43 9.57 14.24 13.01 9.26

0 13.46 14.87 12.78 9.10 15.56 12.44 9.61 14.16 13.13 9.21
0.5 13.30 14.22 12.45 8.87 14.68 12.04 9.49 13.75 12.88 8.99
0.9 13.24 13.69 12.19 8.68 13.91 11.67 9.46 13.46 12.72 8.83

0.9 -0.9 13.52 15.14 12.76 9.37 15.94 12.38 9.97 14.32 13.14 9.54
-0.5 13.54 14.65 12.65 9.26 15.20 12.21 9.94 14.09 13.10 9.43

0 13.34 13.79 12.20 8.89 14.02 11.64 9.74 13.56 12.78 9.06
0.5 13.54 13.41 12.08 8.84 13.34 11.36 9.95 13.47 12.82 9.09
0.9 13.51 12.87 11.72 8.59 12.55 10.84 9.99 13.19 12.63 9.02

20% 0 -0.9 13.81 17.73 13.15 9.14 19.66 12.83 9.79 15.74 13.49 9.54
-0.5 13.88 17.22 13.37 9.15 18.86 13.11 9.62 15.53 13.63 9.41

0 14.11 16.77 13.64 9.20 18.08 13.40 9.58 15.42 13.88 9.36
0.5 13.93 15.98 13.41 9.00 16.98 13.15 9.37 14.94 13.67 9.10
0.9 13.81 15.27 13.15 8.79 15.99 12.82 9.24 14.53 13.49 8.87

0.5 -0.9 13.78 16.59 13.24 9.52 17.97 12.98 9.99 15.16 13.51 9.74
-0.5 13.85 16.05 13.30 9.47 17.13 13.03 9.90 14.93 13.58 9.61

0 14.07 15.58 13.40 9.45 16.32 13.07 9.93 14.81 13.74 9.55
0.5 13.89 14.75 13.01 9.17 15.17 12.57 9.79 14.31 13.46 9.28
0.9 13.78 14.01 12.60 8.89 14.13 12.01 9.74 13.89 13.19 9.05

0.9 -0.9 14.10 16.23 13.41 9.80 17.28 13.08 10.34 15.15 13.76 9.98
-0.5 14.13 15.58 13.32 9.68 16.30 12.92 10.28 14.85 13.73 9.83

0 13.86 14.44 12.76 9.21 14.72 12.22 10.02 14.14 13.32 9.37
0.5 14.12 13.92 12.60 9.13 13.82 11.85 10.26 14.02 13.37 9.41
0.9 14.10 13.20 12.11 8.80 12.76 11.13 10.32 13.66 13.12 9.30

measurement or response errors if he is cautious enough. Moreover, some characteristics war-

rant such anticipation on the part of researcher. Apart from this, a researcher can determine

whether data contains MEs by employing several techniques. The researcher can analyse the

data for outliers or inconsistencies that deviate from expected patterns. The researcher can

perform consistency checks by comparing responses to related questions can help identify dis-
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Figure 5: MSE of the estimator tl1 revealed in Table 2 for ME=5%, ρxy =
(0, 0.5, 0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9)
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Figure 6: MSE of the estimator Tsl1 revealed in Table 2 for ME=5%,
ρxy = (0, 0.5, 0.9), and ρuv = (−0.9, − 0.5, 0, 0.5, 0.9)

Table 3: MSE of the adapted and suggested estimators for real data
Strategy I Strategy II Strategy III

tm tr1 tl1 Tsl1 tr2 tl2 Tsl2 tr3 tl3 Tsl3
31.04 20.98 20.34 20.23 16.02 15.06 14.97 26.08 25.77 21.74

crepancies. Cross-validation with other datasets or using alternative measurement methods

can provide additional insights. Reviewing the survey design and administration process is

crucial to uncover potential sources of error, such as ambiguous questions or interviewer bias.
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Very few studies are available for the estimation of population mean in the presence of missing

data provided the data are tainted with measurement errors under simple random sampling.

However, no work is available for the estimation of population mean in the presence of miss-

ing data given that the data are contaminated with the correlated measurement errors under

ranked set sampling. This article is a fundamental effort to adapt the classical mean, ra-

tio, and traditional logarithmic imputation methods and to propose Searls type logarithmic

imputation methods along with their resultant estimators. The MSE of the adapted and

proposed resultant estimators is determined employing the first order approximation. The

comparison of the proposed and adapted estimators is carried out to establish the efficiency

conditions under which the proposed estimators would surpass the adapted estimators. A

thorough simulation is performed to enhance the theoretical results that additionally exam-

ines the impact of the correlated measurement errors on the performance of the resultant

estimators. Table 1 and Table 2 present the simulation results for diffferent values of (σ2
u,

σ2
v) and different percentages of MEs. Table 1 indicates that the MSE of the proposed Searls

type logarithmic estimators Tslj , j = 1, 2, 3 grows as ρxy varies from 0 to 0.9 which is also

rely on the direction and magnitude of ρuv. Further, the MSE of the proposed estimators

reported in Table 2 for various percentages of MEs indicates the same pattern. In addition,

a real data application of the adapted and suggested imputations is also provided. The re-

sults of the real data application show that the proposed estimators dominate the adapted

estimators under each strategy. Therefore, the adapted and suggested imputation methods

and the resulting estimators are strongly recommended to the survey persons to deal with

the real-life challenges of the correlated measurement errors.
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