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1. INTRODUCTION

The negative binomial distribution, a discrete probability distribution, is employed to

determine the likelihood of achieving more than one success before reaching a fixed number

of trials. It serves as an extension of the geometric distribution, which is utilized to calculate

the probability of the first success. Widely applied across various fields such as ecology, ge-

ology, industry, and biological sciences, the negative binomial distribution has found diverse

applications. Yun and Youlin (1996) introduced the Q-control chart based on the negative

binomial distribution. Lloyd-Smith (2007) utilized the negative binomial distribution in ana-

lyzing infection data. Urbieta et al. (2017) proposed memory-based control charts using the

negative binomial distribution. Stoklosa et al. (2022) provided a comprehensive review of

the negative binomial distribution’s applications in biodiversity and ecology. Conceição et al.

(2022) discussed the generalization of the negative binomial distribution and presented its

properties. Liu et al. (2023) applied the negative binomial distribution to analyze count data

from psychology. Park et al. (2023) presented probability limit-based control charts using

both geometric and negative binomial distributions. Doi et al. (2024) focused on improving

interval estimation through negative binomial parameters. Further details can be found in

Chew et al. (2024). Neutrosophic statistics, a branch of mathematical science, is utilized for

the analysis, presentation, and inference of imprecise data. Smarandache (2014) is credited

with introducing neutrosophic statistics, and Smarandache (2022) demonstrated its efficiency

compared to interval statistics. Neutrosophic statistics serve as a generalization of classical

statistics, incorporating an additional parameter known as the measure of indeterminacy.

It finds application in situations where data is fuzzy or exhibits imprecision. Chen et al.,

2017a and Chen et al. (2017b) provided the methodology to analyze the neutrosophic data

and compare the efficiency of the two methods. Adepoju et al. (2019) proposed the negative

binomial distribution using the fuzzy approach. Granados (2022) and Granados et al. (2022)

proposed neutrosophic discrete and continuous distributions. Alvaraćın Jarŕın et al. (2021)

applied the neutrosophic statistics in the social sciences. Khan et al. (2021) presented the

neutrosophic Rayleigh distribution. AlAita and Aslam (2023) discussed the application of

the neutrosophic statistics in the experiment design. Vishwakarma and Singh (2022) pro-

posed the neutrosophic ranked set method. Ahsan-ul Haq (2022) presented neutrosophic

Kumaraswamy distribution and discussed the application in engineering. Delcea et al. (2023)

provided the bolometric on the applications of neutrosophic statistics. The development of

algorithms and distributions using the neutrosophic statistical methods can be seen in Guo

and Sengur (2015), Garg et al. (2020), Granados (2022), Aslam (2023b), Granados et al.

(2023), Aslam (2023a), Aslam (2023c) and Aslam and Alamri (2023). Upon reviewing the

existing literature, it is evident that a substantial body of work exists on the negative bino-

mial distribution within the realm of classical statistics. However, to the best of the author’s

knowledge, there is a notable absence of research on algorithms utilizing the neutrosophic

negative binomial distribution. This paper seeks to fill this gap by introducing the novel con-

cept of the neutrosophic random variable. The paper unfolds by presenting the new notion of

the neutrosophic random variable, followed by an exploration of its properties. Subsequently,

the proposed neutrosophic negative binomial distribution is introduced, incorporating the

innovative concept of the neutrosophic random variable. The basic properties of this novel

negative binomial distribution are then outlined. Two algorithms are proposed for generating

imprecise negative binomial data. The paper proceeds to present simulation and comparative
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studies, applying the proposed distribution to oil exploration data. Anticipated are results

that differ from those obtained using the existing negative binomial distribution within the

framework of classical statistics.

2. NEUTROSOPHIC RANDOM VARIABLE

In this section, we will present the concept of the neutrosophic random variable. Let XN

be defined as XL+XLIN , where XL represents the determinate part and XLIN , represents the

indeterminate part, with IN ε [IL, IU ] being the indeterminate. We assume that the random

variable XL has a mean µX and variance σ2X . It is crucial to highlight that when IL = 0,

the proposed neutrosophic random variable reduces to the variable in classical statistics.

According to Granados (2022), introducing the new measure of indeterminacy is termed

as the measure of indeterminacy, which transforms neutrosophic logic into a generalization

of fuzzy logic, where I2N = IN , . . . , I
n
N = IN . It is important to note that the proposed

neutrosophic random variable consists of two components: the determinate part XL and

the indeterminate part XLIN , where IN ε [IL, IU ]. When IL = 0, this neutrosophic random

variable simplifies to the classical random variable XL. However, XL is limited to scenarios

where all observations in the data are either precise or accurate. In contrast, the proposed

neutrosophic random variable is designed to manage varying degrees of uncertainty in the

data effectively. Utilizing this information, we explore certain properties of expectation and

variance for the introduced neutrosophic random variable. The mean of the neutrosophic

random variable is expressed as

(2.1) E (XN ) = E (XL +XLIN ) = (1 + IN )µX

The variance of the neutrosophic random variable is given as

(2.2) V ar (XN ) = V ar (XL +XLIN ) = (1 + IN )2σ2X

Let YN = YL + YLIN be the another neutrosophic random having the mean µY and variance

σ2Y the expectation and the variance of the two neutrosophic random variables are given by

(2.3) E (XN + YN ) = (1 + IN )µX + (1 + IN )µY

(2.4) V ar (XN + YN ) = V ar (XL +XLIN ) = (1 + IN )2σ2X + (1 + IN )2σ2Y

Let a and b are the constant, using these constants, the expectation and variance of the

neutrosophic random variables are given by

(2.5) E (XN + a) = E (XL +XLIN + a) = (1 + IN )µX + a

(2.6) V ar (XN + a) = V ar (XL +XLIN + a) = (1 + IN )2σ2X

(2.7) E (aXN + b) = a (1 + IN )µX + b

(2.8) V ar (aXN + b) = a2(1 + IN )2σ2X
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3. NEGATIVE BINOMIAL DISTRIBUTION

Let’s consider a scenario where XN = XL +XLIN is defined as the sum of XL and XL

times IN , with IN belonging to the interval [IL, IU ], representing a neutrosophic random vari-

able following the neutrosophic negative binomial distribution. Here, XL is a random variable

following the negative distribution in classical statistics, XL times IN represents the inde-

terminate part, and IN is the indeterminacy within the interval [IL, IU ]. The proposed neu-

trosophic negative binomial distribution transforms into the negative binomial distribution

under classical statistics when there is no uncertainty recorded in the data (IL=0). We repre-

sent this as XN following the negative binomial distribution with parameters NNB (rN , pN ),

where rN is the number of successes and pN is the probability of success. It’s important to

note that both rN and pN fall within certain intervals. In light of this information, the proba-

bility function for the proposed neutrosophic negative binomial distribution can be expressed

as follows:

f (XN ) =

(
rN + (1 + IN )XL − 1

(1 + IN )XL

)
prNN (1 − pN )(1+IN )XL ;XN = 0, (1 + IN ) , 2 (1 + IN ) , . . .

Proof: We prove that the proposed distribution is the proper distribution. We have

f (XN ) =

(
rN + (1 + IN )XL − 1

(1 + IN )XL

)
prNN (1 − pN )(1+IN )XL

Let

(
rN + (1 + IN )XL − 1

(1 + IN )XL

)
= (rN+(1+IN )XL−1)!

(r−1)![(1+IN )XL]!
= (−1)(1+IN )XL

(
−rN

(1 + IN )XL

)
∞∑

XN=0

f (XN ) =
∞∑

XN=0

(−1)(1+IN )XL

(
−rN

(1 + IN )XL

)
prNN (1 − pN )(1+IN )XL

= prNN (−1 + pN + 1)−rN = 1

Theorem 3.1. The expected value of the proposed distribution is (1 + IN ) (1 − pN ) rN/pN

Proof: By applying expectation

E ((1 + IN )XL) = (1 + IN )E (XL) = (1 + IN )
∞∑

XL=o

(
rN +XL − 1

XL

)
prNN (1 − pN )XL

= (1 + IN )
∞∑

XL=1

(rN +XL − 1)!

(XL − 1)! (rN − 1)!
prNN (1 − pN )XL

= (1 + IN )

∞∑
XL=1

rN (1 − pN )

pN

(
rN +XL − 1
XL − 1

)
prN+1
N (1 − pN )XL−1

(3.1) E (XN ) =
(1 + IN ) (1 − pN ) rN

pN
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On the same lines, the variance of the proposed negative binomial distribution is given by

(3.2) V ar (XN ) =
(1 + IN )2 (1 − pN ) rN

p2N

4. THE PROPOSED ALGORITHM-I

In this section, we will introduce modifications to the algorithm used for generating

the negative Binomial distribution within the framework of classical statistics, as originally

presented by . The algorithm proposed here, referred to as algorithm-I for generating the

negative binomial distribution under neutrosophic statistics, serves as a generalization of

the pre-existing algorithm designed for generating negative binomial distributed data under

classical statistics. It is important to highlight that the algorithm presented by Thomopoulos

(2012) is not suitable for generating imprecise data from the negative binomial distribution.

The proposed algorithm-I, guided by Thomopoulos (2012), will be executed through the

following sequential steps.

Step-1: Specify IN

Step-2: set xL = 0

Step-3: For i = 1 to rN , generate yN , a random geometric variate with the probability pN ,

we have

xN = yN + xL

Next i

Step-4: Return xN

The procedure to implement the proposed algorithm-I is shown in Figure 1.

5. THE PROPOSED ALGORITHM-II

Rose and Smith (1997) presented another algorithm using the geometric distribution.

It is well-known that the negative binomial distribution is the generalization of the geometric

distribution. Therefore, the sum of rN independent geometric random variables with param-

eter pN follow the neutrosophic negative binomial distribution. Therefore, negative binomial

distributed random variables can obtained by adding rN independent geometric random vari-

ables. The existing algorithm given in Rose and Smith (1997) only provided the determinate

data using the negative binomial distribution. We now present the extension of this algorithm

using the neutrosophic negative binomial distribution. The necessary steps to generate the

neutrosophic negative binomial data are given by

Step-1: Specify IN
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Figure 1: The process of algorithm-I.

Step-2: Generate rN independent geometric random variables with probability pN .

Step-3: Obtain xN = (xL1 + xL2 + · · · + xLrL) (1 + IN )

Step-4: Repeat steps 1-3 to generate more negative binomial distributed data for another

parameter.

The procedure to implement the proposed algorithm-II is shown in Figure 2.

Figure 2: The process of algorithm-II.
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6. SIMULATION STUDIES

Within this segment, we will delve into the simulation process of the suggested al-

gorithms. First, we’ll explore the data generation from the negative binomial distribution

through algorithm-I. Subsequently, we will examine the simulation procedure designed to

replicate data from the negative binomial distribution using algorithm-II.

6.1. SIMULATION USING ALGORITHM-I

In this section, we will explore the negative binomial data generated through algorithm-

I. Following the steps outlined in algorithm-I, we have presented several tables displaying data

from the negative binomial distribution, utilizing varying values of rN . Table 1 corresponds

to rN = 3 and p = 0.50, Table 2 to rN = 5 and p = 0.50, Table 3 to rN = 7 and p=0.50, and

Table 4 to rN = 9 and p = 0.50. Tables 1-4 collectively demonstrate an overall increasing

trend in the negative binomial distribution data as the value of IN varies. For instance, in

Table 1, the last row indicates that for IN = 0.1, the corresponding value of xN is 5, while

for IN = 1, the value of xN increases to 8. The graphical representation of data behavior for

different values of IN is illustrated in Figure 3. Similarly, an overarching increasing trend is

observed in the negative binomial distribution data as rN increases from 3 to 9. This trend

is visually presented in Figure 4.

Figure 3: The curves for various values of IN .
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Figure 4: The curves for various values of IN .

6.2. SIMULATION USING ALGORITHM-II

In this section, we will examine the negative binomial data generated through algorithm-

II. Following the outlined steps in algorithm-II, we have presented several tables displaying

data from the negative binomial distribution, utilizing varying values of rN . Specifically,

Table 5 corresponds to rN=3 and p=0.50, while Table 6 corresponds to rN=5 and p = 0.50.

Tables 5-6 collectively illustrate a consistent upward trend in the negative binomial distribu-

tion data as the value of IN varies. For instance, in Table 5, the last row indicates that for

IN = 0.1, the corresponding value of xN is 14, and for IN = 1, the value of xN increases to

24. The graphical representation of data behavior for different values of IN is depicted in

Figure 5. Similarly, a general upward trend is observed in the negative binomial distribution

data as rN increases from 3 to 5.

From the simulation studies using Algorithm-I and Algorithm-II, it can be concluded

that as the degree of uncertainty increases, the data exhibits an upward trend. Given that the

data varies with the level of uncertainty, it is crucial for decision-makers to carefully quantify

this uncertainty to ensure accurate results.

7. COMPARATIVE STUDIES

Within this section, we will contrast the data generated from the proposed algorithm for

the negative binomial distribution with data derived from existing algorithms within classical

statistics. Initially, we will juxtapose the outcomes of the proposed algorithm-I with those of

the existing algorithm in classical statistics. Subsequently, we will undertake a comparison
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Figure 5: The curves for various values of IN .

between the data generated from the proposed algorithm-II and the data of negative binomial

distribution from the existing algorithm within classical statistics.

7.1. ALGORITHM-I VS. THE EXISTING ALGORITHM

As previously stated, the proposed algorithm-I serves as an extension of the algorithm

outlined in Thomopoulos (2012). Notably, when the data is generated from the negative

binomial distribution within an uncertain environment, the proposed algorithm-I converges

to the existing algorithm within classical statistics. The data for the negative binomial

distribution, specifically when IN = 0, is generated using the existing algorithm and is

positioned in the first column of Tables 1-4. Observing Tables 1-4 reveals that when IN = 0,

the values of XN are comparatively smaller than those associated with other values of IN .

For instance, considering rN=5 and p = 0.50 in Table 2 (first row), the value of XN is

8 when IN = 0, whereas it increases to 12 when IN = 0.5. This investigation highlights

notable distinctions between the data generated by the algorithm outlined in Thomopoulos

(2012), and the data produced by the proposed algorithm-I. Further insight is provided by

Figure 6, wherein the data curve from the existing algorithm consistently appears lower

than the data curve obtained from the proposed algorithm. In summary, the generated

data under uncertainty significantly differs from that produced under a certain environment.

Consequently, caution is advised for decision-makers when applying the existing algorithm

in situations characterized by a degree of uncertainty.
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Figure 6: Data curves from the proposed algorithm-I and the existing al-
gorithm.

7.2. ALGORITHM-II VS. THE EXISTING ALGORITHM

As previously mentioned, the proposed algorithm-II serves as an extension of the algo-

rithm detailed in Rose and Smith (1997). Notably, when data is generated from the negative

binomial distribution in an uncertain environment, the proposed algorithm-II aligns with the

existing algorithm in classical statistics. Specifically, data for the negative binomial distri-

bution, particularly when IN = 0, is generated using the existing algorithm and is placed

in the initial column of Tables 5-6. Upon examining Tables 5-6, it becomes apparent that

when IN = 0, the values of XN are relatively smaller compared to those associated with

other values of IN . For example, considering rN = 5 and p = 0.50 in Table 5 (last row), the

value of XN is 12 when IN = 0, whereas it increases to 20 when IN = 0.5. This exploration

underscores significant disparities between the data generated by the algorithm outlined in

Rose and Smith (1997) and that produced by the proposed algorithm-II. Further insights are

gleaned from Figure 7, where the data curve from the existing algorithm consistently appears

lower than the data curve obtained from the proposed algorithm. In summary, the generated

data under uncertainty markedly differs from that produced under a certain environment.

Consequently, decision-makers are advised to exercise caution when applying the existing

algorithm in situations characterized by a degree of uncertainty.



The Neutrosophic Negative Binomial Distribution: Algorithms and Practical Application 11

Figure 7: Data curves from the proposed algorithm-II and the existing
algorithm.

8. APPLICATION IN OIL EXPLORATION

In this segment, we will explore the utilization of the suggested neutrosophic negative

distribution within the context of an oil company. Let’s consider a scenario where an oil

company conducts a geological study suggesting that an exploratory oil well has a 50%

probability of striking oil, with an indeterminacy of 10%. The question at hand is: What is

the probability of striking oil on the 7th attempt out of the 20 drilled?

Sol: From Table 3 (first row), we have, XL = 20, IN = 0.1, pN = 0.50, rN = 7, using this

data in our proposed negative distribution, we

f (XN ) =

(
rN + (1 + IN )XL − 1

(1 + IN )XL

)
prNN (1 − pN )(1+IN )XL

=

(
7 + (1 + 0.1) 20 − 1

(1 + 0.1) 20

)
0.5070.50(1+0.1)20 = 0.0007

According to the data, there is approximately a 0.07% probability of experiencing the 7th

strike on the 20th attempt.

Now, we will use the existing negative binomial distribution to compute the probability using

the same data as follows

f (XL) =

(
rN +XL − 1

XL

)
prNN (1 − pN )XL

=

(
7 + 20 − 1

20

)
0.5070.5020 = 0.0017
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Based on the data, there is an estimated 0.17% likelihood of encountering the 7th strike

on the 20th attempt. Upon comparing this probability derived from the proposed negative

binomial distribution with that obtained from the conventional negative binomial distribution

in classical statistics, it becomes evident that the probabilities differ in both certain and

uncertain environments.

9. LIMITATIONS

In this section, we will examine the limitations of the traditional negative binomial

distribution and its data generation algorithms within classical statistics. Existing methods,

such as those outlined by Thomopoulos (2012), assume accurate and precise data, which

is often not the case in real-world applications. When data or parameters are imprecise,

these classical approaches become less effective. The proposed negative binomial distribution

and its associated algorithms are designed to address these limitations by incorporating a

measure of uncertainty, making them more suitable for scenarios where data is imprecise.

Thus, the new method provides a more robust solution for handling data uncertainty in

practical applications.

10. CONCLUDING REMARKS

In this paper, the negative binomial distribution was introduced using the new notion

of the neutrosophic random variable. Some properties of the neutrosophic random variable

were presented based on the expectation and the variance. The basic properties of the pro-

posed negative binomial distribution were also outlined. Algorithms were introduced for

generating neutrosophic data using the proposed distribution. The application of the pro-

posed negative binomial distribution in oil exploration data was presented, and the results

were compared. Extensive simulation and comparative studies were conducted. From the

comparative studies, it was noted that the results using the proposed distribution and the

existing negative binomial distribution under classical statistics yielded different results. The

results led to the conclusion that the proposed negative binomial distribution could be ap-

plied under uncertain environments. The proposed methods can be applied in diverse areas,

including reliability analysis, risk management, environmental studies, operations, machine

learning, artificial intelligence, and political science. Suggestions for future research included

exploring more statistical properties of the proposed negative binomial distribution, extend-

ing algorithms using accept-reject methods, investigating applications in various areas, and

developing software utilizing the proposed distribution and algorithms.
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IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
1 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2
5 6 6 7 7 8 8 9 9 10 10
2 3 3 3 3 3 4 4 4 4 4
2 3 3 3 3 3 4 4 4 4 4
1 2 2 2 2 2 2 2 2 2 2
7 8 9 10 10 11 12 12 13 14 14
3 4 4 4 5 5 5 6 6 6 6
3 7 8 8 9 9 10 11 11 12 12
1 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 4 4 4 4 4
4 5 5 6 6 6 7 7 8 8 8
4 5 5 6 6 6 7 7 8 8 8
4 5 5 6 6 6 7 7 8 8 8

Table 1: Random variates from Algorithm-I when rN = 3 and p = 0.50

IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
8 9 10 11 12 12 13 14 15 16 16
1 2 2 2 2 2 2 2 2 2 2
4 5 5 6 6 6 7 7 8 8 8
8 9 10 11 12 12 13 14 15 16 16
4 5 5 6 6 6 7 7 8 8 8
7 8 9 10 10 11 12 12 13 14 14
5 6 6 7 7 8 8 9 9 10 10
8 9 10 11 12 12 13 14 15 16 16
7 8 9 10 10 11 12 12 13 14 14
9 10 11 12 13 14 15 16 17 18 18
1 2 2 2 2 2 2 2 2 2 2
5 6 6 7 7 8 8 9 9 10 10
4 5 5 6 6 6 7 7 8 8 8
5 6 6 7 7 8 8 9 9 10 10
6 7 8 8 9 9 10 11 11 12 12

Table 2: Random variates from Algorithm-I when rN = 5 and p = 0.50

IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
11 13 14 15 16 17 18 19 20 21 22
4 5 5 6 6 6 7 7 8 8 8
4 5 5 6 6 6 7 7 8 8 8
8 9 10 11 12 12 13 14 15 16 16
4 5 5 6 6 6 7 7 8 8 8
7 8 9 10 10 11 12 12 13 14 14
10 11 12 13 14 15 16 17 18 19 20
11 13 14 15 16 17 18 19 20 21 22
11 13 14 15 16 17 18 19 20 21 22
13 15 16 17 19 20 21 23 24 25 26
4 5 5 6 6 6 7 7 8 8 8
10 11 12 13 14 15 16 17 18 19 20
7 8 9 10 10 11 12 12 13 14 14
11 13 14 15 16 17 18 19 20 21 22
8 9 10 11 12 12 13 14 15 16 16

Table 3: Random variates from Algorithm-I when rN = 7 and p = 0.50
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IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
11 13 14 15 16 17 18 19 20 21 22
7 8 9 10 10 11 12 12 13 14 14
6 7 8 8 9 9 10 11 11 12 12
8 9 10 11 12 12 13 14 15 16 16
10 11 12 13 14 15 16 17 18 19 20
9 10 11 12 13 14 15 16 17 18 18
11 13 14 15 16 17 18 19 20 21 22
12 14 15 16 17 18 20 21 22 23 24
13 15 16 17 19 20 21 23 24 25 26
17 19 21 23 24 26 28 29 31 33 34
8 9 10 11 12 12 13 14 15 16 16
10 11 12 13 14 15 16 17 18 19 20
10 11 12 13 14 15 16 17 18 19 20
13 15 16 17 19 20 21 23 24 25 26
14 16 17 19 20 21 23 24 26 27 28

Table 4: Random variates from Algorithm-I when rN = 9 and p = 0.50

IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
1 2 2 2 2 2 2 2 2 2 2
4 5 5 6 6 6 7 7 8 8 8
8 9 10 11 12 12 13 14 15 16 16
9 10 11 12 13 14 15 16 17 18 18
6 7 8 8 9 9 10 11 11 12 12
8 9 10 11 12 12 13 14 15 16 16
6 7 8 8 9 9 10 11 11 12 12
3 4 4 4 5 5 5 6 6 6 6
16 18 20 21 23 24 26 28 29 31 32
1 2 2 2 2 2 2 2 2 2 2
6 7 8 8 9 9 10 11 11 12 12
4 5 5 6 6 6 7 7 8 8 8
5 6 6 7 7 8 8 9 9 10 10
4 5 5 6 6 6 7 7 8 8 8
12 14 15 16 17 18 20 21 22 23 24

Table 5: Random variates from Algorithm-II when rN = 3 and p = 0.50

IN = 0 IN = 0.1 IN = 0.2 IN = 0.3 IN = 0.4 IN = 0.5 IN = 0.6 IN = 0.7 IN = 0.8 IN = 0.9 IN = 1
4 5 5 6 6 6 7 7 8 8 8
5 6 6 7 7 8 8 9 9 10 10
9 10 11 12 13 14 15 16 17 18 18
6 7 8 8 9 9 10 11 11 12 12
1 2 2 2 2 2 2 2 2 2 2
9 10 11 12 13 14 15 16 17 18 18
6 7 8 8 9 9 10 11 11 12 12
9 10 11 12 13 14 15 16 17 18 18
10 11 12 13 14 15 16 17 18 19 20
11 13 14 15 16 17 18 19 20 21 22
8 9 10 11 12 12 13 14 15 16 16
13 15 16 17 19 20 21 23 24 25 26
5 6 6 7 7 8 8 9 9 10 10
1 2 2 2 2 2 2 2 2 2 2
4 5 5 6 6 6 7 7 8 8 8

Table 6: Random variates from Algorithm-II when rN = 5 and p = 0.50
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