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1. INTRODUCTION

In clinical studies, the accurate diagnosis of a patient’s condition is crucial for appropri-

ate treatment and evaluating prognosis. Thus, before implementing a new test, quantifying

how well the medical test discriminates among different statuses is critical. Although the

present work focuses mainly on clinical research, these problems are among the general clas-

sification issues that arise in almost all fields of scientific and social research. The procedures

considered in this work could be generalized to any classification procedure that assigns a

subject or an object to a class on the basis of the information observed.

To depict the quality of a diagnostic marker or a diagnostic test in a supervised classifi-

cation problem, receiver operating characteristic (ROC) curve analysis plays a prominent role.

This analysis was introduced in the second half of the last century in a two-class classification

problem. It consists of a graphical representation of the relationship between the sensitivity

and specificity of a test as the cut-off of the test varies. At each value of the decision-making

threshold, the curve depicts the trade-off between the true positive rate (sensitivity) and false

positive rate (1-specificity).

The area under the curve (AUC), is perhaps the most frequently used summary measure

of the information reported in the ROC curve. It is a global measure of the performance of

a diagnostic marker in discriminating between two statuses. An alternative interpretation

refers to the measure of separability between the statistical distributions of the diagnostic

test in the two populations Hand (2001).

The ROC curve and AUC remain major instruments used in the evaluation of a twofold

classifier. However, many real situations in diagnostic decisions are not limited to a binary

choice. Examples include staging the level of an illness or classifying an individual at low risk,

moderate risk or high risk for a certain pathology Lusted (1960); Pepe (2003). To address

this complicated m-class classification problem, in the past century, ROC analysis has been

focused on deriving suitable generalizations of the curve. The ROC surface was introduced to

address three-class issues, and the ROC manifold was introduced for when more than three

classes are considered. Consequently, the notion of the AUC has been extended to the volume

under the surface (VUS) and, in more complex situations with more than three classes, to

the hypervolume under the manifold (HUM), Scurfield (1996, 1998); Mossman (1999). From

a statistical perspective, theoretical inferential studies on generalized ROC analysis appeared

only at the beginning of 2000. Furthermore, since those first works, few theoretical and

empirical contributions have been reported, thus leaving the four-class classification issue as

an area that still offers ample opportunities for further research Dreiseitl et al. (2000); Nakas

and Yiannoutsos (2004); Kang and Tian (2013); Li and Fine (2008); Xiong et al. (2006);

Gönen and Heller (2010); Nze Ossima et al. (2015); Jialiang Li and Pencina (2017); Waegeman

et al. (2008); Feng et al. (2023). This study is dedicated to addressing this specific topic. It

focuses on classifying subjects within an m-class framework. In such situations, a frequently

used approach to ROC analysis consists of reducing the dimensionality of the problem by

using a pairwise two-class ROC curve. Despite its simplicity, the standard approach has

the drawback of considering a subset of the entire sample, thus potentially ignoring hidden

patterns detectable only through a detailed analysis of the entire sample. The aim of this work

is thus to propose a new method and to evaluate its performance in terms of computational
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effort. The proposed HUM estimator takes into account the entire information of the sample

and, at the same time, overcomes the computational burden; furthermore, being based on

a well known estimation framework, it is very easy to implement. The article is organized

as follows. The next Section is dedicated to the presentation of the statistical methodology

proposed; specifically, we show how to derive an estimator of the hypervolume under the ROC

surface in a m-class framework. Moreover, we derive the analytical form of the variance of the

estimator. In the third section, simulation exercises in a four-class framework are presented

under different data generating processes, in each scenario our method is compared with other

three alternatives reported in the literature. In section four the methodology is evaluated

through an empirical application. Finally, in the fifth section, some issues and potential

future research are discussed.

2. Methods

Herein, a new HUM estimator, called HUMLM , is proposed. It is a generalization of

an approach proposed for the dichotomous framework Gönen and Heller (2010), generalized

to estimate the volume under the ROC surface in a three-group classification framework

Nze Ossima et al. (2015). Similarly, the analytical formula for the m-category HUM estimator

is derived together with the calculation of its variance in the particular case of four classes. As

discussed in the following sections, this represents a novelty in the literature. To derive our

estimator, we assume the proportional hazard specification of the continuous marker results,

and in the next section, we briefly revise these conditions. This assumption is also called the

Lehmann assumption.

2.1. Lehmann assumption

Suppose we use a diagnostic test with continuous values to distinguish among a number

m of classes or degree of disease. Let X1, X2, Xj , . . . , Xm, be the continuous variables of the

test result for subjects from class 1 to m with j < m. Moreover, letD be an ordinal categorical

variable with values from 1 to m, and indicating the class for each subject. Suppose, further,

that the test results for class 1, X1,i, with i = 1, 2, . . . , n1 and n1 as sample size of class 1

and are i.i.d., and the same for all the other classes. Moreover, let S1, Sj , Sm indicate the

corresponding survival functions. The survival distributions are assumed to have the family

of Lehmann alternatives Lehmann (1953), i.e.:

S2(x) = S1(x)
θ1 , 0 < θ1 ≤ 1(2.1)

Sj(x) = Sj−1(x)
θj−1 , 0 < θj−1 ≤ 1

Sm(x) = Sm−1(x)
θm−1 , 0 < θm−1 ≤ 1.(2.2)

Of note, the condition on the parameters θs indicates that subjects from class m tend to have

higher diagnostic test values than those from class j, that subjects from class j tend to have

higher measurements than those from class j − 1 and so on.

Using the log transformation allows us to rewrite the relationships among the survival
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functions as

log
(
Sj+1(x)

)
= θj log

(
Sj(x)

)
, j = {1, 2, . . . ,m− 1}.

Moreover, according to the general definition of the hazard function

h(x) =
−dS(x)

dx

1

S(x)
=

−d[logS(x)]

dx

and taking the first derivative with respect to x, we obtain

hj+1(x) = hjθj .

Thus, the unknown parameters θ can be modeled with the Cox proportional hazards model,

by assuming the marker value instead of the time index as the argument of the hazard

function. The general formula of the Cox model is:

h(x|d) = h1(x) exp{β
′
d}

where x is the marker value, d is the vector of appropriate dummy variables to detect the

group, β is the vector of parameters with θj = exp{βj}, and h1 is the hazard function of the

baseline group.

2.2. The ROC manifold - generalization to m classes

Suppose m − 1 assigned thresholds exist, with c1 < · · · < cj < · · · < cm−1. The m

probabilities of correct classification, in this case, are:

u1 = P (X1 < c1); uj = P (cj−1 ≤ Xj < cj); um = P (Xm ≥ cm−1).

In terms of survival functions, we can write the recursive expression for:

u1 = 1− S1(c1)(2.3)

uj = Sj(cj−1)− Sj(cj)

um = Sm(cm−1).(2.4)

and, as a consequence, the recursive expression for the survival function

S1(c1) = 1− u1

S2(c1) = (S1(c1))
θ
1 = (1− u1)

θ1

S2(c2) = (S2(c1))− u2) = (1− u1)
θ1 − u2

Sj(cj−1) = (Sj−1(cj−1))
θj−1 = (((1− u1)

θ1 − u2)
θ2 + · · · − uj−1)

θj−1

Sj(cj) = Sj(cj−1)− uj = (((1− u1)
θ1 − u2)

θ2 + · · · − uj−1)
θj−1 − uj

Sm(cm−1) = (Sm−1(cm−1))
θm−1 = ((((1− u1)

θ1 − u2)
θ2 + · · · − um−2)

θm−2 − um−1)
θm−1

(2.5)
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Now, the equation for the ROC surface can be obtained substituting (2.5) in (2.4) and

deriving the correct-classification probability of class m as:

um = ((((1− u1)
θ1 − u2)

θ2 + · · · − um−2)
θm−2 − um−1)

θm−1 .

The ROC hypersurface is thus anm-dimensional manifold with the following expression:

ROC(u) = ((((1− u1)
θ1 − u2)

θ2 + · · · − uj)
θj − um−1)

θm−1(2.6)

where

u = (u1, . . . , uj , . . . , um), with uj ∈ [0, 1], j = {1, . . . ,m− 1},

and

0 ≤ u1 ≤ 1; 0 ≤ u2 ≤ S2(c1); 0 ≤ uj ≤ Sj(cj−1); 0 ≤ um < Sm(cm−1).

Moreover, from eqs (2.3)-(2.4), we can rewrite

0 ≤ u2 ≤ (1− u1)
θ1

and

0 ≤ uj < ((((1− u1)
θ1 − u2)

θ2 − u3)
θ3 + · · · − uj−1)

j−1.

If the m distributions are identical, the discriminating power of the diagnostic test is

null, and the ROC hypersurface satisfies the equation u1 + · · ·+ uj + · · ·+ um = 1.

2.3. The hypervolume under the manifold

For the simpler cases of two- and three-classification issues, the accuracy measure of

the discriminating function ROC(u) can be given by the AUC and VUS respectively. In the

next theorem, an analytical formula for calculating the HUM is described. The analytical

formula depends on only θs parameters.

Theorem 2.1. Consider a m-class classification problem wherein the survival func-

tions, under the Lehmann condition, are given as in eqs (2.1)-(2.2). Moreover, let the quan-

tities u1, uj and um be defined as in eqs (2.3)-(2.4).

If the discriminating function is given by the ROC(u) function, as defined in eq. (2.6),

then the HUM is given by

HUM(θ1, θ2, . . . , θm−2, θm−1) =

m−1∏
n=1

1

R(m− 1, n)
(2.7)

where:

R(m− 1, n) = 1 +

m−1∑
i=m−n

i∏
j=m−n

θj .

for some parameter 0 < θ1 ≤ 1, 0 < θ2 ≤ 1 . . . 0 < θm−1 ≤ 1.
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Proof: The hypervolume under the ROC manifold represents the accuracy measure

of interest and is obtained by integrating the ROC surface defined in eq. (2.6) over its domain:

HUM(θ1, . . . , θm−2, θm−1) =

=

∫ 1

0

∫ (1−u1)
θ1

0
· · ·

∫ (((1−u1)
θ1−u2)

θ2 ···−um−2)
θm−2

0
((((1− u1)

θ1 − u2)
θ2 · · · − um−2)

θm−2 − um−1)
θm−1 dum−1 dum−2 . . . du1

=
1

1 + θm−1

∫ (((1−u1)
θ1−u2)

θ2 ···−um−3)
θm−3

0
−

(
(1− u1)

θ1 − u2)
θ2 · · · − um−1)

1+θm−1

∣∣∣(((1−u1)
θ1−u2)

θ2 ···−um−2)
θm−2

0
dum−2 . . . du1

=
1

1 + θm−1

∫ (((1−u1)
θ1−u2)

θ2 ···−um−3)
θm−3

0
((1− u1)

θ1 − u2)
θ2 · · · − um−2)

θm−2(1+θm−1) dum−2 . . . du1

=
1

1 + θm−1

1

1 + θm−2(1 + θm−1)

∫ (((1−u1)
θ1−u2)

θ2 ···−um−4)
θm−4

0
−

(
(1− u1)

θ1 − u2)
θ2 · · · − um−2)

θm−2(1+θm−1)
∣∣∣(((1−u1)

θ1−u2)
θ2−u3)

θ3

0
dum−3 . . . du1

after some algebra a generalized expression for HUM can be obtained:

HUM(θ1, . . . , θm−2, θm−1) =
1

1 + θm−1
· 1

1 + θm−2 + θm−2θm−1
. . .(2.8)

1

1 + θm−3 + θm−3θm−2 + θm−3θm−2θm−1
·

1

1 + θ1 + θ1θ2 + · · ·+ θ1θ2 . . . θm−2θm−1
.

or, in a more compact form:

HUM(θ1, θ2, . . . , θm−1) =
m−1∏
n=1

1

R(m− 1, n)
,

with:

R(m− 1, n) = 1 +
m−1∑

i=m−n

i∏
j=m−n

θj .

Eq. (2.7) represents the entire HUM in an m-dimensional classification problem. As

can be seen, the closed form depends only on the parameters of the Lehmann assumption.

The following corollary to Theorem 2.1 provides an interesting result when the ROC func-

tion associated with the classification problem is unable to discriminate among the different

classes.

Corollary 2.1. Consider a m-class classification problem as the one defined in The-

orem 2.1. If the diagnostic test is non-discriminatory, the HUM is equal to

HUM(θ1, . . . , θm−2, θm−1) = 1/m!

which is its minimum possible value.
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Proof of Corollary 2.1: In the case of a non-discriminatory test, θ1 = θ2 = · · · =
θm−1 = 1, thus indicating that no difference exists among the m survival functions. As a

consequence, the HUM in eq. (2.7) simply becomes HUM = 1/m!, which represents the

minimum value.

Corollary 2.2. If the problem reduces to three classes, that is when the parameters

from θm−1 to θ3 equal zero, thenHUM = V US = 1/((θ2+1)(θ1(θ2+1)+1)), as in Nze Ossima

et al. (2015). If θ2 equals zero too, then HUM = V US = AUC = 1/(θ1+1); i.e., the volume

under the surface collapses to the area under the Lehmann family ROC curve, as shown in

Gönen and Heller (2010).

Proof of Corollary 2.2: The result can be easily obtained from the proof of The-

orem 2.1, through solving the integral by fixing the parameters from θm−1 to θ3 = 0 first,

and then θ2 = 0 too.

The result in Corollary 2.2 simply states that the analytic formula for the HUM devel-

oped in Theorem 2.1 is a generalization, in them-class classification framework, of the findings

for the three- Nze Ossima et al. (2015) and two-class Gönen and Heller (2010) classification

procedures.

2.4. Estimation

A semi-parametric approach is proposed to estimate the hypersurface and the hyper-

volume derived above. For the sake of simplicity, only the estimation procedure in a four

class framework is shown. The generalization to m classes is straightforward.

Under the Lehmann condition, the four survival functions are related by the parameters

θ1, . . . , θm−1 . As a consequence, both the ROC surface and the hypervolume are functions

of these unknown parameters, which represent the object of inferential analysis.

According to the intuition regarding the two-class classification issue Gönen and Heller

(2010), we propose to estimate the parameters θ1, . . . and θm−1 with the proportional hazards

regression model already present in several statistical packages. As shown below, the problem

in fact can be written in terms of a regression model. Let x be the generic realization of the

continuous diagnostic test X. Under the Lehmann condition we have:

θ1 =
h2(x)

h1(x)
(2.9)

...

θm−1 =
hm(x)

hm−1(x)
(2.10)
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where hi(x) are the hazard functions of X in the i-th group, with i = 1, . . . ,m.

To estimate the parameters, we define the Cox model with the diagnostic test X in

place of the usual “time”variable. To implement the model, the m-level categorical variable

D can be replaced by a combination of m− 1 ad hoc dummy variables D1,. . . , Dm−1.

The Cox proportional hazards model thus can be written as:

h(x|d1, . . . , dm−1) = h1(x) exp{β1d1 + · · ·+ βm−1dm−1}

where d1, . . . , dm−1 are the realizations of the dummy variables D1, . . . , Dm−1, respectively,

and h1(x) is the baseline hazard function. Specifically, the hazard in group 1 is:

(2.11) h(x|d1 = 0, . . . , dm = 0) = h1(x),

the hazard in group m− 2 is:

h(x|d1 = 1, . . . , dm−3 = 1, dm−2 = 0) = hm−2 = h1(x) exp{β1 + · · ·+ βm−3},

the one in group m− 1 is:

h(x|d1 = 1, dm−2 = 1, dm−1 = 0) = hm−1(x) = h1(x) exp{β1 + · · ·+ βm−2},

and that in group m is:

(2.12) h(x|d1 = 1, . . . , dm−1 = 1, dm = 0) = hm(x) = h1(x) exp{β1 + · · ·+ βm−1},

where the scalars β1, . . . and βm−1 are the parameters of the regression model to be estimated.

Now, by substituting the hazard functions in eqs (2.11)-(2.12) into the definition of the

θ parameters in eqs (2.9)-(2.10), the latter equations can be rewritten as a function of the β

parameters:

θ1 =
h1(x) exp{β1}

h1(x)
= exp{β1}

...

θm−2 =
h1(x) exp{β1 + · · ·+ βm−2}
h1(x) exp{β1 + · · ·+ βm−3}

= exp{βm−2}

θm−1 =
h1(x) exp{β1 + · · ·+ βm−1}
h1(x) exp{β1 + · · ·+ βm−2}

= exp{βm−1}.

Therefore, the vector of parameters θ can be estimated by estimating the vector of

parameters β. For the latter estimation, the well known estimation techniques for the Cox

proportional hazards model based on the maximization of the partial likelihood can be used.

Moreover, because the properties of the ML estimators hold for the parameters βs, and the

θs are obtained by applying a monotonic and continuous transformation, they maintain the

same properties. Under the usual regularity conditions, the estimators θ̂1, . . . , θ̂m−1 are thus

consistent and asymptotically normally distributed.

Finally, by substituting the θ̂s in eq. (2.7) we obtain the partial maximum likelihood

estimate of ĤUMLN :
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ĤUMLN =
m−1∏
n=1

1

R(m− 1, n)

where:

R(m− 1, n) = 1 +
m−1∑

i=m−n

i∏
j=m−n

θ̂j .

2.5. An analytical formula for the variance of the estimator

The analytical formula for the asymptotic variance is derived only for the four-class

framework, and it is obtained according to Nze Ossima et al. (2015) using the Delta method.

The variance-covariance matrix for the vector of parameters θ̂ can be decomposed as

Σθ̂1,θ̂2,θ̂3
=

 σ2
θ̂1

σθ̂1,θ̂2 σθ̂1,θ̂3
σθ̂2,θ̂1 σ2

θ̂2
σθ̂2,θ̂3

σθ̂3,θ̂1 σθ̂3,θ̂2 σ2
θ̂3


= JTV J(2.13)

where J is the Jacobian of θ̂ = (θ̂1, θ̂2, θ̂3):

J =

exp{β̂1} 0 0

0 exp{β̂2} 0

0 0 exp{β̂3}

(2.14)

and V is the variance-covariance matrix of β̂ = (β̂1, β̂2, β̂3):

V = Σβ̂1,β̂2,β̂3
=

 σ2
β̂1

σβ̂1,β̂2
σβ̂1,β̂3

σβ̂2,β̂1
σ2
β̂2

σβ̂2,β̂3

σβ̂3,β̂1
σβ̂3,β̂2

σ2
β̂3

 .(2.15)

By substituting (2.14) and (2.15) in (2.13), the variance-covariance matrix for θ̂ becomes:

Σθ̂1,θ̂2,θ̂3
=


exp{2β̂1}σ2

β̂1
exp{β̂1} exp{β̂2}σβ̂1β̂2

exp{β̂1} exp{β̂3}σβ̂1β̂3

exp{β̂1} exp{β̂2}σβ̂1β̂2
exp{2β̂2}σ2

β̂2
exp{β̂2} exp{β̂3}σβ̂2β̂3

exp{β̂3} exp{β̂1}σβ̂3β̂1
exp{β̂3} exp{β̂2}σβ̂3β̂2

exp{2β̂3}σ2
β̂3



=


exp{2β̂1}σ2

β̂1
exp{β̂1 + β̂2}σβ̂1β̂2

exp{β̂1 + β̂3}σβ̂1β̂3

exp{β̂1 + β̂2}σβ̂1β̂2
exp{2β̂2}σ2

β̂2
exp{β̂2 + β̂3}σβ̂2β̂3

exp{β̂3 + β̂1}σβ̂3β̂1
exp{β̂3 + β̂2}σβ̂3β̂2

exp{2β̂3}σ2
β̂3

 .
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Using the Delta method, the variance for HUMLN is:

σ2

ĤUMLN
= σ2

θ̂1

(
∂ĤUMLN

∂θ̂1

)2

+ σ2
θ̂2

(
∂ĤUMLN

∂θ̂2

)2

+ σ2
θ̂3

(
∂ĤUMLN

∂θ̂3

)2

+

+2

(
∂ĤUMLN

∂θ̂1

∂ĤUMLN

∂θ̂2

)
σθ̂1θ̂2 + 2

(
∂ĤUMLN

∂θ̂1

∂ĤUMLN

∂θ̂3

)
σθ̂1θ̂3 +

+2

(
∂ĤUMLN

∂θ̂2

∂ĤUMLN

∂θ̂3

)
σθ̂2θ̂3(2.16)

where the single partial derivatives are given by:

∂ĤUMLN

∂θ̂1
= − 1

(θ̂3 + 1)[θ̂1(θ̂2θ̂3 + θ̂2 + 1) + 1]2

∂ĤUMLN

∂θ̂2
= − 2θ̂1(θ̂2θ̂3 + θ̂2 + 1)− 1

(θ̂2θ̂3 + θ̂2 + 1)2[θ̂1(θ̂2θ̂3 + θ̂2 + 1) + 1]2

∂ĤUMLN

∂θ̂3
=

−θ̂2

(θ̂3 + 1)[θ̂2(θ̂3 + 1) + 1]2[θ̂1(θ̂2(θ̂3 + 1) + 1) + 1]

− θ̂1θ̂2

(θ̂3 + 1)[θ̂2(θ̂3 + 1) + 1][θ̂1[θ̂2(θ̂3 + 1) + 1] + 1]2

− 1

(θ̂3 + 1)2[θ̂2(θ̂3 + 1) + 1][θ̂1(θ̂2(θ̂3 + 1) + 1) + 1]
.

This result is extremely interesting because, to the best of our knowledge, it represents

the first time in which a standard error for the HUM related to a four-class classification

problem has been derived analytically. Since all the derivatives are derived analytically, the

empirical calculation is extremely simple and notably faster than any other technique based

on simulation. Examples are provided in the next section.

3. Simulation studies

This section compares three approaches for estimating the HUM value in the specific

case of four-class classification. We report simulation studies with multiple scenarios to eval-

uate the effects of different data generating processes (DGP) on the estimator performance.

3.1. General setting

We hypothesize a setting in which a continuous diagnostic marker is evaluated in a

sample with subjects belonging to four different groups, for example, four stages of disease.

We consider a set of scenarios according to different sample sizes and different characteristics

of the data generating process (DGP). As discussed in the previous sections, an important

assumption characterizing this approach is the Lehmann condition, which is not necessary

for the other estimators selected for comparison herein. An important distinction in the
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following simulation exercises is whether the DGP satisfies such conditions. The Lehmann

assumption states that

S2 = Sθ1
1 ; S3 = Sθ2

2 ; S4 = Sθ3
3

where Si, with i = 1, . . . , 4, represents the survival function in each stage of disease, and θ1, θ2
and θ3 are the parameters. The main challenge in the simulation exercises lies in the fact that

the Cox model is defined in terms of hazard functions, while data generation requires starting

from probability distributions. To address this issue, the Monte Carlo inversion method, as

described in Nze Ossima et al. (2015), is employed.

3.2. Comparison with other HUM estimators

To the best of our knowledge, four studies have reported estimators of the hypervolume

as a measure of the discrimination accuracy of a continuous biomarker. The four methods

-our proposed approach and three alternatives- share the common principle of disregarding

the marker’s distribution. Notably, three of these methods are nonparametric, while ours is

best described as semi-parametric. The first alternative, referred to as HUMEX , adopts a

nonparametric approach, with its theoretical and inferential framework built on the Mann-

Whitney U statistic Nakas and Yiannoutsos (2004). This estimator is implemented in the R

package “Biocomb”Novoselova et al. (2017). The second, HUMLF , is the estimator presented

by Li and Fine (2008). Like the HUMEX , it does not require any assumptions regarding

the functional form of the distribution of the biomarker in the population, and it is based

on the multinomial logistic model. Furthermore, the condition for ordering the test results

with respect to the class of disease is relaxed. This estimator has been implemented in a

recent R package called “mcca”Gao and Li (2018). The third, recently proposed by Feng

et al. (2023), is based on the HUM definition given by Nakas and Yiannoutsos (2004) and

Feng et al. (2021). The authors present a graph-based method for efficiently computing the

HUM and its asymptotic variance. Interestingly, the method is computationally efficient and

applicable to continuous, discrete, and mixed-distribution biomarkers. Unfortunately, no

packages are currently available to enable its implementation. Our proposal, HUMLN , is a

semi-parametric estimator in the sense that it is obtained through an approach that does not

require a full parametric specification of the marker distribution for the four populations. It

is based on the Lehmann assumption, which postulates the existence of a monotonic transfor-

mation producing marker values with an extreme value distribution without specifying and

estimating the transformation. Thus, the only parameters to be estimated are those govern-

ing the relationships among the survival distributions. This approach, like that of HUMEX ,

requires an assumption regarding the ordering of the disease categories. The variance of

HUMLN has an analytical form obtained with the Delta method shown in Section 2.5. It

is computationally very fast because it relies on the proportional hazards framework, thus

enabling inference with standard statistical softwares.
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3.3. Data generation processes

In this section, a simulation study is reported, based on a continuous dataset of 1000

random samples generated from different DGPs. The first set of simulations (cases 1–3),

summarized in Table 1 , is conducted under the assumption that the Lehmann condition

holds. The data are generated by starting from different Weibull distributions. Specifically,

the data are generated from a Cox proportional hazards model with different vectors of

parameters β = (β1;β2;β3)
′ and groups covariate vector d . The hazard functions thus

assume the form

hi(t|d1, d2, d3) =


h1(t) d1i = 0, d2i = 0, d3i = 0

h1(t) exp{β1d1i} d1i = 1, d2i = 0, d3i = 0

h1(t) exp{β1d1i + β2d2i} d1i = 1, d2i = 1, d3i = 0

h1(t) exp{β1d1i + β2d2i + β3d3i} d1i = 1, d2i = 1, d3i = 1.

Data generation under these conditions corresponds to the assumption that Xi ∼ Wei(λi, ν)

is the marker’s distribution in the i-th class, with i = 1, . . . , 4. In the second set of simulations

(cases 4–6) in Table 2, the shape parameter of the Weibull distribution is group-dependent,

meaning that the Lehmann condition does not hold. Finally, the last set of simulations refers

to Gaussian distributions (cases 7–9) in Table 3.

� Case 1. is characterized by the vector of parameters β = (−1.4;−0.8;−0.6)′. That is:

X1 ∼ Wei(4, 2)

X2 ∼ Wei(4 ∗ exp{−1.4}, 2)
X3 ∼ Wei(4 ∗ exp{−1.4− 0.8}, 2)
X4 ∼ Wei(4 ∗ exp{−1.4− 0.8− 0.6}, 2).

� Case 2: β = (−2.5;−1.2;−1.7)′.

� Case 3: β=(−4.1;−3.5;−3.8)′ .

� Case 4: β = (−1.2,−0.5,−0.8)′ and ν1 = 5, ν2 = 4, ν3 = 2, ν4 = 5 .

� Case 5: β = (−1.4,−1.2,−3.2)′ and ν1 = 2, ν2 = 2, ν3 = 3, ν4 = 4.

� Case 6: β = (−2.0,−3.0,−6.0)′ and ν1 = 2, ν2 = 2.5, ν3 = 4, ν4 = 7.

� Case 7: µ1 = 0.1, µ2 = 0.3, µ3 = 0.5, µ4 = 0.7 and σ1 = σ2 = σ3 = σ4 = 1.

� Case 8: µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4 and σ1 = σ2 = σ3 = σ4 = 1.

� Case 9: µ1 = 1, µ2 = 3, µ3 = 5, µ4 = 7 and σ1 = σ2 = σ3 = σ4 = 1.
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The estimation results are shown in Table 1, Table 2 and Table 3. For each of the three

estimators, the first three columns of the tables report the characteristics of the DGP, in terms

of the parameters β, the true value of the HUM, and the sample size of each simulation. The

following columns show the simulation results, the estimated HUM (hum), the standard error

(se) and the bias, expressed in both absolute values and percentages, with respect to the true

HUM. Regarding the calculation of the standard errors, for our estimator, we use the formula

in eq. (2.16), whereas for the other two estimators, because analytical results do not exist,

we apply the bootstrap technique.

HUMLN

β true N est. se bias bias
hum hum (abs value) %

120 0.270 0.042 0.006 2.133
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.267 0.032 0.003 0.996

320 0.266 0.026 0.002 0.638

120 0.565 0.053 0.004 0.712
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.563 0.041 0.002 0.396

320 0.561 0.033 <0.001 0.069

120 0.933 0.024 <0.001 0.005
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.933 0.018 <0.001 0.034

320 0.933 0.015 <0.001 0.036

HUMEX

120 0.270 0.047 0.006 2.283
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.266 0.037 0.003 0.952

320 0.265 0.030 0.001 0.283

120 0.565 0.061 0.004 0.740
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.563 0.048 0.002 0.360

320 0.561 0.039 <0.001 0.083

120 0.934 0.032 0.001 0.130
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.933 0.025 <0.001 0.012

320 0.933 0.020 <0.001 0.006

HUMLF

120 0.252 0.048 0.012 4.609
case 1 (−1.4;−0.8;−0.6)′ 0.264 200 0.249 0.038 0.015 5.563

320 0.248 0.031 0.016 6.127

120 0.531 0.063 0.030 5.315
case 2 (−2.5;−1.2;−1.7)′ 0.561 200 0.529 0.049 0.032 5.680

320 0.526 0.038 0.035 6.218

120 0.925 0.035 0.008 0.879
case 3 (−4.1;−3.5;−3.8)′ 0.933 200 0.922 0.027 0.011 1.175

320 0.922 0.022 0.011 1.205

Table 1: Simulation results for the Weibull case under the Lehmann as-
sumption and three different vectors of parameters β of the Cox
proportional hazards regression model. Bias is expressed in ab-
solute value, and the percentage is calculated with respect to
the true HUM value.
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HUMLN

β true N est. se bias bias
hum hum (abs value) %

β = (−1.2,−0.5,−0.8)′ 120 0.160 0.024 0.075 31.972
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.159 0.018 0.076 32.332

ν3 = 2, ν4 = 5 320 0.158 0.015 0.076 32.447

β = (−1.4,−1.2,−3.2)′ 120 0.481 0.055 0.073 13.150
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.478 0.045 0.076 13.644

ν3 = 3, ν4 = 4 320 0.475 0.035 0.079 14.267

β = (−2.0,−3.0,−6.0)′ 120 0.721 0.049 0.115 13.753
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.716 0.039 0.120 14.375

ν3 = 4, ν4 = 7 320 0.713 0.032 0.123 14.683

HUMEX

β = (−1.2,−0.5,−0.8)′ 120 0.186 0.034 0.048 20.558
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.182 0.028 0.053 22.484

ν3 = 2, ν4 = 5 320 0.235 0.028 0.001 0.237

β = (−1.4,−1.2,−3.2)′ 120 0.513 0.059 0.040 7.283
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.514 0.048 0.040 7.195

ν3 = 3, ν4 = 4 320 0.554 0.038 0.001 0.094

β = (−2.0,−3.0,−6.0)′ 120 0.773 0.049 0.063 7.508
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.771 0.038 0.064 7.715

ν3 = 4, ν4 = 7 320 0.771 0.030 0.065 7.818

HUMLF

β = (−1.2,−0.5,−0.8)′ 120 0.117 0.042 0.118 50.175
case 4 ν1 = 5, ν2 = 4, 0.234 200 0.111 0.033 0.124 52.768

ν3 = 2, ν4 = 5 320 0.104 0.023 0.130 55.513

β = (−1.4,−1.2,−3.2)′ 120 0.473 0.058 0.080 14.540
case 5 ν1 = 2, ν2 = 2, 0.553 200 0.473 0.047 0.080 14.487

ν3 = 3, ν4 = 4 320 0.470 0.036 0.083 15.049

β = (−2.0,−3.0,−6.0)′ 120 0.714 0.056 0.122 14.547
case 6 ν1 = 2, ν2 = 2.5, 0.836 200 0.711 0.044 0.125 14.939

ν3 = 4, ν4 = 7 320 0.710 0.035 0.126 15.073

Table 2: Simulation results for the Weibull case with group-specific shape
parameters (Lehmann condition not satisfied) and three differ-
ent vectors of parameters β . Bias is expressed in absolute value,
and the percentage is calculated with respect to the true HUM
value.

When the Lehmann condition is satisfied, HUMLN and HUMEX perform very well

and highly similarly. Both estimators present decreased bias. Case 3 has practically no bias,

even in small samples, although our estimator has systematically smaller standard errors.

The third estimator, HUMLF , performs systematically more poorly, in terms of both bias

and standard errors. In the Supplementary file, the computational times (in seconds) for

obtaining the results are presented. The results clearly indicate that our estimator is com-

putationally extremely efficient with respect to the others. When the Lehmann condition

is not met, the HUMLN continues to perform systematically better than the HUMLF , in

terms of both bias and precision (standard error). Regardless of the sample size and the
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HUMLN

parameters β true N est. se bias bias
hum hum (abs value) %

µ1 = 0.1, µ2 = 0.3 120 0.069 0.016 0.009 11.218
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.069 0.012 0.008 10.792

σ1 = σ2 = σ3 = σ4 = 1 320 0.069 0.010 0.008 10.633

µ1 = 1, µ2 = 2 120 0.305 0.050 0.064 17.397
case 8 µ3 = 3, µ4 = 4 0.369 200 0.300 0.039 0.069 18.633

σ1 = σ2 = σ3 = σ4 = 1 320 0.299 0.031 0.071 19.148

µ1 = 1, µ2 = 3 120 0.672 0.060 0.099 12.818
case 9 µ3 = 5, µ4 = 7 0.771 200 0.664 0.047 0.107 13.876

σ1 = σ2 = σ3 = σ4 = 1 320 0.659 0.039 0.111 14.450

HUMEX

µ1 = 0.1, µ2 = 0.3 120 0.090 0.018 0.012 15.754
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.084 0.014 0.007 8.552

σ1 = σ2 = σ3 = σ4 = 1 320 0.082 0.012 0.004 5.712

µ1 = 1, µ2 = 2 120 0.365 0.053 0.004 1.206
case 8 µ3 = 3, µ4 = 4 0.369 200 0.367 0.042 0.003 0.717

σ1 = σ2 = σ3 = σ4 = 1 320 0.369 0.034 <0.001 0.037

µ1 = 1, µ2 = 3 120 0.768 0.049 0.002 0.322
case 9 µ3 = 5, µ4 = 7 0.771 200 0.769 0.038 0.002 0.248

σ1 = σ2 = σ3 = σ4 = 1 320 0.770 0.031 0.001 0.080

HUMLF

µ1 = 0.1, µ2 = 0.3 120 0.077 0.021 0.001 0.844
case 7 µ3 = 0.5, µ4 = 0.7 0.077 200 0.074 0.016 0.003 4.354

σ1 = σ2 = σ3 = σ4 = 1 320 0.073 0.014 0.005 5.928

µ1 = 1, µ2 = 2 120 0.334 0.052 0.035 9.558
case 8 µ3 = 3, µ4 = 4 0.369 200 0.337 0.041 0.033 8.875

σ1 = σ2 = σ3 = σ4 = 1 320 0.339 0.033 0.030 8.085

µ1 = 1, µ2 = 3 120 0.703 0.057 0.068 8.768
case 9 µ3 = 5, µ4 = 7 0.771 200 0.702 0.045 0.068 8.872

σ1 = σ2 = σ3 = σ4 = 1 320 0.703 0.036 0.068 8.808

Table 3: Simulation results for Normal distributions with group-specific
expected values and equal variances (Lehmann condition not
satisfied). Bias is expressed in absolute value, and the percent-
age is calculated with respect to the true HUM value.

magnitude of the HUM, the best estimator in terms of bias is the HUMEX . The compu-

tational times reported the Supplementary file clearly indicate that our estimator is much

faster than the others, regardless of the size of the sample. The computational time instead

markedly increases with both HUMEX and HUMLF . In consideration of departures from

the Lehmann conditions originating from Gaussian distributions, the HUMLN estimators

show increasing bias with larger sample sizes and more separate variables for the groups.

Despite such unfavorable conditions, the bias remains relatively contained and in line with

that of the HUMLF estimator, which is, however, much more computationally demanding.

The HUMEX estimator in general has the lowest bias, although it becomes computationally

time consuming as the sample size increases.
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4. Blood markers for colorectal cancer

Cancer detection at early stages has been one of the main research topics undertaken

by the scientific community over the recent decades. As the deterioration from pre malignant

lesion to carcinoma and metastasis involves several molecular events, the idea of detecting

solid tumours through simple blood tests has received growing interest. At the same time,

medical and chemical research has greatly expanded the amount of testable components

using human blood samples, including cell-free DNA (cfDNA) and RNA (cfRNA), as well as

proteins and circulating vesicles, known as exosomes.

With the aim of early detection of CRC, over the recent years many countries have

promoted a massive campaigns to resort to faecal immunochemical test (FIT) as a simple,

non-invasive and acceptable test.

4.1. Data and descriptive statistics

The data we analyse come from a study on colorectal cancer conducted with the pur-

pose of evaluating a panel of four messenger RNAs (mRNAs) as putative markers of the

cancer (Rodia et al., 2018). Specifically, the authors tested four markers: carcinoembryonic

antigen-related cell-adhesion molecule 6 (CEACAM6), lectin galactoside binding soluble 4

(LGALS4), tetraspanin 8 (TSPAN8), collagen type I alpha 2 chain (COL1A2), hereafter re-

ferred to with the acronym of CELTiC (CEACAM6, LGALS4, TSPAN8 and COL1A2), on

subjects positive for the faecal immunochemical test (FIT) and undergoing colonoscopy. The

researchers investigated 231 participants that can be classified into four distinct groups: 67

healthy subjects (N), 36 FIT positive with negative colonoscopy (NFIT), 36 low risk that is

FIT positive with small polyps (LR), 92 FIT positive with advanced adenomas or a histolog-

ically confirmed diagnosis of colorectal cancer (HR/CCR).

Before proceeding with the discussion, a clarification about the study design is in order.

In fact, as recognized by the authors, the study presents some limitations in the data. In

particular, an in-depth analysis of the design would suggest to examining additional healthy

subjects as well as FIT negative subjects and to increase the record of FIT positive and CRC

subjects. Although we are aware of the preliminary nature of the study, the reason we decided

to apply our methodology to the CELTiC dataset is twofold: firstly, the dataset presents the

characteristics of classifying the subjects in four categories; secondly, a recent parallel paper

investigating the same data offers a way to compare our results to those obtained through

the traditional dichotomous-forced approach. Table 4 provides the descriptive statistics of

the four biomarkers characterizing each group. It is important to note that, in line with

standard practice in molecular genetics, the marker measures have been transformed such

that they are inversely correlated to the amount of gene expression, thus high values indicate

low levels of the relative gene. In Figure 2, the relative values for the four groups of healthy

control subjects (N), negative colonoscopy (NFIT), low risk lesion (LR), high risk lesion or

colorectal cancers (HR/CRC) are reported for each marker CEACAM6, LGALS4, TSPAN8

and COL1A2. A more detailed descriptive statistical analysis can be found in Rodia et al.

(2018).
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4.2. Statistical analysis using the HUM

In the paper by Rodia et al. (2018), the authors propose to use a multinomial logistic

regression model in order to study the association between outcome and a linear combina-

tion of the proposed markers; two-tailed p-values less than 0.05 were considered statistically

significant; the reference group is N (healthy subjects). However, the authors force the statis-

tical methodology and use dichotomous ROC curve and AUC analysis to assess the accuracy

of the model in discriminating among the four groups of subjects. In this section, instead,

we implement the proposed methodology. Specifically, we aim to compute the ability of the

four biomarkers in discriminating subjects among the four groups. The accuracy summary

measure we adopt, thus, is given by the HUM. We estimated HUMLN for each single marker

and the analytical asymptotic standard errors of the HUMLN , which provide a measure

of the sample uncertainty associated with the accuracy summary indicator. The HUMLN ,

moreover, is compared with the other two estimators already existing in the literature: the

HUMLF by Li and Fine (2008) and the HUMEX by Nakas and Yiannoutsos (2004) already

presented in Section 3.2. For the latter, however, since no analytical formulas are available

for calculating the standard errors, bootstrap techniques have been employed. Finally, for the

sake of completeness, bootstrap standard errors have also been calculated for the HUMLN

estimator. As suggested in Li and Fine (2008), bootstrap estimation of the standard errors

for the three estimates are calculated with B = 100 bootstrap resamples. 1

4.3. Results

Before presenting the results, we check for the Lehmann assumption through the graph-

ical method and the statistical test proposed by Grambsch and Therneau (1994). The plots

of the survival curves for all the markers are reported in Figure 1. Even though it is not easy

to interpret the plots in a four-class framework, when considering TSPAN8 and COL1A2,

it emerges that the curves are overall parallel, although three of them are practically in-

distinguishable for a wide range of marker values. For the two remaining markers, instead,

the parallelism is questionable, especially for LGALS4. As can be seen in the Table 5, the

null hypothesis of the proportional hazards assumption, cannot be rejected for TSPAN8 and

COL1A2, while only at the 1% critical level for CEACAM6. It has to be rejected, instead,

for the LGALS4 marker. Overall, however, the p-values remain relatively low, even when the

null hypothesis cannot be rejected by the data. For each of the three estimators the point es-

timates and the bootstrap standard errors are shown in Table 6. Moreover, for the HUMLN ,

in brackets, the asymptotic analytical standard errors is also retported. From Table 6, we

can deduce some general results: for all the markers, despite the estimator used, the HUM

is rather low; the HUMEX estimator always produces the highest values of the HUM while

the HUMLN , on the contrary, is the one giving the lowest values of the hypervolume. The

worst results for the HUMLN are those associated to LGALS4 and CEACAM6, a possible

explanation for the poor performance of the HUMLN in terms of the magnitude of the point

1Specifically, the HUMEX has been estimated by the R-function Calculate HUM-EX included in the R-
package Biocomb , which internally computes the maximal HUM value between all the possible permutations
of class labels. We recall that HUMLF , instead, is not affected by the ordering of the categories.
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estimate can be ascribed to the fact that the Lehmann condition is only marginally supported

for the first two markers while must be rejected for the last two, at least at the 5% critical

level (see Table 5). The HUMLN is largely the most efficient estimator, both in terms of

analytical and bootstrapped standard errors. Moreover, our approach, through the analysis

of the p-values of the Cox regression coefficients, offers detailed information about the dis-

criminatory power of the marker for each single class. In Table 7, for each marker, we show

the estimated coefficients of the Cox model with the associated p-values. On the other side,

regardless of the estimator used, the estimated HUM values confirm the LGALS4 biomarker

as the most powerful blood marker discriminating among the four groups. This result rein-

forces the one obtained in Rodia et al. (2018) with the rough pairwise ROC analysis. This

marker is able to correctly classifying four subjects randomly chosen from the four groups

with a probability that ranges between 0.129 of the HUMLN estimator and 0.219 of the

HUMEX estimator. If we recall that the null value of HUM for a four-category classification

problem is 1/4! = 0.042, we can argue that the accuracy of this marker is sufficiently better

than a random guess.

N N FIT LR HR-CCR

mean sd mean sd mean sd mean sd

TSPAN8 11.330 1.718 9.997 1.199 9.924 1.420 9.558 1.851
COL1A2 11.449 1.920 9.674 1.286 9.674 1.373 9.608 1.973
LGALS4 12.893 1.971 15.662 1.300 15.284 0.775 14.693 1.275

CEACAM6 12.343 1.893 14.249 1.096 13.589 1.206 13.346 1.247

Table 4: Means, standard deviations and relative effects of biomarkers
by class.

marker p-value

TSPAN8 0.185
COL1A2 0.139
LGALS4 < 0.01

CEACAM6 0.011

Table 5: Test for proportional hazards assumption.
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Figure 1: Log(-log(survival))curves as function of marker value for
TSPAN8, COL1A2, LGALS4 and CEACAM6.
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Figure 2: Box plot of the four blood markers for colorectal cancer detec-
tion in the four groups.

5. Discussion

In the present work, we sought to develop a method to evaluate the accuracy measure

of a biomarker in discriminating a sample of patients divided into a number m of classes

according to the severity of a disease. Because our problem was related to an m-class sample,

we focused on ROC manifolds and relative HUM. We proposed a semi-parametric approach to
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HUMLN HUMEX HUMLF

ĥum se ĥum se ĥum se

TSPAN8 0.087 0.012 (0.013) 0.110 0.019 0.108 0.029
COL1A2a 0.102 0.015 (0.015) 0.111 0.020 0.111 0.035
LGALS4 0.129 0.021 (0.020) 0.219 0.034 0.151 0.041

CEACAM6 0.096 0.016 (0.015) 0.144 0.024 0.139 0.029

Table 6: Estimated HUMs by marker.
a The HUMEX estimator suggests a different order of categories
(HR/CCR, LR, NFIT, N); however, if we impose this order on the
HUMLN estimator, the estimated HUM decreases to 0.081.

TSPAN8

β θ = exp(β) se z p-value

LR -0.065 0.937 0.197 -0.330 0.740
N FIT 0.014 1.014 0.236 0.060 0.950

N -0.839 0.432 0.216 -3.890 < 0.001

COL1A2

β θ = exp(β) se z p-value

N FIT -0.006 0.994 0.236 -0.030 0.980
HR/CCR -0.207 0.813 0.199 -1.040 0.300

N -0.836 0.433 0.168 -4.960 < 0.001

LGALS4

β θ = exp(β) se z p-value

HR/CCR -0.918 0.399 0.164 -5.590 < 0.001
LR -0.228 0.796 0.197 -1.160 0.250

N FIT -0.356 0.700 0.243 -1.460 0.140

CEACAM6

β θ = exp(β) se z p-value

HR/CCR -0.446 0.641 0.162 -2.750 0.006
LR -0.099 0.906 0.199 -0.500 0.620

N FIT -0.465 0.628 0.239 -1.950 0.052

Table 7: Estimated coefficients for the Cox proportional hazards regres-
sion model. Note that, for each marker, the ordering is the one
established by the relative effects and the omitted class is the
reference one.

derive the ROC manifold and the HUM. Our contribution relies on the Lehmann assumption

and constitutes the generalization of the work by Gönen and Heller (2010) and Nze Ossima

et al. (2015) to a m-class setting. We derived the analytical expression of the HUM estimator,

referred to as HUMLN , along with its variance, specifically restricted to the special case of

four classes. Furthermore, an inferential solution for the estimator and for the variance is

proposed.

To evaluate the performance of the suggested estimator, we carried out extensive simu-

lation studies and applied the proposed approach to an empirical problem. In addition, both

in the simulation study and in the empirical application, we compared our estimator with

two other estimators reported in the literature. As expected, our estimator presented highly

satisfactory performance under the Lehmann condition in both small and large samples. Fur-

thermore, we observed that the behavior of HUMLN did not depend on the distance among
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the distributions. In fact, it performed well in estimating both small and large hypervolumes.

Moreover, the coverage rate was always large and very close to the nominal level.

We acknowledge that the Lehmann assumption is a strong one, and we were mindful of

this limitation in our analysis. For this reason, we investigated the behavior of the estimator

when these conditions are not met. Departures from the Lehmann assumption were found to

influence the bias of the estimator, with the bias increasing as the sample size grew. Nonethe-

less, our results demonstrated that the performance of our estimator was never substantially

inferior to that of the two other competitors, even under very unfavorable conditions, such

as significant departures from the Lehmann assumption.

Furthermore, we also evaluated the proposed method in terms of computational time.

With our approach, calculating the HUM takes no more than a few seconds, even for large

samples. This aspect indicates the advantage of our procedure compared to the two alterna-

tive estimators in the literature: in addition to requiring more than double in small samples,

they present exploding computational times when the sample size becomes relatively large.

Moreover, our method is based on a well developed framework, and is easy to handle

and implementable in all standard statistical packages. In addition, the regression framework

on which our approach is based provides multiple advantages. First, it enables controlling

the possible effects of covariates on the accuracy of the diagnostic test. Second, the estimates

of the coefficients related to the class variables indirectly provide a way to test whether the

classes significantly differ. If no significant difference is found, the analysis can be simplified

by grouping classes with the same distributions. These are notable aspects of our method.

Finally, in medical research, interest in combining information from multiple markers is

still increasing, see for example Hsu and Hsueh (2013); thus, future research might focus on

the optimal combination of biomarkers, such as attempting to solve for an efficient algorithm

in maximizing the HUM.
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