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1. Introduction

Information theory, a pivotal discipline in applied mathematics and computer science,

delves into data quantification, transmission, and comprehension. It seeks to unveil under-

lying patterns and structures within the system. The differential entropy introduced by

Shannon (1948) is a well-known information measure that represents the expectation of the

information content of an absolutely continuous random variable. Then, Shannon entropy

of a continuous random variable X, with probability density function(pdf) f(x), denoted by

H(X), is defined by

H(X) = E(−log f(X))(1.1)

= −
∫
χ
f(x)log f(x)dx.(1.2)

The variance of the entropy, known as varentropy, studied by Fradelizi et al. (2016),

represents the dispersion of information content around the entropy of a random variable X.

This measure serves as a pivotal measurement in understanding how information is distributed

within the probability distribution of X, depicting the degree of deviation or scattering of

information from its expected value captured by entropy. Varentropy’s significance lies in its

ability to quantify the variability and uncertainty inherent in the information carried by X,

holding vital implications across information theory, computer sciences, and statistics. Its

applications encompass aiding in the assessment of communication system uncertainties in

information theory, facilitating pattern recognition in computer sciences, and contributing to

a deeper understanding of variability within probability distributions in statistical analyses.

Nowadays, it is pointed out that this information measure has wide applications in reliability

and survival analysis also. The varentropy measure, denoted by VH(X), is defined by

(1.3) VH(X) = V ar(−log f(X)).

Some contributions on the varentropy can be found in various papers by Bobkov and Madiman

(2011), Arıkan (2016), Kontoyiannis and Verdú (2013) and Di Crescenzo et al. (2024). Bobkov

and Madiman (2011) demonstrated a concentration property of the information content when

an n-dimensional random vector has a log-concave density function. Arıkan (2016) established

that the sum of the varentropies at the output of the polar transform is less than or equal

to the sum of the varentropies at the input, with equality if and only if at least one of the

inputs has zero varentropy. Fradelizi et al. (2016) provided a bound for the varentropy of

random vectors with log-concave densities, which is sharper than that proposed by Bobkov

and Madiman (2011).

Recently, Maadani et al. (2020) introduced a new generalized varentropy based on the

Tsallis entropy and obtained some bounds for it. Maadani et al. (2022) have introduced a

method for calculating varentropy measure for the ith order statistic and a new stochastic

order based on the varentropy and its relationships with the other stochastic orders. Raqab

et al. (2022) studied the varentropy of the inactivity time of a random variable and its

applications. Di Crescenzo and Paolillo (2021) introduced residual varentropy and studied

its various properties with some applications related to the proportional hazards model and

the first-passage times of an Ornstein-Uhlenbeck jump-diffusion process. Sharma and Kundu
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(2023) introduced the concept of varentropy in a doubly truncated random variable and

examined several theoretical properties. Alizadeh and Shafaei (2023) introduced some non-

parametric estimates of the varentropy with some theoretical properties. Alizadeh and Shafaei

(2024) constructed some tests for normality based on varentropy estimators. Saha and Kayal

(2024) introduced two uncertainty measures, weighted past varentropy and weighted paired

dynamic varentropy, and studied their properties.

If X represents the lifetime of a system, then the residual lifetime of the system when

it is still operating at time t is Xt = [X − t|X > t], which has the pdf given by

ft(x) =
f(x)

F (t)
, x ≥ t > 0,

where F (t) = 1−F (t) > 0 is the survival function of X . Muliere et al. (1993) and Ebrahimi

(1996) defined the entropy of the random variable Xt as the residual entropy at time t and

is given by

(1.4) H(Xt) = −
∫ ∞

t

f(x)

F (t)
log

f(x)

F (t)
dx, t ≥ 0.

Di Crescenzo and Paolillo (2021) explored the concept of residual varentropy, which

represents the varentropy related to the residual lifetime distribution and suggest that when

combined with residual entropy, this measure allows to analyze the dynamical information

content of time-varying systems conditional on being active at current time. The residual

varentropy of X at time t, denoted by RVH(Xt), and is defined as

(1.5) RVH(Xt) =

∫ ∞

t

f(x)

F (t)

[
log

f(x)

F (t)

]2
dx−H2(Xt).

In reliability theory, the past lifetime is studied extensively, which represents a variable

dependent on failure occurring before a specified inspection time t. It holds importance in

exploring the uncertainty surrounding the duration (0, t) when observing systems that have

already experienced failure by time t. If X denotes the lifetime of a system, then the past

lifetime of a system at time t is X[t] = [X|X ≤ t], which has the pdf given by

f[t](x) =
f(x)

F (t)
, 0 ≤ x < t.

Then the past entropy is defined as (see, Di Crescenzo and Longobardi (2002))

(1.6) H(X[t]) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx.

Buono et al. (2022) introduced the concept of past varentropy, defined as the dynamic measure

of variability of information for past lifetimes. The past varentropy of X at time t, denoted

by PVH(X[t]) is given by (see, Buono et al. (2022))

(1.7) PVH(X[t]) =

∫ t

0

f(x)

F (t)

[
log

f(x)

F (t)

]2
dx−H2(X[t]).

Extensive investigation over the last two decades has been dedicated to understand the role

of information measures concerning residual and past lifetimes in reliability modeling, with
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the initial groundwork laid out by Muliere et al. (1993) and Di Crescenzo and Longobardi

(2002).

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random

variables having a common cumulative distribution function (cdf) F (x), which is absolutely

continuous. An observation Xj is called an upper record if its value exceeds that of all

preceding observations. Thus, Xj is an upper record if Xj > Xi for every i < j. In an

analogous way, one can also define lower record values.

The times at which upper record values appear are given by the random variables Tj
which are called record times and are defined by T1 = 1 with probability 1 and, for j ≥ 2,

Tj = Min{i : Xi > XTj−1}. The waiting time between the ith upper record value and the

(i+1)th upper record value is called the inter-record time, and is denoted by ∆i = Ti+1−Ti,
i = 1, 2, . . .. In an analogous way, one can also define record times and inter-record times for

lower record values.

Let U1, U2, . . . be a sequence of upper record values from a distribution with the cdf

F (x) and the pdf f(x). Then the pdf of Un (the nth upper record value, n ≥ 1) is given by,

(1.8) fUn(x) =
1

Γ(n)
[−log (1− FUn(x))]

n−1fUn(x),−∞ < x <∞.

Also, the corresponding survival function of Un is given by

(1.9) FUn(x) =
1

Γ(n)
Γ−log F (x)(n).

where Γx(a) is the incomplete gamma function given by

(1.10) Γx(a) =

∫ ∞

x
ua−1e−udu, a, x > 0.

Let L1, L2, . . . be a sequence of lower record values from a distribution with the cdf

F (x) and the pdf f(x). Then the pdf of Ln (the nth lower record value, n ≥ 1) is given by,

(1.11) fLn(x) =
1

Γ(n)
[−log (fLn(x))]

n−1fLn(x),−∞ < x <∞.

Also, the corresponding survival function of Ln is given by

(1.12) FLn(x) =
1

Γ(n)
Γ−log F (x)(n),

where Γx(a) is given by

(1.13) Γx(a) =

∫ x

0
ua−1e−udu, a, x > 0.

For more details on record values one can refer Arnold et al. (1992). Let Ri, i = 1, 2, . . . , n be

the first n upper record values arising from a distribution with cdf F (x) and pdf f(x). Let

Dn = (R1, R2, . . . , Rn). Then the joint pdf of Dn is given by

(1.14) f(r1, r2, . . . , rn) = f(rn)

n−1∏
i=1

f(ri)

1− F (ri)
,−∞ < r1 < r2 < . . . < rn <∞.
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Record values have been studied extensively in the literature. Record values arise

naturally in problems such as industrial stress testing, meteorological analysis, hydrology,

sporting, stock markets, athletic events and seismology. For some recent applications of

record values, see Baratpour et al. (2007), Abbasnejad and Arghami (2011), Chacko and

Asha (2021), Muraleedharan and Chacko (2022a), Muraleedharan and Chacko (2022b) and

so on.

In this paper, our central aim is to delve into the concept of varentropy concerning

record values and establish its mathematical expression for some distributions. Our main

goal is to provide a foundational comprehension of varentropy, emphasizing its possible uses

and importance within the domain of record values. Varentropy holds importance across

finance, healthcare, environmental science, and manufacturing, where it aids in assessing

volatility in portfolios, treatment variability, climate fluctuations, and quality control pro-

cesses. Despite its importance, the existing literature still needs to thoroughly explore the

estimation of varentropy using record values, inspiring us to develop a novel estimation ap-

proach. This gap highlights the need for new methodologies to understand better and utilize

varentropy in practical applications. Furthermore, our study explores practical uses by in-

vestigating how maximum likelihood estimation and Bayesian methods can be applied to

estimate varentropy, particularly highlighting its significance within the framework of the

Pareto distribution. Additionally, real-life data is used for illustration, demonstrating the

applicability and relevance of our proposed methods.

The rest of this paper is orgnized as follows: Section 2 examines varentropy for both

the nth upper and lower record values and considers an upper bound for the varentropy

measure. Section 3 focuses on residual varentropy for the nth upper and lower record values.

Moving to Section 4, it explores varentropy of past lifetimes for the nth upper and lower

record values. Section 5 covers the estimation of varentropy for the Pareto distribution based

on upper record values, presenting the maximum likelihood estimators (MLEs) and Bayes

estimators. Finally, in section 6, a real data set is used to illustrate the application of the

varentropy measure based on record values. Some concluding remarks are obtained in Section

7.

2. Varentropy of Record Values

In this section, we first examine the varentropy measure for upper and lower record

values and then establish some results, including an upper bound for the varentropy measure

for these record values.

Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a distribution

with cdf F (x), pdf f(x) and quantile function F−1(·). Then analogous to (1.3), we define the

varentropy measure of nth upper record value, denoted by VH(Un), and is given by

VH(Un) = V ar(−log fUn(Un)),

where fUn(x) is the pdf of nth upper record given in (1.8).

Similarly, we can express the varentropy measure of nth lower record value, denoted by
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VH(Ln), as

(2.1) VH(Ln) = V ar(−log fLn(Ln)),

where fLn(x) is the pdf of nth lower record given in (1.11).

In the following theorem, we formulate the varentropy measure of nth upper record.

Theorem 2.1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Un

denote the nth upper record. Then the varentropy measure of Un is given by,

(2.2) VH(Un) = (n− 1)2ψ′(n) + C
′′
n(0)−

[
C ′
n(0)

]2
,

where Cn(z) = E[fz(F−1(1− e−Un(z+1)+1,1))], Vα,1 ∼ G(α, 1), ψ′ is the trigamma function,

C
′
n(0) and C

′′
n(0) are the first and second derivative of Cn(z) with respect to z at z = 0. Here

G(a, b) denotes a gamma distribution with pdf given by

(2.3) g(x) =
ba

Γ(a)
xa−1e−bx; x > 0, a, b > 0.

Proof. The moment generating function (mgf) of the log fUn(Un) is given by,

MX(z) = E(ez logfUn (Un))

= E([fUn(Un)]
z)

=

∫
z
[fUn(x)]

z+1dx

=
1

(Γ(n))z+1

∫
[−log (1− F (x))]z(n−1)+n−1fz+1(x)dx.

On putting u = −log (1− F (x)), we get

MX(z) =
1

(Γ(n))z+1

∫
uz(n−1)+n−1e−ufz(F−1(1− e−u))du

=
Γ(z(n− 1) + n)

(Γ(n))z+1
Cn(z),

where Cn(z) = E[fz(F−1(1− e−Un(z+1)+1,1))]. Taking logarithm, we get the cumulant gener-

ating function given by

KX(z) = log MX(z) = log Γ(z(n− 1) + n)− (z + 1) log Γ(n) + log Cn(z).

Now, the second derivative of KX(z) with respect to z at z = 0 is given by,

d2KX(z)

dz2
|z=0 = (n− 1)2ψ′(n) + C ′′

n(0)−
[
C ′
n(0)

]2
.

Since VH(Un) =
d2KX(z)

dz2
|z=0, we get the result.

Example 2.1. Let {Xi, i ≥ 1} be a sequence of iid random variables having a uniform

distribution with pdf given by
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(2.4) f(x) =
1

b− a
, a < x < b.

Here

F−1(x) = x(b− a) + a.

Therefore

fz(F−1(1− e−u)) =
1

(b− a)z

Hence

C ′
n(0) = log

1

b− a
and C ′′

n(0) =

[
log

1

b− a

]2
Thus we have,

(2.5) VH(Un) = (n− 1)2ψ′(n).

Therefore, the varentropy of nth upper record for uniform distribution is independent of the

distribution parameters.

Example 2.2. Let {Xi, i ≥ 1} be a sequence of iid random variables having an exponential

distribution with pdf given by

f(x) = λe−λx;x > 0;λ > 0.

Here

F−1(x) = − 1

λ
log(1− x).

Therefore

fz(F−1(1− e−u)) = λze−uz.

Hence

C ′
n(0) = log λ− n,

and

C ′′
n(0) = [log λ]2 − 2n log λ+ n2 − n+ 2.

Thus we have,

VH(Un) = (n− 1)2ψ′(n)− n+ 2.

Therefore, the varentropy of nth upper record for exponential distribution is independent of

the scale parameter.

We have drawn the graph of varentropy measure of nth upper record for exponential distri-

bution for different values of n and is given in Figure 1.

Example 2.3. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common

Pareto distribution with pdf given by

f(x) =
λ

σ

(x
σ

)−λ−1
, x ≥ σ > 0, λ > 0.
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Figure 1: Graph of the varentropy measure of nth upper record for expo-
nential distribution.

Here

F−1(x) = σ (1− x)−
1
λ .

Therefore

fz−1(F−1(1− e−u)) =

(
λ

σ

)z

e−uz(1+ 1
λ
),

and hence

C ′
n(0) = log

λ

σ
− n

(
1 +

1

λ

)
,

and

C ′′
n(0) =

(
log

λ

σ

)2

+ n(n+ 1)

(
1 +

1

λ

)2

− 2(n− 1)

(
1 +

1

λ

)
− 2n

(
log

λ

σ

)(
1 +

1

λ

)
.

Thus we have,

VH(Un) = (n− 1)2ψ′(n) + n

(
1 +

1

λ

)2

− 2(n− 1)

(
1 +

1

λ

)
.

We have drawn the graph of varentropy measure of nth upper record for Pareto distri-

bution for different values of λ and are given in Figure 2.
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Figure 2: Graph of the varentropy measure of nth upper record for Pareto
distribution for different values of λ.

In the following theorem, we obtain an upper bound of the varentropy measure nth upper

record.

Theorem 2.2. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common distribution function F (x), pdf f(x) and quantile function

F−1(·). Let Un denote the nth upper record. Then an upper bound for the varentropy

measure of Un is given by,

(2.6) VH(Un) ≤
(∫

(log fUn(Un) +H(Un))
4dx

) 1
2

(E(fUn(Un)))
1
2 ,

where H(Un) is the entropy of Un.

Proof. We have

VH(X) = E[−log fUn(Un)−H(Un)]
2

=

∫
(log fUn(x) +H(Un))

2fUn(x)dx.



10 Manoj Chacko and Annie Grace

By applying Cauchy-Schwartz inequality, we have

VH(Un) ≤
(∫

(log fUn(x) +H(Un))
4dx

) 1
2
(∫

f2Un
(x)dx

) 1
2

=

(∫
(log fUn(x) +H(Un))

4dx

) 1
2

(E(fUn(Un)))
1
2 .

Hence the theorem.

In the following theorem, we obtain the varentropy measure of nth lower record.

Theorem 2.3. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Ln

denote the nth lower record. Then the varentropy measure of Ln is given by,

(2.7) VH(Ln) = (n− 1)2ψ′(n) +D
′′
n(0)−

[
D′

n(0)
]2
,

where Dn(z) = E[fz(F−1(e−Vn(z+1)+1,1))], Vα,1 ∼ G(α, 1), ψ′ is the trigamma function, D
′
n(0)

and D
′′
n(0) are the first and second derivative of Dn(z) with respect to z at z = 0. Here

G(a, b) denotes a gamma distribution with pdf given in (2.3).

Proof. The mgf of the log fLn(Ln) is given by,

MX(z) = E(ez logfLn (Ln))

= E([fLn(Ln)]
z+1)

=

∫
z
[fLn(x)]

z+1dx

=
1

(Γ(n))z+1

∫
[−log (1− F (x))]z(n−1)+n−1fz(x)dx.

On putting v = −log (F (x)), we get

MX(z) =
1

(Γ(n))z+1

∫
vz(n−1)+n−1e−vfz(F−1(e−v))dv

=
Γ(z(n− 1) + n)

(Γ(n))z+1
Dn(z),

where Dn(z) = E[fz(F−1(e−Vn(z+1)+1,1))]. Taking logarithm, we get the cumulant generating

function as

KX(z) = log MX(z) = log Γ(z(n− 1) + n)− (z + 1) log Γ(n) + log Dn(z).

Now, the second derivative of KX(z) with respect to z at z = 0 is given by,

d2KX(z)

dz2
|z=0 = (n− 1)2ψ′(n) +D′′

n(0)−
[
D′

n(0)
]2
.

Since VH(Ln) =
d2KX(z)

dz2
|z=0, we get the result.

Example 2.4. Let {Xi, i ≥ 1} be a sequence of iid random variables having a standard

power distribution with pdf given by

f(x) = βxβ−1, 0 < x < 1.
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Here

F−1(x) = x
1
β .

Therefore

fz(F−1(e−u)) = βze
−uz(1− 1

β
)
.

Hence

D′
n(0) = log β − n

(
1− 1

β

)
,

and

D′′
n(0) = (log β)2 + n(n+ 1)

(
1− 1

β

)2

− 2(n− 1)

(
1− 1

β

)
− 2n (log β)

(
1− 1

β

)
.

Thus we have,

VH(Ln) = (n− 1)2ψ′(n) + n

(
1− 1

β

)2

− 2(n− 1)

(
1− 1

β

)
.

We have drawn the graph of varentropy measure of nth lower record for standard power

distribution for different values of β and are given in Figure 3.

Example 2.5. Let {Xi, i ≥ 1} be a sequence of iid random variables having a uniform

distribution with pdf given in (2.4). By solving, we have,

(2.8) VH(Ln) = (n− 1)2ψ′(n).

Remark 1. From (2.5) and (2.8), for uniform distribution, the varentropy of nth

upper record is same as the varentropy of nth lower record and is independent of the distri-

bution parameters.

In the following theorem, we obtain an upper bound of the varentropy measure of nth lower

record.

Theorem 2.4. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Ln

denote the nth lower record. Then an upper bound for the varentropy measure of Ln is given

by,

(2.9) VH(Ln) ≤
(∫

(log fLn(x) +H(Ln))
4dx

) 1
2

(E(fLn(Ln)))
1
2 ,

where H(Ln) is the entropy of Ln.

Proof. The proof is omitted since it is similar to that of Theorem 2.2.
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Figure 3: Graph of the varentropy measure of nth lower record for stan-
dard power distribution for different values of β.

3. Residual Varentropy of Record Values

In this section, we examine the residual varentropy measure of lower and upper record

values and then establish some results for this measure.

Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a distribution

with common cdf F (x), pdf f(x) and quantile function F−1(·). Then analogous to (1.5), we

define the residual varentropy measure of nth upper record value, denoted by RVH(Un), and

is given by

RVH(Un) = V ar

(
−log fUn(U

(t)
n )

FUn(t)

)
,

where U
(t)
n is the residual lifetime of the random variable Un at time t, with density function

given by

f
U

(t)
n
(x) =

fUn(x)

FUn(t)
, x ≥ t > 0,

and FUn(t) is the corresponding survival function defined in (1.9).



Varentropy Properties of Record Values 13

Similarly, we can express the residual varentropy measure of nth lower record value, denoted

by RVH(Ln), as

RVH(Ln) = V ar

(
−log fLn(L

(t)
n )

FLn(t)

)
,

where L
(t)
n is the residual lifetime of the random variable Ln at time t, with density function

given by

f
L
(t)
n
(x) =

fLn(x)

FLn(t)
, x ≥ t > 0,

and FLn(t) is the corresponding survival function defined in (1.12).

In the following theorem, we obtain the residual varentropy measure of nth upper record.

Theorem 3.1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Un

denote the nth upper record. Then the residual varentropy measure of Un is given by,

(3.1) RVH(Un) = η′′ + C
′′
n(0)−

[
C ′
n(0)

]2
,

where η′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1),

Cn(z) = E[fz−1(F−1(1− e
−V

(t)
z(n−1)+n,1))], V

(t)
α,1 ∼ Gt(α, 1), C

′
n(0) and C

′′
n(0) are the first and

second derivative of Cn(z) with respect to z at z = 0. Here Gt(a, 1) denotes a truncated

gamma distribution with pdf given by

(3.2) h1(x) =
1

Γt(a, 1)
xa−1e−x; 0 < t < x, a > 0,

and Γt(a, 1) is given by

(3.3) Γt(a, 1) =

∫ ∞

t
xa−1e−xdx.

Proof. The mgf of log
fUn(U

(t)
n )

FUn(t)
is given by

MXt(z) = E

ez log
fUn

(U
(t)
n )

FUn
(t)


= E

[(
fUn(U

(t)
n )

FUn(t)

)z]

=

∫ ∞

t

(
fUn(x)

FUn(t)

)z+1

dx

=
1

[Γ−log F (t)(n, 1)]
z+1

∫ ∞

t
[−log (1− F (x))]z(n−1)+n−1fz+1(x)dx.

On putting u = −log (1− F (x)), we get

MXt(z) =
1

[Γ−log F (t)(n, 1)]
z+1

∫ ∞

−log F (t)
uz(n−1)+n−1e−ufz(F−1(1− e−u))du

=
Γ−log F (t)(z(n− 1) + n, 1)

[Γ−log F (t)(n, 1)]
z+1

Cn(z).
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where Cn(z) = E[fz(F−1(1− e
−V

(t)
z(n−1)+n,1))]. Taking logarithm, we get the cumulant gener-

ating function as

KXt(z) = log MXt(z) = log Γ−log F (t)(z(n− 1) + n, 1)

− (z + 1) log (Γ−log F (t)(n, 1)) + log Cn(z).

Now, the second derivative of KXt(z) with respect to z at z = 0 is given by,

d2MXt(z)

dz2
|z=0 = η′′ + C ′′

n(0)−
[
C ′
n(0)

]2
,

where η′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1).

Since RVH(Un) =
d2KXt(z)

dz2
|z=0, we get the result.

In the following theorem, we derive the expression for residual varentropy measure of nth

lower record.

Theorem 3.2. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Ln

denote the nth lower record. Then the residual varentropy measure of Ln is given by,

(3.4) RVH(Ln) = ξ′′ +D
′′
n(0)−

[
D′

n(0)
]2
,

where ξ′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1),

Dn(z) = E[fz−1(F−1(e
−V

(t)
z(n−1)+n,1))], V

(t)
α,1 ∼ Gt(α, 1), D

′
n(0) and D

′′
n(0) are the first and

second derivative of Dn(z) with respect to z at z = 0. Here Gt(a, 1) denotes a truncated

gamma distribution with pdf given by

(3.5) h2(x) =
1

Γt(a, 1)
xa−1e−x; 0 < x < t, a > 0,

and Γt(a, 1) is given by

(3.6) Γt(a, 1) =

∫ t

0
xa−1e−xdx.

Proof. The mgf of log
fLn(L

(t)
n )

FLn(t)
is given by

MXt(z) = E

ez log
fLn

(L
(t)
n )

FLn
(t)


= E

[(
fLn(L

(t)
n )

FLn(t)

)z]

=

∫ ∞

t

(
fLn(x)

FLn(t)

)z+1

dx

=
1

(Γ−log F (t)(n, 1))z+1

∫ ∞

t
[−log F (x)]z(n−1)+n−1fz+1(x)dx.
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On putting v = −log F (x), we get

MXt(z) =
1

(Γ−log F (t)(n, 1))z+1

∫ −log F (t)

0
vz(n−1)+n−1e−vfz(F−1(e−v))dv

=
Γ−log F (t)(z(n− 1) + n, 1)

(Γ−log F (t)(n, 1))z+1
Dn(z).

where Dn(z) = E[fz(F−1(e
−V

(t)
z(n−1)+n,1))]. Taking logarithm, we get the cumulant generating

function as

KXt(z) = log MXt(z) = log Γ−log F (t)(z(n− 1) + n, 1)

− (z + 1) log (Γ−log F (t)(n, 1)) + log Dn(z).

Now, the second derivative of KXt(z) with respect to z at z = 0 is given by,

d2KXt(z)

dz2
|z=0 = ξ′′ +D′′

n(0)−
[
D′

n(0)
]2
,

where ξ′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1).

Since RVH(Ln) =
d2KXt(z)

dz2
|z=0, we get the result.

4. Past Varentropy of Record Values

In this section, we examine the past varentropy measure of lower and upper record

values and then establish some results for this measure.

Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a distribution

with common distribution function F (x), pdf f(x) and quantile function F−1(·). Then anal-

ogous to (1.7), we define the past varentropy measure of nth upper record value, denoted by

PVH(Un), and is given by

PVH(Un) = V ar

(
−log fUn(U

[t]
n )

FUn(t)

)
,

where U
[t]
n is the past lifetime of the random variable Un at time t, with density function

given by

f
U

[t]
n
(x) =

fUn(x)

FUn(t)
, 0 ≤ x < t,

and FUn(t) is the corresponding cdf.

Similarly, we can express the past varentropy measure of nth lower record value, denoted by

PVH(Ln), as

PVH(Ln) = V ar

(
−log fLn(L

(t)
n )

FLn(t)

)
,

where L
[t]
n is the past lifetime of the random variable Ln at time t, with density function

given by

f
L
[t]
n
(x) =

fLn(x)

FLn [t]
, 0 ≤ x < t,
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and FLn(t) is the corresponding cdf.

In the following theorem, we obtain the past varentropy measure of nth upper record.

Theorem 4.1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Un

denote the nth upper record. Then the past varentropy measure of Un is given by,

(4.1) PVH(Un) = η′′ + C
′′
n(0)−

[
C ′
n(0)

]2
,

where η′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1),

Cn(z) = E[fz−1(F−1(1− e
−V

(t)
z(n−1)+n,1))], V

(t)
α,1 ∼ Gt(α, 1), C

′
n(0) and C

′′
n(0) are the first and

second derivative of Cn(z) with respect to z at z = 0. Here Gt(a, 1) denotes a truncated

gamma distribution with pdf given in (3.5).

Proof. The mgf of log
fUn(U

[t]
n )

FUn(t)
is given by

MX[t]
(z) = E

ez log
fUn

(U
[t]
n )

FUn
(t)


= E

[(
fUn(U

[t]
n )

FUn(t)

)z]

=

∫ t

0

(
fUn(x)

FUn(t)

)z+1

dx

=
1

[Γ−log F (t)(n, 1)]
z+1

∫ t

0
[−log (1− F (x))]z(n−1)+n−1fz+1(x)dx.

On putting u = −log (1− F (x)), we get

MX[t]
(z) =

1

[Γ−log F (t)(n, 1)]
z+1

∫ −log F (t)

0
uz(n−1)+n−1e−ufz(F−1(1− e−u))du

=
Γ−log F (t)(z(n− 1) + n, 1)

[Γ−log F (t)(n, 1)]
z+1

Cn(z).

where Cn(z) = E[fz(F−1(1− e
−V

(t)
z(n−1)+n,1))]. Taking logarithm, we get the cumulant gener-

ating function as

KX[t]
(z) = log MXt(z) = log Γ−log F (t)(z(n− 1) + n, 1)

− (z + 1) log (Γ−log F (t)(n, 1)) + log Cn(z).

Now, the second derivative of KX[t]
(z) with respect to z at z = 0 is given by,

d2MX[t]
(z)

dz2
|z=0 = η′′ + C ′′

n(0)−
[
C ′
n(0)

]2
,

where η′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1).

Since PVH(Un) =
d2KX[t]

(z)

dz2
|z=0, we get the result.
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In the following theorem, we derive the expression for past varentropy measure of nth lower

record.

Theorem 4.2. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables

from a distribution with common cdf F (x), pdf f(x) and quantile function F−1(·). Let Ln

denote the nth lower record. Then the past varentropy measure of Ln is given by,

(4.2) PVH(Ln) = ξ′′ +D
′′
n(0)−

[
D′

n(0)
]2
,

where ξ′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1),

Dn(z) = E[fz−1(F−1(e
−V

(t)
z(n−1)+n,1))], V

(t)
α,1 ∼ Gt(α, 1) and D

′
n(0) and D

′′
n(0) are the first and

second derivative of Dn(z) with respect to z at z = 0. Here Gt(a, 1) denotes a truncated

gamma distribution with pdf given in (3.2).

Proof. The mgf of log
fLn(L

[t]
n )

FLn(t)
is given by

MX[t]
(z) = E

ez log
fLn

(L
[t]
n )

FLn
(t)


= E

[(
fLn(L

[t]
n )

FLn(t)

)z]

=

∫ t

0

(
fLn(x)

FLn(t)

)z+1

dx

=
1

(Γ−log F (t)(n, 1))z+1

∫ t

0
[−log F (x)]z(n−1)+n−1fz+1(x)dx.

On putting v = −log F (x), we get

MX[t]
(z) =

1

(Γ−log F (t)(n, 1))z+1

∫ ∞

−log F (t)
vz(n−1)+n−1e−vfz(F−1(e−v))dv

=
Γ−log F (t)(z(n− 1) + n, 1)

(Γ−log F (t)(n, 1))z+1
Dn(z).

where Dn(z) = E[fz(F−1(e
−V

(t)
z(n−1)+n,1))]. Taking logarithm, we get the cumulant generating

function as

KX[t]
(z) = log MX[t]

(z) = log Γ−log F (t)(z(n− 1) + n, 1)

− (z + 1) log (Γ−log F (t)(n, 1)) + log Dn(z).

Now, the second derivative of KX[t]
(z) with respect to z at z = 0 is given by,

d2KX[t]
(z)

dz2
|z=0 = ξ′′ +D′′

n(0)−
[
D′

n(0)
]2
,

where ξ′′ is the second derivative of log Γ−log F (t)(z(n− 1) + n, 1).

Since PVH(Ln) =
d2KX[t]

(z)

dz2
|z=0, we get the result.
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5. Estimation of varentropy measure for Pareto Distribution based on record

values

In this section, we consider the estimation of varentropy measure for Pareto distribution

based on upper record values. We obtain the maximum likelihood estimators(MLEs) and

Bayes estimators of varentropy measure using upper record values. The Pareto distribution

has cdf given by

(5.1) F (x|λ, σ) = 1−
(x
σ

)−λ
, λ > 0, x > σ.

The pdf corresponding to the above cdf is given by

(5.2) f(x|λ, σ) = λ

σ

(x
σ

)−(λ+1)
.

The Pareto distribution is widely used to model situations where a small number of extreme

events or observations significantly influence the overall distribution, prevalent in various

fields due to its ability to capture heavy-tailed distributions. Also, it aids in understanding the

variability and uncertainty inherent in systems where extreme events play a crucial role.The

varentropy measure of the nth upper record value for the Pareto distribution with cdf given

in (5.1) is given by

(5.3) VH(λ, σ) = (n− 1)2ψ′(n) + n

(
1 +

1

λ

)2

− 2(n− 1)

(
1 +

1

λ

)
.

Recently, Chacko and Grace (2023) obtained estimators for the information generating func-

tion of a Weibull distribution based on upper record values. Chacko and Asha (2021) obtained

estimators for the entropy functions of a Weibull distribution based on upper record values

and Chacko and Asha (2018) obtained estimators for the entropy functions of a generalized

exponential distribution based on lower record values.

5.1. Maximum Likelihood Estimation

In this subsection, we obtain the MLEs of varentropy measure for the Pareto distri-

bution using upper record values. Let Ri, i = 1, 2, . . . , n be the first n upper record values

arising from Pareto distribution with cdf given in (5.1). Let Dn = (R1, R2, . . . , Rn). Then

from (1.14) the likelihood function is given by

L(λ, σ|dn) = λn
(
σ

rn

)λ n∏
i=1

1

ri
, r1 < r2 < . . . , rn,

where dn = (r1, r2, . . . , rn). The logarithm of the likelihood function is given by

log L(λ, σ|dn) = n log λ+ λ log σ − λ log rn −
n∑

i=1

log ri.

Since log σ is monotonically increasing, we can maximize the likelihood by setting σ̂ as high

as possible. Since σ ≤ r1 < r2 < . . . < rn, we have σ̂ = r1, the first record value.
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For λ, we differentiate log L(λ, σ|dn) with respect to λ and equates to zero,

we get,

(5.4)
∂logL

∂λ
=
n

λ
+ log σ̂ − log rn = 0.

Therefore the MLE of λ is given by

λ̂ =
n

log rn
σ̂

.

Then by the invariant property of MLE, the MLE of varentropy measure for Pareto distri-

bution based on nth upper record values is given by

(5.5) V̂HMLE = (n− 1)2ψ′(n) + n

(
1 +

1

λ̂

)2

− 2(n− 1)

(
1 +

1

λ̂

)
.

5.2. Bayesian Estimation

In this subsection, we consider the Bayesian estimation of the varentropy measure for

the Pareto distribution based on upper record values. Here, we consider Bayesian estimation

of varentropy measure under symmetric as well as asymmetric loss functions. For a symmet-

ric loss function we consider the squared error loss (SEL) function and for assymetric loss

functions we consider LINEX loss function. The Bayes estimate of any parameter µ under

SEL is the posterior mean of µ. The Bayes estimate of µ under LINEX loss function can be

obtained as

µ̂LB = −1

h
log{Eµ(e

−hµ|x)}, h ̸= 0,

provided Eµ(.) exists. Let Ri, i = 1, 2, . . . , n be the first n upper record values arising from

Pareto distribution with pdf given in (5.2). Then from (1.14) the likelihood function is given

by

L(λ, σ|dn) = λn
(
σ

rn

)λ n∏
i=1

1

ri
,

where dn = (r1, r2, . . . , rn). Assume that the prior distributions of λ and σ follow independent

gamma distributions with density functions respectively given by

π1(λ|a, b) =
ba

Γa
λa−1e−bλ; a > 0, b > 0,

and

π2(σ|c, d) =
dc

Γc
σc−1e−dσ; c > 0, d > 0.

Thus, the joint prior distribution of λ and σ is given by

π(λ, σ) =
badc

ΓaΓc
λa−1σc−1e−bλe−dσ.

Then, the joint posterior density of λ and σ given Dn = dn can be written as

(5.6) π∗(λ, σ|dn) =
L(λ, σ|dn)π(λ, σ)∫ ∫
L(λ, σ|dn)π(λ, σ)dλdσ

.
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Therefore, the Bayes estimate of VH(λ, σ) of λ and σ under SEL and LL are respectively

given by

(5.7) V̂HS =

∫ ∫
VH(λ)L(λ, σ|dn)π(λ, σ)dλdσ∫ ∫

L(λ, σ|dn)π(λ, σ)dλdσ
,

and

(5.8) V̂HL = −1

h
log

[∫ ∫
e−hVH(λ)L(λ, σ|dn)π(λ, σ)dλdσ∫ ∫

L(λ, σ|dn)π(λ, σ)dλdσ

]
.

It is not possible to compute (5.7)-(5.8) explicitly. Thus we propose MCMC method to find

the Bayes estimates for the varentropy measure given in (5.3).

5.3. MCMC Method

In this subsection, we consider the MCMC method to generate samples from the pos-

terior distributions and then find the Bayes estimates for varentropy measure. The joint

posterior distribution given in (5.6) can be written as

(5.9) π∗(λ, σ|dn) ∝ λn+a−1σλ+c−1e−(λb+dσ+λ log rn+
∑n

i=1 log ri).

From (5.9) the conditional posterior distribution of λ given σ and dn is given by

(5.10) π∗1(λ|σ, dn) ∝ λn+a−1e−λ(b+log rn−log σ).

Again from (5.9), the conditional posterior distribution of σ given λ and dn is given by

(5.11) π∗2(σ|λ, dn) ∝ σλ+c−1e−dσ.

Thus from (5.10) we can see that, the conditional posterior distribution of λ follows a Gamma

distribution with parameters (n+a) and (b+ log rn− log σ). That is, λ ∼ Gamma(n+a, b+

log rn − log σ). Also from (5.11) we can see that, the conditional posterior distribution of σ

follows a Gamma distribution with parameters (λ+c) and (d). That is, σ ∼ Gamma(λ+c, d).

Therefore one can easily generate sample from the conditional posterior distributions of λ

and σ.

By setting initial values σ(0) and λ(0), let σ(t) and λ(t), t = 1, 2, . . . , N be the observa-

tions generated from (5.11) and (5.10) respectively. Then the Bayes estimator of varentropy

measure given in (5.3) under SEL and LL, by taking first m iterations as burn-in period, are

respectively given by

(5.12) V̂HSEL =
1

N −m

N∑
t=m+1

VH(λ(t)),

and

(5.13) V̂HLL = −1

h
log

[
1

N −m

N∑
t=m+1

e−hVH(λ(t))

]
,

where VH(λ(t)) is given in (5.3).
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5.4. Simulation Study

In this subsection, we carry out a simulation study for finding the efficiency of different

estimates developed in subsection (5.3). First we obtain the MLEs for varentropy measure

using (5.5). We have obtained the MLEs and the corresponding MSE of MLEs for different

values of n using 1000 simulated samples for different combinations of λ and fixed σ = 1

and are given in Table 1. For the simulation studies for Bayes estimators we take the hyper

parameters for the prior distributions of λ and σ as a = 1, b = 0.5, c = 1 and d = 0.5.

We have obtained the Bayes estimators for varentropy measure of Pareto distribution using

upper record values under SEL and LL functions using MCMC method. For that we use the

following algorithm.

1. Generate upper record values from Pareto distribution with parameters λ and σ.

2. Calculate estimators of varentropy measure using the generated upper record values

using MCMC method as describe below.

(a) Start with initial values σ(0) and λ(0).

(b) Set t = 1.

(c) Generate λ(t) from Gamma(n+ a, b+ log rn − log σ(t−1)).

(d) Generate σ(t) from Gamma(λ(t) + c, d).

(e) Calculate V̂H(λ(t)) using (5.3).

(f) Set t = t+ 1.

(g) Repeat steps (c) to (f) for N = 50, 000 times.

(h) Calculate the Bayes estimators for the varentropy measure VH(λ) using (5.12) to

(5.13) by taking burn-in-period m = 5000.

3. Repeat the steps 1 and 2 for 500 times.

4. Calculate the Bayes estimates and the corresponding MSEs of the estimators.

Repeat the simulation study for n = 10, 15, 20 and for different values of λ and σ. The ML

estimates, the Bayes estimators and the corresponding MSE for varentropy measure under

SEL and LL functions for classical records are given in Tables 1, 2 and 3 . From the tables

we have the following inference:

1. The MSEs of all estimators decrease when n increases.

2. The MSEs corresponding to the MLEs are smaller than that of Bayes estimates.

3. Among the Bayes estimators, estimators under LL function have the least MSE.
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Table 1: The estimate and the corresponding MSE for maximum likeli-
hood estimator and Bayes estimator for varentropy measure of
Pareto distribution when σ = 1

n λ VH MLE SEL LL

V̂HMLE MSE V̂HSEL MSE V̂HLL MSE

10 4 1.70413 2.21894 0.44516 2.65510 1.45847 1.45605 0.71655
10 4.5 1.50429 1.91995 0.30703 2.54445 1.36692 1.26845 0.70024
10 5 1.35663 1.68450 0.21193 2.52839 1.80706 1.06833 0.62262
10 5.5 1.24391 1.50942 0.14833 2.26984 1.13474 1.03711 0.55441
10 6 1.15552 1.37523 0.10709 1.92525 0.61113 1.01083 0.49893
15 4 2.01110 1.91747 0.41386 2.46065 1.03190 1.74845 0.65502
15 4.5 1.74567 1.66541 0.26617 2.09618 0.78338 1.35057 0.61040
15 5 1.55110 1.47885 0.18570 1.80896 0.53952 1.19306 0.47415
15 5.5 1.40366 1.34657 0.13277 1.81051 0.38764 1.03158 0.50684
15 6 1.28888 1.23806 0.09740 1.59559 0.23990 0.98130 0.40290
20 4 2.32083 1.57816 0.32663 2.37018 0.81684 1.98445 0.59461
20 4.5 1.98981 1.40687 0.22877 1.96733 0.70116 1.62088 0.58914
20 5 1.74833 1.27501 0.15922 1.80017 0.49777 1.44937 0.34961
20 5.5 1.56618 1.16892 0.11358 1.58437 0.19391 1.16005 0.31807
20 6 1.42500 1.09720 0.08816 1.34147 0.11997 1.03021 0.25591

Table 2: The estimate and the corresponding MSE for maximum likeli-
hood estimator and Bayes estimator for varentropy measure of
Pareto distribution when σ = 1.5

n λ VH MLE SEL LL

V̂HMLE MSE V̂HSEL MSE V̂HLL MSE

10 4 1.70413 2.21989 0.46697 2.66324 1.54455 1.73646 0.50602
10 4.5 1.50429 1.91009 0.30800 2.60121 1.63102 1.51832 0.45477
10 5 1.35663 1.68491 0.21082 2.38211 1.40016 1.39104 0.31763
10 5.5 1.24391 1.51528 0.14851 2.34710 1.46904 1.42697 0.20658
10 6 1.15552 1.37785 0.10797 2.18581 1.16687 1.14634 0.16418
15 4 2.01110 1.91043 0.41243 2.54690 1.06764 1.97112 0.48333
15 4.5 1.74567 1.66354 0.26574 2.35480 1.13801 1.28683 0.32683
15 5 1.55110 1.47888 0.18372 1.91580 0.37910 1.28683 0.26827
15 5.5 1.40366 1.34342 0.13200 1.54734 0.30583 1.19281 0.18493
15 6 1.28888 1.23393 0.09679 1.79671 0.35970 1.23470 0.15229
20 4 2.32083 1.58400 0.33754 2.41008 0.98868 2.27783 0.43932
20 4.5 1.98981 1.40160 0.22300 2.23748 0.88120 1.76027 0.32421
20 5 1.74833 1.27191 0.15826 1.79843 0.27150 1.61082 0.20016
20 5.5 1.56618 1.17073 0.11425 1.72403 0.18625 1.15691 0.15428
20 6 1.42500 1.09136 0.08608 1.49738 0.15636 1.38267 0.14782

6. Illustration Using Real Data

In this section, we consider the real data set given in Volovskiy and Kamps (2020) for

the maximum product of spacings predictions of the next record for the Pareto distribution.

The data set contains hourly measurements (in cm) of water level for the period from January
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Table 3: The estimate and the corresponding MSE for maximum likeli-
hood estimator and Bayes estimator for varentropy measure of
Pareto distribution when σ = 2

n λ VH MLE SEL LL

V̂HMLE MSE V̂HSEL MSE V̂HLL MSE

10 4 1.70413 2.22723 0.46664 2.97497 2.17147 2.00548 0.67238
10 4.5 1.50429 1.90900 0.30861 2.69485 1.90355 1.64239 0.49655
10 5 1.35663 1.68706 0.21082 2.28303 1.08104 1.39104 0.31763
10 5.5 1.24391 1.51442 0.14902 2.34904 1.52808 1.43228 0.23237
10 6 1.15552 1.38051 0.10805 2.07611 1.08567 1.18425 0.19581
15 4 2.01110 1.91200 0.40607 2.76514 1.23153 2.29336 0.62905
15 4.5 1.74567 1.65782 0.26030 2.28238 1.00877 1.83485 0.38615
15 5 1.55110 1.48156 0.18476 1.79359 0.34462 1.56350 0.27825
15 5.5 1.40366 1.34398 0.13058 1.93490 0.80539 1.50808 0.15050
15 6 1.28888 1.23621 0.09586 1.65005 0.30465 1.40755 0.18986
20 4 2.32083 1.58370 0.34194 2.47386 0.77371 2.77457 0.59009
20 4.5 1.98981 1.41232 0.22756 2.22127 0.52853 2.05994 0.32281
20 5 1.74833 1.27348 0.15839 1.93213 0.43787 1.75522 0.25379
20 5.5 1.56618 1.16955 0.11338 1.68607 0.19747 1.17456 0.14990
20 6 1.42500 1.09115 0.08651 1.62995 0.27030 1.21483 0.15758

1918 to February 2019 collected at the measurement site Cuxhaven-Steubenhoft located at

the river Elbe. The sequence of upper record values extracted from the dataset of weekly

maximum water levels exceeding are 713, 781, 880, 885, 901, 914, 915, 993 and 1010.

We have obtained the estimators for varentropy measure using different methods and are

given below.

MLE 0.6108267

Bayes estimator SEL 0.6761488
LL 0.6757579

7. Conclusion

In this paper, we considered the varentropy measure for the nth upper and lower record

values. The expressions for the varentropy measure for the nth upper and lower record values

were obtained. We also derived the expressions for residual varentropy measure and past

varentropy measure for the nth upper and lower record values. Then, as an application

of varentropy measure in estimation, we obtained the MLEs and the Bayes estimates for

the varentropy measure for Pareto model based on classical record values. MCMC method

was applied to obtain the Bayes estimates. Based on the simulation study, we found that

the MSEs of all estimators decrease when n increases. Also, the MLEs for the varentropy

measure performed better than Bayes estimates with respect to MSEs. Among the Bayes

estimators, estimators under LL function performed better that of SEL function.
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